-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
563 lines (393 loc) · 21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
from dataset.dataset import CommonGenDataset, C2Gen, get_data_loader,keyword_CommonGenDataset, CommonGenDataset, Length_kw_Dataset, Length_CommonGenDataset
from dataset.wiki_dataset import WikiDataset, WikiDataset_General, get_wiki_data_loader
import argparse
import torch
import torch.nn as nn
import numpy as np
from transformers import T5Tokenizer
import utils
from tqdm import tqdm
import math
import os, sys
from speaksee import evaluation
import spacy
import random
import json
import string
import numpy as np
from os.path import join
import datetime
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
BertTokenizer,
GPT2Tokenizer
)
from transformers import GPT2LMHeadModel, AutoTokenizer, AutoModelForMaskedLM, T5ForConditionalGeneration
import numpy as np
import torch, math, time, os, argparse, re
import torch.nn as nn
from tqdm import tqdm
import torch.nn.functional as F
# from adaVAE import compute_loss
from utils import *
from collections import defaultdict
from adapters.common import AdapterConfig
import datetime
import copy as _copy
from torch.utils.data import Dataset, DataLoader
from transformers.modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config, AdamW, get_linear_schedule_with_warmup, Conv1D
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
BertTokenizer,
GPT2Tokenizer
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers import GPT2LMHeadModel, AutoTokenizer, AutoModelForMaskedLM
from adapters.distill_tuning_d import Distill_Tuning as Prompt_Residual_Tuning
from adapters.distill_tuning_vanilla import GPT2_Tuning as Vanilla_Prompt_Tuning
from adapters.distill_tuning import Distill_Tuning as Residual_Tuning
from eval_metric import *
from utils import addCsv
def construct_generation_args():
parser = argparse.ArgumentParser()
# pre-parsing args
parser.add_argument("--model_name_or_path", type=str, default='/home/xxx/pretrained_model/gpt2/large')
parser.add_argument("--steer_model", type=str, default='/home/xxx/pretrained_model/gpt2/small')
parser.add_argument("--data_path", type=str, default='../data/pos_neg')
parser.add_argument("--embedding_checkpoint", type=str, default=None)
parser.add_argument("--task_name", type=str, default="sentiment",choices = ["detoxic","sentiment"])
parser.add_argument("--pseudo_token", type=str, default='xxx')
parser.add_argument("--batch_size", type=int, default= 100)
parser.add_argument("--epoch", type=int, default= 50)
parser.add_argument("--template", type=str, default="(20, 20)")
parser.add_argument("--early_stop", type=int, default=20)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--decay_rate", type=float, default=0.98)
parser.add_argument("--weight_decay", type=float, default=0.0005)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
# lama configuration
parser.add_argument("--only_evaluate", type=bool, default=False)
parser.add_argument("--use_original_template", type=bool, default=False)
parser.add_argument("--lstm_dropout", type=float, default=0.0)
# directories
parser.add_argument("--out_dir", type=str, default= './checkpoint')
# MegatronLM 11B
## generation configure
parser.add_argument("--temperature", type=float, default=0.1)
parser.add_argument("--max_length", type=int, default=32)
parser.add_argument("--generated_len", type=int, default=20)
parser.add_argument("--max_prompt_length", type=int, default=10)
parser.add_argument("--training_sample_num", type=int, default=100)
parser.add_argument("--step_size", type=int, default=10000)
parser.add_argument("--step_log", type=int, default=10000)
parser.add_argument("--num_layer", type=int, default=2)
parser.add_argument("--residual_layer", type=int, default=4)
parser.add_argument("--tuning_mode", type=str, default="pt", choices=["fp","pt"])
