forked from francesconazzaro/covid19-portal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
378 lines (343 loc) · 20.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import traceback
import streamlit as st
import datetime
import plot
import import_data
import plugins
plugins.google_analytics()
import warnings
warnings.filterwarnings("ignore")
st.set_page_config(page_title='COVID-19 Dashboard', page_icon=":chart_with_upwards_trend:", layout='wide', initial_sidebar_state='collapsed')
try:
DATA, DATA_TI, DATA_RIC = import_data.covid19()
except:
st.error(
"L'applicazione è in fase di aggiornamento. Prova a [riaggiornare](/) la pagina tra qualche secondo.")
error = st.beta_expander("Dettagli dell'errore")
error.error(traceback.format_exc())
st.stop()
fmt = "%d-%m-%Y"
def mobility_expander():
expander_mobility = st.beta_expander('Dati sulla mobilità')
col1, col2, col3, col4 = expander_mobility.beta_columns([1, 4, 4, 8])
with col1:
country = col1.selectbox('Country', ['IT'] + sorted(import_data.get_list_of_regions()))
mobility_country = import_data.get_mobility_country(country)
with col2:
sub_region_1 = col2.selectbox('sub_region_1', mobility_country.get_sub_region_1())
with col3:
sub_region_2 = col3.selectbox('sub_region_2', mobility_country.get_sub_region_2(sub_region_1))
with col4:
variable = col4.selectbox('Variabile', mobility_country.get_variables())
mobility_plot_data = mobility_country.select(sub_region_1, sub_region_2)
expander_mobility.plotly_chart(plot.mobility_data(mobility_plot_data, variable, variables=mobility_country.get_variables()), use_container_width=True)
def explore_regions(country):
st.header('Dati sul contagio aggiornati al {}'.format(DATA['Italia'].index[-1].date()))
col1, line, col3, col4, col5, col5bis, col6 = st.beta_columns([10, 1, 8, 8, 8, 8, 8])
line.markdown(LINE, unsafe_allow_html=True)
with col1:
rule = st.radio('', list(plot.RULE_MAP.keys()))
st.write('')
log = st.checkbox('Scala logaritmica', True)
with col3:
st.markdown("<h3 style='text-align: center;'>Nuovi positivi</h2>",
unsafe_allow_html=True)
nuovi_positivi = plot.normalisation(DATA[country].iloc[-1].nuovi_positivi, DATA[country].iloc[-1].popolazione, rule)
text = f'{nuovi_positivi:.2f}' if plot.RULE_MAP[rule] == 'percentage' else f'{int(nuovi_positivi):,}'
st.markdown(f"<h1 style='text-align: center; color: red;'>{text}</h1>", unsafe_allow_html=True)
with col4:
st.markdown("<h3 style='text-align: center;'>Deceduti oggi</h2>",
unsafe_allow_html=True)
deceduti = plot.normalisation(DATA[country].deceduti.diff().iloc[-1], DATA[country].iloc[-1].popolazione, rule)
text = f'{deceduti:.2f}' if plot.RULE_MAP[rule] == 'percentage' else f'{int(deceduti):,}'
# print(plot.RULE_MAP[rule] == 'percentage')
st.markdown(f"<h1 style='text-align: center; color: red;'>{text}</h1>", unsafe_allow_html=True)
with col5:
st.markdown("<h3 style='text-align: center;'>Persone in terapia intensiva</h2>",
unsafe_allow_html=True)
terapia_intensiva = plot.normalisation(DATA[country].iloc[-1].terapia_intensiva, DATA[country].iloc[-1].popolazione, rule)
text = f'{terapia_intensiva:.2f}' if plot.RULE_MAP[rule] == 'percentage' else f'{int(terapia_intensiva):,}'
st.markdown(f"<h1 style='text-align: center; color: red;'>{text}</h1>", unsafe_allow_html=True)
with col5bis:
st.markdown("<h3 style='text-align: center;'>Ingressi in terapia intensiva</h2>",
unsafe_allow_html=True)
ingressi = plot.normalisation(DATA[country].iloc[-1].ingressi_terapia_intensiva, DATA[country].iloc[-1].popolazione, rule)
text = f'{ingressi:.2f}' if plot.RULE_MAP[rule] == 'percentage' else f'{int(ingressi):,}'
st.markdown(f"<h1 style='text-align: center; color: red;'>{text}</h1>", unsafe_allow_html=True)
with col6:
st.markdown("<h3 style='text-align: center;'>Persone ricoverate</h2>",
unsafe_allow_html=True)
