diff --git a/app.py b/app.py index 78dd6f5..8fa263c 100644 --- a/app.py +++ b/app.py @@ -296,16 +296,17 @@ def sanitize(string): with col4: col4.plotly_chart(plot.plot_fornitore(vaccines.deliveries, area), use_container_width=True) st.subheader(f"Dettaglio andamenti {area}") - col1, _, col2, _ = st.beta_columns([1, 2, 1, 2]) + col1, _, col2, col3, _ = st.beta_columns([1, 2, 1, 1, 1]) status = col1.selectbox('', ['Cumulato', 'Giornaliero']) fascia_anagrafica = col2.selectbox('Seleziona fascia anagrafica', ['16-19', '20-29', '30-39', '40-49', '50-59', '60-69', '70-79', '80-89', '90+'], index=7) + dose = col3.selectbox('Seleziona dose', ['seconda dose', 'prima dose']) if status == 'Cumulato': cumulate = True else: cumulate = False col1, col2 = st.beta_columns(2) col1.plotly_chart(plot.ages_timeseries(vaccines.raw, area, cumulate=cumulate), use_container_width=True) - col2.plotly_chart(plot.age_timeseries(vaccines.raw, area, fascia_anagrafica, demography, cumulate=cumulate), use_container_width=True) + col2.plotly_chart(plot.age_timeseries(vaccines.raw, area, fascia_anagrafica, demography, dose=dose, cumulate=cumulate), use_container_width=True) col1, col2 = st.beta_columns(2) col2.plotly_chart(plot.fornitori_timeseries(vaccines.raw, area, cumulate=cumulate), use_container_width=True) diff --git a/plot.py b/plot.py index 711b63c..682dd2f 100644 --- a/plot.py +++ b/plot.py @@ -172,7 +172,7 @@ def test_positivity_rate(data_in, country, rule): PALETTE_ALPHA = get_default_palette(True) next(PALETTE_ALPHA) next(PALETTE) - fig = make_subplots(1, 1, subplot_titles=[rule], specs=[[{"secondary_y": True}]]) + fig = make_subplots(1, 1, subplot_titles=[f'{country}: {rule}'], specs=[[{"secondary_y": True}]]) # plot_data = region.nuovi_positivi.rolling(7).mean() / region.tamponi.diff().rolling( # 7).mean() * 100 if PERCENTAGE_RULE[rule] == 'tamponi': @@ -755,7 +755,7 @@ def categories_timeseries(vaccines, area, cumulate=False): 'xanchor': "right", 'x': .4, } - return plot_fill([data_list[i] for i in order], [names[i] for i in order], cumulate=cumulate, subplot_title='Somministrazioni vaccino per categoria', legend=legend) + return plot_fill([data_list[i] for i in order], [names[i] for i in order], cumulate=cumulate, subplot_title=f'{area}: Somministrazioni vaccino per categoria', legend=legend) def sum_doses(data): @@ -779,12 +779,13 @@ def fornitori_timeseries(vaccines, area, cumulate=False): 'xanchor': "left", 'x': .0, } - return plot_fill(plot_data.values(), plot_data.keys(), subplot_title="Somministrazioni vaccino per fornitore", cumulate=cumulate, legend=legend) + return plot_fill(plot_data.values(), plot_data.keys(), subplot_title=f"{area}: Somministrazioni vaccino per fornitore", cumulate=cumulate, legend=legend) -def age_timeseries(vaccines, area, fascia_anagrafica, demography, unita=100, cumulate=False): +def age_timeseries(vaccines, area, fascia_anagrafica, demography, dose, unita=100, cumulate=False): PALETTE = itertools.cycle(plotly.colors.qualitative.Plotly)#itertools.cycle(get_matplotlib_cmap('tab10', bins=8)) - PALETTE_ALPHA = itertools.cycle(plotly.colors.qualitative.Plotly)#itertools.cycle(get_matplotlib_cmap('tab10', bins=8, alpha=1)) + title = f'{area}: Percentuale popolazione che ha ricevuto la {dose}
nella fascia {fascia_anagrafica}' + dose = dose.replace(' ', '_') if area == 'Italia': plot_data = vaccines[vaccines.fascia_anagrafica == fascia_anagrafica] else: @@ -795,10 +796,10 @@ def cum(data): return data.cumsum() else: return data - fig = make_subplots(1, subplot_titles=[f'Percentuale popolazione che ha ricevuto la seconda dose
nella fascia {fascia_anagrafica}'], specs=[[{"secondary_y": True}]]) + fig = make_subplots(1, subplot_titles=[title], specs=[[{"secondary_y": True}]]) maxs_perc = [] for fornitore in np.unique(sorted(plot_data.fornitore)): - fornitore_data = cum(plot_data[plot_data.fornitore == fornitore].seconda_dose.groupby('data_somministrazione').sum()) + fornitore_data = cum(getattr(plot_data[plot_data.fornitore == fornitore], dose).groupby('data_somministrazione').sum()) percentage = fornitore_data / demography[area].loc[fascia_anagrafica] * unita bar_perc = go.Bar( x=percentage.index, @@ -809,7 +810,7 @@ def cum(data): ) fig.add_trace(bar_perc, secondary_y=True) maxs_perc.append(percentage.max()) - total = cum(plot_data.groupby('data_somministrazione').sum().rolling(7).mean().seconda_dose) + total = cum(getattr(plot_data.groupby('data_somministrazione').sum().rolling(7).mean(), dose)) total_perc = total / demography[area].loc[fascia_anagrafica] * unita ax_perc = go.Scatter( x=total_perc.index, @@ -887,7 +888,7 @@ def ages_timeseries(vaccines, area, cumulate=False): 'xanchor': "left", 'x': 0, } - return plot_fill(data_list, names, subplot_title="Somministrazioni vaccino per fascia d'età", cumulate=cumulate, legend=legend) + return plot_fill(data_list, names, subplot_title=f"{area}: Somministrazioni vaccino per fascia d'età", cumulate=cumulate, legend=legend) @st.cache(allow_output_mutation=True, show_spinner=False)