-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_pong_r2.py
executable file
·218 lines (184 loc) · 8.08 KB
/
04_pong_r2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
import gym
import ptan
import time
import random
import numpy as np
import argparse
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.utils as nn_utils
import torch.nn.functional as F
import torch.optim as optim
from lib import common
GAMMA = 0.99
LEARNING_RATE = 5e-4
ENTROPY_BETA = 0.01
NUM_ENVS = 16
REWARD_STEPS = 4
CLIP_GRAD = 0.1
IMG_SHAPE = (4, 84, 84)
class AtariA2C(nn.Module):
def __init__(self, input_shape, n_actions):
super(AtariA2C, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU()
)
conv_out_size = self._get_conv_out(input_shape)
self.policy = nn.Sequential(
nn.Linear(conv_out_size, 512),
nn.ReLU(),
nn.Linear(512, n_actions)
)
self.value = nn.Sequential(
nn.Linear(conv_out_size, 512),
nn.ReLU(),
nn.Linear(512, 1)
)
def _get_conv_out(self, shape):
o = self.conv(torch.zeros(1, *shape))
return int(np.prod(o.size()))
def forward(self, x):
fx = x.float() / 256
conv_out = self.conv(fx).view(fx.size()[0], -1)
return self.policy(conv_out), self.value(conv_out)
def discount_with_dones(rewards, dones, gamma):
discounted = []
r = 0
for reward, done in zip(rewards[::-1], dones[::-1]):
r = reward + gamma*r*(1.-done)
discounted.append(r)
return discounted[::-1]
def iterate_batches(envs, net, device="cpu"):
n_actions = envs[0].action_space.n
act_selector = ptan.actions.ProbabilityActionSelector()
obs = [e.reset() for e in envs]
batch_dones = [[False] for _ in range(NUM_ENVS)]
total_reward = [0.0] * NUM_ENVS
total_steps = [0] * NUM_ENVS
mb_obs = np.zeros((NUM_ENVS, REWARD_STEPS) + IMG_SHAPE, dtype=np.uint8)
mb_rewards = np.zeros((NUM_ENVS, REWARD_STEPS), dtype=np.float32)
mb_values = np.zeros((NUM_ENVS, REWARD_STEPS), dtype=np.float32)
mb_actions = np.zeros((NUM_ENVS, REWARD_STEPS), dtype=np.int32)
mb_probs = np.zeros((NUM_ENVS, REWARD_STEPS, n_actions), dtype=np.float32)
while True:
batch_dones = [[dones[-1]] for dones in batch_dones]
done_rewards = []
done_steps = []
for n in range(REWARD_STEPS):
obs_v = ptan.agent.default_states_preprocessor(obs).to(device)
mb_obs[:, n] = obs_v.data.cpu().numpy()
logits_v, values_v = net(obs_v)
probs_v = F.softmax(logits_v, dim=1)
probs = probs_v.data.cpu().numpy()
actions = act_selector(probs)
mb_probs[:, n] = probs
mb_actions[:, n] = actions
mb_values[:, n] = values_v.squeeze().data.cpu().numpy()
for e_idx, e in enumerate(envs):
o, r, done, _ = e.step(actions[e_idx])
total_reward[e_idx] += r
total_steps[e_idx] += 1
if done:
o = e.reset()
done_rewards.append(total_reward[e_idx])
done_steps.append(total_steps[e_idx])
total_reward[e_idx] = 0.0
total_steps[e_idx] = 0
obs[e_idx] = o
mb_rewards[e_idx, n] = r
batch_dones[e_idx].append(done)
# obtain values for the last observation
obs_v = ptan.agent.default_states_preprocessor(obs).to(device)
_, values_v = net(obs_v)
values_last = values_v.squeeze().data.cpu().numpy()
for e_idx, (rewards, dones, value) in enumerate(zip(mb_rewards, batch_dones, values_last)):
rewards = rewards.tolist()
if not dones[-1]:
rewards = discount_with_dones(rewards + [value], dones[1:] + [False], GAMMA)[:-1]
else:
rewards = discount_with_dones(rewards, dones[1:], GAMMA)
mb_rewards[e_idx] = rewards
