-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathHTOP.m
221 lines (220 loc) · 9.43 KB
/
HTOP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
function HTOP(nelx,nely,nelz,volfrac,CH,xlimit,rmin,problem)
% Description: Solves the Homogenization-based Topology Optimization Problem
%-----------------------------------------------------------------%
% ---- Input Arguments ----
% [nelx nely nelz]: Number of elements in x, y, z direction
% volfrac: Volume fraction
% CH: Elasticity tensor (symbolic format)
% xlimit: Extreme values of relative density array
% rmin: Filter radius
% problem: Problem type, 1 or 2
%-----------------------------------------------------------------%
clc; close all;
set(0,'defaultTextInterpreter','latex');
warning('off','all');
% USER-DEFINED LOOP PARAMETERS
tic; colordef black; % Start counting
maxloop = 40; % Maximum number of iterations
tolx = 1e-4; % Terminarion criterion
displayflag = 1; % if 1, display geometry
[fixeddof,loaddof]=ProblemBoundaries(nelx,nely,nelz,problem); % Select problem
% PREPARE FINITE ELEMENT ANALYSIS
nele = nelx*nely*nelz;
ndof = 3*(nelx+1)*(nely+1)*(nelz+1);
F = sparse(loaddof,1,-1,ndof,1);
U = zeros(ndof,1);
freedofs = setdiff(1:ndof,fixeddof);
nodegrd = reshape(1:(nely+1)*(nelx+1),nely+1,nelx+1);
nodeids = reshape(nodegrd(1:end-1,1:end-1),nely*nelx,1);
nodeidz = 0:(nely+1)*(nelx+1):(nelz-1)*(nely+1)*(nelx+1);
nodeids = repmat(nodeids,size(nodeidz))+repmat(nodeidz,size(nodeids));
edofVec = 3*nodeids(:)+1;
edofMat = repmat(edofVec,1,24)+ ...
repmat([0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -1 ...
3*(nely+1)*(nelx+1)+[0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -1]],nele,1);
iK = reshape(kron(edofMat,ones(24,1))',24*24*nele,1);
jK = reshape(kron(edofMat,ones(1,24))',24*24*nele,1);
% PREPARE FILTER
iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for k1 = 1:nelz
for i1 = 1:nelx
for j1 = 1:nely
e1 = (k1-1)*nelx*nely + (i1-1)*nely+j1;
for k2 = max(k1-(ceil(rmin)-1),1):min(k1+(ceil(rmin)-1),nelz)
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (k2-1)*nelx*nely + (i2-1)*nely+j2;
k = k+1;
iH(k) = e1;
jH(k) = e2;
sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2+(k1-k2)^2));
end
end
end
end
end
end
H = sparse(iH,jH,sH);
Hs = sum(H,2);
% INITIALIZE ITERATION
x=repmat(volfrac,[nely,nelx,nelz]);
xPhys = x;
loop = 0;
change = 1;
minV = xlimit(1);
maxV = xlimit(2);
% OBTAIN STIFFNESS MATRIX KE
[KE, DKE]= element_stiffness(0.5,0.5,0.5, CH);
stp.Value=0; % display geometry option
if logical(displayflag)
clear stp;
idx=ones(size(x)); % Visualize the initial domain
set(gcf,'numbertitle','off','name','Homogenization based TOP','units','norm','pos',[.15 .15 .75 .75]);
display_3D(idx,'domain'); hold all;
stp=uicontrol(gcf,'Style','toggle','String','Stop HTOP','units','norm','pos',[.1 .1 .2 .12],...
'FontName','Garamond','FontSize',20,'Backgroundcolor',repmat(.9020,[1,3]));
end
C=zeros([],1);
% START ITERATION
while (change > tolx) && (loop < maxloop) && (stp.Value==0)
loop = loop+1;
% FE-ANALYSIS
sK=zeros(24*24,nele);
for i=1:nele
sK(:,i)=reshape(KE(xPhys(i)),[],1); % Stiffness matrices
end
K=sparse(iK(:),jK(:),sK(:),ndof,ndof); K=(K+K')/2; % [K] total
try
L = ichol(K(freedofs,freedofs)); % Incomplete Cholesky for the KE matrix
U(freedofs,:) = pcg(K(freedofs,freedofs),F(freedofs,:),1e-10,5e3,L,L');
catch
U(freedofs,:) = K(freedofs,freedofs)\F(freedofs,:);
end
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
dc=zeros(nele,1); c=zeros(nele,1); % Vector initizalization
for i=1:nele
c(i)=(((U(edofMat(i,:))' *KE(xPhys(i))* U(edofMat(i,:))))); %Elastic energy stored at each element
dc(i)=-(U(edofMat(i,:))' *DKE(xPhys(i))* U(edofMat(i,:))); %Sensitivity analysis
end
% FILTERING AND MODIFICATION OF SENSITIVITIES
dc(:) = H*(min(dc(:),0)./Hs);
% OPTIMALITY CRITERIA UPDATE
l1 = 0; l2 = 1e12;
move = .1;
dL= -(volfrac*nele).*dc;
while (l2-l1)/(l1+l2) > 1e-3
lmid = 0.5*(l2+l1);
xnew = max(minV,max(x(:)-move,min(maxV,min(x(:)+move,(x(:).*sqrt(dL./lmid))))));
xPhys= H*(xnew(:)./Hs);
if sum(xPhys(:))> volfrac*nele, l1 = lmid; else l2 = lmid; end
end
% CURRENT COMPLIANCE VALUE
C(loop)=sum(c(:));
change = norm(xPhys(:)-x(:),inf);
x = xnew;
% PRINT THE RESULTS TO COMMAND WINDOW
fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f\n',loop,sum(c(:)),sum(xPhys(:))/nele,change);
% DISPLAY THE GEOMETRY AT CURRENT ITERATION
if logical(displayflag)
display_3D(reshape(xPhys,[nely,nelx,nelz]),'topology');
legend({'$Initial\ Domain$',['$No\ Iter:\ ',num2str(loop),'$ ',sprintf('\n'),...