parser.add_argument("--train_stage", type=str, default="fine_tuning", choices=["fine_tuning","general_pretrain","control_pretrain"])
parser.add_argument("--model_type", type=str, default="Vanilla_Prompt_Tuning", choices=["Residual_Tuning","Prompt_Residual_Tuning","Vanilla_Prompt_Tuning"])
parser.add_argument("--dataset", type=str, default="CommonGen", choices=["CommonGen","keyword"])
parser.add_argument("--number_beam", type=int, default=4)
# parser.add_argument("--top_k", type=int, default=3)
parser.add_argument("--top_p", type=float, default=0.95)
parser.add_argument("--memory_p", type=float, default=0.5)
parser.add_argument("--output_path", type=str, default="../eval")
parser.add_argument("--mode", type=str, default="ctg", choices=["ctg","train","classifer"])
parser.add_argument("--evaluate_file", type=str, default="../our_text")
parser.add_argument("--evaluate_outfile", type=str, default="./eval/our/result.csv")
parser.add_argument("--max_epoch", type=int, default=10)
parser.add_argument("--check_point_load", type=str, default= None)
parser.add_argument("--train_path", type=str, default= None)
parser.add_argument("--dev_path", type=str, default= None)
parser.add_argument("--test_path", type=str, default= None)
parser.add_argument("--pretrain_path", type=str, default= None)
parser.add_argument("--pretrain_path_val", type=str, default= None)
parser.add_argument("--long_test_path", type=str, default= None)
parser.add_argument('--train', action='store_true')
parser.add_argument('--validation', action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--saving_model', action='store_true')
parser.add_argument('--length_control', action='store_true')
parser.add_argument('--distribution_constraint', action='store_true')
args = parser.parse_args()
# post-parsing args
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
args.template = eval(args.template) if type(args.template) is not tuple else args.template
# args.template_disc = eval(args.template_disc) if type(args.template_disc) is not tuple else args.template_disc
assert type(args.template) is tuple
return args
def run_eval(args, model, eval_data_iter, tokenizer, output_path=None):
model.eval()
gts = []
concept_set = []
res = []
gens_part = []
context_part = []
with torch.no_grad():
for batch in tqdm(eval_data_iter):
input_ids = batch["input_ids"].to(args.device).long()
encode_inputs = batch["encode_input"].to(args.device).long()
attention_mask = batch["attention_mask"].to(args.device).bool()
gts += batch["item"]
concept_set += batch["concept_set"]
output_sequences = model.generate(
input_ids=input_ids,
encoder_hidden_states = encode_inputs,
attention_mask = attention_mask,
max_length =args.max_length + input_ids.shape[1],
num_beams =args.number_beam,
top_p = 0.8,
repetition_penalty=1.25,
top_k = 0,
no_repeat_ngram_size = 3,
do_sample= True, # disable sampling to test if batching affects output
)
text = []
context_text = []
generated_text = []
for i in range(len(output_sequences)):
text.append(tokenizer.decode(output_sequences[i],skip_special_tokens= True))
context_text.append(tokenizer.decode(input_ids[i],skip_special_tokens= True))
generated_text.append(tokenizer.decode(output_sequences[i][input_ids.shape[1]:],skip_special_tokens= True))
texts = []
for t in text:
a = t.strip()
if args.dataset == "CommonGen":
if '.' in a:
tmp = a.split(".")[0] + '.'
texts.append(tmp)
else:
texts.append(a)
else:
texts.append(a)
res += texts
context_text = [t.strip() for t in context_text]
context_part += context_text
generated_text = [t.strip() for t in generated_text]
gens_part += generated_text
print(texts)
if args.validation or args.test:
for key, c,g,r in zip(concept_set, context_part, gens_part, res):
dict_data = {
"keywords":key,
"context":c,
"generated":g,
"text":r}
addCsv(output_path+f"/generated_result_{args.generated_len}_seed_{args.seed}.csv", dict_data)
print("The result is generated!")