out_mb_obs = mb_obs.reshape((-1,) + IMG_SHAPE)
out_mb_rewards = mb_rewards.flatten()
out_mb_actions = mb_actions.flatten()
out_mb_values = mb_values.flatten()
out_mb_probs = mb_probs.flatten()
yield out_mb_obs, out_mb_rewards, out_mb_actions, out_mb_values, out_mb_probs, \
np.array(done_rewards), np.array(done_steps)
def train_a2c(net, mb_obs, mb_rewards, mb_actions, mb_values, optimizer, tb_tracker, step_idx, device="cpu"):
optimizer.zero_grad()
mb_adv = mb_rewards - mb_values
adv_v = torch.FloatTensor(mb_adv).to(device)
obs_v = torch.FloatTensor(mb_obs).to(device)
rewards_v = torch.FloatTensor(mb_rewards).to(device)
actions_t = torch.LongTensor(mb_actions).to(device)
logits_v, values_v = net(obs_v)
loss_value_v = F.mse_loss(values_v.squeeze(-1), rewards_v)
log_prob_v = F.log_softmax(logits_v, dim=1)
log_prob_actions_v = adv_v * log_prob_v[range(len(mb_actions)), actions_t]
loss_policy_v = -log_prob_actions_v.mean()
prob_v = F.softmax(logits_v, dim=1)
entropy_loss_v = (prob_v * log_prob_v).sum(dim=1).mean()
loss_v = ENTROPY_BETA * entropy_loss_v + loss_value_v + loss_policy_v
loss_v.backward()
nn_utils.clip_grad_norm_(net.parameters(), CLIP_GRAD)
optimizer.step()
tb_tracker.track("advantage", mb_adv, step_idx)
tb_tracker.track("values", values_v, step_idx)
tb_tracker.track("batch_rewards", rewards_v, step_idx)
tb_tracker.track("loss_entropy", entropy_loss_v, step_idx)
tb_tracker.track("loss_policy", loss_policy_v, step_idx)
tb_tracker.track("loss_value", loss_value_v, step_idx)
tb_tracker.track("loss_total", loss_v, step_idx)
return obs_v
def set_seed(seed, envs=None, cuda=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
if envs:
for idx, env in enumerate(envs):
env.seed(seed + idx)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action="store_true", help="Enable cuda")
parser.add_argument("-n", "--name", required=True, help="Name of the run")
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
make_env = lambda: ptan.common.wrappers.wrap_dqn(gym.make("BreakoutNoFrameskip-v4"))
envs = [make_env() for _ in range(NUM_ENVS)]
writer = SummaryWriter(comment="-pong-a2c-r2_" + args.name)
set_seed(20, envs, cuda=args.cuda)
net = AtariA2C(envs[0].observation_space.shape, envs[0].action_space.n).to(device)
print(net)
optimizer = optim.RMSprop(net.parameters(), lr=LEARNING_RATE, eps=1e-5)
step_idx = 0
total_steps = 0
best_reward = None
ts_start = time.time()
with common.RewardTracker(writer, stop_reward=18) as tracker:
with ptan.common.utils.TBMeanTracker(writer, batch_size=10) as tb_tracker:
for mb_obs, mb_rewards, mb_actions, mb_values, _, done_rewards, done_steps in iterate_batches(envs, net, device=device):
if len(done_rewards) > 0:
total_steps += sum(done_steps)
speed = total_steps / (time.time() - ts_start)
if best_reward is None:
best_reward = done_rewards.max()
elif best_reward < done_rewards.max():
best_reward = done_rewards.max()
tb_tracker.track("total_reward_max", best_reward, step_idx)
tb_tracker.track("total_reward", done_rewards, step_idx)
tb_tracker.track("total_steps", done_steps, step_idx)
print("%d: done %d episodes, mean_reward=%.2f, best_reward=%.2f, speed=%.2f" % (
step_idx, len(done_rewards), done_rewards.mean(), best_reward, speed))
train_a2c(net, mb_obs, mb_rewards, mb_actions, mb_values,
optimizer, tb_tracker, step_idx, device=device)
step_idx += 1