ricoverati_con_sintomi = plot.normalisation(DATA[country].iloc[-1].ricoverati_con_sintomi, DATA[country].iloc[-1].popolazione, rule)
text = f'{ricoverati_con_sintomi:.2f}' if plot.RULE_MAP[rule] == 'percentage' else f'{int(ricoverati_con_sintomi):,}'
st.markdown(f"<h1 style='text-align: center; color: red;'>{text}</h1>", unsafe_allow_html=True)
# col1, col2, col3, col4, col5, col6 = st.beta_columns(6)
# fit_expander = st.beta_expander('Personalizza Fit')
# col1, col2, col3, col4 = fit_expander.beta_columns(4)
# with col1:
# start_positivi = col1.date_input('Data inizio fit Positivi', datetime.date(2020, 10, 15), min_value=datetime.date(2020, 3, 1), max_value=datetime.date.today())
# stop_positivi = col1.date_input('Data fine fit Positivi', DATA[country].index[-1], min_value=datetime.date(2020, 3, 2), max_value=datetime.date.today())
# with col2:
# start_ricoveri = col2.date_input('Data inizio fit Ricoveri', datetime.date(2020, 10, 15), min_value=datetime.date(2020, 3, 1), max_value=datetime.date.today())
# stop_ricoveri = col2.date_input('Data fine fit Ricoveri', DATA[country].index[-1], min_value=datetime.date(2020, 3, 2), max_value=datetime.date.today())
# with col3:
# start_ti = col3.date_input('Data inizio fit Terapie intensive', datetime.date(2020, 10, 15), min_value=datetime.date(2020, 3, 1), max_value=datetime.date.today())
# stop_ti = col3.date_input('Data fine fit Terapie intensive', DATA[country].index[-1], min_value=datetime.date(2020, 3, 2), max_value=datetime.date.today())
# with col4:
# start_deceduti = col4.date_input('Data inizio fit Deceduti', datetime.date(2020, 10, 15), min_value=datetime.date(2020, 3, 1), max_value=datetime.date.today())
# stop_deceduti = col4.date_input('Data fine fit Deceduti', DATA[country].index[-1], min_value=datetime.date(2020, 3, 2), max_value=datetime.date.today())
start_positivi, start_ti, start_ricoveri, stop_positivi, stop_ti, stop_ricoveri, start_deceduti, stop_deceduti = [0] * 8
st.plotly_chart(plot.plot_selection(DATA, country, rule, start_positivi, start_ti, start_ricoveri, stop_positivi, stop_ti, stop_ricoveri, start_deceduti, stop_deceduti, log=log), use_container_width=True)
col1, col2, col3 = st.beta_columns([1, 2, 2])
with col1:
percentage_rule = col1.radio('', list(plot.PERCENTAGE_RULE.keys()))
if plot.PERCENTAGE_RULE[percentage_rule] == 'tamponi':
perc = DATA[country].nuovi_positivi.rolling(7).mean() / DATA[
country].tamponi.diff().rolling(7).mean() * 100
perc_points = DATA[country].nuovi_positivi / DATA[country].tamponi.diff() * 100
else:
perc = DATA[country].nuovi_positivi.rolling(7).mean() / DATA[country].casi_testati.diff().rolling(7).mean() * 100
perc_points = DATA[country].nuovi_positivi / DATA[country].casi_testati.diff() * 100
with col2:
st.markdown(f"<h3 style='text-align: center;'>{percentage_rule}</h2>",
unsafe_allow_html=True)
st.markdown(f"<h1 style='text-align: center; color: red;'>{perc_points.iloc[-1]:.2f}</h1>", unsafe_allow_html=True)
with col3:
st.markdown(f"<h3 style='text-align: center;'>Media su 7 giorni della {percentage_rule}</h2>",
unsafe_allow_html=True)
st.markdown(f"<h1 style='text-align: center; color: red;'>{perc.iloc[-1]:.2f}</h1>", unsafe_allow_html=True)
st.plotly_chart(plot.test_positivity_rate(DATA, country, rule=percentage_rule), use_container_width=True)
try:
mobility_expander()
except:
pass
table_expander = st.beta_expander('Tabelle andamento')
col1, _, col2 = table_expander.beta_columns([1, 3, 7])
with col1:
days_before = col1.selectbox("Lunghezza tabelle", [5, 10, 25])
with col2:
col2.subheader(f'Andamento degli ultimi {days_before} giorni: {country} ({rule})')
col1, col2, col3, col3bis, col4, col5 = table_expander.beta_columns(6, )#[2, 2, 2, 2, 3, 3])
data_country = DATA[country].copy()
data_country.index = data_country.index.strftime(fmt)
with col1:
