-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
executable file
·363 lines (288 loc) · 16.8 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
import sys
script_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(script_dir, '..'))
# sys.path.append("/home/lihaoyu/code/0410/MiniGemini")
sys.path.append("/home/lihaoyu/code/0516/MGM")
import datetime
import json
import os
from functools import partial
import torch
from datasets.kie_dataset import FUNSDDataset
from datasets.ocr_dataset import C4WEBDataset, IDLOCRDataset
from datasets.vqa_dataset import (CaseDataset, CasematDataset, ESTVQADataset,
STVQADataset, VisualMRCDataset, VQAv2Dataset,
WebSRCDataset, chairDataset, docVQADataset,
docVQATESTDataset, ocrVQADataset,
textVQADataset, GroundingDataset, OCRsftDataset, OCRcodeDataset, LlavaBenchMultilingualDataset)
# 0513 new
# 初期,我们先引入 d4j 的数据集类
from datasets.apr_dataset import d4jDataset, cweinfDataset
print(torch.__version__)
import numpy as np
from eval_utils.getargs import parse_args
# 这里引入了 evaluate_VAQ 等函数
from eval_utils.vqa_evaluate import *
def get_model(args):
if args.model_name=='':
pass
elif 'pix2struct' in args.model_name.lower():
from models.Pix2Struct.Pix2Struct import Pix2Struct
model_path = args.ckpt
model = Pix2Struct(model_path=model_path,device=args.device,font_path=args.font_path)
elif "minicpm" in args.model_name.lower():
from models.MiniCPM.minicpmv import MiniCPM_V
# 初始化路径
model_path = args.model_path
model = MiniCPM_V(model_path=model_path, device=args.device)
elif 'Qwen_VL' in args.model_name:
from models.QwenVL.Qwen_VL import QwenVL
model_path = "/data/public/multimodal/multimodal_model_ckpts/Qwen_VL/Qwen-VL"
model = QwenVL(model_path, args.device)
elif "deepseek" in args.model_name.lower():
from models.DeepSeek.deepseek import DeepSeekVLChat
model_path = ""
model = DeepSeekVLChat(model_path=model_path)
elif "cogvlm" in args.model_name.lower():
from models.CogVLM.cogvlm import CogVlm
model = CogVlm()
elif "yivl" in args.model_name.lower():
from models.YiVL.yivl import YiVL
model_path = args.model_path
root_path = "/home/hongyixin/vqa_eval/models/YiVL/Yi"
model = YiVL(model_path=model_path, root=root_path)
# 0410 new: minigemini
elif "minigemini" in args.model_name.lower():
model_path = args.model_path
from models.MiniGemini.minigemini import MiniGemini
model = MiniGemini(model_path=model_path, device=args.device)
# 0513 new: codellama
elif "codellama" in args.model_name.lower():
from models.CodeLLaMA.codellama import CodeLLaMA
model = CodeLLaMA(args=args, device=args.device)
# 0515 new: qwen
elif "qwen" in args.model_name.lower():
from models.Qwen.qwen import Qwen
model = Qwen(args=args, device=args.device)
return model
def main(args):
np.random.seed(0)
max_sample_num = None
# max_sample_num = 500
# args.max_sample_num = max_sample_num
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
print(f'Init Rank-{torch.distributed.get_rank()}')
if torch.distributed.is_initialized():
args.device = torch.device(f"cuda:{torch.cuda.current_device()}")
# Using torchrun
# torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
# # print(f'Init Rank-{torch.distributed.get_rank()}')
# if torch.distributed.is_initialized():
# args.device = torch.device(f"cuda:{torch.cuda.current_device()}")
model = get_model(args)
result = {}
time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
if args.eval_objhal:
target_dataset = "objhal"
dataset = chairDataset(ann_path=args.objhal_ann_path)
acc = evaluate_VQA(model, dataset, args.model_name, 'objhal', time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
result['objhal'] = acc
if args.eval_case:
# dataset = CaseDataset()
dataset = CasematDataset()
acc = evaluate_VQA(model, dataset, args.model_name, 'VisualMRC', time, batch_size=args.batchsize)
result['case'] = acc
if args.eval_WebSRC:
dataset = WebSRCDataset()
if max_sample_num is not None:
# random sample
dataset = torch.utils.data.Subset(dataset, torch.randperm(len(dataset)).tolist()[:max_sample_num])
acc = evaluate_VQA(model, dataset, args.model_name, 'WebSRC', time, batch_size=args.batchsize)
result['WebSRC'] = acc
if args.eval_VisualMRC:
dataset = VisualMRCDataset()
# max_sample_num = 10
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, torch.randperm(len(dataset)).tolist()[:max_sample_num])
