forked from clovaai/donut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlightning_module.py
executable file
·198 lines (171 loc) · 7.59 KB
/
lightning_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import math
import random
import re
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from nltk import edit_distance
from pytorch_lightning.utilities import rank_zero_only
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torch.nn.utils.rnn import pad_sequence
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from donut import DonutConfig, DonutModel
class DonutModelPLModule(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
if self.config.get("pretrained_model_name_or_path", False):
self.model = DonutModel.from_pretrained(
self.config.pretrained_model_name_or_path,
input_size=self.config.input_size,
max_length=self.config.max_length,
align_long_axis=self.config.align_long_axis,
ignore_mismatched_sizes=True,
)
else:
self.model = DonutModel(
config=DonutConfig(
input_size=self.config.input_size,
max_length=self.config.max_length,
align_long_axis=self.config.align_long_axis,
# with DonutConfig, the architecture customization is available, e.g.,
# encoder_layer=[2,2,14,2], decoder_layer=4, ...
)
)
self.pytorch_lightning_version_is_1 = int(pl.__version__[0]) < 2
self.num_of_loaders = len(self.config.dataset_name_or_paths)
def training_step(self, batch, batch_idx):
image_tensors, decoder_input_ids, decoder_labels = list(), list(), list()
for batch_data in batch:
image_tensors.append(batch_data[0])
decoder_input_ids.append(batch_data[1][:, :-1])
decoder_labels.append(batch_data[2][:, 1:])
image_tensors = torch.cat(image_tensors)
decoder_input_ids = torch.cat(decoder_input_ids)
decoder_labels = torch.cat(decoder_labels)
loss = self.model(image_tensors, decoder_input_ids, decoder_labels)[0]
self.log_dict({"train_loss": loss}, sync_dist=True)
if not self.pytorch_lightning_version_is_1:
self.log('loss', loss, prog_bar=True)
return loss
def on_validation_epoch_start(self) -> None:
super().on_validation_epoch_start()
self.validation_step_outputs = [[] for _ in range(self.num_of_loaders)]
return
def validation_step(self, batch, batch_idx, dataloader_idx=0):
image_tensors, decoder_input_ids, prompt_end_idxs, answers = batch
decoder_prompts = pad_sequence(
[input_id[: end_idx + 1] for input_id, end_idx in zip(decoder_input_ids, prompt_end_idxs)],
batch_first=True,
)
preds = self.model.inference(
image_tensors=image_tensors,
prompt_tensors=decoder_prompts,
return_json=False,
return_attentions=False,
)["predictions"]
scores = list()
for pred, answer in zip(preds, answers):
pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
answer = re.sub(r"<.*?>", "", answer, count=1)
answer = answer.replace(self.model.decoder.tokenizer.eos_token, "")
scores.append(edit_distance(pred, answer) / max(len(pred), len(answer)))
if self.config.get("verbose", False) and len(scores) == 1:
self.print(f"Prediction: {pred}")
self.print(f" Answer: {answer}")
self.print(f" Normed ED: {scores[0]}")
self.validation_step_outputs[dataloader_idx].append(scores)
return scores
def on_validation_epoch_end(self):
assert len(self.validation_step_outputs) == self.num_of_loaders
cnt = [0] * self.num_of_loaders
total_metric = [0] * self.num_of_loaders
val_metric = [0] * self.num_of_loaders
for i, results in enumerate(self.validation_step_outputs):
for scores in results:
cnt[i] += len(scores)
total_metric[i] += np.sum(scores)
val_metric[i] = total_metric[i] / cnt[i]
val_metric_name = f"val_metric_{i}th_dataset"
self.log_dict({val_metric_name: val_metric[i]}, sync_dist=True)
self.log_dict({"val_metric": np.sum(total_metric) / np.sum(cnt)}, sync_dist=True)
def configure_optimizers(self):
max_iter = None
if int(self.config.get("max_epochs", -1)) > 0:
assert len(self.config.train_batch_sizes) == 1, "Set max_epochs only if the number of datasets is 1"
max_iter = (self.config.max_epochs * self.config.num_training_samples_per_epoch) / (
self.config.train_batch_sizes[0] * torch.cuda.device_count() * self.config.get("num_nodes", 1)
)
if int(self.config.get("max_steps", -1)) > 0:
max_iter = min(self.config.max_steps, max_iter) if max_iter is not None else self.config.max_steps
assert max_iter is not None
optimizer = torch.optim.Adam(self.parameters(), lr=self.config.lr)
scheduler = {
"scheduler": self.cosine_scheduler(optimizer, max_iter, self.config.warmup_steps),
"name": "learning_rate",
"interval": "step",
}
return [optimizer], [scheduler]
@staticmethod
def cosine_scheduler(optimizer, training_steps, warmup_steps):
def lr_lambda(current_step):
if current_step < warmup_steps:
return current_step / max(1, warmup_steps)
progress = current_step - warmup_steps
progress /= max(1, training_steps - warmup_steps)
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * progress)))
return LambdaLR(optimizer, lr_lambda)
@rank_zero_only
def on_save_checkpoint(self, checkpoint):
save_path = Path(self.config.result_path) / self.config.exp_name / self.config.exp_version
self.model.save_pretrained(save_path)
self.model.decoder.tokenizer.save_pretrained(save_path)
class DonutDataPLModule(pl.LightningDataModule):
def __init__(self, config):
super().__init__()
self.config = config
self.train_batch_sizes = self.config.train_batch_sizes
self.val_batch_sizes = self.config.val_batch_sizes
self.train_datasets = []
self.val_datasets = []
self.g = torch.Generator()
self.g.manual_seed(self.config.seed)
def train_dataloader(self):
loaders = list()
for train_dataset, batch_size in zip(self.train_datasets, self.train_batch_sizes):
loaders.append(
DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=self.config.num_workers,
pin_memory=True,
worker_init_fn=self.seed_worker,
generator=self.g,
shuffle=True,
)
)
return loaders
def val_dataloader(self):
loaders = list()
for val_dataset, batch_size in zip(self.val_datasets, self.val_batch_sizes):
loaders.append(
DataLoader(
val_dataset,
batch_size=batch_size,
pin_memory=True,
shuffle=False,
)
)
return loaders
@staticmethod
def seed_worker(wordker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)