-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathDS101-01-avg_medal_count.py
50 lines (37 loc) · 1.92 KB
/
DS101-01-avg_medal_count.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from pandas import DataFrame, Series
import numpy
def avg_medal_count():
"""
Compute the average number of bronze medals earned by countries who
earned at least one gold medal.
Save this to a variable named avg_bronze_at_least_one_gold. You do not
need to call the function in your code when running it in the browser -
the grader will do that automatically when you submit or test it.
HINT-1:
You can retrieve all of the values of a Pandas column from a
data frame, "df", as follows:
df['column_name']
HINT-2:
The numpy.mean function can accept as an argument a single
Pandas column.
For example, numpy.mean(df["col_name"]) would return the
mean of the values located in "col_name" of a dataframe df.
"""
countries = ['Russian Fed.', 'Norway', 'Canada', 'United States',
'Netherlands', 'Germany', 'Switzerland', 'Belarus',
'Austria', 'France', 'Poland', 'China', 'Korea',
'Sweden', 'Czech Republic', 'Slovenia', 'Japan',
'Finland', 'Great Britain', 'Ukraine', 'Slovakia',
'Italy', 'Latvia', 'Australia', 'Croatia', 'Kazakhstan']
gold = [13, 11, 10, 9, 8, 8, 6, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
silver = [11, 5, 10, 7, 7, 6, 3, 0, 8, 4, 1, 4, 3, 7, 4, 2, 4, 3, 1, 0, 0, 2, 2, 2, 1, 0]
bronze = [9, 10, 5, 12, 9, 5, 2, 1, 5, 7, 1, 2, 2, 6, 2, 4, 3, 1, 2, 1, 0, 6, 2, 1, 0, 1]
df = DataFrame({'country_name': Series(countries),
'gold': Series(gold),
'silver': Series(silver),
'bronze': Series(bronze)})
# at_least_one_gold = df[df['gold'].map(lambda x: x >= 1)]
# avg_bronze_at_least_one_gold = at_least_one_gold[['bronze']].apply(numpy.mean)['bronze']
# or much better:
avg_bronze_at_least_one_gold = df['bronze'][df['gold'] >= 1]
return numpy.mean(avg_bronze_at_least_one_gold)