PyTorch's Pose Estimation Toolbox
- Python 3
- PyTorch >= 1.0.0
- Backbone
- VGG
- VGG11
- VGG13
- VGG16
- VGG19
- ResNet
- ResNet18
- ResNet34
- ResNet50
- ResNet101
- ResNet152
- SE ResNet
- SE ResNet50
- SE ResNet101
- SE ResNet152
- MobileNet v1 (1.0)
- MobileNet v2 (1.0)
- VGG
- Model
- OpenPose
- Metric
- Average Meter
- Others
- Xavier/MSRA initialization (support zero gamma in last BatchNorm)
- Mixed precision training
- Online Hard Example Mining
- Precise BatchNorm (comming soon...)
| Backbone \ Model |
See Changelog
- Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
- Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).
- Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.