forked from MontaEllis/Pytorch-Medical-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·398 lines (260 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
devicess = [0]
from collections import defaultdict
import time
import argparse
import numpy as np
from PIL import Image
import torch
from sklearn import metrics
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch import nn
from torchvision import transforms
import torch.distributed as dist
import math
import torchio
from torchio.transforms import (
ZNormalization,
)
from tqdm import tqdm
from torchvision import utils
from hparam import hparams as hp
from utils.metric import metric
from torch.optim.lr_scheduler import ReduceLROnPlateau,StepLR,CosineAnnealingLR
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
source_train_0_dir = hp.source_train_0_dir
source_train_1_dir = hp.source_train_1_dir
source_test_0_dir = hp.source_test_0_dir
source_test_1_dir = hp.source_test_1_dir
def parse_training_args(parser):
"""
Parse commandline arguments.
"""
parser.add_argument('-o', '--output_dir', type=str, default=hp.output_dir, required=False, help='Directory to save checkpoints')
parser.add_argument('--latest-checkpoint-file', type=str, default=hp.latest_checkpoint_file, help='Store the latest checkpoint in each epoch')
# training
training = parser.add_argument_group('training setup')
training.add_argument('--epochs', type=int, default=hp.total_epochs, help='Number of total epochs to run')
training.add_argument('--epochs-per-checkpoint', type=int, default=hp.epochs_per_checkpoint, help='Number of epochs per checkpoint')
training.add_argument('--batch', type=int, default=hp.batch_size, help='batch-size')
parser.add_argument(
'-k',
"--ckpt",
type=str,
default=hp.ckpt,
help="path to the checkpoints to resume training",
)
parser.add_argument("--init-lr", type=float, default=hp.init_lr, help="learning rate")
# TODO
parser.add_argument(
"--local_rank", type=int, default=0, help="local rank for distributed training"
)
training.add_argument('--amp-run', action='store_true', help='Enable AMP')
training.add_argument('--cudnn-enabled', default=True, help='Enable cudnn')
training.add_argument('--cudnn-benchmark', default=True, help='Run cudnn benchmark')
training.add_argument('--disable-uniform-initialize-bn-weight', action='store_true', help='disable uniform initialization of batchnorm layer weight')
return parser
def train():
parser = argparse.ArgumentParser(description='PyTorch Medical Segmentation Training')
parser = parse_training_args(parser)
args, _ = parser.parse_known_args()
args = parser.parse_args()
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = args.cudnn_enabled
torch.backends.cudnn.benchmark = args.cudnn_benchmark
from data_function import MedData_train
os.makedirs(args.output_dir, exist_ok=True)
if hp.mode == '2d':
# from models.two_d.alexnet import alexnet
# model = alexnet(num_classes=2)
# from models.two_d.densenet import densenet121
# model = densenet121(num_class=2)
from models.two_d.googlenet import googlenet
model = googlenet(num_class=2)
# from models.two_d.mobilenet import mobilenet
# model = mobilenet(class_num=2)
# from models.two_d.nasnet import nasnet
# model = nasnet(class_num=2)
# from models.two_d.resnet import resnet101
# model = resnet101(num_classes=2)
# from models.two_d.resnext import resnext101
# model = resnext152(class_names=2)
# from models.two_d.vggnet import vgg16_bn
# model = vgg16_bn(num_class=2)
elif hp.mode == '3d':
from models.three_d.resnet3d import generate_model
model = generate_model(18,n_input_channels=1,n_classes=2)
from models.three_d.resnext3d import generate_model
model = generate_model(50,n_input_channels=1,n_classes=2)
from models.three_d.densenet3d import generate_model
model = generate_model(121,n_input_channels=1,num_classes=2)
model = torch.nn.DataParallel(model, device_ids=devicess)
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr)
# scheduler = ReduceLROnPlateau(optimizer, 'min',factor=0.5, patience=20, verbose=True)
scheduler = StepLR(optimizer, step_size=hp.scheduer_step_size, gamma=hp.scheduer_gamma)
# scheduler = CosineAnnealingLR(optimizer, T_max=50, eta_min=5e-6)
if args.ckpt is not None:
print("load model:", args.ckpt)
print(os.path.join(args.output_dir, args.latest_checkpoint_file))
ckpt = torch.load(os.path.join(args.output_dir, args.latest_checkpoint_file), map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt["model"])
optimizer.load_state_dict(ckpt["optim"])
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
# scheduler.load_state_dict(ckpt["scheduler"])
elapsed_epochs = ckpt["epoch"]
else:
elapsed_epochs = 0
model.cuda()
from loss_function import Classification_Loss
criterion = Classification_Loss().cuda()
writer = SummaryWriter(args.output_dir)