acc = evaluate_VQA(model, dataset, args.model_name, 'VisualMRC', time, batch_size=args.batchsize)
result['VisualMRC'] = acc
if args.eval_textVQA or args.eval_all:
dataset = textVQADataset(
args.textVQA_image_dir_path,
args.textVQA_ann_path)
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
# 看一下每个进程拿到的编号
# 0429:
# dataset = torch.utils.data.Subset(dataset, range(args.sample_start_idx, args.sample_end_idx))
acc = evaluate_VQA(model, dataset, args.model_name, 'textVQA', time, \
batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path, day_subdir_path=args.day_subdir_path, save_in_progress=True)
result['textVQA'] = acc
if args.eval_VQAv2 or args.eval_all:
dataset = VQAv2Dataset(
args.VQAv2_image_dir_path,
args.VQAv2_annotation_path,
args.VQAv2_question_path,
)
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'VQAv2', time, batch_size=args.batchsize)
result['VQAv2'] = acc
if args.eval_docVQA or args.eval_all:
dataset = docVQADataset(args.docVQA_image_dir_path, args.docVQA_ann_path)
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'docVQA', time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
result['docVQA'] = acc
# 0516 new
if args.eval_docVQATest or args.eval_all:
target_dataset = "docVQATest"
dataset = docVQATESTDataset('/data/public/multimodal/multimodal_data/OCR_eval/DocVQA', "/data/public/multimodal/multimodal_data/OCR_eval/DocVQA/test_v1.0.json")
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path)
result['docVQATest'] = acc
if args.eval_ocrVQA or args.eval_all:
dataset = ocrVQADataset(args.ocrVQA_image_dir_path, args.ocrVQA_ann_path)
if max_sample_num is not None:
# dataset = torch.utils.data.Subset(dataset, torch.randperm(len(dataset)).tolist()[:max_sample_num])
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'ocrVQA', time, batch_size=args.batchsize)
result['ocrVQA'] = acc
if args.eval_STVQA or args.eval_all:
dataset = STVQADataset(args.STVQA_image_dir_path, args.STVQA_ann_path)
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'STVQA', time, batch_size=args.batchsize)
result['STVQA'] = acc
if args.eval_FUNSD or args.eval_all:
dataset = FUNSDDataset(args.FUNSD_dir_path)
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'FUNSD', time,batch_size=args.batchsize)
result['FUNSD'] = acc
if args.eval_C4WEB or args.eval_all:
dataset = C4WEBDataset()
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'C4WEB', time, batch_size=args.batchsize)
result['C4WEB'] = acc
if args.eval_IDLOCR or args.eval_all:
dataset = IDLOCRDataset()
if max_sample_num is not None:
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'IDLOCR', time, batch_size=args.batchsize)
result['IDLOCR'] = acc
# 0329 new: eval_mathvista_mmvet
if args.eval_mathvista_mmvet or args.eval_all:
# 仿照 casedataset 构造数据集,进行测试?
target_dataset = "MathVista"
if target_dataset == "MathVista":
target_sample_path = "/home/lihaoyu/code/0328/output/mathvista_samples.jsonl"
elif target_dataset == "MMVet":
target_sample_path = "/home/lihaoyu/code/0328/output/mmvet_samples.jsonl"
else:
raise Exception("MathVista or MMVet required!")
dataset = MathVistaMMVetDataset(target_samples_path=target_sample_path)
# 注意,这里因为这个数据集没有 answer(gt),因此不应该返回 acc,我们需要的应该是真实回复
res = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, batch_size=args.batchsize)
assert res < 0
result[target_dataset] = res
# 0411 new: grounding with minicpm-v
if args.eval_grounding or args.eval_all:
target_dataset = "Grounding"
# 0414: 这里换用 cjb 提供的 1729 张 png 构成的 “测试集” 试一下
# dataset = GroundingDataset(bbox_dir="/home/lihaoyu/code/0411/valid_samples_bbox_all_red", bbox_dir_type="layers")
dataset = GroundingDataset(bbox_dir=args.grounding_dataset_dir, bbox_dir_type=args.grounding_dataset_dir_type)
# 截取其中一部分
dataset = torch.utils.data.Subset(dataset, range(args.sample_start_idx, args.sample_end_idx))
print("len dataset:", len(dataset))
res = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, \
batch_size=args.batchsize, answer_path=args.answer_path, day_subdir_path=args.day_subdir_path, save_in_progress=True)
# assert res < 0
# print(f"res:{res}")
result[target_dataset] = res
if args.eval_ocrsft or args.eval_all:
target_dataset = "OCRsft"
dataset = OCRsftDataset(path=args.ocrsft_dataset_path)
print("len dataset:", len(dataset))
res = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, \
