forked from francesconazzaro/covid19-portal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport_data.py
256 lines (221 loc) · 10.5 KB
/
import_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from dateutil import parser
# import git
import requests
import zipfile
import glob
import yaml
import io
import os
import pandas as pd
import numpy as np
import streamlit as st
import datetime
CWD = os.path.abspath(os.path.dirname(__file__))
try:
config = yaml.safe_load(open(os.path.join(CWD, 'config.yaml')))
except FileNotFoundError:
config = {}
BASE_PATH = config.get('base_path', '/app')
REGIONS_MAP = {
'ABR': 'Abruzzo',
'BAS': 'Basilicata',
'CAL': 'Calabria',
'CAM': 'Campania',
'EMR': 'Emilia-Romagna',
'FVG': 'Friuli Venezia Giulia',
'LAZ': 'Lazio',
'LIG': 'Liguria',
'LOM': 'Lombardia',
'MAR': 'Marche',
'MOL': 'Molise',
'PAB': 'P.A. Bolzano',
'PAT': 'P.A. Trento',
'PIE': 'Piemonte',
'PUG': 'Puglia',
'SAR': 'Sardegna',
'SIC': 'Sicilia',
'TOS': 'Toscana',
'UMB': 'Umbria',
'VDA': "Valle d'Aosta",
'VEN': 'Veneto',
}
ISTAT_REGION_MAP = {
"Valle d'Aosta": "Valle d'Aosta / Vallée d'Aoste",
"P.A. Bolzano": "Provincia Autonoma Bolzano / Bozen",
"P.A. Trento": "Provincia Autonoma Trento",
"Friuli Venezia Giulia": "Friuli-Venezia Giulia",
}
def demography(vaccines):
try:
return pd.read_pickle(os.path.join(CWD, 'resources/demography'))
except:
pass
dem_in = pd.read_csv(os.path.join(CWD, 'resources/demografia.csv'))
dem_in = dem_in[dem_in.STATCIV2 == 99]
dem_in = dem_in[dem_in.SEXISTAT1 == 9]
dem_out = pd.DataFrame(index=['16-19', '20-29', '30-39', '40-49', '50-59', '60-69', '70-79', '80-89', '90+'])
for area in np.unique(vaccines.raw.area):
region = dem_in[dem_in.Territorio == ISTAT_REGION_MAP.get(area, area)]
for eta in range(20, 90, 10):
value = 0
for i in range(10):
eta_id = f'Y{eta + i}'
value += region[region.ETA1 == eta_id].Value.values[0]
fascia_id = f'{eta}-{eta + 9}'
try:
dem_out[area].loc[fascia_id] = value
except KeyError:
dem_out[area] = 0
dem_out[area].loc[fascia_id] = value
value = 0
for i in range(16, 20):
eta_id = f'Y{i}'
value += region[region.ETA1 == eta_id].Value.values[0]
fascia_id = '16-19'
dem_out[area].loc[fascia_id] = value
value = 0
for i in range(90, 100):
eta_id = f'Y{i}'
value += region[region.ETA1 == eta_id].Value.values[0]
eta_id = 'Y_GE100'
value += region[region.ETA1 == eta_id].Value.values[0]
fascia_id = '90+'
dem_out[area].loc[fascia_id] = value
return dem_out
def population():
popolazione_regioni = pd.read_csv(os.path.join(CWD, 'resources/popolazione_regioni_italiane.csv'), index_col='regione')
popolazione = popolazione_regioni.TotaleMaschi + popolazione_regioni.TotaleFemmine
return popolazione
def intensive_care():
terapie_intensive = pd.read_csv(os.path.join(CWD, 'resources/posti_terapie_intensive.csv'), sep='\t', index_col='regioni')
return terapie_intensive
def beds():
posti_letto = pd.read_csv(os.path.join(CWD, 'resources/posti_letto.csv'), index_col='regioni')
return posti_letto
def process_data(data, covid_data, date_label, drop_ages=False, deliveries=False):
result = pd.DataFrame()
for region_name in REGIONS_MAP.keys():
if drop_ages is True:
region = data[data.area == region_name].groupby(
date_label).sum()
else:
region = data[data.area == region_name]
region['area'] = REGIONS_MAP[region_name]
region['popolazione'] = covid_data[REGIONS_MAP[region_name]].popolazione[0]
result = result.append(region)
if deliveries:
ita = pd.DataFrame()
for fornitore in np.unique(data.fornitore):
fornitore_data = data[data.fornitore == fornitore].groupby(date_label).sum()
fornitore_data['fornitore'] = fornitore
ita = ita.append(fornitore_data)
ita = ita.sort_index()
else:
ita = result.groupby(date_label).sum()
ita['area'] = 'Italia'
ita['popolazione'] = covid_data['Italia'].popolazione[0]
result = result.append(ita)
return result
class Vaccines:
def __init__(self, vaccines, deliveries, covid_data):
self.raw = process_data(vaccines, covid_data, date_label='data_somministrazione')
self.administration = process_data(vaccines, covid_data, drop_ages=True, date_label='data_somministrazione')
self.deliveries = process_data(deliveries, covid_data, date_label='data_consegna', deliveries=True)
def vaccines(covid_data):
url = "https://raw.githubusercontent.com/italia/covid19-opendata-vaccini/master/dati/somministrazioni-vaccini-latest.csv"
s=requests.get(url).content
vaccine_data = pd.read_csv(io.StringIO(s.decode('utf-8')), index_col='data_somministrazione', parse_dates=['data_somministrazione'])
url = "https://raw.githubusercontent.com/italia/covid19-opendata-vaccini/master/dati/consegne-vaccini-latest.csv"
s=requests.get(url).content
deliveries = pd.read_csv(io.StringIO(s.decode('utf-8')), index_col='data_consegna', parse_dates=['data_consegna'])
