-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_single.py
248 lines (222 loc) · 9.34 KB
/
train_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import time
import logging
import traceback
from collections import Counter
import torch
from torch import optim
from torch.nn.utils import clip_grad_norm_
import constant as C
from argparse import ArgumentParser
from torch.utils.data import DataLoader
from util import evaluate
from data import ConllParser, SeqLabelDataset, SeqLabelProcessor, count2vocab
from model import Linears, LSTM, CRF, CharCNN, Highway, LstmCrf, load_embedding
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
argparser = ArgumentParser()
argparser.add_argument('--train', help='Path to the training set file')
argparser.add_argument('--dev', help='Path to the dev set file')
argparser.add_argument('--test', help='Path to the test set file')
argparser.add_argument('--log', help='Path to the log dir')
argparser.add_argument('--model', help='Path to the model file')
argparser.add_argument('--batch_size', default=10, type=int, help='Batch size')
argparser.add_argument('--max_epoch', default=100, type=int)
argparser.add_argument('--word_embed',
help='Path to the pre-trained embedding file')
argparser.add_argument('--word_embed_dim', type=int, default=100,
help='Word embedding dimension')
argparser.set_defaults(word_ignore_case=False)
argparser.add_argument('--char_embed_dim', type=int, default=50,
help='Character embedding dimension')
argparser.add_argument('--charcnn_filters', default='2,25;3,25;4,25',
help='Character-level CNN filters')
argparser.add_argument('--charhw_layer', default=1, type=int)
argparser.add_argument('--charhw_func', default='relu')
argparser.add_argument('--use_highway', action='store_true')
argparser.add_argument('--lstm_hidden_size', default=100, type=int,
help='LSTM hidden state size')
argparser.add_argument('--lstm_forget_bias', default=0, type=float,
help='LSTM forget bias')
argparser.add_argument('--feat_dropout', default=.5, type=float,
help='Word feature dropout probability')
argparser.add_argument('--lstm_dropout', default=.5, type=float,
help='LSTM output dropout probability')
argparser.add_argument('--lr', default=0.005, type=float,
help='Learning rate')
argparser.add_argument('--momentum', default=.9, type=float)
argparser.add_argument('--decay_rate', default=.9, type=float)
argparser.add_argument('--decay_step', default=10000, type=int)
argparser.add_argument('--grad_clipping', default=5, type=float)
argparser.add_argument('--gpu', action='store_true')
argparser.add_argument('--device', default=0, type=int)
argparser.add_argument('--thread', default=5, type=int)
args = argparser.parse_args()
use_gpu = args.gpu and torch.cuda.is_available()
if use_gpu:
torch.cuda.set_device(args.device)
# Model file
model_dir = args.model
assert model_dir and os.path.isdir(model_dir), 'Model output dir is required'
model_file = os.path.join(model_dir, 'model.{}.mdl'.format(timestamp))
# Logging file
log_writer = None
if args.log:
log_file = os.path.join(args.log, 'log.{}.txt'.format(timestamp))
log_writer = open(log_file, 'a', encoding='utf-8')
logger.addHandler(logging.FileHandler(log_file, encoding='utf-8'))
logger.info('----------')
logger.info('Parameters:')
for arg in vars(args):
logger.info('{}: {}'.format(arg, getattr(args, arg)))
logger.info('----------')
# Data file
logger.info('Loading data sets')
parser = ConllParser(separator='\t', token_col=0, label_col=1, skip_comment=True)
train_set = SeqLabelDataset(args.train, parser=parser)
dev_set = SeqLabelDataset(args.dev, parser=parser)
test_set = SeqLabelDataset(args.test, parser=parser)
datasets = {'train': train_set, 'dev': dev_set, 'test': test_set}
# Vocabs
logger.info('Building vocabs')
token_count, char_count, label_count = Counter(), Counter(), Counter()
for _, ds in datasets.items():
tc, cc, lc = ds.stats()
token_count.update(tc)
char_count.update(cc)
label_count.update(lc)
token_vocab = count2vocab(token_count, offset=len(C.TOKEN_PADS), pads=C.TOKEN_PADS)
