-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmutils.py
226 lines (203 loc) · 6.75 KB
/
mutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import sys
import time
import math
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.utils.data import DataLoader
import torch.utils.data as Data
from torchvision import datasets,models,transforms
from torch.utils import data
from PIL import Image
import numpy as np
import torch
# 0, 29, 67, 76, 128, 149, 151, 217, 225
class EcpDataset(data.Dataset):
def __init__(self,root,type = 'train',transform = True):
self.root = root
self._transform = transform
self.files = None
self.labels = None
self.label_dict = {
0:0,
29:1,
67:2,
76:3,
128:4,
149:5,
151:6,
217:7,
225:8
}
image_filelist = os.listdir(self.root+'/images')
label_filelist = os.listdir(self.root+'/labels')
filterlist = list(map(lambda x:''.join(x.replace('.jpg','_mask.png')),image_filelist))
image_filelist = list(map(lambda x:x.replace('_mask.png','.jpg'), list(set(filterlist)&set(label_filelist))))
self.image_filelist = image_filelist[:80] if type == 'train' else image_filelist[80:]
def __len__(self):
return len(self.image_filelist)
def __getitem__(self,index):
img_path = self.root+'/images/'+self.image_filelist[index]
lbl_path = self.root+'/labels/'+self.image_filelist[index].replace('.jpg','_mask.png')
img = np.array(Image.open(img_path))
img = img.transpose(2,0,1)
lbl = self.process_label(lbl_path)
img = torch.from_numpy(img).float()
# img = img.permute(0,2,3,1)
lbl = torch.from_numpy(lbl).type(torch.LongTensor)
return img,lbl
def process_label(self,lbl_filename):
label = np.array(Image.open(lbl_filename).convert('L'))
relabel = np.zeros([label.shape[0],label.shape[1]])
for i in range(label.shape[0]):
for j in range(label.shape[1]):
# print(label[i,j])
relabel[i,j] = self.label_dict[label[i,j]]
return relabel
# gg = EcpDataset('data')
# print(gg[:9])
def loaddata(imagepath,labelpath,kind = True):
if kind:
x = 60000
else: x = 10000
image = np.fromfile(imagepath,'float').reshape(x,784,3).transpose(0,2,1)
label = np.fromfile(labelpath,'float').reshape(x,784)
images = torch.from_numpy(image).type(torch.FloatTensor)
labels = torch.from_numpy(label).type(torch.FloatTensor)
dataset = Data.TensorDataset(data_tensor=images, target_tensor=labels)
loader = Data.DataLoader(dataset=dataset, batch_size=128, shuffle=True)
return images,labels,loader
def saveimage(grayimage,filename):
# print(grayimage)
grayimage = np.squeeze(grayimage)
nummatrix = np.array([ [255, 255, 0],
[128 ,255, 255]
,[255 ,128 , 0]
,[ 0 ,255, 0]
,[128 ,128 ,128]
,[255 , 0 , 0]
,[128 , 0 ,255]
,[ 0 , 0 ,255]
,[0, 0 ,0]])
numdict = {
0:nummatrix[8],
1:nummatrix[7],
2:nummatrix[6],
3:nummatrix[5],
4:nummatrix[4],
5:nummatrix[3],
6:nummatrix[2],
7:nummatrix[1],
8:nummatrix[0],
}
image = np.array(list(map(lambda x:nummatrix[8-x],grayimage)))
Image.fromarray(np.uint8(image)).save(filename)
def get_mean_and_std(dataset):
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def init_params(net):
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
class TripletLossFunc(nn.Module):
def __init__(self,anchor,positive,negative,beta):
super(TripletLossFunc,self).__init__()
self.anchor = anchor
self.positive = positive
self.negative = negative
self.beta = beta
def forward(self):
matched = torch.pow(self.anchor-self.positive,2)
mimatched = torch.pow(self.anchor-self.negative,2)
distance = matched-mimatched+self.beta
loss = torch.max(distance,0)
return loss
_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time,tot_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f