return Vaccines(vaccine_data, deliveries, covid_data)
def get_list_of_regions():
mobility_data_path = os.path.join(BASE_PATH, 'mobility')
if not os.path.exists(mobility_data_path):
response = requests.get('https://www.gstatic.com/covid19/mobility/Region_Mobility_Report_CSVs.zip')
mobility_zip_path = os.path.join(BASE_PATH, 'mobility_data.zip')
with open(mobility_zip_path, 'wb') as f:
f.write(response.content)
with zipfile.ZipFile(mobility_zip_path, 'r') as zip_ref:
zip_ref.extractall(mobility_data_path)
list_of_regions = []
for path in glob.glob(os.path.join(mobility_data_path, '2020*.csv')):
list_of_regions.append(os.path.basename(path)[5:7])
return list_of_regions
class Mobility:
def __init__(self, data):
self.data = data
def get_sub_region_1(self):
return ['Totale'] + list(np.unique(self.data.sub_region_1.fillna('')))[1:]
def get_sub_region_2(self, sub_region_1):
data_sel = self.data[self.data.sub_region_1 == sub_region_1]
return ['Totale'] + list(np.unique(data_sel.sub_region_2.fillna('')))[1:]
def get_variables(self):
return [col for col in self.data.columns if 'from_baseline' in col]
def select(self, sub_region_1, sub_region_2):
if sub_region_2 is not 'Totale':
return self.data[self.data.sub_region_2 == sub_region_2]
elif sub_region_1 is not 'Totale':
iso_3166_2_code = self.data[self.data.sub_region_1 == sub_region_1].iso_3166_2_code[0]
return self.data[self.data.iso_3166_2_code == iso_3166_2_code]
else:
return self.data[self.data.iso_3166_2_code.fillna('') == '']
def get_mobility_country(country):
mobility_data_path = os.path.join(BASE_PATH, 'mobility')
mobility_country = pd.DataFrame()
for mobility_country_path in glob.glob(os.path.join(mobility_data_path, f'202*_{country}_Region_Mobility_Report.csv')):
mobility_country = mobility_country.append(pd.read_csv(mobility_country_path, index_col='date'))
return Mobility(mobility_country.sort_index())
# class RepoReference:
# def __init__(self, base_path=BASE_PATH, repo_path='COVID-19', repo_url="https://github.com/pcm-dpc/COVID-19.git"):
# path = os.path.join(BASE_PATH, repo_path)
# if not os.path.exists(path):
# git.Git(BASE_PATH).clone(repo_url)
# repo = git.Repo(path)
# o = repo.remotes.origin
# try:
# o.pull()
# except:
# pass
# self.path = path
# self.hexsha = repo.head.commit.hexsha
# self.regions_path = os.path.join(base_path, 'COVID-19/dati-regioni/dpc-covid19-ita-regioni.csv')
# self.italy_path = os.path.join(base_path, 'COVID-19/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv')
@st.cache(show_spinner = False, ttl=60*60)
def covid19():
popolazione = population()
terapie_intensive = intensive_care()
posti_letto = beds()
url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv"
s=requests.get(url).content
data_aggregate = pd.read_csv(io.StringIO(s.decode('utf-8')), index_col='data', parse_dates=['data'])
url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv"
s=requests.get(url).content
ita = pd.read_csv(io.StringIO(s.decode('utf-8')), index_col='data', parse_dates=['data'])
regioni = {}
ita['popolazione'] = popolazione.sum()
ita['terapie_intensive_disponibili'] = terapie_intensive.posti_attuali.sum()
ita['posti_letto_disponibili'] = posti_letto.posti_attuali.sum()
terapie_intensive['data'] = 0
posti_letto['data'] = 0
regioni['Italia'] = ita
for regione in np.unique(data_aggregate.denominazione_regione):
try:
popolazione_index = [index for index in popolazione.index if regione[:5].lower() in index.lower()][0]
terapie_intensive_index = [index for index in terapie_intensive.index if regione[:5].lower() in index.lower()][0]
posti_letto_index = [index for index in posti_letto.index if regione[:5].lower() in index.lower()][0]
except:
popolazione_index = [index for index in popolazione.index if regione[-5:].lower() in index.lower()][0]
terapie_intensive_index = [index for index in terapie_intensive.index if regione[-5:].lower() in index.lower()][0]
posti_letto_index = [index for index in posti_letto.index if regione[-5:].lower() in index.lower()][0]
data_in = data_aggregate[data_aggregate.denominazione_regione == regione].sort_index()
data_in['popolazione'] = popolazione[popolazione_index]
data_in['terapie_intensive_disponibili'] = terapie_intensive.posti_attuali[terapie_intensive_index]
data_in['posti_letto_disponibili'] = posti_letto.posti_attuali[posti_letto_index]
ti_perc = data_in.terapia_intensiva[-1] / terapie_intensive.posti_attuali[terapie_intensive_index]
beds_perc = data_in.ricoverati_con_sintomi[-1] / posti_letto.posti_attuali[posti_letto_index]
if np.isfinite(ti_perc) and np.isfinite(beds_perc):
terapie_intensive.data.loc[terapie_intensive_index] = ti_perc
posti_letto.data.loc[posti_letto_index] = beds_perc
regioni[regione] = data_in
return regioni, terapie_intensive, posti_letto