forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_system.py
393 lines (349 loc) · 14.3 KB
/
predict_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import subprocess
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../")))
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
import cv2
import json
import numpy as np
import time
import logging
from copy import deepcopy
from paddle.utils import try_import
from ppocr.utils.utility import get_image_file_list, check_and_read
from ppocr.utils.logging import get_logger
from ppocr.utils.visual import draw_ser_results, draw_re_results
from tools.infer.predict_system import TextSystem
from ppstructure.layout.predict_layout import LayoutPredictor
from ppstructure.table.predict_table import TableSystem, to_excel
from ppstructure.utility import parse_args, draw_structure_result, cal_ocr_word_box
logger = get_logger()
class StructureSystem(object):
def __init__(self, args):
self.mode = args.mode
self.recovery = args.recovery
self.image_orientation_predictor = None
if args.image_orientation:
import paddleclas
self.image_orientation_predictor = paddleclas.PaddleClas(
model_name="text_image_orientation"
)
if self.mode == "structure":
if not args.show_log:
logger.setLevel(logging.INFO)
if args.layout == False and args.ocr == True:
args.ocr = False
logger.warning(
"When args.layout is false, args.ocr is automatically set to false"
)
# init model
self.layout_predictor = None
self.text_system = None
self.table_system = None
if args.layout:
self.layout_predictor = LayoutPredictor(args)
if args.ocr:
self.text_system = TextSystem(args)
if args.table:
if self.text_system is not None:
self.table_system = TableSystem(
args,
self.text_system.text_detector,
self.text_system.text_recognizer,
)
else:
self.table_system = TableSystem(args)
elif self.mode == "kie":
from ppstructure.kie.predict_kie_token_ser_re import SerRePredictor
self.kie_predictor = SerRePredictor(args)
self.return_word_box = args.return_word_box
def __call__(self, img, return_ocr_result_in_table=False, img_idx=0):
time_dict = {
"image_orientation": 0,
"layout": 0,
"table": 0,
"table_match": 0,
"det": 0,
"rec": 0,
"kie": 0,
"all": 0,
}
start = time.time()
if self.image_orientation_predictor is not None:
tic = time.time()
cls_result = self.image_orientation_predictor.predict(input_data=img)
cls_res = next(cls_result)
angle = cls_res[0]["label_names"][0]
cv_rotate_code = {
"90": cv2.ROTATE_90_COUNTERCLOCKWISE,
"180": cv2.ROTATE_180,
"270": cv2.ROTATE_90_CLOCKWISE,
}
if angle in cv_rotate_code:
img = cv2.rotate(img, cv_rotate_code[angle])
toc = time.time()
time_dict["image_orientation"] = toc - tic
if self.mode == "structure":
ori_im = img.copy()
if self.layout_predictor is not None:
layout_res, elapse = self.layout_predictor(img)
time_dict["layout"] += elapse
else:
h, w = ori_im.shape[:2]
layout_res = [dict(bbox=None, label="table")]
# As reported in issues such as #10270 and #11665, the old
# implementation, which recognizes texts from the layout regions,
# has problems with OCR recognition accuracy.
#
# To enhance the OCR recognition accuracy, we implement a patch fix
# that first use text_system to detect and recognize all text information
# and then filter out relevant texts according to the layout regions.
text_res = None
if self.text_system is not None:
text_res, ocr_time_dict = self._predict_text(img)
time_dict["det"] += ocr_time_dict["det"]
time_dict["rec"] += ocr_time_dict["rec"]
res_list = []
for region in layout_res:
res = ""
if region["bbox"] is not None:
x1, y1, x2, y2 = region["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
roi_img = ori_im[y1:y2, x1:x2, :]
else:
x1, y1, x2, y2 = 0, 0, w, h
roi_img = ori_im
bbox = [x1, y1, x2, y2]
if region["label"] == "table":
if self.table_system is not None:
res, table_time_dict = self.table_system(
roi_img, return_ocr_result_in_table
)
time_dict["table"] += table_time_dict["table"]
time_dict["table_match"] += table_time_dict["match"]
time_dict["det"] += table_time_dict["det"]
time_dict["rec"] += table_time_dict["rec"]
else:
if text_res is not None:
# Filter the text results whose regions intersect with the current layout bbox.
res = self._filter_text_res(text_res, bbox)
res_list.append(
{
"type": region["label"].lower(),
"bbox": bbox,
"img": roi_img,
"res": res,
"img_idx": img_idx,
}
)
end = time.time()
time_dict["all"] = end - start
return res_list, time_dict
elif self.mode == "kie":
re_res, elapse = self.kie_predictor(img)
time_dict["kie"] = elapse
time_dict["all"] = elapse
return re_res[0], time_dict
return None, None
def _predict_text(self, img):
filter_boxes, filter_rec_res, ocr_time_dict = self.text_system(img)
# remove style char,
# when using the recognition model trained on the PubtabNet dataset,
# it will recognize the text format in the table, such as <b>
style_token = [
"<strike>",
"<strike>",
"<sup>",
"</sub>",
"<b>",
"</b>",
"<sub>",
"</sup>",
"<overline>",
"</overline>",
"<underline>",
"</underline>",
"<i>",
"</i>",
]
res = []
for box, rec_res in zip(filter_boxes, filter_rec_res):
rec_str, rec_conf = rec_res[0], rec_res[1]
for token in style_token:
if token in rec_str:
rec_str = rec_str.replace(token, "")
if self.return_word_box:
word_box_content_list, word_box_list = cal_ocr_word_box(
rec_str, box, rec_res[2]
)
res.append(
{
"text": rec_str,
"confidence": float(rec_conf),
"text_region": box.tolist(),
"text_word": word_box_content_list,
"text_word_region": word_box_list,
}
)
else:
res.append(
{
"text": rec_str,
"confidence": float(rec_conf),
"text_region": box.tolist(),
}
)
return res, ocr_time_dict
def _filter_text_res(self, text_res, bbox):
res = []
for r in text_res:
box = r["text_region"]
rect = box[0][0], box[0][1], box[2][0], box[2][1]
if self._has_intersection(bbox, rect):
res.append(r)
return res
def _has_intersection(self, rect1, rect2):
x_min1, y_min1, x_max1, y_max1 = rect1
x_min2, y_min2, x_max2, y_max2 = rect2
if x_min1 > x_max2 or x_max1 < x_min2:
return False
if y_min1 > y_max2 or y_max1 < y_min2:
return False
return True
def save_structure_res(res, save_folder, img_name, img_idx=0):
excel_save_folder = os.path.join(save_folder, img_name)
os.makedirs(excel_save_folder, exist_ok=True)
res_cp = deepcopy(res)
# save res
with open(
os.path.join(excel_save_folder, "res_{}.txt".format(img_idx)),
"w",
encoding="utf8",
) as f:
for region in res_cp:
roi_img = region.pop("img")
f.write("{}\n".format(json.dumps(region)))
if (
region["type"].lower() == "table"
and len(region["res"]) > 0
and "html" in region["res"]
):
excel_path = os.path.join(
excel_save_folder, "{}_{}.xlsx".format(region["bbox"], img_idx)
)
to_excel(region["res"]["html"], excel_path)
elif region["type"].lower() == "figure":
img_path = os.path.join(
excel_save_folder, "{}_{}.jpg".format(region["bbox"], img_idx)
)
cv2.imwrite(img_path, roi_img)
def main(args):
image_file_list = get_image_file_list(args.image_dir)
image_file_list = image_file_list
image_file_list = image_file_list[args.process_id :: args.total_process_num]
if not args.use_pdf2docx_api:
structure_sys = StructureSystem(args)
save_folder = os.path.join(args.output, structure_sys.mode)
os.makedirs(save_folder, exist_ok=True)
img_num = len(image_file_list)
for i, image_file in enumerate(image_file_list):
logger.info("[{}/{}] {}".format(i, img_num, image_file))
img, flag_gif, flag_pdf = check_and_read(image_file)
img_name = os.path.basename(image_file).split(".")[0]
if args.recovery and args.use_pdf2docx_api and flag_pdf:
try_import("pdf2docx")
from pdf2docx.converter import Converter
os.makedirs(args.output, exist_ok=True)
docx_file = os.path.join(args.output, "{}_api.docx".format(img_name))
cv = Converter(image_file)
cv.convert(docx_file)
cv.close()
logger.info("docx save to {}".format(docx_file))
continue
if not flag_gif and not flag_pdf:
img = cv2.imread(image_file)
if not flag_pdf:
if img is None:
logger.error("error in loading image:{}".format(image_file))
continue
imgs = [img]
else:
imgs = img
all_res = []
for index, img in enumerate(imgs):
res, time_dict = structure_sys(img, img_idx=index)
img_save_path = os.path.join(
save_folder, img_name, "show_{}.jpg".format(index)
)
os.makedirs(os.path.join(save_folder, img_name), exist_ok=True)
if structure_sys.mode == "structure" and res != []:
draw_img = draw_structure_result(img, res, args.vis_font_path)
save_structure_res(res, save_folder, img_name, index)
elif structure_sys.mode == "kie":
if structure_sys.kie_predictor.predictor is not None:
draw_img = draw_re_results(img, res, font_path=args.vis_font_path)
else:
draw_img = draw_ser_results(img, res, font_path=args.vis_font_path)
with open(
os.path.join(save_folder, img_name, "res_{}_kie.txt".format(index)),
"w",
encoding="utf8",
) as f:
res_str = "{}\t{}\n".format(
image_file, json.dumps({"ocr_info": res}, ensure_ascii=False)
)
f.write(res_str)
if res != []:
cv2.imwrite(img_save_path, draw_img)
logger.info("result save to {}".format(img_save_path))
if args.recovery and res != []:
from ppstructure.recovery.recovery_to_doc import (
sorted_layout_boxes,
convert_info_docx,
)
h, w, _ = img.shape
res = sorted_layout_boxes(res, w)
all_res += res
if args.recovery and all_res != []:
try:
convert_info_docx(img, all_res, save_folder, img_name)
except Exception as ex:
logger.error(
"error in layout recovery image:{}, err msg: {}".format(
image_file, ex
)
)
continue
logger.info("Predict time : {:.3f}s".format(time_dict["all"]))
if __name__ == "__main__":
args = parse_args()
if args.use_mp:
p_list = []
total_process_num = args.total_process_num
for process_id in range(total_process_num):
cmd = (
[sys.executable, "-u"]
+ sys.argv
+ ["--process_id={}".format(process_id), "--use_mp={}".format(False)]
)
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
p_list.append(p)
for p in p_list:
p.wait()
else:
main(args)