batch_size=args.batchsize, answer_path=args.answer_path, day_subdir_path=None, save_in_progress=False)
if args.eval_ocrcode or args.eval_all:
target_dataset = "OCRcode"
dataset = OCRcodeDataset(path=args.ocrcode_dataset_path)
res = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, \
batch_size=args.batchsize, answer_path=args.answer_path, day_subdir_path=None, save_in_progress=False)
result[target_dataset] = res
# 0519 new: evaluation for llavabench multilingual
if args.eval_llavabench_multilingual or args.eval_all:
target_dataset = "LLaVABenchMultilingual"
dataset = LlavaBenchMultilingualDataset(ann_dir='/home/lihaoyu/code/0516/llava_bench/imgs',
gpt_responses_dir = "/home/lihaoyu/code/0516/llava_bench/gpt_responses")
res = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, \
batch_size=args.batchsize, answer_path=args.answer_path)
result[target_dataset] = res
# 0513 new: 将 codellama 等模型评测 d4j 数据集的代码整合到 vqa_eval 中
if args.eval_d4j:
target_dataset = "Defects4J"
# 从指定路径获取需要推理的 buggy function 数据
dataset = d4jDataset(ann_path=os.path.join(args.data_dir, args.test_file))
# 根据 args 确定输出路径
if args.do_sample and args.do_beam:
if args.load_in_4bit:
output_file_name = f"inference_output_model={args.model_name}_task={args.task_type}_sfttype={args.sft_type}_sftepoch={args.sft_epoch}_dataset={target_dataset}_maxin={args.max_input_len}_maxout={args.max_output_len}_beams={args.num_beams}_4bit.jsonl"
elif args.load_in_8bit:
output_file_name = f"inference_output_model={args.model_name}_task={args.task_type}_sfttype={args.sft_type}_sftepoch={args.sft_epoch}_dataset={target_dataset}_maxin={args.max_input_len}_maxout={args.max_output_len}_beams={args.num_beams}_8bit.jsonl"
else:
output_file_name = f"inference_output_model={args.model_name}_task={args.task_type}_sfttype={args.sft_type}_sftepoch={args.sft_epoch}_dataset={target_dataset}_maxin={args.max_input_len}_maxout={args.max_output_len}_beams={args.num_beams}.jsonl"
else:
raise Exception("Wrong situation, cause now we don't support task other than beam search!")
output_path = os.path.join(args.output_base_dir, args.method, args.task_type, args.sft_type, output_file_name)
# 注意,这里的 evaluate_VQA 函数针对 beam=10 的情况可能输出结果有区别?
res = evaluate_APR(model, dataset, args.model_name, target_dataset, \
batch_size=args.batchsize, output_path=output_path)
result[target_dataset] = res
# 0515 new: 整合 cwe_inf 模块?
if args.eval_cweinf:
target_dataset = args.cwe_dataset_name
# 构建 CWE-inference 数据集
dataset = cweinfDataset(dataset_type=target_dataset, ann_path=os.path.join(args.data_dir, args.test_file))
# 根据 args 确定输出路径
if args.do_sample and args.do_beam:
if args.load_in_4bit:
output_file_name = f"inference_output_model={args.model_name}_task={args.task_type}_sfttype={args.sft_type}_sftepoch={args.sft_epoch}_dataset={target_dataset}_maxin={args.max_input_len}_maxout={args.max_output_len}_beams={args.num_beams}_4bit.jsonl"
elif args.load_in_8bit:
output_file_name = f"inference_output_model={args.model_name}_task={args.task_type}_sfttype={args.sft_type}_sftepoch={args.sft_epoch}_dataset={target_dataset}_maxin={args.max_input_len}_maxout={args.max_output_len}_beams={args.num_beams}_8bit.jsonl"
else:
output_file_name = f"inference_output_model={args.model_name}_task={args.task_type}_sfttype={args.sft_type}_sftepoch={args.sft_epoch}_dataset={target_dataset}_maxin={args.max_input_len}_maxout={args.max_output_len}_beams={args.num_beams}.jsonl"
else:
raise Exception("Wrong situation, cause now we don't support task other than beam search!")
output_path = os.path.join(args.output_base_dir, args.method, args.task_type, args.sft_type, output_file_name)
# 注意,这里的 evaluate_VQA 函数针对 beam=10 的情况可能输出结果有区别?
res = evaluate_CWEINF(model, dataset, args.model_name, target_dataset, \
batch_size=args.batchsize, output_path=output_path)
result[target_dataset] = res
if torch.distributed.is_initialized():
torch.distributed.barrier()
if torch.distributed.is_initialized() and torch.distributed.get_rank() != 0:
return None
# 主进程负责输出最终结果?
result_path = os.path.join(os.path.join(args.answer_path, args.model_name, args.day_subdir_path), 'result.json')
# 判断一下有没有输出的必要!
output_flag = False
for k, v in result.items():
if v > 0.0:
output_flag = True
break
if output_flag:
with open(result_path, "w") as f:
f.write(json.dumps(result, indent=4))
if __name__ == "__main__":
args = parse_args()
main(args)