From 62b67b89544181c18070916bfe035c226a4b09a4 Mon Sep 17 00:00:00 2001 From: Orisadek Date: Wed, 7 Aug 2024 16:02:18 +0000 Subject: [PATCH 1/6] move to master --- .../conn_2Router4Clients2Sources.json | 7 + .../dc_fed_5d_5w_2r_2s_4c.json | 183 ++++++++++++++++++ .../dc_mnist_13d_12w_4r_3s_3tokens.json | 36 ++-- .../exp_dist_13d_12w_4r_3s_3tokens.json | 154 +++++++++++++++ .../exp_dist_fed_5d_2s_2r_5w.json | 56 ++++++ 5 files changed, 422 insertions(+), 14 deletions(-) create mode 100644 inputJsonsFiles/ConnectionMap/conn_2Router4Clients2Sources.json create mode 100644 inputJsonsFiles/DistributedConfig/dc_fed_5d_5w_2r_2s_4c.json create mode 100644 inputJsonsFiles/experimentsFlow/exp_dist_13d_12w_4r_3s_3tokens.json create mode 100644 inputJsonsFiles/experimentsFlow/exp_dist_fed_5d_2s_2r_5w.json diff --git a/inputJsonsFiles/ConnectionMap/conn_2Router4Clients2Sources.json b/inputJsonsFiles/ConnectionMap/conn_2Router4Clients2Sources.json new file mode 100644 index 000000000..29e4c6c91 --- /dev/null +++ b/inputJsonsFiles/ConnectionMap/conn_2Router4Clients2Sources.json @@ -0,0 +1,7 @@ +{ + "connectionsMap": + { + "r1":["mainServer","apiServer", "c1", "r2", "s1"], + "r2":["r1","c2","c3","c4","s2"] + } +} diff --git a/inputJsonsFiles/DistributedConfig/dc_fed_5d_5w_2r_2s_4c.json b/inputJsonsFiles/DistributedConfig/dc_fed_5d_5w_2r_2s_4c.json new file mode 100644 index 000000000..3eebc2cf9 --- /dev/null +++ b/inputJsonsFiles/DistributedConfig/dc_fed_5d_5w_2r_2s_4c.json @@ -0,0 +1,183 @@ +{ + "nerlnetSettings": { + "frequency": "5", + "batchSize": "20" + }, + "mainServer": { + "port": "8080", + "args": "" + }, + "apiServer": { + "port": "8081", + "args": "" + }, + "devices": [ + { + "name": "vm0", + "ipv4": "10.0.0.6", + "entities": "mainServer,apiServer" + }, + { + "name": "vm1", + "ipv4": "10.0.0.16", + "entities": "c1,r1" + }, + { + "name": "vm2", + "ipv4": "10.0.0.46", + "entities": "c2,s2" + }, + { + "name": "vm3", + "ipv4": "10.0.0.42", + "entities": "c3,s1" + }, + { + "name": "vm4", + "ipv4": "10.0.0.43", + "entities": "c4,r2" + } + ], + "routers": [ + { + "name": "r1", + "port": "8088", + "policy": "0" + }, + { + "name": "r2", + "port": "8089", + "policy": "0" + } + ], + "sources": [ + { + "name": "s1", + "port": "8086", + "frequency": "5", + "policy": "0", + "epochs": "10", + "type": "0" + }, + { + "name": "s2", + "port": "8087", + "frequency": "5", + "policy": "0", + "epochs": "10", + "type": "0" + } + ], + "clients": [ + { + "name": "c1", + "port": "8082", + "workers": "w1Client,w1Server" + }, + { + "name": "c2", + "port": "8083", + "workers": "w2Client" + }, + { + "name": "c3", + "port": "8084", + "workers": "w3Client" + }, + { + "name": "c4", + "port": "8085", + "workers": "w4Client" + } + ], + "workers": [ + { + "name": "w1Client", + "model_sha": "6d4446d32c91f1c20cc8fc44138900d05c5344076ada3dabbd44a6249862fd0c" + }, + { + "name": "w2Client", + "model_sha": "6d4446d32c91f1c20cc8fc44138900d05c5344076ada3dabbd44a6249862fd0c" + }, + { + "name": "w1Server", + "model_sha": "361269f11553525d646c57f5edcefa9ead63d9082cfa67ccf4c8fd1fcd3face6" + }, + { + "name": "w3Client", + "model_sha": "6d4446d32c91f1c20cc8fc44138900d05c5344076ada3dabbd44a6249862fd0c" + }, + { + "name": "w4Client", + "model_sha": "6d4446d32c91f1c20cc8fc44138900d05c5344076ada3dabbd44a6249862fd0c" + } + ], + "model_sha": { + "6d4446d32c91f1c20cc8fc44138900d05c5344076ada3dabbd44a6249862fd0c": { + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "28x28x1k5x5x1x6p0s1t1,28x28x6k2x2p0s2,14x14x6k4x4x6x12p0s1t0,1,32,10", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "2,4,2,9,3,5", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "6,2,6,1,6,4", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "6", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lr": "0.01", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "1", + "_doc_distributedSystemType": " none:0 | FedClientAvg:1 | FedServerAvg:2 | FedClientWeightedAvgClassification:3 | FedServerWeightedAvgClassification:4 | FedClientAE:5 | FedServerAE:6 | tiles:7 |", + "distributedSystemArgs": "SyncMaxCount=150", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "9922u", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" + }, + "361269f11553525d646c57f5edcefa9ead63d9082cfa67ccf4c8fd1fcd3face6": { + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "28x28x1k5x5x1x6p0s1t1,28x28x6k2x2p0s2,14x14x6k4x4x6x12p0s1t0,1,32,10", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "2,4,2,9,3,5", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "6,2,6,1,6,4", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "6", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lr": "0.01", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "2", + "_doc_distributedSystemType": " none:0 | FedClientAvg:1 | FedServerAvg:2 | FedClientWeightedAvgClassification:3 | FedServerWeightedAvgClassification:4 | FedClientAE:5 | FedServerAE:6 | tiles:7 |", + "distributedSystemArgs": "SyncMaxCount=150", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "8249j", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" + } + } +} \ No newline at end of file diff --git a/inputJsonsFiles/DistributedConfig/dc_mnist_13d_12w_4r_3s_3tokens.json b/inputJsonsFiles/DistributedConfig/dc_mnist_13d_12w_4r_3s_3tokens.json index deb916950..a0ce82009 100644 --- a/inputJsonsFiles/DistributedConfig/dc_mnist_13d_12w_4r_3s_3tokens.json +++ b/inputJsonsFiles/DistributedConfig/dc_mnist_13d_12w_4r_3s_3tokens.json @@ -14,67 +14,67 @@ "devices": [ { "name": "vm1", - "ipv4": "10.0.0.0", + "ipv4": "10.0.0.6", "entities": "apiServer,mainServer" }, { "name": "vm2", - "ipv4": "10.0.0.1", + "ipv4": "10.0.0.44", "entities": "c1,r1" }, { "name": "vm3", - "ipv4": "10.0.0.2", + "ipv4": "10.0.0.42", "entities": "c2" }, { "name": "vm4", - "ipv4": "10.0.0.3", + "ipv4": "10.0.0.43", "entities": "c3,s1" }, { "name": "vm5", - "ipv4": "10.0.0.4", + "ipv4": "10.0.0.41", "entities": "c4,r3" }, { "name": "vm6", - "ipv4": "10.0.0.5", + "ipv4": "10.0.0.40", "entities": "c5" }, { "name": "vm7", - "ipv4": "10.0.0.6", + "ipv4": "10.0.0.45", "entities": "c6" }, { "name": "vm8", - "ipv4": "10.0.0.7", + "ipv4": "10.0.0.37", "entities": "c7" }, { "name": "vm9", - "ipv4": "10.0.0.8", - "entities": "c8" + "ipv4": "10.0.0.36", + "entities": "c8,s4" }, { "name": "vm10", - "ipv4": "10.0.0.9", + "ipv4": "10.0.0.39", "entities": "c9,s2" }, { "name": "vm11", - "ipv4": "10.0.0.10", + "ipv4": "10.0.0.38", "entities": "c10,r4" }, { "name": "vm12", - "ipv4": "10.0.0.11", + "ipv4": "10.0.0.46", "entities": "c11,r2" }, { "name": "vm13", - "ipv4": "10.0.0.12", + "ipv4": "10.0.0.16", "entities": "c12,s3" } ], @@ -124,6 +124,14 @@ "policy": "1", "epochs": "1", "type": "0" + }, + { + "name": "s4", + "port": "8102", + "frequency": "100", + "policy": "1", + "epochs": "1", + "type": "0" } ], "clients": [ diff --git a/inputJsonsFiles/experimentsFlow/exp_dist_13d_12w_4r_3s_3tokens.json b/inputJsonsFiles/experimentsFlow/exp_dist_13d_12w_4r_3s_3tokens.json new file mode 100644 index 000000000..06fbb551d --- /dev/null +++ b/inputJsonsFiles/experimentsFlow/exp_dist_13d_12w_4r_3s_3tokens.json @@ -0,0 +1,154 @@ +{ + "experimentName": "tiles_rr", + "experimentType": "classification", + "batchSize": 20, + "csvFilePath": "/tmp/nerlnet/data/NerlnetData-master/nerlnet/Tiles_Mnist_sorted/mnist_tiles_4parts_sorted.csv", + "numOfFeatures": "196", + "numOfLabels": "10", + "headersNames": "0,1,2,3,4,5,6,7,8,9", + "Phases": + [ + { + "phaseName": "training_phase", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "0", + "numOfBatches": "500", + "workers": "w1_1,w1_2,w1_3", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "59999", + "numOfBatches": "500", + "workers": "w2_1,w2_2,w2_3", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "119998", + "numOfBatches": "500", + "workers": "w3_1,w3_2,w3_3", + "nerltensorType": "float" + }, + { + "sourceName": "s4", + "startingSample": "179997", + "numOfBatches": "500", + "workers": "w4_1,w4_2,w4_3", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "training1_phase", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "10000", + "numOfBatches": "500", + "workers": "w1_1,w1_2,w1_3", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "69999", + "numOfBatches": "500", + "workers": "w2_1,w2_2,w2_3", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "129998", + "numOfBatches": "500", + "workers": "w3_1,w3_2,w3_3", + "nerltensorType": "float" + }, + { + "sourceName": "s4", + "startingSample": "189997", + "numOfBatches": "500", + "workers": "w4_1,w4_2,w4_3", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "training2_phase", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "20000", + "numOfBatches": "500", + "workers": "w1_1,w1_2,w1_3", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "79999", + "numOfBatches": "500", + "workers": "w2_1,w2_2,w2_3", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "139998", + "numOfBatches": "500", + "workers": "w3_1,w3_2,w3_3", + "nerltensorType": "float" + }, + { + "sourceName": "s4", + "startingSample": "199997", + "numOfBatches": "500", + "workers": "w4_1,w4_2,w4_3", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "prediction_phase", + "phaseType": "prediction", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "32000", + "numOfBatches": "500", + "workers": "w1_1,w1_2,w1_3", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "91999", + "numOfBatches": "500", + "workers": "w2_1,w2_2,w2_3", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "151998", + "numOfBatches": "500", + "workers": "w3_1,w3_2,w3_3", + "nerltensorType": "float" + }, + { + "sourceName": "s4", + "startingSample": "211997", + "numOfBatches": "500", + "workers": "w4_1,w4_2,w4_3", + "nerltensorType": "float" + } + ] + } + ] + } + + \ No newline at end of file diff --git a/inputJsonsFiles/experimentsFlow/exp_dist_fed_5d_2s_2r_5w.json b/inputJsonsFiles/experimentsFlow/exp_dist_fed_5d_2s_2r_5w.json new file mode 100644 index 000000000..226dde967 --- /dev/null +++ b/inputJsonsFiles/experimentsFlow/exp_dist_fed_5d_2s_2r_5w.json @@ -0,0 +1,56 @@ +{ + "experimentName": "mnist_federated", + "experimentType": "classification", + "batchSize": 20, + "csvFilePath": "/tmp/nerlnet/data/NerlnetData-master/nerlnet/mnist_normalized/mnist_train_255_norm.csv", + "numOfFeatures": "784", + "numOfLabels": "10", + "headersNames": "0,1,2,3,4,5,6,7,8,9", + "Phases": + [ + { + "phaseName": "training_phase", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "0", + "numOfBatches": "200", + "workers": "w1Client,w2Client", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "2000", + "numOfBatches": "200", + "workers": "w3Client,w4Client", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "prediction_phase", + "phaseType": "prediction", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "12000", + "numOfBatches": "80", + "workers": "w3Client,w1Client", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "13000", + "numOfBatches": "80", + "workers": "w4Client,w2Client", + "nerltensorType": "float" + } + ] + } + ] + } + + \ No newline at end of file From d41d5ba58e9f8a8759d604c47b03317817391565 Mon Sep 17 00:00:00 2001 From: Orisadek Date: Wed, 14 Aug 2024 22:43:30 +0000 Subject: [PATCH 2/6] add mmultiply num channels --- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 32a7b0e2c..956c832f6 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -312,7 +312,7 @@ namespace nerlnet input_variable_dimension.setValues({this->_nerl_layers_linked_list->get_dim_size(DIM_Z_IDX), this->_nerl_layers_linked_list->get_dim_size(DIM_Y_IDX), this->_nerl_layers_linked_list->get_dim_size(DIM_X_IDX)}); _data_set->set_input_variables_dimensions(input_variable_dimension); int samples_num = _data_set->get_samples_number(); - int input_variable = this->_nerl_layers_linked_list->get_dim_size(DIM_Y_IDX)* this->_nerl_layers_linked_list->get_dim_size(DIM_X_IDX); + int input_variable = this->_nerl_layers_linked_list->get_dim_size(DIM_Y_IDX)* this->_nerl_layers_linked_list->get_dim_size(DIM_X_IDX)*this->_nerl_layers_linked_list->get_dim_size(DIM_Z_IDX); for(Index sample_indx = 0; sample_indx < samples_num ; sample_indx++) { _data_set->set_sample_use(sample_indx, DataSet::SampleUse::Training); @@ -370,6 +370,7 @@ namespace nerlnet void NerlWorkerOpenNN::generate_custom_model_nn(std::shared_ptr &neural_network_ptr) { shared_ptr curr_layer = _nerl_layers_linked_list; + std::cout << "generate_custom_model_nn" << std::endl; while(curr_layer) { int layer_type = curr_layer->get_layer_type(); @@ -426,6 +427,7 @@ namespace nerlnet convolutional_layer->set_activation_function((opennn::ConvolutionalLayer::ActivationFunction)(cnn_curr_layer->get_layer_functionality())); // set activation function // add layer to the neural network neural_network_ptr->add_layer(convolutional_layer); // add layer to the neural network + std::cout << "ConvolutionalLayer" << std::endl; break; } @@ -569,6 +571,7 @@ namespace nerlnet } curr_layer = curr_layer->get_next_layer_ptr(); } + std::cout << "generate_custom_model_nn end" << std::endl; } void NerlWorkerOpenNN::generate_custom_model_aec(std::shared_ptr &neural_network_ptr) From 43e9c5b77a10169b770323401264854a8b390ebc Mon Sep 17 00:00:00 2001 From: Orisadek Date: Wed, 14 Aug 2024 22:51:32 +0000 Subject: [PATCH 3/6] add multi source per worker in tiles --- src_py/apiServer/hf_repo_ids.json | 14 ++- src_py/apiServer/statsTiles.py | 200 ++++++++++++++++++------------ 2 files changed, 134 insertions(+), 80 deletions(-) diff --git a/src_py/apiServer/hf_repo_ids.json b/src_py/apiServer/hf_repo_ids.json index 2c22c48c2..e258b5064 100644 --- a/src_py/apiServer/hf_repo_ids.json +++ b/src_py/apiServer/hf_repo_ids.json @@ -22,13 +22,25 @@ "id": "Nerlnet/tiles_sorted", "idx": 3, "name": "Tiles_Mnist_sorted", - "description": "Mnist tiled,sorted by parts - tiled to 3 parts" + "description": "Mnist tiled,sorted by parts - tiled" }, { "id": "Nerlnet/Mnist_normalized", "idx": 4, "name": "mnist_normalized", "description": "MNist Dataset for CNN experiments - 255 normalized" + }, + { + "id": "Nerlnet/cifar10", + "idx": 5, + "name": "cifar10", + "description": "cifar10" + } + ,{ + "id": "Nerlnet/cifar10_tiles", + "idx": 6, + "name": "cifar10_tiles", + "description": "cifar10 tiles" } ] } \ No newline at end of file diff --git a/src_py/apiServer/statsTiles.py b/src_py/apiServer/statsTiles.py index 7df0ccc71..fce0186a3 100644 --- a/src_py/apiServer/statsTiles.py +++ b/src_py/apiServer/statsTiles.py @@ -44,6 +44,7 @@ def get_confusion_matrices_tiles(self , normalize : bool = False ,plot : bool = df_actual_labels.columns = header_list df_actual_labels = self.expend_labels_df(df_actual_labels) source_name = source_piece_inst.get_source_name() + source_name_new = source_name.split("_")[1] target_workers = source_piece_inst.get_target_workers() worker_missed_batches = {} batch_size = source_piece_inst.get_batch_size() @@ -75,12 +76,12 @@ def get_confusion_matrices_tiles(self , normalize : bool = False ,plot : bool = distributed_dict = distributed_tokens_dict[distributed_token_db] try: batch_id_arr_worker = distributed_dict[worker_name] - batch_id_arr_worker.append(batch_id) + batch_id_arr_worker.append((source_name_new,batch_id)) distributed_tokens_dict[distributed_token_db][worker_name] = batch_id_arr_worker except: - distributed_tokens_dict[distributed_token_db].update({worker_name : [batch_id]}) + distributed_tokens_dict[distributed_token_db].update({worker_name : [(source_name_new,batch_id)]}) except: - distributed_tokens_dict[distributed_token_db] = {worker_name : [batch_id]} + distributed_tokens_dict[distributed_token_db] = {worker_name : [(source_name_new,batch_id)]} else: cycle = int(batch_id) start_index = cycle * batch_size @@ -92,52 +93,68 @@ def get_confusion_matrices_tiles(self , normalize : bool = False ,plot : bool = max_column_predict_index = [int(predict_index) - num_of_labels for predict_index in max_column_predict_index] # fix the index to original labels index max_column_labels_index = df_worker_labels.iloc[:, :num_of_labels].idxmax(axis=1) max_column_labels_index = max_column_labels_index.tolist() - worker_name_labels_dict[worker_name] = {"labels": [max_column_labels_index,max_column_predict_index]} + try: + worker_name_labels_dict[source_name_new].update({worker_name : {"labels": [max_column_labels_index,max_column_predict_index]}}) + except: + worker_name_labels_dict[source_name_new]= {worker_name : {"labels": [max_column_labels_index,max_column_predict_index]}} + for distributed_token_key in list(distributed_tokens_dict.keys()): workers = list(distributed_tokens_dict[distributed_token_key].keys()) - distributed_token_arr = {} - batch_id_dict = {} + distributed_token_dict = {} + batch_id_source_dict = {} for worker in list(workers): - labels = worker_name_labels_dict[worker]["labels"] - distributed_token_arr[worker] = labels - batch_list_for_worker = distributed_tokens_dict[distributed_token_key][worker] - for batch_id in batch_list_for_worker: + batch_source_list_for_worker = distributed_tokens_dict[distributed_token_key][worker] + for value in batch_source_list_for_worker: + source_name = value[0] + batch_id = value[1] + labels = worker_name_labels_dict[source_name][worker]["labels"] + try: + distributed_token_dict[source_name][worker] = labels + except: + distributed_token_dict[source_name] = {worker : labels} try: - batch_id_dict[batch_id].append(worker) + batch_id_source_dict[source_name][batch_id].append(worker) except: - batch_id_dict[batch_id] = [worker] + try: + batch_id_source_dict[source_name].update({batch_id : [worker]}) + except: + batch_id_source_dict[source_name] = {batch_id : [worker]} + for class_index, class_name in enumerate(self.headers_list): class_actual_list_full = [] class_actual_predict_full = [] - for batch_id_val in list(batch_id_dict.keys()): - class_actual_list = [] - class_predict_list = [] - workers_list = batch_id_dict[batch_id_val] - labels_dict = distributed_token_arr - cycle = int(batch_id_val) - start_index = cycle * batch_size - end_index = (cycle + 1) * batch_size - for worker in workers_list: - class_actual_list = [1 if label_num == class_index else 0 for label_num in labels_dict[worker][0][start_index:end_index]] - label_list_worker = labels_dict[worker][1][start_index:end_index] - class_predict_temp = [1 if label_num == class_index else 0 for label_num in label_list_worker] - if(class_predict_list == []): - class_predict_list = [0]*len(class_predict_temp) - try: - temp_list = [class_predict_list,class_predict_temp] - class_predict_list = [sum(x) for x in zip(*temp_list)] - except: - class_predict_list = [1 if label_num == class_index else 0 for label_num in label_list_worker] - class_predict_list_new = [1 if (i>len(workers_list)/2 or i == len(workers_list)) else 0 for i in class_predict_list] - class_actual_list_full.extend(class_actual_list) - class_actual_predict_full.extend(class_predict_list_new) - confusion_matrix = metrics.confusion_matrix(class_actual_list_full, class_actual_predict_full) - try: - confusion_matrix_distributed_dict[(distributed_token_key, class_name)] += confusion_matrix - except: - confusion_matrix_distributed_dict[(distributed_token_key, class_name)] = confusion_matrix + for source_name in list(batch_id_source_dict.keys()): + batch_id_dict = batch_id_source_dict[source_name] + distributed_token_dict_temp = distributed_token_dict[source_name] + for batch_id_val in list(batch_id_dict.keys()): + class_actual_list = [] + class_predict_list = [] + workers_list = batch_id_dict[batch_id_val] + labels_dict = distributed_token_dict_temp + cycle = int(batch_id_val) + start_index = cycle * batch_size + end_index = (cycle + 1) * batch_size + for worker in workers_list: + class_actual_list = [1 if label_num == class_index else 0 for label_num in labels_dict[worker][0][start_index:end_index]] + label_list_worker = labels_dict[worker][1][start_index:end_index] + class_predict_temp = [1 if label_num == class_index else 0 for label_num in label_list_worker] + if(class_predict_list == []): + class_predict_list = [0]*len(class_predict_temp) + try: + temp_list = [class_predict_list,class_predict_temp] + class_predict_list = [sum(x) for x in zip(*temp_list)] + except: + class_predict_list = [1 if label_num == class_index else 0 for label_num in label_list_worker] + class_predict_list_new = [1 if (i>len(workers_list)/2 or i == len(workers_list)) else 0 for i in class_predict_list] + class_actual_list_full.extend(class_actual_list) + class_actual_predict_full.extend(class_predict_list_new) + confusion_matrix = metrics.confusion_matrix(class_actual_list_full, class_actual_predict_full) + try: + confusion_matrix_distributed_dict[(distributed_token_key, class_name)] += confusion_matrix + except: + confusion_matrix_distributed_dict[(distributed_token_key, class_name)] = confusion_matrix if plot: self.print_plot(confusion_matrix_distributed_dict) return confusion_matrix_source_dict, confusion_matrix_distributed_dict @@ -197,6 +214,7 @@ def get_confusion_matrices_tiles_new(self , normalize : bool = False ,plot : boo df_actual_labels.columns = header_list df_actual_labels = self.expend_labels_df(df_actual_labels) source_name = source_piece_inst.get_source_name() + source_name_new = source_name.split("_")[1] target_workers = source_piece_inst.get_target_workers() worker_missed_batches = {} batch_size = source_piece_inst.get_batch_size() @@ -228,12 +246,12 @@ def get_confusion_matrices_tiles_new(self , normalize : bool = False ,plot : boo distributed_dict = distributed_tokens_dict[distributed_token_db] try: batch_id_arr_worker = distributed_dict[worker_name] - batch_id_arr_worker.append(batch_id) + batch_id_arr_worker.append((source_name_new,batch_id)) distributed_tokens_dict[distributed_token_db][worker_name] = batch_id_arr_worker except: - distributed_tokens_dict[distributed_token_db].update({worker_name : [batch_id]}) + distributed_tokens_dict[distributed_token_db].update({worker_name : [(source_name_new,batch_id)]}) except: - distributed_tokens_dict[distributed_token_db] = {worker_name : [batch_id]} + distributed_tokens_dict[distributed_token_db] = {worker_name : [(source_name_new,batch_id)]} else: cycle = int(batch_id) start_index = cycle * batch_size @@ -244,57 +262,81 @@ def get_confusion_matrices_tiles_new(self , normalize : bool = False ,plot : boo max_column_predict_index = max_column_predict_index max_column_labels_index = df_worker_labels.iloc[:, :num_of_labels].idxmax(axis=1) max_column_labels_index = max_column_labels_index.tolist() - worker_name_labels_dict[worker_name] = {"labels": [max_column_labels_index,max_column_predict_index]} + try: + worker_name_labels_dict[source_name_new].update({worker_name : {"labels": [max_column_labels_index,max_column_predict_index]}}) + except: + worker_name_labels_dict[source_name_new]= {worker_name : {"labels": [max_column_labels_index,max_column_predict_index]}} + for distributed_token_key in list(distributed_tokens_dict.keys()): workers = list(distributed_tokens_dict[distributed_token_key].keys()) - distributed_token_arr = [] + distributed_token_dict = {} batch_dict_worker_labels = {} - batch_id_dict = {} + batch_id_source_dict = {} for worker in list(workers): - labels = worker_name_labels_dict[worker]["labels"] - distributed_token_arr.append(labels) - distributed_token_key_worker = distributed_tokens_dict[distributed_token_key][worker] - for batch_id in distributed_token_key_worker: - batch_dict_worker_labels[batch_id] = labels[0] + batch_source_list_for_worker = distributed_tokens_dict[distributed_token_key][worker] + for value in batch_source_list_for_worker: + source_name = value[0] + batch_id = value[1] + labels = worker_name_labels_dict[source_name][worker]["labels"] try: - batch_id_dict[batch_id].append(worker) + batch_dict_worker_labels[source_name].update({batch_id: labels[0]}) except: - batch_id_dict[batch_id] = [worker] + batch_dict_worker_labels[source_name] = {batch_id: labels[0]} + try: + distributed_token_dict[source_name][worker] = labels + except: + distributed_token_dict[source_name] = {worker : labels} + try: + batch_id_source_dict[source_name][batch_id].append(worker) + except: + try: + batch_id_source_dict[source_name].update({batch_id : [worker]}) + except: + batch_id_source_dict[source_name] = {batch_id : [worker]} + + class_actual_predict_dict = {} - for batch_id_val in list(batch_id_dict.keys()): - class_predict_list = [] - workers_list = batch_id_dict[batch_id_val] - labels_list = distributed_token_arr - cycle = int(batch_id_val) - start_index = cycle * batch_size - end_index = (cycle + 1) * batch_size - for worker_id,worker in enumerate(workers_list): - label_list_worker = labels_list[worker_id][1][start_index:end_index] - class_predict_temp = label_list_worker.values.tolist() - if(class_predict_list == []): - class_predict_list = class_predict_temp - else: - class_predict_list = self.add_lists_of_lists(class_predict_list, class_predict_temp) - class_actual_predict_dict[batch_id_val] = class_predict_list + for source_name in list(batch_id_source_dict.keys()): + batch_id_dict = batch_id_source_dict[source_name] + for batch_id_val in list(batch_id_dict.keys()): + class_predict_list = [] + workers_list = batch_id_dict[batch_id_val] + labels_list = distributed_token_dict[source_name] + cycle = int(batch_id_val) + start_index = cycle * batch_size + end_index = (cycle + 1) * batch_size + for worker in workers_list: + label_list_worker = labels_list[worker][1][start_index:end_index] + class_predict_temp = label_list_worker.values.tolist() + if(class_predict_list == []): + class_predict_list = class_predict_temp + else: + class_predict_list = self.add_lists_of_lists(class_predict_list, class_predict_temp) + try: + class_actual_predict_dict[source_name].update({batch_id_val: class_predict_list}) + except: + class_actual_predict_dict[source_name] = {batch_id_val: class_predict_list} for class_index, class_name in enumerate(self.headers_list): class_actual_predict_full = [] class_actual_list_full = [] - for batch_id_val in list(batch_id_dict.keys()): - cycle = int(batch_id_val) - start_index = cycle * batch_size - end_index = (cycle + 1) * batch_size - class_predict_list_prev = class_actual_predict_dict[batch_id_val] - class_predict_list = [] - class_actual_list = [1 if label_num == class_index else 0 for label_num in batch_dict_worker_labels[batch_id_val][start_index:end_index]] - max_column_predict_index = self.argmax_axis_1(class_predict_list_prev) - max_column_predict_index = [int(predict_index) for predict_index in max_column_predict_index] - class_predict_list = [1 if label_num == class_index else 0 for label_num in max_column_predict_index] - class_actual_predict_full.extend(class_predict_list) - class_actual_list_full.extend(class_actual_list) + for source_name in list(batch_id_source_dict.keys()): + batch_id_dict = batch_id_source_dict[source_name] + for batch_id_val in list(batch_id_dict.keys()): + cycle = int(batch_id_val) + start_index = cycle * batch_size + end_index = (cycle + 1) * batch_size + class_predict_list_prev = class_actual_predict_dict[source_name][batch_id_val] + class_predict_list = [] + class_actual_list = [1 if label_num == class_index else 0 for label_num in batch_dict_worker_labels[source_name][batch_id_val][start_index:end_index]] + max_column_predict_index = self.argmax_axis_1(class_predict_list_prev) + max_column_predict_index = [int(predict_index) for predict_index in max_column_predict_index] + class_predict_list = [1 if label_num == class_index else 0 for label_num in max_column_predict_index] + class_actual_predict_full.extend(class_predict_list) + class_actual_list_full.extend(class_actual_list) confusion_matrix = metrics.confusion_matrix(class_actual_list_full, class_actual_predict_full) try: From 8cc2e7bc311829fe0056a0b93933d2cac1e7af00 Mon Sep 17 00:00:00 2001 From: Orisadek Date: Fri, 16 Aug 2024 05:52:38 +0000 Subject: [PATCH 4/6] remove prints --- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 2 -- 1 file changed, 2 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 956c832f6..28b80a1f5 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -427,7 +427,6 @@ namespace nerlnet convolutional_layer->set_activation_function((opennn::ConvolutionalLayer::ActivationFunction)(cnn_curr_layer->get_layer_functionality())); // set activation function // add layer to the neural network neural_network_ptr->add_layer(convolutional_layer); // add layer to the neural network - std::cout << "ConvolutionalLayer" << std::endl; break; } @@ -571,7 +570,6 @@ namespace nerlnet } curr_layer = curr_layer->get_next_layer_ptr(); } - std::cout << "generate_custom_model_nn end" << std::endl; } void NerlWorkerOpenNN::generate_custom_model_aec(std::shared_ptr &neural_network_ptr) From 56b92d5460d381d607994c31e4d420acc5d82723 Mon Sep 17 00:00:00 2001 From: Orisadek Date: Fri, 16 Aug 2024 14:48:22 +0000 Subject: [PATCH 5/6] remove print --- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 1 - 1 file changed, 1 deletion(-) diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 28b80a1f5..50678c97b 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -370,7 +370,6 @@ namespace nerlnet void NerlWorkerOpenNN::generate_custom_model_nn(std::shared_ptr &neural_network_ptr) { shared_ptr curr_layer = _nerl_layers_linked_list; - std::cout << "generate_custom_model_nn" << std::endl; while(curr_layer) { int layer_type = curr_layer->get_layer_type(); From 732a4a3f166d82545aa68194e9fe534b71a0af9f Mon Sep 17 00:00:00 2001 From: Orisadek Date: Tue, 20 Aug 2024 14:38:41 +0000 Subject: [PATCH 6/6] add examples tiles 3 --- .../conn_4Router12Client4S.json | 9 + .../dc_12w_12c_13d_4s_4r_tiles_rr.json | 391 ++++ .../exp_tiles_13d_12c_4s_4r_12w_rr.json | 126 ++ .../tiles_3_multiple_training.ipynb | 1904 +++++++++++++++++ 4 files changed, 2430 insertions(+) create mode 100644 examples/tiles3_mnist_example/conn_4Router12Client4S.json create mode 100644 examples/tiles3_mnist_example/dc_12w_12c_13d_4s_4r_tiles_rr.json create mode 100644 examples/tiles3_mnist_example/exp_tiles_13d_12c_4s_4r_12w_rr.json create mode 100644 examples/tiles3_mnist_example/tiles_3_multiple_training.ipynb diff --git a/examples/tiles3_mnist_example/conn_4Router12Client4S.json b/examples/tiles3_mnist_example/conn_4Router12Client4S.json new file mode 100644 index 000000000..ed96f4752 --- /dev/null +++ b/examples/tiles3_mnist_example/conn_4Router12Client4S.json @@ -0,0 +1,9 @@ +{ + "connectionsMap": + { + "r1":["apiServer","mainServer", "c1", "s1_0", "r2","c2","c3"], + "r2":["c4", "s2_0","r3","c7","c12"], + "r3":["c5","s3_0" ,"r4","c8","c11"], + "r4":["c6","s4_0", "r1","c9","c10"] + } +} diff --git a/examples/tiles3_mnist_example/dc_12w_12c_13d_4s_4r_tiles_rr.json b/examples/tiles3_mnist_example/dc_12w_12c_13d_4s_4r_tiles_rr.json new file mode 100644 index 000000000..6e6de672e --- /dev/null +++ b/examples/tiles3_mnist_example/dc_12w_12c_13d_4s_4r_tiles_rr.json @@ -0,0 +1,391 @@ +{ + "nerlnetSettings": { + "frequency": "100", + "batchSize": "20" + }, + "mainServer": { + "port": "8080", + "args": "" + }, + "apiServer": { + "port": "8079", + "args": "" + }, + "devices": [ + { + "name": "vm1", + "ipv4": "10.0.0.6", + "entities": "mainServer,apiServer" + }, + { + "name": "vm2", + "ipv4": "10.0.0.44", + "entities": "c1,r1" + }, + { + "name": "vm4", + "ipv4": "10.0.0.43", + "entities": "c3,s1_0" + }, + { + "name": "vm5", + "ipv4": "10.0.0.41", + "entities": "c4,s2_0" + }, + { + "name": "vm3", + "ipv4": "10.0.0.42", + "entities": "c2,r4" + }, + { + "name": "vm6", + "ipv4": "10.0.0.40", + "entities": "c5,s3_0" + }, + { + "name": "vm7", + "ipv4": "10.0.0.45", + "entities": "c6,r2" + }, + { + "name": "vm8", + "ipv4": "10.0.0.37", + "entities": "c7" + }, + { + "name": "vm9", + "ipv4": "10.0.0.36", + "entities": "c8,r3" + }, + { + "name": "vm10", + "ipv4": "10.0.0.39", + "entities": "c9" + }, + { + "name": "vm11", + "ipv4": "10.0.0.38", + "entities": "c10" + }, + { + "name": "vm12", + "ipv4": "10.0.0.46", + "entities": "c11,s4_0" + }, + { + "name": "vm13", + "ipv4": "10.0.0.16", + "entities": "c12" + } + ], + "routers": [ + { + "name": "r1", + "port": "8098", + "policy": "0" + }, + { + "name": "r2", + "port": "8099", + "policy": "0" + }, + { + "name": "r3", + "port": "8100", + "policy": "0" + }, + { + "name": "r4", + "port": "8101", + "policy": "0" + } + ], + "sources": [ + { + "name": "s1_0", + "port": "8094", + "frequency": "50", + "policy": "1", + "epochs": "1", + "type": "0" + }, + { + "name": "s2_0", + "port": "8095", + "frequency": "50", + "policy": "1", + "epochs": "1", + "type": "0" + }, + { + "name": "s3_0", + "port": "8096", + "frequency": "50", + "policy": "1", + "epochs": "1", + "type": "0" + }, + { + "name": "s4_0", + "port": "8097", + "frequency": "50", + "policy": "1", + "epochs": "1", + "type": "0" + } + ], + "clients": [ + { + "name": "c2", + "port": "8083", + "workers": "w2_0" + }, + { + "name": "c3", + "port": "8084", + "workers": "w3_0" + }, + { + "name": "c4", + "port": "8085", + "workers": "w1_1" + }, + { + "name": "c1", + "port": "8082", + "workers": "w1_0" + }, + { + "name": "c5", + "port": "8086", + "workers": "w2_1" + }, + { + "name": "c6", + "port": "8087", + "workers": "w3_1" + }, + { + "name": "c7", + "port": "8088", + "workers": "w1_2" + }, + { + "name": "c8", + "port": "8089", + "workers": "w2_2" + }, + { + "name": "c9", + "port": "8090", + "workers": "w3_2" + }, + { + "name": "c10", + "port": "8091", + "workers": "w1_3" + }, + { + "name": "c11", + "port": "8092", + "workers": "w2_3" + }, + { + "name": "c12", + "port": "8093", + "workers": "w3_3" + } + ], + "workers": [ + { + "name": "w2_0", + "model_sha": "4bf6d1d5bc458db326e5cd17ccfeb4db3550373b8f5b2d260240ef4683184e38" + }, + { + "name": "w3_0", + "model_sha": "4bf6d1d5bc458db326e5cd17ccfeb4db3550373b8f5b2d260240ef4683184e38" + }, + { + "name": "w1_1", + "model_sha": "27623ebcd31c718209e874b6869ca62ec9842a5b05ee469cb12cc14a878d0c58" + }, + { + "name": "w1_0", + "model_sha": "4bf6d1d5bc458db326e5cd17ccfeb4db3550373b8f5b2d260240ef4683184e38" + }, + { + "name": "w2_1", + "model_sha": "27623ebcd31c718209e874b6869ca62ec9842a5b05ee469cb12cc14a878d0c58" + }, + { + "name": "w3_1", + "model_sha": "27623ebcd31c718209e874b6869ca62ec9842a5b05ee469cb12cc14a878d0c58" + }, + { + "name": "w1_2", + "model_sha": "8527b95bd75ec8d0eb95d06d5d1cdd1194d5706c5eada665c50240efac424ca4" + }, + { + "name": "w2_2", + "model_sha": "8527b95bd75ec8d0eb95d06d5d1cdd1194d5706c5eada665c50240efac424ca4" + }, + { + "name": "w3_2", + "model_sha": "8527b95bd75ec8d0eb95d06d5d1cdd1194d5706c5eada665c50240efac424ca4" + }, + { + "name": "w1_3", + "model_sha": "e09032ba977d35e5c39fb9c96dc4cfb3d73a8238b4e94635c031c00ec019a268" + }, + { + "name": "w2_3", + "model_sha": "e09032ba977d35e5c39fb9c96dc4cfb3d73a8238b4e94635c031c00ec019a268" + }, + { + "name": "w3_3", + "model_sha": "e09032ba977d35e5c39fb9c96dc4cfb3d73a8238b4e94635c031c00ec019a268" + } + ], + "model_sha": { + "4bf6d1d5bc458db326e5cd17ccfeb4db3550373b8f5b2d260240ef4683184e38": { + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "9x28x1k3x3x1x6p0s1t1,9x28x6k2x2p0s2,4x14x6k3x3x6x16p0s1t0,1,120,84,10", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "2,4,2,9,3,3,5", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "6,2,6,1,6,6,4", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "6", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lossArgs": "", + "_doc_lossArgs": "Arguments to loss function. Regularization: reg=L2, reg=L1, reg=NoRegularization (can be also empty)", + "lr": "0.01", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "7", + "_doc_distributedSystemType": " none:0 | FedClientAvg:1 | FedServerAvg:2 | FedClientWeightedAvgClassification:3 | FedServerWeightedAvgClassification:4 | FedClientAE:5 | FedServerAE:6 | tiles:7 |", + "distributedSystemArgs": "none", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "t_cl0", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" + }, + "27623ebcd31c718209e874b6869ca62ec9842a5b05ee469cb12cc14a878d0c58": { + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "9x28x1k3x3x1x6p0s1t1,9x28x6k2x2p0s2,4x14x6k3x3x6x16p0s1t0,1,120,84,10", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "2,4,2,9,3,3,5", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "6,2,6,1,6,6,4", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "6", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lossArgs": "", + "_doc_lossArgs": "Arguments to loss function. Regularization: reg=L2, reg=L1, reg=NoRegularization (can be also empty)", + "lr": "0.01", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "7", + "_doc_distributedSystemType": " none:0 | FedClientAvg:1 | FedServerAvg:2 | FedClientWeightedAvgClassification:3 | FedServerWeightedAvgClassification:4 | FedClientAE:5 | FedServerAE:6 | tiles:7 |", + "distributedSystemArgs": "none", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "t_cl1", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" + }, + "8527b95bd75ec8d0eb95d06d5d1cdd1194d5706c5eada665c50240efac424ca4": { + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "9x28x1k3x3x1x6p0s1t1,9x28x6k2x2p0s2,4x14x6k3x3x6x16p0s1t0,1,120,84,10", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "2,4,2,9,3,3,5", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "6,2,6,1,6,6,4", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "6", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lossArgs": "", + "_doc_lossArgs": "Arguments to loss function. Regularization: reg=L2, reg=L1, reg=NoRegularization (can be also empty)", + "lr": "0.01", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "7", + "_doc_distributedSystemType": " none:0 | FedClientAvg:1 | FedServerAvg:2 | FedClientWeightedAvgClassification:3 | FedServerWeightedAvgClassification:4 | FedClientAE:5 | FedServerAE:6 | tiles:7 |", + "distributedSystemArgs": "none", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "t_cl2", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" + }, + "e09032ba977d35e5c39fb9c96dc4cfb3d73a8238b4e94635c031c00ec019a268": { + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "9x28x1k3x3x1x6p0s1t1,9x28x6k2x2p0s2,4x14x6k3x3x6x16p0s1t0,1,120,84,10", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "2,4,2,9,3,3,5", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "6,2,6,1,6,6,4", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "6", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lossArgs": "", + "_doc_lossArgs": "Arguments to loss function. Regularization: reg=L2, reg=L1, reg=NoRegularization (can be also empty)", + "lr": "0.01", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "7", + "_doc_distributedSystemType": " none:0 | FedClientAvg:1 | FedServerAvg:2 | FedClientWeightedAvgClassification:3 | FedServerWeightedAvgClassification:4 | FedClientAE:5 | FedServerAE:6 | tiles:7 |", + "distributedSystemArgs": "none", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "t_cl3", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" + } + } +} \ No newline at end of file diff --git a/examples/tiles3_mnist_example/exp_tiles_13d_12c_4s_4r_12w_rr.json b/examples/tiles3_mnist_example/exp_tiles_13d_12c_4s_4r_12w_rr.json new file mode 100644 index 000000000..3a1f23e8d --- /dev/null +++ b/examples/tiles3_mnist_example/exp_tiles_13d_12c_4s_4r_12w_rr.json @@ -0,0 +1,126 @@ +{ + "experimentName": "tiles_rr", + "experimentType": "classification", + "batchSize": 20, + "csvFilePath": "/tmp/nerlnet/data/NerlnetData-master/nerlnet/Tiles_Mnist_sorted/mnist_tiles_sorted.csv", + "numOfFeatures": "252", + "numOfLabels": "10", + "headersNames": "0,1,2,3,4,5,6,7,8,9", + "Phases": + [ + { + "phaseName": "training_phase", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1_0", + "startingSample": "0", + "numOfBatches": "500", + "workers": "w1_0,w1_1,w1_2,w1_3", + "nerltensorType": "float" + }, + { + "sourceName": "s2_0", + "startingSample": "59999", + "numOfBatches": "500", + "workers": "w2_0,w2_1,w2_2,w2_3", + "nerltensorType": "float" + }, + { + "sourceName": "s3_0", + "startingSample": "119998", + "numOfBatches": "500", + "workers": "w3_0,w3_1,w3_2,w3_3", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "training1_phase", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1_0", + "startingSample": "10000", + "numOfBatches": "500", + "workers": "w1_0,w1_1,w1_2,w1_3", + "nerltensorType": "float" + }, + { + "sourceName": "s2_0", + "startingSample": "69999", + "numOfBatches": "500", + "workers": "w2_0,w2_1,w2_2,w2_3", + "nerltensorType": "float" + }, + { + "sourceName": "s3_0", + "startingSample": "129998", + "numOfBatches": "500", + "workers": "w3_0,w3_1,w3_2,w3_3", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "training2_phase", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1_0", + "startingSample": "20000", + "numOfBatches": "500", + "workers": "w1_0,w1_1,w1_2,w1_3", + "nerltensorType": "float" + }, + { + "sourceName": "s2_0", + "startingSample": "79999", + "numOfBatches": "500", + "workers": "w2_0,w2_1,w2_2,w2_3", + "nerltensorType": "float" + }, + { + "sourceName": "s3_0", + "startingSample": "139998", + "numOfBatches": "500", + "workers": "w3_0,w3_1,w3_2,w3_3", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "prediction_phase", + "phaseType": "prediction", + "sourcePieces": + [ + { + "sourceName": "s1_0", + "startingSample": "32000", + "numOfBatches": "500", + "workers": "w1_0,w1_1,w1_2,w1_3", + "nerltensorType": "float" + }, + { + "sourceName": "s2_0", + "startingSample": "91999", + "numOfBatches": "500", + "workers": "w2_0,w2_1,w2_2,w2_3", + "nerltensorType": "float" + }, + { + "sourceName": "s3_0", + "startingSample": "151998", + "numOfBatches": "500", + "workers": "w3_0,w3_1,w3_2,w3_3", + "nerltensorType": "float" + } + ] + } + ] + } + + \ No newline at end of file diff --git a/examples/tiles3_mnist_example/tiles_3_multiple_training.ipynb b/examples/tiles3_mnist_example/tiles_3_multiple_training.ipynb new file mode 100644 index 000000000..9a720976a --- /dev/null +++ b/examples/tiles3_mnist_example/tiles_3_multiple_training.ipynb @@ -0,0 +1,1904 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "92bb125d-d062-4733-aa50-51ecd564c1a4", + "metadata": {}, + "outputs": [], + "source": [ + "import set_jupyter_env\n", + "from apiServer import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6167c619-9f64-44af-9abb-3ee7fffad115", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Distributed Configuration Files\n", + "--------------------\n", + "\n", + "0.\tdc_10w_14d_8r_3s_10c_synt.json\n", + "1.\tdc_12w_12c_13d_4s_4r_tiles_rr.json\n", + "2.\tdc_13d_12w_4r_4s_4tiles_cifar.json\n", + "3.\tdc_5d_4c_4s_4r_12w.json\n", + "4.\tdc_5d_4c_4w_3s_3r_cnn_cifar.json\n", + "5.\tdc_AEC_1d_2c_1s_4r_4w.json\n", + "6.\tdc_EEG_1d_2c_1s_4r_4w.json\n", + "7.\tdc_EEG_8d_3c_3s_5r_3w_RR.json\n", + "8.\tdc_EEG_8d_8c_3s_5r_8w_RR.json\n", + "9.\tdc_FedTorchTest_5d_2s_2r_4c_4w.json\n", + "10.\tdc_dist_14d.json\n", + "11.\tdc_dist_2d_3c_2s_3r_6w.json\n", + "12.\tdc_fed_5d_5w_2r_2s_4c.json\n", + "13.\tdc_fed_dist_14d.json\n", + "14.\tdc_fed_dist_2d_3c_2s_3r_6w.json\n", + "15.\tdc_fed_synt_1d_2c_2r_1s_4w_1ws.json\n", + "16.\tdc_mnist_13d_12w_4r_3s_3tokens.json\n", + "17.\tdc_mnist_13d_12w_4r_3s_multiple_sources_tiles.json\n", + "18.\tdc_mnist_4w_5d_4r_4s_rr.json\n", + "19.\tdc_synt_8d_8w_2c_4s_4r.json\n", + "20.\tdc_synt_8d_8w_4c_6r_4s.json\n", + "21.\tdc_synt_distributed_w5_c3_6r_3s_3d.json\n", + "22.\tdc_test_synt_1d_2c_1s_4r_4w.json\n", + "23.\tdc_test_synt_1d_2c_2s_4r_4w.json\n", + "\n", + "Connection Map Files\n", + "--------------------\n", + "\n", + "0.\tconn_1Router1Client1S.json\n", + "1.\tconn_1Router1Client2S.json\n", + "2.\tconn_1Router2Clients1S.json\n", + "3.\tconn_1Router3Clients1S.json\n", + "4.\tconn_1Router4Clients1S.json\n", + "5.\tconn_1Router4Clients1fed.json\n", + "6.\tconn_1Router4Clients2Sources.json\n", + "7.\tconn_1Router4Clients2Sources1fed.json\n", + "8.\tconn_2R4C1S_health_david.json\n", + "9.\tconn_2Router2Clients1Source.json\n", + "10.\tconn_2Router2Clients1Source_david.json\n", + "11.\tconn_2Router2Clients2Source.json\n", + "12.\tconn_2Router2ClientsGUI.json\n", + "13.\tconn_2Router3Clients.json\n", + "14.\tconn_2Router4Clients2Sources.json\n", + "15.\tconn_3Router3Clients.json\n", + "16.\tconn_3Router4Client3Sources_cifar.json\n", + "17.\tconn_4Router12Client4S.json\n", + "18.\tconn_4Router12Client8S.json\n", + "19.\tconn_4Router4Client4S.json\n", + "20.\tconn_4Router4Clients4S_mnist.json\n", + "21.\tconn_4S_4R_12C_cifar_tiles.json\n", + "22.\tconn_6RouterCycle6Clients1Source.json\n", + "23.\tconn_6RouterCycle8Clients1Source.json\n", + "24.\tconn_6RouterLine6Clients1Source.json\n", + "25.\tconn_8RouterCycle8Clients1Source.json\n", + "26.\tconn_8Routers10Clients3S.json\n", + "27.\tconn_EEG_1d_2c_1s_4r_4w.json\n", + "28.\tconn_EEG_5Router3Clients3Source_EEG.json\n", + "29.\tconn_EEG_5Router8Clients3Source_EEG.json\n", + "30.\tconn_fed_dist_14d.json\n", + "31.\tconn_fed_dist_2d_3c_2s_3r_6w.json\n", + "32.\tconn_fed_synt_1d_2c_2r_1s_4w_1ws.json\n", + "33.\tconn_synt_8d_8w_4c_6r_4s.json\n", + "34.\tconn_synt_dc_8d_8w_2c_4s_4r.json\n", + "35.\tconn_synt_distributed_w5_c3_6r_3s_3d.json\n", + "36.\tconn_test_synt_1d_2c_1s_4r_4w.json\n", + "37.\tconn_test_synt_1d_2c_2s_4r_4w.json\n", + "\n", + "Experiments Flow Files\n", + "--------------------\n", + "\n", + "0.\texp_13d_4s_4r_12w_12c_cifar_4tiles.json\n", + "1.\texp_5d_3s_3r_4w_4c_cifar.json\n", + "2.\texp_AEC_1d_2c_1s_4r_4w.json\n", + "3.\texp_EEG_1d_2c_1s_4r_4w.json\n", + "4.\texp_EEG_3s_3w_half3_people_RR.json\n", + "5.\texp_EEG_3s_8w_3people_RR.json\n", + "6.\texp_FedTorchTest_5d_2s_2r_4c_4w.json\n", + "7.\texp_dist_13d_12w_4r_3s_3tokens.json\n", + "8.\texp_dist_13d_12w_4r_3s_mnist_multiple_sources.json\n", + "9.\texp_dist_14d.json\n", + "10.\texp_dist_14d_10c_3s_8r_10w.json\n", + "11.\texp_dist_2d_3c_2s_3r_6w.json\n", + "12.\texp_dist_fed_5d_2s_2r_5w.json\n", + "13.\texp_fed_dist_14d.json\n", + "14.\texp_fed_dist_2d_3c_2s_3r_6w.json\n", + "15.\texp_fed_synt_1d_2c_2r_1s_4w_1ws.json\n", + "16.\texp_mnist_5d_4c_4s_4w_4r.json\n", + "17.\texp_new_arc.json\n", + "18.\texp_synt_8d_8w_2c_4s_4r.json\n", + "19.\texp_synt_8d_8w_4c_6r_4s.json\n", + "20.\texp_synt_distributed_w5_c3_6r_3s_3d.json\n", + "21.\texp_test_synt_1d_2c_1s_4r_4w new.json\n", + "22.\texp_tiles_13d_12c_4s_4r_12w_rr.json\n", + "23.\texp_tiles_4d_4c_4s_4r_12w.json\n" + ] + } + ], + "source": [ + "api_server_instance = ApiServer()\n", + "api_server_instance.showJsons()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6debb773-b352-4f2e-a6f6-cc972c055484", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0. Nerlnet/skab: ['skab_full.csv', 'skab_full_bins.csv', 'skab_full_poly.csv', 'skab_full_windowed.csv']\n", + "1. Nerlnet/MNist_test: ['mnist_train_temp.csv']\n", + "2. Nerlnet/synthetic_norm: ['synthetic_full.csv']\n", + "3. Nerlnet/tiles_sorted: ['mnist_tiles_4parts_sorted.csv', 'mnist_tiles_sorted.csv']\n", + "4. Nerlnet/Mnist_normalized: ['mnist_train_255_norm.csv']\n", + "5. Nerlnet/cifar10: ['cifar_independent1.csv', 'cifar_independent2.csv']\n", + "6. Nerlnet/cifar10_tiles: ['cifar_tiles.csv']\n" + ] + } + ], + "source": [ + "api_server_instance.list_datasets()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f1358de5-1259-4618-a781-c51a8c0bd4e3", + "metadata": {}, + "outputs": [], + "source": [ + "dc_idx = 1\n", + "conn_idx = 17\n", + "exp_idx = 22\n", + "api_server_instance.setJsons(dc_idx, conn_idx, exp_idx)\n", + "dc_json , connmap_json, exp_flow_json = api_server_instance.getUserJsons()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8873419a-029b-4b75-b80a-6bf77965bd83", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/usr/local/lib/nerlnet-lib/NErlNet/inputJsonsFiles/DistributedConfig/dc_12w_12c_13d_4s_4r_tiles_rr.json'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dc_json " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "61a3874c-93db-4889-9630-05fb7f542eb7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/usr/local/lib/nerlnet-lib/NErlNet/inputJsonsFiles/ConnectionMap/conn_4Router12Client4S.json'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "connmap_json" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f1f11f65-69a1-4f18-9e62-17613ab782f9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/usr/local/lib/nerlnet-lib/NErlNet/inputJsonsFiles/experimentsFlow/exp_tiles_13d_12c_4s_4r_12w_rr.json'" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp_flow_json" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7f7c70ef-026b-4614-91f2-6126f9b55415", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1c2188625ca94879903af32f38519ff4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Fetching 3 files: 0%| | 0/3 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
w1_3w3_0w1_2w2_0w3_1w1_1w2_3w2_2w1_0w3_2w2_1w3_3
03.0775123.7975953.5014273.2123373.5820093.6918962.5958193.5287213.5175933.5157883.6952003.335594
12.8233873.0877342.5946422.4934552.0208542.4365832.4638683.3036112.4497982.7440801.9568382.983469
22.4896331.8437302.1651041.8599091.9835262.2247532.3816901.8877022.1828121.7790311.9756212.381660
32.0829622.2129772.0481602.1087141.7826861.9872931.4987541.6064172.2613491.8180541.8782201.660328
41.6055491.6960262.0303491.5234561.5743962.3365971.2321401.7083832.1056141.7408621.4087671.563909
.......................................