col1.write('Nuovi Positivi')
df = plot.normalisation(data_country.nuovi_positivi, data_country.popolazione, rule)[-days_before:]
df.name = 'positivi'
col1.dataframe(df.to_frame().style.background_gradient(cmap='Reds'))
with col2:
col2.write('Ricoveri')
df = plot.normalisation(data_country.ricoverati_con_sintomi, data_country.popolazione, rule)[-days_before:]
df.name = 'ricoveri'
col2.dataframe(df.to_frame().style.background_gradient(cmap='Reds'))
with col3:
col3.write('Terapia Intensiva')
df = plot.normalisation(data_country.terapia_intensiva, data_country.popolazione, rule)[-days_before:]
df.name = 'TI'
col3.dataframe(df.to_frame().style.background_gradient(cmap='Reds'))
with col3bis:
col3bis.write('Ingressi Terapia Intensiva')
df = plot.normalisation(data_country.ingressi_terapia_intensiva, data_country.popolazione, rule)[-days_before:]
df.name = 'TI'
col3bis.dataframe(df.to_frame().style.background_gradient(cmap='Reds'))
with col4:
col4.write('Deceduti')
df = plot.normalisation(data_country.deceduti.diff(), data_country.popolazione, rule)[-days_before:]
col4.dataframe(df.to_frame().style.background_gradient(cmap='Reds'))
with col5:
if plot.PERCENTAGE_RULE[percentage_rule] == 'tamponi':
col5.write('Percentuale Tamponi Positivi')
tpr = data_country.nuovi_positivi[-days_before:] / data_country.tamponi.diff()[-days_before:] * 100
tpr.name = 'TPR (%)'
elif plot.PERCENTAGE_RULE[percentage_rule] == 'casi':
col5.write('Percentuale Casi Positivi')
tpr = data_country.nuovi_positivi[-days_before:] / data_country.casi_testati.diff()[-days_before:] * 100
tpr.name = 'CPR (%)'
col5.dataframe(tpr.to_frame().style.background_gradient(cmap='Reds'))
test_expander = st.beta_expander('Dettaglio sui Test')
col1, col2 = test_expander.beta_columns(2)
plot_variables = [
DATA[country].tamponi_test_molecolare.diff(),
DATA[country].tamponi_test_antigenico_rapido.diff(),
]
col1.plotly_chart(plot.plot_variables(
plot_variables,
['Test molecolare', 'Test antigenico'],
popolazione=DATA[country].popolazione,
rule=rule,
title=f'Andamento tamponi: {country} ({rule})',
), use_container_width=True)
plot_variables = [
DATA[country].totale_positivi_test_molecolare.diff() / DATA[country].tamponi_test_molecolare.diff() * 100,
DATA[country].totale_positivi_test_antigenico_rapido.diff() / DATA[country].tamponi_test_antigenico_rapido.diff() * 100,
]
col2.plotly_chart(plot.plot_variables(
plot_variables,
['Test molecolare', 'Test antigenico'],
title=f'Percentuale tamponi positivi: {country}',
), use_container_width=True)
# ti_expander = st.beta_expander('Dettaglio sulle Terapie Intensive')
# col1, col2 = ti_expander.beta_columns(2)
# plot_variables = [
# DATA[country].ingressi_terapia_intensiva,
# DATA[country].ingressi_terapia_intensiva - DATA[country].terapia_intensiva.diff(),
# ]
# col1.plotly_chart(plot.plot_variables(
# plot_variables,
# ['Ingressi', 'Uscite'],
# title=f'Terapia intensiva: {country} ({rule})',
# ), use_container_width=True)
# plot_variables = [
# DATA[country].terapia_intensiva.diff(),
# ]
# ingressi_not_nan = DATA[country].ingressi_terapia_intensiva[~plot.np.isnan(DATA[country].ingressi_terapia_intensiva)]
# col2.plotly_chart(plot.plot_variables(
# plot_variables,
# ['Uscite terapia intensiva'],
# title=f'Percentuale tamponi positivi: {country}',
# xaxes_range=[ingressi_not_nan.index[0], ingressi_not_nan.index[-1]],
# ), use_container_width=True)
LINE = """<style>
.vl {
border-left: 2px solid black;
height: 200px;
position: absolute;
left: 50%;
margin-left: -3px;
top: 0;
}
</style>
<div class="vl"></div>"""
st.title('COVID-19: Situazione in Italia')
st.text("")
try:
vaccines = import_data.vaccines(DATA)
demography = import_data.demography(vaccines)
except:
st.error("L'applicazione è in fase di aggiornamento. Prova a [riaggiornare](/) la pagina tra qualche secondo.")