exit()
references={}
hypothesis = {}
for g, c, r in zip(gts, concept_set, res):
references[c] = g
hypothesis[c] = [r]
res = hypothesis
gts = references
print("res:", res)
cov = evaluator_coverage(res)
score_self_bleu = evaluator_selfbleu(res)
score_ppl = evaluator_ppl(res, args.model_name_or_path)
return {"coverage":cov,"self_bleu":score_self_bleu, "ppl": score_ppl}
def task_train(args, model, tokenizer, train_data_loader, dev_data_loader, test_data_loader, optimizer, my_lr_scheduler):
result_name_path = f"{args.output_path}/{args.model_type}_seed_{args.seed}_{args.tuning_mode}_training_samples_{args.training_sample_num}_memory_p_{args.memory_p}_layer_{args.residual_layer}.csv"
best_score = 0.0
early_stop=0
coverage = 0.0
time_record = str(datetime.datetime.now()).replace(" ","_")
if args.train:
print("len(max_epoch):", args.max_epoch)
for epoch in range(args.max_epoch):
print('EPOCH %d / %d' % (epoch + 1, args.max_epoch))
tot_loss = 0
model.train()
step = 0
step_count=0
for batch_idx, batch in tqdm(enumerate(train_data_loader)):
model.train()
input_ids = batch["input_ids"].to(args.device).long()
mask_ids = batch["mask_ids"].to(args.device).bool()
encode_inputs = batch["encode_input"].to(args.device).long()
attention_mask =batch["attention_mask"].to(args.device).bool()
output = model(encoder_hidden_states=encode_inputs, input_ids = input_ids, token_type_ids = mask_ids, attention_mask=attention_mask)
loss = output.loss
print("the loss is:", loss)
tot_loss += loss.item()
loss.backward()
torch.cuda.empty_cache()
optimizer.step()
torch.cuda.empty_cache()
optimizer.zero_grad()
step += args.batch_size
step_count += args.batch_size
my_lr_scheduler.step()
if epoch+1>=1:
output = run_eval(args, model, dev_data_loader, tokenizer, output_path=args.output_path)
coverage = output["coverage"]
print("coverage:", coverage)
print(output)
else:
coverage = 0.0
continue
if coverage>best_score:
early_stop=0
best_score = coverage
outpus_long = run_eval(args, model, test_data_loader, tokenizer, output_path=args.output_path)
print(outpus_long)
if args.saving_model:
save_model(args, model, args.seed, time_record+"_"+str(args.memory_p))
else:
early_stop+=1
if early_stop>3:
break
in_csv = {"seed":args.seed,"train_stage": args.train_stage,"dev_cov":best_score}
# in_csv.update(outpus_test)
in_csv.update(outpus_long)
addCsv(result_name_path, in_csv)
def general_pretrain(args, model, tokenizer, train_data_loader, dev_data_loader, test_data_loader, optimizer, my_lr_scheduler):
result_name_path = f"../pretrain_result/{args.model_type}_{args.train_stage}_{args.tuning_mode}_layer_{args.residual_layer}.csv"
result_ppl_path = f"../pretrain_result/{args.model_type}_{args.train_stage}_{args.tuning_mode}_layer_{args.residual_layer}_ppl.csv"
best_score = 0.0
early_stop=0
coverage = 0.0
if args.train:
print("len(max_epoch):", args.max_epoch)
for epoch in range(args.max_epoch):
print('EPOCH %d / %d' % (epoch + 1, args.max_epoch))
tot_loss = 0
model.train()
step = 0
step_count=0
step_log = 0
for batch_idx, batch in tqdm(enumerate(train_data_loader)):
model.train()
x_token = batch["concept_set_input_ids"].to(args.device).long()
input_ids = batch["c_output_ids"].to(args.device).long()
_,output = model(x_token, input_ids)
loss = output
print("the loss is:", loss)
tot_loss += loss.item()
loss.backward()
torch.cuda.empty_cache()
optimizer.step()
torch.cuda.empty_cache()
optimizer.zero_grad()
step += args.batch_size
step_count += args.batch_size
step_log += args.batch_size
print(f"epoch is {epoch}, and step size is:{step}")
if step_log>args.step_log:
step_log = 0
ppl = run_eval_ppl(args, model, dev_data_loader, tokenizer, only_test=True, output_path=args.output_path)
in_csv = {"step":step, "ppl":ppl,"loss": round(tot_loss/args.step_size,2)}
addCsv(result_ppl_path,in_csv)
if step_count>args.step_size:
ppl = run_eval_ppl(args, model, dev_data_loader, tokenizer, only_test=True, output_path=args.output_path)
print("ppl:", ppl)
save_model(args, model, step, round(ppl,2))
my_lr_scheduler.step()
in_csv = {"epoch":epoch,"step":step, "ppl":ppl,"loss": round(tot_loss/args.step_size,2)}
addCsv(result_name_path,in_csv)
tot_loss = 0
step_count=0
if step> 4001000:
exit()
if __name__ == "__main__":
args = construct_generation_args()
print("Whether Saving_model:", args.saving_model)
print("Text generation max length:",args.max_length)
seed = args.seed
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)#as reproducibility docs
torch.manual_seed(seed)# as reproducibility docs
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False# as reproducibility docs
torch.backends.cudnn.deterministic = True# as reproducibility docs
set_seed(seed)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
if args.model_type=="Prompt_Residual_Tuning":
model = Prompt_Residual_Tuning.from_pretrained(args.model_name_or_path)
model.init_post(args)
elif args.model_type=="Residual_Tuning":
model = Residual_Tuning(args, args.template)
elif args.model_type=="Vanilla_Prompt_Tuning":
model = Vanilla_Prompt_Tuning.from_pretrained(args.model_name_or_path)
model.init_post(args)
else:
raise Exception("the task is out of scope!")