1201.1498190.9213560.7278850.1364680.4751910.8904070.3909640.1911550.8852630.6125690.2340691.022722
1210.9613440.5392350.6567490.0513620.7653540.5506470.2196800.3158200.9191080.3795970.0358921.297594
1220.5894850.6613051.3812110.3312821.1690041.3142890.0686660.1341591.1282420.8136590.5354070.402966
1230.6229510.5663200.5514130.3078260.5328561.2330860.0346440.0682380.8420270.6696120.8650500.778561
1240.7866170.6596161.1116540.4075790.8737540.8371000.1285580.1855860.8288831.0648860.4031140.721440
\n", + "

125 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " w1_3 w3_0 w1_2 w2_0 w3_1 w1_1 w2_3 \\\n", + "0 3.077512 3.797595 3.501427 3.212337 3.582009 3.691896 2.595819 \n", + "1 2.823387 3.087734 2.594642 2.493455 2.020854 2.436583 2.463868 \n", + "2 2.489633 1.843730 2.165104 1.859909 1.983526 2.224753 2.381690 \n", + "3 2.082962 2.212977 2.048160 2.108714 1.782686 1.987293 1.498754 \n", + "4 1.605549 1.696026 2.030349 1.523456 1.574396 2.336597 1.232140 \n", + ".. ... ... ... ... ... ... ... \n", + "120 1.149819 0.921356 0.727885 0.136468 0.475191 0.890407 0.390964 \n", + "121 0.961344 0.539235 0.656749 0.051362 0.765354 0.550647 0.219680 \n", + "122 0.589485 0.661305 1.381211 0.331282 1.169004 1.314289 0.068666 \n", + "123 0.622951 0.566320 0.551413 0.307826 0.532856 1.233086 0.034644 \n", + "124 0.786617 0.659616 1.111654 0.407579 0.873754 0.837100 0.128558 \n", + "\n", + " w2_2 w1_0 w3_2 w2_1 w3_3 \n", + "0 3.528721 3.517593 3.515788 3.695200 3.335594 \n", + "1 3.303611 2.449798 2.744080 1.956838 2.983469 \n", + "2 1.887702 2.182812 1.779031 1.975621 2.381660 \n", + "3 1.606417 2.261349 1.818054 1.878220 1.660328 \n", + "4 1.708383 2.105614 1.740862 1.408767 1.563909 \n", + ".. ... ... ... ... ... \n", + "120 0.191155 0.885263 0.612569 0.234069 1.022722 \n", + "121 0.315820 0.919108 0.379597 0.035892 1.297594 \n", + "122 0.134159 1.128242 0.813659 0.535407 0.402966 \n", + "123 0.068238 0.842027 0.669612 0.865050 0.778561 \n", + "124 0.185586 0.828883 1.064886 0.403114 0.721440 \n", + "\n", + "[125 rows x 12 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats_train.get_loss_ts(plot=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fdfa947a-9e31-4d2f-9af9-5981b42e1e5a", + "metadata": {}, + "outputs": [], + "source": [ + "#stats_train.get_distributed_train_labels()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "32330cce-4060-4c37-9902-e366928af24b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[INFO][2024-08-17 20:17:23,291] Experiment phase: training1_phase of type training starts running...\n", + "[INFO][2024-08-17 20:17:23,292] Sending data to sources\n", + "[INFO][2024-08-17 20:20:13,518] Data is ready in sources\n", + "[INFO][2024-08-17 20:20:13,774] Phase training requested from Main Server\n", + "[INFO][2024-08-17 20:20:32,594] Processing experiment phase data\n", + "[INFO][2024-08-17 20:20:33,001] Processing experiment phase data completed\n", + "[INFO][2024-08-17 20:20:33,005] Start generating communication statistics for training1_phase of type training\n", + "[INFO][2024-08-17 20:20:33,009] Statistics requested from Main Server\n", + "[INFO][2024-08-17 20:20:33,168] Statistics received from Main Server\n", + "[INFO][2024-08-17 20:20:33,172] Phase of training1_phase training completed\n" + ] + } + ], + "source": [ + "next_expertiment_phase_exist = api_server_instance.next_experiment_phase()\n", + "api_server_instance.run_current_experiment_phase()\n", + "stats_train2 = api_server_instance.get_experiment_flow(experiment_name).generate_stats()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "926f056b-542c-4c5b-85ea-13ef90f74d4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('w2_0',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w3_0',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w1_1',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w1_0',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w2_1',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w3_1',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w1_2',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w2_2',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w3_2',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w1_3',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w2_3',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w3_3',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 250,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0})])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats_train2.get_communication_stats_workers()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "81b54f2c-c6d6-4593-817b-1129a6b59122", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[INFO][2024-08-17 20:20:33,484] Experiment phase: training2_phase of type training starts running...\n", + "[INFO][2024-08-17 20:20:33,486] Sending data to sources\n", + "[INFO][2024-08-17 20:24:17,567] Data is ready in sources\n", + "[INFO][2024-08-17 20:24:17,642] Phase training requested from Main Server\n", + "[INFO][2024-08-17 20:24:36,182] Processing experiment phase data\n", + "[INFO][2024-08-17 20:24:36,340] Processing experiment phase data completed\n", + "[INFO][2024-08-17 20:24:36,342] Start generating communication statistics for training2_phase of type training\n", + "[INFO][2024-08-17 20:24:36,344] Statistics requested from Main Server\n", + "[INFO][2024-08-17 20:24:36,758] Statistics received from Main Server\n", + "[INFO][2024-08-17 20:24:36,759] Phase of training2_phase training completed\n" + ] + } + ], + "source": [ + "next_expertiment_phase_exist = api_server_instance.next_experiment_phase()\n", + "api_server_instance.run_current_experiment_phase()\n", + "stats_train3 = api_server_instance.get_experiment_flow(experiment_name).generate_stats()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3e73af32-de2c-437a-923c-de975d973876", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('w2_0',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w3_0',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w1_1',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w1_0',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w2_1',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w3_1',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w1_2',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w2_2',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w3_2',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w1_3',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w2_3',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0}),\n", + " ('w3_3',\n", + " {'bytes_received': 0,\n", + " 'bytes_sent': 0,\n", + " 'bad_messages': 0,\n", + " 'batches_received_train': 375,\n", + " 'batches_received_predict': 0,\n", + " 'batches_dropped_train': 0,\n", + " 'batches_dropped_predict': 0,\n", + " 'batches_sent_train': 0,\n", + " 'empty_batches': 0,\n", + " 'batches_sent_predict': 0,\n", + " 'average_time_training': 0,\n", + " 'average_time_prediction': 0,\n", + " 'acc_time_training': 0,\n", + " 'acc_time_prediction': 0,\n", + " 'nan_loss_count': 0})])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats_train3.get_communication_stats_workers()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "bbca8c7d-3db2-4c0d-8350-525692179c16", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[INFO][2024-08-17 20:24:36,928] Experiment phase: prediction_phase of type prediction starts running...\n", + "[INFO][2024-08-17 20:24:36,929] Sending data to sources\n", + "[INFO][2024-08-17 20:28:02,147] Data is ready in sources\n", + "[INFO][2024-08-17 20:28:02,301] Phase prediction requested from Main Server\n", + "[INFO][2024-08-17 20:28:25,288] Processing experiment phase data\n", + "[INFO][2024-08-17 20:28:25,380] Processing experiment phase data completed\n", + "[INFO][2024-08-17 20:28:25,381] Start generating communication statistics for prediction_phase of type prediction\n", + "[INFO][2024-08-17 20:28:25,382] Statistics requested from Main Server\n", + "[INFO][2024-08-17 20:28:25,487] Statistics received from Main Server\n", + "[INFO][2024-08-17 20:28:25,488] Phase of prediction_phase prediction completed\n" + ] + } + ], + "source": [ + "next_expertiment_phase_exist = api_server_instance.next_experiment_phase()\n", + "api_server_instance.run_current_experiment_phase()\n", + "stats_predict = api_server_instance.get_experiment_flow(experiment_name).generate_stats_tiles()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "1eda65d9-4781-43ed-839f-118b662ffb2f", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEVgAAAbiCAYAAADGbC4WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABWIAAAViAHE10CgAAEAAElEQVR4nOzdfXzN9f/H8edmF8wuXGRyHTNyfc1KkYvyJfoiSeUqiixXRelSfb+tSIoyUpTLrvRTyUop5aqkSEPlYiPMRWRmw2wz+/2x746OTbZzzpxzPu/H/XZz0875nM95n9EePuecz+v45OTk5AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALMjX3QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOLCgBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlsWAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWxYAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbFgBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlsWAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWxYAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbFgBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlsWAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWxYAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbFgBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlsWAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACW5efuBQCA1ZRqNtKp26dviXXRSgAAKH7Odk+ifQAA70L7AACm4flOAIBpaB8AwCQ83wkAMA3tAwCYhuc7AQCmoX0AAJPwfKdjGLACAK7m4+vuFQAAcOXQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPYfwXQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgWX7uXgAAWI6Pj7tXAADAlUP3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3HMKAFQBwNR9fd68AAIArh+4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO45hAErAOBqTPwCAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7jmEsTQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALMvP3QsAAMvxYXYVAMAgdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8hDFgBAFfz8XH3CgAAuHLoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonkMYsAIArsbELwCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieQxiwAgCuxsQvAIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5DGEsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLL83L0AALAcH2ZXAQAMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQvccwoAVAHA1Hx93rwAAgCuH7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7jmEASsA4GpM/AIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuOYTvGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADL8nP3AgDAcnx83L0CAACuHLoHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnEAasAICr+fi6ewUAAFw5dA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8hfNdQKElJSapbt67q1q3r7qVcER999JHq1q2rAQMGuHsp8EY+vs79AuARaB9QSM52j/YBHoHuAUVA+wBLoH1AEdA9wBJoH1AEtA+wBNoHFBLPdwKWQfuAQqJ9gCXQPaAI6B5gCbQPKALaB1gC7QMKiec7HeLn7gXg8ubPn6+0tDT16tVLVatWdfdyLunPP//UrFmztG7dOh07dkwhISFq0aKFhg4dqqZNm7ptXceOHdOSJUu0YcMG/fHHH0pJSZG/v78qVaqkxo0bq2vXrrrxxhvl62vtHwKPPfaYPv74Y02aNEm9e/fOd312drbee+89ffzxx9qzZ498fHxUs2ZN9e7dW3fddVeB35+PPvpIjz/+uHr16qXJkydfiYcBwBC0zzm0L9c/tW/btm3avHmztm/fru3bt+uPP/5QTk6ORo4cqVGjRl1ynxs3btTAgQPVunVrLVq0qLgfAgBD0D3n0L1cl+peZmam1q9fr3Xr1ik+Pl779u1TRkaGwsLC1LBhQ/Xu3VtdunQpcJ9JSUnq1KmTqlSpom+++eZKPRQABqB9zqF9uS7VvrNnz+rdd9/Vtm3btGvXLh0/flxpaWkqXbq0IiIi1KVLF911110KDAzMt0+e7wRQXGifc2hfrsu91nex+fPna9KkSZJ0yeczOe4DUFxon3NoX65/al/Hjh118ODBf7z9559/roiICLvLOO4DUFxon3NoX67CHPdlZmbqvffe0xdffKE9e/bozJkzKleunGrXrq2OHTvqnnvusdue97kAKA50zzl0L9elujdjxgzFxsYWah+jRo3SyJEjbV/TPQDFhfY5h/blutwx3969ezV//nz98MMPOnz4sHJyclShQgU1b95cAwcOVOPGjfPdhvYBKC60zzm0L9fl2rd//37NnTtX33//vf7880+VKlVKderUUZ8+fdSzZ88C90n74CoMWPECCxcu1MGDB9W6dWuPjdFvv/2mQYMGKTU1VaVKlVJkZKSOHTumlStXatWqVXruued0++23X/F1vfXWW3rttdd09uxZSdLVV1+tunXrKiMjQwcPHlRiYqI+/vhjXXvttVq0aJFCQ0Ov+Bo9QWZmph544AF99913kqSaNWvK399fv/76q7Zv365vvvlGs2fPlr+/v5tX6iV8fdy9AsDr0T7H0b7Ceeqpp7Rjxw53L8Ma6B7gNLrnOLp3ebNmzdLrr78uSfLz81P16tVVsmRJ7du3T6tXr9bq1at1yy236OWXX1ZAQICbV+slaB/gNNrnONp3eSkpKXrxxRclSUFBQQoPD1flypX1559/6ueff9bPP/+sJUuWaN68eapYsaKbV+slaB/gNNrnONrnmP3792v69OnuXob3on2A02if42hf0dSpU0fBwcEFXleqVKkrvBovRfcAl6B9jqN9hXfgwAHdd999+uOPP+Tr66uaNWuqatWqOnbsmL7//nvt378/34AVFID2AU6je46je5dXqVIlNW/e/JLXp6SkaM+ePZKkFi1aXKlleTfaBziN9jmO9hXON998ozFjxigzM1P+/v6qVq2a/Pz8dODAAS1fvlxxcXF66qmn1L9/f3cv1TvQPsBptM9xtK9wvv32Wz300ENKT09XYGCgIiMjdebMGf3000/66aeftHr1ar3yyiuWH0LjEnTPIQxYgdMyMjL04IMPKjU1Vddff72mTZumMmXKKCcnR4sXL1ZMTIwmTpyoJk2aqHbt2ldsXS+88IIWLFggHx8f3XPPPbr33ntVrVo12/VZWVnauHGj5syZox9++EGpqanGxujVV1/Vd999p9DQUM2aNUutWrWSJO3atUvDhg3T+vXrFRsbq4ceesjNK/USPkQbsDra5/2qVaumWrVqqUGDBmrYsKFmzpypH3/80d3L8k50D7A8uufdcnJy1KxZM91zzz3q2LGjSpcuLSn3+zNv3jy9/PLLWrlypWbOnMkxX2HRPsDyaJ93CwoK0hNPPKHrrrtOderUsbvuhx9+0Lhx45SYmKhnnnlGs2fPdtMqvQztAyyP9llLTk6OnnzySWVmZqpDhw769ttv3b0k70P7AMujfdbx1FNPqU2bNu5ehneje4ARaJ/3O3nypAYMGKDDhw/rnnvu0ciRI1WuXDnb9cnJydq6dasbV+hFaB9geXTPu/Xp00d9+vS55PUxMTHas2ePqlSpoqioqCu4Mi9G+wDLo33e7fTp03rssceUmZmpdu3a6YUXXlCFChUkSadOndLkyZP14YcfatKkSWrXrp2qV6/u5hV7AdoHWB7t824HDx60DVfp1KmTJk2apLCwMEm5g3NGjBihFStWqG7duhoxYoSbV+sF6J5D+K7BaR9++KEOHTqk0qVL65VXXlGZMmUkST4+PhowYIC6d++uc+fOaebMmVdsTV988YUWLFggSZo8ebImTpxoFyJJ8vf31w033KAFCxYoJiZG/v7+V2x9niQ5OVmLFi2SJD3yyCO24SpS7if9xMTESJLmz5+vlJQUdyzR+/j4OPcLgMejfd4vNjZW06ZN03333aeoqCgFBAS4e0ney9nu0T7A49E97zZo0CC9//776tGjh224ipT7/Rk2bJjuuOMOSdL777+v8+fPu2uZ3oX2AZZH+7xbaGioBg0alG+4iiRFRUXpySeflCStWbNGZ86cudLL8050D7A82mct7733nn788UcNHjxYDRo0cPdyvBPtAyyP9gF/w/OdgBFon/d78cUXdfjwYfXv318TJ060G64iSeXKldNNN93knsV5G9oHWB7ds67MzEwtX75cktS7d2/58DO5cOgeYHm0z7tt2rRJJ0+elI+Pj1566SXbcBVJCg4O1n/+8x9VqFBB586d09q1a924Ui9C+wDLo33ebfHixUpPT1fZsmU1efJk23AVSapfv74mTpwoSXrzzTd16tQpdy3Te/B8p0P83L0AXNpHH32kxx9/3Pb1wIED7a7v1auXJk+e7PD+z549qyVLlmjlypXavXu3Tp8+rauuukq1atXSzTffrNtvv71QJxuvWLFCktS1a1eVLVs23/X9+vVTXFycvv32W6Wnp6tUqVIOr7kwcnJy9Nprr0mSevTooZ49e172NnknlBXG3r179dVXX2ndunVKSkrSX3/9pcDAQNWuXVvdunVTv379Cvy+nT9/XkuXLtWyZcu0a9cunT59WsHBwSpfvryaNGmif//73/mmKG/YsEGLFy9WfHy8Tpw4oZIlS6ps2bKqW7euOnTo8I/TmQvrm2++UUZGhoKCgvTvf/873/U33HCDqlWrpgMHDuibb75R7969nb5Py2PiF+Aw2ucY2ge3onuAw+ieY+he0Vz85sqLtW/fXh9++KFSUlKUnJysq666yun7tDzaBziM9jmG9rlWRESEbf15z4viMmgf4DDa5xja57hDhw5p6tSpql69ukaPHq05c+a4dP/GoH2Aw2ifY2gf3IruAU6hfY6hfUXz119/6dNPP5W/v78efPBBp/dnPNoHOIzuOYbuuc6qVauUkpIiX19fzmkoCtoHOIz2OYb2FU16erokKSwszDYg4O9KlCihqlWr6tixYzp37pzT92cE2gc4jPY5hvYVzebNmyXlnrseGhqa7/qOHTsqKChIZ86c0apVqwo87x1/44Hd27hxY76fH5IUGRmpuLg429f79u1TTEyMNm3apICAAHXt2lWPPvpovvf1rl27VtOmTVNCQoIqVKiggQMHavDgwU6tkQErHqx8+fJq3ry5tm/frszMTNWpU0fBwcG266+55hqH933gwAENGzZMe/bskSRVrlxZ1apV059//qnvv/9e3333nW688UZVrVr1H/eTnZ2trVu3SpJatWpV4DZNmjSRv7+/0tPT9fvvv6t58+YOr7swtm3bpsTEREm5n9TtatOmTdOXX36poKAgVahQQXXr1lVycrK2bNmiLVu26KuvvtJbb72VL0gTJkzQp59+KkkKDw9XtWrVdOrUKR0+fFiJiYnKysqyi9GHH36op556SlLup67Wrl1bOTk5OnLkiL7++mtt27bNJTHasmWLJKlRo0YKDAwscJtWrVrpwIED2rJlC09GAihWtM8xtA8AvBPdcwzdc62zZ8/a/rtkyZLFfn8AzEb7HEP7XGvTpk2SpKpVqxb44ioAuBLtcwztc9zTTz+t06dPa+bMmRzjAXAL2ucY2ue4Dz74QPPmzVN6errKly+vZs2a6bbbbrP7pDsAKE60zzG0r2jWrFmjrKwsNWrUSOXKldPXX3+tL7/8UkePHlVYWJiaN2+u22+/XSEhIU7fFwD8E7rnGLrnOkuXLpUkXX/99apcuXKx3hcASLTPUbSvaOrVqycfHx+lpKQoMTHR9sFBeVJSUrR7925JUuPGjZ2+PwD4J7TPMbSvaFJSUiRJFStWLPB6Hx8fhYeH648//tDmzZsZsOLFYmJiFBkZafv67+9lSktL06BBgxQeHq7p06fr5MmTmjx5so4fP64ZM2bYtouPj1d0dLS6d++uCRMmaOvWrZoyZYpKlCihAQMGOLw2Bqx4sPbt26t9+/bq2LGjDh48qKeeekpt2rRxer9nz57V8OHDtWfPHtWpU0eTJk1Sw4YNbdcfP35cH330UaE+ufPQoUPKzMyUJFWvXr3AbQICAlSpUiXt379fe/fuLfYY/fzzz5KkkJAQu8flKrfddpvuu+8+NWrUSD4+PrbLExMT9cQTT+jHH3/U/PnzNWzYMNt1v//+uz799FMFBwdr1qxZdn+OOTk52rRpk44dO2a7LDs7W1OnTpUkPfXUU7rrrrvk5+dnd1/fffddkdY9efLkAqfD/fHHH5KkGjVqXPK21apVk5Q76ezvevfuzcCVgvzt7wWAoqF9jqF9BbtU+5zRpk0b7dy506X79Hp0D3AY3XMM3SuYo93LmwDcoEEDuyfApdwTz+leAWgf4DDa5xjaV7CitC8rK0tHjx7VV199penTp8vf39/2QuDf8XznJdA+wGG0zzG0r2CXa9/SpUu1fv169e7dW9ddd12h9slx3yXQPsBhtM8xtK9ghTnu++yzz/J9PX36dMXExKhr1675tue4rwB0D3AK7XMM7SvYpdqXd8LI1VdfrdGjR+vLL7+0u/7LL7/UG2+8oVmzZqlZs2Z21/E+lwLQPsBhdM8xdK9gRX2fy5EjR2z3cfvttxe4Dd27BNoHOIz2OYb2FexS7atRo4buuusuvfvuu4qOjtaECRPUvHlz+fn56bffftPUqVN16tQp9e7dO9+fHe27BNoHOIz2OYb2FexS7csbFP3nn38WeLucnBwdPXpUkmwDefLQvgJ4cPciIyPVtGnTAq97//33lZycrKVLl6p8+fKScgewjBo1Stu3b7f9vxQbG2v7ueHj46OoqCgdPXpUsbGx6tevn/z9/R1aGwNWDPThhx8qMTFRZcuW1fz5821/8fKUL19e999/f6H2lTcpStI/fvpL3nWpqalFX3ARHTlyRJJUpUoVu1i4SufOnQu8PCIiQlOmTNEtt9yijz/+2C5GeT/Eo6Ki8v2DwsfHJ9+ktOTkZKWkpCg0NLTACUoRERH5JlI66uTJk5IK9+eXty0uw8fX3SsAcBHa5xyrtQ8u5oHd27hxowYOHJjv8sjISNsgAUnat2+fYmJitGnTJgUEBKhr16569NFH8z0ps3btWk2bNk0JCQmqUKGCBg4cqMGDBxf3wwAcRvecY1L3Vq5cqdWrV0uSHnjggWK/P8vwwPYBpqN9zrFy+6Kjo7Vq1Sq7yzp06KAHH3xQjRo1cvn9WRbtAzwO7XOOFdt39OhRTZ48WeXLl9eECRNctl9j0T7A49A+51ixfa1atdLo0aPVqFEjVapUSefPn9e2bds0a9Ys/fjjj3r44YcVHBysG2+80WX3aVl0D/BItM85Vmtf3okOq1evVlZWlgYNGqR7771X5cuX19atW/Wf//xHu3bt0ogRI7R8+XJVqFDBJfdrWbQP8Dh0zzlW696lfPTRRzp//rzKlClzyceMS6B9gMehfc6xYvsmTpyomjVravHixRoxYoTddVWqVNELL7zA4OiioH2Ax6F9zrFa+5o0aaLt27fru+++U1pamm3gSp7Vq1frzJkzkjinvVBc0L34+Pgibd+kSROn73Pt2rWKioqy+3nQsWNHBQUFafXq1WrYsKEyMzO1YcMGjR071u7/rR49emjRokXasmWLWrdu7dD9M2DFQCtXrpQk9e3bN1+IiiojI8P23wEBAZfcLjAwUJKUnp7u1P0VxqlTpySpUNPKHHX8+HF99tln2rp1q44fP66MjAzl5OTYrt+7d6/Onj2rkiVLSpIqV64sKfeHzIEDB1StWrV/3H/58uVVsmRJpaWlac2aNWrfvn2xPZazZ89K0j9Oacr788vbFpfhwRO/AFPRPudZqX1wMQ/uXkxMjCIjI21f5/39lKS0tDQNGjRI4eHhmj59uk6ePKnJkyfr+PHjmjFjhm27+Ph4RUdHq3v37powYYK2bt2qKVOmqESJEgU+aQB4ArrnPBO6t3v3bj3++OOScp9guuWWW674GryWB7cPMBXtc55V21e7dm2dOHFCGRkZOnTokE6cOKGffvpJy5cvV926df/xzxh/Q/sAj0P7nGe19j377LNKTU3VK6+8ojJlyhTrfRmB9gEeh/Y5z2rte/HFF/Nddt1116l169YaMWKE1qxZo+eff15ffPFFsa7DEuge4JFon/Os1L68kwmysrLUrVs3PfHEE7brWrZsqTlz5uiWW27RiRMntGDBAo0fP77Y1mIJtA/wOHTPeVbqXkFycnL08ccfS8p9jwuv8RUR7QM8Du1zntXad/bsWR08eFAnT55UiRIlVKVKFZUsWVL79+/XwYMHtXTpUjVt2pQPrC0s2gd4HNrnPCu176677tIHH3yg5ORkjRs3TpMnT1a5cuUkST///LOeffZZ27ac014ILuhe3759i7T9zp07C7VddHS0Tpw4obJly6pTp04aN26c7X1NCQkJ6tmzp932fn5+qlmzphITEyVJ+/fvV1ZWVr5/A+V9nZiYyIAVFN6uXbskSc2aNXN6X3mRkaTMzMxLbpcXrVKlSjl9n5cTHBws6cKLSq72xRdf6PHHH//H/efk5OjkyZO2GDVt2lStW7fWjz/+qC5duqhFixZq1aqVmjZtqhYtWqh06dJ2t/f19dWQIUM0a9YsDRs2THXq1NF1112npk2bqlWrVi79hIG8NWZlZV1ym7w/v7+flAwA3oT2Ocdq7YM5IiMj1bRp0wKve//995WcnKylS5fanqApWbKkRo0ape3bt6thw4aSpNjYWNWpU0eTJk2Sj4+PoqKidPToUcXGxqpfv37/OKQOcBe65xwTurd//34NGTJEp06dUuvWrRUTE1Os9wcAxY32OcfK7Xv44Yftvt6wYYNiYmK0YMECJSUladasWcVyvwBQ3Gifc6zWvri4OK1atUo33XSTbr31VpftFwA8Ce1zjtXa909KlCihCRMmaM2aNdq7d6927typunXrXpH7BgBXon3OsVr7/v6+zXvvvTff9VdffbVuvfVWffTRR1qzZg0DVgB4HbrnHKt1ryA//vij9u/fL0nq06dPsd4XAFwJtM85VmtfVlaW+vfvr+3bt+uGG25QTEyMKlWqJCn3e/jqq69q/vz56tevnz799FPbdQDgTWifc6zWvsjISD3zzDN69tlntWbNGrVr107XXHONTp06pcOHD6tcuXK65ZZbtHLlStv3Ft4lJCREQ4YMUevWrRUUFKT4+Hi9+eab+uWXX7R06VIFBAQoNTVVISEh+W4bGhqqkydPSpLt94u3Cw4OVokSJWzXO4IBKwbKm4ZV0F+8ogoLC7P9d0pKyiW3y/tLGhoa6vR9Xs7VV18tSTp48KBycnLk48Kpg0lJSXrkkUeUmZmprl27asCAAapVq5ZCQkLk5+en8+fPq169epLsB5b4+Pho9uzZevPNN/XJJ5/oxx9/1I8//igp98WvW2+9VePHj7dN2ZKk0aNHq3Llylq8eLF27NihXbt2acGCBfLx8dF1112nCRMm6Nprr3X6MeX9mRTmz+/vf974Bz6+7l4BgIvQPsdZsX1wMRd0Lz4+vkjbN2nSxOn7XLt2raKiouym33bs2FFBQUFavXq1GjZsqMzMTG3YsEFjx461+/+qR48eWrRokbZs2eLwpEugONE9x5nQvaSkJA0aNEhHjx5Vs2bNNHv2bIZpFhXHfIDHoX2OM6F9f3fddddpzpw5uvnmm7Vq1Sr9/PPPat68ebHepyXQPsDj0D7HWa19J0+eVExMjIKCguw+wQdOon2Ax6F9jrNa+wojIiJCYWFhOnnypPbt28eAlcuhe4BHon2Os2L7/v5neKlPK8+7PCkpyen7szzaB3gcuuc4K3avIEuXLpUkNWjQgPeQOoL2AR6H9jnOiu1bsmSJtm/frjJlymjatGl2f0ZBQUF6/PHH9fvvv2vjxo2aPXu2/vOf/zh9n5ZH+wCPQ/scZ8X2SVLfvn117bXX6u2339amTZv0xx9/qGzZsrrzzjs1cuRIxcbGShIf2F4YLujekiVLXLCQC+rXr6/69evbvm7Tpo0aNGigIUOGKC4uTr1793bp/TmCASsGCg4OVkpKitLS0pzeV5UqVRQQEKDMzEzt379fLVq0yLdNZmamDh8+LEmqWbOm0/d5OXlviE9LS9P27dvVqFEjl+37888/V2Zmpho3bqxXXnlFvr72P3j+KcilS5fWQw89pIceekj79u3Tzz//rO+//15fffWVli5dqj179uidd95RiRIlJOUG7I477tAdd9yh5ORk/fzzz/rxxx/1+eef6/vvv9egQYP06aefqmLFik49ppo1a2rz5s3at2/fJbc5cOCAbVsUggv/AQTANWif46zYPriYC7rXt2/fIm2/c+fOQm0XHR2tEydOqGzZsurUqZPGjRunMmXKSJISEhLUs2dPu+39/PxUs2ZNJSYmSpL279+vrKysfG9Qyvs6MTGRASvwSHTPcVbv3uHDhzVo0CAdOnRITZo00dy5c/NNn0YhcMwHeBza5zirt68glStXVt26dfXrr79q+/btDFgpDNoHeBza5zirte/QoUM6ceKE/P39C/zk1rxPL9qyZYvatm0rSZoxYwb9uxzaB3gc2uc4q7WvsPz9/SVJ586dK/b78np0D/BItM9xVmxfrVq1bPeX17iLBQQESJKys7Odui8j0D7A49A9x1mxexc7deqUVq5cKUkFPgeKQqB9gMehfY6zYvt++uknSbkfQHqpIQA33nijNm7cqG3btjl1X8agfYDHoX2Os2L78jRu3FjTp08v8Lrdu3dLkku/l5blgu654oPQL6dt27YqU6aMtm3bpt69eys0NLTAnwmpqamqUaOGpAsDlS7e7tSpU8rOzrYbuFRUjGMzUJ06dSTlvpHOWSVKlLD9gMr7B/3F4uPjlZWVpZIlS9omYRWnhg0b2l5QWrBggUv3nTfdv0WLFvlCJEm//PJLofZTo0YN9erVSy+99JI++OAD+fj4aMuWLfr9998L3L5cuXLq3LmznnjiCX3xxReqWrWqUlJS9Nlnnzn8WPI0bdpUkrR9+3ZlZGQUuE3en23etrgMH1/nfgFwOdrnOCu2Dy7mbPeKoX0hISEaMmSInn/+ec2fP1+DBw/WihUrNGDAAGVmZkrKPeAqaPptaGiobVJt3u8XbxccHKwSJUrYrgc8Dd1znJW79+eff2rgwIFKSkpSo0aN9NZbbyk4ONhl+zeKB7YPMB3tc5yV2/dP8k4yOH/+/BW5P69H9wCPQ/scZ9X2ZWVl6a+//sr3K2/Ayt+v//snFuESaB/gcWif46zavn9y/PhxHT9+XNKFTwzEP+D5TsAj0T7HWbF9eSdo5OTk2B7fxfbv3y+J9hUK7QM8Dt1znBW7d7G4uDilp6crMDBQ3bt3d/n+jUD3AI9D+xxnxfadOnWq0NvmvQ8el0H7AI9D+xxnxfZdzrFjxxQfHy9J6ty5c7Hfn9fzsuc7ff43ECYiIsL2Ael5srOztXfvXtsHo1evXl3+/v75tsv7+uIPVC8Kiu8FSpUqJUk6e/asS/b3r3/9S5L04YcfKjk52en9de3aVZL0xRdf6MSJE/muf//99yVJN910k+2xFCdfX1+NGjVKkrR8+XJ98sknl73N//3f/+no0aOX3a5kyZKScn9AXywnJ0dvv/120RYrqW7duraTdv/888/Lbh8cHKy6desWevvL6dSpkwICAnTmzBktW7Ys3/Xr16/XgQMHFBgYqE6dOjl9fwBQGLSvaGgfvN2SJUuK9Oty6tevrwkTJqhDhw5q06aNhg0bpldffVW7du1SXFzcFXhEQNHQvaKhe0V37NgxDRw4UPv371fDhg319ttvFzhkCgCuFNpXNLTPtfbu3atdu3ZJ0hV58RQAJNpXVLSv8OrVq6edO3de8tfIkSMlSa1bt7Zd1qZNG6fuEwAKg/YVDe1zrTlz5ignJ0dhYWF8qh2AK4b2FQ3tK5oWLVqoUqVKkqSlS5fmu/7MmTP6/PPPJUnXX3+90/cHAJdD94qG7jknr3233HKLQkNDXb5/ACgM2lc0tK9oatasKSl3GEBqamqB26xbt06SbCfvA0Bxo31FQ/tc65VXXlF2draioqJ4j6eFrFu3TikpKWrcuLEkqV27dtq4caPdz4Rvv/1WZ86cUfv27SVJAQEBioqK0ooVK5STk2PbLi4uTmFhYWratKnD62HAiheoXr26JGnDhg0u2V+fPn1Uu3ZtJScn695779Vvv/1md/3x48c1d+7cQofqjjvu0NVXX63Tp0/r4YcfVkpKiqTcH86LFi1SXFyc/Pz89OCDDxZ5rR07dlTdunU1Y8aMIt2uW7du6t+/vyTpscce03PPPacDBw7YbXPu3Dlt2LBBQ4YM0ZNPPlmoKY6tW7eWlBve1atX2y4/deqUnnzySW3durXA2y1btkyvvvpqvilJWVlZmjt3rlJTU1WiRAnVr19fkpSQkKAnnnhCmzZtyvcpqt99953t74Ir3ghSrlw52/fqpZdespvatmvXLj311FOSpIEDB6pMmTJO358RfHyc+wWA9tE+u9u4un1wMWe75+OjJk2aFOmXI9q2basyZcpo27ZtkqTQ0FClpaXl2y41NVVhYWGSZPv94u1OnTql7Oxs2/WAs+ge3fs7V3cvOTlZgwcP1h9//KEGDRro7bff5g0nznJB+wDT0T7a93eubt/bb7+tZcuW5ft3fE5Ojr777jvdf//9On/+vBo2bKhWrVo5fX9GoHuA02gf7fs7nu/0ArQPcBrto31/5+r2vfXWW1q4cGG+P+9Tp07plVde0bx58yRJ0dHR8vf3d/r+LI/nOwGXoH207+9c3T5fX1+NHTtWkrRo0SKtXLnSdt3p06f15JNP6vjx4ypZsqTuvfdep+/P8mgf4DS6R/f+rjif79y9e7ftMdx+++0u3bdR6B7gNNpH+/7O1e3r2bOnfHx8lJKSooceekhHjhyxXXfmzBlNmjRJGzdulCT16tXL6fszAu0DnEb7aN/fFcdx3yeffKLdu3fbXZacnKyJEyfqo48+UnBwsP773/+65L4szwOf7xw/frymT5+ur7/+Whs2bNDs2bM1duxY1atXT926dZMk9evXT2FhYYqOjtaaNWu0fPlyPfPMM+rUqZPd37MHH3xQO3bs0BNPPKGNGzdqzpw5evfddxUdHa2AgACH1+jn9KNEsevZs6e++eYbzZs3T19//bUqVqwoX19f3XjjjRo2bFiR9xcYGKjZs2fr/vvv144dO9SrVy9VqVJF5cqV09GjR3X06FHl5OToX//6l8qVK3fZ/ZUsWVKxsbG699579f333+umm25SrVq1dOzYMR09elS+vr569tlnVadOHUcevsOefvppVaxYUbGxsVq8eLEWL16sypUrq3z58srIyFBSUpLOnDkjSWrQoEGhTjDr2LGjWrdurR9//FHDhw9X1apVFRYWpj179igjI0OTJk3ShAkT8t3uxIkTmjVrlmbNmqUyZcqoSpUqysnJUVJSkm265Pjx422fMpCVlaWlS5dq6dKlKlWqlKpXr66AgAD9+eeftqlknTp1sv0gcdZDDz2k3377TT/88IP69++vmjVryt/fXwkJCTp//ryuv/56jR492iX3ZQQfZlcBzqJ9jqF9hTdnzhzNnTvX9vXp06clSXPnztXixYttl0+cOFG33nqrS+7Tsrysez7/O/CLiIjI90RBdna29u7dq44dO0rKfVLI399fiYmJ6tChg227vNtFRERcoVXD6uieY+he4UyfPl0JCQm2+33ggQcuue3TTz9te5IU/8DL2gd4ItrnGNpXOLt27dLHH38sX19fValSRWXLllV2draSkpJ08uRJSbmfwDBr1iz5+vIzvVBoH+A02ucY2ge3oX2A02ifY2hf4Rw5ckQLFy7UCy+8YPv+ZGZmKjExUVlZWZKkwYMHa/DgwU7flxHoHuAStM8xtK/wevbsqd9++00LFizQqFGjbH8fEhMTdebMGQUEBOill15SjRo1XHJ/lkb7AKfRPcfQvaJbunSpJKlq1aqKiopy6b6NQvsAp9E+x9C+wmnQoIEeeeQRvfTSS1q/fr06duyoqlWrKjAwUPv379fZs2clSffee6/d+9nxD2gf4DTa5xjaV3hLly7VhAkTbGvLzMzUnj17lJ2drauuukqvv/46z3UWlgd2LzIyUnFxcVq4cKEyMjJUsWJF9enTRyNHjrQNRQkNDdWCBQsUExOjMWPGKDAwUF26dMn397lZs2aaNWuWpk2bpuXLlys8PFzjxo1z+rVgBqx4gS5duuiFF17QBx98oISEBCUlJSknJ0dVqlRxeJ/VqlXTxx9/rPfee08rV65UQkKCjh07pquuukpt27ZVly5dFB4eXuj9NWrUSMuXL9frr7+udevWadeuXQoJCVHnzp113333qVmzZkVe47lz53TixAlJcvgEr2HDhqlnz55asmSJvv/+e/3xxx/asWOH/P39ValSJTVp0kTdunXTDTfcYDvZ9p/4+vpqzpw5mjlzpj7//HP9+eefOnPmjNq0aaOhQ4eqdevWBcaoS5cuOn/+vDZu3KiEhATt3btXWVlZuuqqq3TDDTfonnvuUcuWLW3bX3PNNXr++ee1YcMG/fbbbzpy5IhOnz6tkJAQXX/99fr3v/+t2267zWUnAAQEBOjtt9/WO++8o08++UR79+6VJNWrV0+9evXS3XffrRIlSrjkvozgYUHauHGjBg4cmO/yvEjl2bdvn2JiYrRp0yYFBASoa9euevTRRxUUFGR3u7Vr12ratGlKSEhQhQoVNHDgQN6YBJejfbSvuNt39uxZ24TSiy/PexJSkjIyMlxyf5bmYd27lHXr1iklJUWNGzeWJLVr104zZ85UcnKy7QmYb7/9VmfOnFH79u0l5f4bKSoqSitWrNDQoUNt/8/ExcUpLCxMTZs2dctjgfXQPbpXnN37+2TrXbt2/eO2aWlpTt+fEbykfYAno320rzjbN2DAAFWsWFGbN29WUlKSdu7cqZycHJUvX17NmzdXly5d1KNHD/n58fJIodE+wGm0j/YV9/OdcDHaBziN9tG+4mxf3ocjbNu2TYcOHdLOnTvl4+OjSpUqqXnz5rrzzjvVvHlzp+/HGHQPcAnaR/uuxHHfE088oaioKL3zzjvavn27jh49qvLly6tLly66//77+ZCYwqJ9gNPoHt27Et3LysrSp59+Kknq3bt3ob4fuATaBziN9tG+4m7f0KFD1bJlS73zzjvavHmzDh8+bHuvS5MmTXTnnXeqbdu2LrkvI9A+wGm0j/YVd/v69u2r4OBg7dixQwkJCfL399e1116rTp06aeDAgQoJCXHJ/RjBA7s3fPhwDR8+/LLb1axZU2+99dZlt2vfvr3tXD9X8cnJyclx6R4BF4mPj1ffvn0VGRmp5cuX86QYvEap21536vbpn45w0Upy5Q1YiYmJUWRkpO3ykiVL6tprr5WUeyJljx49FB4ergcffFAnT57U5MmT1aJFC82YMcN2m/j4eN1zzz3q3r27evbsqa1bt2r69Ol6/PHHNWDAAJeuGzAR7YM3crZ7kuvbN378eFWtWlUNGzZU6dKlFR8frzlz5qhatWpasmSJAgIClJqaqu7du6ty5coaMWKEUlNTNXnyZDVp0kSzZs2y7WvLli3q37+/brvtNrv2PfLIIwwYA5xE9+CtPLF9ALwD7YO38tTnOy/GQGnA89A+eCvaB8BRtA/eiOc7ATiD9sEb0T4AjqJ78Fae9nwnAO9B++CtaB8AR9E+eCOe73QMH9EIj7Vp0yZJ0v3330+IABeIjIxU06ZNC7zu/fffV3JyspYuXary5ctLyh3AMmrUKG3fvl0NGzaUJMXGxqpOnTqaNGmSfHx8FBUVpaNHjyo2Nlb9+vWTv7//lXo4gCXRPsA18k4sWLhwoTIyMlSxYkX16dNHI0eOVEBAgCQpNDRUCxYsUExMjMaMGaPAwEB16dIl3+TWZs2aadasWZo2bZqWL1+u8PBwjRs3jhMOABege4BrcKId4D1oH+BaBQ2UzpOWlqZBgwYpPDxc06dPtw2UPn78eL6B0tHR0erevbsmTJigrVu3asqUKSpRogQDpQEXoH2Aa9E+wPPRPgCAaWgfAMAkdA8AYBraBwAwDe0DzMGAFXisTZs2qUqVKrr11lvdvRSgaHx8nbp5fHx8kbZv0qSJU/cn5Z5AFxUVZRuuIkkdO3ZUUFCQVq9erYYNGyozM1MbNmzQ2LFj7f6B2KNHDy1atEhbtmxR69atnV4LYDLaB6/kZPeKw/DhwzV8+PDLblezZk299dZbl92uffv2at++vSuWBuBv6B68lge2T+JEO8Ab0D54LQ9tHwOlAc9H++C1aB8AB9E+eCUP7R4A70D74JVoHwAH0T14LdoHwEG0D16L9gFwEO2DV6J7DmHAihc7duyYRo8eXaTbvPfee8W0Gtd7/fXX3b0EwDFOTqfr27dvkbbfuXNnobaLjo7WiRMnVLZsWXXq1Enjxo1TmTJlJEkJCQnq2bOn3fZ+fn6qWbOmEhMTJUn79+9XVlaWIiIi7LbL+zoxMZEBKyh2tA/wQExlBYoN3QM8lIe2jxPtYAW0D/BQTraPgdLApdE+wEPRPqDY0D7AA3no852AVdA+wAN5WPs2btyogQMH5rs8MjJScXFxtq/37dunmJgYbdq0SQEBAerataseffRRBQUF2d1u7dq1mjZtmhISElShQgUNHDhQgwcPLu6HAUiie4DH8rD2AVZC+wAPRfuAYkP7AA9E9xzCgBUvlpGRoZ9//tndywBwMQ+b+BUSEqIhQ4aodevWCgoKUnx8vN5880398ssvWrp0qQICApSamqqQkJB8tw0NDdXJkyclyfb7xdsFBwerRIkStuuB4kT7AA/kYd0DrITuAR7KBe270ifbcaIdvAXtAzyUk+1joDRwabQP8FC0Dyg2tA/wQLzWBxQr2gd4IA9tX0xMjCIjI21flyxZ0vbfaWlpGjRokMLDwzV9+nSdPHlSkydP1vHjxzVjxgzbdvHx8YqOjlb37t01YcIEbd26VVOmTFGJEiU0YMCAK/p4YCa6B3goD2sfw8VgJbQP8FAe1j7ASmgf4IHonkMYsOLFqlatWug3WwHwHkuWLHHp/urXr6/69evbvm7Tpo0aNGigIUOGKC4uTr1793bp/QHFifYBAExC9wDrKo6T7TjRDlZA+wAUBgOlYSW0D0Bh0D5YCe0DAJiG9gEorMjISDVt2rTA695//30lJydr6dKltg9UKFmypEaNGqXt27erYcOGkqTY2FjVqVNHkyZNko+Pj6KionT06FHFxsaqX79+8vf3v1IPB4aiewCKguFisALaBwAwDe0DYBUMWAEAV/vbJ307wtlPJi+Mtm3bqkyZMtq2bZt69+6t0NBQpaWl5dsuNTVVNWrUkCSFhYVJUr7tTp06pezsbNv1AADDONk9AAC8joe1jxPtAADFzsn2MVAaAOB1aB8AwCQe9nwnAADFzgXti4+PL9L2zr4ndO3atYqKirINV5Gkjh07KigoSKtXr1bDhg2VmZmpDRs2aOzYsfL522Ps0aOHFi1apC1btvBhCgBgKg897mO4GACg2HhY+zZu3KiBAwfmuzwyMlJxcXG2r/ft26eYmBht2rRJAQEB6tq1qx599FEFBQXZ3W7t2rWaNm2aEhISVKFCBQ0cOFCDBw8u7ocBAPBUHtY9b8GAFQBwMR8vClLeWiMiImyfWp4nOztbe/fuVceOHSVJ1atXl7+/vxITE9WhQwfbdnm3u/hTzgEAZvCm7gEA4AquaJ8rT7bjRDsAQHFztn0MlAYAeBvaBwAwCa/1AQBM44r29e3bt0jbF+aTnaOjo3XixAmVLVtWnTp10rhx41SmTBlJUkJCgnr27Gm3vZ+fn2rWrGl7/+b+/fuVlZWV732ceV8nJiYyYAUADOVs+670YDGJ4WIAAOd46nOeMTExioyMtH1dsmRJ23+npaVp0KBBCg8P1/Tp03Xy5ElNnjxZx48f14wZM2zbxcfHKzo6Wt27d9eECRO0detWTZkyRSVKlNCAAQOu6OMBAHgGT+2ep2PACgC4mDcEad26dUpJSVHjxo0lSe3atdPMmTOVnJyscuXKSZK+/fZbnTlzRu3bt5ckBQQEKCoqSitWrNDQoUNtjzMuLk5hYWGXnCANALA2b+geAACu5Ir2FffJdpxoBwBwJW867mOgNADAFWgfAMAkntg9PtEVAFCcPK19ISEhGjJkiFq3bq2goCDFx8frzTff1C+//KKlS5cqICBAqampCgkJyXfb0NBQnTx5UpJsv1+8XXBwsEqUKGG7HgBgHmfbVxyDxSSGiwEAio+nHffliYyMvOS5d++//76Sk5O1dOlS24CxkiVLatSoUdq+fbsaNmwoSYqNjVWdOnU0adIk+fj4KCoqSkePHlVsbKz69esnf3//K/VwAAAewlO75+kYsAIAruZhPRo/fryqVq2qhg0bqnTp0oqPj9ecOXNUr149devWTZLUr18/LV68WNHR0RoxYoRSU1M1efJkderUSY0aNbLt68EHH1T//v31xBNPqGfPntq6daveffddPfLIIwoICHDXQwQAuJOHdQ8AgGLnRe3jRDsAgEt4QfsYKA0AcCnaBwAwiQd3j090BQAUCxe0b8mSJc7v5H/q16+v+vXr275u06aNGjRooCFDhiguLk69e/d22X0BAAzlYcd9DBcDABQ7J9sXHx9fpO1d8YF7a9euVVRUlG24iiR17NhRQUFBWr16tRo2bKjMzExt2LBBY8eOtTuZvkePHlq0aJG2bNnCcDEAMJGHHfN5CwasXEKpZiPdvQQUoxM/xbp7CShGJfnJZifvE3wWLlyojIwMVaxYUX369NHIkSNtQ1FCQ0O1YMECxcTEaMyYMQoMDFSXLl00YcIEu301a9ZMs2bN0rRp07R8+XKFh4dr3LhxfLKPRdA+a6N91kX3AMfRPuuie9ZG+y6PE+1wKbTPumiftdE+ewyURmHRPWs79sOMy28ErxUcyLs//o72obBon7Vx3GddHPNdGp/oisuhfdZG+6zLCu1zxclz/6Rt27YqU6aMtm3bpt69eys0NFRpaWn5tktNTVWNGjUkSWFhYZKUb7tTp04pOzvbdj28G+2zLrpnbd7ePlcOFpMYLobCo3vWRvuszdvb17dv3yJtv3PnzkJtFx0drRMnTqhs2bLq1KmTxo0bpzJlykiSEhIS1LNnT7vt/fz8VLNmTduH5O3fv19ZWVn5Piwv7+vExEQGrHg52mdttM+6vL17puKPDQBc7O9TID3B8OHDNXz48MtuV7NmTb311luX3a59+/a2E/AAAPC07gEAUNw8rX2caAcAKG6e1j4GSgMAihvtAwCYxBXd4xNdAQDexNOO+f5J3lojIiJsJ9Tlyc7O1t69e9WxY0dJUvXq1eXv76/ExER16NDBtl3e7S4+AQ8AYA5n21fcg8UkhosBAFzL0477QkJCNGTIELVu3VpBQUGKj4/Xm2++qV9++UVLly5VQECAUlNTFRISku+2oaGhOnnypCTZfr94u+DgYJUoUcJ2PQDALJ7WPW/BgBUAcDGCBAAwCd0DAJjG09rHiXYAgOLmae1joDQAoLjRPgCASVzRPT7RFQDgTTztmK8g69atU0pKiho3bixJateunWbOnKnk5GSVK1dOkvTtt9/qzJkztuO7gIAARUVFacWKFRo6dKjtccbFxSksLExNmzZ1y2MBALifN7QvD8PFAACu4Gz7lixZ4qKV5Kpfv77q169v+7pNmzZq0KCBhgwZori4OPXu3dul9wcAMIs3HfN5EgasAICLESQAgEnoHgDANJ7WPk60AwAUN09rHwAAxY32AQBM4ond4xNdAQDFydPaN378eFWtWlUNGzZU6dKlFR8frzlz5qhevXrq1q2bJKlfv35avHixoqOjNWLECKWmpmry5Mnq1KmTGjVqZNvXgw8+qP79++uJJ55Qz549tXXrVr377rt65JFHbB/MAAAwj6e1ryAMFwMAuJKz7WvSpImLVnJpbdu2VZkyZbRt2zb17t1boaGhSktLy7ddamqqatSoIUkKCwuTpHzbnTp1StnZ2bbrAQBm8YZjPk/EgBUAAAAAAAAAAAAAAAAAAFBkfKIrAACOi4yMVFxcnBYuXKiMjAxVrFhRffr00ciRI21DUUJDQ7VgwQLFxMRozJgxCgwMVJcuXTRhwgS7fTVr1kyzZs3StGnTtHz5coWHh2vcuHEaPHiwGx4ZAAAFY7gYAAAX5J0UHxERocTERLvrsrOztXfvXnXs2FGSVL16dfn7+ysxMVEdOnSwbZd3u4iIiCu0agAAvB8DVgDAxZj4BQAwCd0DAJiG9gEATEP7AACmoX0AAJO4ont8oisAwJt42jHf8OHDNXz48MtuV7NmTb311luX3a59+/Zq3769K5YGALAIT2sfw8UAAMXN09pXkHXr1iklJUWNGzeWJLVr104zZ85UcnKyypUrJ0n69ttvdebMGdsxXkBAgKKiorRixQoNHTrU9jjj4uIUFhampk2buuWxAADcyxu654kYsAIArkaPAAAmoXsAANPQPgCAaWgfAMA0tA8AYBIv6x6f6AoAcJqXtQ8AAKd5WPsYLgYAKHYe1r7x48eratWqatiwoUqXLq34+HjNmTNH9erVU7du3SRJ/fr10+LFixUdHa0RI0YoNTVVkydPVqdOndSoUSPbvh588EH1799fTzzxhHr27KmtW7fq3Xff1SOPPGIbVAYAMIyHdc9bMGAFAFyMiV8AAJPQPQCAaWgfAMA0tA8AYBraBwAwibd0j090BQC4ire0DwAAV6F9AADTeFr7IiMjFRcXp4ULFyojI0MVK1ZUnz59NHLkSNtQlNDQUC1YsEAxMTEaM2aMAgMD1aVLF02YMMFuX82aNdOsWbM0bdo0LV++XOHh4Ro3bpwGDx7shkcGAPAEntY9b8GAFQAAAAAAAAAAAAAAAAAA4HZ8oisAAAAAAAAAqxg+fLiGDx9+2e1q1qypt95667LbtW/f3jZkGgAAOIYBKwDgYkz8AgCYhO4BAExD+wAApqF9AADT0D4AgEk8sXt8oisAoDh5YvsAAChOtA8AYBraBwAwCd1zDANWAMDFCBIAwCR0DwBgGtoHADAN7QMAmIb2AQBM4ond4xNdAQDFyRPbBwBAcaJ9AADT0D4AgEnonmMYsAIALkaQAAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXuOYcAKALgaPQIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuOcTX3QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOLi5+4FAIDV+Pgw8gsAYA66BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65xgGrACAixEkAIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5jGLACAC5GkAAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7jvF19wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLj4uXsBAGA5DPwCAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7jmEASsA4GI+PhQJAGAOugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucYBqwAgIsRJACASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieY3zdvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKC5+7l4AAFgNE78AACahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe45hwAoAuBhBAgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO45hgErAOBq9AgAYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65xAGrACAizHxCwBgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnGF93LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAioufuxcAAFbDxC8AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonmMYsAIALkaQAAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXuOYcAKALgaPQIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuOcTX3QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOLi5+4FAIDV+Pgw8gsAYA66BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65xgGrACAixEkAIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5jGLACAC5GkAAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7jmHACgC4GEECAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7jnG190LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDi4ufuBQCA5TDwCwBgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnEAasAICL+fhQJACAOegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieYxiwAgAuRpAAACahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe47xdfcCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKC4MGAFAFzMx8e5XwAAeBNnu1fc7Tt37px69OihunXr6rPPPrO7btu2bbr77rvVpEkT3XDDDZo2bZrOnTuXbx/Lli1Tt27d1KhRI3Xr1k2ffvpp8S4aAODRPL19AAC4Gt0DAJiG9gEATMLznQAA09A+AIBp6B4AwDS0DwBgEk9/vtNTz+vzc3oPAAA7PhxNAQAM4undW7hwoU6cOJHv8qSkJA0ePFgtWrTQ66+/rn379mnKlCnKyMjQY489Zttu5cqVevTRRzV06FC1a9dOa9as0SOPPKLSpUurU6dOV/KhAAA8hKe3DwAAV6N9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYxNO756nn9TFgBQBczMN7BACAS3ly944cOaLY2FhNnDhREyZMsLtu7ty5CgoK0owZMxQYGKjrr79eZ8+e1csvv6yhQ4eqQoUKkqTp06fr5ptv1qOPPipJioqK0t69ezV9+nQGrACAoTy5fQAAFAfaBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASTy5e558Xh8DVgAAAAC4VXx8fJG2b9KkSaG2e+GFF9SxY0e1bNky33Vr165V586dFRgYaLuse/fumjx5stavX69evXopKSlJiYmJGjVqlN1tb7vtNj300EM6ePCgqlSpUqS1AwAAAAAAAAAAAAAAAAAAAAAAAADgbiae18eAFQBwMR9PHvkFAICLuaJ7ffv2LdL2O3fuvOw2a9eu1fr16/XFF18oMzPT7rr09HQdPHhQERERdpdXqFBBZcqUUWJioiTZfr94u7yvExMTGbACAAbimA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASTivjwErAOAROA4DAJjEFd3LcX4XdjIyMvTcc89p5MiRCg8PV1JSkt31qampkqSQkJB8tw0NDdXJkyclyfZ7aGio3TZhYWF21wMAzMIxHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACTcF6fYxiwAgAu5uvLkRgAwByu6N57S5a4YCUXzJ49W/7+/howYIBL9wsAgMQxHwDAPLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACTcF6fYxiwAgAuxqRLAIBJXNG9Jk2aOL+T/zl48KDmzp2rqVOnKj09Xenp6Tp16pQkKT09XWlpabYJl2lpaflun5qaaptkmfd7amqqrr76ats2eRMu864HAJiFYz4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJuG8PscwYAUAAACAZSQlJSkzM1OjR4/Od92TTz6p559/Xlu2bFHlypWVmJhod/1ff/2llJQURURESJJq1aolSUpMTFSdOnVs2+XdLm87AAAAAAAAAAAAAAAAAAAAAAAAAABM5S3n9fk6fEsAQIF8fHyc+lWczp07px49eqhu3br67LPP7K7btm2b7r77bjVp0kQ33HCDpk2bpnPnzuXbx7Jly9StWzc1atRI3bp106efflqsawYAeDZnu+fq9tWrV08LFy60+/XKK69IkqKjozVnzhxJUrt27bRq1SplZGTYbhsXFyc/Pz+1bdtWklStWjXVqlVLK1assLuPuLg4RUZGqkqVKi5dOwDAO3ha+y7GcR8AwNU8uXsS7QMAuJ4nt4/uAQBczdOf7wQAwNVoHwDANHQPAGAa2gcAMImnPd/pLef1+Tl8SwBAgTz5WGrhwoU6ceJEvsuTkpI0ePBgtWjRQq+//rr27dunKVOmKCMjQ4899phtu5UrV+rRRx/V0KFD1a5dO61Zs0aPPPKISpcurU6dOl3JhwIA8BCe1r3Q0FC1adPG7rKkpCRJUu3atdWyZUtJ0n333afly5drzJgxGjRokPbt26dXX31Vd999t8LDw223HT16tMaOHaupU6fqxhtv1Nq1a7Vq1SrFxsZeuQcFAPAonta+i3HcBwBwNdoHADCNJ7eP7gEAXM2TuwcAQHHw9PadO3dOvXr10q5du/TKK6/o1ltvtV23bds2TZo0Sb/++qtCQkJ0++23a9SoUfLzsz8dYNmyZXrjjTd04MABVatWTQ888IBuu+22K/1QAAAewtPbBwCAq9E+AIBJPK173nJeHwNWAMDFPHVa5ZEjRxQbG6uJEydqwoQJdtfNnTtXQUFBmjFjhgIDA3X99dfr7NmzevnllzV06FBVqFBBkjR9+nTdfPPNevTRRyVJUVFR2rt3r6ZPn86bLgHAUJ7avcupVq2a5s+fr0mTJmn48OEKDQ3VgAEDNGrUKLvtunbtqoyMDM2ePVvz589X1apV9eKLL+rmm29208oBAO7mye3juA8AUBxoHwDANJ7aProHACgOnto9AACKi6e3j8GaAABX8/T2AQDgarQPAGASb+2eu8/rY8AKAHiY+Pj4Im3fpEmTQm33wgsvqGPHjrYJX3+3du1ade7cWYGBgbbLunfvrsmTJ2v9+vXq1auXkpKSlJiYmC9Qt912mx566CEdPHhQVapUKdLaAQC4EqpWraqdO3fmu7xx48Z67733Lnv7nj17qmfPnsWwMgAAXIvjPgCAJyqu5zsl2gcA8Ey81gcAAAAAcASDNQEAJjp37px69eqlXbt26ZVXXtGtt95qu27btm2aNGmSfv31V4WEhOj222/XqFGj5OdnfyrcsmXL9MYbb+jAgQOqVq2aHnjgAd12221X+qEAAAAAAArgief1MWAFAFzM2Ylfffv2LdL2BYXlYmvXrtX69ev1xRdfKDMz0+669PR0HTx4UBEREXaXV6hQQWXKlFFiYqIk2X6/eLu8rxMTE3nTJQAYyFsnXQIA4ChXtK84TrbjuA8AUFw88flOifYBAIqPJ7aP7gEAiguv9QEATOOpr/VJDNYEABQPTz/uW7hwoU6cOJHv8qSkJA0ePFgtWrTQ66+/rn379mnKlCnKyMjQY489Zttu5cqVevTRRzV06FC1a9dOa9as0SOPPKLSpUszXAwADOXJ7WOwGADA1Ty5e56MASsWdGOLSK2cOybf5b8mHFLLO16wu6zPLc01ZkBH1Y+orLOZWYrfkaQhTy3Qkb9SbdsM6nmdRvRrr4hqFZR2+qzW/5ygiTM+1R8Hjxf7Y4HjftjwvWJfm66dO35X6eBgdep8s8Y+/IhCQkLcvTTL87QeZWRk6LnnntPIkSMVHh6upKQku+tTU3P/fy/o70ZoaKhOnjwpSbbfQ0ND7bYJCwuzux640grTvcK2sVa1qzR2YGe1bFBDDWtX1qFjKbr21meKb/Fwma++/EKffbZcv//6q1JSTqhylarq2ft23X3PAPn7+7t7eZbmad0DTFCYrn05Z4zatYws8PZPv7ZMU+d9JUlqXr+6ht1xo1o1ukbX1qyo9T8nqsv9rxbf4uFSX6z4XAvnv63EhN0KCAjUtfXq6YUXX1KFCuHuXpqluaJ9rj7ZjuM+WJ0r2yfl9m/KuN5qVq+6Tp5K14JPNijmjc+VnX2+eB4AnPbTjxt1370D810eUTtSHy2Lc8OKzOKJx320D1ZH+8xzYP8+LVrwtrZv26aEhF0KDw9X3Bff5Nvu/XcX6YP3FuvwoUMKD6+oPn3v0oDBQ3izhIt52reT7sHqCvs6XvebGumRe2/RtbWu1tnMc9r86z49G7tcW3cdtLudv18JPTy4s/r3aKNqV5dV8skzWvXDDt0/cVGxPxY4Z/++fXpxUow2b9qkwMAA3dKlqx4a/6iCgoLcvTRL87TuXYwTDmBFrj7mk6Rhd9yo+++4UbWrV1DambPatH2f7nx4jrLOZbv+AcAl6J77eOJrfRKDNWFtrm4f5zZ4n6+/WqlFC+bpj717dPr0aYVXrKgOHTtr+APRCv3fc1MoPp583HfkyBHFxsZq4sSJmjBhgt11c+fOVVBQkGbMmKHAwEBdf/31Onv2rF5++WUNHTpUFSpUkCRNnz5dN998sx599FFJUlRUlPbu3avp06czYAVu46rnPH19fTSmf0f968aGurbW1Qr099OOvUf00tsr9dmabVfs8cAx+/ft04L5b+W+/rd7l8LDK2rFV/lf/4PreXL7GCwGKyrK+eySVKKErza8O0GN6lTRwMfm6cMvNxe439Dgkvrlo6dVqUKY2g+cqh+3/eHqpcNBhW3cu+8s0nvvLNbhQwcVXrGi+t55lwbdO5T3uLgY307HMGDFwh74zzv6PfGw7eszZ+2fcB8zoKP+O+o2TV+4Sk++ukylSwXqhuYRCgy4cBLy4F7X6fWJ9+i1xd/osVc+Uni5ED094lbFzRqpVne+oPSzWVfs8aDwNv30o6KH36dON9+iEdEjdeTIEb02/WX9sXev5s5bSICKmbPf3yVLlrhoJblmz54tf39/DRgwwKX7BTzN5bpXmG3qR1RStxsbaNP2ffLxkcqG8qYFb7Fg/tuqXKWKxo57ROXLl1f8L1s087Xp2r1zp2Imveju5Vka/64A3OefujZm0gcKLV3Sbvu7bm2tB+5spy/W/2q77LomtXRji9ra9Os+lQzgKQJvsmD+23pt2isadO8QjX14vNLT0/Xzpp+UkZHh7qVZnie2j+M+mMIV7ateqZw+nz1K3/+SqD4PvaGIahU06aFeKlXSX4+98nHxPwg45Zn/xqh27Qtvri1ZsuQ/bA1X8bTnOyXaB3PQPnMkJiZo3ZrVatCosaQcpabmH3Qx983X9ebrsRo8dJiat2ipLT9vVuxrryg9/YyGR4/Kv1M4zNPaR/dgin/qXsc21+qDl+/X+59v0n9f/0ylSwXo0aFd9Pkbo9XyjuftPkTo3an3qWWDGpo85wv9mnhIFcuF6Lqmta7oY0HRpaWl6f4hg1QhPFxTp03XyZMnNXXKZB0/flyvvDrD3cuzNE98vvPvOOEAVuaKYz5JmjbhDt3dvbVeenulfti6V2VDgtTpumtVooQvA1Y8FN1zL09sH4M1YQpXtI9zG7xT6smTatWqtQYPGarg4BDt3r1Lb8yK1a6dOzTn7QXuXp7lOdu++Pj4Im3fpEmTQm/7wgsvqGPHjmrZsmW+69auXavOnTsrMDDQdln37t01efJkrV+/Xr169VJSUpISExM1apT9c+S33XabHnroIR08eJDhYnArZ5/zLBXor0eGdtE7yzdq+sJVysw6pz5dmuv/pg/XsGcWa9GnP7jjYaGQEhN3a+2a1WrYqLFycnKUlpp6+RvBJTzxuE9isBisrzDn9UnSyLtv0lVlgy+7v2cf7OGytcG1CtO4N2fP0uxZsRpy3zC1aNlKP2/epNemv6L09HSNeJD3uLiSp3bP03H2lIX9nnj4klO5alW7Sv8ddZvGv/R/mvPhetvlK9Ztt9uuX9dWWrtptya8/JHtsj+Pp+mLN0erZYNrtG7z7mJZO5zzxuszVbt2pKZMnWb74RhWpozGjR2ltWtWq/1NHdy8QmtztkdFeVLxcg4ePKi5c+dq6tSpSk9PV3p6uk6dOiUp91MN0tLSbC+6paWl5bt9amqq7cW1vN9TU1N19dVX27bJe9EtjAnicLN/6l5ht/lszXbFrc6d5vzak/10y/X1XLhCFKfXZs5WuXLlbF+3bhOlnJwczZzxqh4a94jKX3WVG1dnbRyHAe7zT13bsedIvstefrSPtu06qO27D9kum/X+Gs18b7UkaVlstEoG+ue7HTzP/n379Nq0VzTh8SfUt9/dtss51rsyXNE+V55sx3EfTOKK9j08uLNOp2forvFzlZF5Tt9u3KmgkgF6bvRtmrbga/15PP//J/ActWtHqnGTpu5ehnE86flOifbBLLTPHO3ad9BNHXLf8PbCc8/o++/W2V1/9uxZzX9rju64825Fj8z95Keo69oqLS1V89+eo7539VfZsmWv+LqtypPaR/dgkn/q3p1dW2r/4WQNfXqh7bKtuw7q97j/qPN19bR4+UZJ0j092qjL9fV13d0v6teECz1c+tWWYl07nPd/S97XiRPJenfJUpUvX16SFBhYUuPGjtJvv25X/QYN3bxC6/Lk1/o44QBW54pjvhta1NYD/drr3yNnaeV3v9kuX756q8vXC9ehe+7laa/1SQzWhDlc0T7ObfBOvfvcYfd1q9ZtFBgQqP8++7QOHzqkSpUru2llZnC2fX379i3S9jt37izUdmvXrtX69ev1xRdfKDPT/uTb9PR0HTx4UBEREXaXV6hQQWXKlFFiYqIk2X6/eLu8rxMTExmwArdy9jnP9Iws1e/+jFLS0m3brPphh6pXKqeHBnViwIqHa39TR3Xo2FmS9Nx/Jur79esvcwu4irPtK67hYgwWg9UV5ry+KuFl9MSwrnroxQ/11nMDL7ld02urauC/ozT+pf/T6xPvcfFK4azLNe7s2bN6e+4c3XnX3Ro5eqwk6brr2yotLU1vz31T/e6+R2XLlrt4t3CQJ7/W58kYsGKoQf++TplZ2Zr/8YZ/3M7fr4ROpJ6xuyz1VO6Bma8v/9d5qm1bt6pvv352k6euv76tJOnbb77mpDuDJCUlKTMzU6NHj8533ZNPPqnnn39eW7ZsUeXKlW1PMOb566+/lJKSYnuCsVat3E/1SkxMVJ06dWzbXeqJScAb5eTkuHsJcNDfh6vkqd+ggSTp6LGjDFgBYLyI6hXUsuE1enL6J3aX0z7v9MnHS+Xv769evfu4eylwkCtPtuO4DyjYpdr3rxsa6NNvtyoj85ztsg9W/KQXx/VW5+vr653/nZQHwHPRPqBgtM+7+fr6/uP1exJ3Kz39jKL+93pfnqjr2uqDdxdrw3fr1K37bcW5RLgJ3QNy+fv56tQZ+xNtUk+dlWT/3pX7bm+rtZt32w1XgXdYv26tWreJsp1kLkk3deiooKAgrV2zmhPNPRwnHADF71LHfPfdfoN27ztqN1wFno/ueT8GawLF71Lt49wG68j7mXTu3LnLbAkrysjI0HPPPaeRI0cqPDxcSUlJdtenpqZKkq2BfxcaGmprW97voaGhdtvk/f3Kux7wRIV5zvP8+Ry74Sp5tvx2QC361Cj+RcIpl3v9D56rOIaLMVgMyPXSI7frszXbtH5zwiW38fHx0Ywn+2nG4m+VuP+vK7g6FNblGpeYkPsel+uuv8Hu8uuub6v33lmk79avU/ce/y7OJQKXxYAVC1sybZiuKhOsv1JOKW71Nj392jLbE4pRTWpp5x9/qn+PNnrs/n+pcoUw/bbnsJ5+7VO7F9ve+ug7vT7xbvX9VwutWPerwsuH6PkxPbXl9wNa//OlIwb3KlHCV/7+AXaX+fn7y8fHR4kJ/LkVNx8PGvlVr149LVy40O6yv/76Sw8//LCio6PVtm3uG3HbtWunVatW6bHHHrO9+SQuLk5+fn62bapVq6ZatWppxYoV6tq1q21/cXFxioyM5CAMbvdP3SvKNrCOzZs2yd/fX9WqVXf3UizNk7oHmKYoXburWytlZ5/XBys2XeFVojjE/7JFNWvV1KfLPtGcN17X0aN/KiKitsY8PE433Nje3cuzPE9rH8d9MImz7StV0l81KpfXzr32n4D35/E0HU85rWtrVizW9cN5Y0ZFK+XECZUpW1YdOnTSmIfGKaxMGXcvy/JoH+A+tA95fH1LSJL8/f3tLg8IyH09MDGRT+Z1JU9qH92DSf6pewuW/aDlMx/UqHs6aNGnPyg4KFAxY3rqwOFkLVuVO9jBz89XzetX11tLv9NL429X/9vaqGSAv9Zu2q1xU/5PCfuPuvPh4TISExPU47aedpf5+fmpxjU1tWdPYsE3gku4onuccAA4xhWv9UU1qaktvx/QhPu6aES/9iobGqTNv+7ThJc/0k/b912JhwEH0D338qRjPonBmjCLK9rHuQ3eLTs7W+fOnVPC7l2a/XqsbmzXXtWq8/7O4uZs+5YsWeKilVwwe/Zs+fv7a8CAAS7fN+BJnH3O81JuaFE73+t/AC7wtOM+BovBFJc75rv5+nrqFHWtmvR6TgH+lx5tcF+ftgovH6opb3+plg2uuQIrh6v5lrjMe1w4x92lPK173sKjB6z89ttv+vbbb7Vnzx6lpKRIksqUKaNatWrppptuUoMGDdy7QA+Veipd0xeu0tpNu3XqTIZaN6qh8UNuUZvGNdX2ninKzDqniuVDVDm8jJ4ecauefPUTHT2ephH92uv/pg1Xm36T9Pue3AOtd+N+VKC/n+b8d4AtWj//tl//fnCmsrPPu/Nh4h/UqHGNtm21P6Devm2rcnJydPJkinsWZRBP6lFoaKjatGljd1negVjt2rVtn/Jz3333afny5RozZowGDRqkffv26dVXX9Xdd9+t8PBw221Hjx6tsWPHaurUqbrxxhu1du1arVq1SrGxsVfuQVkc7Su6wnSvMNvAWhITEvTu4oW6/Y47FRwc7O7lWJondQ/eh+45xpGu9evaSus279bBoylXfsFwub/+Oqajf/6p12e+pjEPj1f58lfpvXcWa8zIaH2w9BPVrh3p7iVamqe1j+M+70L7HOOq9pUNCZKkAj/dJyX1jMqGli62xwDnBIeEaODgIWrZqrWCgoK0bWu83p77puLjf9F7S5baXnhD8aB9cAbtcwztw8WqVa8uX19fbd+2VVHXtbVdvn3bVklSKm+WcylPah/d8z60r+gK0701P+1Sv/FzNO/5QZoy/nZJ0t6kv9TtgVid/N8nlZcPK60Afz/179FGvyUe1r1PLFDJQH89+2B3LZ8Vraa9Y5SRyWuCniotNfWybx5H8fCk7uXhhAPvQfcc48rX+iqWD1WnqGtVP6KSxk5aorMZWXrs/n9p+ayRavTv/+jYiVNX6FGhKOiee3la+xis6V1on2Nc2T7ObfBu7du2UVpamiTpuutv0JSXp7t3QYZwtn1NmjRxzUL+5+DBg5o7d66mTp2q9PR0paen69Sp3H+3pqenKy0tzfZvpby/L3+XmppqO67L+z01NVVXX321bZu8f1PlXQ/H0T7HuOo5z4L079FGbRrX1F3j516phwN4HWfb5+rhYgwW8y60r+gK073AAD9Nm9BXL7y5Qkf+SlX1SuUK3FeFssF69sEeevC595R+NusKPxK4SvX/vcdl29Z4XXf9hfe45J3zznOgruVpz3d6C48csJKenq4JEyZo5cqVCgoK0jXXXGM7sN27d6++/fZbxcbGqnPnzpoyZYpKlSrl5hV7lvidSYrfeeGF5XWbd2vL70n6bPZI9f1XCy1evlG+vr4KKV1SAx57W1+u/02StHbTbv22/FmNu/dm3ff0IklS95sa6aVHbtf0hav09YYdqlg+RI8P66qPZ4xQ56HTdTaDSHmiu/oP0FOPT9C8t+aoZ+/bdeTIET3/3H9UokQJ+fr6unt5lueNE7+qVaum+fPna9KkSRo+fLhCQ0M1YMAAjRo1ym67rl27KiMjQ7Nnz9b8+fNVtWpVvfjii7r55pvdtHLroH2OK0z3CrMNrOPEiWSNHf2gqlWvrjEPjXP3cizPG7sH96N7zilq11o3ukYR1StoyttfXumlopicP5+jM2fOaMrL03Vju/aSpFatWuvWrjdr3ltz9PykKW5eobV5a/s47nMv2ucc2od69eqrXr36tq9btW6jevUb6IH7h2jFZ3H6d6/eblyd9dE+OIL2OYf24WKlSwerx797adGCt1U7so5atGilnzdv0ruLF0iSfHx4/c+VvLF9dM/9aJ/jCtO91o2u0dznBuqDLzbro69+VnBQoB4e1FnLYkeow+BXdDQ5zfZeCF9fH90+ZraOp5yWJO3ce0Q/L31Kd3ZtqYXLfnDLYwQ8mSu6xwkH5qF7znHlMZ+vr49CSpdU+4FTbR+qt+nXfdrx2X/0QL/2eu71z4r3wQBeyNOO+Ris6R1on3Nc2T7ObfBuc+ct0tmz6dq9e5fmvPG6Rj/4gN6YO08l/vfp5igenta+pKQkZWZmavTo0fmue/LJJ/X8889ry5Ytqly5shITE+2u/+uvv5SSkqKIiAhJUq1atSRJiYmJqlOnjm27vNvlbYeio33OcdVznhdr07imXn38Ti34ZIM+WfXLFXxEgHdxtn2uHC7GYDHvQfscV5juPTq0izLPndPM91b/474mPdxLP/+2n855udKlg3Vbz15aOP9tRdapoxYtW+vnTT/pnUW573Hx9fWsYxRv52nHfN7CIwesTJkyRZs3b9aMGTPUsWPHfE+YnD9/Xt98842effZZTZkyRc8884ybVuo9vtm4Q8dTTqtFgxpavHyjUlLPSJLW/LTbtk3WuWxtiN+jerUq2S6LfeouLfp0o56JXW677Mdte/V73H/Uv0cbzf2/9VfuQaDQuvf4txITEjRzxqua/spUlShRQnfedbcCAvxVunSwu5cHN6tatap27tyZ7/LGjRvrvffeu+zte/bsqZ49exbDysxG+1zr4u45ug28z+nTp/Tg8Pt1LitLb81fqKCgIHcvCUAB6J7r/VPX7urWSulnM/Xx17+4Z3FwubxP22zV+sIb7fwDAtS0WXMlJiS4a1nwIBz3eR7a53qOtC8lLfcTfsqE5H9xs0xokE6kni629cL1rru+rcLCyujX7dsYsALa54Fon+vRPjw0boKSjx/XuDEPSpJKly6t0Q89okkxz+qqChXcvDpcSXTPM9E+17q4e69MuEM/xO/R6Offt22z5qfd2vn5fzWqfwc9/dqnSkk7o/Pnz+vX3Ydsw1Uk6fc9R3Tkr1TVj6hU0F3BQ4SEhl7yzePVa9Rww4pQFJxwYB6653qOvtZ3IvWMcnJkG64iSX+dOKVfdx+ifR6M7sERDNZ0L9rneo62j3MbvNu19epJkpo2a66619bTgLv66puvv9LNXf7l5pXhSqpXr54WLlxod9lff/2lhx9+WNHR0WrbNvcT7tu1a6dVq1bpscceU2BgoCQpLi5Ofn5+tm2qVaumWrVqacWKFeratattf3FxcYqMjFSVKlWu0KOyHtrneo485/l39WpdraWvPqC1m3frwZjLvxYAwDMwWMx70D7X+nv31m7apYcHdda9Ty5Q6ZK5/64LDS4pSSpV0l+hwSWVeuqsWje6Rn27tFTnodMUFpz7PpfgoNztSwcFKjgoUKfOZLjnAaHIxj3ymJKPJ2vsqAvvcRk77hE9/99nddVVvMcF7ueRA1ZWrFihp5566pJP5vr6+qpz585KT0/X888/T4yKIidHkvRb4mG1anRNvqt9JJUM9JckVSgbrIrlQ7Xl9/122+w/fELHT55W7er8EPNUPj4+GvvweN0//AEdTEpSeMWKCg4OUfu2bXTXPXy6S3Fj4BccQfuKyf+65/Q28AqZmZkaMzJahw4d1PxF7yo8vKK7l2QEugdH0L1idFHXSpTw1e1dmuvztduVdvqsmxYFV4uoXVvbt23Nd3lOTo4yMnjiuLjRPjiC9hWjIrTvzNlM7T+crLo1r7a7PLxciMqXKa0de/8s9uWiGPCDudjxLYYjaF8xon3GCgkN1fTY2Tp+/C8lHz+uqtWqKzEh98M0mjZt7ubVWQvtgyNoXzH5X/fq1aqkL7/7ze6qtNNntefAMdWuHi5JSj+bpX2HkgvcjY+PFBjgX7xrhVNq1YrQ3j32bx7Pzs7Wvj/26qYOHd20KjN4Wvc44cA70L1iVMTX+n5PPKxra+UfpOLj46PAAI98ezBE99zN09pXEAZreh7aV4yK0D7ObbCWevXqy8fHR/v377/8xnCKp7UvNDRUbdq0sbssKSlJklS7dm21bNlSknTfffdp+fLlGjNmjAYNGqR9+/bp1Vdf1d13363w8HDbbUePHq2xY8dq6tSpuvHGG7V27VqtWrVKsbGxV+5BWRDtK0ZFeM4zT/VK5RT3+kgl7D+qux+Zq+zs81dsuYA38qT2MVjMe9C+YpKToxqVr1LJQH+9N/W+fFe/8Wx/vfzoHarQdpzqXFNR/v4ltGbh+HzbfT57lH5NOKSWd7xwJVYNFwgNDdWMWbN1/K+/lJyc+x6XhN2573Fp1ryFm1dnLZ7UPW/ika+gZGRkqEyZMpfdLiwsjBOHCqnzdfVUvkxp/fTrPknSZ2u2aVDP69ShdV2tWLddkhTg76frm0Xom425T8ofO3FKp85kqHn96lq47AfbvqpXKqfyYaX1x8HjV/6BoEhKlw5WnbrXSpKWfrhEGRkZ6tnrdjevyvp8KBIcQPtc6+LuOboNvEd2drYeHf+Qft2+TXPeXqBratZy95KMQffgCLrnepfq2s3X1VOFsiF67/Of3LQyFIebOnTSso8/0sYfNqj9TR0k5Q4a2/LzZkVFXe/m1Vkf7YMjaJ/rOdq+L9b/qh43NdJjr3ykjMxzkqS+/2qhrKxsrdrwe7GvG67z3fp1OnkyRY0aNXb3UiyP9sERtM/1aB/ylC9/lcqXv0qS9P67i1SjxjVq2brNZW6FoqB9cATtc62Lu7fv8HE1r1/dbpuQ0iVVq1oFrducYLvsszXbNKR3W11VNlh/nTglSWpQu7Iqlg/Vz79xwpYnu+HGdnrj9ZlKTk5WuXLlJElrVn+rM2fO6MZ27d28OmvztO5xwoF3oHuu5+gx32drtumm1nVVP6KSfks8LCn35PMGtStr2sKvi33dcAzdcy9Pax+8A+1zPUfax7kN1vLLlp+Vk5OjqtWqunspluet7atWrZrmz5+vSZMmafjw4QoNDdWAAQM0atQou+26du2qjIwMzZ49W/Pnz1fVqlX14osvXvLkaBQO7XM9R5/zDC8Xos9mj1RKWrp6j56t9LNZV3TdgDfypPYxWMx70D7X+nv3tu5M0i33vWp3/dVXhWrh5Hv1wpsr9M0POyRJX33/W77tmtStopce6aMxL3ygzZz/55XKX3WVyl+V+x6Xd99ZqBrXXKNWvMfFpType97EIwestGzZUrGxsWrQoIHKli1b4DYnTpzQrFmzbP+IwAVvxwzUH4eOa8tvB5R25qxaNbxG4wbfrF92HNCHX2yWJMWt2aYf4vdo1sS7NXHGp/rzeKpG9GuvMiFBemX+V7Z9vblkrUb376jUU2f1zcYdqlguVBPu76JjJ07pwy83u+sh4jK2bd2qn378QXWvrafs7Gxt3PC93n1nkcZPeFxVq1Vz9/Isjx7BEbTPcYXpXmG2kaRSJf31rxsaSJJqVimvUiUD1KtzU0nS5l/3af/hE1f88aFwXoj5j75d9bUeHDVG58+f19b4X2zX1YqoreDgYPctzuLoHhxB95xT2K5J0l23ttJfJ07py+9+LXBfV5UN1o0takuSwsuHKMDfz9a+dZsTbCchwLPc1KGjmjRtpv9MfEqjH3pYV111ld57Z7HSUlM1eGj+6d5wLdoHR9A+57iyfdMWfK1+XVvqnSlDFfvut4qoVkETo7vrjSVrdeSv1CvxcOCAxyeMV5UqVVW/QUOVLl1a27bGa95bc1T32nr6V9du7l6e5dE+OIL2OYf2mSc9PV3frVsjSUpKOqCz6Wf19covJEkNGjZSpcpV9Hncpzp7Nl3VqtfQiRMn9PnyZfrpx416fc7b8vX1defyLYf2wRG0z3GF6d7s99fq1Sfu1Iwn++mTVb8oOChQYwZ0VKC/n97+6DvbvqYt+Fr9urXSx689oBff+lKB/n565sEe2rn3CO9x8XB9+vbTe+8u1thR0Rr2wAilnkzV1CmT1aFjJzVo2Mjdy7M0T+seJxx4B7rnHFce87390fd64M72+uCV+/WfmXFKz8jShKFddCo9Q28uWXclHg4cQPfcy9PaB+9A+5zjyvZxboN3euD+oWoTFaWI2pEKCAjQjt9/0/x5b6lOnbrq2LGzu5dned7QvqpVq2rnzp35Lm/cuLHee++9y96+Z8+e6tmzZzGszFy0zzmues6zZKC/ls2MVuUKZXTfxIWqXb2CpAq2+/lx2x9ueHQorPT0dK1fm/f6X5LSz6brqy//9/pfo0aqXJnhv8XFG9p3MQaLuR/tc9zlupd1LlvrNu+2u031SrlDh3fsOaLvtiRKkv48nqY/j6cVeB+/7DigzXyYgscoTOPili/T2fSzql6jhk6cSFbcp5/qxx9/0Jtz5/EeFxfzxu55Ao8csPL0009r4MCB6tChg6KiolSrVi2FhoZKklJTU7Vnzx5t3LhRYWFhevHFF928Ws/z254juvNfLfXgXTepVGCADh49oQXLNuj5Nz5X1rlsSVJOTo56j56tSQ/10uSHe6lUoL82/7ZfXYe/pt/3HLHt65mZy3Us+ZQG/DtK0Xe118m0dP247Q89E7tcx1NOu+sh4jL8/f21+ttvNPfN2crOzlZknbp66ZVX1fnmW9y9NACXQPscV5juFWYbSapQNkTvvmR/UnLe1/dPXKTFyzdeuQeGIvl+/XpJ0swZr2rmDPuJpXPnLWS6JeBh6J5zCtu10qUCdGv7Rlq8fKPOnTtf4L7q1ap0yfbdct+r+Z7MhGfw9fXVjJmz9fLUF/XylBeVkXFWDRo20py3F6h27Uh3Lw9AAWifc1zZvj8OHtetD8TqxXG99dGrDyglLV2vv79Gz83+7Eo9HDigdu1Iff5ZnN5dvFAZGRkKr1hRPXv30QPRI+UfEODu5QEoAO1zDu0zz4nk45owfqzdZXlfP/PcC7rt370lHx+9984iHUw6oICAQDVr3kLzF7+vyDp1r/yCAeRD+xxXmO69+eE6nc3M0gN3ttedXVsqPSNLv/x+QP8a9qp27ztq29ehYyf1r2Gv6cVxvTX/hcHKOpetr77/XRNe/khnM/hkV08WGhqqOW8v0IsvxGjcQ2MUGBCom7t00bjxE9y9NHgoTjhwL7rnHFce8505m6muw1/TlPG3a+bTd8nX11frf07QfRMX6WhywScjwP3oHuB9aJ9zXNk+zm3wTg0bNdJncZ/q4P+GJ1auUlV39rtbAwbdy2t9gIeifc5x1XOe4eVC1PTa3A/Zvvh9npJUqtnIK/egUGTJycc1/uExdpflff3fmEn6d6/e7lgWPACDxTwT7XNcYY/5YB2FaZyPj4/eWbww9z0ugYFq3ryFFr3zvurUvdYdSwby8cnJyclx9yIKcurUKb333ntau3atEhMTlZqa+wlqoaGhioiIULt27dSvXz+FhIQUy/1zkGFtJ37iU0isrKSbR0dd9+Jap26/YUI7F60E3ob2oTjRPuvy9u5JtM9U7u6eRPusjO5ZG+2Dt6J9KE60z9q8vX10z1zubh/ds7ZjP8xw9xJQjIID3fvxOrQPjqJ9KE4c91mXtx/zSbTPVO7unkT7rI72WRftg7eifShOdM/avL19dM9c7m4f3bM22mdttA/eivahONE+6/L27klmts/Nf2yXFhwcrPvvv1/333+/u5cCAEXi4973fMKL0T4A3ojuwVF0D4C3on1wFO0D4K1oHxxF+wB4K9oHR9E+AN6I7sFRdA+At6J9cBTtA+CtaB8cRfsAeCvaB0fRPgDeiO45xmMHrACAt/KhSAAAg9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9xzBgBQBcjB4BAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9xzj6+4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBx8XP3AgDAanwY+QUAMAjdAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndcwwDVgDAxQgSAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8xDFgBABejRwAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9x/i6ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUFz83L0AALAaH0Z+AQAMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQvccw4AVAHAxegQAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndcwwDVgDAxZj4BQAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd1zjK+7FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxcXP3QsAAKth4BcAwCR0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zzEMWAEAF/OlSAAAg9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9xzBgBQBcjB4BAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9xzDgBUAcDEfigQAMAjdAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndc4xDA1bmzJlT6G19fHx03333OXI3AAB4DNoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHAHAlhwasvPzyy4XelhgBMI0vA78sifYBQMHonnXRPgAoGO2zJroHAJdG+6yJ9gHApdE+a6J9AFAwumddtA8ACkb7rInuAcCl0T5ron0AcGm0z5poHwAUjO45xqEBKzt27HD1OgDAMnx8KJIV0T4AKBjdsy7aBwAFo33WRPcA4NJonzXRPgC4NNpnTbQPAApG96yL9gFAwWifNdE9ALg02mdNtA8ALo32WRPtA4CC0T3HODRgBQBwafQIAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucYlw1YWb9+vbZu3arDhw9rxIgRqly5sjZv3qxq1aopPDzcVXcDAIDHoH0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AAEc5PWDlxIkTGjlypDZv3qzy5csrOTlZ/fr1U+XKlfXBBx8oJCRETz/9tCvWCgBewUeM/LI62gcAF9A9M9A+ALiA9lkf3QMAe7TP+mgfANijfdZH+wDgArpnBtoHABfQPuujewBgj/ZZH+0DAHu0z/poHwBcQPcc4+vsDiZNmqQjR47ok08+0Zo1a5STk2O77vrrr9eGDRucvQsA8Cq+Ps79guejfQBwgbPdo33egfYBwAW0z/roHgDYo3vWR/sAwB7tsz7aBwAX8HynGWgfAFxA+6yP7gGAPbpnfbQPAOzRPuujfQBwAc93OsbP2R2sXr1azzzzjK699lplZ2fbXVepUiUdPnzY2bsAAK/i42NoUQxC+wDgArpnBtoHABfQPuujewBgj/ZZH+0DAHu0z/poHwBcQPfMQPsA4ALaZ310DwDs0T7ro30AYI/2WR/tA4AL6J5jnB6wkpmZqZCQkAKvO3XqlEqUKOHsXQCAV6FH1kf7AOACumcG2gcAF9A+66N7AGCP9lkf7QMAe7TP+mgfAFxA98xA+wDgAtpnfXQPAOzRPuujfQBgj/ZZH+0DgAvonmN8nd1BvXr1tGLFigKv++abb9SkSRNn7wIAAI9C+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAAzvJzdgcjRozQAw88oDNnzqhbt27y8fHRL7/8oo8//ljLli3TvHnzXLFOAPAavoz8sjzaBwAX0D0z0D4AuID2WR/dAwB7tM/6aB8A2KN91kf7AOACumcG2gcAF9A+66N7AGCP9lkf7QMAe7TP+mgfAFxA9xzj9ICVdu3a6bXXXtPkyZP15ZdfSpKee+45Va5cWa+++qpatWrl9CIBwJvQI+ujfQBwAd0zA+0DgAton/XRPQCwR/usj/YBgD3aZ320DwAuoHtmoH0AcAHtsz66BwD2aJ/10T4AsEf7rI/2AcAFdM8xTg9YkaTOnTurc+fO2rdvn44fP66wsDBFRES4YtcA4HV8KJIRaB8A5KJ75qB9AJCL9pmB7gHABbTPDLQPAC6gfWagfQCQi+6Zg/YBQC7aZwa6BwAX0D4z0D4AuID2mYH2AUAuuucYlwxYyVOjRg3VqFHDlbsEAMCj0T4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AgCNcMmBl7969evPNN7Vt2zYdO3ZMFSpUUJMmTXTfffepZs2arrgLAPAaDPwyA+0DgFx0zxy0DwBy0T4z0D0AuID2mYH2AcAFtM8MtA8ActE9c9A+AMhF+8xA9wDgAtpnBtoHABfQPjPQPgDIRfcc4/SAlfXr12vEiBEKDQ1V+/btddVVV+mvv/7S6tWr9emnn2r27Nlq27atK9YKAF7BlyJZHu0DgAvonhloHwBcQPusj+4BgD3aZ320DwDs0T7ro30AcAHdMwPtA4ALaJ/10T0AsEf7rI/2AYA92md9tA8ALqB7jnF6wMqLL76oli1b6o033lBAQIDt8oyMDA0bNkyTJ0/W8uXLnb0bAPAa5Mj6aB8AXED3zED7AOAC2md9dA8A7NE+66N9AGCP9lkf7QOAC+ieGWgfAFxA+6yP7gGAPdpnfbQPAOzRPuujfQBwAd1zjK+zO9i3b58GDx5sFyJJCgwM1ODBg7Vv3z5n7wIAAI9C+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAAzvJzdgc1atRQcnJygdclJyerRo0azt4FAHgVHx9mflkd7QOACzyteytXrtS8efO0Z88enT59WhUrVlTnzp0VHR2tsLAw23Zr167VtGnTlJCQoAoVKmjgwIEaPHhwvv3NmzdPixYt0rFjxxQZGamHH35YN9xwwxV8RJ6B9gHABZ7WPrge3QMAe7TP+mgfANijfdZH+wDgArpnBtoHABfQPuujewBgj/ZZH+0DAHu0z/poHwBcQPcc4+vsDiZMmKAZM2Zo/fr1dpevW7dOM2fO1OOPP+7sXQCAV/H1ce4XPB/tA4ALnO2eq9t38uRJtW7dWs8//7zeeustDR48WJ988olGjx5t2yY+Pl7R0dGqW7eu5syZo379+mnKlClatGiR3b7mzZunqVOnql+/fpozZ44iIyP1wAMPaPv27a5dtBegfQBwgae1D65H9wDAHt2zPtoHAPZon/XRPgC4gOc7zUD7AOAC2md9dA8A7NE966N9AGCP9lkf7QOAC3i+0zF+jtyoa9eudhNtTp8+rfvvv1+lSpVSuXLllJycrPT0dIWGhiomJkaff/65yxYMAJ6OiV/WRPsAoGCe1r077rjD7us2bdooMDBQTz/9tA4dOqTKlSsrNjZWderU0aRJk+Tj46OoqCgdPXpUsbGx6tevn/z9/ZWZmalZs2apf//+GjZsmCSpdevW2rFjh2JjYzV79mx3PLwrivYBQME8rX1wDboHAJdG+6yJ9gHApdE+a6J9AFAwumddtA8ACkb7rInuAcCl0T5ron0AcGm0z5poHwAUzBO7t3LlSs2bN0979uzR6dOnVbFiRXXu3FnR0dEKCwuzbbd27VpNmzZNCQkJqlChggYOHKjBgwfn29+8efO0aNEiHTt2TJGRkXr44Yd1ww03OLVGhwasNGnSxCO/4QDgCfjxaE20DwAK5oofjfHx8UXavkmTJkXaPu/g69y5c8rMzNSGDRs0duxYu5/rPXr00KJFi7Rlyxa1bt1aW7ZsUWpqqm699VbbNr6+vrr11ls1Y8YMZWZmKiAgoEjr8Da0DwAKxo9Ga6J7AHBp/Hi0JtoHAJfGj0dron0AUDB+NFoX7QOAgvGj0ZroHgBcGj8erYn2AcCl8ePRmmgfABTME380njx5Uq1bt9bQoUMVEhKiXbt2KTY2Vjt27NCCBQsk5Z5LGB0dre7du2vChAnaunWrpkyZohIlSmjAgAG2fc2bN09Tp07VmDFj1LhxY3388cd64IEH9P7776thw4YOr9GhASuTJ092+A4BAPBGtA8Aik/fvn2LtP3OnTsvu012drbOnTtnOwhr3769qlevroSEBGVlZSkiIsJu+7yvExMT1bp1ayUkJNhdnqd27drKzMzUgQMH8l1nNbQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwB4jzvuuMPu6zZt2igwMFBPP/20Dh06pMqVKys2NlZ16tTRpEmT5OPjo6ioKB09elSxsbHq16+f/P39lZmZqVmzZql///4aNmyYJKl169basWOHYmNjNXv2bIfX6NCAFQDApTENEQBgEk/tXps2bZSWliZJuuGGGzR9+nRJuVMwJSkkJMRu++DgYJUoUcJ2fWpqqkqUKKHSpUvbbRcaGmq3HwCAeTy1fQAAFJf/Z+/O46KuEz+OvwcETTkKr/JaD9BMwaNESpO0djvUUtvMLW010jzKM3Oz7bCtLDtIRdJMUUmz9tdmaWHWtmaW1VYmVl5Q69lheeCBIsjvD3NwAhXm4Pud7+f13IePlpkvM5/R4uXnM9/vZ2gfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAm8Uf31q1bV6Hj27RpU+HniI6OliQVFhaqoKBAa9as0ejRoz3G37NnT2VmZmrt2rVKTEzU2rVrlZeXp+7du7uPCQkJUffu3TV9+nQVFBQoPDy8wmOR/LTByr59+5SVlaX//e9/Onr0aKn7H374YX88DQAEhRDmYUagfQBwgj+69+qrr/r+IL+TmZmp/Px8bd68Wc8//7yGDh2qjIwMvz+PSWgfAJzAnM8MdA8AStA+M9A+AChB+8xA+wDgBLpnDtoHACfQPjPQPQAoQfvMQPsAoATtMwPtA4AT/NG9vn37Vuj4TZs2leu4oqIiFRYWavPmzUpLS1NycrIaNWqknJwcHTt2TM2aNfM4/uTXubm5SkxMVE5OjsftJ8XGxqqgoEDbt28vdV95+bzByvfff69+/frp2LFjys/P13nnnaf9+/erqKhI0dHRioiI8PUpACCo2G2nyxUrVigjI0PfffedDh06pLp16+qqq67S8OHD3bt+SdKqVauUmpqqnJwc1a5dW7fddpsGDhxY6vEyMjKUmZmp3bt3Ky4uTmPHjlXnzp0r8RVZj/YBQAl/dK9NmwQ/jMRTy5YtJUnt27dXy5Yt1bdvX7377ruKjY2VJB04cMDj+IMHD7p/jktSVFSUioqKdOjQIdWoUcN9XF5eniR5NNQEtA8ASjDncz66BwCeaJ/z0T4A8ET7nI/2AUAJu3UPgUH7AKCE3drHnM//6B4AeLJb++B/tA8APNE+56N9AFDCzt3r2LGj+/q9zp0767nnnpMk7d+/X5IUGRnpcXxERIRCQ0Pd9+fl5Sk0NNTjuj7pxDV/pz6ON0K8/s7fPPnkk0pISNDHH3+s4uJizZ49W+vWrdPkyZNVrVo1TZs2zdenAAD4YP/+/UpMTNRjjz2mOXPmaODAgVqyZIlGjhzpPmbdunUaPny4WrRoodmzZ6tfv36aMmWKMjMzPR4rIyNDTz/9tPr166fZs2crLi5OQ4cO1ddff13ZL8tStA8AgstFF10kl8ulbdu2qVGjRgoLC1Nubq7HMSe/Prlz5am7Xp4qJydHYWFhatiwYSWM3D5oHwDYF3M+/6N7AGBvtM//aB8A2Bvt8z/aBwAwDe0DAPtizud/dA8A7G3FihX6y1/+oo4dO6p169a68sorNXny5FIXxq1atUq9e/dWfHy8unXrpnnz5pX5eBkZGerWrZvi4+PVp08frV69uhJehb3QPgCAaWgfAPjXq6++WqFf5ZWZmamXX35ZkyZNUk5OjoYOHaqioqIAvpLyq+LrA3z99dd65JFHFB4eLkkqLCxUlSpV1Lt3b+3du1ePP/64Fi5c6PNAASBY2G2/r5tuusnj644dO6pq1ap64IEHtGvXLtWrV09paWlq3ry5Jk+eLJfLpaSkJP38889KS0tTv379FBYWpoKCAqWnp6t///4aMmSIJCkxMVEbN25UWlqaZs6cacXLswTtA4ASduteWb788ksVFxerQYMGCg8PV1JSkrKyspSSkuLeqXPZsmWKjo5W27ZtJUnt27dXZGSksrKylJCQIEkqLi5WVlaWOnXq5G6AKWgfAJSwW/uY8/kf3QMAT7TP+WgfAHiifc5H+wCghN26h8CgfQBQwm7tY87nf3QPADzZrX0nNxdLSUlRZGSkNm/erLS0NG3cuFHz58+XVLK5WI8ePTRhwgRlZ2drypQpCg0N1YABA9yPdXJzsVGjRikhIUGvv/66hg4dqsWLF6t169ZWvcRKR/sAwJPd2rdixQplZGTou+++06FDh1S3bl1dddVVGj58uKKjo93HrVq1SqmpqcrJyVHt2rV12223aeDAgaUeLyMjQ5mZmdq9e7fi4uI0duxYde7cuRJfkfVoHwCU8Ef32rRp44dHKa1ly5aSTlyj17JlS/Xt21fvvvuuYmNjJUkHDhzwOP7gwYMqKipy9zEqKkpFRUU6dOiQatSo4T4uLy9Pkjw6WlE+b7By+PBhRUZGKiQkRNHR0dq9e7f7vpYtW7LbFwDjhLh8S9K6desqdLw38ToZjsLCQhUUFGjNmjUaPXq0+yJzSerZs6cyMzO1du1aJSYmau3atcrLy1P37t3dx4SEhKh79+6aPn26CgoKjLnYnPYBQAlfu+dvKSkpSkpKUlxcnMLDw/Xtt99qzpw5atGiha666ipJ0ogRI9S/f39NnDhRvXr1UnZ2thYtWqTx48e7WxYeHq5hw4YpNTVVMTExio+P15IlS7RlyxZNmjTJypdoCdoHACX80b5Az/uY8/mG7gGAJ9Y7nY/2AYAn2ud8tA8AStjtvT6JCw4CgfYBQAne63M+ugcAnuw272NzMf+jfQDgyW7tY3Mx/6N9AFDCbt07nYsuukgul0vbtm1Tt27dFBYWptzcXHXt2tV9TG5uriSpWbNmHv/Mzc11f3i6JOXk5CgsLEwNGzb0ejw+b7DSqFEj/fzzz5KkuLg4vf766+4LF9966y3FxMT4+hQAEFR87VHfvn0rdPymTZvKdVxRUZEKCwvdE7Hk5GQ1atRIOTk5OnbsmDs2J50an8TEROXk5HjcflJsbKwKCgq0ffv2Uvc5Fe0DgBJ2m4fFx8frzTff1I4dOyRJDRo00C233KJBgwa5TxRp166d0tPTlZqaqqVLl6pOnToaN25cqRMuU1JSJEkLFy7U1KlTFRsbq/T0dI9JmSloHwCU8Ef7AjHvY87nP3QPADyx3ul8tA8APNE+56N9AFDCbu/1SVxwEAi0DwBK8F6f89E9APDka/vYUNr+aB8AeLLbmiebi/kf7QOAEnbr3ul8+eWXKi4uVoMGDRQeHq6kpCRlZWUpJSXFPfdbtmyZoqOj1bZtW0lS+/btFRkZqaysLPe1fMXFxcrKylKnTp18mvP5vMFKcnKy1qxZo+7du+vOO+/UsGHDlJiYqNDQUO3du1f33Xefr08BAEHFZdMidezYUQcOHJAkde7cWc8995ykEyemSFJkZKTH8REREQoNDXXfn5eXp9DQUNWoUcPjuKioKI/HMQHtA4ASduve6NGjNXr06LMel5ycrOTk5LMel5KS4t5oxWS0DwBK2K19JzHn8x+6BwCeaJ/z0T4A8ET7nI/2AUAJO3aPCw78j/YBQAk7tk9izudPdA8APPnaPjaUtj/aBwCefG0fm4vZH+0DgBJ2XO9MSUlRUlKS4uLiFB4erm+//VZz5sxRixYt3BtijRgxQv3799fEiRPVq1cvZWdna9GiRRo/fry7Z+Hh4Ro2bJhSU1MVExOj+Ph4LVmyRFu2bNGkSZN8GqPPG6yMGTPG/f8vv/xyLV68WO+++66OHDmiTp06qUuXLr4+BQAY5dVXXw3I42ZmZio/P1+bN2/W888/r6FDhyojIyMgz+V0tA8AYBraBwD+FYh5H3M+/6F7AOBfrHfaH+0DAP+iffZH+wDAv7jgwP5oHwD4F+/12RvdA4DgwOZi/kP7AMC/2FzM/mgfANhbfHy83nzzTe3YsUOS1KBBA91yyy0aNGiQ+725du3aKT09XampqVq6dKnq1KmjcePGaeDAgR6PdfJD0xcuXKipU6cqNjZW6enpSkhI8GmMPm+w8nutW7dW69atJUnff/+9Zs+ercGDB/v7aQDAtnzd8MubE0nKo2XLlpKk9u3bq2XLlurbt6/effddxcbGSpJ7gfKkgwcPqqioyH2SSlRUlIqKinTo0CGPhci8vDxJJSezmIj2ATCZDTe6RCWgfQBM5o/2BWLex5wvcOgeANOx3mke2gfAdLTPPLQPgMn8sd7JBQfBh/YBMBnv9ZmH7gEwna/tY0Pp4EP7AJjOrtc3sLlY4NA+ACazY/dGjx6t0aNHn/W45ORkJScnn/W4lJQU90Yr/uL3DVZOtXnzZj377LPECIBRQuxYpN+56KKL5HK5tG3bNnXr1k1hYWHKzc1V165d3cfk5uZKKjnR5NQTUU7d3SsnJ0dhYWFq2LBhJb4C+6J9AEwTDN1DYNE+AKYJhvYx5wscugfARLTPbLQPgIlon9loHwDT2Ll7XHBQOWgfANPYuX0nMecLHLoHwES+to8NpYMb7QNgIl/bx+ZiwY32ATBNMKx32lFAN1gBABMFQ4++/PJLFRcXq0GDBgoPD1dSUpKysrKUkpIi128vYNmyZYqOjlbbtm0lnVi8jIyMVFZWlvsNuOLiYmVlZalTp04KDw+36uUAACwUDN0DAMCfgqF9zPkAAP5E+wAApqF9AACT+KN7XHAAAAgmzPkAAKYJhvaxuRgAwJ98bR+biwEAgkkwzPnsiA1WAMDhUlJSlJSUpLi4OIWHh+vbb7/VnDlz1KJFC1111VWSpBEjRqh///6aOHGievXqpezsbC1atEjjx493v7EWHh6uYcOGKTU1VTExMYqPj9eSJUu0ZcsWTZo0ycqXCAAAAADGYs4HADAN7QMAmIb2AQDsjgsOAADwHnM+AADYXAwAYB42FwMAwFpssAIAfuay2ZZf8fHxevPNN7Vjxw5JUoMGDXTLLbdo0KBB7oXDdu3aKT09XampqVq6dKnq1KmjcePGaeDAgR6PlZKSIklauHChpk6dqtjYWKWnp3tMzAAAZrFb9wAACDS7tY85HwAg0GgfAMA0tA8AYBK7de90uOAAAOAvdmsfcz4AQKDZrX1sLgYACDS7ta8sbC4GAPCXYOieHbHBymn8+ul0q4eAADpwpNDqISCAqkVY+6MtxNJnL2306NEaPXr0WY9LTk5WcnLyWY9LSUlxvxEHZ/mF9jnazr35Vg8BAdKs9jmWPr/dugdUxE9rplk9BATIoaPM+ZysWhXmfKdizoeK+OHjqVYPAQFC+5yN9nmifSivvf9Ns3oICKCDvNfnaBFVad+paB/Ka8fq56weAgKooPC41UNAgFSrYm157Na90+GCA5Tl5094r8/J9h4qsHoICJALoq39+Wu39jHnQ0XQPuc6kM96p5NVi2S981RsLoby2vUR57g42eGjRVYPAQFUrUqopc9vt/axuRjKa89nnOfiZMz7nIs5X3Dy6k8tISGhXDvaFBXxl10A5mHHL2eifQBQNrrnXLQPAMpG+5yJ7gHA6dE+Z6J9AHB6tM+ZaB8AlM2O3eOCA/+gfQBQNju2D76jewBwenZrH5uL+QftA4DTs1v72FzMP2gfAJTNbt0LFl5tsDJ48GB+wwEARqF9AADT0D4AgEnoHgDANLQPAGAa2gcAwYMLDvyD9gEATEL3AACmoX0AEDzYXMw/aB8AwJ+82mDl7rvv9vc4AMAxQvi7uiPRPgAoG91zLtoHAGWjfc5E9wDg9GifM9E+ADg92udMtA8AymbH7nHBgX/QPgAomx3bB9/RPQA4PdrnTLQPAE6P9jkT7QOAstE973i1wQoA4PQIEgDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHTPO2ywAgB+5nJRJACAOegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeied9hgBQD8jB2/AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXveCbF6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKFWsHgAAOI2LHb8AAAahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe97x6wYrP/74o3bt2qULL7xQ1atX9+dDA0DQCKFIRqF9AExH98xD+wCYjvaZhe4BAO0zDe0DANpnGtoHwHR0zzy0D4DpaJ9Z6B4A0D7T0D4AoH2moX0ATEf3vBPijwf55z//qeTkZHXt2lW33nqrvv/+e0nS3XffrZdeeskfTwEAQSPEx18IDrQPAE7wtXu0L3jQPgA4gfaZge4BQAm6ZwbaBwAlaJ8ZaB8AnMB6pzloHwCcQPvMQPcAoATdMwPtA4AStM8MtA8ATmC90zs+v+6FCxfq4Ycf1tVXX6309HQVFxe777v44ov19ttv+/oUAADYCu0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAPiqiq8PMH/+fN15550aOXKkioqKPO5r0qSJe+cvADCFy2X1CBBotA8AStA9M9A+AChB+5yP7gGAJ9rnfLQPADzRPuejfQBQgu6ZgfYBQAna53x0DwA80T7no30A4In2OR/tA4ASdM87Pm+wsmvXLnXo0KHM+8LDw3Xo0CFfnwIAgkoIRXI82gcAJeieGWgfAJSgfc5H9wDAE+1zPtoHAJ5on/PRPgAoQffMQPsAoATtcz66BwCeaJ/z0T4A8ET7nI/2AUAJuuedEF8f4Pzzz9fmzZvLvG/Dhg1q2LChr08BAEHF5fLtF+yP9gFACV+7R/uCA+0DgBK0z/noHgB4onvOR/sAwBPtcz7aBwAlWO80A+0DgBK0z/noHgB4onvOR/sAwBPtcz7aBwAlWO/0js8brPTs2VMzZszQBx98oOLiYkmSy+XSt99+qzlz5qhXr16+PgUAALZC+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAAvqri6wMMHz5cW7Zs0Z133qnIyEhJ0qBBg5SXl6c//vGPSklJ8XmQABBMQgzdscsktA8AStA9M9A+AChB+5yP7gGAJ9rnfLQPADzRPuejfQBQgu6ZgfYBQAna53x0DwA80T7no30A4In2OR/tA4ASdM87Pm+wEhYWprS0NH322Wf66KOPtGfPHkVHR6tTp0669NJL/TFGAAgqIS6K5HS0DwBK0D0z0D4AKEH7nI/uAYAn2ud8tA8APNE+56N9AFCC7pmB9gFACdrnfHQPADzRPuejfQDgifY5H+0DgBJ0zzs+b7ByUmJiohITE/31cAAQtOiROWgfANA909A+AKB9JqF7AHAC7TMH7QOAE2ifOWgfANA909A+AKB9JqF7AHAC7TMH7QOAE2ifOWgfANA9b/m8wcquXbvOeky9evV8fRoACBohBMnxaB8AlKB7ZqB9AFCC9jkf3QMAT7TP+WgfAHiifc5H+wCgBN0zA+0DgBK0z/noHgB4on3OR/sAwBPtcz7aBwAl6J53fN5gpVu3bnKdZXubDRs2+Po0AADYBu0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAPjK5w1Wnn322VK37du3Tx9++KE2bdqkkSNH+voUABBUXGLLL6ejfQBQgu6ZgfYBQAna53x0DwA80T7no30A4In2OR/tA4ASdM8MtA8AStA+56N7AOCJ9jkf7QMAT7TP+WgfAJSge97xeYOV6667rszbb7nlFj388MP69ttv1atXL1+fBgCCRgg9cjzaBwAl6J4ZaB8AlKB9zkf3AMAT7XM+2gcAnmif89E+AChB98xA+wCgBO1zProHAJ5on/PRPgDwRPucj/YBQAm6552QQD74n/70J73xxhuBfAoAsJ0Ql2+/ENxoHwDT+No92hf8aB8A09A+s9E9ACaie2ajfQBMRPvMRvsAmIb1TtA+AKahfWajewBMRPfMRvsAmIj2mY32ATAN653eCegGK5s3b1ZoaGggnwIAAFuhfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQCA8qji6wPMnj271G3Hjh1Tbm6uVqxYod69e/v6FAAQVFwuQ7fsMgjtA4ASdM8MtA8AStA+56N7AOCJ9jkf7QMAT7TP+WgfAJSge2agfQBQgvY5H90DAE+0z/loHwB4on3OR/sAoATd847PG6w888wzpW4LDw/XBRdcoNtvv13Dhg3z9SkAIKiE0CPHo30AUILumYH2AUAJ2ud8dA8APNE+56N9AOCJ9jkf7QOAEnTPDLQPAErQPuejewDgifY5H+0DAE+0z/loHwCUoHve8XmDlY0bN/pjHADgGGz45Xy0DwBK0D0z0D4AKEH7nI/uAYAn2ud8tA8APNE+56N9AFCC7pmB9gFACdrnfHQPADzRPuejfQDgifY5H+0DgBJ0zzshvnxzQUGBxo0bpy+++MJf4wGAoBficvn0C/ZG+wDAk6/do332R/sAwBPtcza6BwCl0T1no30AUBrtczbaBwCeWO90PtoHAJ5on7PRPQAoje45G+0DgNJon7PRPgDwxHqnd3zaYCU8PFzvv/++CgsL/TUeAABsjfYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAPzBpw1WJCkxMZHdvgDgFCEu337B/mgfAJTwtXu0LzjQPgAoQfucj+4BgCe653y0DwA80T7no30AUIL1TjPQPgAoQfucj+4BgCe653y0DwA80T7no30AUIL1Tu9U8fUBhg0bpnHjxsnlcqlr166qVauWXC7P382aNWv6+jQAEDRchgbFJLQPAErQPTPQPgAoQfucj+4BgCfa53y0DwA80T7no30AUILumYH2AUAJ2ud8dA8APNE+56N9AOCJ9jkf7QOAEnTPO67i4uLiin5TWlqabrrpJtWtW1cXXnhhyYOd5k9hw4YN3o/QIocLKvzbgiByqKDI6iEggGpH+Lx3lE9mfPQ/n75/RKfGfhkH/MuE9h2ifY724/4jVg8BAdKs9jmWPr+v3ZNon12Z0L68I8etHgIC5FgRf7ZOVrNGcM/5JNpnRyZ0T5L25bMm5lRFx5nTO1mwt4/u2ZMJ7TtSaPUIEEgH+QN2tFq814cAMKF9vx7iZ6OThYWGWD0EBEhUNWv/bFnvdC4T2nfgKO8HORnzPue6IDrc0uenfc5kQvck2udkRwr4s3Wy2pGsd8L/TGjf3sOc4+JkFb+aFcEkpkaopc9P+5zJhPblH7N6BAgk1judK9jnfJKZ7fPqT23GjBnq0qWL6tatq8cff/y0EQIAwCloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDAn7zaYKX4lG0C+/Tp47fBAIAT8PdzZ6J9AFA2uudctA8Aykb7nInuAcDp0T5non0AcHq0z5loHwCUje45F+0DgLLRPmeiewBwerTPmWgfAJwe7XMm2gcAZaN73vFqgxUAwOmFECQAgEHoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonne83mDln//8p1atWnXW41wul0aMGOHt0wBA0Alhyy/Hon0AUBrdczbaBwCl0T7nonsAUDba51y0DwDKRvuci/YBQGl0z9loHwCURvuci+4BQNlon3PRPgAoG+1zLtoHAKXRPe94vcHKkiVL5CrHbzoxAgA4Be0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAPiL1xusLFy4UAkJCf4cCwA4Aht+ORftA4DS6J6z0T4AKI32ORfdA4Cy0T7non0AUDba51y0DwBKo3vORvsAoDTa51x0DwDKRvuci/YBQNlon3PRPgAoje55x+sNVgAAZQuhSAAAg9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A977DBCgD4GT0CAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7nmHDVYAwM9CrB4AAACVyG7dW758uZYuXapvvvlGe/fuVYMGDXTjjTdqwIABCgsLcx+3atUqpaamKicnR7Vr19Ztt92mgQMHlnq8jIwMZWZmavfu3YqLi9PYsWPVuXPnSnxFAAC7sVv7AAAINNoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J53vNpgZePGjf4eBwAAtkb7ACA4zJ07V/Xr19f48eNVs2ZNrV27Vs8995w2bdqkJ598UpK0bt06DR8+XD169NCECROUnZ2tKVOmKDQ0VAMGDHA/VkZGhp5++mmNGjVKCQkJev311zV06FAtXrxYrVu3tuolVhraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8A4E9ebbACADg9l8tl9RAAAKg0duvezJkzFRMT4/46KSlJxcXFmjp1qsaPH69atWopLS1NzZs31+TJk+VyuZSUlKSff/5ZaWlp6tevn8LCwlRQUKD09HT1799fQ4YMkSQlJiZq48aNSktL08yZM616iQAAi9mtfQAABBrtAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHTPO2ywAgB+Ro4AACbxR/fWrVtXoePbtGlz2vtO3VzlpFatWkmSfv75Z0VFRWnNmjUaPXq0xySyZ8+eyszM1Nq1a5WYmKi1a9cqLy9P3bt3dx8TEhKi7t27a/r06SooKFB4eHiFxg0AcAbmfAAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQve8wwYrAOBnIez4BQAwiD+617dv3wodv2nTpgod//nnnyssLEyNGjXStm3bdOzYMTVr1szjmJNf5+bmKjExUTk5OR63nxQbG6uCggJt37691H0AADMw5wMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnnRCrBwAAAAAAgZKTk6MFCxbo5ptvVkREhPbv3y9JioyM9DguIiJCoaGh7vvz8vIUGhqqGjVqeBwXFRUlSe7jAAAAAACVa/ny5RoxYoSuuOIKtWnTRt27d9fcuXN17Ngxj+NWrVql3r17Kz4+Xt26ddO8efPKfLyMjAx169ZN8fHx6tOnj1avXl0JrwIAAAAAAAAAWO8EAAAAAAAA4CzBsOZZxedHAAB4sNt+X8uXL9fSpUv1zTffaO/evWrQoIFuvPFGDRgwQGFhYe7jVq1apdTUVOXk5Kh27dq67bbbNHDgwFKPl5GRoczMTO3evVtxcXEaO3asOnfuXImvCABgJ/7o3quvvuqHRyltz549GjFihBo1aqRx48YF5DkAAOZhzgcAMI3d2jd37lzVr19f48ePV82aNbV27Vo999xz2rRpk5588klJ0rp16zR8+HD16NFDEyZMUHZ2tqZMmaLQ0FANGDDA/VgZGRl6+umnNWrUKCUkJOj111/X0KFDtXjxYrVu3dqqlwgAsJjd2se8DwAQSHbrnkT7AACBZbf2sd4JAAg0u7WPOR8AINBoHwDAJHbrnhQca55ssAIAfuayWZGCIUYAgODlj+61adPG9wf5nYMHD2rw4ME6duyYFixYoOrVq0uSoqOjJUkHDhwodXxRUZH7/qioKBUVFenQoUOqUaOG+7i8vDyPxwEAmIc5HwDANHZr38yZMxUTE+P+OikpScXFxZo6darGjx+vWrVqKS0tTc2bN9fkyZPlcrmUlJSkn3/+WWlpaerXr5/CwsJUUFCg9PR09e/fX0OGDJEkJSYmauPGjUpLS9PMmTOteokAAIvZrX3M+wAAgWS37km0DwAQWHZrH+udAIBAs1v7mPMBAAKN9gEATGK37knBsebJBisA4GcumxUpGGIEAAheduueJBUUFGj48OHauXOnFi1apLp167rva9SokcLCwpSbm6uuXbu6b8/NzZUkNWvWzOOfubm5SkhIcB+Xk5OjsLAwNWzYsDJeCgDAhuzWPuZ8AIBA87V969atq9DxZ9uE89TundSqVStJ0s8//6yoqCitWbNGo0eP9hh7z549lZmZqbVr1yoxMVFr165VXl6eunfv7j4mJCRE3bt31/Tp01VQUKDw8PAKjR0A4AzM+wAAJrFb9yTaBwAILH+0z59rnqx3AgACzW7zPuZ8AIBAo30AAJPYbb1TCo41TzZYAQCbMTFGAAD4S1FRkcaMGaP169dr/vz5atq0qcf94eHhSkpKUlZWllJSUtztW7ZsmaKjo9W2bVtJUvv27RUZGamsrCz3BivFxcXKyspSp06daB4AwCecdAkAMEnfvn0rdPymTZsq/Byff/65wsLC1KhRI23btk3Hjh1zb5x50qkbaSYmJionJ8fj9pNiY2NVUFCg7du3l7oPAAArMO8DAJiG9gEA7C7Qa56sdwIA7IRrGwAApqF9AADTmHiOJxusAICfhfj4/SbGCAAQvHztnr9NmjRJ7733nkaNGqXjx4/rq6++ct8XGxuriIgIjRgxQv3799fEiRPVq1cvZWdna9GiRRo/frx7UTE8PFzDhg1TamqqYmJiFB8fryVLlmjLli2aNGmSRa8OAGAH/mgfJ10CAIKJ3eZ9v5eTk6MFCxbo5ptvVkREhPbv3y9JioyM9DguIiJCoaGh7vvz8vIUGhqqGjVqeBwXFRUlSe7jAADm8bV9/j7psizM+wAA/uKPOR/tAwAEE9Y7AQCm4doGAIBpaB8AwCR2X++U7LnmyQYrAOBnp+4WaUd2jBEAIHjZrXurV6+WJE2dOlVTp071uG/BggXq2LGj2rVrp/T0dKWmpmrp0qWqU6eOxo0bp4EDB3ocn5KSIklauHChpk6dqtjYWKWnpyshIaFSXgsAwJ7s1r7fY84HAPA3X9v36quv+mkkpe3Zs0cjRoxQo0aNNG7cuIA9DwDALL62L9AnXTLvAwD4kz/WO2kfACCY+KN9gVrzZL0TABAInOcCADAN7QMAmMTO652Sfdc82WDFENu2bdWCeXP1zdfrlbNls2rXqaO333nf45h28Ree9vvnv7RYCW3aBniU8IfCwkKl3HqTcnM26+HHn9JVV1/nvq+4uFiv/3OxlvzfK9qxfauqV6+hlq3i9fgzUxUWFm7hqJ3F1xyZGCMgELZt26rM37XvrVPaV1RUpJcWzNPqVSv13Xe5OlZQoCZNm+n2O+5UctduFo4cZzPhrhSt/+qLMu8beOdI9R1wu959+w2lPv5Qqfs7XHa5Jk2ZHughGsVuy4/vv//+2Q+SlJycrOTk5LMel5KS4t5oBbCzf7/7jpa/tVQbNnyrffv2ql69+rq+143qd0t/VQkLkyS98HyaZs+cUep7b7r5Ft078YHKHjIqYOW/39XihfO19X/f6/ChQ6pdp64uv6KbBg0eqqioaEkn5oKLX5qvt95coh9/3KVzzz1XSZddrsHD71ZMTE2LX4Gz+KN9nHQJ+O7f776jd95epo0bvtG+fftUr1599ezVRzf/paR9hYWFejlzvpa9+bp++OHEz8ZLO12uO0eM5GejjZWne5e1b3Xa739h3iK1Tqj4J2Hj9HxtnzefTF4eBw8e1ODBg3Xs2DEtWLBA1atXlyRFR5/49+TAgQOlji8qKnLfHxUVpaKiIh06dMjj5JO8vDyPxwHs7D/vv6c5s1/Qd7k5Cq9aVa1bx+uukWN0YcuWVg8NPigsLNTtv73XN+mU9/qWvPaqlr3xmnZs36ajR4+q7vkX6E/XdNetf01R1apVLR61s9htzfNUzPtgivLMC071w66duvXPN+jIkXwtXbFSNWvVtmDUKK/yrGdL0scffaj0aan6/rtc1apVWzff0l+3DBho3cAdys7dk2gfzLJ921Zlzs/QN+uzlZOzRXXq1NHS5f8+7fG7du5U3949deRIvpa/v0q16J9trf3ivxoz7PZStzduGqt5i193f71j+zZNf2ay1q39QuHhVdX1qqs1dORYnXNO9cocruP5o32BWPNkvROmKU/3Lkk4/TpnRubLiufahqBQWFiolP6/XdvwWMl65xv/elWrVv5bOZs36fChg2rYqLH+3O9WXdujl+0vig42XNsA2MP7776jd7I8z3PpcYPneS6SdOxYgTLnzdXbS5fopx9/UHT0uUpMukwP/mOyhaPHmaz897t6eeF8bf3fd+717C5XXOmxnv3ZJx/rraWv65v12dq5Y7uu69lLD0x63OKROxftA6z37orlenvZUm349psT7wXVb6BevW/UX24doLCT1zbMnKH3VryjXbt2qrCoSA0aNNSNf+6rm/9yq0JCQix+BTiTLz//TCOHDip1e5Omscp89Y1St59uXgj/sOt6p2TvNU82WDFEbk6OPvxgpVrHJ6i4uFh5eaV3pJv/0uJStz09ZbJ27tihi1q1roxhwg/++fJL2rd3T5n3pU55TMvfelMDBg1W64S2OpCXp88++UjHi45LYWV+C7zg66KuiTECAuG739rX6jTtO3r0iObOnqUeN/TSgIG3KywsTCuWZ2nMyOF66JHHdEPvGy0aOc5mxLiJOnzokMdt/35nmd56/VV1uLSzx+2TnpquyMiSn08Rv+3OC//hzUzAHl6aP1cX1KuvkaPHKaZmLWWvW6uZM6YqZ8smPfzoE+7jwsLCNGvuAo/vrVmTky3tLi9vv9pd3EG33Ha7IiIilJuzRXNfSFfO5k2aPmuuJGnOrBl6af5c3T5kmBLatNPOHdv1Qvo05eZs0QvzFlr8CpzFH+3jpEvAdwsXZOiCevV11+h7FFOzptZ/tVazZkxTzubNeujREyeVvDhzhhbMm6M77hyuhLbttHP7ds2cMVW5W7boxQWLLH4FOJ3ydO+FeaX//KY+86R27dyhCy86/eYr8I4d530FBQUaPny4du7cqUWLFqlu3bru+xo1aqSwsDDl5uaqa9eu7ttzc3MlSc2aNfP4Z25urhISEtzH5eTkKCwsTA0bNqyMlwJ4bc3HH2nMyLt0XY+eGn7XSOXn52vOCzM1JGWgXntjqWrXrmP1EOGl073XdyBvvy6/4krFxjZXtXPO0Tfrs5Xx4vP68YddmvjQoxaM1Ll8bV+gTrpk3geTlGdecKpnn3xMNSJq6MiRfAtGi4oqz3r219nrNG7kCF19XXeNHjdBX6/P1rTUpxUaWkU339Lf4lfgLHb+VDvaB9Pk5uZo9Qcr1So+XsU6MQc4k6cmP0r/gsz4+yepcdNm7q+rVavm/v8HDx7Q2OEpqlm7jiZNfkZ5efuV/txT2rvnVz3yZKoVw3Us1jsBeyhP9zIyXy5127NPPaGdO3aoJdc2BI1/Li57vXP+nFnqeGknXd/rz6oREanP1qzW5Ece0A+7dirlzrssGKlzcW0DYA8LMzN0wQX1ddeoE+e5ZK9be+L8vi2b3ZunFBcX6757xujbb7J1++BhatosTnv2/KLsr9ZaPHqcSV7efrW/uINuvW2QIiIilZuzWXNeSNeWzRuVNitDkrTmow+1eeMGtWl3sQ4ePHCWR4SvaB9gvQXz5qpevfoaPXa8ataqqa/WrtWM6c9p8+ZNevTxJyWd+He85w291aRpU1WpEqZPP/lYU554THl5+3XnMOYEweBvf39EjZvFur8+db3zVKebF8I/7LjeKdl/zZMNVgyRfEVXde12pSTp0Uce0scffVjqmITf7eJ8IC9PmzZuUJ8/91WVKvyrEgx+/ulHZcxO15h779djD030uG/tF//Vv159WU9Nm6lLO13uvr1L1ysre5iwgN1jBARClyu66orf2vdYGe2rWrWalma9q6hTFhEuvayzfti1SwvmzWWDFRtr1KRZqdtmTn1SjZvFqUlsc4/bmzVvqZiatSpraABgmWenPa/zYmLcX1+S2FHFxcWaOWOa7h5zj2r+9rPQ5XIpPqGtRaOEt67v/WePr9tfkqjw8HA9+ejD+vGHXTr/gnpakfWWrr62uwbdMVSSdHGHjgpxhejx304+uaBefSuGjkrCnA8memZqumf7OnRUsaRZM6bprjHjVLNmLS1/e5muubaHbh881H2MK8Slxx5+QLt27lS9+vxstKPydK91gueJDAcO5GnLpg26vs9NrGUboKioSGPGjNH69es1f/58NW3a1OP+8PBwJSUlKSsrSykpKe43EJctW6bo6Gi1bdtWktS+fXtFRkYqKyvL3b7i4mJlZWWpU6dOCg8Pr9TXBVTU228t0wX16umxyVPc/563aHGhul9zlT5evVo39O5j8QjhjZ9/+lFzZ6dr7L3369Hfvdc3YNBgj68v7tBR+fmHtfilebp34kMen24IawXipEvmfTBNeeYFJ33wn3/rm/XZuu32wZr27JTKHiq8UJ717NmzZiiueXM99MjjcrlcuiSxo37Z/bNmz0zTjTfdTPdshvYB/tEluauu+O1cvsf/8bDWlHGO50kr339P69ev06A7hij1qScra4jwUeOmzdQqvuyfmUv/9U/t27dXs+Yv1nkxNSWdOLfpwQljtGnDN2rRko2lnYr1TpiqPN2LP821Db25tiFouK9tGH+/HnvYc71zzkv/1HnnnTo3TFJeXp4WL5yvgXcMU2hoaGUPF5WIOR9M9PRznue5XNyho4qLpRfSp2nE6BPnuby99A2t+fhDzV/0f4qNKzkn/qo/XWvFkFFOZa9nV9UTjz7kXs++e8x4jRo3QZJ0c5/uVgwTFqN9MM3UtJmKOaV7HRKTJBVrxvSpGjN2vGrWqqWx90zw+J6kSy/Tjz/+oDffeJ0NVoJE42axan2a9c6TzjQvhHMFw5pniNffiaASElLxP+p3VyxXQUGBuve4PgAjQiBMe+YJde7SVW3bX1Lqvjdee1UNGv3BY3MVBEaIj7/87dQYvfDCC2eMUXFxsfv2M8XoJN6Ag52drX2hoaEem6uc1PKiVtr980+BGhYCYOf2rdq84Rt1/dN1Vg/FSL52jwkJ4B+nvvF20oUXnTjJ7peff67s4aASnPx7TGFhofuf1avX8DimRmSEJOn48eOVOziHs1v7mPPBVGW2r+VFkqRfdp9oX2FhoarXqO5xTEREpCSpuJifjcHk9937vffffUcFBQW65roelTksY9ipe5I0adIkvffeexo8eLCOHz+ur776yv3r4MGDkqQRI0Zo48aNmjhxoj799FPNnj1bixYt0vDhw91NCw8P17Bhw5SZmanZs2frk08+0X333actW7ZoxIgRARg54F+FhcdUvXoNj08hiTg5B6BzQWvqGd7rK0tUVLSKiop0/JS/68N3dmsf8z7ghLLmBfn5h/XcU5M19O7RioyKsmpoqKCzrWcXFBTov59+oj9efa3H33Wuua6H9u/fr3Xr+MRef7LbeqdE+2Cu8p7jmX/4sJ5+8nHdNXKMoqL4ZGKn+OTjD9X+kkT35iqSdNnlV+ic6tW1ZvUqC0fmPHZrH+udMJU31za899u1Ddd27xmAESEQznRtw6mbq5zUouVFyj98WIcOHayM4RnDTt2TmPPBXOU5z2XJa6+q/cUdPDZXQXD6/Xq2N3/3gfdoH2C9mDK61/K394J27z79tQ3R0eeq8FjZ5wgiOJ1pXgj/sNt6pxQca55s3YvTemvZm/pD48ZqHZ9w9oNhuU8+/lCfffKxFr32lo4dKyh1/9fZX6lFy4s078WZeu2VRTqQt18tW7XWXWMmqBV/xn516gk+dnAyRqNGjXLH6KTY2FhFRERoxIgR6t+/vyZOnKhevXopOztbixYt0vjx40vFKDU1VTExMYqPj9eSJUu0ZcsWTZo0yaJXB/jfl1/8V42bNrN6GKiA/6x4SyEhIer6x9IbrNw96Gbt37dXMbVqK/mqa9Q/ZZiqVq1mwSidy27dA1Bi7RefKywsTPUbNnLfduzYMV3dtbP279+nC+rV1w29/6wBA2/nU1+CRFFRkQoLC/Vd7hbNnfW8Lu3cRQ1++/O9oc+ftfilBbrs8mTFt2mnXTu3K+OF59W5yxWq34Bd6f3Jbu1jzgeUWPvlb+1rcOJnY68bb9LLmfPVucsVim/TTjt3bNecF57X5cld+dkYBM7Uvd975+1lavSHxrqoNeucgWC39q1evVqSNHXqVE2dOtXjvgULFqhjx45q166d0tPTlZqaqqVLl6pOnToaN26cBg4c6HF8SkqKJGnhwoWaOnWqYmNjlZ6e7vFJP4Bd9ep9o4bfeYcy58/TDb166/Dhw3ru2ad1/vkX6Mqr/mT18OCFk+/1vXya9/pOKiws1LFjBdrwzdd69eVM3dDnJk6W8zO7tY95H0x2tnnB3BeeV0zNmurZ60a9vXSJdQOFz05dz96xfZuOHTumxk08TzJv0ixWkvS/777TxZckWjFMR7Jb9yTaB5zN7FnpiqlZSzf0+bOWvbnE6uGgAv4+fqT279un6HPPVacuXTVkxBj3RXdbv/9Of7rOc8OAKlWqqGGjP2jr/76zYriOZbf2sd4JlF/WW0vV6A9c2xAsPvn4Q3326W/XNhScfr3zVF99+blq1qylyEg2UfUnu7WPOR9Q4qvfznNp0KCRCo8d04Zvv1avG/sq9anJeuvNJSooOKr2lyRq7L0T1egPja0eLs7i1PXsObPSddkZznNBYNE+wJ6+/Py37v3uZ2NhYaGOHDmiz//7qZa+8boG3zncohGiou4bd7f279ur6HPPU+fkrhp21xhFRZ/rvt+beSEqzm7dk4JjzZMNVlCmH37YpbVffqE7h91l9VBQDkePHlXqk49p0ODhqlW7tn7YtbPUMXt+/UWfffKxvsvN0bi//V3h4VU1f84sjR0xWIuXvO3xyQfwjd1yFAwxAuzizSX/0vrsdXrq2alnPxi28Z8VWWrd9mLVqlPXfVtMzdq6ZdCdanFRvMLCwrTuy//q9cWZ+m7LJj2WOtPC0TqP3boH4ITvcnO0eFGmet/YVxERJz7BvEHDRrpr1Fi1uLCljh8v1ocf/EfPpz2nnTu36/4HH7F4xCiPa7t20sGDByRJiUmX6dEnn3Hfd/uQ4Tp+vFjj7h7q3sE+MekyPTL5aUvG6mR2ax9zPuCE73Jz9Mqil9Trxpvc7bvjzuEqPn5co0fc6f7Z2PHSTnr0CX42BoMzde9UP/6wS+vWfqEU3lgNGLu17/333y/XccnJyUpOTj7rcSkpKe4GAsGkY9Kleua56Zo44R49PWWyJKl+gwaaNSdDUVGcfB5sjh49qmeffEy3n+G9Pkk6cCBP11xxqfvra7pfr9HjJ1bWMI1ht/Yx74PJzjQv+P67HP3z5ZeUPmeBLU8aQ/n9fj07d0ueJJW6oK5GjRoKDQ1VXt5+K4bpWHb8r4f2Aaf3XW6OFi/M1Ox5L9G/IBIREaG+t/5Vbdt30DnVq2vD19laOH+Ovlm/TrPmv6Lw8HAdyMtTRERk6e+NjNIB2udXdvsvh/VOoHx+/O3ahiHDfPt0YlSOo0ePKnXKb9c21Dr9euepvvjvJ3r/3eUaPuoe/p7jZ3b73WTOB5zwfW6OXnn5Jd3Q5ybViIjQr7/sVmFhod5eukRNm8Vp0uNTdPToUc2aMVWjhg/W4n8tU9WqVa0eNs7gmq6XudezOyZ10qNPPmvxiMxF+wD7yc3N0aKFC3TjTTe7z++UpI0bN6jfn3u5v04ZPFQDb7/DghGiIiIiItWv/0C1u7iDzjmnur79OlsvzXtR32Sv04uZryo8PNyreSG8Y7fuScGx5hnUG6zs2rVLn332mXr16mX1UBwn661lKi4uVvce11s9FJRD5twXFBYWppv63XraY44fP66Cw4f12FNT1fS3T/Vp2TpeN/X4k157ZZHuGHZ3ZQ0XlSwYYoTyo32Bs+6rtXrisUd0fa8+uvKPV1s9HJTTxq+z9cPO7bp5gOfPpYs7XqaLO17m/rrtJR1V9/wLNG3KP5T95X+V0L5DZQ8VgJdoX8Xt27tX40ffpYa/bahy0nW/m99d2qmzIiIjNW/OC/rr7YPVoEHDyh4qKihtdoaOHjmi3C1bNG/OLI0fNUJTn39RoaGheu3Vl7X4pXkaevdotY5vq107t2v282n6+4RxemrqDE4+cTDmfM5D+ypu3969unfM3WrYsJFGnNK+/3vlZS3KnKfhI8coPqGtdu7Yrlnp0zXx3rF6Zlo6Pxtt7kzdO9WK5W+puLhYV//u010BBA/a553sdV/p7xMn6NruPfSnq6/V4cOHNG/OixoxdLAWvLRYNWvVsnqIqIAF5XivT5KqV6+hFzNf0dGjR7Xh6/WaP3eWHp/0dz3wyORKGimswLzPWehexZxpXvDU4//Q1d176qJW8VYPEz443Xo2zEb7nIX2+dcTj07SdT2uV6vW9C+YxLVoqbgWLd1ft7u4g5pf2FL33H2n/r3ibV3bo5d1gwPgd7QvMJa/feL9oGu5tiEoZGaUb73zpB3bt+qhieN1cYck9f3LgACPDlZjzuc8tK/i9u3dq3vH3q0Gp5zncvx4sfufT09N17nnnSdJatykiW758w1akbVMPXvdaNmYcXYzZs/TkSNHlLtl8xnPc4F5aJ+z0L2K27t3j8aMHKGGDRtp1OhxHvc1btxECxf/nw4fPqzP//uZ5s2drdDQUA2/a6RFo0V5NL+wpZpfWLLe2f6SRLW48CKNuWuw3nvnLV3Xs3eF54VAZQuxegC+WL9+ve677z6rh+FIWW8tVUKbtmrQkAvs7O7HH3Zp0YK5umPY3co/kq8DB/J06NBBSdKRI0d08MCJ3S8jo6IVU7Ome3MVSTrvvBg1jY3T99/lWDJ2p3K5fPsFnAntC4zcnC0afddQXXxJov7+0CNWDwcV8P6KtxQeXlWdu1511mO7XHli45zNG78J9LCM4mv3aB/OhvZVzKFDhzRyxBAdKzymaemzdU716mc8/o9XX6vi4mJt/JafjcGgeYuWim/TTr3+3FePTUnVl59/pg/+857y9u/T9GenaNDgYRow8A61u/gSdb++tx569El9vPoDffrxaquH7ii0D4FG+yrm0KFDGj3iThUeO6bnZrygc8450b79+/dp6jNP6vYhw3TboBM/G3vc0FuPPD5FH334gT7hZ6Ptna57v7ci6y21Tmir+mwWFzB0D4FG+7zzxGP/UNu27fTAQ4+oY9Kl6trtKs2Y9aL279+vzAXzrB4eKqC87/VJUmhoqFpe1Fpt212svwwYqHvue1DL33pTG7792qrhOxLtQyDRvYo53bzgvXeytHnTBg34a4oOHMjTgQN5OnLkiKQT88T8/MMWjxzlcbr17MioKEnSgQN5pY4vKipSVFR0pY/VyVjvRKDRPv9Zsfxtbdq4QX+9/Q4dyMvTgbw8HcnPlyQdOnhQ+YfpXzC5pONlioqK1qbf5nORUVHuTzo/1cEDeYqkfX5F+xBotC8w3Nc28H6Q7bnXO4ferfz8MtY7f9e7X3b/rDF3DVGduufr8aemchF6ANA9BBrtq5hDhw5pzF136tixY3oureQ8l8jISLlcLjWLi3NvriJJTZvFKaZmTX2Xy3Vfdte8RUsltGmn3n++WY9PSdUXn39a5nkuCDzah0CiexVz6NBBjRg6WMeOHdOMWS+WurahWrVqatU6Xh0SO2rYiLs1dPhdmjN7pn75ZbdFI4a3OiRdpqjoaG349usKzwvhG9Y7vVPF6gHAfjZt3KCcnC267/4HrR4KymHXzh0qKCjQ3+8dU+q+Jx55QFOfelzvrv5cTZo20/++zy11THFxsQqOFlTGUI0RIkOLAgSpXTt3aPidKWr0h8aa8uxUVanCX4+CRVFhoVa9v0KJnbqoeo2Icn+fi5/TfkX3APsoKCjQPaNG6IddOzV73kLVrlOn3N/rMnVVJIi1uLClXC6XdmzfpvPPv0AFBQVq0fIij2MuvOjE19u3b1OSFYN0KNoH2EdBQYHGj75LP/ywUy9kvOTRvh3btqmgoEAtL2rl8T3un43bturSTpdX6njhvVO7d6rNmzbou5wtGve3v1s0MjPQPsCecnNz1OnyLh63RUREqFHDRtq2datFo4I3zvRe3+RHHtBzTz2u91Z/Xub3XvjbPHDn9m1qeVHrgI7TJLQPsKdT5wUFRwt0+NAh9e11Xanj+vXurss6J+vpaekWjBLldab17AYNGyksLEz/+/47XZ7c1X37979dRNK4adNKH6+T0T0geHz/3Xc6dOiQeve4ptR9N15/nTp3SdZzaTMtGBl88tv7tH9o3ETb/vedx11FRUXavm2rLru8a1nfCS/RPiD4bNq4Qbk5WzRh4gNWDwXl4F7vnFDGtQ3/eEBTn35c7354Yr0zb/8+jRkxWKEhIXpm2kxVr1GjsodrBNoH2EdBQYHuHXOXfti1U7N+d55LtXPO0QX16pf5fcXFJ74XwaPFhReVeZ4LKgftA+yhoKBAo+8erh927VTGgkWqU6fuWb+n5UWtVVRUpF07d6pWrdqVMEr4m0uuCs0L4Tu65x1bXkF85ZVXluu4k58+A/96+62lqlIlTH+65lqrh4JyiGtxoabNyvC4bc+vv+jhieM18I6h6pB0mSSpc3JXffn5Z/ouZ4uaxsZJkvbu+VXf5WzRLbcNqvRxOxnXpsIbtM8av/7yi4YNSVFkZJSmzpipc845x+ohoQK++Oxj5e3bq25Xdy/X8SvfXS5Jas6FBn5F9+At2udfRUVFuv/esfr2m/VKnz1PjRs3Kdf3vZP1llwuFxdhBaHsdWtVXFys+vUb6vzf3ljd+O03uiSxZCuVjd9+K0mqd5o3XuEd2gdv0T7/Kioq0t8njNOGb9ZrxgsZ+sPv2ndB/RM/+zZ8c5qfjfUbVN5g4bNTu3eqFW+/pSpVquiqP7GWHUi0D96ifYFVr159ffvN1x63HTx4UNu2b9PFHRItGhW8EdfiQk0v472+h373Xl9Z1q39UhJ/t/E32gdv0L3AO3VecFHreLW/pIPH/Z98vFovzZujx596Tg0b/cGiUaI8zraeHR4erksSk/TuiuXq/9fb3RuEv7P8LUVFRSuhTVsLRu1cdA/eon2Vr+cNvUvN99Z89KHmz31RU56dqkaNGlszMHjlszUfKS9vv1peFC9J6njZ5Zr/4kzt27tH554XI0n6+MOVyj98WEmdupzhkVBRtA/eon3WWf7WMlWpEqY/cm1DUIhrcaGmzSzj2ob7f1vv7HhivTM//7DuGTVMeXn7lf5ips6LqWnFcI1A++At2udfRUVFeuBvJ85zSSvjPBdJujy5q5b865/au2ePzos5MS/I2bJZe/f8WuoDhmBvJ9ezeQ/PGrQP3qB7/lVUVKQJ94zRN1+v1wtz5qtxk/Jtnr/2yy/kcrlUn5+fQefTNauVt3+/WraKL/e8EP5B97xjyw1WfvrpJzVv3lzx8fFnPG7Hjh36+OOPK2lUwS0/P1+rP/xAkrRzx3YdOXJE7644cZFxq9bx7outjh8/ruVvv6XLOnfWueeeZ9l4UX6RkVFqf4nnG6c/7NopSWrctJnatLtYktSz95/12iuLNPGekRo8fKSqVq2q+XNe0DnVq6v3Tf0qfdxO5mLHL3iB9vlffn6+Pvpd+977rX0XtY5XTExN3TVssHb//JMeeewJbdu61eOTXTkxz/7+887bioo+V5ckdSp13/1jhiqhfQc1bhqnsLAqWvfFf7XknwvV4dLOim97sQWjdS66B2/RPv+a8vg/tPI//9bQESN1/HiR1md/5b6vSdNYRUREqP/NfXRdzxvUuElTHS8q0ocfrNSSf/1TfW66WfXqswGHnY0ePliXJCapSbNYhYeHa/PGDVq4IEOxcc3VpWs3hYWFq9sfr9bcF57X8ePH1So+Qbt27tCcWelq3KTpGS/GQ8XRPniL9vnXU5P/oQ/+82/dOWKkio4f1/rsde77mjRtppiYmrryj1frxVnpKjpepNYJbbRrxw7NnjlDjZs2VSI/G23rbN076fjx43r3nbeVdFlnRZ97rnUDNgDtg7doX2D1u+VWPf7oI3rk4Qd11R//pMOHDytz3lwdKyjQjX++yerhoQLO9F5fk6bN1Pa39/pu799X1/a4QY1+2zRgffZXWrxwvpIu66yLWidU7qAdjvbBG3TPv8qzHvb7T3M9+bMzvk1b1eQT7WytPOvZd9w5TENuv03/eOjv6t7zBn3zdbb++crLGjnmHoWFhVs3eAeie/AW7fO/I/n5Wv3hKkm/neeSf0TvrXhHktSqdWvVq1+/1Ht6J/uX0LYdn+hqY48++DddUK++ml94kapXr6EN36zXywvmKrb5her22+bRPfvcpH/9c5Huv2ekbku5Uwfy8jTjuafUqUtXXciFlH5F++At2udfZ+veBadc2/BO1lu6tBPXNgSLM17b0KTk2ob77x2tjd9+rXF/e0B79+7R3r173Mc3b9FS4eHM/fyF9sFbtM+/nv7tPJchw0fqeNFxff2781xqRETo1r/eruVvL9W4kcM0MGWICo4VaNaMafpD4ya66urrLBw9zuTU9eyw8DBt3rhBixZkKDauhZK7ntiw4YddO7Xh2xMfnnH40CH9+MMuvf/eib/7XNapi6rxQcF+RfvgDbrnX5MfnaT/vP+eRtw9SsePH1f2uq/c9zVtFqu8vP168P6/6Zrreqhhw0Y6evSoPvt0jRYvekl/vulm1axVy7rB46weeWCCLqhXXy1atlL16jX07dfZWjh/juKaX6irrr5WYWHh5ZoXwj/onndsucFK8+bN1aBBA02aNOmMx73zzjvEqJz27vlV944b7XHbya8n/eNxXd+rjyTp8/9+pp9//knjxv+tkkeIQDvnnOqaOnOupj/7pJ589CEVHz+uNu0v0d8nPa6YmvyFA7Aa7fO/M7Xv4X88rks6JGrTxg0et5/qy/UbAzxC+CL/8GF98tFKXXVNT1WpElbq/kaNm+q9t9/Ur7/8rMLCQp1/QX317X+7+va/3YLRAigL7fOvNR9/KEmaOWOaZs6Y5nHfzBfn6+IOiWrY6A96ZdFL+vXXX6TiYjVq3ERjx9+nm/rdYsWQUQEXtY7XO28v0w+7dkiSzq9XX31u6qe/9P+r+2KCiQ/9Qwvmvqi33nxdc2c/r/POi9EliUm6c8RITjoBbIL2+dcnH62WJM2aMU2zfte+9NnzdHGHRP190qOaP2e2lr3xuua+8LzOi4lRh45JGjpiFD8bbaw83ZOkLz//TLt//kkjx95r1VABnAXtC6y+/W5ReNWqWrxoobLeWqqq1aqpZcuLNDtjQbk/+QfBpcWFLfXaq4u0+6efVKVKFdWr30CDh92t3n/mgxQAO6B7/lXeeQGCU3nWsxPatNMzU2cofdpzWv72UtWqXVt3jRyrW/r/1YohAygD7fO/PXv26G/3jPa47eTXD/3jcfW8oXflDwp+0aRprN575y299spCHT1yVLXr1NV11/fWXwcPU1jYiXNeIiOjlDpjjqY984Qe+ts4hYeHK/nKP2nYqHssHj2Ak2iff5W3e1/8dm3DmPETKnmECLTP1nwkSXrq8dL/Tf3zzRWlNlYFUPlon3+t+fjEeS4vpE/TC+mea2IzZs/TxZckqk6duprxwjxNfeZJPTjxXlWpUkVJl3XWqHETVK1aNSuGjXJo2Tpey99eWsZ69kD3evaXn3+mRx++3/09v+z+WV9+/pkk6V/L3tUF59A9wGp0z78++u38zhnTp2rG9Kke982eu0AXtrxIdeuer4w5L+iX3bt1zjnnqGGjP+iBh/+hHj1vsGLIqIAmTWP17vK39M/FL+nokaOqU7euetzQR4OGDOe9XAQNW26w0rp1a61atapcxxYXFwd4NM5Qr34DrS3HheKJHZPKdRzs7YJ69bX6i29K3X7+BfX02FNTy/gO+JOLDb/gBdrnf/XqNzjrJilsohK8zqleXa+/98lp779z1L26c1QlDshgdA/eon3+9WbWv896zOSnUithJAiEIcNHasjwkWc8pnr1Ghp61ygNvYsABhrtg7don38tyXrvrMdUr15Dw+4erWF3jw78gOA35emeJF2SmKSPvyy9Bgr/o33wFu0LLJfLpd59/qzeff5s9VAQABfUq6+Pfvde34S/n/lELvgP7YM36J5/lXdecKru1/dW9+u58DwYlGc9W5I6de6iTp27BHg0oHvwFu3zv3r16+vz7A0V+p6eN/Rm45UgcOvAO3TrwDvOelzDPzTWU9NmVsKIzEb74C3a51/l7V6HjkkV7iPs54J69bX6c8/1zt9/jcChffAW7fOvJW+f/TwXSYqNa67pM+cEeDTwpzuHj9SdZ1nPZv26ctE+eIPu+VfWivfPesxjTzxVCSNBIAwYNFgDBg2u0PeUNS+Ef9A979hyg5U77rhDycnJZz0uOTlZ//53+d50B4DKEiKKhIqjfQCCFd2Dt2gfgGBF++At2gcgWNE+eIv2AQhWtA/eoHsAghXdg7doH4BgRfvgLdoHIFjRPniL9gEIVrQP3qB7AIIV3fOOLTdYadSokRo1anTW46pVq6b69etXwogAoPzY8QveoH0AghXdg7doH4BgRfvgLdoHIFjRPniL9gEIVrQP3qB7AIIV3YO3aB+AYEX74C3aByBY0T54i/YBCFa0D96gewCCFd3zTojVAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQKli9QAAwGnY8QsAYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65x02WAEAP3OJIgEAzEH3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3vMMGKwDgZyH0CABgELoHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnnRCrBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgVLF6gEAgNO4xJZfAABz0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3vsMEKAPiZix4BAAxC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC97zDBisA4Gfs+AUAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd8w4brACAn4XQIwCAQegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeied0KsHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEoVqwcAAE7jElt+AQDMQfcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQve8wwYrAOBnLnoEADAI3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fMOG6wAgJ/RIwCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeied0KsHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEoVqwcAAE4T4mLPLwCAOegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeied9hgBQD8jBwBAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC97zDBisA4G8UCQBgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnFTZYAQA/c1EkAIBB6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J53QqweAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEShWrBwAATuNiwy8AgEHoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonnfYYAUA/IweAQBMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQve8wwYrAOBvFAkAYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK655UQqwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFSxeoBAIDTuNjyCwBgELoHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnHTZYAQA/c9EjAIBB6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J532GAFAPyMHgEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3vBNi9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFCqWD0AAHActvwCAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7nmFDVYAwM9cFAkAYBC6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65x02WAEAP3PRIwCAQegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeied9hgBQD8jB4BAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC97wTYvUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBQqlg9AABwHLb8AgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO55hQ1WAMDPXBQJAGAQO3Zv69atmjNnjtavX6/Nmzerbt26ev/990sdt2rVKqWmpionJ0e1a9fWbbfdpoEDB5Y6LiMjQ5mZmdq9e7fi4uI0duxYde7cuRJeCQDAjuzYPgAAAon2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnnRCrBwAATuNy+fYLAIBg4mv3AtG+LVu2aOXKlapfv77i4uLKPGbdunUaPny4WrRoodmzZ6tfv36aMmWKMjMzPY7LyMjQ008/rX79+mn27NmKi4vT0KFD9fXXX/t/4ACAoGDH9gEAEEh0DwBgGtoHADAJ650AANPQPgCAaegeAMA0tA8AYBLWO73DBisAAAAAHKVbt25atWqV0tLSlJCQUOYxaWlpat68uSZPnqykpCQNGTJEt9xyi9LS0nTs2DFJUkFBgdLT09W/f38NGTJESUlJmjx5spo1a6a0tLTKfEkAAAAAAAAAAAAAAABwoK1bt+rBBx9U79691apVK3Xr1q3M41atWqXevXsrPj5e3bp107x588o8LiMjQ926dVN8fLz69Omj1atXB3D0AAAAAAAAABBc2GAFAPzM5eMvAACCia/dC0T7QkLOPM0pKCjQmjVrdN1118l1ylabPXv21L59+7R27VpJ0tq1a5WXl6fu3bt7PHb37t310UcfqaCgIACjBwDYnR3bBwBAINE9AIBpaB8AwCR2XO/kInMAQCDZsX1btmzRypUrVb9+fcXFxZV5zLp16zR8+HC1aNFCs2fPVr9+/TRlyhRlZmZ6HJeRkaGnn35a/fr10+zZsxUXF6ehQ4fq66+/DsDIAQDBwG7dAwAg0OzWPtY7AQCBZMf1zmBQxeoBAIDjmFoUAICZ/NC9devWVej4Nm3a+PR827Zt07Fjx9SsWTOP209+nZubq8TEROXk5HjcflJsbKwKCgq0ffv2UvcBAAzAnA8AYBobtm/r1q2aM2eO1q9fr82bN6tu3bp6//33Sx23atUqpaamKicnR7Vr19Ztt92mgQMHljouIyNDmZmZ2r17t+Li4jR27Fh17ty5El4JAMCWbNg+AAACxobdO3mReUJCgoqLi5WXl1fqmJMXmffo0UMTJkxQdna2pkyZotDQUA0YMMB93MmLzEeNGqWEhAS9/vrrGjp0qBYvXqzWrVtX5ssCANiFDdvXrVs3XXXVVZKkBx98sMyL49LS0tS8eXNNnjxZLpdLSUlJ+vnnn5WWlqZ+/fopLCxMBQUFSk9PV//+/TVkyBBJUmJiojZu3Ki0tDTNnDmzUl8XAMAmbNg+3usDAASUzdrHeicAIKBs1r1gwQYrAOBnLooEADCIP7rXt2/fCh2/adMmn55v//79kqTIyEiP2yMiIhQaGuq+Py8vT6GhoapRo4bHcVFRUR6PAwAwix3nfJx4AgAIJDu2j5NPAACBZLf2MecDAASS3boncZE5ACCw/NE+f3+QUEhIyBnvLygo0Jo1azR69Gi5XCXj79mzpzIzM7V27VolJiZq7dq1ysvLU/fu3T0eu3v37po+fboKCgoUHh5eobEDAIKfHed9vNcHAAgku7WP9U4AQCDZrXvBgg1WAMDhOOkSAAAAAJyNE08AAKbh5BMAgEmY8wEA7I6LzAEApqnsDxLatm2bjh07pmbNmnncfvLr3NxcJSYmKicnx+P2k2JjY1VQUKDt27eXug8AACvwXh8AwM5Y7wQAwPnYYAUA/Mxlsw2/OOkSABBI/ujeq6++6vuDVEB0dLQk6cCBAx63Hzx4UEVFRe77o6KiVFRUpEOHDqlGjRru40629ORxAACz2G3OJ3HiCQAgsHxtn79PPJE4+QQAEFh2m/cx5wMABJI/usdF5gCAYGK3OV957N+/X5IUGRnpcXtERIRCQ0Pd9+fl5Sk0NNTjHBfpxPkvpz4OAMAsvNfHe30AYBpf28d6JwAgmATjeqcdsMEKAPiZ3XrESZcAgEDyR/fK84aaPzVq1EhhYWHKzc1V165d3bfn5uZKKll0PHVRMiEhwX1cTk6OwsLC1LBhw0ocNQDALvzRPj7hAAAQTHxtX2WfeCJx8gkAwDd2e6+POR8AIJDs1r3y4CJzAIAv/NG+yv4gIQAAfMF7fbzXBwCmCbY1T9Y7AQC+CLbu2QUbrACAv9lsl2dOugQABFQQzsTCw8OVlJSkrKwspaSkuPu3bNkyRUdHq23btpKk9u3bKzIyUllZWe4NVoqLi5WVlaVOnTrRPQAwFZ/o6tNYAABBKAjnfZx8AgDwic3e6zsb5nwAAJ/4Yc7HReYAgKDih/ZV9gcJRUdHS5IOHDjgcfvBgwdVVFTkvj8qKkpFRUU6dOiQx5pnXl6ex+MAAAzDe30AANP42D7WOwEAQcWGc76tW7dqzpw5Wr9+vTZv3qy6devq/fffL3XcqlWrlJqaqpycHNWuXVu33XabBg4cWOq4jIwMZWZmavfu3YqLi9PYsWPVuXNnn8bIBisA4GcuH4vEhXYAgGDia/cCIT8/Xx988IEkaceOHcrPz9fy5cslSfHx8apfv75GjBih/v37a+LEierVq5eys7O1aNEijR8/3r1xSnh4uIYNG6bU1FTFxMQoPj5eS5Ys0ZYtWzRp0iTLXh8AwFp2bN/ZcOIJAMAXvraPE08AAMEm2N7rY84HAPCFP9Y7ucgcABBMgvG9vkaNGiksLEy5ubnq2rWr+/bc3FxJJed0nnrO58kPEpKknJwchYWFqWHDhpU4agCAXfBeHwDANL62j/VOAEAwseN655YtW7Ry5UolJCSouLjY3apTrVu3TsOHD1ePHj00YcIEZWdna8qUKQoNDdWAAQPcx2VkZOjpp5/WqFGjlJCQoNdff11Dhw7V4sWL1bp1a6/HyAYrAGA4TroEADjNr7/+qlGjRnncdvLryZMnq0+fPmrXrp3S09OVmpqqpUuXqk6dOho3blypnS5TUlIkSQsXLtTUqVMVGxur9PR0jxNRAACoKE4+AQCYpLJPPJE4+QQAAAAAnIyLzAEApgkPD1dSUpKysrKUkpIil+vERRPLli1TdHS02rZtK0lq3769IiMjlZWV5W5fcXGxsrKy1KlTJ/cHDgEAUBG81wcAQGCx3gkAcJpu3brpqquukiQ9+OCDWr16dalj0tLS1Lx5c02ePFkul0tJSUn6+eeflZaWpn79+iksLEwFBQVKT09X//79NWTIEElSYmKiNm7cqLS0NM2cOdPrMbLBCgD4mcvHDb+40A4AEEx87V4gNGjQoFyf+pqcnKzk5OSzHpeSkuLeaAUAAH+0j084AAAEEzvO+86Gk08AAL4Itvf6mPMBAHwRjHM+LjIHAPjCju3Lz8/XBx98IEnasWOH8vPztXz5cklSfHy86tevrxEjRqh///6aOHGievXqpezsbC1atEjjx493Ny08PFzDhg1TamqqYmJiFB8fryVLlmjLli2aNGmSZa8PAGAtO7bvbHivDwDgi2BrH+udAABf+KN769atq9DxZ7sWIiQk5Iz3FxQUaM2aNRo9erS7e5LUs2dPZWZmau3atUpMTNTatWuVl5en7t27ezx29+7dNX36dBUUFHjdPzZYAQA/87VHXGgHAAgmQbb+CACAz4KxfZx4AgDwRTC2j5NPAAC+CLb3+pjzAQB8Ycc5HxeZAwACyY7t+/XXXzVq1CiP205+PXnyZPXp00ft2rVTenq6UlNTtXTpUtWpU0fjxo3TwIEDPb7v5AcILVy4UFOnTlVsbKzS09M95oEAALPYsX1nw3t9AABf2K19rHcCAALJH93r27dvhY4vz4ein8m2bdt07Ngx93ksJ516XktiYqJycnI8bj8pNjZWBQUF2r59e6n7yosNVgDA3+w2EzsLTroEAPgkyLoHAIDPgrB9nHgCAPCJDdvHyScAgICyYfvOhDkfAMAnNuweF5kDAALKhu1r0KBBuS5KSE5OVnJy8lmPS0lJcTcQAAA7to/3+gAAAWWz9rHeCQAIKJt1rzz2798vSYqMjPS4PSIiQqGhoe778/LyFBoaqho1angcFxUV5fE43mCDFQAwHCddAgAAAEBw48QTAIBpOPkEAGAS5nwAANNwkTkAAAAAOBvv9QEATMJ6JwDA7l599VWrh1Dp2GAFAPzMZbMtvzjpEgAQSHbrHgAAgWbH9nHiCQAgkOzYPk4+AQAEkt3ax5wPABBIduseAACBRvsAAKaxY/t4rw8AEEh2bB8AAIHij+61adPGDyMpv+joaEnSgQMHPG4/ePCgioqK3PdHRUWpqKhIhw4dUo0aNdzH5eXleTyON9hgBQD8zGWzeRgnXQIAAslu3QMAINDs2D5OPAEABJId2wcAQCDZrX3M+QAAgWS37gEAEGi0DwBgGtoHADAN7QMAmCQYu9eoUSOFhYUpNzdXXbt2dd+em5srSWrWrJnHP3Nzcz2uYc/JyVFYWJgaNmzo9RjYYAUA/MxuPeKkSwBAINmtewAABBrtAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGCSYOxeeHi4kpKSlJWVpZSUFLl+2yVm2bJlio6OVtu2bSVJ7du3V2RkpLKystwbrBQXFysrK0udOnVSeHi412Ngg5XTqB4ejP9Kobyqh/OvPgKIHx8IUjVon6M1q32O1UOAU/GjA0EsqlqI1UNAwPBniwCifQhi554TavUQAAQj2ocgVY23ghytWgR/wAgg2ocgVbMGPxsBeIHuIYhFVuX9ICeLrOr9idHAGdE+BDHa51z82SKgaB+C1HnVOccFgJdoH4LUOWFWjwCBdE4Y7+UiQGzYvfz8fH3wwQeSpB07dig/P1/Lly+XJMXHx6t+/foaMWKE+vfvr4kTJ6pXr17Kzs7WokWLNH78ePfGKeHh4Ro2bJhSU1MVExOj+Ph4LVmyRFu2bNGkSZN8GiP/RQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwyq+//qpRo0Z53Hby68mTJ6tPnz5q166d0tPTlZqaqqVLl6pOnToaN26cBg4c6PF9KSkpkqSFCxdq6tSpio2NVXp6uhISEnwaIxusAICfuey45RcAAAFC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExix+41aNBAmzZtOutxycnJSk5OPutxKSkp7o1W/IUNVgDAz1z26xEAAAFD9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC97zDBisA4Gf0CABgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnnRCrBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgVLF6gEAgOOw5RcAwCR0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zytssAIAfuaiSAAAg9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A977DBCgD4mYseAQAMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQve8E2L1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgUKpYPQAAcBo2/AIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITueYcNVgDAz1wUCQBgELoHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnHTZYAQC/o0gAAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPW+wwQoA+Bk7fgEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3vBNi9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFCqWD0AAHAaNvwCAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7nmHDVYAwM9cFAkAYBC6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65x02WAEAP3Ox5xcAwCB0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zzshVg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKlitUDgHW2bt2qRx99VJ9//rnCw8N17bXX6t5771X16tWtHhr8YOvWrZozZ47Wr1+vzZs3q27dunr//fetHpYZ2PALsC3a51x0z0J0D7A12udctM9CtA+wNdrnXLTPQrQPsC2652y0z0K0D7At2udcdM9CdA+wNdrnXLTPQrQPsDXa51y0z0K0D7AtuudstM9CtA+wLdrnXHTPQnTPK2ywYqgDBw7or3/9q+rUqaPnnntO+/fv1xNPPKFff/1V06dPt3p48IMtW7Zo5cqVSkhIUHFxsfLy8qwekjHoEWBPtM/Z6J516B5gX7TP2WifdWgfYF+0z9lon3VoH2BPdM/5aJ91aB9gT7TP2eiedegeYF+0z9lon3VoH2BftM/ZaJ91aB9gT3TP+WifdWgfYE+0z9nonnXonnfYYMVQixcv1p49e/Taa6+pZs2akqRq1arp7rvv1tdff63WrVtbPEL4qlu3brrqqqskSQ8++KBWr15t8YjM4aJIgC3RPmeje9ahe4B90T5no33WoX2AfdE+Z6N91qF9gD3RPeejfdahfYA90T5no3vWoXuAfdE+Z6N91qF9gH3RPmejfdahfYA90T3no33WoX2APdE+Z6N71qF73gmxegCwxqpVq5SUlOQOkXTiB1j16tW1cuVK6wYGvwkJ4T9vq7h8/B+AwKB9zkb3rONr92gfEDi0z9lon3VoH2BftM/ZaJ916B5gT3TP+WifdWgfYE+0z9nonnVY7wTsi/Y5G+2zDu0D7Iv2ORvtsw7dA+yJ7jkf7bMO7QPsifY5G92zDuud3uHfWEPl5OSoWbNmHrdVqVJFTZo0UW5urkWjAgAgcGgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfADupYvUAYI28vDxFRkaWuj0qKkr79++3YESAg5i5YRdge7QPCBC6B9gW7QMChPYBtkX7gAChfYAt0T0ggGgfYEu0DwgQugfYFu0DAoT2AbZF+4AAoX2ALdE9IIBoH2BLtA8IELrnFTZYAQA/o0cAAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPe+EWD0AWCMqKkoHDhwodXteXp6io6MtGBHgHC6Xb78ABAbtAwLD1+7RPiBwaB8QGLQPsC/aBwQG3QPsie4BgUP7AHuifUBgsN4J2BftAwKD9gH2RfuAwKB7gD3RPSBwaB9gT7QPCAzWO73DBiuGatasmXJzcz1uKyoq0vfff69mzZpZNCoAAAKH9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gGwEzZYMVSXLl306aefas+ePe7b/vOf/+jw4cNKTk62cGRA8HP5+D8AgUH7gMDwtXu0Dwgc2gcEBu0D7Iv2AYFB9wB7ontA4NA+wJ5oHxAYrHcC9kX7gMCgfYB90T4gMOgeYE90Dwgc2gfYE+0DAoP1Tu9UsXoAsEa/fv300ksvafjw4Ro2bJjy8vL0xBNP6Morr1R8fLzVw4Mf5Ofn64MPPpAk7dixQ/n5+Vq+fLkkKT4+XvXr17dyeI7mMrMngO3RPmeje9ahe4B90T5no33WoX2AfdE+Z6N91qF9gD3RPeejfdahfYA90T5no3vWoXuAfdE+Z6N91qF9gH3RPmejfdahfYA90T3no33WoX2APdE+Z6N71qF73nEVFxcXWz0IWOP777/Xo48+qi+++EJVq1bV1VdfrQkTJqhGjRpWDw1+sGPHDl155ZVl3jd58mT16dOnkkdkjr2Hi3z6/vOqh/ppJAB+j/Y5F92zjq/dk2gfEEi0z7lon3VoH2BvtM+5aJ91WO8E7IvuORvtsw7tA+yL9jkX3bMO652AvdE+56J91qF9gL3RPueifdZhvROwL7rnbLTPOrQPsC/a51x0zzqsd3qHDVYAwM+YiAEATMJEDABgGtoHADAN650AANPQPgCASVjvBACYhvYBAEzDeicAwDS0DwBgEtY7vVPF6gEAgNO4XFaPAACAykP3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3vMMGKwDgZy5RJACAOegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeied9hgBQD8jB2/AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXveYYMVAPAzegQAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd806I1QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgECpYvUAAMBx2PILAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucVNlgBAD9zUSQAgEHoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonnfYYAUA/MxFjwAABqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF73gmxegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEChssAIAfuby8RcAAMHE1+7RPgBAsKF9AADT0D0AgGloHwDAJHZc79y6dasGDx6sdu3aqWPHjnr44Yd1+PDhADwTAMBEtA8AYBq7dQ8AgECjfQAAk9hxvTMYsMEK3KZPn64WLVq4fyUlJem2227T559/HtDnfeutt9SiRQvt2LHDfVuLFi30wgsvlPsxduzYoenTp+vHH3/069ji4+M1ffr0Mx4zYMAApaSk+Pxc3bp104MPPujz40jSp59+qhYtWuirr77yy+OhgqgREDRoX2m0DxXGTAwIKrSvNNqHCqN9QNCge6XRPXiF7gFBg/aVRvvgFdoHBA3aVxrtQ4XZbL3zwIED+utf/6r9+/frueee0/33368VK1ZowoQJ/n0iIEjRvtJoHyqM9gFBg+6VRvfgFRt1D8CZ0b7SaB+8QvuAoEH7SqN9qDCbrXcGiypWDwD2EhYWppdeekmS9NNPPyk9PV0DBw7Uv/71LzVv3rzSxvHKK6/oggsuKPfxO3fuVFpami6//HKdf/75ARwZcHYuU4sCBCnaB/iG7gHBh/YBvqF9QHChe4DvaB8QXGgf4DvaBwQX2gf4xm7dW7x4sfbs2aPXXntNNWvWlCRVq1ZNd999t77++mu1bt3a4hEC1qN9gG9oHxBc6B7gO7u1D8CZ0T7Ad7QPCC60D/AN3fMOG6zAg8vlUtu2bd1fx8fHq1u3blq8ePFpd6IqKChQeHi4X8dx6hgAAAgk2gcAMA3tAwCYhO4BAExD+wAApqF9gPXWrVtXoePbtGlz2vtWrVqlpKQk9wXm0olPUKxevbpWrlzJReaAaB9gB7QPqDx0DwBgGtoHADAN7QNghRCrBwB7q1evnmJiYrRjxw5J0t/+9jddc801+vjjj9WnTx+1bt1ar732miQpOztbt99+u9q1a6d27dpp2LBh2r59u8fjHTx4UPfdd58uvvhidejQQQ888IDy8/NLPW+LFi30wgsveNz2wQcf6JZbblHbtm118cUX6y9/+Yu++OILffrpp7rtttskSTfffLNatGihFi1aeDzno48+qi5duqh169bq0aOH3n777VLP+X//93+68sorFR8fr759++qbb77x7TfvN7/88ovuv/9+/fGPf1RCQoK6deumhx56SHl5eWUeP3fuXCUnJyshIUGDBg3S1q1bPe4vLi7WvHnzdO2116p169ZKTk7WtGnTVFRU5Jfxwncul2+/AFiL9vmO9pnF1+7RPsB6tM93tM8stA8IbnTPd3TPPHQPCG60z3e0zzy0DwhutM93tM8s/ljv7Nu3b4V+nUlOTo6aNWvmcVuVKlXUpEkT5ebmBvK3AghatM93tM8stA8IbnTPd3TPPKx3AsGN9vmO9pmH9gHBjfb5jvaZhWsbvFPF6gHA3g4ePKh9+/apTp067tt+/fVXPfDAAxo6dKgaNmyomjVrKjs7W7feequSkpL01FNPqbi4WGlpaRo4cKCysrLcu4Hdf//9+uCDDzR69Gg1bdpUb7zxhqZNm3bWcbz99tsaO3askpOTNWXKFFWrVk3r1q3Tjz/+qOTkZD344IN65JFH9OijjyouLs79fceOHdPtt9+uH374QSNGjFDDhg313nvvaezYsYqKilLnzp0lSStXrtT999+vHj166IYbbtB3332nkSNH6vjx4z7/Hu7bt08RERG69957de6552rnzp16/vnnNWzYMC1cuNDj2JUrV6pWrVr6+9//riNHjujZZ5/VHXfcobffflthYWGSpCeeeEKLFi3SkCFDdPHFF2vjxo3uGI0ZM8bn8cJ31fjJCgQ12kf7UDF0Dwh+tI/2oWJoHxDc6B7dQ8XRPiC40T7ah4qjfUBwo320DxVjt+7l5eUpMjKy1O1RUVHav3+/BSMC7I/20T5UDO0Dghvdo3uoOLu1D0DF0D7ah4qjfUBwo320DxVD97zDbxtKKSwslCT99NNPevLJJ1VUVKSrr77afX9eXp7S09PVoUMH920DBgxQ8+bNNWvWLIWEhEiS2rRpo6uuukqvvfaa/vKXvyg3N1fvvPOOHnzwQd1yyy2SpC5duuimm27STz/9dNrxHD9+XE8++aQ6dOigWbNmuW/v0qWL+//HxsZKkuLi4tS2bVv37cuWLdP69ev1r3/9Sy1btpQkderUST/99JOmTZvmjlF6eroSEhL0zDPPuB87LCxMjzzySMV/A38nNjZW9913n/vrdu3aqUGDBrr11luVk5PjHrt04vd2yZIliomJkSQ1bdpUffr00dKlS9WnTx9t375dCxYs0MSJEzVgwABJ0mWXXaaQkBA999xzGjRokM4991yfxwwApqF9tA8ATEP7aB8AmITu0T0AMA3to30AYBraR/tgrVdffdXqIQDGoX20D9aifUDlont0DwBMQ/toHwCYhvbRPqCyhVg9ANhLQUGBWrVqpVatWqlbt25as2aNHnzwQV1++eXuYyIjIz1CdOTIEX3xxRe69tprdfz4cRUWFqqwsFAxMTFq3ry5srOzJUnZ2dkqLi7WNddc4/Gcf/rTn844pu+//14//vijbrrppgq/ntWrVys2NlZxcXHucRUWFqpTp0769ttvVVRUpKKiIn3zzTcewZVUapzeKi4uVmZmpnr06KG2bduqVatWuvXWWyVJ//vf/zyOTUxMdIdIklq1aqUGDRq4fw/XrFmj48eP69prr/V4PZdddpny8/O1ZcsWv4wZAExC+0rQPgAwA+0rQfsAwPnoXgm6BwBmoH0laB8AmIH2laB9sEqbNm0q9OtMoqKidODAgVK35+XlKTo6OlAvAQgqtK8E7YNVaB9QeeheCboHAGagfSVoHwCYgfaVoH1A5ali9QBgL2FhYXr55Zflcrl03nnn6YILLnDv3nVSzZo1Pb7ev3+/ioqK9NRTT+mpp54q9ZgRERGSpN27dyskJETnnXeex/21atU645j27dsnSapbt25FX4727NmjzZs3q1WrVmXev3v3boWGhqqwsLDU64qJiSn12r2xYMECTZ48WQMHDtRll12mc889Vz/99JPuuusuHT161OPY349BOvH7s3v3bknSr7/+KunEjmVl2bVrl8/jBQDT0L4StA8AzED7StA+AHA+uleC7gGAGWhfCdoHAGagfSVoH5ygWbNmys3N9bitqKhI33//vbp162bRqAB7oX0laB+cgPYBZ0b3StA9ADAD7StB+wDADLSvBO0DKg8brMCDy+VSfHz8WY85VWRkpEJCQpSSklJqxyxJqlGjhiSpdu3aOn78uPbu3euxo9Uvv/xyxuc7Ga+ffvqpXK/hVNHR0YqLi9PkyZPLvD8mJkahoaGqUqWK+wf9SXv27NHx48cr/Jy/l5WVpeTkZP3tb39z3/bJJ5+UeezvxyCd+P1p2bKlJLl3o1+4cKGqVq1a6tgGDRr4PF4AMA3tK0H7AMAMtK8E7QMA56N7JegeAJiB9pWgfQBgBtpXgvbBCbp06aIZM2Zoz5497v/u/vOf/+jw4cNKTk62eHSAPdC+ErQPTkD7gDOjeyXoHgCYgfaVoH0AYAbaV4L2AZWHDVbgs+rVq6tdu3bKycnRPffcc9rjEhIS5HK5tHz5ct1yyy3u21esWHHGx2/SpInq1aun1157Tddff32Zx4SFhUlSqd2zOnXqpJUrV6pWrVq64IILTvscrVq10jvvvKM77rjDfdvy5cvPOK7yOnLkSKkdzd54440yj/3ss8+0d+9ed4C/+eYb7dixQ23atJEkXXbZZXK5XPr111/LDD8AoHLQvjOjfQDgPLTvzGgfADgL3TszugcAzkP7zoz2AYDz0L4zo32wUr9+/fTSSy9p+PDhGjZsmPLy8vTEE0/oyiuvPOsJ1gBOj/adGe2DlWgf4H9078zoHgA4D+07M9oHAM5D+86M9gFnxwYr8Iu//e1vGjBggEaMGKHrr79e5513nnbv3q1PP/1USUlJuu6669SsWTNdffXVmjJlio4dO6YmTZrojTfeOOsuXi6XSxMmTNDo0aM1dOhQ3XjjjTrnnHOUnZ2txo0b67rrrlPjxo0VGhqqf/3rXwoPD1eVKlUUHx+vG264Qa+99poGDBigQYMGqVmzZjp06JC2bNminTt36h//+Ickafjw4brzzjs1btw43XDDDfr++++1YMECValSvv9Efv311zLjlZSUpM6dO2vu3LmaO3euWrRooX//+9/673//W+bjREVFKSUlRcOHD1d+fr5SU1PVsGFD9ejRQ5LUuHFjDRo0SPfdd582b96sdu3aqbi4WNu2bdP777+v559/XuHh4eUaMwDAN7SP9gGAaWgf7QMAk9A9ugcApqF9tA8ATEP7aB/sKSoqSvPnz9ejjz6qUaNGqWrVqrr66qs1YcIEq4cGBD3aR/tgT7QPCAy6R/cAwDS0j/YBgGloH+0DfMEGK/CLhIQEvfLKK5o2bZoeeOAB5efnq27duurQoYNatGjhPu6xxx7TY489pqlTpyo0NFTXXHONRo0apYkTJ57x8a+55hrNmjVL6enpGjdunMLDw9WiRQtdeumlkqSYmBg9+OCDevHFF7Vs2TIVFhZq06ZNCg8P19y5c5Wenq65c+fqp59+UlRUlJo3b64+ffq4H/+KK67QY489pvT0dK1YsUItW7bU9OnTdfPNN5fr9W/YsEGjRo0qdfsrr7yiESNGaN++fZo1a5YKCwt1+eWX69lnn9VNN91U6vgrrrhCjRs31iOPPKK9e/fq4osv1qRJk9y7mUnShAkT1LhxY7388st64YUXVLVqVTVq1Ehdu3YtdzwBAL6jfbQPAExD+2gfAJiE7tE9ADAN7aN9AGAa2kf7YF9NmjTRnDlzrB4G4Di0j/bBvmgf4H90j+4BgGloH+0DANPQPtoH+MJVXFxcbPUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQQqweAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEChusAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAsNlgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FhssAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAsdhgBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjscEKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMdigxUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjsUGKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAciw1WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgWG6wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCw2WAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgWGywAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCx2GAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGOxwQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAx2KDFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOxQYrAAAAAID/Z+/O462q6/2Pv5kV4YADmAoOIJaKoqlAWpID13AKtevPzCkhNRQ1J6xuNuGQaWKSmkMpdrM0LQNzylSka5ZKgObEUVFQc2BWBgF/f3g51yOosM8+nH32ej4fj/PAs9fae3+3Ai/XPmt9NgAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGWOYjvQABAABJREFUrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKqWASsAAAAAAAAAAAAAAAAAAAAAQNUyYAUAAAAAAAAAAAAAAAAAAAAAqFoGrAAAAAAAAAAAAAAAAAAAAAAAVcuAFQAAAAAAAAAAAAAAAAAAAACgahmwAgAAAAAAAAAAAAAAAAAAAABULQNWAAAAAAAAAAAAAAAAAAAAAICqZcAKAAAAAAAAAAAAAAAAAAAAAFC1DFgBAAAAAAAAAAAAAAAAAAAAAKpW66ZeAEC1WXvHkxp0/wUTR5dpJQDQ+BravUT7AGhetA+AovF+JwBFo30AFIn3OwEoGu0DoGi83wlA0WgfAEXi/c7StGzqBQAAAAAAAAAAAAAAAAAAAAAANJbWTb0AgKrTwuwqAApE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPdKYsAKQLm1aNHUKwCANUf3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE90piwApAuZn4BUCR6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkeheSfxbAwAAAAAAAAAAAAAAAAAAAACqVuumXgBA1WnRoqlXAABrju4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInulcSAFYBya9GyqVcAAGuO7gFQNNoHQNFoHwBFo30AFInuAVA02gdA0WgfAEWjfQAUie6VxIAVgHIz8QuAItE9AIpG+wAoGu0DoGi0D4Ai0T0Aikb7ACga7QOgaLQPgCLRvZIYSwMAAAAAAAAAAAAAAAAAAAAAVK3WTb0AgKrTwuwqAApE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPdKYsAKQLm1aNHUKwCANUf3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE90piwApAuZn4BUCR6B4ARaN9ABSN9gFQNBXWvocffjhHHXXUCrf36tUr48aNq/t+2rRpGTlyZB555JG0bds2gwYNyllnnZX27dvXu9/48eNzySWXZOrUqenSpUuOOuqoHHPMMY39MgCoVBXWPQBodNoHQNFoHwBFo30AFInulcSAFYByM/ELgCLRPQCKRvsAKBrtA6BoKrR9I0eOTK9eveq+X2utter+ed68eTn66KPTtWvXjBo1KnPmzMkFF1yQN998M5dddlndfpMmTcqwYcOy//77Z8SIEZk8eXIuvPDCtGrVKkceeeQafT0AVIgK7R4ANBrtA6BotA+AotE+AIpE90piwAoAAAAAAAAAQAXr1atXdthhh5Vu+81vfpOZM2fmlltuyfrrr5/kvQEsw4cPz+OPP57evXsnSUaPHp2tttoq559/flq0aJH+/fvntddey+jRo3PYYYelTZs2a+rlAAAAAAAAAADAGmfACkC5tWjZ1CsAgDVH9wAoGu0DoGi0D4CiaWD7Jk2atFr79+nTp0HPlyTjx49P//7964arJMmee+6Z9u3b5/7770/v3r2zePHiPPTQQzn11FPT4n2fYHTAAQfkhhtuyMSJE9O3b98GrwWAZsYxHwBFo30AFI32AVA02gdAkeheSQxYASi3952QCABVT/cAKBrtA6BotA+Aomlg+w499NDV2v/pp59epf2GDRuWWbNmZd11181ee+2V008/PZ07d06STJ06NYMHD663f+vWrbPFFluktrY2SfLiiy/mnXfeSc+ePevtt/z72tpaA1YAisgxHwBFo30AFI32AVA02gdAkeheSQxYASg3E78AKBLdA6BotA+AotE+AIqmwtrXsWPHHHvssenbt2/at2+fSZMm5aqrrso///nP3HLLLWnbtm3mzp2bjh07rnDfmpqazJkzJ0nqfv3gfh06dEirVq3qtgNQMBXWPQBodNoHQNFoHwBFo30AFInulcSAFVbJ9OnTs9deeyVZ9U/Qas4efvjhHHXUUdlkk03yl7/8pamXA0AT0D4AikT3ACga7QOgaLQP1pybbrqprI+3zTbbZJtttqn7vl+/ftl2221z7LHHZty4cTn44IPL+nxQLbQPgCLRPQCKRvsAKBrtA6BotA9oTAasNAPXXXdd5s2bl4MOOijdunVr6uWsYOHChZkwYUIef/zxuq9Zs2YlSe69994mX/O8efPyu9/9LhMmTMgzzzyT2bNnp1WrVunSpUt69+6dgQMHZu+9907btm2bdJ2N7bLLLsvo0aNz0kknZfjw4Svd549//GN++9vf5plnnsk777yT7t27Z999982xxx6bdu3arbD/8mj37ds3N9xwQ2O/hObDxC9oMO1rGO17z0e1b+rUqfn73/9e99+vtrY2S5YsyUEHHZQLLrjgQx9z+QG6A9b30T1oMN1rGN17z4d1b+nSpfn73/+eBx54IBMnTszzzz+ft956Kx06dMjWW2+d/fffPwcddFBatWq10sf95Cc/maQYb0yvMu2DBtO+htG+93zUMd9///d/Z/LkyXnyySfzxhtvZO7cuWnXrl0233zz7LHHHjnqqKNSU1OzwmN6v/NDaB80mPY1jPa9Z1V+1vd+f/7zn3PiiScmyUe+n+m4byUa2L4+ffqUaSEfbrfddkvnzp0zZcqUHHzwwampqcm8efNW2G/u3LnZbLPNkiSdOnVKkhX2mz9/fpYuXVq3HcpB+xpG+97zUe078sgj8/e///0j73/11Vdn9913r3eb476VcMwHDaZ7DaN771mVY75ly5blD3/4Q8aOHZunn346c+fOTefOnbPFFlukX79+Oemkk+rt7xyXD6F90GDa1zDa954Pa9+tt96ab37zm6v0GAcffHDOP//8uu+170NoHzSY9jWM9r3n4477/v3vf+e6667LhAkT8tJLL2XJkiVZd91106dPnxx22GH57Gc/u8J9tO9DaB80mPY1jPa95+Pa9/rrr+cXv/hF7r///rz88stp3bp1tthiixx44IE5/PDD07r1iiMwtG8ldK8kBqw0A2PGjMmMGTPSt2/fJv+LfWWef/75upPzKs0f//jH/PCHP8zcuXOTJBtssEF69eqVJUuW5JVXXsmf/vSn/OlPf0r37t3zi1/8IptuumkTr7hpvPvuu/nmN7+Z3//+90neO8mypqYmU6dOzahRo3L33XfnhhtuSIcOHZp4pc1EyxZNvQJo9rSvdNq3an7yk5/k3nvvbeplVAfdgwbTvdLp3se79dZb81//9V9JkhYtWmTTTTdNt27dMmPGjDz00EN56KGHcsstt+Sqq65Kx44dm3i1zYT2QYNpX+m0b9Wce+65Wbp0adZaa6107do1G220Ud544426H6b+5je/yS9/+cv06tWrqZfaPGgfNJj2lU77SjNnzpx873vfa+plNF/NqH0tWry31p49e6a2trbetqVLl+b555/PnnvumSTZdNNN06ZNm9TW1maPPfao22/5/Xr27LmGVk0RaF/ptG/1bL755llvvfVWus3gqFXUjLoHlUr3Sqd7q27mzJk54YQTMmnSpCTJZpttlo033jgzZ87MY489lkcffXSFASt8CO2DBtO+0mnfx1t//fXz6U9/+kO3v/3223nqqaeS5CP34320DxpM+0qnfatm8uTJGTJkSObOnZtWrVqlW7duad++fV566aXcc889ueeeezJkyJCcddZZTb3U5kH7oMG0r3Tat2omT56c4447LrNmzUrr1q2z5ZZbZtmyZXniiScyZcqU3HXXXbn22muz1lprNfVSK5/ulcSAFRqsdevW2X777dO7d+/07t07G2+8cY455pimXlauu+66uonE++23X0444YRstdVWdduXLVuWiRMn5rrrrss999yTV155pbAxuvHGG/P73/8+bdq0ycUXX5x99tknSfLKK6/k+OOPz7/+9a9897vfzcUXX9zEK20mTPyCqqd9zV/Xrl2z99571/03/MMf/pBx48Y19bKaJ92Dqqd7zd9WW22VI444Ivvss086d+6c5L1Bm7feemu++93v5rHHHsv3vvc9x3yrSvug6mlf83faaaelX79+2XbbbdOy5f/9vf3EE0/kjDPOyHPPPZfTTjstY8eObcJVNiPaB1VP+6rPeeedl9dffz0DBw7MPffc09TLaX6aQfsefPDBzJ49O9tvv32SZPfdd8/PfvazzJw5s27QwH333Ze33347AwYMSJK0bds2/fv3zx133JEhQ4bUDWcZN25cOnXqlB122KFJXgs0Be2rHscff3wOPvjgpl5G89YMugc0jO41f4sXL87QoUPzxBNP5Atf+EJGjBiRjTfeuG77/Pnz89BDDzXhCpsZ7YOqp33N24ABA+rez1qZ5f8e27dvn3333XcNrqwZ0z6oetrXvL377rs588wzM3fu3PTu3TuXXHJJ3b+HxYsX54orrsjll1+ea6+9Np///OfTt2/fJl5xM6B9UPW0r3mbP39+hg0bllmzZmXHHXfMpZdemg033DBJ8tJLL2XYsGF55JFHMnLkyIwcObKJV9sM6F5JDFihwXr16pWbb7657vvXX3+9CVfznkmTJuXCCy9Mkpx88skrnUbWsmXL7LTTTtlpp51y3333FfaTupcsWZKf/exnSZIhQ4bUDVdJko022iiXXHJJ9t9//9x+++35+te/ni233LKplgpQMbSv+fvgp7e6yADgw+le8zZw4MB86UtfqrtoarkWLVrkkEMOyWuvvZZRo0bljjvuyHe+8526ASwARaZ9zd/QoUNXevu2226bCy64IIceemieeeaZ1NbWpmfPnmt4dQCVR/uqywMPPJA//OEP+cIXvpABAwZ477MKnHHGGenWrVt69+6dddZZJ5MmTcrVV1+drbfeuu4iksMOOyy/+tWvMmzYsHz961/P3Llzc8EFF2SvvfbKdtttV/dYJ554Yo444oh861vfyuDBgzN58uT8+te/zplnnpm2bds21UuENU77ACgS3Wv+rr766jzxxBPZY489MmrUqBV+7tehQ4cMHDiwiVYHUHm0r7rdcsstSZIvfOELWWeddZp4NQCVQfuat9ra2rzwwgtJkh/+8If1LrRv27ZtTjnllDz44IOZMmVK7rvvPgNWAKJ9zd1tt92W119/PW3atMmPf/zjuuEqSdK9e/dceOGFOfjgg3PLLbdk6NCh2XzzzZtusZTk4YcfzlFHHbXC7b169cq4cePqvp82bVpGjhyZRx55JG3bts2gQYNy1llnpX379vXuN378+FxyySWZOnVqunTpkqOOOqrBQ5UMWKlgt956a775zW/Wff/B30wHHXRQLrjggpIff+HChbnpppty991359lnn81bb72VDTbYID169MjAgQNzyCGHNNuTqH76059m6dKl2WmnnTJs2LCP3X+PPfZY5cd+9dVXc9ddd2X8+PGZNm1aXnvttbRu3Tqbb7559t577xx11FHp0KHDSu9711135aabbsq//vWvzJ07N+3bt896662XbbfdNoMGDVrhh1xPPPFEfvGLX+Sxxx6rC8a6666bLbbYIrvttlu++tWvrvDDstX1j3/8I2+88UaS9068+6CePXtml112ycMPP5w77rgjw4cPb9DzFUID/5tAkWlf6bSPJuO/B5RM90qne6vu4wamDBgwIKNGjcrSpUszbdo0A1ZWhfZBybSvdNpXPu8fqLJgwYJGfa6qoX1QMu0rnfaVZv78+fnud7+bTp065Tvf+U7Gjx9ftsculApr3/ITTMaMGZNFixZlww03zJe+9KWcdNJJdX/Ga2pqcv3112fkyJE55ZRT0q5du+yzzz4ZMWJEvcfacccdc/nll+eSSy7J2LFj07Vr15x++ukV8WleVAftK5320WT894CS6V7pdG/VLV68OL/61a+SJKeeeqqOloN/h1Ay7Sud9pXH5MmT88wzzyRJvvSlLzXa81Qd7YOSaV/ptG/Vvf/clc0222yl+2y22WaZMmVK3nnnnQY9V2FoH5RM+0qnfavukUceSZJst9126d69+wrbt95662yxxRapra3Nn/70p1X691loFdy9kSNHplevXnXfr7XWWnX/PG/evBx99NHp2rVrRo0alTlz5uSCCy7Im2++mcsuu6xuv0mTJmXYsGHZf//9M2LEiEyePDkXXnhhWrVqlSOPPLLktRmwUsHWX3/9fPrTn87jjz+exYsXZ6uttqr3l1xDpi699NJLOe644/Lcc88lSTbeeON07949//73v/M///M/+etf/5rPfe5z6datW0Nfxho3c+bMTJgwIcl7AS/3m3TXX399fvGLX2SttdbKBhtskK222iqzZ8/OU089lSeeeCK33357fv3rX6dTp0717jdq1KhcccUVSZL11lsvn/zkJ7No0aK8+uqruf322/PKK6/Ui9H48eMzbNiwvPPOO2nfvn222GKLtG7dOq+++momTJiQCRMm5Kijjkrr1g37Yzxx4sQkSbdu3bLRRhutdJ++ffvm4YcfrtuXj9GiZVOvAJot7SuN9tGkdA9Kpnul0b3yWrhwYd0/r7322o36XFVD+6Bk2lca7SuvRx99NEmyzjrrpEePHo36XFVD+6Bk2lca7SvdhRdemFdeeSUjR47MBhtsULbHLZwKa9/xxx+f448//mP322KLLXLttdd+7H4DBgzIgAEDyrE0WIH2lUb7SnfXXXfl3nvvzbx589K5c+f07t07X/ziF+t90h0fo8K6B82J7pVG91bPY489lpkzZ2a99dbLpz71qTz88MMZO3Zspk+fnvbt22f77bfPIYccki5dujToeQpF+6Bk2lca7SufW265Jcl774PttNNOjfY8VUf7oGTaVxrtWz09evTI2muvnQULFuSRRx5Z4Wc4ixcvzuTJk5MkO+ywQ4OeqzC0D0qmfaXRvtUze/bsJPnIn+dttNFGqa2trTvfk49Qwd3r1avXh/7/y29+85vMnDkzt9xyS9Zff/0k7w1gGT58eB5//PH07t07STJ69OhstdVWOf/889OiRYv0798/r732WkaPHp3DDjssbdq0KWltrk6tYMtPbNpzzz0zY8aM/Nd//Vf69evX4MdduHBhjj/++Dz33HN1v6mW/0ZLkjfffDO33npr2rdv3+Dnagrv/wuzHP++Pmj33XfPHnvskZ122imtWrWqu/2VV17JD37wg/zlL3/JxRdfnB/84Ad122bOnJmrrroqrVu3zkUXXZQvfOEL9SL5+OOP58knn6z3PBdffHHeeeedDB06NMOHD683menll1/O7bffnpYtV/0vvuHDh2f48OEr3P7CCy8k+fApl0nqpoA9//zz9W7v169fnn766VVeQ2FU8MQvqHTaVxrtW7kPa19DdOvWTfs+SPegZLpXGt1buVK7N27cuCTvvWnas2fPFbbr3kpoH5RM+0qjfSu3Ou1bunRpXn/99Tz44IP5yU9+khYtWuSss85a4feE9zs/hPZBybSvNNq3ch/Xvoceeig33XRT+vXrl//8z/9c5cfVvpXQPiiZ9pVG+1ZuVY777r///nrf33XXXfnpT3+as846a4VPVUwc962U7kHJdK80urdyH9a95RfRbbLJJjnvvPNy/fXX19t+77335uc//3kuuuii7LXXXvW2OcflQ2gflEz7SqN9K7e657ksXLgwt99+e5LkkEMOWek+2vchtA9Kpn2l0b6V+7D2rbPOOjnxxBNz0UUX5Vvf+lZGjBiR3XbbLe3bt8/UqVPz05/+NC+++GI+85nPZN999613X+37ENoHJdO+0mjfyn1Y+zp27Jgk+fe///2h933llVeSpG4gz3LatxJl6N6kSZNWa/8+ffo0+DnHjx+f/v371w1XSZI999wz7du3z/3335/evXtn8eLFeeihh3LqqafW+/17wAEH5IYbbsjEiRPTt2/fkp7fgJUCuvnmm1NbW5t111031113Xb3ffMl7U8a+9rWvNdHqGu7VV19N8t5fsuuuu27ZH/8zn/nMSm/faKON8pOf/CS77LJLxo4dm+9+97t1sXrxxRezdOnSbL311hk0aNAK9+3du3e9/yFI/u8v/hNOOKFeiJL3prOV67/RnDlzkmSF6WTv17lz53r78jEqeOIXFJX2NUy1tY8y0z2oOLrXMEXq3uTJk/Pb3/42SXLcccfVe8OVj6B9UHG0r2GquX3nnntuxowZU++2nXfeOSeeeGJ23XXXsj9f1dI+qDja1zDV2L4FCxbkO9/5Ttq2bZsf/vCHZXvcwtI+qDja1zDV2L7l69ppp52yySabpFWrVnnqqady7bXX5p577sm5556btddee7WGjhWW7kHF0b2Gqbbuvf7660mSp556KlOmTMn++++fk08+ORtttFGmTp2a8847L//4xz/yjW98I7/73e+y1VZbleV5q5r2QcXRvoaptvZ9mLvuuivz5s1L69atM3jw4EZ9rqqjfVBxtK9hqrF9X/va17LhhhvmF7/4Rc4888x629Zdd91885vfzFe+8pXVuqi90LQPKo72NUy1ta9Pnz6566678vjjj+ell15K9+7d621/6qmn8vzzzydxTfsqKUP3Dj300NXaf1WH3AwbNiyzZs3Kuuuum7322iunn3563byCqVOnrnB837p162yxxRapra1N8t7v43feeWeFDxJe/n1tba0BK6y6u+++O8l7v+E/GKJqMH/+/CRp1Gll8+fPz5/+9KdMnDgxr732WhYsWJB33303SdKiRYu8/fbbeeGFF+r+kG688cZJkhdeeCFTpkzJdttt97HPsfHGG+eFF17I2LFjc/jhhzfaa1m4cGGSpE2bNh+6T9u2bevtC9DcaF95nqNa2gdQ7XSvPM9R7d177bXXMnz48CxZsiS77LLLSj/NFaC50L7yPEc1tq979+759Kc/nSVLluTll1/OG2+8kSlTpuS2227L9ttvnw4dOqyRdQCUm/aV5zmqqX0XX3xxXnrppZx++unZbLPNGvW5AJqC9pXnOaqpfd/61rdWuG3HHXfM6NGjc8455+S3v/1tLrroouy3337N9tMOgeLSvfI8R7V07+23306SvPPOO9lhhx1y0UUX1X1S5zbbbJOrrroqAwcOzBtvvJErrrgil1xySaOthcbx8MMPr/Rntb169cq4cePqvp82bVpGjhyZRx55JG3bts2gQYNy1llnrfBnafz48bnkkksyderUdOnSJUcddVSOOeaYxn4Z0CDaV57nqJb2fZhbbrklyXuf3N6lS5c1/vyUj/aB9pXrOaqpfUuXLs1LL72UWbNmpWXLltloo43SsWPHvPjii5k1a1Z+//vfZ7vttstOO+3UqOsAaCzaV57nqJb2HXTQQfnZz36Wt956K6eddlouueSSdOvWLcl7AzPOOOOMLFu2LIlr2purjh075thjj03fvn3Tvn37TJo0KVdddVX++c9/5pZbbknbtm0zd+7cdOzYcYX71tTU1A3WWf7rB/fr0KFDWrVq1aABPAasFNAzzzyT5L0TC6rR8pPil/9gqdz+8Y9/5JRTTsmbb775kfvNnj277p+7du2aL37xi7ntttvyn//5n9l+++3Tt2/f7LDDDtlll13SqVOnFe7/ta99Ld/+9rfz/e9/P7/85S+z6667Zscdd8wuu+ySTTbZpGyvZ/kksXfeeedD91m8eHG9ffkY//sDTKByaF/DVFv7KDPdg4qjew1ThO7NnDkzxx57bF599dVsueWW+elPf1o3rZpVoH1QcbSvYaq5fUcddVS9k/OeeOKJjBw5Mn/4wx/y7LPP5uabb9bAVaF9UHG0r2GqrX2PPfZY/vu//ztbb711jj322LI9bqFpH1Qc7WuYamvfxznjjDNy6623Zvbs2fnb3/6WPffcc409d7NUgd1zsR1Fp3sNU23de/85m8ccc0zdcJXl2rdvny9/+cu57LLLMn78+Cxbtswnmn+cCmxfkowcOTK9evWq+/79/+3nzZuXo48+Ol27ds2oUaMyZ86cXHDBBXnzzTdz2WWX1e03adKkDBs2LPvvv39GjBiRyZMn58ILL0yrVq1y5JFHrtHXA6tD+xqm2tq3Mi+99FL+/ve/J0kOOeSQRn2uqqR9UHG0r2GqsX3Dhw/Pvffem2233TbXXnttttxyyyTvXet3/fXX58c//nGOOeaY/PrXv16lC+QLr0LbB0WmfQ1Tbe1bb7318pOf/CSnnHJKJk+enIEDB2bTTTfNsmXL8tJLL2WttdbK4MGD84c//MGH6K2KMnTvpptuKsNC/s8222yTbbbZpu77fv36Zdttt82xxx6bcePG5eCDDy7r85XCgJUCWj4Na2WTfarBJz7xiSTvvakya9asrLvuumV77Pnz5+fkk0/OzJkz85nPfCbHHXdcPvnJT6ampiZt2