error = st.beta_expander("Dettagli dell'errore")
error.error(traceback.format_exc())
st.stop()
default_what_map = {'infection': 0, 'vaccines': 1, 'contagio': 0, 'vaccini': 1}
def sanitize(string):
return string.replace(' ', '-')
col1, col2, _, col3 = st.beta_columns([2, 2, 8, 1,])
query_params = st.experimental_get_query_params()
what = col1.radio('Seleziona un dato', ['Contagio', 'Vaccini'],
index=default_what_map[query_params.get('dato', ['contagio'])[0].lower()])
default_area_index = -1
for i, region_id in enumerate(import_data.REGIONS_MAP.keys()):
if region_id.lower() == query_params.get('area', ['IT'])[0].lower():
default_area_index = i
break
area = col2.selectbox("Seleziona un'area", ['Italia'] + list(import_data.REGIONS_MAP.values()),
index=default_area_index + 1)
col3.write("**[Twitter](https://twitter.com/effenazzaro)<br>[Linkedin](https://www.linkedin.com/in/fnazzaro/)<br>[:beer:](https://www.buymeacoffee.com/francesconazzar)**", unsafe_allow_html=True)
if what == 'Vaccini':
st.header(f"Dati sulle vaccinazioni aggiornati al {vaccines.administration[vaccines.administration.area == 'Italia'].index[-1].date()}")
pie1, title1, line, pie2, title2, title3 = st.beta_columns([2, 4, 1, 2, 4, 4])
line.markdown(LINE, unsafe_allow_html=True)
with title3:
st.markdown("<h3 style='text-align: center;'>Dosi somministrate fino ad ora</h2>",
unsafe_allow_html=True)
tot_somm = vaccines.administration[vaccines.administration.area == area].cumsum().iloc[-1].sesso_maschile + vaccines.administration[vaccines.administration.area == area].cumsum().iloc[-1].sesso_femminile
st.markdown(f"<h1 style='text-align: center; color: red;'>{tot_somm:,}</h1>", unsafe_allow_html=True)
with title2:
st.markdown("<h3 style='text-align: center;'>Dosi consegnate fino ad ora</h2>",
unsafe_allow_html=True)
tot_cons = vaccines.deliveries[vaccines.deliveries.area == area].cumsum().iloc[-1].numero_dosi
st.markdown(f"<h1 style='text-align: center; color: red;'>{tot_cons:,}</h1>", unsafe_allow_html=True)
with pie2:
st.plotly_chart(plot.plot_percentage(vaccines.administration, vaccines.deliveries, area), use_container_width=True)
with title1:
st.markdown("<h3 style='text-align: center;'>Popolazione vaccinata (seconda dose)</h2>",
unsafe_allow_html=True)
tot_somm = vaccines.administration[vaccines.administration.area == area].cumsum().iloc[-1].seconda_dose
st.markdown(f"<h1 style='text-align: center; color: red;'>{tot_somm:,}</h1>", unsafe_allow_html=True)
with pie1:
st.plotly_chart(plot.plot_vaccine_popolation(vaccines.administration, area), use_container_width=True)
col1, col2 = st.beta_columns(2)
with col2:
vacc_area = vaccines.deliveries[vaccines.deliveries.area == area]
fornitori = plot.np.unique(vacc_area.fornitore)
data_list = [vacc_area[vacc_area.fornitore == fornitori[0]].numero_dosi]
population = vaccines.administration.popolazione[vaccines.administration.area == area]
names = ['Numero dosi consegnate']
col2.plotly_chart(plot.plot_deliveries(
vacc_area,
population=population,
subplot_title='Dosi di vaccino consegnate',
unita=100000
), use_container_width=True)
with col1:
data_list = [vaccines.administration.prima_dose[vaccines.administration.area == area], vaccines.administration.seconda_dose[vaccines.administration.area == area]]
population = [vaccines.administration.popolazione[vaccines.administration.area == area]] * 2
names = ['Prima dose', 'Seconda dose']
col1.plotly_chart(plot.plot_fill(data_list, names, population_list=population, subplot_title='Somministrazioni vaccino'), use_container_width=True)
st.subheader(f"Dettaglio andamenti {area}")
col1, _, col2, col3, _ = st.beta_columns([1, 2, 1, 1, 1])
status = col1.selectbox('', ['Giornaliero', 'Cumulato'])
fascia_anagrafica = col2.selectbox('Seleziona fascia anagrafica', ['16-19', '20-29', '30-39', '40-49', '50-59', '60-69', '70-79', '80-89', '90+'], index=7)
