-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
140 lines (109 loc) · 4.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# -*-coding:UTF-8-*-
import argparse
import sys
import time
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim
sys.path.append("..")
from utils import AverageMeter, visualize
import models
from lsp_data import LSP_Data
import os
batch_size = 32
def parse():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str,
dest='config', help='to set the parameters')
parser.add_argument('--gpu', default=None, nargs='+', type=int,
dest='gpu', help='the gpu used')
parser.add_argument('--pretrained', default='BEST_checkpoint.tar', type=str,
dest='pretrained', help='the path of pretrained model')
return parser.parse_args()
def construct_model(args):
model = models.CPM(k=14)
model = torch.nn.DataParallel(model).cuda()
if os.path.exists(args.pretrained):
state_dict = torch.load(args.pretrained)['state_dict']
model.load_state_dict(state_dict)
return model
def get_parameters(model, isdefault=True):
if isdefault:
return model.parameters(), [1.]
lr_1 = []
lr_2 = []
lr_4 = []
lr_8 = []
params_dict = dict(model.module.named_parameters())
for key, value in params_dict.items():
if ('model1_' not in key) and ('model0.' not in key):
if key[-4:] == 'bias':
lr_8.append(value)
else:
lr_4.append(value)
elif key[-4:] == 'bias':
lr_2.append(value)
else:
lr_1.append(value)
params = [{'params': lr_1, 'lr': 1e-5},
{'params': lr_2, 'lr': 1e-5 * 2.},
{'params': lr_4, 'lr': 1e-5 * 4.},
{'params': lr_8, 'lr': 1e-5 * 8.}]
return params, [1., 2., 4., 8.]
def train_val(model):
cudnn.benchmark = True
# train
train_loader = torch.utils.data.DataLoader(
LSP_Data(),
batch_size=batch_size, shuffle=True,
num_workers=2, pin_memory=True)
criterion = nn.MSELoss().cuda()
params, multiple = get_parameters(model, False)
optimizer = torch.optim.SGD(params, 1e-5, momentum=0)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
end = time.time()
iters = 0
heat_weight = 46 * 46 * 15 / 1.0
while iters < 1000000:
for i, (input, heatmap, centermap) in enumerate(train_loader):
data_time.update(time.time() - end)
heatmap = heatmap.cuda(async=True)
centermap = centermap.cuda(async=True)
input_var = torch.autograd.Variable(input)
heatmap_var = torch.autograd.Variable(heatmap)
centermap_var = torch.autograd.Variable(centermap)
heat1, heat2, heat3, heat4, heat5, heat6 = model(input_var, centermap_var)
loss1 = criterion(heat1, heatmap_var) * heat_weight
loss2 = criterion(heat2, heatmap_var) * heat_weight
loss3 = criterion(heat3, heatmap_var) * heat_weight
loss4 = criterion(heat4, heatmap_var) * heat_weight
loss5 = criterion(heat5, heatmap_var) * heat_weight
loss6 = criterion(heat6, heatmap_var) * heat_weight
loss = loss1 + loss2 + loss3 + loss4 + loss5 + loss6
losses.update(loss.item(), input.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
iters += 1
if iters % 100 == 0:
print('Train Iteration: {0}\t'
'Loss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'.format(
iters, loss=losses))
print(time.strftime(
'%Y-%m-%d %H:%M:%S ----------------------------------------\n', time.localtime()))
batch_time.reset()
data_time.reset()
losses.reset()
save_checkpoint({'iter': iters, 'state_dict': model.state_dict(), })
visualize(model)
def save_checkpoint(state):
torch.save(state, 'BEST_checkpoint.tar')
if __name__ == '__main__':
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
args = parse()
model = construct_model(args)
train_val(model)