' $Max\ Change:.\ ',num2str(change),'$']},'interpreter','latex',...
'units','norm','Position',[0.6905 0.8437 0.1911 0.0508],'Box','off','fontsize',18);
drawnow; pause(.5);
end
end
figure('color',ones(1,3)); colordef white;
title('\textbf{\itshape{{Compliance vs Iterations:. (OC Method)}}}','Interpreter','Latex','FontSize',20);
plot(1:loop,C,'Color',[1 17 181] ./ 255,'LineStyle','--'); hold on;
legend({['Minimum Compliance Value:. ',num2str(min(C(:)))]},...
'FontSize',15,'interpreter','latex');
xlabel('No. Iterations','interpreter','latex','FontSize',20);
ylabel('Compliance','interpreter','latex','FontSize',20);
set(gca,'Yscale','log'); grid minor;
toc; % Stop counting
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [KE,KEx] = element_stiffness(a, b, c, CH)
% Obtain the element's stiffness matrix and its first order derivative
%-----------------------------------------------------------------%
% ---- Output Arguments ----
% KE: Stiffness matrix
% KEx: 1st order derivative of the stiffness matrix
%
% ---- Input Arguments ----
% a = half the length of the element at x direction (multiplied by the scale(1) value)
% b = half the length of the element at y direction (multiplied by the scale(2) value)
% c = half the length of the element at z direction (multiplied by the scale(3) value)
% CH
%-----------------------------------------------------------------%
% Three Gauss points
xx = [-sqrt(3/5), 0, sqrt(3/5)]; yy = xx; zz = xx;
ww = [5/9, 8/9, 5/9];
syms x real;
KE=zeros(24,24);
for ii = 1:length(xx)
for jj = 1:length(yy)
for kk = 1:length(zz)
%integration point
x = xx(ii); y = yy(jj); z = zz(kk);
%stress strain displacement matrix
qx = [ -((y-1)*(z-1))/8, ((y-1)*(z-1))/8, -((y+1)*(z-1))/8,...
((y+1)*(z-1))/8, ((y-1)*(z+1))/8, -((y-1)*(z+1))/8,...
((y+1)*(z+1))/8, -((y+1)*(z+1))/8];
qy = [ -((x-1)*(z-1))/8, ((x+1)*(z-1))/8, -((x+1)*(z-1))/8,...
((x-1)*(z-1))/8, ((x-1)*(z+1))/8, -((x+1)*(z+1))/8,...
((x+1)*(z+1))/8, -((x-1)*(z+1))/8];
qz = [ -((x-1)*(y-1))/8, ((x+1)*(y-1))/8, -((x+1)*(y+1))/8,...
((x-1)*(y+1))/8, ((x-1)*(y-1))/8, -((x+1)*(y-1))/8,...
((x+1)*(y+1))/8, -((x-1)*(y+1))/8];
% Jacobian
J = [qx; qy; qz]*[-a a a -a -a a a -a; -b -b b b -b -b b b;...
-c -c -c -c c c c c]';
qxyz = J\[qx;qy;qz];
B_e = zeros(6,3,8);
for i_B = 1:8
B_e(:,:,i_B) = [qxyz(1,i_B) 0 0;
0 qxyz(2,i_B) 0;
0 0 qxyz(3,i_B);
qxyz(2,i_B) qxyz(1,i_B) 0;
0 qxyz(3,i_B) qxyz(2,i_B);
qxyz(3,i_B) 0 qxyz(1,i_B)];
end
B = [B_e(:,:,1) B_e(:,:,2) B_e(:,:,3) B_e(:,:,4) B_e(:,:,5)...
B_e(:,:,6) B_e(:,:,7) B_e(:,:,8)];
% Weight factor at this point
weight = det(J)*ww(ii) * ww(jj) * ww(kk);
% Element matrices
KE = KE + weight * B' * CH * B; %symbolic format of KE
end
end
end
syms x real; % Symbolic variable
Kex=diff(KE,x); % First order derivative, KEx = dKE/dvuc
KE=matlabFunction(KE); % Symbolic to function, KE
KEx= matlabFunction(Kex); % Symbolic to function, KEx
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fixeddof,loaddof]=ProblemBoundaries(nelx,nely,nelz,problem)
switch problem
case 1 % Fixed Beam
[il,jl,kl] = meshgrid(nelx, 0, 0:nelz); % Coordinates
loadnid = kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl); % Node IDs
loaddof = 3*loadnid(:) - 1; % DOFs
% USER-DEFINED SUPPORT FIXED DOFs
[iif,jf,kf] = meshgrid(0,0:nely,0:nelz); % Coordinates
fixednid = kf*(nelx+1)*(nely+1)+iif*(nely+1)+(nely+1-jf); % Node IDs
fixeddof = [3*fixednid(:); 3*fixednid(:)-1; 3*fixednid(:)-2]; % DOFs
case 2 % Simply supported
il=nelx/2; jl=0;kl=nelz/2;
loadnid=kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl);
loaddof=3*loadnid(:)-1;
iif=[0 0 nelx nelx]; jf=zeros(1,4);
kf=[0 nelz 0 nelz];
fixednid=kf*(nelx+1)*(nely+1)+iif*(nely+1)+(nely+1-jf);
fixeddof=[3*fixednid(:);3*fixednid(:)-1;fixednid(:)-2];
end
end