dose = col3.selectbox('Seleziona dose', ['prima dose', 'seconda dose'])
if status == 'Cumulato':
cumulate = True
else:
cumulate = False
col1, col2 = st.beta_columns(2)
col1.plotly_chart(plot.ages_timeseries(vaccines.raw, area, cumulate=cumulate), use_container_width=True)
col2.plotly_chart(plot.age_timeseries(vaccines.raw, area, fascia_anagrafica, demography, dose=dose, cumulate=cumulate), use_container_width=True)
col1, col2 = st.beta_columns(2)
col2.plotly_chart(plot.fornitori_timeseries(vaccines.raw, area, cumulate=cumulate), use_container_width=True)
col1.plotly_chart(plot.categories_timeseries(vaccines.administration, area, cumulate=cumulate), use_container_width=True)
# col2.plotly_chart(plot.plot_fill(data_list, [''], population, cumulate=cumulate, unita=100, subplot_title=names[0]), use_container_width=True)
col1, col3, col4 = st.beta_columns(3)
with col1:
col1.plotly_chart(plot.plot_ages(vaccines.raw, area), use_container_width=True)
# with col2:
# col2.plotly_chart(plot.plot_second_dose_percentage(vaccines.administration, area), use_container_width=True)
with col3:
col3.plotly_chart(plot.plot_category(vaccines.administration, area), use_container_width=True)
with col4:
col4.plotly_chart(plot.plot_fornitore(vaccines.deliveries, area), use_container_width=True)
st.header('Confronto tra regioni')
col1, _, col2 = st.beta_columns([4, 1, 10])
with col1:
st.subheader('Percentuale popolazione vaccinata')
st.write('')
data = vaccines.administration.groupby('area').sum().seconda_dose / vaccines.administration.groupby('area').mean().popolazione
st.dataframe(data.to_frame().style.background_gradient(cmap='Reds').format("{:.2%}"), height=700)
rule = col2.selectbox('Variabile', ['Percentuale popolazione vaccinata', 'Dosi somministrate', 'Dosi consegnate'])
col2.plotly_chart(plot.vaccines_summary(vaccines, rule), use_container_width=True)
st.write("**:beer: Buy me a [beer](https://www.buymeacoffee.com/francesconazzar)**")
expander = st.beta_expander("This app is developed by Francesco Nazzaro")
expander.write("Contact me on [Twitter](https://twitter.com/effenazzaro)")
expander.write("The source code is on [GitHub](https://github.com/francesconazzaro/covid19-portal)")
expander.write("Raw data")
expander.dataframe(vaccines.raw)
elif what == 'Contagio':
explore_regions(area)
st.header('Confronto tra regioni')
col1, col2, col3 = st.beta_columns([2, 2, 3])
import_data.pd.options.display.float_format = '{:.2f}'.format
with col1:
st.subheader('Percentuale di posti letto in area medica occupati regione per regione')
st.write('')
ric = DATA_RIC.data.to_frame()
st.dataframe(ric.style.background_gradient(cmap='Reds').format("{:.2%}"), height=700)
with col2:
st.subheader('Percentuale di Terapie Intensive occupate regione per regione')
st.write('')
ti = DATA_TI.data.to_frame()
st.dataframe(ti.style.background_gradient(cmap='Reds').format("{:.2%}"), height=700)
with col3:
rule = st.selectbox('Variabile', ['Nuovi Positivi', 'Terapie Intensive', 'Ingressi Terapie Intensive', 'Percentuale tamponi positivi', 'Deceduti'])
st.plotly_chart(plot.summary(DATA, rule), use_container_width=True)
st.write("*Dati sul totale delle terapie intensive e dei posti letto in area medica aggiornati al 2020-10-28.")
st.write("**Dati per P.A. Bolzano e P.A. Trento non disponibili.")
# st.plotly_chart(plot.mortality(DATA))
st.write("**:beer: Buy me a [beer](https://www.buymeacoffee.com/francesconazzar)**")
expander = st.beta_expander("This app is developed by Francesco Nazzaro.")
expander.write("Contact me on [Twitter](https://twitter.com/effenazzaro)")
expander.write("The source code is on [GitHub](https://github.com/francesconazzaro/covid19-portal)")
expander.write("Raw data")
expander.dataframe(DATA['Italia'])
expander.plotly_chart(plot.comparison(DATA['Italia']), use_container_width=True)