forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGpuIndexIVFFlat.cu
238 lines (190 loc) · 6.49 KB
/
GpuIndexIVFFlat.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <faiss/gpu/GpuIndexIVFFlat.h>
#include <faiss/IndexFlat.h>
#include <faiss/IndexIVFFlat.h>
#include <faiss/gpu/GpuIndexFlat.h>
#include <faiss/gpu/GpuResources.h>
#include <faiss/gpu/impl/IVFFlat.cuh>
#include <faiss/gpu/utils/CopyUtils.cuh>
#include <faiss/gpu/utils/DeviceUtils.h>
#include <faiss/gpu/utils/Float16.cuh>
#include <limits>
namespace faiss { namespace gpu {
GpuIndexIVFFlat::GpuIndexIVFFlat(GpuResources* resources,
const faiss::IndexIVFFlat* index,
GpuIndexIVFFlatConfig config) :
GpuIndexIVF(resources,
index->d,
index->metric_type,
index->nlist,
config),
ivfFlatConfig_(config),
reserveMemoryVecs_(0),
index_(nullptr) {
copyFrom(index);
}
GpuIndexIVFFlat::GpuIndexIVFFlat(GpuResources* resources,
int dims,
int nlist,
faiss::MetricType metric,
GpuIndexIVFFlatConfig config) :
GpuIndexIVF(resources, dims, metric, nlist, config),
ivfFlatConfig_(config),
reserveMemoryVecs_(0),
index_(nullptr) {
// faiss::Index params
this->is_trained = false;
// We haven't trained ourselves, so don't construct the IVFFlat
// index yet
}
GpuIndexIVFFlat::~GpuIndexIVFFlat() {
delete index_;
}
void
GpuIndexIVFFlat::reserveMemory(size_t numVecs) {
reserveMemoryVecs_ = numVecs;
if (index_) {
index_->reserveMemory(numVecs);
}
}
void
GpuIndexIVFFlat::copyFrom(const faiss::IndexIVFFlat* index) {
DeviceScope scope(device_);
GpuIndexIVF::copyFrom(index);
// Clear out our old data
delete index_;
index_ = nullptr;
// The other index might not be trained
if (!index->is_trained) {
return;
}
// Otherwise, we can populate ourselves from the other index
this->is_trained = true;
// Copy our lists as well
index_ = new IVFFlat(resources_,
quantizer->getGpuData(),
index->metric_type,
false, // no residual
nullptr, // no scalar quantizer
ivfFlatConfig_.indicesOptions,
memorySpace_);
InvertedLists *ivf = index->invlists;
for (size_t i = 0; i < ivf->nlist; ++i) {
auto numVecs = ivf->list_size(i);
// GPU index can only support max int entries per list
FAISS_THROW_IF_NOT_FMT(numVecs <=
(size_t) std::numeric_limits<int>::max(),
"GPU inverted list can only support "
"%zu entries; %zu found",
(size_t) std::numeric_limits<int>::max(),
numVecs);
index_->addCodeVectorsFromCpu(i,
(const unsigned char*)(ivf->get_codes(i)),
ivf->get_ids(i),
numVecs);
}
}
void
GpuIndexIVFFlat::copyTo(faiss::IndexIVFFlat* index) const {
DeviceScope scope(device_);
// We must have the indices in order to copy to ourselves
FAISS_THROW_IF_NOT_MSG(ivfFlatConfig_.indicesOptions != INDICES_IVF,
"Cannot copy to CPU as GPU index doesn't retain "
"indices (INDICES_IVF)");
GpuIndexIVF::copyTo(index);
index->code_size = this->d * sizeof(float);
InvertedLists *ivf = new ArrayInvertedLists(nlist, index->code_size);
index->replace_invlists(ivf, true);
// Copy the inverted lists
if (index_) {
for (int i = 0; i < nlist; ++i) {
auto listIndices = index_->getListIndices(i);
auto listData = index_->getListVectors(i);
ivf->add_entries(i,
listIndices.size(),
listIndices.data(),
(const uint8_t*) listData.data());
}
}
}
size_t
GpuIndexIVFFlat::reclaimMemory() {
if (index_) {
DeviceScope scope(device_);
return index_->reclaimMemory();
}
return 0;
}
void
GpuIndexIVFFlat::reset() {
if (index_) {
DeviceScope scope(device_);
index_->reset();
this->ntotal = 0;
} else {
FAISS_ASSERT(this->ntotal == 0);
}
}
void
GpuIndexIVFFlat::train(Index::idx_t n, const float* x) {
DeviceScope scope(device_);
if (this->is_trained) {
FAISS_ASSERT(quantizer->is_trained);
FAISS_ASSERT(quantizer->ntotal == nlist);
FAISS_ASSERT(index_);
return;
}
FAISS_ASSERT(!index_);
trainQuantizer_(n, x);
// The quantizer is now trained; construct the IVF index
index_ = new IVFFlat(resources_,
quantizer->getGpuData(),
this->metric_type,
false, // no residual
nullptr, // no scalar quantizer
ivfFlatConfig_.indicesOptions,
memorySpace_);
if (reserveMemoryVecs_) {
index_->reserveMemory(reserveMemoryVecs_);
}
this->is_trained = true;
}
void
GpuIndexIVFFlat::addImpl_(int n,
const float* x,
const Index::idx_t* xids) {
// Device is already set in GpuIndex::add
FAISS_ASSERT(index_);
FAISS_ASSERT(n > 0);
// Data is already resident on the GPU
Tensor<float, 2, true> data(const_cast<float*>(x), {n, (int) this->d});
static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
Tensor<long, 1, true> labels(const_cast<long*>(xids), {n});
// Not all vectors may be able to be added (some may contain NaNs etc)
index_->classifyAndAddVectors(data, labels);
// but keep the ntotal based on the total number of vectors that we attempted
// to add
ntotal += n;
}
void
GpuIndexIVFFlat::searchImpl_(int n,
const float* x,
int k,
float* distances,
Index::idx_t* labels) const {
// Device is already set in GpuIndex::search
FAISS_ASSERT(index_);
FAISS_ASSERT(n > 0);
// Data is already resident on the GPU
Tensor<float, 2, true> queries(const_cast<float*>(x), {n, (int) this->d});
Tensor<float, 2, true> outDistances(distances, {n, k});
static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
Tensor<long, 2, true> outLabels(const_cast<long*>(labels), {n, k});
index_->query(queries, nprobe, k, outDistances, outLabels);
}
} } // namespace