-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathlabel_smoothing.py
34 lines (28 loc) · 1.26 KB
/
label_smoothing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
import torch.nn.functional as F
class LabelSmoothing(nn.Module):
"Implement label smoothing."
def __init__(self, device, size, padding_idx, label_smoothing=0.0):
super(LabelSmoothing, self).__init__()
assert 0.0 < label_smoothing <= 1.0
self.padding_idx = padding_idx
self.size = size
self.device = device
self.smoothing_value = label_smoothing / (size - 2)
self.one_hot = torch.full((1, size), self.smoothing_value).to(device)
self.one_hot[0, self.padding_idx] = 0
self.confidence = 1.0 - label_smoothing
def forward(self, output, target):
real_size = output.size(1)
if real_size > self.size:
real_size -= self.size
else:
real_size = 0
model_prob = self.one_hot.repeat(target.size(0), 1)
if real_size > 0:
ext_zeros = torch.full((model_prob.size(0), real_size), self.smoothing_value).to(self.device)
model_prob = torch.cat((model_prob, ext_zeros), -1)
model_prob.scatter_(1, target, self.confidence)
model_prob.masked_fill_((target == self.padding_idx), 0.)
return F.kl_div(output, model_prob, reduction='sum')