-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathfuncs.py
167 lines (147 loc) · 6.02 KB
/
funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
def process_batch_tag(in_batch_tag_list, label_dict):
max_len = 0
for instance in in_batch_tag_list:
max_len = max(len(instance), max_len)
max_len += 1 # for [CLS]
#print (max_len)
result_batch_tag_list = list()
for instance in in_batch_tag_list:
one_tag_list = []
one_tag_list.append(label_dict.token2idx('<-CLS->')) # for [CLS]
one_tag_list.extend(instance)
len_diff = max_len - len(one_tag_list)
for _ in range(len_diff):
one_tag_list.append(label_dict.token2idx('<-PAD->')) # for padding
result_batch_tag_list.append(one_tag_list)
result_batch_tag_matrix = np.array(result_batch_tag_list)
#print (result_batch_tag_matrix.shape)
assert result_batch_tag_matrix.shape == (len(in_batch_tag_list), max_len)
return result_batch_tag_matrix
def make_mask(in_batch_tag_list):
max_len = 0
for instance in in_batch_tag_list:
max_len = max(len(instance), max_len)
max_len += 1 # for [CLS]
result_mask_matrix = []
for instance in in_batch_tag_list:
one_mask = list()
for _ in range(len(instance) + 1): # 1 for [CLS]
one_mask.append(1.0)
len_diff = max_len - len(one_mask)
for _ in range(len_diff):
one_mask.append(0.0)
result_mask_matrix.append(one_mask)
# result shape = [batch_size, seq_len]
result_mask_matrix = np.array(result_mask_matrix)
assert result_mask_matrix.shape == (len(in_batch_tag_list), max_len)
return result_mask_matrix
def get_valid_predictions(pred_batch_tag_matrix, true_batch_matrix, label_dict):
pred_tag_result_matrix = []
assert len(pred_batch_tag_matrix) == len(true_batch_matrix)
batch_size = len(true_batch_matrix)
for i in range(batch_size):
valid_len = len(true_batch_matrix[i])
one_pred_result = pred_batch_tag_matrix[i][1: valid_len + 1]
assert len(one_pred_result) == len(true_batch_matrix[i])
pred_tag_result_matrix.append(one_pred_result)
return pred_tag_result_matrix
def combine_result(gold_lines, pred_path, out_path, id_label_dict):
with open(out_path, 'w', encoding = 'utf8') as o:
with open(pred_path, 'r', encoding = 'utf8') as p:
pred_lines = p.readlines()
assert len(gold_lines) == len(pred_lines)
data_num = len(gold_lines)
for i in range(data_num):
pred_l = pred_lines[i]
text_list = gold_lines[i][0]
gold_label_list = gold_lines[i][1]
pred_l = pred_lines[i]
pred_content_list = pred_l.strip('\n').split('\t')
pred_label_str = pred_content_list[1]
pred_label_list = pred_label_str.split()
assert len(gold_label_list) == len(pred_label_list)
instance_len = len(text_list)
for j in range(instance_len):
out_str = text_list[j] + ' ' + id_label_dict[gold_label_list[j]] + ' ' + pred_label_list[j]
o.writelines(out_str + '\n')
o.writelines('\n')
def get_tag_mask_matrix(batch_text_list):
tag_matrix = []
mask_matrix = []
batch_size = len(batch_text_list)
max_len = 0
for instance in batch_text_list:
max_len = max(len(instance), max_len)
max_len += 2 # 1 for [CLS] 1 for [SEP]
for i in range(batch_size):
one_text_list = batch_text_list[i]
one_tag = list(np.zeros(max_len).astype(int))
tag_matrix.append(one_tag)
one_mask = [1]
one_valid_len = len(batch_text_list[i])
for j in range(one_valid_len):
one_mask.append(1)
len_diff = max_len - len(one_mask)
for _ in range(len_diff):
one_mask.append(0)
mask_matrix.append(one_mask)
assert len(one_mask) == len(one_tag)
return np.array(tag_matrix), np.array(mask_matrix)
def join_str(in_list):
out_str = ''
for token in in_list:
out_str += str(token) + ' '
return out_str.strip()
def predict_one_text_split(text_split_list, seq_tagging_model, label_dict):
# text_split_list is a list of tokens ['word1', 'word2', ...]
text_list = [text_split_list]
tag_matrix, mask_matrix = get_tag_mask_matrix(text_list)
decode_result = seq_tagging_model(text_list, mask_matrix, tag_matrix, fine_tune = False)[0]
valid_text_len = len(text_split_list)
valid_decode_result = decode_result[0][1: valid_text_len + 1]
tag_result = []
for token in valid_decode_result:
tag_result.append(label_dict[int(token)])
return tag_result
#return valid_decode_result
def get_text_split_list(text, max_len):
result_list = []
text_list = text.split()
valid_len = len(text_list)
split_num = (len(text_list) // max_len) + 1
if split_num == 1:
result_list = [text_list]
else:
b_idx = 0
e_idx = 1
for i in range(max_len):
b_idx = i * max_len
e_idx = (i + 1) * max_len
result_list.append(text_list[b_idx:e_idx])
if e_idx < valid_len:
result_list.append(text_list[e_idx:])
else:
pass
return result_list
def predict_one_text(text, max_len, seq_tagging_model, label_dict):
text_split_list = get_text_split_list(text, max_len)
all_text_result = []
all_decode_result = []
for one_text_list in text_split_list:
one_decode_result = predict_one_text_split(one_text_list, seq_tagging_model, label_dict)
all_text_result.extend(one_text_list)
all_decode_result.extend(one_decode_result)
result_text = join_str(all_text_result)
tag_predict_result = join_str(all_decode_result)
return result_text + '\t' + tag_predict_result
def get_id_label_dict(label_path):
label_dict = {}
with open(label_path, 'r', encoding = 'utf8') as i:
lines = i.readlines()
for l in lines:
content_list = l.strip('\n').split()
label_id = int(content_list[1])
label = content_list[0]
label_dict[label_id] = label
return label_dict