-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlanguage.py
65 lines (46 loc) · 1.72 KB
/
language.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
""" Module for a language """
import pandas as pd
INPUT_LANGUAGES_PATH = "data/input_languages.csv"
INPUT_LANGUAGES = None
def load_input_languages(path) -> pd.DataFrame:
languages = pd.read_csv(path, sep=",", index_col=["InputCondition", "Item.ID"])
return languages
def load_input_language(input_condition):
# simple caching
global INPUT_LANGUAGES
if INPUT_LANGUAGES is None:
# print("Loading input languages...")
INPUT_LANGUAGES = load_input_languages(INPUT_LANGUAGES_PATH)
data = INPUT_LANGUAGES.loc[input_condition]
# print("input_condition:", input_condition)
return Language(input_condition, data)
class Language(object):
INPUT_LANG_PATH = "data/input_languages.csv"
"""Docstring for Language. """
def __init__(self, name, data):
"""TODO: to be defined.
:data: pd.DataFrame indexed by Item.ID
"""
self.name = name
self.data = data
def get_scene_by_id(self, item_id: int) -> [int, int]:
# used to resolve distractors
item = self.data.loc[item_id]
return int(item["Shape"]), int(item["Angle"])
def get_word_by_id(self, item_id: int) -> str:
# used to resolve targets
item = self.data.loc[item_id]
return item["Word"]
def get_unique_attribute(self, key):
assert key in ["GroupSize", "StructureBin", "StructureScore"]
uniq_values = self.data[key].unique()
assert len(uniq_values) == 1
value = uniq_values[0]
return value
def has_word_with_id(self, word_id):
return word_id in self.data.index
def __repr__(self):
s = f"Language {self.name}:\n"
s += repr(self.data)
s += "\n"
return s