-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnotation.v
159 lines (135 loc) · 7.41 KB
/
notation.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
From trillium.program_logic Require Import language.
From trillium.fairness.heap_lang Require Export lang.
Set Default Proof Using "Type".
Delimit Scope expr_scope with E.
Delimit Scope val_scope with V.
(** Coercions to make programs easier to type. *)
Coercion LitInt : Z >-> base_lit.
Coercion LitBool : bool >-> base_lit.
Coercion LitLoc : loc >-> base_lit.
Coercion LitProphecy : proph_id >-> base_lit.
Coercion App : expr >-> Funclass.
Coercion Val : val >-> expr.
Coercion Var : string >-> expr.
(** Define some derived forms. *)
Notation Lam x e := (Rec BAnon x e) (only parsing).
Notation Let x e1 e2 := (App (Lam x e2) e1) (only parsing).
Notation Seq e1 e2 := (Let BAnon e1 e2) (only parsing).
Notation LamV x e := (RecV BAnon x e) (only parsing).
Notation LetCtx x e2 := (AppRCtx (LamV x e2)) (only parsing).
Notation SeqCtx e2 := (LetCtx BAnon e2) (only parsing).
Notation Match e0 x1 e1 x2 e2 := (Case e0 (Lam x1 e1) (Lam x2 e2)) (only parsing).
Notation Alloc e := (AllocN (Val $ LitV $ LitInt 1) e) (only parsing).
(** Compare-and-set (CAS) returns just a boolean indicating success or failure. *)
Notation CAS l e1 e2 := (Snd (CmpXchg l e1 e2)) (only parsing).
(* Skip should be atomic, we sometimes open invariants around
it. Hence, we need to explicitly use LamV instead of e.g., Seq. *)
Notation Skip := (App (Val $ LamV BAnon (Val $ LitV LitUnit)) (Val $ LitV LitUnit)).
(* No scope for the values, does not conflict and scope is often not inferred
properly. *)
Notation "# l" := (LitV l%Z%V%stdpp) (at level 8, format "# l").
(** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come
first. *)
Notation "( e1 , e2 , .. , en )" := (Pair .. (Pair e1 e2) .. en) : expr_scope.
Notation "( e1 , e2 , .. , en )" := (PairV .. (PairV e1 e2) .. en) : val_scope.
(*
Using the '[hv' ']' printing box, we make sure that when the notation for match
does not fit on a single line, line breaks will be inserted for *each* breaking
point '/'. Note that after each breaking point /, one can put n spaces (for
example '/ '). That way, when the breaking point is turned into a line break,
indentation of n spaces will appear after the line break. As such, when the
match does not fit on one line, it will print it like:
match: e0 with
InjL x1 => e1
| InjR x2 => e2
end
Moreover, if the branches do not fit on a single line, it will be printed as:
match: e0 with
InjL x1 =>
lots of stuff bla bla bla bla bla bla bla bla
| InjR x2 =>
even more stuff bla bla bla bla bla bla bla bla
end
*)
Notation "'match:' e0 'with' 'InjL' x1 => e1 | 'InjR' x2 => e2 'end'" :=
(Match e0 x1%binder e1 x2%binder e2)
(e0, x1, e1, x2, e2 at level 200,
format "'[hv' 'match:' e0 'with' '/ ' '[' 'InjL' x1 => '/ ' e1 ']' '/' '[' | 'InjR' x2 => '/ ' e2 ']' '/' 'end' ']'") : expr_scope.
Notation "'match:' e0 'with' 'InjR' x1 => e1 | 'InjL' x2 => e2 'end'" :=
(Match e0 x2%binder e2 x1%binder e1)
(e0, x1, e1, x2, e2 at level 200, only parsing) : expr_scope.
Notation "()" := LitUnit : val_scope.
Notation "! e" := (Load e%E) (at level 9, right associativity) : expr_scope.
Notation "'ref' e" := (Alloc e%E) (at level 10) : expr_scope.
Notation "- e" := (UnOp MinusUnOp e%E) : expr_scope.
Notation "e1 + e2" := (BinOp PlusOp e1%E e2%E) : expr_scope.
Notation "e1 +ₗ e2" := (BinOp OffsetOp e1%E e2%E) : expr_scope.
Notation "e1 - e2" := (BinOp MinusOp e1%E e2%E) : expr_scope.
Notation "e1 * e2" := (BinOp MultOp e1%E e2%E) : expr_scope.
Notation "e1 `quot` e2" := (BinOp QuotOp e1%E e2%E) : expr_scope.
Notation "e1 `rem` e2" := (BinOp RemOp e1%E e2%E) : expr_scope.
Notation "e1 ≪ e2" := (BinOp ShiftLOp e1%E e2%E) : expr_scope.
Notation "e1 ≫ e2" := (BinOp ShiftROp e1%E e2%E) : expr_scope.