if args.check_point_load != None and hasattr(model, 'prompt_encoder'):
model.prompt_encoder.load_state_dict(load_prompt(args.check_point_load))
print("load the embedding checkpoint successfully!")
model.to(args.device)
print("args.batch_size:",args.batch_size)
if args.validation or args.test:
if args.dataset == "CommonGen":
test_data = CommonGenDataset(args.test_path, tokenizer, is_training=False, args=args)
test_data_loader = get_data_loader(test_data, args.batch_size)
run_eval(args, model, test_data_loader, tokenizer, output_path=args.output_path)
else:
long_dis_data = C2Gen(args.long_test_path, tokenizer, args)
test_long_loader = get_data_loader(long_dis_data, 1)
run_eval(args, model, test_long_loader, tokenizer, output_path=args.output_path)
exit()
if args.train:
params = [{'params': model.prompt_encoder.parameters()}]
optimizer = torch.optim.AdamW(params, weight_decay= args.weight_decay,lr=args.lr)
if args.train_stage == "fine_tuning":
my_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer, step_size= 3, gamma=0.5)
else:
my_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=2, gamma=0.5)
if args.train_stage == "fine_tuning":
if args.dataset == "CommonGen":
train_data = keyword_CommonGenDataset(args.train_path, tokenizer, is_training=True, args=args)
print("train_data:", len(train_data))
train_data_loader = get_data_loader(train_data, args.batch_size)
dev_data = CommonGenDataset(args.dev_path, tokenizer, is_training=False, args=args)
dev_data_loader = get_data_loader(dev_data, 50)
test_data = CommonGenDataset(args.test_path, tokenizer, is_training=False, args=args)
test_data_loader = get_data_loader(test_data, 50)
print(len(dev_data_loader), len(test_data_loader))
task_train(args, model, tokenizer, train_data_loader, dev_data_loader, test_data_loader, optimizer, my_lr_scheduler)
else:
train_data = keyword_CommonGenDataset(args.train_path, tokenizer, is_training=True, args=args)
print("train_data:", len(train_data))
train_data_loader = get_data_loader(train_data, args.batch_size)
long_dis_data = C2Gen(args.long_test_path, tokenizer, args=args)
test_long_loader = get_data_loader(long_dis_data, 1)
task_train(args, model, tokenizer, train_data_loader, test_long_loader, test_long_loader, optimizer, my_lr_scheduler)
# dev_data = CommonGenDataset(args.dev_path, tokenizer, is_training=False, args=args)
# dev_data_loader = get_data_loader(dev_data, 50)
# test_data = CommonGenDataset(args.test_path, tokenizer, is_training=False, args=args)
# test_data_loader = get_data_loader(test_data, 50)
# task_train(args, model, tokenizer, train_data_loader, dev_data_loader, test_data_loader, optimizer, my_lr_scheduler)
elif args.train_stage == "general_pretrain":
train_dataset = WikiDataset_General(args.pretrain_path, tokenizer, is_training=True, args=args)
train_data_loader = get_wiki_data_loader(train_dataset, args.batch_size)
dev_dataset = WikiDataset_General(args.pretrain_path_val, tokenizer, is_training=True, args=args)
dev_data_loader = get_wiki_data_loader(dev_dataset, args.batch_size-20)
general_pretrain(args, model, tokenizer, train_data_loader, dev_data_loader, None, optimizer, my_lr_scheduler)
else:
raise Exception("the task is out of scope!")