-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtransformer.py
269 lines (219 loc) · 10.5 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F
from utils import gelu, LayerNorm
import math
class TransformerLayer(nn.Module):
def __init__(self, embed_dim, ff_embed_dim, num_heads, dropout, with_external=False, weights_dropout = True):
super(TransformerLayer, self).__init__()
self.self_attn = MultiheadAttention(embed_dim, num_heads, dropout, weights_dropout)
self.fc1 = nn.Linear(embed_dim, ff_embed_dim)
self.fc2 = nn.Linear(ff_embed_dim, embed_dim)
self.attn_layer_norm = LayerNorm(embed_dim)
self.ff_layer_norm = LayerNorm(embed_dim)
self.with_external = with_external
self.dropout = dropout
if self.with_external:
self.external_attn = MultiheadAttention(embed_dim, num_heads, dropout, weights_dropout)
self.external_layer_norm = LayerNorm(embed_dim)
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.fc1.weight, std=0.02)
nn.init.normal_(self.fc2.weight, std=0.02)
nn.init.constant_(self.fc1.bias, 0.)
nn.init.constant_(self.fc2.bias, 0.)
def forward(self, x, kv = None,
self_padding_mask = None, self_attn_mask = None,
external_memories = None, external_padding_mask=None,
need_weights = False):
# x: seq_len x bsz x embed_dim
residual = x
if kv is None:
x, self_attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_padding_mask, attn_mask=self_attn_mask, need_weights = need_weights)
else:
x, self_attn = self.self_attn(query=x, key=kv, value=kv, key_padding_mask=self_padding_mask, attn_mask=self_attn_mask, need_weights = need_weights)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.attn_layer_norm(residual + x)
if self.with_external:
residual = x
x, external_attn = self.external_attn(query=x, key=external_memories, value=external_memories, key_padding_mask=external_padding_mask, need_weights = need_weights)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.external_layer_norm(residual + x)
else:
external_attn = None
residual = x
x = gelu(self.fc1(x))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.ff_layer_norm(residual + x)
return x, self_attn, external_attn
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0., weights_dropout=True):
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim))
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim))
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.weights_dropout = weights_dropout
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.in_proj_weight, std=0.02)
nn.init.normal_(self.out_proj.weight, std=0.02)
nn.init.constant_(self.in_proj_bias, 0.)
nn.init.constant_(self.out_proj.bias, 0.)
def forward(self, query, key, value, key_padding_mask=None, attn_mask=None, need_weights=False):
""" Input shape: Time x Batch x Channel
key_padding_mask: Time x batch
attn_mask: tgt_len x src_len
"""
qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr()
kv_same = key.data_ptr() == value.data_ptr()
tgt_len, bsz, embed_dim = query.size()
assert key.size() == value.size()
if qkv_same:
# self-attention
q, k, v = self.in_proj_qkv(query)
elif kv_same:
# encoder-decoder attention
q = self.in_proj_q(query)
k, v = self.in_proj_kv(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q = q * self.scaling
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
src_len = k.size(1)
# k,v: bsz*heads x src_len x dim
# q: bsz*heads x tgt_len x dim
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_weights.masked_fill_(
attn_mask.unsqueeze(0),
float('-inf')
)
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights.masked_fill_(
key_padding_mask.transpose(0, 1).unsqueeze(1).unsqueeze(2),
float('-inf')
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
if self.weights_dropout:
attn_weights = F.dropout(attn_weights, p=self.dropout, training=self.training)
attn = torch.bmm(attn_weights, v)
if not self.weights_dropout:
attn = F.dropout(attn, p=self.dropout, training=self.training)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
if need_weights:
# maximum attention weight over heads
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights, _ = attn_weights.max(dim=1)
attn_weights = attn_weights.transpose(0, 1)
else:
attn_weights = None
return attn, attn_weights
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_kv(self, key):
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1)
def in_proj_q(self, query):
return self._in_proj(query, end=self.embed_dim)
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2 * self.embed_dim)
def _in_proj(self, input, start=0, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
weight = weight[start:end, :]
if bias is not None:
bias = bias[start:end]
return F.linear(input, weight, bias)
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, std=0.02)
nn.init.constant_(m.weight[padding_idx], 0)
return m
class SelfAttentionMask(nn.Module):
def __init__(self, init_size = 100, device = 0):
super(SelfAttentionMask, self).__init__()
self.weights = SelfAttentionMask.get_mask(init_size)
self.device = device
@staticmethod
def get_mask(size):
weights = torch.triu(torch.ones((size, size), dtype = torch.uint8), 1)
return weights
def forward(self, size):
if self.weights is None or size > self.weights.size(0):
self.weights = SelfAttentionMask.get_mask(size)
res = self.weights[:size,:size].cuda(self.device).detach()
return res
class LearnedPositionalEmbedding(nn.Module):
"""This module produces LearnedPositionalEmbedding.
"""
def __init__(self, embedding_dim, init_size=1024, device=0):
super(LearnedPositionalEmbedding, self).__init__()
self.weights = nn.Embedding(init_size, embedding_dim)
self.device= device
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weights.weight, std=0.02)
def forward(self, input, offset=0):
"""Input is expected to be of size [seq_len x bsz]."""
seq_len, bsz = input.size()
positions = (offset + torch.arange(seq_len)).cuda(self.device)
res = self.weights(positions).unsqueeze(1).expand(-1, bsz, -1)
return res
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
"""
def __init__(self, embedding_dim, init_size=1024, device=0):
super(SinusoidalPositionalEmbedding, self).__init__()
self.embedding_dim = embedding_dim
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim
)
self.device= device
@staticmethod
def get_embedding(num_embeddings, embedding_dim):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
return emb
def forward(self, input, offset=0):
"""Input is expected to be of size [seq_len x bsz]."""
seq_len, bsz = input.size()
mx_position = seq_len + offset
if self.weights is None or mx_position > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
mx_position,
self.embedding_dim,
)
positions = offset + torch.arange(seq_len)
res = self.weights.index_select(0, positions).unsqueeze(1).expand(-1, bsz, -1).cuda(self.device).detach()
return res