-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_train_d4pg.py
executable file
·177 lines (151 loc) · 6.85 KB
/
06_train_d4pg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python3
import os
import ptan
import time
import gym
import pybullet_envs
import argparse
from tensorboardX import SummaryWriter
import numpy as np
from lib import model, common
import torch
import torch.optim as optim
import torch.nn.functional as F
ENV_ID = "MinitaurBulletEnv-v0"
GAMMA = 0.99
BATCH_SIZE = 64
LEARNING_RATE = 1e-4
REPLAY_SIZE = 100000
REPLAY_INITIAL = 10000
REWARD_STEPS = 5
TEST_ITERS = 1000
Vmax = 10
Vmin = -10
N_ATOMS = 51
DELTA_Z = (Vmax - Vmin) / (N_ATOMS - 1)
def test_net(net, env, count=10, device="cpu"):
rewards = 0.0
steps = 0
for _ in range(count):
obs = env.reset()
while True:
obs_v = ptan.agent.float32_preprocessor([obs]).to(device)
mu_v = net(obs_v)
action = mu_v.squeeze(dim=0).data.cpu().numpy()
action = np.clip(action, -1, 1)
obs, reward, done, _ = env.step(action)
rewards += reward
steps += 1
if done:
break
return rewards / count, steps / count
def distr_projection(next_distr_v, rewards_v, dones_mask_t, gamma, device="cpu"):
next_distr = next_distr_v.data.cpu().numpy()
rewards = rewards_v.data.cpu().numpy()
dones_mask = dones_mask_t.cpu().numpy().astype(np.bool)
batch_size = len(rewards)
proj_distr = np.zeros((batch_size, N_ATOMS), dtype=np.float32)
for atom in range(N_ATOMS):
tz_j = np.minimum(Vmax, np.maximum(Vmin, rewards + (Vmin + atom * DELTA_Z) * gamma))
b_j = (tz_j - Vmin) / DELTA_Z
l = np.floor(b_j).astype(np.int64)
u = np.ceil(b_j).astype(np.int64)
eq_mask = u == l
proj_distr[eq_mask, l[eq_mask]] += next_distr[eq_mask, atom]
ne_mask = u != l
proj_distr[ne_mask, l[ne_mask]] += next_distr[ne_mask, atom] * (u - b_j)[ne_mask]
proj_distr[ne_mask, u[ne_mask]] += next_distr[ne_mask, atom] * (b_j - l)[ne_mask]
if dones_mask.any():
proj_distr[dones_mask] = 0.0
tz_j = np.minimum(Vmax, np.maximum(Vmin, rewards[dones_mask]))
b_j = (tz_j - Vmin) / DELTA_Z
l = np.floor(b_j).astype(np.int64)
u = np.ceil(b_j).astype(np.int64)
eq_mask = u == l
eq_dones = dones_mask.copy()
eq_dones[dones_mask] = eq_mask
if eq_dones.any():
proj_distr[eq_dones, l[eq_mask]] = 1.0
ne_mask = u != l
ne_dones = dones_mask.copy()
ne_dones[dones_mask] = ne_mask
if ne_dones.any():
proj_distr[ne_dones, l[ne_mask]] = (u - b_j)[ne_mask]
proj_distr[ne_dones, u[ne_mask]] = (b_j - l)[ne_mask]
return torch.FloatTensor(proj_distr).to(device)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action='store_true', help='Enable CUDA')
parser.add_argument("-n", "--name", required=True, help="Name of the run")
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
save_path = os.path.join("saves", "d4pg-" + args.name)
os.makedirs(save_path, exist_ok=True)
env = gym.make(ENV_ID)
test_env = gym.make(ENV_ID)
act_net = model.DDPGActor(env.observation_space.shape[0], env.action_space.shape[0]).to(device)
crt_net = model.D4PGCritic(env.observation_space.shape[0], env.action_space.shape[0], N_ATOMS, Vmin, Vmax).to(device)
print(act_net)
print(crt_net)
tgt_act_net = ptan.agent.TargetNet(act_net)
tgt_crt_net = ptan.agent.TargetNet(crt_net)
writer = SummaryWriter(comment="-d4pg_" + args.name)
agent = model.AgentDDPG(act_net, device=device)
exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
buffer = ptan.experience.ExperienceReplayBuffer(exp_source, buffer_size=REPLAY_SIZE)
act_opt = optim.Adam(act_net.parameters(), lr=LEARNING_RATE)
crt_opt = optim.Adam(crt_net.parameters(), lr=LEARNING_RATE)
frame_idx = 0
best_reward = None
with ptan.common.utils.RewardTracker(writer) as tracker:
with ptan.common.utils.TBMeanTracker(writer, batch_size=10) as tb_tracker:
while True:
frame_idx += 1
buffer.populate(1)
rewards_steps = exp_source.pop_rewards_steps()
if rewards_steps:
rewards, steps = zip(*rewards_steps)
tb_tracker.track("episode_steps", steps[0], frame_idx)
tracker.reward(rewards[0], frame_idx)
if len(buffer) < REPLAY_INITIAL:
continue
batch = buffer.sample(BATCH_SIZE)
states_v, actions_v, rewards_v, dones_mask, last_states_v = common.unpack_batch_ddqn(batch, device)
# train critic
crt_opt.zero_grad()
crt_distr_v = crt_net(states_v, actions_v)
last_act_v = tgt_act_net.target_model(last_states_v)
last_distr_v = F.softmax(tgt_crt_net.target_model(last_states_v, last_act_v), dim=1)
proj_distr_v = distr_projection(last_distr_v, rewards_v, dones_mask,
gamma=GAMMA**REWARD_STEPS, device=device)
prob_dist_v = -F.log_softmax(crt_distr_v, dim=1) * proj_distr_v
critic_loss_v = prob_dist_v.sum(dim=1).mean()
critic_loss_v.backward()
crt_opt.step()
tb_tracker.track("loss_critic", critic_loss_v, frame_idx)
# train actor
act_opt.zero_grad()
cur_actions_v = act_net(states_v)
crt_distr_v = crt_net(states_v, cur_actions_v)
actor_loss_v = -crt_net.distr_to_q(crt_distr_v)
actor_loss_v = actor_loss_v.mean()
actor_loss_v.backward()
act_opt.step()
tb_tracker.track("loss_actor", actor_loss_v, frame_idx)
tgt_act_net.alpha_sync(alpha=1 - 1e-3)
tgt_crt_net.alpha_sync(alpha=1 - 1e-3)
if frame_idx % TEST_ITERS == 0:
ts = time.time()
rewards, steps = test_net(act_net, test_env, device=device)
print("Test done in %.2f sec, reward %.3f, steps %d" % (
time.time() - ts, rewards, steps))
writer.add_scalar("test_reward", rewards, frame_idx)
writer.add_scalar("test_steps", steps, frame_idx)
if best_reward is None or best_reward < rewards:
if best_reward is not None:
print("Best reward updated: %.3f -> %.3f" % (best_reward, rewards))
name = "best_%+.3f_%d.dat" % (rewards, frame_idx)
fname = os.path.join(save_path, name)
torch.save(act_net.state_dict(), fname)
best_reward = rewards
pass