char_vocab = count2vocab(char_count, offset=len(C.CHAR_PADS), pads=C.CHAR_PADS)
label_vocab = count2vocab(label_count, offset=1, pads=[(C.PAD, C.PAD_INDEX)])
idx_token = {v: k for k, v in token_vocab.items()}
idx_label = {v: k for k, v in label_vocab.items()}
train_set.numberize(token_vocab, label_vocab, char_vocab)
dev_set.numberize(token_vocab, label_vocab, char_vocab)
test_set.numberize(token_vocab, label_vocab, char_vocab)
print('#token: {}'.format(len(token_vocab)))
print('#char: {}'.format(len(char_vocab)))
print('#label: {}'.format(len(label_vocab)))
# Embedding file
word_embed = load_embedding(args.word_embed,
dimension=args.word_embed_dim,
vocab=token_vocab)
charcnn_filters = [[int(f.split(',')[0]), int(f.split(',')[1])]
for f in args.charcnn_filters.split(';')]
char_embed = CharCNN(len(char_vocab),
args.char_embed_dim,
filters=charcnn_filters)
char_hw = Highway(char_embed.output_size,
layer_num=args.charhw_layer,
activation=args.charhw_func)
feat_dim = word_embed.embedding_dim + char_embed.output_size
lstm = LSTM(feat_dim,
args.lstm_hidden_size,
batch_first=True,
bidirectional=True,
forget_bias=args.lstm_forget_bias
)
crf = CRF(label_size=len(label_vocab) + 2)
linear = Linears(in_features=lstm.output_size,
out_features=len(label_vocab),
hiddens=[lstm.output_size // 2])
lstm_crf = LstmCrf(
token_vocab, label_vocab, char_vocab,
word_embedding=word_embed,
char_embedding=char_embed,
crf=crf,
lstm=lstm,
univ_fc_layer=linear,
embed_dropout_prob=args.feat_dropout,
lstm_dropout_prob=args.lstm_dropout,
char_highway=char_hw if args.use_highway else None
)
if use_gpu:
lstm_crf.cuda()
torch.set_num_threads(args.thread)
logger.debug(lstm_crf)
# Task
optimizer = optim.SGD(filter(lambda p: p.requires_grad, lstm_crf.parameters()),
lr=args.lr, momentum=args.momentum)
processor = SeqLabelProcessor(gpu=use_gpu)
train_args = vars(args)
train_args['word_embed_size'] = word_embed.num_embeddings
state = {
'model': {
'word_embed': word_embed.state_dict(),
'char_embed': char_embed.state_dict(),
'char_hw': char_hw.state_dict(),
'lstm': lstm.state_dict(),
'crf': crf.state_dict(),
'linear': linear.state_dict(),
'lstm_crf': lstm_crf.state_dict()
},
'args': train_args,
'vocab': {
'token': token_vocab,
'label': label_vocab,
'char': char_vocab,
}
}
try:
global_step = 0
best_dev_score = best_test_score = 0.0
for epoch in range(args.max_epoch):
logger.info('Epoch {}: Training'.format(epoch))
best = False
for ds in ['train', 'dev', 'test']:
dataset = datasets[ds]
epoch_loss = []
results = []
for batch in DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=ds == 'train',
drop_last=ds == 'train',
collate_fn=processor.process
):
optimizer.zero_grad()
tokens, labels, chars, seq_lens, char_lens = batch
if ds == 'train':
global_step += 1
loglik, _ = lstm_crf.loglik(
tokens, labels, seq_lens, chars, char_lens)
loss = -loglik.mean()
loss.backward()
clip_grad_norm_(lstm_crf.parameters(), args.grad_clipping)
optimizer.step()
else:
pred, loss = lstm_crf.predict(
tokens, labels, seq_lens, chars, char_lens)
results.append((pred, labels, seq_lens, tokens))
epoch_loss.append(loss.item())
epoch_loss = sum(epoch_loss) / len(epoch_loss)
logger.info('{} Loss: {:.4f}'.format(ds, epoch_loss))
if ds == 'dev' or ds == 'test':
fscore, prec, rec = evaluate(
results, idx_token, idx_label, writer=log_writer
)
if ds == 'dev' and fscore > best_dev_score:
logger.info('New best score: {:.4f}'.format(fscore))
best_dev_score = fscore
best = True
logger.info(
'Saving the current model to {}'.format(model_file))
torch.save(state, model_file)
if best and ds == 'test':
best_test_score = fscore
# learning rate decay
lr = args.lr * args.decay_rate ** (global_step / args.decay_step)
for p in optimizer.param_groups:
p['lr'] = lr
logger.info('New learning rate: {}'.format(lr))
logger.info('Best score: {}'.format(best_dev_score))
logger.info('Best test score: {}'.format(best_test_score))
logger.info('Model file: {}'.format(model_file))
if args.log:
logger.info('Log file: {}'.format(log_file))
log_writer.close()
except Exception:
traceback.print_exc()
if log_writer:
log_writer.close()