train_dataset = MedData_train(source_train_0_dir,source_train_1_dir)
train_loader = DataLoader(train_dataset.training_set,
batch_size=args.batch,
shuffle=True,
pin_memory=True,
drop_last=True)
model.train()
epochs = args.epochs - elapsed_epochs
iteration = elapsed_epochs * len(train_loader)
for epoch in range(1, epochs + 1):
print("epoch:"+str(epoch))
epoch += elapsed_epochs
num_iters = 0
gts = []
predicts = []
for i, batch in enumerate(train_loader):
if hp.debug:
if i >=1:
break
print(f"Batch: {i}/{len(train_loader)} epoch {epoch}")
optimizer.zero_grad()
x = batch['source']['data']
y = batch['label']
x = x.type(torch.FloatTensor).cuda()
y = y.type(torch.LongTensor).cuda()
if hp.mode == '2d':
x = x.squeeze(-1)
x = x[:,:1,:,:]
outputs = model(x)
outputs_logit = outputs.argmax(dim=1)
loss = criterion(outputs, y, model)
num_iters += 1
loss.backward()
optimizer.step()
iteration += 1
print("loss:"+str(loss.item()))
writer.add_scalar('Training/Loss', loss.item(),iteration)
predicts.append(outputs_logit.cpu().detach().numpy())
gts.append(y.cpu().detach().numpy())
predicts = np.concatenate(predicts).flatten().astype(np.int16)
gts = np.concatenate(gts).flatten().astype(np.int16)
print(metrics.confusion_matrix(predicts, gts))
acc = metrics.accuracy_score(predicts, gts)
recall = metrics.recall_score(predicts, gts)
f1 = metrics.f1_score(predicts, gts)
writer.add_scalar('Training/acc', acc,epoch)
writer.add_scalar('Training/recall', recall,epoch)
writer.add_scalar('Training/f1', f1,epoch)
scheduler.step()
# Store latest checkpoint in each epoch
torch.save(
{
"model": model.state_dict(),
"optim": optimizer.state_dict(),
"scheduler":scheduler.state_dict(),
"epoch": epoch,
},
os.path.join(args.output_dir, args.latest_checkpoint_file),
)
# Save checkpoint
if epoch % args.epochs_per_checkpoint == 0:
torch.save(
{
"model": model.state_dict(),
"optim": optimizer.state_dict(),
"epoch": epoch,
},
os.path.join(args.output_dir, f"checkpoint_{epoch:04d}.pt"),
)
writer.close()
def test():
parser = argparse.ArgumentParser(description='PyTorch Medical Segmentation Testing')
parser = parse_training_args(parser)
args, _ = parser.parse_known_args()
args = parser.parse_args()
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = args.cudnn_enabled
torch.backends.cudnn.benchmark = args.cudnn_benchmark
from data_function import MedData_test
if hp.mode == '2d':
# from models.two_d.alexnet import alexnet
# model = alexnet(num_classes=2)
# from models.two_d.densenet import densenet121
# model = densenet121(num_class=2)
from models.two_d.googlenet import googlenet
model = googlenet(num_class=2)
# from models.two_d.mobilenet import mobilenet
# model = mobilenet(class_num=2)
# from models.two_d.nasnet import nasnet
# model = nasnet(class_num=2)
# from models.two_d.resnet import resnet101
# model = resnet101(num_classes=2)
# from models.two_d.resnext import resnext101
# model = resnext152(class_names=2)
# from models.two_d.vggnet import vgg16_bn
# model = vgg16_bn(num_class=2)
elif hp.mode == '3d':
from models.three_d.resnet3d import generate_model
model = generate_model(18,n_input_channels=1,n_classes=2)
from models.three_d.resnext3d import generate_model
model = generate_model(50,n_input_channels=1,n_classes=2)
from models.three_d.densenet3d import generate_model
model = generate_model(121,n_input_channels=1,num_classes=2)
model = torch.nn.DataParallel(model, device_ids=devicess,output_device=[1])
print("load model:", args.ckpt)
print(os.path.join(args.output_dir, args.latest_checkpoint_file))
ckpt = torch.load(os.path.join(args.output_dir, args.latest_checkpoint_file), map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt["model"])
model.cuda()
test_dataset = MedData_test(source_test_0_dir,source_test_1_dir)
test_loader = DataLoader(test_dataset.testing_set,
batch_size=args.batch,
shuffle=True,
pin_memory=True,
drop_last=True)
model.eval()
predicts = []
gts = []
for i, batch in enumerate(test_loader):
x = batch['source']['data']
y = batch['label']
x = x.type(torch.FloatTensor).cuda()
y = y.type(torch.LongTensor).cuda()
if hp.mode == '2d':
x = x.squeeze(-1)
x = x[:,:1,:,:]
outputs = model(x)
outputs_logit = outputs.argmax(dim=1)
predicts.append(outputs_logit.cpu().detach().numpy())
gts.append(y.cpu().detach().numpy())
predicts = np.concatenate(predicts).flatten().astype(np.int16)
gts = np.concatenate(gts).flatten().astype(np.int16)
acc = metrics.accuracy_score(predicts, gts)
recall = metrics.recall_score(predicts, gts)
f1 = metrics.f1_score(predicts, gts)
## log
print("acc:"+str(acc))
print("recall:"+str(recall))
print("f1:"+str(f1))
print(metrics.confusion_matrix(predicts, gts))
if __name__ == '__main__':
if hp.train_or_test == 'train':
train()
elif hp.train_or_test == 'test':
test()