Notation "e1 ≤ e2" := (BinOp LeOp e1%E e2%E) : expr_scope.
Notation "e1 < e2" := (BinOp LtOp e1%E e2%E) : expr_scope.
Notation "e1 = e2" := (BinOp EqOp e1%E e2%E) : expr_scope.
Notation "e1 ≠ e2" := (UnOp NegOp (BinOp EqOp e1%E e2%E)) : expr_scope.
Notation "~ e" := (UnOp NegOp e%E) (at level 75, right associativity) : expr_scope.
(* The unicode ← is already part of the notation "_ ← _; _" for bind. *)
Notation "e1 <- e2" := (Store e1%E e2%E) (at level 80) : expr_scope.
(* The breaking point '/ ' makes sure that the body of the rec is indented
by two spaces in case the whole rec does not fit on a single line. *)
Notation "'rec:' f x := e" := (Rec f%binder x%binder e%E)
(at level 200, f at level 1, x at level 1, e at level 200,
format "'[' 'rec:' f x := '/ ' e ']'") : expr_scope.
Notation "'rec:' f x := e" := (RecV f%binder x%binder e%E)
(at level 200, f at level 1, x at level 1, e at level 200,
format "'[' 'rec:' f x := '/ ' e ']'") : val_scope.
Notation "'if:' e1 'then' e2 'else' e3" := (If e1%E e2%E e3%E)
(at level 200, e1, e2, e3 at level 200) : expr_scope.
(** Derived notions, in order of declaration. The notations for let and seq
are stated explicitly instead of relying on the Notations Let and Seq as
defined above. This is needed because App is now a coercion, and these
notations are otherwise not pretty printed back accordingly. *)
Notation "'rec:' f x y .. z := e" := (Rec f%binder x%binder (Lam y%binder .. (Lam z%binder e%E) ..))
(at level 200, f, x, y, z at level 1, e at level 200,
format "'[' 'rec:' f x y .. z := '/ ' e ']'") : expr_scope.
Notation "'rec:' f x y .. z := e" := (RecV f%binder x%binder (Lam y%binder .. (Lam z%binder e%E) ..))
(at level 200, f, x, y, z at level 1, e at level 200,
format "'[' 'rec:' f x y .. z := '/ ' e ']'") : val_scope.
(* The breaking point '/ ' makes sure that the body of the λ: is indented
by two spaces in case the whole λ: does not fit on a single line. *)
Notation "λ: x , e" := (Lam x%binder e%E)
(at level 200, x at level 1, e at level 200,
format "'[' 'λ:' x , '/ ' e ']'") : expr_scope.
Notation "λ: x y .. z , e" := (Lam x%binder (Lam y%binder .. (Lam z%binder e%E) ..))
(at level 200, x, y, z at level 1, e at level 200,
format "'[' 'λ:' x y .. z , '/ ' e ']'") : expr_scope.
Notation "λ: x , e" := (LamV x%binder e%E)
(at level 200, x at level 1, e at level 200,
format "'[' 'λ:' x , '/ ' e ']'") : val_scope.
Notation "λ: x y .. z , e" := (LamV x%binder (Lam y%binder .. (Lam z%binder e%E) .. ))
(at level 200, x, y, z at level 1, e at level 200,
format "'[' 'λ:' x y .. z , '/ ' e ']'") : val_scope.
Notation "'let:' x := e1 'in' e2" := (Lam x%binder e2%E e1%E)
(at level 200, x at level 1, e1, e2 at level 200,
format "'[' 'let:' x := '[' e1 ']' 'in' '/' e2 ']'") : expr_scope.
Notation "e1 ;; e2" := (Lam BAnon e2%E e1%E)
(at level 100, e2 at level 200,
format "'[' '[hv' '[' e1 ']' ;; ']' '/' e2 ']'") : expr_scope.
(* Shortcircuit Boolean connectives *)
Notation "e1 && e2" :=
(If e1%E e2%E (LitV (LitBool false))) (only parsing) : expr_scope.
Notation "e1 || e2" :=
(If e1%E (LitV (LitBool true)) e2%E) (only parsing) : expr_scope.
(** Notations for option *)
Notation NONE := (InjL (LitV LitUnit)) (only parsing).
Notation NONEV := (InjLV (LitV LitUnit)) (only parsing).
Notation SOME x := (InjR x) (only parsing).
Notation SOMEV x := (InjRV x) (only parsing).
Notation "'match:' e0 'with' 'NONE' => e1 | 'SOME' x => e2 'end'" :=
(Match e0 BAnon e1 x%binder e2)
(e0, e1, x, e2 at level 200, only parsing) : expr_scope.
Notation "'match:' e0 'with' 'SOME' x => e2 | 'NONE' => e1 'end'" :=
(Match e0 BAnon e1 x%binder e2)
(e0, e1, x, e2 at level 200, only parsing) : expr_scope.