-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcrf_layer.py
208 lines (162 loc) · 8.26 KB
/
crf_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import torch
import torch.nn as nn
def logsumexp(x, dim=1):
return torch.logsumexp(x.float(), dim=dim).type_as(x)
class DynamicCRF(nn.Module):
"""Dynamic CRF layer is used to approximate the traditional
Conditional Random Fields (CRF)
$P(y | x) = 1/Z(x) exp(sum_i s(y_i, x) + sum_i t(y_{i-1}, y_i, x))$
where in this function, we assume the emition scores (s) are given,
and the transition score is a |V| x |V| matrix $M$
in the following two aspects:
(1) it used a low-rank approximation for the transition matrix:
$M = E_1 E_2^T$
(2) it used a beam to estimate the normalizing factor Z(x)
"""
def __init__(self, num_embedding, low_rank=32, beam_size=64):
super().__init__()
self.E1 = nn.Embedding(num_embedding, low_rank)
self.E2 = nn.Embedding(num_embedding, low_rank)
self.vocb = num_embedding
self.rank = low_rank
self.beam = beam_size
def extra_repr(self):
return "vocab_size={}, low_rank={}, beam_size={}".format(
self.vocb, self.rank, self.beam)
def forward(self, emissions, targets, mask, beam=None, reduction="sum", g=None, gamma=None):
"""
Compute the conditional log-likelihood of a sequence of target tokens given emission scores
Args:
emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output
``(batch_size, seq_len, vocab_size)``. We assume batch-first
targets (`~torch.LongTensor`): Sequence of target token indices
``(batch_size, seq_len)
masks (`~torch.ByteTensor`): Mask tensor with the same size as targets
Returns:
`~torch.Tensor`: approximated log-likelihood
"""
if g is not None:
numerator = self._compute_score_fc(emissions, targets, g, mask)
else:
numerator = self._compute_score(emissions, targets, mask)
denominator = self._compute_normalizer(emissions, targets, mask, beam)
llh = numerator - denominator
if gamma is not None:
pp = torch.exp(llh)
pp = torch.clamp(pp, min=1e-8, max=0.999)
llh = (1-pp)**gamma * llh
if reduction == 'none':
return llh
if reduction == 'sum':
return llh.sum()
if reduction == 'mean':
return llh.mean()
assert reduction == 'token_mean'
return llh.sum() / mask.type_as(emissions).sum()
def decode(self, emissions, mask=None, beam=None):
"""
Find the most likely output sequence using Viterbi algorithm.
Args:
emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output
``(batch_size, seq_len, vocab_size)``. We assume batch-first
masks (`~torch.ByteTensor`): Mask tensor with the same size as targets
Returns:
`~torch.LongTensor`: decoded sequence from the CRF model
"""
return self._viterbi_decode(emissions, mask, beam)
def _compute_score(self, emissions, targets, masks=None):
batch_size, seq_len = targets.size()
emission_scores = emissions.gather(2, targets[:, :, None])[:, :, 0] # B x T
transition_scores = (self.E1(targets[:, :-1]) * self.E2(targets[:, 1:])).sum(2)
scores = emission_scores
scores[:, 1:] += transition_scores
if masks is not None:
scores = scores * masks.type_as(scores)
return scores.sum(-1)
def _compute_score_fc(self, emissions, targets, g, masks=None):
batch_size, seq_len = targets.size()
emission_scores = emissions.gather(2, targets[:, :, None])[:, :, 0] # B x T
transition_scores = (self.E1(targets[:, :-1]) * self.E2(targets[:, 1:])).sum(2)
scores = emission_scores + torch.log(g+1e-8)#* g
scores[:, 1:] += transition_scores #* g[:, 1:]
'''
print("==========")
print(emission_scores)
print("==========")
print(transition_scores)
print("=========")
print(torch.log(g+1e-8))
'''
if masks is not None:
scores = scores * masks.type_as(scores)
return scores.sum(-1)
def _compute_normalizer(self, emissions, targets=None, masks=None, beam=None):
beam = beam if beam is not None else self.beam
batch_size, seq_len = emissions.size()[:2]
if targets is not None:
_emissions = emissions.scatter(2, targets[:, :, None], np.float('inf'))
beam_targets = _emissions.topk(beam, 2)[1]
beam_emission_scores = emissions.gather(2, beam_targets)
else:
beam_emission_scores, beam_targets = emissions.topk(beam, 2)
beam_emission_scores = beam_emission_scores
beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D; position i - 1, previous step.
beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D; position i, current step.
beam_transition_matrix = torch.bmm(
beam_transition_score1.view(-1, beam, self.rank),
beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2))
beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam)
# compute the normalizer in the log-space
score = beam_emission_scores[:, 0] # B x K
for i in range(1, seq_len):
next_score = score[:, :, None] + beam_transition_matrix[:, i-1]
next_score = logsumexp(next_score, dim=1) + beam_emission_scores[:, i]
if masks is not None:
score = torch.where(masks[:, i:i+1], next_score, score)
else:
score = next_score
# Sum (log-sum-exp) over all possible tags
return logsumexp(score, dim=1)
def _viterbi_decode(self, emissions, masks=None, beam=None):
# HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?)
beam = beam if beam is not None else self.beam
batch_size, seq_len = emissions.size()[:2]
beam_emission_scores, beam_targets = emissions.topk(beam, 2)
beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D
beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D
beam_transition_matrix = torch.bmm(
beam_transition_score1.view(-1, beam, self.rank),
beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2))
beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam)
traj_tokens, traj_scores = [], []
finalized_tokens, finalized_scores = [], []
# compute the normalizer in the log-space
score = beam_emission_scores[:, 0] # B x K
dummy = torch.arange(beam, device=score.device).expand(*score.size()).contiguous()
for i in range(1, seq_len):
traj_scores.append(score)
_score = score[:, :, None] + beam_transition_matrix[:, i-1]
_score, _index = _score.max(dim=1)
_score = _score + beam_emission_scores[:, i]
if masks is not None:
score = torch.where(masks[:, i: i+1], _score, score)
index = torch.where(masks[:, i: i+1], _index, dummy)
else:
score, index = _score, _index
traj_tokens.append(index)
# now running the back-tracing and find the best
best_score, best_index = score.max(dim=1)
finalized_tokens.append(best_index[:, None])
finalized_scores.append(best_score[:, None])
for idx, scs in zip(reversed(traj_tokens), reversed(traj_scores)):
previous_index = finalized_tokens[-1]
finalized_tokens.append(idx.gather(1, previous_index))
finalized_scores.append(scs.gather(1, previous_index))
finalized_tokens.reverse()
finalized_tokens = torch.cat(finalized_tokens, 1)
finalized_tokens = beam_targets.gather(2, finalized_tokens[:, :, None])[:, :, 0]
finalized_scores.reverse()
finalized_scores = torch.cat(finalized_scores, 1)
finalized_scores[:, 1:] = finalized_scores[:, 1:] - finalized_scores[:, :-1]
return finalized_scores, finalized_tokens