rRJknz+85/PK6+8kiVLltS777nnnputttoqN998cyZNmpRJkyYlSVq3bp0999wzI0aMqJuylSRf+tKX0qlTp1x77bWZNGlSfvOb3+Q3v/lNkqRPnz45/fTT069fvwa/ppqamiT14/lBy7etLJqsRAs/oIRKo32lq8b2UWa6BxVH90pXhO7NmTMnxx57bJ599tlsvvnmue6667LeeuuV/XmqmvZBxdG+0hWhfe+37bbb5uqrr87ee++dJ554In/6059ywAEHNOpzVoUKa58L7UD7GqLa2rdkyZJ861vfSosWLfLDH/4wrVv78X9ZVFj7AO1riGpr36qoqalJr1698q9//SvTpk1r9Odr9iq4ey62o6h0r3TV2L33n7O5/NNnP2j57fPnz8/s2bP97O/jVGj7evXqlR122GGl237zm99k5syZueWWW+o+5XmttdbK8OHD8/jjj6d3795JktGjR2errbbK+eefnxYtWqR///557bXXMnr06Bx22GF1fw6g0mhf6aqxfStz66235t13380GG2yQz3/+843yHFVN+6DiaF/pqrF9999/f+699960bt06l156abp37163rU2bNhk6dGhqa2tz66235tJLL80111zT4OesehXWPue5gPY1RDW2b/mab7311lxzzTX529/+lhkzZqRjx47Zb7/9ctJJJ+Wee+5JknTp0qUsz1fVytC9Pn36lGEhH2233XZL586dM2XKlBx88MGpqanJvHnzVthv7ty52WyzzZL83/vjH9xv/vz5Wbp0aYNmHjjDqoA6dOiQ2bNnr/Q3XjXYaaed6v754Ycfzhe+8IWyPfYDDzyQmTNnZqONNsqVV15Z7wf3SfLuu+9mzpw5K73v8oOaoUOH5tVXX81jjz2Wv/3tb7nzzjtz991356mnnsof/vCHrLPOOnX3GThwYAYOHJh58+blscceyyOPPJI777wzkyZNypAhQ/K73/0un/rUpxr0mrbYYosk+ciTSl566aV6+/IxTLqEiqN9pavG9lFmFdg9b0JSdLpXumrv3rx58/LVr341Tz75ZDbbbLOMGTPGm46lqMD2QdFpX+mqvX0r06FDh/Tt2zd33XVXHn/8cQNWVkWFts+FdhSZ9pWu2tr39ttv5/nnn0+rVq1ywgknrLB94cKFSZJXXnklu+22W5Lk29/+dvbdd9+Sn7MQKrR9UGTaV7pqa9+qWn5C6TvvvNPoz9XsVXD3XGxHUele6aqxez169Kj757Zt2650n/ffvmzZsgY9XyGUoX3LL0ZZVQ29QGH8+PHp379/XfOSZM8990z79u1z//33p3fv3lm8eHEeeuihnHrqqWnxvtd4wAEH5IYbbsjEiRPTt2/fBq0DGov2la4a2/dBy5Ytyx/+8IckyeDBgw2ZLkUD27emu5doH9VP+0pXje37xz/+kSTZfPPN6w1Xeb/Pfe5zufXWWzNlypQGPVdhVOh7ns5zoci0r3TV2L7levbsmfPPP3+l25555pkkyXbbbVeW56pqFdq9D7P8+K1nz56pra2tt23p0qV5/vnns+eeeyZJNt1007Rp0ya1tbXZY4896vZbfr8PG0q+KiprHBtrxFZbbZUkmThxYhOvpHGst956+exnP5skGTNmTN59992yPfb06dOTvPeX8gdDlLz3l/bbb7/9sY/ziU98Ivvuu29+8IMfZOzYsenQoUNefPHFTJgwYaX7d+zYMQMGDMjpp5+eO+64IzvssEPeeeed3HzzzQ17QUl23HHHJMmMGTPyyiuvrHSfv//970nyoSctAFQ67StdNbaP4hg5cmR++9vf1n1ddNFFdduWvwk5Z86cjBo1Kt/+9rdz9913Z8SIEfUeY/mbkJ/85Cdz9dVX57DDDsuFF16YG264YU2/HFhlule6au7e/Pnzc+yxx+aJJ55I9+7dM2bMmGy44YZle3yApqR9pavm9n2U5Z/UsHTp0jXyfDSO5RfaLf96/w9ul19od8UVV2TAgAE58MAD873vfS933313Hn/88br93n+hXf/+/XPcccfl8MMPz+jRo12ISUXTvtJVa/uWLl2aN954Y4Wv5Z8CtWzZsrrblg9dAWhOtK901dq+j7JkyZI899xzSZKNNtqo0Z+P1H3q4ap+lcPHXWyXpO5iu3333XeFi+1mz55dtX+n0PzpXumqsXuf/vSn6/55+QflfdDy29u1a5fOnTs3+Dn5eIceeuhqfa2KYcOGZeutt86uu+6a73znO5k9e3bdtqlTp65wsUDr1q2zxRZb1F1M8OKLL+add95ZYb/l33/wYgWoJNpXumps3wf99a9/zcsvv5wkOeSQQ8r++Hy8xuheon0Um/aVrhrbt/zneati8eLFDX4+mo7zXCgy7StdNbbv4yxevDgPPvhgkmTvvfdu9OdjzXjwwQcze/bsbL/99kmS3XffPQ8//HBmzpxZt899992Xt99+OwMGDEjy3nDx/v3754477qj352rcuHHp1KlTg2YeGLDSDKy99tpJUraT3ZZPv7r55pvr/carJieddFJatWqVRx99NJdffvnH7n///ffnySef/Nj9lgfo9ddfX+n2a6+9dvUWmmTDDTdMt27dkiT//ve/P3b/1q1b1/0Fsir7f5xddtml7mSD3/zmNytsr62tzT/+8Y+0aNEigwYNavDzFUKLlg37ArSvBNpHk2lo9xqxfd6EpLnQvdWne6vnrbfeytChQzN58uR069YtY8aMySc+8YmyPHYhVXD7oLnQvtWnfeUza9asuoHS22yzTaM/X1Voht1zoR2VRvtWn/atmpqamjz99NMf+rX8k3422WSTutsOPvjgBj1nITTD9kGl0b7Vp33lc+ONN2bevHlp3bp1+vfv3+jP1+yV4f1OF9tRdLq3+nRv1W288cZ1Q1ZuueWWFbYvW7as7vZ+/fqldevWDX7OqldhP+vr2LFjjj322Jx77rm57rrrcswxx+SOO+7IkUceWXfx5Ny5c9OxY8cV7ltTU1P3CcXLf/3gfh06dEirVq0+9JOMoRTat/q0r3TLO/fpT386PXr0KPvjF0IFdS/RPpon7Vt92rfqtthiiyTJCy+88KGDNZdfZL58Xz5GhbVvVTjPhUqjfatP+8rnqquuyuzZs7P55ptnjz32aPTna/Yq7P3OJDnjjDMyatSo/PnPf85DDz2UK6+8Mqeeemq23nrr7LvvvkmSww47LJ06dcqwYcPywAMPZOzYsfnud7+bvfbaK9ttt13dY5144ol56qmn8q1vfSsPP/xwrr766vz617/OsGHD0rZt25LX6OyeZmDTTTdNkjz00ENlebwvfelL2XLLLTNz5sx89atfzb/+9a962998881cc801FRGqI488Mp/85Cdz9tlnr9b9dtxxx5xxxhlJkp/+9Kc57bTT8uyzz9bbZ9myZZk0aVJOPfXUnHDCCZk7d+7HPu4uu+yS5L1Jab/97W/rbl+8eHFGjRqVsWPHpk2bNivc73/+539y7rnn5oknnqg3JWnZsmX54x//WLe25X/o58+fn5NPPjkPPvjgCtMlH3/88dxxxx319m+I1q1bZ9iwYUnei+ldd91Vt+2VV17JN77xjSxbtiyDBg1Kr169Gvx8hdCiRcO+AO3TvnqPVe72UWYN7V6LFj7VjsLTPd17v3J3b8GCBTnhhBMyceLEbLLJJrnhhhuy8cYbN/hxC60M7YOi0z7te79yt+/WW2/Nr3/967z55psrbJs8eXKGDBmSefPmZeONN677wS0fo0KP+VxoR3Oifdr3ft7vbAYc80GDaZ/2vV+52/eHP/whl19+eV555ZV6ty9evDjXXXddfvSjHyVJDj/88HTp0qXBz1f1KvD9Thfb0dzonu69X2Mc833jG99IixYtcuedd+a///u/69a4ePHiXHDBBXnmmWfSsmXLHH/88WV5vqpXhvbddNNNq/X1UbbZZpuMGDEie+yxR/r165fjjjsul156aZ555pmMGzduDf1LgdWjfdr3fo35fufs2bNz7733JkkOOeSQsj52oVRQ9xLto3nSPu17v3K3b9CgQVlrrbWyZMmSnHLKKfXOVXjnnXdyzTXX5NZbb00SH6SwqpznAg2mfdr3fo1x3HfPPfdk8uTJ9W5766238tOf/jSjR49OmzZtct5556VVq1Zleb6qVoE/6+vVq1fuvffenHXWWRk6dGhuuummfOlLX8oNN9xQNxSlpqYm119/fdZZZ52ccsopGTlyZPbaa6/8+Mc/rvdYO+64Yy6//PI8+eSTGTJkSG688cacfvrpOeaYYxq0RqPKm4HBgwfnL3/5S375y1/mz3/+czbccMO0bNkyn/vc53Lcccet9uO1a9cuV155Zb72ta/lqaeeykEHHZRNNtkk6623Xl577bW89tpreffdd/OFL3wh66233io95kEHHZSXX355hdsPPvjgvP9i1Icffni111uqY489Nuuuu27OPffc3H777bn99tvTpUuXdO3aNUuXLs0rr7xS94PyzTfffJUuMNtmm23yxS9+MbfddlvOOeecjB49Ol27ds20adMyb968nHrqqbn55pszY8aMevd7++23M2bMmIwZMyYdOnRI9+7d07Jly7zyyit10T/yyCOz4447JnkvUnfddVfuuuuutGnTJptttlnat2+fN998s+6x+/Tpk6OOOqos/66+8pWvZNKkSfnjH/+Yk08+Od26dUvHjh0zderUvPPOO/nkJz+Z73//+2V5rkLwyXTQYNpXGu1bdbfffnt+8IMf1H2/YMGCutvvu+++utuHDh2ar33ta2V5zqpVhu6tzifVJcnTTz+9SvsNGzYss2bNyrrrrpu99torp59+ejp37pzkvTchBw8eXG//Ut6E7Nu372qtHVZG90qje6tmzJgx+fvf/54kadOmTU4//fQP3feEE07IgAEDGvycVc8xHzSY9pVG+1bNjBkzMnr06Hz/+9/PRhttlA022CBJ8vLLL9cNXdlkk01y5ZVXpn379g1+vkJoYPvKfcy3/EK7vn37pn379pk0aVKuuuqq/POf/8wtt9yStm3butCOiqN9pdE+mozjPmgw7SuN9q2a2bNn59JLL82ll16aDTfcMF27ds2yZcvy3HPP1f3Mb999981ZZ53V4OcqhDJ0b1UuoFsd22yzTbbZZpu67/v165dtt902xx57bMaNG+dCEiqO7pVG91Zd3759c/bZZ+eCCy7ID37wg1xxxRXZaKONMm3atMyZMyctW7bMt7/97ey8885leb6qV4b29enTpwwL+XC77bZbOnfunClTpuTggw9OTU1N5s2bt8J+c+fOzWabbZYk6dSpU5KssN/8+fOzdOnSuu1QDtpXGu1bfWPHjs3ixYvTvn37DBo0qKyPXSgNbF9jdy/RPiqf9pVG+1bNhhtumPPOOy8jRozIE088kf333z8bbbRRampq8uKLL+att95K8t4gli9/+csNfr5CcJ4LNJj2lUb7Vt29996b3//+9+nYsWM22WSTvPvuu3n++eezePHirLPOOrnooouy0047leW5ql4FnuNy/PHHr9JA8C222CLXXnvtx+43YMCAsl/nYsBKM7DPPvvkvPPOy29/+9tMnTo106dPz7vvvptNNtmk5Mfs3r17fv/73+fGG2/M3XffnalTp+b111/PBhtskN122y377LNPunbtusqPN2fOnHpT895/e0O89tprSVLvh+ar46CDDspee+2Vm2++ORMmTMizzz6bZ555Jq1bt06XLl3y2c9+Nv/xH/+RvffeO61br9ofh/PPPz+9evXKLbfckunTp2fRokXZZpttctRRR2XvvffOzTffvMJ9dtppp5xzzjn529/+lmeeeSYvvfRSFi5cmHXXXTd77LFHDj300Oy55551+y8PwN/+9rdMnjw5r732WubNm5cOHTpk5513zqBBg3LooYfWTWpqqBYtWuTHP/5xdtttt9x000155pln8sYbb2TzzTfPvvvumyFDhqRdu3Zlea5CqLAgPfzwwyv9H5devXrVm/I8bdq0jBw5Mo888kjatm2bQYMG5ayzzlrhQpPx48fnkksuydSpU9OlS5ccddRRDZ72BR+kfdrX2O1btGjRSv/7LV68uN6kzYULF5bl+apahXUv8SYkzY/u6V5jdu/9XXvhhRfywgsvfOi+yy8652NUWPsc89EcaZ/2NWb79t9//7Rq1SqPPPJIXnjhhUydOjVLlixJ586ds9tuu2WvvfbKwQcfnLXXXrvBz1UYFdY+F9rRHGmf9jX2+52UWYW1D5oj7dO+xmzfZz/72QwdOjSTJ0/OSy+9lGeffTbLli3LBhtskAEDBuTggw82SHp1NIOLzBMX21HZdE/31sQx3zHHHJPevXvnuuuuy8SJE/Pkk0+mU6dO+cIXvpCvfvWr2WGHHcr2XFWvGR3zLb8YqGfPnit8EvnSpUvz/PPP1/3e3HTTTdOmTZvU1tZmjz32qNtv+f0++OFC0BDap31r6v3OW265Jcl7F5Svs846ZX3sQtE+aDDt077Gbt9+++2XT33qU7n++uvz97//Pa+88kpee+21dO7cObvssksGDx5s2NjqqLD2Oc+F5kj7tK+x27fvvvtm4cKFefzxxzNt2rS0aNEim222WQYMGJCjjz56tX4vFF6Fda+5aPHuu+++29SLgJV54403sttuu2XdddfNfffd54R3mo21D7i8QfdfMHZYmVbynuUX240cOTK9evWqu32ttdbKpz71qSTvnUxywAEHpGvXrjnxxBMzZ86cXHDBBdlpp51y2WWX1d1n0qRJ+cpXvpL9998/gwcPzuTJkzNq1Kh885vfzJFHHlnWdUMRaR/NUUO7lyR/G7nbau1fykmaf/3rX3Psscfm/PPPz8EHH5xtt902J554YoYNq9/dY445Ji1btswvfvGLPProozn88MPz3//93yt80tM222yTk08+OSeccMJqrwV4j+7RXJWjfeU87nPMB82H9tFcNbR9a+KYL3nvBJR999033/3ud/OZz3wmgwcPzogRI+rtc/DBB2ezzTarGya233775corr6x30uX8+fOz00475Xvf+55Pf4IG0j6aq0r7WR/QfGgfzVGlvd/5Ufr165f99tsv55xzTo444oi0b98+V111Vd32pUuXZuedd86QIUNy0kknZfHixfn0pz+dU089NUOHDq3bb9KkSTn00ENzww03pG/fvmtk7VCNdI/mqjm078EHH8zQoUPzox/9KIMHD85VV12Vn/3sZ7nvvvvqPsX5z3/+c0488cT87ne/y3bbbZckGTp0aGbNmpXf/e53dReon3vuubntttsyYcIEg16hgbSP5qo5vN+pfVCZtI/mynkuQKm0j+aoObzfWYlWbbwRNIFHHnkkSXLUUUcJEc3L/745V2l69er1oZ9U8Zvf/CYzZ87MLbfckvXXXz/JexfjDR8+PI8//nh69+6dJBk9enS22mqrnH/++WnRokX69++f1157LaNHj85hhx2WNm3arKmXA1VJ+2iWytA9n2oHxaR7NFuO+YASaR/NVgPbtyaO+ZbzqXZQWbSPZqtCj/uAyqd9NEvNpHsPPvhgZs+ene233z5Jsvvuu+dnP/tZZs6cWXex3X333Ze33347AwYMSJK0bds2/fv3zx133JEhQ4bUHTOOGzcunTp1+tD3U4FVo3s0WxXWvjPOOCPdunVL7969s84662TSpEm5+uqrs/XWW2ffffdNkhx22GH51a9+lWHDhuXrX/965s6dmwsuuCB77bVX3QXmSXLiiSfmiCOOyLe+9a26D1P49a9/nTPPPNMF5lAG2kezpX1AibSPZst5LkCJtI9mqcKO+ZoLA1aoWI888kjWWWedfOUrX2nqpcDqadGyQXefNGnSau1fjgO38ePHp3///nUX2iXJnnvumfbt2+f+++9P7969s3jx4jz00EM59dRT6w7gkuSAAw7IDTfckIkTJ/pkH2gg7aNZamD31jRvQkLl0D2arTK0b00f9znmg8qgfTRbzeC4z4V2UJm0j2arGbQPqEzaR7NUgd1zsR00D7pHs1Vh7evVq1fGjRuXMWPGZNGiRdlwww3zpS99KSeddFJdq2pqanL99ddn5MiROeWUU9KuXbvss88+K3yy+Y477pjLL788l1xyScaOHZuuXbvm9NNPzzHHHNMErwyqj/bRbGkfUCLto9mqsPatjPNcoDJpH81SM+heJWrx7rvvvtvUi6A0r7/+ek4++eTVus+NN97YSKsBllt78FUNuv+mT168Wvs//fTTH7n94YcfzlFHHZX1118/s2bNyrrrrpu99torp59+ejp37pwk+cxnPpPBgwev8KbjwQcfnM022yyXXHJJpk6dmv322y9XXnllvYvM58+fn5122inf+9738uUvf3m11g6rS/ug8jS0e0my4A/HlWElH+3BBx/M0KFD86Mf/SiDBw/OVVddlZ/97Ge577776t6E/POf/5wTTzwxv/vd7+pOvBw6dGhmzZqV3/3ud3VvQp577rm57bbbMmHCBCde0qh0DypTOdpXzuM+x3xUE+2DytTQ9pX7mO/DLrTr3r17brrpprRt2zZz587N/vvvn4033rjehXZ9+vTJ5ZdfXvdYEydOzBFHHJEDDzyw7kK7UaNG5cwzz3TiJWuE9kFlqrT2QTXRPqg8lfizvp///OcZN25cZsyYUXex3cCBA3PSSSelY8eOdfs9//zzGTlyZB599NF6F9uts8469R7vgQceqHsPtGvXrjniiCNy7LHHlnXNsDK6B5WpEtsH1UL7oDJ5vxMaj/ZBZaq09jnPhWqifVB5vN9ZmtZNvQBKt2jRojz22GNNvQygwnXs2DHHHnts+vbtm/bt22fSpEm56qqr8s9//jO33HJL3YHY+09CWa6mpiZz5sxJkrpfP7hfhw4d0qpVq7rt0Ji0D1gVPtWOaqF7wKpwzEc10T5gVfhUO6qJ9gFQNNoHrIrjjz8+xx9//Mfut8UWW+Taa6/92P0GDBhQ9ymvsCbpHgBFo30AFI32AavCeS5UE+0DqoUBK81Yt27dPvITjIEm0qJlg+5+0003lWkh79lmm22yzTbb1H3fr1+/bLvttjn22GMzbty4HHzwwWV9PmhM2gcVqIHdawzehKRa6B5UqDK0r5zHfY75qCbaBxWqwo77XGhHNdE+qFAV1j6oJtoHFUj3oNHoHlQo7YNGo31QobQPGo32QYWqsPY5z4Vqon1QgSqse82FASsA5daiRYPu3qdPnzIt5MPttttu6dy5c6ZMmZKDDz44NTU1mTdv3gr7zZ07N5tttlmSpFOnTkmywn7z58/P0qVL67YDUDAN7F5j8CYkAI2qDO1r7OM+x3wAlFUFHvcBQKPSPgCKRPcAKBrtA6BotA+AotE+AIpE90piLA1AmbVo0aJBX2t6rUnSs2fP1NbW1tu2dOnSPP/88+nZs2eSZNNNN02bNm1W2G/598v3A6BYGtq9Nd0+AGio5tQ+x3wAlENz6R4AlIv2AVAkzen9TgAoB+0DoGh0D4Ci0T4AisT7naUxYAWggB588MHMnj0722+/fZJk9913z8MPP5yZM2fW7XPffffl7bffzoABA5Ikbdu2Tf/+/XPHHXfk3Xffrdtv3Lhx6dSpU3bYYYc1+hoAAABYOcd8AAAAAAAAAAAAAAAA9bVu6gUAVJtKm9h1xhlnpFu3bundu3fWWWedTJo0KVdffXW23nrr7LvvvkmSww47LL/61a8ybNiwfP3rX8/cuXNzwQUXZK+99sp2221X91gnnnhijjjiiHzrW9/K4MGDM3ny5Pz617/OmWeembZt2zbVSwSgCVVa9wCgsVVa+xzzAdDYKq19ANDYtA+AItE9AIpG+wAoGu0DoGi0D4Ai0b3SGLACUG4V1qNevXpl3LhxGTNmTBYtWpQNN9wwX/rSl3LSSSfVXSBXU1OT66+/PiNHjswpp5ySdu3aZZ999smIESPqPdaOO+6Yyy+/PJdccknGjh2brl275vTTT88xxxzTBK8MgIpQYd0DgEZXYe1zzAdAo6uw9gFAo9M+AIpE9wAoGu0DoGi0D4Ci0T4AikT3SmLAyodYe8eTmnoJNKJZ/xjd1EugEa3VxH+zVdrEr+OPPz7HH3/8x+63xRZb5Nprr/3Y/QYMGJABAwaUY2lUGO2rbtpXvXQPSqd91Uv3qpv21eeYj9WhfdVL+6qb9kFpdK+6aV910z4ojfZVN+2rXroHpdO+6qZ91Uv7oHTaV710r7ppH5RG96qb9lU37YPSaF91077qpXvNkwErAGUmSAAUie4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInulaZlUy8AAAAAAAAAAAAAAAAAAAAAAKCxtG7qBQBUGxO/ACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt0rjQErAGUmSAAUie4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInulcaAFYBy0yMAikT3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE90rSsqkXAAAAAAAAAAAAAAAAAAAAAADQWFo39QIAqk2LFkZ+AVAcugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXGgNWAMpMkAAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdK40BKwBlJkgAFInuAVA02gdA0WgfAEWjfQAUie4BUDTaB0DRaB8ARaN9ABSJ7pWmZVMvAAAAAAAAAAAAAAAAAAAAAACgsbRu6gUAVBsTvwAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdK40BKwDlpkcAFInuAVA02gdA0WgfAEWjfQAUie4BUDTaB0DRaB8ARaN9ABSJ7pXEgBWAMjPxC4Ai0T0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG90hiwAlBmggRAkegeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXmlaNvUCAAAAAAAAAAAAAAAAAAAAAAAaS+umXgBAtTHxC4Ai0T0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG90hiwAlBuegRAkegeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXkkMWAEoMxO/ACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt0rTcumXgAAAAAAAAAAAAAAAAAAAAAAQGNp3dQLAKg2Jn4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcaA1YAykyQACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt0rjQErAGUmSAAUie4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInulcaAFYBy0yMAikT3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE90rSsqkXAAAAAAAAAAAAAAAAAAAAAADQWFo39QIAqk2LFkZ+AVAcugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXGgNWAMpMkAAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdK40BKwBlJkgAFInuAVA02gdA0WgfAEWjfQAUie4BUDTaB0DRaB8ARaN9ABSJ7pWmZVMvAAAAAAAAAAAAAAAAAAAAAACgsRiwAlBuLRr4BQDNSUO7p30ANDfaB0DR6B4ARVPB7VuyZEkOOOCAfPKTn8ztt99eb9uUKVNy+OGHp0+fPvnsZz+bSy65JEuWLFnhMW677bbsu+++2W677bLvvvvmj3/8Y+MuGoDK5v1OAIpG+wAoGt0DoGi0D4Ai8X5nSVo39QIAqk2LFgUtCgCFpHsAFI32AVA02gdA0VRy+8aMGZNZs2atcPv06dNzzDHHZKeddsoVV1yRadOm5cILL8yiRYty9tln1+13991356yzzsqQIUOy++6754EHHsiZZ56ZddZZJ3vttdeafCkAVIhK7h4ANAbtA6BotA+AotE+AIpE90pjwApAmQkSAEWiewAUjfYBUDTaB0DRVGr7Xn311YwePTrnnHNORowYUW/bNddck/bt2+eyyy5Lu3btsuuuu2bhwoW5+OKLM2TIkHTp0iVJMmrUqAwcODBnnXVWkqR///55/vnnM2rUKANWAAqqUrsHAI1F+wAoGu0DoGi0D4Ai0b3SGLACAAAAAAAAAFAGkyZNWq39+/Tps0r7nXfeedlzzz2z8847r7Bt/Pjx2XvvvdOuXbu62/bff/9ccMEFmTBhQg466KBMnz49tbW1GT58eL37HnjggfnGN76RGTNmZJNNNlmttQMAAAAAAAAAQHNiwApAmZn4BUCR6B4ARaN9ABSN9gFQNA1t36GHHrpa+z/99NMfu8/48eMzYcKE3HnnnVm8eHG9bQsWLMiMGTPSs2fPerd36dIlnTt3Tm1tbZLU/frB/ZZ/X1tba8AKQAE55gOgaLQPgKLRPgCKRvsAKBLdK40BKwBlJkgAFInuAVA02gdA0WgfAEVTae1btGhRfvjDH+akk05K165dM3369Hrb586dmyTp2LHjCvetqanJnDlzkqTu15qamnr7dOrUqd52AIql0roHAI1N+wAoGu0DoGi0D4Ai0b3SGLACUG56BECR6B4ARaN9ABSN9gFQNA1s30033VSedfyvK6+8Mm3atMmRRx5Z1scFgCSO+QAoHu0DoGi0D4Ci0T4AikT3SmLACkCZmfgFQJHoHgBFo30AFI32AVA0DW1fnz59yrSSZMaMGbnmmmty0UUXZcGCBVmwYEHmz5+fJFmwYEHmzZuXjh07JknmzZu3wv3nzp2bTp06JUndr3Pnzs0nPvGJun3mzJlTbzsAxeKYD4Ci0T4Aikb7ACga7QOgSHSvNAasAAAAAAAAAABUmOnTp2fx4sU5+eSTV9j27W9/O+eee24mTpyYjTfeOLW1tfW2v/HGG5k9e3Z69uyZJOnRo0eSpLa2NltttVXdfsvvt3w/AAAAAAAAAACoVgasAJSZiV8AFInuAVA02gdA0WgfAEVTSe3beuutM2bMmHq3vfHGGznttNMybNiw7LbbbkmS3XffPffee2/OPvvstGvXLkkybty4tG7dum6f7t27p0ePHrnjjjsyaNCguscbN25cevXqlU022WQNvSoAKkkldQ8A1gTtA6BotA+AotE+AIqk0ru3ZMmSHHTQQXnmmWfyk5/8JPvtt1/dtilTpuT888/PE088kY4dO+aQQw7J8OHD07p1/fEnt912W37+85/npZdeSvfu3XPCCSfkwAMPbNC6DFgBKLMK7xEAlJXuAVA02gdA0WgfAEVTSe2rqalJv3796t02ffr0JMmWW26ZnXfeOUkydOjQjB07NqecckqOPvroTJs2LZdeemkOP/zwdO3ate6+J598ck499dRcdNFF+dznPpfx48fn3nvvzejRo9fciwKgolRS9wBgTdA+AIpG+wAoGu0DoEgqvXtjxozJrFmzVrh9+vTpOeaYY7LTTjvliiuuyLRp03LhhRdm0aJFOfvss+v2u/vuu3PWWWdlyJAh2X333fPAAw/kzDPPzDrrrJO99tqr5HUZsAJQZpU+8QsAykn3ACga7QOgaLQPgKJpju3r3r17rrvuupx//vk5/vjjU1NTkyOPPDLDhw+vt9+gQYOyaNGiXHnllbnuuuvSrVu3/OhHP8rAgQObaOUANLXm2D0AaAjtA6BotA+AotE+AIqkkrv36quvZvTo0TnnnHMyYsSIetuuueaatG/fPpdddlnatWuXXXfdNQsXLszFF1+cIUOGpEuXLkmSUaNGZeDAgTnrrLOSJP3798/zzz+fUaNGNWjASsvSXxYAAAAAAAAAAGtKt27d8vTTT2e//fard/v222+fG2+8MZMnT86ECRNy2mmnpU2bNivcf/Dgwbnzzjvz+OOP584778zgwYPX0MoBYPUtWbIkBxxwQD75yU/m9ttvr7dtypQpOfzww9OnT5989rOfzSWXXJIlS5as8Bi33XZb9t1332y33XbZd99988c//nFNLR8AVpv2AVA02gcAANC0Jk2atFpfq+q8887LnnvumZ133nmFbePHj8/ee++ddu3a1d22//7755133smECROSJNOnT09tbe0K58cceOCBeeaZZzJjxowSX3HSuuR7ArBSFTzwCwDKTvcAKBrtA6BoKr19S5YsyUEHHZRnnnkmP/nJT+r9MG3KlCk5//zz88QTT6Rjx4455JBDMnz48LRuXf/HY7fddlt+/vOf56WXXkr37t1zwgkn5MADD1zTLwWAClHp7QOAcqr07o0ZMyazZs1a4fbp06fnmGOOyU477ZQrrrgi06ZNy4UXXphFixbl7LPPrtvv7rvvzllnnZUhQ4Zk9913zwMPPJAzzzwz66yzToM+1Q6A5kv7ACga7QOgaCq5fc5xAaDcytG9Qw89dLX2f/rppz92n/Hjx2fChAm58847s3jx4nrbFixYkBkzZqRnz571bu/SpUs6d+6c2traJKn79YP7Lf++trY2m2yyyWqtfbmWJd0LgA/VokWLBn0BQHPS0O41dvt8ugEA5Vbp7QOAcqv07n3cSZcdOnTIFVdckRNPPDFjxozJRRddVG+/5Sddfv7zn8/VV1+dAQMG5Mwzz8y9997b6GsHoDJVevsAoJwq+f3OV199NaNHj84ZZ5yxwrZrrrkm7du3z2WXXZZdd901X/7yl3PyySfnV7/6VV5//fW6/UaNGpWBAwfmrLPOSv/+/TNixIjsscceGTVqVKOtG4DKpn0AFE2ldi/RPgAaRyW3zzkuAJRbJb7fuWjRovzwhz/MSSedlK5du66wfe7cuUmSjh07rrCtpqYmc+bMSZK6X2tqaurt06lTp3rbS9H643cBYHU4bxKAIqn07vl0AwDKrdLbBwDlVsntW37S5TnnnJMRI0bU2/b+ky7btWuXXXfdNQsXLszFF1+cIUOGpEuXLknqn3SZJP3798/zzz+fUaNGOe4DKKhKbh8AlFs5ujdp0qTV2r9Pnz6rtN95552XPffcMzvvvPMK28aPH5+999477dq1q7tt//33zwUXXJAJEybkoIMOyvTp01NbW5vhw4fXu++BBx6Yb3zjG5kxY0bJn2oHQPOlfdoHUDQNbV9jdS/RPgAaR6X+rM85LgA0hnJ077c33dTwB3mfK6+8Mm3atMmRRx5Z1sctJwNWAMqsZcsKPRIDgEZQyd3zJiQAjaGS2wcAjaGh7XPSJQDNjeM+AIqkHN079NBDV2v/p59++mP3GT9+fCZMmJA777wzixcvrrdtwYIFmTFjRnr27Fnv9i5duqRz586pra1NkrpfP7jf8u9ra2sd8wEUkPZpH0DRNLR9jdG9RPsAaDyVep6Lc1wAaAzleL9zdc7Z/DgzZszINddck4suuigLFizIggULMn/+/CTvHevNmzcvHTt2TJLMmzdvhfvPnTs3nTp1SpK6X+fOnZtPfOITdfvMmTOn3vZSGLACUCBLlizJQQcdlGeeeSY/+clPst9++9VtmzJlSs4///w88cQT6dixYw455JAMHz48rVvXT8Vtt92Wn//853nppZfSvXv3nHDCCTnwwAPX9EsBoIp4ExIAysdxHwCVxkmXAAAArI5Fixblhz/8YU466aR07do106dPr7d97ty5SVJ38uX71dTU1J1UufzXmpqaevssP9ly+XYAaGraB0DRaB8AlcxQTQAo3fTp07N48eKcfPLJK2z79re/nXPPPTcTJ07MxhtvXNe25d54443Mnj27rm09evRI8l7jttpqq7r9PqyJq8OAFYAya1HBH2o3ZsyYzJo1a4Xbp0+fnmOOOSY77bRTrrjiikybNi0XXnhhFi1alLPPPrtuv7vvvjtnnXVWhgwZkt133z0PPPBAzjzzzKyzzjrZa6+91uRLAaBClKN73oQEoDmp5GO+xHEfAOVXie1z0iUAjakS2wcAjaUc3bvpppsa/iDvc+WVV6ZNmzY58sgjy/q4AJBoHwDF09D2lbt7ifYB0Lgq7Wd9znEBoDFVWve23nrrjBkzpt5tb7zxRk477bQMGzYsu+22W5Jk9913z7333puzzz677sPTx40bl9atW9ft07179/To0SN33HFHBg0aVPd448aNS69evRp0TZ8BKwBl1qLSivS/Xn311YwePTrnnHNORowYUW/bNddck/bt2+eyyy5Lu3btsuuuu2bhwoW5+OKLM2TIkHTp0iVJMmrUqAwcODBnnXVWkqR///55/vnnM2rUKBfaARRUJXbPm5AANKZKbN9yjvsAaAwNbZ+TLgFobir5uA8Ayq0c3evTp08ZVvKeGTNm5JprrslFF12UBQsWZMGCBZk/f36S9z5EYd68eXU/45s3b94K9587d27dz/KW/zp37tx84hOfqNtn+c/4lm8HoFi0D4CiaWj7ytm9RPsAaHyVdp6Lc1wAaEyVdo5LTU1N+vXrV++25df1bbnlltl5552TJEOHDs3YsWNzyimn5Oijj860adNy6aWX5vDDD0/Xrl3r7nvyySfn1FNPzUUXXZTPfe5zGT9+fO69996MHj26Qes0YAWgzCqsR3XOO++87LnnnnUBer/x48dn7733rpv0lST7779/LrjggkyYMCEHHXRQpk+fntra2gwfPrzefQ888MB84xvfyIwZMxo08QuA5skn+wBQNJV6zJc47gOgcTS0fU66BKC5qeTjPgAot0rr3vTp07N48eKcfPLJK2z79re/nXPPPTcTJ07MxhtvnNra2nrb33jjjcyePTs9e/ZMkvTo0SNJUltbm6222qpuv+X3W74fAMWifQAUjfYBUDSVdJ6Lc1wAaGyVdsy3qrp3757rrrsu559/fo4//vjU1NTkyCOPXOE6hkGDBmXRokW58sorc91116Vbt2750Y9+lIEDBzbo+Q1YAagwkyZNWq39V+XAbfz48ZkwYULuvPPOLF68uN62BQsWZMaMGSu8gdilS5d07ty57g3GD3ujcfn3tbW1LrQDoCTehASgaBz3AUDpnHQJAABQvbbeeuuMGTOm3m1vvPFGTjvttAwbNiy77bZbkmT33XfPvffem7PPPrtuqPS4cePSunXrun26d++eHj165I477sigQYPqHm/cuHHp1auX9zoBqAjaB0DRaB8AReIcFwBIunXrlqeffnqF27fffvvceOONH3v/wYMHZ/DgwWVdkwErAGXWooEjvw499NDV2n9lYXm/RYsW5Yc//GFOOumkdO3aNdOnT6+3fe7cuUlSd7H5+9XU1NRdRL7815qamnr7LL+4fPl2AIqlod0rN29CAtDYytE+x30ANCeVdtznpEsAGlultQ8AGlOlda+mpib9+vWrd9vy9zu33HLL7LzzzkmSoUOHZuzYsTnllFNy9NFHZ9q0abn00ktz+OGHp2vXrnX3Pfnkk3Pqqafmoosuyuc+97mMHz8+9957b0aPHr3mXhQAFUX7ACga7QOgaCqpfc5xAaCxVVL3mhMDVgDKrNKCdOWVV6ZNmzY58sgjm3opAFShSuueNyEBaGyV1r7EcR8AjavS2uekSwAaW6W1DwAaU3PtXvfu3XPdddfl/PPPz/HHH5+ampoceeSRGT58eL39Bg0alEWLFuXKK6/Mddddl27duuVHP/pRBg4c2EQrB6CpaR8ARaN9ABRNJbXPOS4ANLZK6l5zYsBKFfrcTr1y9zWnrHD7E1Nfzs7/eV692770H5/OKUfumW16bpyFi9/JpKem59j/uj6vvjG3bp+jB38mXz9sQHp275J5by3MhMem5pzL/pgXZrzZ6K+F0r04bVp+dP7IPPrII2nXrm3+Y59B+cYZZ6V9+/ZNvbSq19Ae3XTTTeVZSJIZM2bkmmuuyUUXXZQFCxZkwYIFmT9/fpJkwYIFmTdvXt0nmM+bN2+F+8+dO7fuk8qX/zp37tx84hOfqNtn+SeYL98Oa9qqdG912rj/57fLmV/9j3yqxyeycPGSPPrEtHxv9NhMfmZG47wAyuLP99ydG67/ZV54/rm89dZb6brhhtljz71z/AnDUuPvp0ZVacdh3oSkCBzzkTjma0rlaJ/jPlg95Tzuu+vqU7L7zr1W+jzf+eltueiX95Rp1ZTTPXfdmdtvH5snn3gis2fPysabdMvggw/J4V85Mm3atGnq5VW9SjvuW1VOuqQ5W5WuHbT3Djls0C7ZcevuWb9zh7zw8psZc9tD+dmN92fJkmX17temdaucdszeOeKAfun+iXUzc87bufdvT+Vr59ywRl4PH+/FadNy/XXX5vEpUzL12WfSteuGueOev9RtX7p0aW64/pd5cPwDqa2dmncWL06PnltmyNDj8vk992rClVen5to+aK7Kecy3Ou+dUlkc9zWd5tC9bt265emnn17h9u233z433njjx95/8ODBGTx4cCOsDEpTzvatzrEhleUff384Q7961Aq399yyV269bVwTrKg4tA/WvHK274t79snJR+yZrTbfMB3XaZeXX5uTsfdPzvlX3ZHZ8xY03ougQZzf2bS0D9Y857mgfU2rObTvg5zjQnO2uj+fa9WqZR769Yhst9UmOersX+bmux6t2zbkkN1yzODPpEf3Llm7XZu89Oqs/OaOf+Qn1/05ixYvadTXwer5uPNckuTnV/wsf777rrz88owsWbo03bp1zyH/eWgO+/JX0rJlyyZaefVpjt2rBAasVLETvv/febL2lbrv3164uN72U47cMz8YfmBGjbk33770tqyzdrt89tM9067t/52YcMxBn8kV53wlP/3VX3L2T25N1/U65jtf3y/jLj8pu/y/87Jg4Ttr7PWw6ubNm5evHXt0unTtmosuGZU5c+bkogsvyJtvvpmfXHpZUy+Pj9GnT5+yPdb06dOzePHinHzyySts+/a3v51zzz03EydOzMYbb5za2tp62994443Mnj07PXv2TJL06NEjSVJbW5utttqqbr/l91u+HzSVj+vequyzZ79P5bcXfy2/+dMj+cEVt2edtdvmrCH75E8/Pzk7/+e59S5Gp7LMnTMnu+zSN8ccOyQdOnTMs88+k59fPjrPPP1Urv7F9U29PCqQNyGpBo75issxX/PnuA9KU47jvlPO/21q1lmr3m1f3q9vTvh/u+fOCU+UecWUy/XX/SIbb7JJTj39zKy//vqZ9M+J+dlPR+XZp5/OyPN/1NTLowI46ZJq9VFdO/XIvTLtlZn59qW35d9vzk3/Pj3y3WH7p3evTVYYnPLri4Zm5203ywVX35knal/Ohut1zGd26LHGXgcfr7b22Yx/4P703m77vPvuu5k3t/570YsWLsw1V/88Bx44OEcdc2zatGmTu+78U04ZPizfH3leBh90SBOtHKB8ynHMt7r7UTkc9wFFVI72rc6xIZXpuz8YmS23/L+LJddaa62P2BugeStH+9bt1D7jH3k2l4z5c+bMW5jevTbOt44blO16bZJ9T3C+RKVyfidQVM5zKS7t46M4x4Vqtao/nzvp8M9ng3U7rHTbujXt88f7JufxZ1/OWwsWpe/2W+RbX/tCNtto/Zzw/f9ulHVTmo87zyVJ3nprfg744kHp0bNHWrduk7899D+58PxzM3fOnJww7KQmWDX8HwNWqtiTta/k71NeWOm2Ht03yA+GH5gzfvy7XH3zhLrb73jw8Xr7HTZol4x/5NmMuPjWutv+/ea83HnVydl5283z4KPPNsraaZjf3fSbzJo1M7++6Zasv/76SZJ27dbK6acOz7+eeDzbbNu7iVdY3VpU0MivrbfeOmPGjKl32xtvvJHTTjstw4YNy2677ZYk2X333XPvvffm7LPPTrt27ZIk48aNS+vWrev26d69e3r06JE77rgjgwYNqnu8cePGpVevXtlkk03W0KuClfuo7q3qPv9v0M558ZWZGfKd//tzM/mZGXly3Pez92e2zq/GPlym1VJuB3/pP+t9v0vffmnXtl1+8L3v5JWXX85GG2/cRCurfpXUvQ/jTUiqlWO+4nLM17QqrX2O+yiSchz3PfXcqyvcdvFZX8qUZ2bk8WdfbuAKaSw//dmVWW+99eq+79uvf95999387LJL843Tz8z6G2zQhKurfpXWPiiSj+raIaf+PG/Mml/3/fhHnk2LFsn3Tjwg3x71h7w2c16S5CsH9Ms+u26Tzxz+ozwx9f9ad8s9Ext17ayeAZ/fM3vsuXeS5IffPyf/M2FCve3t1lorf7rzz/U+0W7X3T6bV15+Odf/4loDVspM+6BplOOYb3X3o3I47ms6ugdNpxztW9VjQyrXllv2yvZ9dmjqZRSK9kHTKUf7rvv9Q/W+f/DRZ7Nw0Tu5/JzD0/0T6+alV2eVYaWUm/M7m5b2QdNxnktxaV/T0j5oGqvSvU26ds63jhuUb/zo5lz7w6NW2H7RL++p9/34R55Nh7Xb5ZQj98xJ596YJUuWlXPJNMDHneeSJKedMaLe9/0/s2v+/eor+eNtvzdgpYx0rzQGrBTU0V/8TBa/s3SFNxk/qE3rVpk19+16t82dvyBJ0rKlP3SVasKD49O3X/+6C+2S5PN77Jn27dtn/AP3u9iukVVSj2pqatKvX796t02fPj1JsuWWW2bnnXdOkgwdOjRjx47NKaeckqOPPjrTpk3LpZdemsMPPzxdu3atu+/JJ5+cU089NRdddFE+97nPZfz48bn33nszevToNfeioBG1ad0y89+uPyFz7vyFSXSvOer0vxcbLFmypIlXUt0qqXvA/3HMV90c8zWtSmuf4z5omJ6bdsnOvTfPt0f9oamXwkd4/0V2y22z7bZJktdef82Fdo2s0toHvOf9F9AtN/HJl5IkG3XpVHcR3dBDdsv4R5+tN1yFytOyZcuP3N6qVat6w1WW23qbbfPE41Maa1mFpX0Aa57jvqaje9C8reqxIfB/tA+qz/LzXlq3btXEK2F1OL9zzdE+qC7Oc2m+tG/N0T6oXD8+85Dc/sCUTHh06irfZ9bct9K6Vcu0bNEyiQErleLjznP5MDWdOmthmeleaQxYqWI3XXJcNujcIW/Mnp9x90/Jd356W90biP379MjTL/w7RxzQL2d/7QvZuEun/Ou5V/Kdn/4xd//1X3WPce2tf80V5xyeQ7+wU+548Il0Xb9jzj1lcCY++VImPLbqEWPNqq2dmgMOHFzvttatW2ezzbfIc8/VNs2iCqQ5Tvzq3r17rrvuupx//vk5/vjjU1NTkyOPPDLDhw+vt9+gQYOyaNGiXHnllbnuuuvSrVu3/OhHP8rAgQObaOXwfz6qe6u6z/W3/S1jf3Zihn9lj9zwx7+lQ/t2GXnK4Lz0yszcdu+kNf2SKMHSpUuzZMmSTH32mVx5xeh8bvcB6b7ppk29rKrWHLsH1cIxX3E55mtazbV9jvuoBuU47vugL++7S5YuXZbf3vFIYy+fMnv0kUfSpk2bdO/umK+xNdf2QTVY3a599tNbZtHid/Lc9DeSJK1bt8ynt9k0197y1/z4jENyxIH9slbbNhn/yLM5/cLfZeqLr62pl0IjeezRR7JFj55NvYyqo33QNMp5zLe6DaUyOe5bM3QPmk5jvN+ZrHhsSGU7ZfiwzJ41K53XXTd77LFXTvnG6enUuXNTL6uqaR80nXK2r2XLFmnTulW23XLjfOu4QbnjwcfzvPZVPOd3Ng3tg6bjPBe0r2loHzSNj2vawF23zl79P5U+B/0wbdt89GiDVq1apl2b1tlp281y0uF75Jpb/prF7xjK0VwtWbIkCxcuzCN/fzhjb/t9jjthWFMvqaroXmkqesDKv/71r9x333157rnnMnv27CRJ586d06NHj3z+85/Ptv/7SSXUN3f+gowac2/GP/Js5r+9KH232yxnHPsf6bf9FtntKxdm8TtLsuH6HbNx1875ztf3y7cv/UNee3Nevn7YgPzukuPT77Dz8+RzryZJfj3u72nXpnWu/sGRddF67F8v5osn/ixLl5r2VanmzZ2bjh07rnB7TU1N5syZ0wQrKpZK71G3bt3y9NNPr3D79ttvnxtvvPFj7z948OAMHjy4EVZGon2lWJXurco+SfLAP57JYWdcnV+ee3QuPOOQJMnz09/IvieMzpz5C5ryZbKKBuzWL/PmvfcJTJ/Z9bO58OJRTbugAqj07lHZdK80jvlwzNe0mkP7HPdVLu0rTTmP+z7osEG75MFHn82M12av2RdFg9ROnZpf/2pMDvnP/5cOHTo09XKqXnNoH5VL+0pTStc+1eMTOfHLn88vbv2fzHtrYZJk/U7rpG2b1jnigH75V+0r+eq3rs9a7drkeyfun7GXD8sOB4/MosVOQGmubvv9rZk86Z+5+JKfNvVSqo720RDat/rKecxX6rEhlcdx35qjezSE7pWmMd/vXNmxIZWpQ8eOOeqYY7PzLn3Tvn37TJk8Kb+45qpMmvTP3HjTLWnbtm1TL7FqaR8NoX2laYz2zbj/R+ncsX2S5J7/eTJHnPWLpnhprCbndzYN7aMhtK80znNhOe1rGtpHQ2jf6luVprVr2zqXjDg05111R159Y2423Wi9D328Th3WzqsP/rju+1+NfTinX3jzmngpNIKnnnwy/+9Lg+u+H3rcCTnm2KFNt6AqpHulqcgBKwsWLMiIESNy9913p3379tl8883TqVOnJMnzzz+f++67L6NHj87ee++dCy+8MGuvvXYTr7iyTHp6eiY9Pb3u+wcffTYTn5ye2688KYd+Yaf8auzDadmyZTqus1aOPPsXuWvCe59ePv6RZ/Ovsd/L6V8dmKHfuSFJsv/nt8uPzzwko8bcmz8/9FQ2XL9jvnncoPz+sq9n7yGjsnDRO03yGgGqjfaVblW6tyr7JEnf7TbPNT88Kr+989Hces9j6dC+XU47eu/cNvrr2eOYn+S1mfPW+Otj9VzzyxuycOGCPPvsM7n651fk5BNPyM+v+WVatWrV1EsD3kf3GsYxH0Dzo30NU87jvvfru93m6blpl1z4i7vWyOugPGbNmplTTz4x3TfdNKd84/SmXg7wIbSvYVa3a+t3Xic3/eS41L70ev7r0tvqbm/ZsuX//toih5xyZd6c/VaS5OnnX81jt/xX/t+gnTPmtr+tgVdEuU3658ScN/L7+eJBB2fv/9inqZcDRPsaopzHfKUcG1J5HPdB5dO9hmms9zs/7NiQyrT11ttk6623qft+l779svU22+aErx2bO24fly8edHATrg74IO1rmMZo3z5DL037tdtm2y03ztlDv5BbLj0++319dJYte3eNvS5Wn/M7ofnQvoZxngvLaR80H9pXulVp2llD9sniJUvysxvv/9jHm/f2wuz2lQuzdrs22bn3ZjlryD75+feOyNfOuaERXwWNZfMttsivf/u7vP3223nkH3/PL6+9Oq1atcqwk05u6qVRcBU5YOXCCy/Mo48+mssuuyx77rnnCv/TuGzZsvzlL3/J9773vVx44YX57ne/20QrbT7+8vBTeXP2W9lp283yq7EPZ/bct5MkD/zj2bp93lmyNA9Nei5b99io7rbR//Xl3PDHh/Pd0WPrbvv7lOfz5Ljv54gD+uWa301Ycy+CVdaxpqZuwuX7zZ07N5tutlkTrKhYWhj5RQm0r7w+2L1V3ecnI/4zf5v0XE4+9zd1+z3wj2fz9J9+kOFH7JHv/PSPa2T9lO5TW2+dJNlhx0/nk5/aOkd++dD85c/3ZOA+X2jilVUv3aMUuld+jvmKxTFf09I+SqF95Vfqcd/7fXnfXbJg4eL8/s//bOTVUi5vvTU/Jx7/tSx5551ce92YtG/fvqmXVAjaRym0r/w+rGsd2rfLbaOHpW2bVtnna5fm7YWL67bNnvd2li1blieefbluuEqSPPncq3n1jbnZpudGofmZOvXZDB92QnbepW/O+d4Pm3o5VUn7KIX2lVc5jvlWdz8qg+O+NU/3KIXulV9D2/dRx4Y0H5/Zdbd06tQ5Tzw+xYCVRqR9lEL7yq+h7Zv8zIwkyd8mPZ/JT0/P+BvOzBf37OPnfhXO+Z1NQ/sohfaVn/Ncikn7mob2UQrtK6/3N238I8/ktKP3zle/fX3WWatdkqSmw1pJkrXXapOaDmtl7vyFdfddtuzdPPavF5Mkf51Ymxn/np0bfnRsrvjNA3W303ystdZa2bb3dkneGzLdrl27jP7pqBz6/76cDbp0aeLVVQfdK03Lpl7Aytxxxx355je/mYEDB650Il/Lli2z9957Z8SIEbnjjjuaYIXN2LvvTWX+V+0rK93cIsla7dokSbqs2yEbrl+TiU/Wj86Lr8zKm3Peypab+surUvXo0TPPP1db77alS5dm2gvPp0ePnk20quJo0aJhXxST9jWSd1fh0wjet8/WPTbKxCdfqrd53lsL89xLr2fLTbuWe3U0sq233iYtWrTIiy86gG5MDe2e9hWT7jUix3yF4JivaWkfpdC+RrSax33LtWrVMofs8+n8afzjmffWwpXciUqzePHinHLSsLz88oxccdU16dp1w6ZeUmHoHqXQvkb0vq61bdM6N19yXDbdeL0cMOxneeX1OfV2XbDwnUx7eeZKH6ZFi6Rd2zaNulTKb8aM6Tnha8dms803z0WX/DStW1fk56k0e9pHKbSvkZR4zNeg/Wgyjvuahvc7KYXuNaIS2vdxx4Y0Q/5ybVTaRym0rxGV4bhv4lMvZdmyZenZ3XkuzYnzO9cc3aMU2teInOdSWNq35mgfpdC+RvLuu9ls4w2yVrs2ufGioXn1wR/n1Qd/nH/c9K0kyc+/d0Rq7zr3Ix/isf+91sExX3XYZtveWbp0aV5+eUZTL6VqeL+zNBU5YGXRokXp3Lnzx+7XqVOnLFq0qPEXVAX2/szWWb/zOvnHE9OSJLc/MCVJskffT9bt07ZN6+y6Y8+6KV6vz5qf+W8vyqe32bTeY2260XpZv9M6eWHGm2to9ayuz35u9/zj7w9n5sz/O2n2gfvvy9tvv53P7T6gCVdWDC1atGjQF8WkfeX1we6t6j7TXnlzhe51XGet9OjeRfeaoX9OfCzvvvtuunXv1tRLqWoN7Z72FZPulZ9jvmJxzNe0tI9SaF/5lXrct9zAz2ydLut2zI1/+kdjLpMyWbp0ac464xt54vEpGX3FVdl8ix5NvaRC0T1KoX3l98GutWzZIjdc8NXstO1mOeikK/LstNdWer/bH5iS3r02yQbrdqi7bdstN86G69f4ZJ9m5s033sgJQ49Nx441uezyK7P22ms39ZKqlvZRCu0rr4Ye85WyH03LcV/T8X4npdC98iu1fat6bEjz8NcJD2bOnNnZbrvtm3opVU37KIX2lV85j/s+06dnWrZsmeenv1HuZdKInN+55ugepdC+8nOeC9q35mgfpdC+8np/0yY/PT3/MfTSel9Hnf3LJMl5V92RwSdd/pGPtesO7334qGO+6jDxsf/P3p3HR1UdfBj/TUKCQhZlVTYFAoiSsAghikJBrAuoiIpoEdEIQqISQUqlFcWqqFXDEiOCECGCqG2lggQ3XkUUtSoCIksSLKsWCkggLBNC3j8CM4wJArPk3rnn+b4fPn0zczNzxtF5OHfOnPlGLpdLDRvSw2DhfKd/bPmVVh07dlRWVpYuuuginX322ZUes3v3bmVnZ6tjx45VPDr7m/HEQP1n204t/2Gz9u4/qE5tztfIQVfqu7Wb9daibyRJCz5ZpS9WbFD22Ns1dvI7+u/OIg3r301nxdbQC69+4LmtqW8u0QMDeqho30Et/nKt6teK0+jBV2nH7n16671vrHqIOImb+/XX63NeU8b9aRoydJiK9hTpuWefVvceV+iiNolWDw9AJWif/06le6dyjCRNmbtEE8fcqsl/7q95H32nmBrVNfyOHqoeVU0z/vmZVQ8Rp2Do4FR1TklR84QWio6O1to1P+jVnOlq2bKVevToafXwAPwK3QsMcz4w5wPCD+0LTDDnfcfc1quT/rd7n977bHVVPxz44aknxun/PvpQ6fcP15EjR7RyxXee65o1T1BMTMyJfxmAJWhfYE6laxMevlXX92irx16cr8jICCUnnu/5/TUbfvZ8c13mzA/V/9pOenvSUD0z/T1Vj6qmR9Ov07off2beZyMHDhzQ0iWfSJK2bNmiAwcP6IP3FkmSLkpMVK1atTXs3nu0fft/9cRTz2jTxo3atNG7uDapbTsrhg3gOLTPf8Gc853u3BD2wbwPCC90LzDBbN+pzg1hPw+PfkgNGzbShRe1Uc2aNbVq5QrlTJ+mVhe01tXXXGv18AD8Cu0LTDDb986L6fr4q3X6ofAnHSo5rHatGinjzp5auX6L3vm/lVY9RJwE6zuB8EP7AsM6F9A+IPzQPv+drGklh0v16Tf5Pr/T5NxakqS1G37WZ8sLPZcvnf1HzZ7/pWcj6ZS2TfXAgB5677PV+povU7CVk61zkaRHxvxJ11zbW42bNNGhQ4f05RfLNHfOa7q5362qXaeOZWMHJJtusPLII49o4MCB6t69u1JSUtSsWTPFxcVJkoqKirRhwwZ9+eWXio+P1zPPPGPxaO3nhw0/69arOyr9tt/pzOrR2rp9t2b+a5mefHmhSg6XSpLKysrU94EpGv/gjXp6xI06s3qUvvlhk665d5LWbPjZc1uPvjhfO3bt0x03pCjttm7as/eAvlr1Hz2aNV87fym26iHiJOLi4jRtxkw989QTGvngcFWPrq4rr7pKIx8abfXQjGDohl0IEO3z36l071SOkaSpb32qg+4SDb21m269pqMOHCrRd2s26+ohE/mWH5trk5iodxe8o61btkiSGjRspFv736477rxLUdHRFo/O2ege/EH3AsOcD8z5rEX74A/aF5hgzvskqeaZ0erVLVGvzf9Shw8fseIh4TR9vnSpJOnFyRP14uSJPte9kjNLnZI7WzEsY9A++IP2BeZUuvb7S1tLkh5Lv06PpV/n8/u/v2eiZ3HKth17dPWQSXpmZF+9+tQglRwu1Qefr9Ho5/+pg4dKqvaB4YR27dqph0YM97ns2M+PPzFeHZOTtW7tGp/Lj7di9brQD9IgtA/+oH3+C+ac73TmhrAX5n3WoXvwB90LTDDbd6pzQ9hPQkILLXx3gea8NkuHDh1Svfr11afvzRqadh/rXEKM9sEftC8wwWzf16v/o/7XdtL5DWtLkjZu26Wpb36qSa8tZt5nY6zvtBbtgz9oX2BY5wLaZy3aB3/QPv8F8/2579Zs1tBbu6ph/bNUcrhUP27ZqcezF2jqW0tDNHr462TrXHr0vFL1zzlHM6ZP1f927NCZZ56pxk3O09jH/qre199gxZAdi+75x1VWVlZm9SAqs2/fPr3++utasmSJCgsLVVRUJKn8Q0TNmzdX165d1b9/f8XGxobk/s9sf19Ibhf2sPvfWVYPASF0hsVbR13yzJKAfn/Z6K5BGgnCDe1DKNE+5wr37km0z1RWd0+ifU5G95yN9iFc0T6EEu1ztnBvH90zl9Xto3vORvucjfYhXNE+hBLtc65w755E+0xldfck2ud0tM+5aB/CFe1DKNE9Zwv39tE9c1ndPrrnbLTP2WgfwhXtQyjRPucK9+5JZrbP4qftxGJiYjR48GANHjzY6qEAwGlhxy/4i/YBCEd0D/6iewDCFe2Dv2gfgHBF++Av2gcgXNE++Iv2AQhHdA/+onsAwhXtg79oH4BwRfvgL9oHIFzRPviL9gEIR3TPPxFWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQqWa1QMAAKdxseUXAMAgdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8/bLACAEFGjwAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7/mGDFQAIMnb8AgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO75hw1WACDICBIAwCR0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zz8RVg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKlmtUDAACnYcMvAIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5/2GAFAILMRZEAAAahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe/5hgxUACDJ6BAAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd3zT4TVAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAUKlm9QAAwGlcbPkFADAI3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fMPG6wAQJDRIwCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeief9hgBQCCLIIiAQAMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQvf8wwYrABBk9AgAYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6558IqwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFSzZ9fmjZt2ikf63K5dM899/hzNwAQllxs+eVItA8AKkf3nIv2AUDlaJ8z0T0AODHa50y0DwBOjPY5E+0DgMrRPeeifQBQOdrnTHQPAE6M9jkT7QOAE6N9zkT7AKBydM8/fm2w8vzzz5/yscQIgGki6JEj0T4AqBzdcy7aBwCVo33ORPcA4MRonzPRPgA4MdrnTLQPACpH95yL9gFA5WifM9E9ADgx2udMtA8AToz2ORPtA4DK0T3/+LXBytq1a4M9DgBwDHb8cibaBwCVo3vORfsAoHK0z5noHgCcGO1zJtoHACdG+5yJ9gFA5eiec9E+AKgc7XMmugcAJ0b7nIn2AcCJ0T5non0AUDm6558IqwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFSLVg3tHTpUq1cuVI//fSThg0bpgYNGuibb75R48aNVa9evWDdDQDYHht+mYP2AQDdMw3tAwDaZxK6BwDlaJ85aB8AlKN95qB9AED3TEP7AID2mYTuAUA52mcO2gcA5WifOWgfANA9fwW8wcru3bt133336ZtvvlHt2rW1a9cu9e/fXw0aNNAbb7yh2NhYPfLII8EYKwCEBZcoktPRPgDwontmoH0A4EX7nI/uAYAv2ud8tA8AfNE+56N9AOBF98xA+wDAi/Y5H90DAF+0z/loHwD4on3OR/sAwIvu+Sci0BsYP368fv75Z82bN0+ffPKJysrKPNddeumlWrZsWaB3AQBhJcIV2B/YH+0DAK9Au0f7wgPtAwAv2ud8dA8AfNE956N9AOCL9jkf7QMAL853moH2AYAX7XM+ugcAvuie89E+APBF+5yP9gGAF+c7/RPwBisff/yxRowYoQsuuEAul+8/xXPPPVc//fRToHcBAICt0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AQKCqBXoDbrdbsbGxlV63b98+RUZGBnoXABBWfv0XczgP7QMAL7pnBtoHAF60z/noHgD4on3OR/sAwBftcz7aBwBedM8MtA8AvGif89E9APBF+5yP9gGAL9rnfLQPALzonn8iAr2B1q1bKy8vr9LrFi9erLZt2wZ6FwAQVlyuwP7A/mgfAHgF2j3aFx5oHwB40T7no3sA4IvuOR/tAwBftM/5aB8AeHG+0wy0DwC8aJ/z0T0A8EX3nI/2AYAv2ud8tA8AvDjf6Z9qgd7AsGHDNHToUO3fv1/XXnutXC6XvvvuO7399tv617/+pZycnGCMEwDCRoSpRTEI7QMAL7pnBtoHAF60z/noHgD4on3OR/sAwBftcz7aBwBedM8MtA8AvGif89E9APBF+5yP9gGAL9rnfLQPALzonn8C3mCla9eumjRpkp5++mm99957kqS//vWvatCggSZOnKhOnToFPEgACCf0yPloHwB40T0z0D4A8KJ9zkf3AMAX7XM+2gcAvmif89E+APCie2agfQDgRfucj+4BgC/a53y0DwB80T7no30A4EX3/BPwBiuS1LNnT/Xs2VMbN27Uzp07FR8fr+bNmwfjpgEAsCXaBwAwDe0DAJiE7gEATEP7AMC+3n//feXk5GjDhg0qLi5W/fr11bNnT6WlpSk+Pt5z3JIlS5SZmamCggLVrVtXAwcO1KBBgyrcXk5OjnJzc7Vjxw61aNFCI0aM0GWXXVaFj8geaB8AwDS0DwBgEroHADAN7QMAmIb2AQACEZQNVo4577zzdN555wXzJgEg7LjY8ssotA+A6eieeWgfANPRPrPQPQCgfaahfQBgv/bt2bNHycnJSk1NVWxsrNavX6+srCytXbtWM2fOlCStWLFCaWlp6t27t0aPHq2VK1fq2WefVWRkpO644w7PbeXk5Oi5557T8OHDlZSUpLfffltDhw7V3Llz1aZNG6seoqVoHwDT2a17CD3aB8B0tM8sdA8AaJ9paB8A0D7T0D4ApqN7/gnKBis//vijpk6dqlWrVmnHjh2qW7eu2rZtq3vuuUdNmzYNxl0AQNigR2agfQBQju6Zg/YBQDnaZwa6BwBetM8MtA8AvOzWvltuucXn586dO6t69ep65JFHtG3bNjVo0EBZWVlq2bKlxo8fL5fLpZSUFG3fvl1ZWVnq37+/oqKi5Ha7lZ2drQEDBmjIkCGSpOTkZK1du1ZZWVmaMmWKFQ/PMrQPAMrZrXsIHdoHAOVonxnoHgB40T4z0D4A8KJ9ZqB9AFCO7vkn4A1Wli5dqmHDhikuLk7dunVTnTp19L///U8ff/yx3nnnHU2ZMkVdunQJxlgBICxEUCTHo30A4EX3zED7AMCL9jkf3QMAX7TP+WgfAPgKtH0rVqw4rePbtm172vcRHx8vSTp8+LDcbreWLVumjIwMn28muu6665Sbm6vly5crOTlZy5cvV1FRkXr16uU5JiIiQr169dLkyZPldrsVHR192mMJR7QPALyY85mB9gGAF+1zProHAL5on/PRPgDwRfucj/YBgBfd80/AG6w888wz6tixo15++WWfxTaHDh3SkCFD9PTTT2v+/PmB3g0AALZB+wAApqF9AACT0D0AgGloHwAEV79+/U7r+HXr1p3ScaWlpTp8+LDWr1+vrKwsdevWTU2aNFFBQYFKSkrUvHlzn+OP/VxYWKjk5GQVFBT4XH5MQkKC3G63Nm/eXOE6p6J9AADT0D4AgEnoHgDANLQPAGAa2gcACFREoDewceNGDRo0qMI3GVWvXl2DBg3Sxo0bA70LAAgrrgD/wP5oHwB4Bdo92hceaB8AeNE+56N7AOCL7jkf7QMAX3ZtX+fOnZWUlKSbb75Z9erV04QJEyRJe/bskSTFxsb6HB8TE6PIyEjP9UVFRYqMjFTNmjV9jouLi/O5HRPQPgDw4nynGWgfAHjRPuejewDgi+45H+0DAF+0z/loHwB4cb7TP9UCvYHzzjtPu3btqvS6Xbt26bzzzgv0LgAgrLhcpibFHLQPALzonhloHwB40T7no3sA4Iv2OR/tAwBfgbbvzTffDNJIfOXm5urAgQNav369XnrpJQ0dOlQ5OTkhuS+no30A4MWczwy0DwC8aJ/z0T0A8EX7nI/2AYAv2ud8tA8AvOzYvffff185OTnasGGDiouLVb9+ffXs2VNpaWmKj4/3HLdkyRJlZmaqoKBAdevW1cCBAzVo0KAKt5eTk6Pc3Fzt2LFDLVq00IgRI3TZZZcFNMaAN1gZPXq0xo4dq7p16/oM5tNPP9WLL76oJ554ItC7AICwEmG/HiHIaB8AeNE9M9A+APCifc5H9wDAF+1zPtoHAL4CbV/btm2DM5Bfad26tSSpQ4cOat26tfr166cPPvhACQkJkqS9e/f6HL9v3z6VlpZ6FqfExcWptLRUxcXFqlmzpue4oqIiSfJZxOJ0tA8AvOw45wuHRZfhhvYBgJfd2kf3go/uAYAv2ud8tA8AfNmtfQg+2gcAXnbs3p49e5ScnKzU1FTFxsZq/fr1ysrK0tq1azVz5kxJ0ooVK5SWlqbevXtr9OjRWrlypZ599llFRkbqjjvu8NxWTk6OnnvuOQ0fPlxJSUl6++23NXToUM2dO1dt2rTxe4x+bbByzTXX+OxoU1xcrMGDB+vMM89UrVq1tGvXLh04cEBxcXF64okntHDhQr8HCADhxo47fiFwtA8AKkf3nIv2AUDlaJ8z0T0AODG7tY9Fl8FB+wDgxOzWvspceOGFcrlc2rRpk3r06KGoqCgVFhaqe/funmMKCwslSc2bN/f538LCQiUlJXmOKygoUFRUlBo3blyFj6Dq0T4AqJwduxcOiy7DAe0DgMrZrX10LzjoHgCcGO1zJtoHACdmt/axziU4aB8AVM5u3ZOkW265xefnzp07q3r16nrkkUe0bds2NWjQQFlZWWrZsqXGjx8vl8ullJQUbd++XVlZWerfv7+ioqLkdruVnZ2tAQMGaMiQIZKk5ORkrV27VllZWZoyZYrfY/Rrg5W2bdva8h84AAChQvsAIDxwAjJ4aB8AwCR0DwDCB4sug4P2AUB4+/bbb1VWVqZGjRopOjpaKSkpysvLU2pqquf1fcGCBYqPj1e7du0kSR06dFBsbKzy8vI8G6yUlZUpLy9PXbp0UXR0tFUPp0rQPgAIH+Gw6DIc0D4ACA90LzjoHgCED9oXHLQPAMIH61yCg/YBQHg79pm+w4cPy+12a9myZcrIyPB5bb/uuuuUm5ur5cuXKzk5WcuXL1dRUZF69erlOSYiIkK9evXS5MmT5Xa7/V7r4tcGK08//bRfdwYAJuDv6s5E+wCgcnbrHicgg4f2AUDl7NY+BAfdA4ATs1v7WHQZHLQPAE7Mbu1LTU1VSkqKWrRooejoaP3www+aPn26WrVqpZ49e0qS0tPTNWDAAI0ZM0Z9+vTRypUrNWfOHI0aNcqzmCQ6OlrDhg1TZmamatWqpcTERM2bN0/5+fkaN26clQ+xStA+AKhcMLq3YsWK0zq+bdu2p30fdlt0GQ5oHwBULhzaR/dOH90DgBMLtH3M+eyJ9gHAidntvT7WuQQH7QOAytn5fGdpaakOHz7s+Wxft27d1KRJExUUFKikpETNmzf3Of7Yz4WFhUpOTlZBQYHP5cckJCTI7XZr8+bNFa47VX5tsAIAODG77Yb4/vvvKycnRxs2bFBxcbHq16+vnj17Ki0tzXMyUpKWLFmizMxMFRQUqG7duho4cKAGDRpU4fZycnKUm5urHTt2qEWLFhoxYoQuu+yyKnxEAAA7sVv3OAEJAAg1u7WPOR8AINQCbR+LLgEA4cZu877ExES988472rJliySpUaNGuv3223XXXXd5WtW+fXtlZ2crMzNT8+fPV7169TRy5MgK877U1FRJ0uzZszVx4kQlJCQoOztbSUlJVfqYAAD2EYzu9et3y8kPOs66detO6Tg7L7oEAIQvu7aP7gEAQiXQ9jHnAwCEG9a5AABMYtfznVL5Z/r27t0rSbrssss0YcIESeVfri5JsbGxPsfHxMQoMjLSc31RUZEiIyNVs2ZNn+Pi4uJ8bscfQdlg5ZdfflFeXp7+85//6NChQxWuf+yxx4JxNwAQFiLsteZSe/bsUXJyslJTUxUbG+s5Cbl27VrNnDlTUvnkLy0tTb1799bo0aO1cuVKPfvss4qMjNQdd9zhua2cnBw999xzGj58uJKSkvT2229r6NChmjt3rtq0aWPVQ7QE7QOAcsHoHt/sEx5oHwCUY85nBroHAF6Btq9fv36ndTyLLq1B+wDAy27zvoyMDGVkZJz0uG7duqlbt24nPS41NdWz0YrJaB8AlLNb945n50WX4Yj2AUA5u7aP7gUX3QMAL9pnBtoHAF6sczED7QOAcnad80lSbm6uDhw4oPXr1+ull17S0KFDlZOTY/WwJAVhg5Uff/xR/fv3V0lJiQ4cOKCzzz5be/bsUWlpqeLj4xUTExOMcQIA/HTLLb67h3Xu3FnVq1fXI488om3btqlBgwbKyspSy5YtNX78eLlcLqWkpGj79u3KyspS//79FRUVJbfbrezsbA0YMEBDhgyRJCUnJ2vt2rXKysrSlClTrHh4lqB9ABBcoTgJyQnI4KJ9AGBfzPmCj+4BQHhg0WXw0D4AgGloHwAE15tvvhmS27XzostwQ/sAILhC0T66Fzx0DwCCizmf/dE+AAgPrHMJHtoHAMEVqnlf69atJUkdOnRQ69at1a9fP33wwQdKSEiQJE8Xj9m3b5/ntVwqb1xpaamKi4t9+ldUVCTJ+4Xs/gh4g5VnnnlGSUlJmjx5stq1a6dp06apVatWmj9/viZMmKBJkyYFehcAEFZcrsC2/FqxYsVpHd+2bdvTvo9j4Th8+LDcbreWLVumjIwMn7Ffd911ys3N1fLly5WcnKzly5erqKhIvXr18hwTERGhXr16afLkyXK73YqOjj7tsYQj2gcAXoF2L1Q4ARlctA8AvILRvlDP+5jzBYbuAYCvQNvHokv7o30A4Muu5zwRPLQPALyC0b22bZOCMJKK7LzoMtzQPgDwsmv76F7w0D0A8BVo+5jz2R/tAwBfrHNxPtoHAF52Pd/5axdeeKFcLpc2bdqkHj16KCoqSoWFherevbvnmMLCQkneL0s//svUk5K8YywoKFBUVJQaN27s93gC3mDl+++/1+OPP+75gMXhw4dVrVo13Xjjjdq9e7eeeuopzZ49O9C7AYCwEWiO+vXrd1rHr1u37pSOKy0t1eHDh7V+/XplZWWpW7duatKkiQoKClRSUuKJzTHHxyc5OVkFBQU+lx+TkJAgt9utzZs3V7jOqWgfAHgF46MGfLOP/dE+APAKRvtCMe9jzhc8dA8AfAXaPn82iD4VLLoMHtoHAL7YXsX5aB8AeIVL9+y26DLc0D4A8AqH9tG9wNA9APBF+5yP9gGAL9a5OB/tAwCvcJjzSdK3336rsrIyNWrUSNHR0UpJSVFeXp5SU1M9m8QsWLBA8fHxateunaTyZsbGxiovL88z7ysrK1NeXp66dOkS0JfHRgT6gPbv36/Y2FhFREQoPj5eO3bs8FzXunVrrV69OtC7AICwEuFyBfQnVDp37qykpCTdfPPNqlevniZMmCBJ2rNnjyQpNjbW5/iYmBhFRkZ6ri8qKlJkZKTPJEwqn6AdfzsmoH0A4BVo9yJcLrVt2/a0/pyK1q1bq0OHDurfv78mTZqkL7/8Uh988IHnxOHpnIA8noknICXaBwDHC0b7QoE5X/DQPQDwZcfu/drxiy6bNGniWXR5vN9adHk8Exdd0j4A8BUO7UNgaB8AeNn1fOevnWjRZVlZmeeY31p0eUywFl2GG9oHAF7h0D66Fxi6BwC+7N49ifYFivYBgK9waB/rXAJD+wDAy47nO1NTUzVt2jR9/PHH+vzzz/XKK68oIyNDrVq1Us+ePSVJ6enpWrt2rcaMGaMvv/xS06ZN05w5c5SWluaZz0VHR2vYsGHKzc3VtGnT9MUXX+jhhx9Wfn6+0tPTAxpjtUAfZJMmTbR9+3ZJUosWLfT22297Hty7776rWrVqBXoXAGCUN998MyS3m5ubqwMHDmj9+vV66aWXNHToUOXk5ITkvpyO9gFAeOHbDQJH+wAguEIx72POFzx0DwDCj92+3SDc0D4AgGloHwDYW2pqqlJSUtSiRQtFR0frhx9+0PTp0yssuhwwYIDGjBmjPn36aOXKlZozZ45GjRpVYdFlZmamatWqpcTERM2bN0/5+fkaN26clQ+xytE+ALAvuhd8dA8A7I32BR/tA4DwwzqXwNA+ALC3xMREvfPOO9qyZYskqVGjRrr99tt11113eXrVvn17ZWdnKzMzU/Pnz1e9evU0cuRIDRo0yOe2UlNTJUmzZ8/WxIkTlZCQoOzsbJ/P+vkj4A1WunXrpmXLlqlXr1669957NWzYMCUnJysyMlK7d+/Www8/HOhdAEBYCXTDrrZt2wZnIL/SunVrSeUTqtatW6tfv3764IMPlJCQIEnau3evz/H79u1TaWmp4uPjJZV/a3lpaamKi4t9vtG8qKhIkjzHmYD2AYBXOHwhKycgA0f7AMArGO0LxbyPOV/w0D0A8GW3eR+LLoOP9gGAL7u1D8FH+wDAy47dC4dFl+GG9gGAl93aR/eCj+4BgC/a53y0DwB82a19rHMJPtoHAF52654kZWRkKCMj46THdevWTd26dTvpcampqZ75X7AEvMHKgw8+6Pn/L7/8cs2dO1cffPCBDh48qC5duqhr166B3gUAhBWXHYv0KxdeeKFcLpc2bdqkHj16KCoqSoWFherevbvnmMLCQklS8+bNff63sLDQ56RjQUGBoqKi1Lhx4yp8BNaifQDgZbfucQIyNGgfAHjZrX2VYc4XGLoHAL7s1j4WXQYf7QMAX3ZrH4KP9gGAlx27Fw6LLsMN7QMAL7u1j+4FH90DAF+0z/loHwD4slv7WOcSfLQPALzs1r1wEfAGK7/Wpk0btWnTRpL0448/atq0aRo8eHCw7wYAbCscevTtt9+qrKxMjRo1UnR0tFJSUpSXl6fU1FRPUBcsWKD4+Hi1a9dOUvm3oMfGxiovL88z8SorK1NeXp66dOnimdSZiPYBMJnduscJyKpB+wCYzG7tqwxzvuCiewBMZ7f2segy9GgfANPZrX0IPdoHwGR0z0y0D4DJaJ956B4A09E+89A+AKazW/tY5xJ6tA+AyezWvXAR9A1Wjrd+/Xq98MILxAiAUSJsVqTU1FSlpKSoRYsWio6O1g8//KDp06erVatW6tmzpyQpPT1dAwYM0JgxY9SnTx+tXLlSc+bM0ahRozwfoouOjtawYcOUmZmpWrVqKTExUfPmzVN+fr7GjRtn5UO0FdoHwDR26x4nIKse7QNgGru1jzlf1aJ7AExkt/ahatE+ACaifWajfQBMQ/dA+wCYhvaZje4BMBHtMxvtA2Ai2mc22gfANHTPPyHdYAUAYL3ExES988472rJliySpUaNGuv3223XXXXd5PkjXvn17ZWdnKzMzU/Pnz1e9evU0cuRIDRo0yOe2jn3AfPbs2Zo4caISEhKUnZ3t+XZzAAAAAEDVYs4HAAAAAAAAAAAAAAAAAAAAAABwcmywAgBBZrcNvzIyMpSRkXHS47p166Zu3bqd9LjU1FTPh+4AALBb9wAACDW7tY85HwAg1OzWPgAAQo32AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zz9ssAIAQeaiSAAAg9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9/7DByglsXzbJ6iEghPYdPGz1EBBCZ8RY+9IWYem9A/7b9VWW1UNACO3a57Z6CAiRBmdFW3r/dA/hbMvSCVYPASFyqOSI1UNACJ1Rzdr60D6Es22fTbR6CAiR/YdKrR4CQuiMapGW3j/tQ7ja/W/OdzrZz3sOWj0EhND5tc+w9P5pH8IVcz5nY52Lc7HGBfAf8z5n28k6F8dqyDoXwG/bv+DzDU71y/4Sq4eAEDonLsrS+6d9CFf/5XN9jraX852OxjlPwD87v5ps9RAQQrzX51x0Lzz59awlJSWd0o42paUs6gYAOAPtAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwAEk18brAwePPiUYgQAJuL10ZloHwBUjtdG56J9AFA5Xhudie4BwInx+uhMtA8ATozXR2eifQBQOV4bnYv2AUDleG10JroHACfG66Mz0T4AODFeH52J9gFA5Xht9I9fG6zcf//9wR4HADhGBD1yJNoHAJWje85F+wCgcrTPmegeAJwY7XMm2gcAJ0b7nIn2AUDl6J5z0T4AqBztcya6BwAnRvucifYBwInRPmeifQBQObrnH782WAEAnBhBAgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO75J8LqAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqFSzegAA4DQuF1t+AQDMQfcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQvf8wwYrABBkEfQIAGAQugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucfNlgBgCBjwy8AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonn+CusHKzz//rG3btumCCy5QjRo1gnnTABA2IiiSUWgfANPRPfPQPgCmo31moXsAQPtMQ/sAgPaZhvYBMB3dMw/tA2A62mcWugcAtM80tA8AaJ9paB8A09E9/0QE40beeustdevWTd27d9cf/vAH/fjjj5Kk+++/X6+99low7gIAAFuhfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQCAQAS8wcrs2bP12GOP6aqrrlJ2drbKyso811188cVauHBhoHcBAGElIsA/sD/aBwBegXaP9oUH2gcAXrTP+egeAPiie85H+wDAF+1zPtoHAF6c7zQD7QMAL9rnfHQPAHzRPeejfQDgi/Y5H+0DAC/Od/qnWqA3MHPmTN1777164IEHVFpa6nNd06ZNPTt/AYApXC6rR4BQo30A4EX3zED7AMCL9jkf3QMAX7TP+WgfAPiifc5H+wDAi+6ZgfYBgBftcz66BwC+aJ/z0T4A8EX7nI/2AYAX3fNPwBusbNu2TZ06dar0uujoaBUXFwd6FwAQViIokuPRPgDwontmoH0A4EX7nI/uAYAv2ud8tA8AfNE+56N9AOBF98xA+wDAi/Y5H90DAF+0z/loHwD4on3OR/sAwIvu+Sci0Bs455xztH79+kqvW7NmjRo3bhzoXQAAYCu0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwAQqIA3WLnuuuv04osv6pNPPlFZWZkkyeVy6YcfftD06dPVp0+fQO8CAMKKyxXYH9gf7QMAr0C7R/vCA+0DAC/a53x0DwB80T3no30A4Iv2OR/tAwAvzneagfYBgBftcz66BwC+6J7z0T4A8EX7nI/2AYAX5zv9Uy3QG0hLS1N+fr7uvfdexcbGSpLuuusuFRUV6corr1RqamrAgwSAcBJhaFBMQvsAwIvumYH2AYAX7XM+ugcAvmif89E+APBF+5yP9gGAF90zA+0DAC/a53x0DwB80T7no30A4Iv2OR/tAwAvuuefgDdYiYqKUlZWlr766it99tln2rVrl+Lj49WlSxddcsklwRgjAISVCFO37DII7QMAL7pnBtoHAF60z/noHgD4on3OR/sAwBftcz7aBwBedM8MtA8AvGif89E9APBF+5yP9gGAL9rnfLQPALzonn8C3mDlmOTkZCUnJwfr5gAgbNEjc9A+AKB7pqF9AED7TEL3AKAc7TMH7QOAcrTPHLQPAOieaWgfANA+k9A9AChH+8xB+wCgHO0zB+0DALrnr4A3WNm2bdtJj2nQoEGgdwMAgG3QPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgBAoALeYKVHjx5ynWR7mzVr1gR6NwAQNiLY8cvxaB8AeNE9M9A+APCifc5H9wDAF+1zPtoHAL5on/PRPgDwontmoH0A4EX7nI/uAYAv2ud8tA8AfNE+56N9AOBF9/wT8AYrL7zwQoXLfvnlF3366adat26dHnjggUDvAgDCiksUyeloHwB40T0z0D4A8KJ9zkf3AMAX7XM+2gcAvmif89E+APCie2agfQDgRfucj+4BgC/a53y0DwB80T7no30A4EX3/BPwBivXXnttpZfffvvteuyxx/TDDz+oT58+gd4NAIQNdvxyPtoHAF50zwy0DwC8aJ/z0T0A8EX7nI/2AYAv2ud8tA8AvOieGWgfAHjRPuejewDgi/Y5H+0DAF+0z/loHwB40T3/RITyxn//+9/rX//6VyjvAgAAW6F9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AIBTUS2UN75+/XpFRkaG8i4AwHbY8ctstA+AaegeaB8A09A+s9E9ACaifWajfQBMRPvMRvsAmIbugfYBMA3tMxvdA2Ai2mc22gfARLTPbLQPgGnonn8C3mBl2rRpFS4rKSlRYWGh3n//fd14442B3gUAhBWXiyI5He0DAC+6ZwbaBwBetM/56B4A+KJ9zkf7AMAX7XM+2gcAXnTPDLQPALxon/PRPQDwRfucj/YBgC/a53y0DwC86J5/At5g5fnnn69wWXR0tM4991zdfffdGjZsWKB3AQBhhR2/nI/2AYAX3TMD7QMAL9rnfHQPAHzRPuejfQDgi/Y5H+0DAC+6ZwbaBwBetM/56B4A+KJ9zkf7AMAX7XM+2gcAXnTPPwFvsLJ27dpgjAMAgLBB+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAAgYoI5JfdbrdGjhypb775JljjAYCw53IF9gf2RvsAwFeg3aN99kf7AMAX7XM2ugcAFdE9Z6N9AFAR7XM22gcAvjjf6Xy0DwB80T5no3sAUBHdczbaBwAV0T5no30A4Ivznf4JaIOV6OhoLV68WIcPHw7WeAAg7EW4XAH9gb3RPgDwFWj3aJ/90T4A8EX7nI3uAUBFdM/ZaB8AVET7nI32AYAvznc6H+0DAF+0z9noHgBURPecjfYBQEW0z9loHwD44nynfwLaYEWSkpOT2e0LAI4T4QrsD+yP9gGAV6Ddo33hgfYBgBftcz66BwC+6J7z0T4A8EX7nI/2AYAX5zvNQPsAwIv2OR/dAwBfdM/5aB8A+KJ9zkf7AMCL853+qRboDQwbNkwjR46Uy+VS9+7dVadOHbl+tVtN7dq1A70bAAgbhm7YZRTaBwBedM8MtA8AvGif89E9APBF+5yP9gGAL9rnfLQPALzonhloHwB40T7no3sA4Iv2OR/tAwBftM/5aB8AeNE9/7jKysrKTveXsrKydMstt6h+/fq64IILvDd2gmdhzZo1/o/QInsPHrF6CAihQ4d5fp2sTkzAe0cFZPJnPwb0+/d3aRqkkSCYTGjfgRKrR4BQ2l3stnoICJEGZ0Vbev+Bdk+ifXZlQvt2Fh+2eggIkWoREVYPASEUf6a1zy/tcyYTuidJu/eXWj0EhMjpn+VHOKlVM9LS++d8pzOZ0L6DTPkc7ec9B60eAkLo/NpnWHr/tM+ZTGgfcz5nKz3CxM+pwn2Ni0T77MqE9jHvc7ad+1jn4lQNWeeCEDChe5K09xDr352q+BBzeic7Jy7K0vvnfKczmdC+Ij7X52h8rs/Z6ob5OU/aZ08mtG9/Ce8FOdl+5n2OxXt94cmvZ+3FF19U165dVb9+fT311FMnjBAAmChCvCY6Ee0DgMrRPeeifQBQOdrnTHQPAE6M9jkT7QOAE6N9zkT7AKBydM+5aB8AVI72ORPdA4ATo33ORPsA4MRonzPRPgCoHN3zj18brJQd93WYffv2DdpgAMAJ+Pu5M9E+AKgc3XMu2gcAlaN9zkT3AODEaJ8z0T4AODHa50y0DwAqR/eci/YBQOVonzPRPQA4MdrnTLQPAE6M9jkT7QOAytE9//i1wQoA4MQiCBIAwCB0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zz9+b7Dy1ltvacmSJSc9zuVyKT093d+7AQDANmgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfACBY/N5gZd68eXK5Tr6tDTECYJqIU3htRHiifQBQEd1zNtoHABXRPueiewBQOdrnXLQPACpH+5yL9gFARXTP2WgfAFRE+5yL7gFA5Wifc9E+AKgc7XMu2gcAFdE9//i9wcrs2bOVlJQUzLEAgCPQI+eifQBQEd1zNtoHABXRPueiewBQOdrnXLQPACpH+5yL9gFARXTP2WgfAFRE+5yL7gFA5Wifc9E+AKgc7XMu2gcAFdE9//i9wQoAoHLs+AUAMAndAwCYhvYBAExD+wAAprFb+xYtWqT58+dr9erV2r17txo1aqSbbrpJd9xxh6KiojzHLVmyRJmZmSooKFDdunU1cOBADRo0qMLt5eTkKDc3Vzt27FCLFi00YsQIXXbZZVX4iAAAdmK37gEAEGq0DwBgGtoHADAN7QMAmITu+SfC6gEAAAAAAAAAAAAAAACgohkzZig6OlqjRo3Syy+/rN69e2vChAn6y1/+4jlmxYoVSktLU6tWrTRt2jT1799fzz77rHJzc31uKycnR88995z69++vadOmqUWLFho6dKi+//77qn5YAAAAAAAAAAAAAAAAQJWrZvUAAMBp2PALAGASugcAMA3tAwCYhvYBAExjt/ZNmTJFtWrV8vyckpKisrIyTZw4UaNGjVKdOnWUlZWlli1bavz48XK5XEpJSdH27duVlZWl/v37KyoqSm63W9nZ2RowYICGDBkiSUpOTtbatWuVlZWlKVOmWPUQAQAWslv3AAAINdoHADAN7QMAmIb2AQBMQvf849cGK2vXrg32OADAMSKsHgBCgvYBQOXonnPRPgCoHO1zJroHACdG+5yJ9gHAiQXavhUrVpzW8W3btv3N64/fXOWYiy66SJK0fft2xcXFadmyZcrIyJDruJUz1113nXJzc7V8+XIlJydr+fLlKioqUq9evTzHREREqFevXpo8ebLcbreio6NPa+zhhPYBQOXsOOdbtGiR5s+fr9WrV2v37t1q1KiRbrrpJt1xxx2KioryHLdkyRJlZmaqoKBAdevW1cCBAzVo0KAKt5eTk6Pc3Fzt2LFDLVq00IgRI3TZZZdV4SOyBu0DgMrZsX0IHN0DgBOzW/uY8wUH7QOAE7Nb+xActA8AKkf3/OPXBisAgBNzseUXAMAgduseb74BAELNbu0DACDU7NY+5n0AgFALtH39+vU7rePXrVt32vfx9ddfKyoqSk2aNNGmTZtUUlKi5s2b+xxz7OfCwkIlJyeroKDA5/JjEhIS5Ha7tXnz5grXAQCcz25zPkmaMWOGGjZsqFGjRql27dpavny5JkyYoHXr1umZZ56RVL6hWVpamnr37q3Ro0dr5cqVevbZZxUZGak77rjDc1s5OTl67rnnNHz4cCUlJentt9/W0KFDNXfuXLVp08aqhwgAsJDd2sf5TgBAqNmtfcz5AAChZrf2Me8DAISS3boXLthgBQCCzG45YiIGAAglu3WPN98AAKFmt/Yx5wMAhJrd2se8DwAQanZr368VFBRo1qxZuvXWWxUTE6M9e/ZIkmJjY32Oi4mJUWRkpOf6oqIiRUZGqmbNmj7HxcXFSZLnOACAWezYvSlTpqhWrVqen1NSUlRWVqaJEydq1KhRqlOnjrKystSyZUuNHz9eLpdLKSkp2r59u7KystS/f39FRUXJ7XYrOztbAwYM0JAhQyRJycnJWrt2rbKysjRlyhSrHiIAwEJ2ax/nOwEAoWa39jHnAwCEmt3ax7wPABBKduueFB6fb2CDFQBwOCZiAACT8OYbAMA0zPkAAKZh3gcAsLs333wzZLe9a9cupaenq0mTJho5cmTI7gcAgNOxYsWK0zq+bdu2v3n98XO+Yy666CJJ0vbt2xUXF6dly5YpIyPD51v5rrvuOuXm5mr58uVKTk7W8uXLVVRUpF69enmOiYiIUK9evTR58mS53W5FR0ef1tgBAAg2zncCAOyOOR8AAIFh3gcAME04fL6BDVYAIMgiXPba84uJGAAglILRvWC+AcebbwCAUGPOBwAwTaDtY9ElACDcBNq+k7XMX/v27dPgwYNVUlKiWbNmqUaNGpKk+Ph4SdLevXsrHF9aWuq5Pi4uTqWlpSouLlbNmjU9xxUVFfncDgDALME439mvX7/TOn7dunWnfR9ff/21oqKi1KRJE23atEklJSVq3ry5zzHHfi4sLFRycrIKCgp8Lj8mISFBbrdbmzdvrnAdAMD5WOcCADBNoO1jzgcACDescwEAmMRun22QwuPzDWywAgBBFmiOmIgBAMJJMKZhoX4DjjffAADBFIz2segSABBOAm0fiy4BAOHGfktPJLfbrbS0NG3dulVz5sxR/fr1Pdc1adJEUVFRKiwsVPfu3T2XFxYWSvK27vgWJiUleY4rKChQVFSUGjduXBUPBQBgM3bs3q8VFBRo1qxZuvXWWxUTE6M9e/ZIkmJjY32Oi4mJUWRkpOf6oqIiRUZG+mwsJpVvOibJcxwAwCyscwEAmMbu8z7mfACAYGOdCwDAJHb7bIMUHp9vYIMVAAiyQDf8YiIGAAgnNtzo0gdvvgEAgi0Y7WPRJQAgnDDvAwCYxm7tKy0t1YMPPqhVq1Zp5syZatasmc/10dHRSklJUV5enlJTUz2LTxYsWKD4+Hi1a9dOktShQwfFxsYqLy/Ps8FKWVmZ8vLy1KVLFzbVBABDBaN7b775ZuA3cgK7du1Senq6mjRpopEjR4bsfgAA5rDbnO/XON8JAAi2QNvHnA8AEG6Y9wEATBIOn22Q7Pf5BjZYAQDDMBEDANhNqN6A4803AICJmPMBAOyGRZcAAARm3Lhx+vDDDzV8+HAdOXJE3333nee6hIQExcTEKD09XQMGDNCYMWPUp08frVy5UnPmzNGoUaM8G6dER0dr2LBhyszMVK1atZSYmKh58+YpPz9f48aNs+jRAQCc4GTfUuevffv2afDgwSopKdGsWbNUo0YNSVJ8fLwkae/evRWOLy0t9VwfFxen0tJSFRcX+5z3LCoq8rkdAABOF+tcAAAmYc4HADAN61wAAAguO36+gQ1WACDIXAFu+cVEDAAQTgLtnhSaN+B48w0AECrBaB+LLgEA4STQ9rHoEgAQboIx7wumpUuXSpImTpyoiRMn+lw3a9Ysde7cWe3bt1d2drYyMzM1f/581atXTyNHjtSgQYN8jk9NTZUkzZ49WxMnTlRCQoKys7OVlJRUJY8FAGA/duveMW63W2lpadq6davmzJmj+vXre65r0qSJoqKiVFhYqO7du3suLywslOT9Frvjv+Xu+NYVFBQoKipKjRs3roqHAgCwGda5AABMY8d5H3M+AEAosc4FAGASO3+2QbLv5xvYYAUAgiwiwN9nIgYACCeBdi8UePMNABBKwWgfiy4BAOGEeR8AwDR2a9/ixYtP6bhu3bqpW7duJz0uNTXVs9EKAAB2654klZaW6sEHH9SqVas0c+ZMNWvWzOf66OhopaSkKC8vT6mpqZ6FowsWLFB8fLzatWsnSerQoYNiY2OVl5fnmfeVlZUpLy9PXbp0UXR0dJU+LgCAPdixfZzvBACEkt3ax5wPABBqdmufxLwPABA6dv1sg2TvzzfY8e8LABDWXC5XQH9C4fiJ2CuvvHLCidjxfmsidjwmYgBgtkC7F+z2Hf/m29SpU3/zzbeysjLP5b/15tsxvPkGAJDs1z6JOR8AILTs1j3mfQCAULNb+wAACCU7nu8cN26cPvzwQw0ePFhHjhzRd9995/mzb98+SVJ6errWrl2rMWPG6Msvv9S0adM0Z84cpaWleeZz0dHRGjZsmHJzczVt2jR98cUXevjhh5Wfn6/09PSgjxsAEB7s1j7OdwIAQs1O3ZOY8wEAQs9u7WPeBwAIJbud7zzG7p9vqOb3bwIAKmW3ZZPs8gwACCW7de/Ym2/Dhw/3vPl2TEJCgmJiYpSenq4BAwZozJgx6tOnj1auXKk5c+Zo1KhRFd58y8zMVK1atZSYmKh58+YpPz9f48aNs+jRAQDswG7tY84HAAg1u7WPeR8AINTs1j4AAELJjt1bunSpJGnixImaOHGiz3WzZs1S586d1b59e2VnZyszM1Pz589XvXr1NHLkSA0aNMjn+NTUVEnS7NmzNXHiRCUkJCg7O9vnG14BAGaxW/s43wkACDW7tY85HwAg1OzWPuZ9AIBQslv3pPD4fIOr7PhtzeCx9+ARq4cQVJs3bVTuzByt/n6lCgryVa9ePc3P+8jnmI5tW5/w93NyX1diUrsQj7LqHDrsnOf348Uf6I3XZmrjf37U/v3Fqluvvi7/XQ8Numeo4uLiJUnTX35RM6ZmV/jdvv1u08jRf6nqIYdcnRhr945667ttAf3+Le0aBGkk5caOHas33nhDw4cP16WXXupz3bGJ2PLlyzVgwABdf/31nonYhAkTNGrUKJ8TkdOnT1dmZqaGDx/umYgtWLBAc+bM4USkAxwosXoEVeO9vIWaNXOGCgvyFR1dXRe0bq0nn/6b6tatZ/XQQmp3sdvqIQTNd9/8Ww+m3V3h8vObJSjn9bclSUv+70O9NWeWNm38UQf2F6tO3Xrq0q2HBt59r2KP9tEpGpxl7YedA+2eFNz29ejRQ1u3bq30umNvvknSJ598oszMTBUUFKhevXoaMGCA7r674r9X06dP1+zZs7V9+3YlJCRoxIgR6tq1a9DGC2vtLD5s9RCC5uOPPtDc2UfnBcXeecFdg8vnBaWlpZr72kx9vnSJftxQqJISt85v2lwD775Hl3frYfXwg65aRITVQwiqjz54T4sWztfaNT/ol192q0GDhrq+z0269bYBqhYV5Tlu2WefKntypn7cUKjaderq1tsG6PY7Blk38BCJP9Pa59du7WPOh9Oxe3+p1UMImv/76AO9/tpMbfzPBk/7uv7uCt09xHtOTCp/bXwpa4L+c/S1sd9tA3TbgDstHHloOOks/8cffaDXZ1d8bo/9vUaSvvric707/22tXrVSW7ds1rXX9dEj456yeOShU6tmpKX3b7fzncz7cKoOOmfKJ0natHGjZr46Xd+vWqWC/PWqV6++8j5YXOG4zz5dokkTM7WhsEB16tbV7X8YqDvuHFT1Aw6xn/cctHoIQTMqPVUrl39d6XV3D31Atw5M1cJ5f9dnSxZrQ8F67S/ep0aNz9MNt9yuK6+9PmTfJGOl82ufYen92619wKly0pxv8Qfv6b28BVq7ZrV++eUXNWjQUL1v6OtzPuzw4cN6/bWZWvDO2/r5p20666yzdEmXyzUk7QHVqlXb4kcQfKVHnDPxY52Lr3Bf4yLRPljHafO+X/v3V1/qnrsGVri8eUIL/fNfCywYUdXauc9Z61xGnGCdy4yj61wk6bNPFmvOzOna+GOhoqtXV6vWFyl12ANKaHlBVQ435BqyzsUH5ztxOvYecs76d89nG1Yd99mGRR9VOK6kxK2ZOdP17jvz9PNPPyn+rLPUOeVSjXvyaQtGHTrFh5wzp/+1w4cPa/Adt2hDQb7GPvmsrvj9tZ7r3v3XP/TPN+Zo65ZNqlEzRm3bX6zBacPVoJH/30BtR+fERZ38oBDifCfCVZHDPtf30QfvadG787XmV2sA+99efs6ztLRUc3Jf1dJPP9GPhYVyl7jVrFlz3Zk6RN1+57w1nk76XN8niz/Q3NdmatPR85116tVX19/10J3Hne88fPiw3pg9Uwvfmaeff9qm+LPOUkqXyzV42P0624Hns+uG+TlP1rnAKvtLnPNekCRt2rRRs3JmaPX35etc6tarp4Xv+65zOXz4sF6b9areefuf+umnbTrrrLPV5fLLlXbfcNWq7azXx/0On/fd/YdbVFiwXuOe+pt6XuWd95WVlentt+bq7b+/oS2bN6pGjZpqfVGixj8/UVFRzvjyT97rqygcPt9g7bOGKlNYWKClSz7WRW0SVVYm7d27p8IxObmvV7jshb89ra1btqj1hW2qYpjwQ9GePWrfsZNuH3i3asbEqLAgXzlTs1Wwfp0mTZnhOS4qKkpZ02b6/G7t2nWqerhGsNtCVnZ5BrxmvTpDkya8oIGD7lbGiId0YP8BffPNv+U+dMjqocEPD/15nJo2be75ufoZ3kX3e4v2qN3FHXXrgEGKiYnVhsL1mvnKFBXmr9cLL75ixXAdy27dW7y44geLKtOtWzd169btpMelpqZ6+gfYWVHRHrW/uHxeEHN0XjDj6Lxg8sszdOjQQc2aMU3X9L5et98xSNWiovTR+4s0+sH7NebRJ9T7hhutfgj4DbNnzdC5DRrq/oyRqlW7jlZ+t1xTXpyo/PXr9NgT5YuGvl+1QiOHp+uqa3pp+MjRWr1qpSZPeE6R1arp1tsGWPwInMVu7WPOB1MV7dmjDh07acDAu1QzNlaF+es1fWq2CvLXKuvlHEnlr42jMtL1+2t6a/iIP2r1qpXKmvCcIiMj1Y/XRtsqKtqjDhd30h8G3qWYmFgVFpQ/t/nrvc/tss8+1fq1a9S2/cXat2+vxSN2Pru1j3kfTFVYmK8ln3ysNolJKisr096iogrHrFy5Qg/cl6Zre/XWyFGjtWrlSmU+/6wiq0Xq9j/cYcGocSrue2iM9hcX+1z20aIFmv/PN9Tp0sslSXNmTtPFyZfqmuv7qmZMrL758nO98NSj+vmnrRp4T5oVw3Y0u7UPMNHs3Byde25D3Tf8IdWqXVsrVyzX1OxJKsxfr7F/HS9JeuXlF5X76nSlDklT23bttWXzZr2cPVGF+fmaNnOOxY8Av4V1LvZC9wD7e/TxJ5SQ0MLz8xlnWLshIfz30J/H6fwTrHP5+svPNXZ0hq64qpcGDUnXwYMHNOfVaXoo/R5Nf/1t1a5T14ohO5Ld2sf5TpiqsLBASz/5WBclJqpM5ev9fq2srEx/HJGhH75fpdR7h6p5Qgvt2rlTK5Yvr/oBw2//mPuaftm9u8LlC+b9XX978jHdcvtApWWM0u7duzTj5Sw9dP8QzXj9nzrjjDMtGK0z2a19gKlem1m+BvCBY2sAV5SvASzIL18DeOjQQeW8MlW9rr9BAwbepaioaH3w3kI9NDxdj4x7Utf36Wv1Q8AJ/Pp854bjzndOPHq+c8bUFzX71Rm6a8gwJbVtr61bNmvaS5O0oSBfU3JmW/wInMdu7WPeB1MVFhTo0yUfq02b8nUuRZXM+17OztKrM17RkGHpate+vTZv2qzsyROVv369Zs6ea8Go4Y+3Xn9Nv+zeVel1Lzz7pBa9+44G3jVYbZLaaW9Rkb764jMdKT0iWbsXpWPYrXtSeHy+gQ1WDNG1W3f9rvsVkqSn/vqYln3+aYVjEpPa+fy8t6hI69au0Y039VO1avyrYlfX33izz88dOiarenS0nnnyMf380zadc275zlEul0ttEttaMUTjWPtd6hUxEQPKbdq0UZMmvKA//mmM+vW/3XN51991t3BUCETTps114Qna1uuGm3x+bndxJ0VHV9fz48fpvz//pPrnnFsVQzSC3boHmKqyeUF0dLSeeaJ8XlC3Xn29NX+RZzd8Sep8SRf9/NM2zZk1gw1WbO75iS/p7Fq1PD937NRZZSrTyy9O0v0PPqTatevolSkvKqFlS419/Cm5XC517NRZO3Zs17QpWbrp5ls93+yLwNmtfcz5YKob+vq27+KOyYquXl1P//VRzzmx6S9nK6FFKz0y7km5XC5dfPS18ZWXX1RfXhttq/K/11TX0094n9v7Hxyl4SNHS5Ju7dvLimEaxW7tA0zV7Xc91L1HT0nSX8eN1edH34g+3svZWWrZqqUef3K8XC6XkjunaMeO7ZryYpZu6ddfUbTPls477sN1x2RnPq2mzVuoWUJLSVLWjNd11tneeWH7jp21t2iP/jk3V3+4615FRkZW2XhNQPsA6z03IdvnfNjFnTqrrEyamj1J6RkjVbt2Hb23cIGuuqa37h481HNMRIRLT457RNu2bVWDBg2tGj5OgnUu9kL3APtLSGihpLbtrB4GguD831jn8tF7C1X/nAZ6+LGnPAvim7doqQF9r9W/v/hMV/fuU4UjdTbaB9hDhc82fFbxsw3vvvMvff7Zp5o99x9KaNnSc/mVV11TZeNEYLb/92e9+spLGj5qjMY/9mef6z5Y9K7adeio+x78o+eyWrVq68G0VK1ZvUrtL06u6uE6Fu0D7OGFSb9aA5jcWWVlZZpydA3gWWedrXkL3/dZ45lyaRf99NM2vTZzBhus2Nh1J1i/++xx5zs/yHtXv7+mlwbdU34+u0OnznJFROjpxx/RT9u26lzOZwcV7QPsodvvuqt7j/J53xPjHtXnlcz7Fr47X9f06q3B9w6TJHVKTlFERITGjf2ztm3dogYNG1XpmHH6tv/3Z82Ylq0Rf/yznnh0jM91y7/5t/755ut6btIUXdLlcs/lXY+eD0Bw2LF74fD5Bjv+c0MIRESc/lP94QeL5Ha7dU2v60IwIoRSbHz5hPrw4cMWj8RMLpcroD8AQmPeP/+hqKgo3XjTzSc/GI4UG0cfQyHQ7tE+IHTijpsXREZG+rzxdkyr1hdqx47tVT00nKbj31g9pnXriyRJ/9uxXW63W//+6gtd+ftrfF5Xr762t4r27NHKFXx7UzDRPsC+4o77O7/b7dbXX32hnldd7fPf3VWe18bvLBol/BH3q/Od/pzvhv/oHmAPJ3vtc7vd+vKLZbrq6mt9/tu7tvd12rPnF634jnlBuNi6eaPWr1mtHld5NxE7fnOVYxJaXagD+/drf3FxVQ7PCLQPsF5l58MuaH2hpPLzYVL5/KBGjRo+x9SMiZUklR05EuIRIthY52IdzncCgD2Ulh7WmTXO9Hld9f7dpsyqYTkS7QPs4VTe6/nn39/QxR07+WyugvCS9cIz6nL579S2fccK15UePqwza9T0uaxmTIwk2hdsdA+wh0rPeV54dA3g9u0nXOPZuvVF2r79vyEfH4Lr2DqX0qPnOw8fPqwaNX27F3O0e0c4nx10tA+wh1OZ91X6+hh77PWReUE4mPj807qsa3e161Bx3vevf7ypxk3O89lcBcHH+U7/sAoZJ5T37nw1Oe98tUlMsnooOAWlpaU6dOiQ1vzwvXKmvqRLunRVo8ZNPNeXlJSo95Vd1TU5Sf1uuFq5OdNUWlpq4YgBoGqt+G65mjZtqnf+NU/XXNldF7e9UP36Xq+ln35i9dDgp7+MekBXXNJWfa/upueeekxFe/ZUOKa0tFTuQ4e0bs1qzZr+kjpferkaNmpswWgBoGocPy+Y8fJLuuQy33nBr3337Tc6//xmVThCBMvyb79WVFSUGjZqoi2bN6mkpETnN/N9Lps2S5Ak/fjjBiuGCABVwtO+1d9r+tRsXXq0fVuPvTY2be5z/LHXxv/8WGjFcHEajv97zfSXvc8tAKBymzeVt69pM9/2NW9e/vOGDbQvXHz03ruKiIhQ999f+5vHff/dN6pVu45iYmOraGQAYK3vjp4Pa9SofF7Qp+8tWvTufH3x+VIVFxcrf91azZj6ki7r2p33gsIE61wA4NQMvz9N7RNbq3vXS/X4o49ozy+/WD0k+OmRUQ+o5yVtddPV3fT8r9a5XH3djdr0n//orddnaW/RHm3/78+a/NxTqlf/HF3ON7oCMNDhkhL9sHq1zm/aTM8/85R+1yVZl3Zsq/uHDtbG//xo9fBwCr78fKn+/eXnGjb8oUqv733jzfr3F5/pw/cWqnjfPm3ZtFFTJr2gFq1aK6n9xVU8WgCwxvJvjq4B/I21EMu//VpNm7LGMxwcO9+59rjzncee2+tvvFnvvTtfX36+VPuLi5W/fq1ypr2kLl1/x/lsAEbre3M/vTv/HX3+2acqLt6ndWvXaupL2er6u+5q1JjXR7v74vNP9dUXnyv9BPO+VSu/U7OEFnr1lSnqfWVXdevcVkPv/oNWr1pZxSMFKqpm9QACsW3bNn311Vfq06eP1UNxnJ9/2qbl336jIUPTrR4KTtG1Pbpo3769kqTklEv112ee91zXqHETDbv/QbVo1VplR45o6acfa2r2JG3bukWj/zLOohE7l5n7daGq0D7/7dy5Q9v/+19NeXGShj/4kGrVrqO5c15Txv1pmvv3eUpIaGH1EHGKasbEqN/td6rdxZ105pk1tGb1Ss2eOV0/fL9CU159Q9HR0Z5jb/j95So+2seOnS/Vo089Z9WwHYvuIdRo3+m5prvvvOCJ4+YFv/buO29r9aoVevJvmVU1PATJhsICzZ2Tqz439VNMTIwK84skSbGxcT7H1axZU5GRkZVuQgb/0T6EGu07PVf97lJP+zpf0kVPPvuCJKlob/lr468/cOx5bSzitdHuru5+3HOb0kVPPPOCxSMyF+1DqNG+4DjWttgK7YthXhBmFr+3UIntLlbdevVPeMx3X3+pTz56T/ekP2jsN8mEEv9EEUp0zz8/Fhbojddf0w19b/F8m3XqvWk6UnZED953r8rKyr/BrvMlXfTE07wXFC5Y52IPdA+hRvv8FxMbq4GD7lbHTsmqUaOGVq1coRmvTNWKFd/p9Tf/4bM2AvZWMyZGt/xqncuco+tcXjq6zqVDx84a90ymnhr7J7004W+SpHMbNNTfsqYp5lfvASIwtA+hRvuC45c9v+jw4RIt+Nfbap7QQk+Mf1aHDrmVPXmC7h86WG/9611Vr17d6mHiBA4dOqSJf3tSg+4Zptp16uqnbVsrHHN1rxtU4i7R+MfG6PDhw5KklhdcqL9NmqJq1cL6Y062Q/sQarTPP8fWAN54dA1gZeb/622tWrlCzzw/sYpHB3/0+tX5zsePO99515A0HSkr00MPDPWcz05OuVTj+GxDSNA+hBLdC657h6Wr7MgR3Td0iOf18ZJLu+jpv7FW0O4OHTqkF555UncPTlOdupXP+3bt/J+++uJzbSgs0Mg//UXVo6vr1ekv68H0wXpj3kKdXau2BSN3Hrrnn7A+87Bq1So9/PDDxCgEFi18V2VlZbqm9/VWDwWnaPLUHB06eFCFBfmaOf1l/TEjXROyX1FkZKSuuvY6n2M7X3qZYmJilZszTQMG3cNul0HGOlaEEu3z35EjZdq/f7+eeW6CLu/aTZLUKTlZva++Uq9On6Ynxj9r8Qhxqlq0aq0WrVp7fm53cSe1aNVaox64V4vfX6ire/fxXDfhpRk6ePCgNhSs12s5U/Xnkffrb5OnKjIy0oKROxPdQ6jRvtOTNe3ovCA/X69Of1mjhqdr4kuvVHjdW7XiOz339BPqdf2N6n7F7y0aLfzxy+7dGvXgfWrcuInuGz7C6uEYifYh1Gjf6cl+5VUdPHBQhQXrlfPKy3poeLomvfSK1cNCELw47VUdPHhQhfnrf/PvNQg92odQo32A15rvV+qnrZt1252pJzxm65ZNemrsaLXr2Fk33jqgCkdnDtqHUKJ7p++X3bv1xxH3q1HjJko/7nzY3998Xa/nvqph9z+oxKR22rp1s6ZmT9afR4/QcxOz2YAqDLDOxR74TwWhRvv817r1hWrd+kLPz52SO6v1hRdp6OC7lffuAt1wY18LR4fTcaJ1Ln88bp3LD6tW6OlxY3TFVdeq2xW/14H9+zX3tRz9KWOYJk/LVa3adSx8BM5C+xBqtC84yo6Uf7DuyJEyZU5+SWedfbYk6fymTXVr3+u1aOEC3XDjTVYOEb/htZxpqhYVpZv6/+GExyz9ZLGyXnhGtw4YpE4pl2r3zp2a+coUjc5I0+SpM1X9jDOqcMTORvsQarTv9P2ye7dGZfz2GsCVK5brmace13U39FWPnqzxDAeTp+aUr3MpyNes6S9rdEa6Mo+e7/znm69r7muv6t77MtQmqZ22bdmsV6ZkaeyfRuqZCS9yPjvI+MeJUKJ7wfXm3DnKnZmj+zNGKKltO23dslnZkydp9MgMTXxxCq+PNjZrxlRFRUXplt+Y9x05ckTu/fv11N8mqlnzBElS6zaJurn37/X3N+Zo8LD7q2q4jsZ/Jv4J6w1WEDp5C+crqW07NWJBQthoefQNuMS27dWi5QUaMug2Lfm/D9W951WVHn/F76/WrBlTtW7NDyw8CbII9vwCbCkurvzbXDold/ZcFhUVrXbtO6iwsMCqYSFIOna+VHFx8Vr7w/c+G6wktLxAktQmqZ0SWl6g9NQ/aOnHH6kbmwkEDd0D7MVnXtDqAg2+8zZ98n8fqsdx84INhQUalZGmDhd30ui/PGbRSOGP4uJiDU8fosMlJZryyiydeWYNSVLs0b/n7N1bVOH40tJSxcXHV/lYnYz2AfZyrH1J7crbd8/A2/TJ4g/VtFlzSdK+vXt9jve8Nsbx2mh3nue2bXu1bHWB7qnk7zWoGrQPCA/H2ra3Qvv2MS8IIx+9t0DR0dV1WfcrK71+547tGpMxVHXrn6OxT73AxmMhQvsA+yguLtaD992rkpISZU+b6TkftmfPL5r0/DMakna/BhzdlKr9xR3VsGFjDbtnoL74fKku6XK5lUPHKWCdiz3QPSC8XHJpF8XHn6XV369ig5Uwd2ydy7qj61wmPz9eFyW204N/Gus5pt3Fybqtz+/197m5GpL+oIWjdRbaB4SH2NhYuVwuJbRo4dlcRZKaJ7RQ7dp1tIE1n7b180/bNDd3hv7y12d04MABSQe0v3ifJOngwYPat2+vataM0XNPPaare9+gIekZnt+9MLGt+t9wlRa9+y/dcNOt1jwAB6J9gL0UFxfrgfQhKjlcoinTZ+nMGjUqHFNYkK8R9w/TxR07aczYcRaMEv5o8avznfcePd95cafOysp8VvcMu1+3D7xbktSuQ0c1aNRY9w2+U18uW6qUSzmfHUy0DwgPe/b8oueffVpp9w3XnXeXv993ccdOatiose4ZdIc+/2ypulzG66Md/fzTNs2ZNUNjn3hGBw4ekA4eUPHx8769exUTG6vYuHi5XPJsriJJZ59dS80SWujHDczrg4Xu+ceWG6xcccUVp3TcwYMHQzwSM61bu0aFBfkaPeYRq4cCP7W6oLVcLpe2bN500mPZnQqwB9oXes2bJ+j7VSsrXF5WVqZDhw5ZMCKEwm/tTtryaB+3bjl5HwGEHu0LvcrmBT9t26qMtMFq3OR8PflspqpVs+VpAVTC7XbroYx0/fTTVk3Lma269ep5rmvUuImioqL0nw0bdHnX7p7Lj514bNq0WZWPF0BFtC/0LrjgQk/7LuvWvfy18cdCXdb1d55jjr02nt+0uUWjhD9aHffcAggftK9qNW5SPi/4cUOhuv3OOy8oLCyUJDVrRvvsrvTwYS356H11vqybataMqXB9UdEePZwxVBERkXry+RdVo2ZNC0YJ4EToXvC53W798cH79NO2rXo55zWf82FbNm+S2+3WBa0v8vmdCy68UJK0edNGNlgJM6xzAcIP7bMYL4bOcfS5/M+GQvX7w2U+V9WMiVHDRk20dRPnRQE7oH1V64wzz1SDBg0rva6srExu1nza1k/btsjtdmvs6Iqbgz3717Ga/Nx4vT5vkXbv2qWWrS/0uf6ccxsoLv4sbaF9gC3QvuBzu916aHi6ftq2VdNe9V0DeMy2rVt1/9B71OS88/XMcxNZ4xmmjj/fWf+cc+V2u9XqAt/utTrawS2bNkmXWjFKAMeje1Vv86by9/taX+T7ft+FF5b/vGnjf9hgxaa2bS2f9/3ljxXnfeMff0QT/vaUPlz6tZo2a67//FhY8QbKyuQ+5K6CkQInZsu/Zf/3v/9Vy5YtlZiY+JvHbdmyRZ9//nkVjcocixYuULVqUbryqmusHgr8tHLFcpWVlalBwxN/Y88HixbK5XLpggvbVOHIzMD71/AH7Qu9bt2v0L/m/VNffbFMXY9+wMDtdmv58m/UOYUzUuHuqy8+U1HRHl1w0Yn/G/p+xXcqKyvTuQ0bVeHInI/uwV+0L/SOzQsaHp0X7Nr5Pw0fdo9iY2P13MRsnXHmmRaPEKeqtLRUfx49QmtWr1L21Fd13vlNfa6Pjo5Wx+QUffj+Ig24827PhmPv572ruLh4JbZtZ8GonYv2wV+0L/RWHDsn1qiRoqOjdXGnzvro/ff0h4He18YPFi1UXFycEtu2tXi0OB3e853M56xA++Av2le1oqOjldw5Re8vytOdd6V62rfo3QWKi4tXW+YFtvf1l59rzy+7dcVVvSpcd/DAfj0yMl179xbphZde1Vm1alswQnPQPviD7gVXaWmpHvnTSK1ZvUpZU3MqnA879+iH7Nb8sFodk1M8l6/94QdJYu4QhljnYh26B3/RPmt8tvRT7dnzixITk6weCgL076PrXFofXedyzrkNtG7Nap9jivft09Ytm5TUvqMVQ3Qs2gd/0b6q1/V33fXPf7yl3bt26exatSRJBevXa9eunWp9EfMCu0poeYEmTJnhc9munf/T43/+owamDlXHzpforLNr6cwzz9S6H1ar1/V9Pcf9tG2rivb8onMbVr65DvxD++Av2hdcpaWl+vMfR+iH1auUPe1Vnf+rc56StHPn/3Tf0LsVExurFya/xBrPMHb8+c5j57PXrlmti487n71uTfn57HNPsKkc/Ef74A+6V/WObar5w+rvldzZ+/r4ww/l58ga8n6fbbVodYEmv5zjc9munf/To2NGadA9Q9Xp6Oc0L+vWXd9+/ZU2FOSrWUILSdLuXTtVWJCv2wfeVeXjdiq65x9bbrDSsmVLNWrUSOPGjfvN49577z1idIoOHjigpUuXSJK2btmsgwcO6sMP3pMkXXRRG89fxo8cOaL38t7VJV0u01lnnW3ZeHHqHkwfrI7JKWraLEFR0dFav26N5szKUUKLluravYck6a7bb9bVva/Xeec31ZHSI1r66cea//bf1eemfkzEQsAlioTTR/tC73fdeyipbXuNe/Qvuj9jhOrUqaPX57ymvUVFGnT3PVYPD6fhyUf/pHPPbaiWrS/UmTVqas3qVZo7a4YSWl6gHleWbxA36oF71aFTZ53fNEHR0VHKX7dWb8x+Vc0SWuqybqe2syxODd2Dv2hfcGWkHZ0XNE9QdHS01q9do9nHzQsOHTyoB++7Vzt2bNcjjz+lzZs2avOmjZ7fb5PEh8zt7Nnxf9Un//eR7k1/QKVHSrVq5Xee65o2S1BMTIxShwzTvakD9cRjf9G1vW/Q6u9X6q03X9cDGQ8pKirausE7EO2Dv2hfcA0/2r5mzRMUFRWl9evWaPbMHCW0aKVu3cv/zp86JE1D7xmoJ8f9Rdf0vkE/fL9Kf3/zdd3Pa6OtHf/3mqjoKK1fe+x8p/e5/WnbVq354XtJ0v7iYv380zYt/rD8fPelXbqyyCjIaB/8RfuC68CBA1q65BNJ5Qt2Dhw8oA/eWyRJuigxUQ0aNNS9w9J1950D9OgjY3Td9X30/aqVemPuHD04cpSiommf3S1+713FxZ+lTpd0qXDd42NGav2a1br/oT/rl9279MvuXZ7rmre8QNE8v0FF++APuhdczx09HzYk7QEdKT2i71eu8FzXtFlz1apVW1dceZWmv5ytI6WlapPUVlu3bNErL7+o85s2UzJfrmBrrHOxF7oHf9G+0Ht49ENq2LCRLryojWrWrKlVK1coZ/o0tbqgta6+5lqrh4fT8NSjf9I5R9e51PjVOpfuR9e59LnlNk3825N6Yfw4Xd79Sh04sF9vzZmpEneJevW5yeJH4Cy0D/6ifcF18MABLf30V59teP/oZxvalH+24Y5BqVr47nwNv2+o7h58r0rcbr2UNVHnnd9Uv7+aFtpVbGyc2l+c7HPZT9u2SpLOb9ZMbdtfLEm64eb+emvOLMXExOji5Eu0a9dO5c54WWedfbZ6/J4vCg4m2gd/0b7gevapv+rj//tIQ9Mf0JFK1gBWq1ZNDwwbou3bt2vcE09XWOOZmNSu6geNUzIifbAuPu58Z/7R853Nj57vjIqKVveeVyln6ks6UnpEFyUmadvWLZoxNVvnN23m+RA6gof2wR90L/gOHDigpZ+Wr3PZumWzDh48qA/eP7rOpU35Opcrr7paL7/0okpLS5XUtq22bN6il7Oz1LRZc6VcWnHtBOwhNjZOHTpWPu9r2qy52h2d911/4836xxtz9PBDD2hw2gOqXr26Zk2fqjNr1FDfW/pX+bidiu75x5YbrLRp00ZLliw5pWPLyspCPBpn2LVrl/70UIbPZcd+fvTxp3TdDTdKkr7591favv2/evCh0VU8Qvir9UWJem/hAm3btkWSdO65DdX3lv7q/4c7PR8UadTkPP197mzt/N//VKYyNTnvfD0w8k+6qd9tVg7dsdjxC/6gfaEXERGhydlT9MLfntELf3tGhw4d1EVtEjV1+kwlHN0FEeHh/KYJ+uj9d/WPN2br0KFDqluvvq65/kbdec8wRUVFSZJaX9hGHy5a4JmgnXNuA91w06265baBnmMQHHQP/qJ9wXVhm/J5wU9H5wXnNCifF9w2oHxe8NOOrcpft1aS9Jc/jqjw+59/u7rCZbCPLz77VJL08ouT9PKLk3yue2naTF3cKVlJbdvr+QkvKnvyBC1aOF916tTVfQ+M0G0D7rRiyI5G++Av2hdcF16UqEUL5+unrUfPiTVoqL79+uv2AYM858QS27bT3zKzNCVrgt5buEC169RV2v0Pqv8fBlo5dJxE6zZHn9sKf6/xPrfffv2Vnnjsz57f+d+O7fr2668kSf9c8IHOPZMP2wUT7YO/aF9w7dq1Uw+NGO5z2bGfH39ivG64sa/atmuviVnZmjQhUwsXzFfduvX0wIMjNWDgIAtGjNNxYP9+LVv6sa685npVq1bx/OU3X5Yv0Jr47F8rXDfzHwt1zrm0L5hoH/xB94Jr2edLJUlTsydparbv+bAXp72qizsm68+PPaGZM6ZpwTtva8a0l3T22bXUqXOK7k0fzsZTNsc6F3uhe/AX7Qu9hIQWWvjuAs15bZYOHTqkevXrq0/fmzU07T420Qwzx9a5/PNX61wGHrfO5fqbblV0dHW9/ffX9dH7C1W9+hlq0aq1XsieribnVfxme/iP9sFftC+4fvOzDX8t/2xDvfr19fIrM/XCc0/rL6NHqVpUNV3S5TKNeOhPOuOMM6p+0AiqwWkP6Oyzaylv/jz94405iomN1YVtknRP2gN8UXCQ0T74i/YF17LPy9cATnlxkqb8ag3glFdm6twGDbV+3RpJqtBISfr3ijUhHyP80/qiRL3/q/OdN/7qfOfDj/5VuTmv6N35byvnlfLz2R2TUzQ47QHOZ4cA7YM/6F7w7d61U38ckeFz2bGfxz3xlK7v01eP/fVJzZg2Ve/M+6emTcnW2bVqq/Mllyj9/gxeHx3gzDNraNKUGZr0wjN65olHVXbkiNp26Ki/jHtKtWrXsXp4jkH3/OMqs+Gr+aZNm5Sfn68rrrjiN487ePCgdu7cqYYNg79gbO/BI0G/TdjHocM8v05WJ8bavaMWrd4R0O9ffVHdII0E4cQO7TtQEvSbhI3sLnZbPQSESIOzrD1pEGj3JNpnKju0b2fx4aDfJuyhWkSE1UNACMWfae3zS/vgLzu0b/f+0qDfJuzBfmf5EUy1akZaev+c74S/rG7fQaZ8jvbznoNWDwEhdH5taz8gQ/vgD6u7JzHnc7rSI0z8nCrc17hItM9Udmgf8z5n27mPdS5O1ZB1LghTdmjf3kOsf3eq4kPM6Z3snDhrvxSQ853wl9XtK+JzfY7G5/qcrW6Yn/OkfWayunuStL+E94KcbD/zPsfivb7wZO2zdgJNmjRRkyZNTnrcGWecEZIQAQBQ1WgfAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASegeAJjFlhusAEA4c7msHgEAAFWH7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7vmHDVYAIMgIEgDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHTPP2ywAgBB5hJFAgCYg+4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO75J8LqAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqFSzegAA4DQRbPgFADAI3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fMPG6wAQJC5RJEAAOagewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe/5hgxUACDIXPQIAGITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu+YcNVgAgyNjxCwBgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnnwirBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoVLN6gEAgNNEsOEXAMAgdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8/bLACAEHmEkUCAJiD7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7vmHDVYAIMhc9AgAYBC6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6558IqwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFSzeoBAIDTsOEXAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8/bLACAEEW4SJJAABz0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3/sMEKAAQZOQIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu+SfC6gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKhUs3oAAOA4bPkFADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fMLG6wAQJC5KBIAwCB0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zz9ssAIAQeaiRwAAg9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9/7DBCgAEGT0CAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7vknwuoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECoVLN6AADgOGz5BQAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd3zCxusAECQuSgSAMAgdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8/bLACAEHmokcAAIPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPf9EWD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiValYPAACchg2/AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXv+YYMVAAg2igQAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd8wsbrABAkLkoEgDAIHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHTPPxFWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQqWa1QMAAKdxseEXAMAgdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8/bLACAEFGjwAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7/mGDFQAINooEADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fMLG6wAQJC5KBIAwCB0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zz8RVg8AAAAAAAAAAAAAOFUbN27U2LFjdeONN+qiiy5Sjx49Kj1uyZIluvHGG5WYmKgePXro1VdfrfS4nJwc9ejRQ4mJierbt6+WLl0awtEDAAAAAH4Lcz4AAAAAAAAAAAAAocIGKwAQZC5XYH+CjYUnAIBQCrR7tA8AEG5oHwDANHbrniTl5+fr448/VsOGDdWiRYtKj1mxYoXS0tLUqlUrTZs2Tf3799ezzz6r3Nxcn+NycnL03HPPqX///po2bZpatGihoUOH6vvvvw/N4AEAtme39jHnAwCEkh3PdzLnAwCEkh3bx7wPABBKduueRPsAAKFlt/bRPQBAKNnxfGc4YIMVAAgyV4B/go2FJwCAUAq0e7QPABBuaB8AwDR2654k9ejRQ0uWLFFWVpaSkpIqPSYrK0stW7bU+PHjlZKSoiFDhuj2229XVlaWSkpKJElut1vZ2dkaMGCAhgwZopSUFI0fP17NmzdXVlZWiEYPALA7u7WPOR8AIJTseL6TOR8AIJTs2D7mfQCAULJb9yTaBwAILbu1j+4BAELJjuc7w4GrrKyszOpB2NHeg0esHgJC6NBhnl8nqxNTzdL7/37rvoB+v03DmCCNpNyRI0cUEVG+n9bYsWO1dOlSLV682OeYwYMHa+fOnfrHP/4h19Etx5544gnNnz9fS5cuVVRUlNxut7p06aK+ffvq4Ycf9tz2jTfeqHPPPVdTpkwJ6rhR9Q6UWD0ChNLuYrfVQ0CINDgr2tL7D7R7Eu2DdXYWH7Z6CAiRahHsJ+tk8Wda+/zSPoSz3ftLrR4CQoSz/M5Wq2akpfdvt/Odv1ZZ+9xutzp06KCMjAzdc889nstXrFihfv36KTc3V8nJyfryyy81cOBAvfXWWz4f2ps6daomT56sb775RtHR1s674b+DTPkc7ec9B60eAkLo/NpnWHr/dmsfcz6cKuZ8zlZ6hImfU4X7GhdJKv1f4Wkd37Zt21M+ljkffgvzPmfbuY91Lk7VkHUuFTDvw6nae4j1705VfIg5vZOdExdl6f3b7XynRPtwaor4XJ+j8bk+Z6sb5uc8mfPBKvtLeC/IyfYz73MsJ7zXF+o1nnZk7bMGAKhgxYoVp3X8yRaeRJzkw6Vut1vLli1TRkaGZxImSdddd51yc3O1fPlyJScna/ny5SoqKlKvXr18brtXr16aPHmy3G43C08AAH6hfQAA09A+AIBJgt29U7Fp0yaVlJSoefPmPpcf+7mwsFDJyckqKCjwufyYhIQEud1ubd68ucJ1AACcDHM+AIBp+vXrd1rHr1u3LqD7Y84HAHAa5n0AADsLxXt9tA8AYGe81wcAgPOxwQoABJlLrpMf9BtYeAIACCeBdk+ifQCA8EL7aB8AmCbczndK0p49eyRJsbGxPpfHxMQoMjLSc31RUZEiIyNVs2ZNn+Pi4uJ8bgcAYJZwax9zPgBAIIJxvrOqMecDAAQiGO2r6k2lmfcBAAIRbuc7JdoHAAhMuLWP7gEAAmHH9/o2btyo6dOna9WqVVq/fr3q16+vxYsXVzhuyZIlyszMVEFBgerWrauBAwdq0KBBFY7LyclRbm6uduzYoRYtWmjEiBG67LLLAhojG6wAQJC57Nej38TCEwBAIMKtexLtAwAEhvYBAEwTju0DACAQ4dY+5nwAgEAEo3tvvvlm4DcCAEAVCUb7qvrDdsz7AACBCLfznRLtAwAEJtzaR/cAAIGwY/fy8/P18ccfKykpSWVlZSoqKqpwzIoVK5SWlqbevXtr9OjRWrlypZ599llFRkbqjjvu8ByXk5Oj5557TsOHD1dSUpLefvttDR06VHPnzlWbNm38HiMbrABAkAXaIxaeAADCSTDmYbQPABBOaB8AwDTheL4zPj5ekrR3716fy/ft26fS0lLP9XFxcSotLVVxcbHPApRjb+gdOw4AYJZwbB8AAP4KxvnOtm3bBuFWTh1zPgBAIGz4eQMAAEKK850AANPQPgCASex4vrNHjx7q2bOnJGns2LFaunRphWOysrLUsmVLjR8/Xi6XSykpKdq+fbuysrLUv39/RUVFye12Kzs7WwMGDNCQIUMkScnJyVq7dq2ysrI0ZcoUv8fIBisAEGwBFomFJwCAsBKEmRjtAwCEFdoHADBNmJ3vlKQmTZooKipKhYWF6t69u+fywsJCSVLz5s19/rewsFBJSUme4woKChQVFaXGjRtX4agBALYRZu1jzgcACIgdV12eBHM+AEBAgtC+qv6wHfM+AEBAwux8p0T7AAABCrP20T0AQECCcL5zxYoVp3X8yVoZERHxm9e73W4tW7ZMGRkZcrm8D+C6665Tbm6uli9fruTkZC1fvlxFRUXq1auXz2336tVLkydPltvtVnR09GmN/Rg2WAEAw7HwBABgGtoHADAN7QMAmCY6OlopKSnKy8tTamqq5024BQsWKD4+Xu3atZMkdejQQbGxscrLy/O0r6ysTHl5eerSpYvfb74BAFCVmPMBAEzDnA8AYLWq/rAd8z4AgGloHwDAJHQPAGC1fv36ndbx69atC+j+Nm3apJKSEk/bjjm+dcnJySooKPC5/JiEhAS53W5t3ry5wnWn6re3gAEAnDZXgP9X1Y5feFJWVua5/LcWnhzDwhMAQKDdo30AgHBD+wAAprFj9w4cOKBFixZp0aJF2rJli8/PW7dulSSlp6dr7dq1GjNmjL788ktNmzZNc+bMUVpamqdp0dHRGjZsmHJzczVt2jR98cUXevjhh5Wfn6/09PSQjB0AYH92bN9vYc4HAAiEHc93MucDAISSHdt3Msz7AACBCLfuSbQPABCYcGsf3QMABCIcz3fu2bNHkhQbG+tzeUxMjCIjIz3XFxUVKTIyUjVr1vQ5Li4uzud2/FHN798EAFTKZc15xBM6cOCAPvnkE0nyWXgiSYmJiWrYsKHS09M1YMAAjRkzRn369NHKlSs1Z84cjRo1qsLCk8zMTNWqVUuJiYmaN2+e8vPzNW7cOMseHwDAWnbrnkT7AAChRfsAAKaxY/t27typ4cOH+1x27Ofx48erb9++at++vbKzs5WZman58+erXr16GjlypAYNGuTze6mpqZKk2bNna+LEiUpISFB2drbPt/0AAMxit/Yx5wMAhJLduicx5wMAhJYd28e8DwAQSrQPAGAau7WP7gEAQikY3XvzzTcDv5Ew4yo7flszeOw9eMTqISCEDh3m+XWyOjHW7h21/uf9Af1+y3NqBGkk5bZs2aIrrrii0uuOLTyRpE8++USZmZkqKChQvXr1NGDAAN19990Vfmf69OmaPXu2tm/froSEBI0YMUJdu3YN6phhjQMlVo8AobS72G31EBAiDc6ydqfhQLsn0T5YZ2fxYauHgBCpFhFh9RAQQvFnWvv80j6Es937S60eAkKEs/zOVqtmpKX3b7fzncCpOsiUz9F+3nPQ6iEghM6vfYal92+39jHnw6lizudspUeY+DlVuK9xkZj3wTrM+5xt5z7WuThVQ9a5VMC8D6dq7yHWvztV8SHm9E52TlyUpfdvt/OdEu3DqSnic32Oxuf6nK1umJ/zZM4Hq+wv4b0gJ9vPvM+xeK/vt40dO1ZLly7V4sWLPZcVFBSoV69emjJlirp37+65fN++fbr44ov12GOP6bbbbtPs2bP1+OOP69tvv1XNmjU9xy1evFjDhg3TwoUL1bx5c7/GxQYrJ8AGK87GRMzZwj1ILDyBVdhgxdnYYMW52GAF8B8brDgXG6w4GxusAP7jw3bOxVl+Z2ODFcA/fNDO2dhgxdnYYAXwD3M+Z2ODFecK9zUuEu2DdZj3ORsbrDgXG6wA/mODFedigxVnY4MVwD9ssOJsfK7P2dhgBfAPG6w4GxusOBfv9f22yjZYcbvd6tChgzIyMnTPPfd4Ll+xYoX69eun3NxcJScn64svvtCdd96pt956S0lJSZ7jpk6dqkmTJunbb79VdLR/55v5xBEABJsrwD8AAISTQLtH+wAA4Yb2AQBMQ/cAAKahfQAAk3C+EwBgGtoHADAN3QMAmIb2AQBMEobnO6Ojo5WSkqK8vDyVHfcNkwsWLFB8fLzatWsnSerQoYNiY2OVl5fnOaasrEx5eXnq0qWL35urSJK12+IAgAO5mE0BAAxC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExix+4dOHBAn3zyiSRpy5YtOnDggBYtWiRJSkxMVMOGDZWenq4BAwZozJgx6tOnj1auXKk5c+Zo1KhRno1ToqOjNWzYMGVmZqpWrVpKTEzUvHnzlJ+fr3HjxgU0RjZYAYAgc9mvRwAAhAzdAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMIkdu7dz504NHz7c57JjP48fP159+/ZV+/btlZ2drczMTM2fP1/16tXTyJEjNWjQIJ/fS01NlSTNnj1bEydOVEJCgrKzs5WUlBTQGNlgBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBfGjVqpHXr1p30uG7duqlbt24nPS41NdWz0UqwsMHKCcSeEWH1EBBCseL5RejYcMMv4JScGWX1CBBKZ54VbfUQ4FB0D+Gsdk2mxABOH+1DODu7RqTVQwAQhmgfwtUZTPkc7fzaZ1g9BDgY7UO4Ys4HwB90D+GMeZ+zNWSdC0KE9iGcxVZn/btT8dwilGgfwlUcn+tzOJ5fhA7tQ7iqEcW/vU5WI4oT2ggNXjn8w3+RABBsFAkAYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65xc2WAGAIHNRJACAQegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeief9hgBQCCzEWPAAAGoXsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXv+ibB6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKtWsHgAAOA0bfgEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3/MMGKwAQbBQJAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucXNlgBgCBzUSQAgEHoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonn8irB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIRKNasHAABO42LDLwCAQegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeief9hgBQCCjB4BAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9/zDBisAEGTs+AUAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd80+E1QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFCpZvUAAMB52PILAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucPNlgBgCBz0SMAgEHoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonn/YYAUAgoweAQBMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQvf8wwYrABBk7PgFADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fNPhNUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBQqWb1AADAaVxiyy8AgDnoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonn/YYMVgGzdu1BNPPKGvv/5a0dHRuuaaa/THP/5RNWrUsHpoCIKNGzdq+vTpWrVqldavX6/69etr8eLFVg/LDPQIsC3a51x0z0J0D7A12udctM9CtA+wNdrnXLTPQrQPsC2652y0z0K0D7At2udcdM9CdA+wNdrnXLTPQrQPsDXa51y0z0K0D7AtuudstM9CtA+wLdrnXHTPQnTPL2ywYqi9e/fqzjvvVL169TRhwgTt2bNHTz/9tHbu3KnJkydbPTwEQX5+vj7++GMlJSWprKxMRUVFVg/JGPQIsCfa52x0zzp0D7Av2udstM86tA+wL9rnbLTPOrQPsCe653y0zzq0D7An2udsdM86dA+wL9rnbLTPOrQPsC/a52y0zzq0D7Anuud8tM86tA+wJ9rnbHTPOnTPP2ywYqi5c+dq165d+sc//qHatWtLks444wzdf//9+v7779WmTRuLR4hA9ejRQz179pQkjR07VkuXLrV4RABgLdrnbHQPACqifc5G+wCgItrnbLQPAHzRPeejfQDgi/Y5G90DgIpon7PRPgCoiPY5G+0DAF90z/loHwD4on3ORvcQbiKsHgCssWTJEqWkpHhCJJW/gNWoUUMff/yxdQND0ERE8J+3VVyuwP4ACA3a52x0zzqBdo/2AaFD+5yN9lmH9gH2RfucjfZZh+4B9kT3nI/2WYf2AfZE+5yN7lmH852AfdE+Z6N91qF9gH3RPmejfdahe4A90T3no33WoX2APdE+Z6N71uF8p3/4N9ZQBQUFat68uc9l1apVU9OmTVVYWGjRqABncAX4fwBCg/YBoRFo92gfEDq0DwgN2gfYF+0DQoPuAfZE94DQoX2APdE+IDQ43wnYF+0DQoP2AfZF+4DQoHuAPdE9IHRoH2BPtA8IDc53+qea1QOANYqKihQbG1vh8ri4OO3Zs8eCEQEOYmZPANujfUCI0D3AtmgfECK0D7At2geECO0DbInuASFE+wBbon1AiNA9wLZoHxAitA+wLdoHhAjtA2yJ7gEhRPsAW6J9QIjQPb+wwQoABBk9AgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO75J8LqAcAacXFx2rt3b4XLi4qKFB8fb8GIAAAILdoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHwE7YYMVQzZs3V2Fhoc9lpaWl+vHHH9W8eXOLRgU4g8sV2B8AoUH7gNAItHu0Dwgd2geEBu0D7Iv2AaFB9wB7ontA6NA+wJ5oHxAanO8E7Iv2AaFB+wD7on1AaNA9wJ7oHv6fvTuPl7Ku+z/+PqyKgoiCuWBuSCqKZCqKQYLdpqEpprlrkqm45oZL2SImmQUm7sutaJl6Y5mYZq7kkuaGS6WBK+TOJops8vuDHyNHUOCcOZw5cz2fPc4Dzsw1M985Bi+ua+b6DA1H+6AyaR80DMc768aAlYLq3bt3Hn300UyaNKl02X333ZcPP/wwffr0acSVQdNXU8//AQ1D+6Bh1Ld72gcNR/ugYWgfVC7tg4ahe1CZdA8ajvZBZdI+aBiOd0Ll0j5oGNoHlUv7oGHoHlQm3YOGo31QmbQPGobjnXXTorEXQOPYd999c/3112fQoEE56qijMm3atAwdOjT9+vXL5ptv3tjLowxmzJiRBx54IEkyYcKEzJgxI3feeWeSZPPNN8/aa6/dmMurakWd2AWVTvuqm+41Ht2DyqV91U37Go/2QeXSvuqmfY1H+6Ay6V71077Go31QmbSvuule49E9qFzaV920r/FoH1Qu7atu2td4tA8qk+5VP+1rPNoHlUn7qpvuNR7dq5uaefPmzWvsRdA4Xn755QwZMiRPPPFEWrdunZ133jmDBw/OSiut1NhLowwmTJiQfv36Lfa6c889NwMGDFjOKyqOyR/OrdftV23TvEwrAT5N+6qX7jWe+nYv0T5oSNpXvbSv8WgfVDbtq17a13gc74TKpXvVTfsaj/ZB5dK+6qV7jcfxTqhs2le9tK/xaB9UNu2rXtrXeBzvhMqle9VN+xqP9kHl0r7qpXuNx/HOujFgBaDM7IgBUCR2xAAoGu0DoGgc7wSgaLQPgCJxvBOAotE+AIrG8U4Aikb7ACgSxzvrpkVjLwCg2tTUNPYKAGD50T0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG9ujFgBaDMaqJIABSH7gFQNNoHQNFoHwBFo30AFInuAVA02gdA0WgfAEWjfQAUie7VTbPGXgAAAAAAAAAAAAAAAAAAAAAAQENp0dgLAKg2NQZ+AVAgugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXNwasAJSZHgFQJLoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS6VzcGrACUmyIBUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcnBqwAlFmNIgFQILoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS6VzfNGnsBAAAAAAAAAAAAAAAAAAAAAAANpUVjLwCg2tQY+AVAgegeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXt00a+wFAFSbmnp+NYRXX301hx9+eHr06JFtt902P/nJT/Lhhx820KMBUCT17Z79OACamkpsn30+ABpSpXUPABqa9gFQJJV4vBMAGpL2AVA0ugdA0WgfAEXieGfdGLBCyYUXXpiuXbuWvnr27JmDDz44jz/+eIM+7u23356uXbtmwoQJpcu6du2ayy+/fKnvY8KECbnwwgvz5ptvlnVtm2++eS688MLP3eaggw7KwIED6/1Yffv2zVlnnVXv+0mSRx99NF27ds3TTz9dlvtjGVVYjd5///0ccsghmTp1aoYPH54zzzwzd911VwYPHlz+B4MmRvsWpX0sM3ti0KRo36K0j2VWYe2zzwefTfcWpXvUSQV1D/h82rco7aNOtA+aDO1blPaxzCrseCfw+bRvUdrHMtM+aDJ0b1G6R53oHjQZ2rco7aNOtA+aDO1blPaxzBzvrJMWjb0AKkvLli1z/fXXJ0neeuutXHzxxTn00ENzyy23ZOONN15u67jxxhuz5pprLvX2EydOzIgRI/LVr341X/jCFxpwZdD0/P73v8+kSZMyatSorLbaakmSFVZYIccee2yee+65dOvWrZFXCI1L+wAoGu2D6mKfDz6f7gFQNNoHQNFoHwBFo30AFInuAVA02gdA0Wgf0BgMWKGWmpqabLnllqXvN9988/Tt2ze///3vP3MS1axZs9KqVauyrmPhNUBTU1PPkV1jx45dpu27d+/+udePGTMmPXv2LJ1ol8yfLtemTZvcf//9Traj8LQP6qe+3QOWP+2D+ilH+8q532efDz6f7kH92e+DpkX7oP60D5oW7YP60T1oerQP6kf7oGnRPag/7YOmRfug/rQPmhbtg/rRvbpp1tgLoLKttdZa6dChQyZMmJAkOe200/KNb3wjDz/8cAYMGJBu3bpl1KhRSZJnnnkmhx12WHr06JEePXrkqKOOyuuvv17r/qZPn57TTz89W221Vbbeeuv86Ec/yowZMxZ53K5du+byyy+vddkDDzyQ/fffP1tuuWW22mqr7LfffnniiSfy6KOP5uCDD06SfOc730nXrl3TtWvXWo85ZMiQ9O7dO926dUv//v3z5z//eZHH/L//+7/069cvm2++efbZZ588//zz9fvh/X/vvvtuzjzzzHz961/PFltskb59++bHP/5xpk2bttjtr7766vTp0ydbbLFFvvvd7+bVV1+tdf28efNyzTXXZJdddkm3bt3Sp0+f/OY3v8ncuXPLsl7qr6amfl/77LPPMn0tybhx47LhhhvWuqxFixZZf/31M378+Ib6MUCTpX31p33FUt/u1diPg0anffWnfcVSjvaVc7/PPh8sG92rP90rHvt80LRpX/1pX/FoHzRt2ld/2lcsXuuDpk/76k/7ikX7oGnTvfrTveLRPWjatK/+tK94tA+aNu2rP+0rFsc766ZFYy+AyjZ9+vRMmTIlnTp1Kl323nvv5Uc/+lGOPPLIdO7cOauttlqeeeaZHHDAAenZs2d++ctfZt68eRkxYkQOPfTQ3HHHHaVpYGeeeWYeeOCBnHDCCdlggw1y66235je/+c0S1/HnP/85J554Yvr06ZPzzjsvK6ywQsaOHZs333wzffr0yVlnnZWf/exnGTJkSLp06VK63ezZs3PYYYfljTfeyNFHH53OnTvn7rvvzoknnph27dplhx12SJLcf//9OfPMM9O/f/9861vfyksvvZTjjjsuH3/8cb1/hlOmTMnKK6+cU089Ne3bt8/EiRNzySWX5Kijjspvf/vbWtvef//9WX311fPDH/4wH330UX7961/ne9/7Xv785z+nZcuWSZKhQ4fmd7/7Xb7//e9nq622yr///e9SjH7wgx/Ue73U3woV9jfrtGnT0rZt20Uub9euXaZOndoIK4LKpn3ax7KptO4By077tI9lU2nts88Hy0b3dI9lV2ntA5aN9mkfy077oGnTPu1j2egeNH3ap30sG+2Dpk33dI9lp33QtGmf9rHstA+aNu3TPpaN7tWNHxuLmDNnTpLkrbfeyi9+8YvMnTs3O++8c+n6adOm5eKLL87WW29duuyggw7KxhtvnMsuuyzNmjVLknTv3j077bRTRo0alf322y/jx4/PX/7yl5x11lnZf//9kyS9e/fO3nvvnbfeeusz1/Pxxx/nF7/4Rbbeeutcdtllpct79+5d+v1GG22UJOnSpUu23HLL0uWjR4/Os88+m1tuuSWbbLJJkqRXr15566238pvf/KYUo4svvjhbbLFFfvWrX5Xuu2XLlvnZz3627D/AT9loo41y+umnl77v0aNH1llnnRxwwAEZN25cae3J/J/tH//4x3To0CFJssEGG2TAgAG57bbbMmDAgLz++usZOXJkzjjjjBx00EFJku233z7NmjXL8OHD893vfjft27ev95ppXDfddFNjLwEKR/u0D6BotE/7aFz2+2D50j3dAyga7dM+gKLRPu0DKBrt0z6AItE93QMoGu3TPoCi0T7tg+WtWWMvgMoya9asbLbZZtlss83St2/fPPLIIznrrLPy1a9+tbRN27Zta4Xoo48+yhNPPJFddtklH3/8cebMmZM5c+akQ4cO2XjjjfPMM88kSZ555pnMmzcv3/jGN2o95v/8z/987ppefvnlvPnmm9l7772X+fk8+OCD2WijjdKlS5fSuubMmZNevXrln//8Z+bOnZu5c+fm+eefrxXcJIuss67mzZuX6667Lv3798+WW26ZzTbbLAcccECS5JVXXqm17TbbbFMKUZJsttlmWWeddUo/w0ceeSQff/xxdtlll1rPZ/vtt8+MGTPyn//8pyxrpnF17959mb6WpF27dnn//fcXuXzatGlZZZVVGuIpQJOifZ/QPoBi0L5PaB+NpZz7ffb54PPp3id0D6AYtO8T2gdQDNr3Ce0DKAbt+4T2AVQ/3fuE7gEUg/Z9QvsAikH7PqF9sPy0aOwFUFlatmyZG264ITU1NVl11VWz5pprlqZ3LbDaaqvV+n7q1KmZO3dufvnLX+aXv/zlIve58sorJ0neeeedNGvWLKuuumqt61dfffXPXdOUKVOSJGusscayPp1MmjQpL774YjbbbLPFXv/OO++kefPmmTNnziLPq0OHDos897oYOXJkzj333Bx66KHZfvvt0759+7z11ls55phjMnPmzFrbfnoNyfyfzzvvvJMkee+995LMn1i2OP/973/rvV6qz4Ybbpjx48fXumzu3Ll5+eWX07dv30ZaFVQO7fuE9gEUg/Z9QvuoBvb54PPp3id0D6AYtO8T2gdQDNr3Ce0DKAbt+4T2AVQ/3fuE7gEUg/Z9QvsAikH7PqF9sPwYsEItNTU12XzzzZe4zcLatm2bZs2aZeDAgYtMzEqSlVZaKUnSsWPHfPzxx5k8eXKtiVbvvvvu5z7egni99dZbS/UcFrbKKqukS5cuOffccxd7fYcOHdK8efO0aNGi9Bf9ApMmTcrHH3+8zI/5aXfccUf69OmT0047rXTZ3//+98Vu++k1JPN/PptsskmSlD55+re//W1at269yLbrrLNOvddL9endu3cuuuiiTJo0qfRn77777suHH36YPn36NPLqoPFp3ye0D6AYtO8T2kc1sM8Hn0/3PqF7AMWgfZ/QPoBi0L5PaB9AMWjfJ7QPoPrp3id0D6AYtO8T2gdQDNr3Ce2D5ceAFeqtTZs26dGjR8aNG5eTTz75M7fbYostUlNTkzvvvDP7779/6fK77rrrc+9//fXXz1prrZVRo0Zl9913X+w2LVu2TJJFpmf16tUr999/f1ZfffWsueaan/kYm222Wf7yl7/ke9/7XumyO++883PXtbQ++uijRSaa3XrrrYvd9rHHHsvkyZNLAX7++eczYcKEdO/ePUmy/fbbp6amJu+9995iww+Ls+++++b666/PoEGDctRRR2XatGkZOnRo+vXrt8R/fAKLp32fT/sAqo/2fT7tozHZ54Py073Pp3sA1Uf7Pp/2AVQf7ft82gdQfbTv82kfQHXRvc+newDVR/s+n/YBVB/t+3zaB0tmwAplcdppp+Wggw7K0Ucfnd133z2rrrpq3nnnnTz66KPp2bNndt1112y44YbZeeedc95552X27NlZf/31c+utty5xildNTU0GDx6cE044IUceeWT22muvrLjiinnmmWey3nrrZdddd816662X5s2b55ZbbkmrVq3SokWLbL755vnWt76VUaNG5aCDDsp3v/vdbLjhhvnggw/yn//8JxMnTszZZ5+dJBk0aFCOOOKInHTSSfnWt76Vl19+OSNHjkyLFkv3R+S9995bbLx69uyZHXbYIVdffXWuvvrqdO3aNffcc0/+8Y9/LPZ+2rVrl4EDB2bQoEGZMWNGhg0bls6dO6d///5JkvXWWy/f/e53c/rpp+fFF19Mjx49Mm/evLz22mu59957c8kll6RVq1ZLtWaKo127drn22mszZMiQHH/88WndunV23nnnDB48uLGXBk2a9mkfQNFon/ZRmezzQcPQPd0DKBrt0z6AotE+7QMoGu3TPoAi0T3dAyga7dM+gKLRPu2D+jBghXebmHcAAQAASURBVLLYYostcuONN+Y3v/lNfvSjH2XGjBlZY401svXWW6dr166l7c4555ycc845ueCCC9K8efN84xvfyPHHH58zzjjjc+//G9/4Ri677LJcfPHFOemkk9KqVat07do12223XZKkQ4cOOeuss3LllVdm9OjRmTNnTl544YW0atUqV199dS6++OJcffXVeeutt9KuXbtsvPHGGTBgQOn+v/a1r+Wcc87JxRdfnLvuuiubbLJJLrzwwnznO99Zquf/r3/9K8cff/wil9944405+uijM2XKlFx22WWZM2dOvvrVr+bXv/519t5770W2/9rXvpb11lsvP/vZzzJ58uRstdVW+elPf1qaZpYkgwcPznrrrZcbbrghl19+eVq3bp111103O+6441LHk+JZf/31c9VVVzX2MqCqaJ/2ARSN9mkflcs+H5Sf7ukeQNFon/YBFI32aR9A0Wif9gEUie7pHkDRaJ/2ARSN9mkf1EfNvHnz5jX2IgAAAAAAAAAAAAAAAAAAAAAAGkKzxl4AAAAAAAAAAAAAAAAAAAAAAEBDMWAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGq1aOwFAFSbFXscU6/bz3hqRJlWAgANr77dS7QPgKZF+wAoGsc7ASga7QOgSBzvBKBotA+AonG8E4Ci0T4AisTxzroxYAWg3GqaNfYKAGD50T0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG9OjFgBaDcamoaewUAsPzoHgBFo30AFI32AVA02gdAkegeAEWjfQAUjfYBUDTaB0CR6F6dGEsDAAAAAAAAAAAAAAAAAAAAAFStFo29AICqU2N2FQAFonsAFI32AVA02gdA0WgfAEWiewAUjfYBUDTaB0DRaB8ARaJ7dWLACkC51dQ09goAYPnRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b06MWAFoNxM/AKgSHQPgKLRPgCKRvsAKBrtA6BIdA+AotE+AIpG+wAoGu0DoEh0r0781AAAAAAAAAAAAAAAAAAAAACAqtWisRcAUHVqahp7BQCw/OgeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXp0YsAJQbjXNGnsFALD86B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkehenRiwAlBuJn4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcnxtIAAAAAAAAAAAAAAAAAAAAAAFWrRWMvAKDq1JhdBUCB6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkehenRiwAlBuNTWNvQIAWH50D4Ci0T4Aikb7ACga7QOgSHQPgKLRPgCKRvsAKBrtA6BIdK9ODFgBKDcTvwAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdqxMDVgDKzcQvAIpE9wAoGu0DoGgqrH2PPvpoDj744EUu79KlS0aPHl36/tVXX82QIUPy+OOPp1WrVtlll11y6qmnpk2bNrVuN2bMmAwbNizjxo1Lx44dc/DBB+fQQw9t6KcBQCWrsPYBQIPSPQCKRvsAKBrtA6BotA+AItG9OjFgBQAAAAAAgCZlyJAh6dKlS+n7FVZYofT7999/P4ccckg6deqU4cOHZ+rUqRk6dGjee++9XHjhhaXtxo4dm0GDBqV///4ZPHhwnnnmmZx33nlp3rx5DjrooOX6fAAAAAAAAAAAAABoWM0aewE0DRMmTEjXrl3TtWvXxl7KclG050uZ1TSr3xdQEYrWgqI9X8qovt3TPqgIRetA0Z4vZaZ9UBWK1oKiPV/KrEK716VLl2y55Zalry996Uul637/+99n0qRJueSSS9KnT5/svvvu+clPfpK77rorzz33XGm7ESNGZOONN865556bnj175vvf/37233//jBgxIrNnz26wtUNjKFoLivZ8KbMKbR+wbIrWgqI9X8rI8U6oCkXrQNGeL2WmfVAVitaCoj1fykz3oCoUrQVFe76UmfZBVShaC4r2fCkjxzvrpEVjL4Alu+aaa/L+++9nzz33zDrrrNPYy1nEW2+9lbvvvjuPPvpo/vnPf+att95Ks2bN8oUvfCHbbbddDj744GywwQaNtr6ZM2fmD3/4Qx544IH861//yuTJkzNv3rysttpq2WSTTdK3b9/suuuuadOmTaOtcXm45ZZbcvrpp2fPPffM0KFDF7vNAw88kJEjR+a5557LjBkzsuaaa2annXbKEUcckXbt2i2y/YQJE9KvX7+svfbauffeexv6KTQdBQ0KlJP21Y/2zfd57ZswYUIeeeSRPPfcc3nuuefywgsvZPbs2dlmm21y3XXXfe79LthZfeGFFxps7U2K7kG96V796N58n9W9efPmZezYsbnvvvvyxBNPZPz48Zk2bVratGmTjTbaKDvvvHP23XffrLDCCou93759+2bixIm55557KvL/n41C+6DetK9+tG++z9vn+9Of/pTHHnss//znP/P2229nypQpadmyZTp37pwddtghhxxySNZYY41F7tPxzs9Qz/aNHTt2mbbv3r17vR4vScaMGZOePXtmtdVWK13Wt2/ftGnTJvfff3+6deuWWbNm5ZFHHskJJ5yQmpqa0na77bZbrrvuujz11FPZZptt6r0WSLSvvrRvvqV5rW9hzz77bL7zne9k7ty5ST77eKb9vsWw3wf1pn31o33zfV77TjvttPzhD3/43Nv/5Cc/yX777VfrMvt9i6F7UG+6Vz+6N9/S7vP99a9/zS233JJnn302U6ZMSbt27dK5c+dss802GTRoUFZcccVa23uPy2JoH9Sb9tWP9s33We179NFHc/DBBy/VfSzu/Z7atxjaB/WmffWjffMtab/v/fffz7XXXpt77703r7zySmbOnJlVVlklm266aQYMGJBdd911sferfYuhfVBv2lc/2jff0rbvr3/9a1577bUkyTrrrJNvfOMbOeywwxY51rmA9n2K7tWJAStNwMiRIzNx4sRss802FRmjffbZJ2+++WaSpF27dtloo43y4Ycf5vXXX88rr7ySUaNG5Zxzzsnuu+++3Nf28MMP59RTT80777yTJGnfvn3WW2+9NGvWLG+88Ubuueee3HPPPRk2bFguuuiibLnllst9jZXiN7/5TS666KIkSadOnbL22mtn/PjxufLKK/PnP/85N9xwQ77whS808iqbiGY1S94G+FzaV3fat3SuvfbajBw5srGXUR10D+pN9+pO95bs73//ew499NDS92uvvXbWWmutvPnmm3nyySfz5JNP5sYbb8z//u//2udbWtoH9aZ9dad9S+fCCy/Ma6+9llatWqVjx47p2rVrJk+enP/85z954YUXcuONN+biiy/Otttu29hLbRrq2b599tlnmbZf2hc+Bw0alMmTJ2fVVVdNv379ctJJJ6V9+/ZJknHjxmWPPfaotX2LFi2y/vrrZ/z48UmS1157LbNnz86GG25Ya7sF348fP96AFcpG++pO++pm9uzZOeOMM0rDVVhG9vug3rSv7rRv2ay55ppZc801F3tdx44dl/Nqmijdg3rTvbrTvaX30Ucf5YQTTsh9992XJFlrrbXypS99KVOmTMnzzz+fp59+OgcccMBnnnTAQrQP6k376k77lqxt27b58pe//JnXz507tzTcf6uttlpey2ratA/qTfvqTvuWzuuvv56DDjoob7zxRmpqarLWWmulffv2mThxYv72t7/lb3/7W/7617/m17/+da0PkOEzaB/Um/bVnfYtnddeey3f/e53M2HChNTU1GTDDTdMq1at8p///Ce/+c1vcvvtt+f6669Phw4dGnuplU/36sSAFeqtZcuW2WeffbL33nunW7duadZs/rSj//73vzn99NPz97//Paeffno23XTTbLTRRsttXX/5y1/ygx/8IHPnzk2vXr1y3HHHpXv37rV2JP71r3/luuuuy6233pqXXnqpsDF64IEHSsNVfvSjH+WAAw5ITU1NpkyZkhNOOKH0KZ6///3vG3mlAJVB+5q+VVddNX369Mlmm22Wbt265fHHH8/VV1/d2MsCqEi617TNmzcva6+9dg466KB885vfTKdOnUrX3XvvvTnttNPy0ksv2ecDWIj2NX2HHnpounbtmu7du6dly5aly1955ZWcccYZeeKJJ/KDH/wg99xzjxMOmqC2bdvmsMMOyzbbbJM2bdpk7Nixufzyy/P0009n1KhRadWqVaZNm5a2bdsuctt27dpl6tSpSVL69dPbrbzyymnevHnpeigC7as+l1xySV588cV8/etfz1//+tfGXg5AxdG+6rHXXnvl2GOPbexlAFQ03asOC4arbLvttjnrrLNq/beaOXNm/v73vy/2eBhAEWlf07bpppvmhhtu+Mzr//rXv+aYY45JTU1N9tprr+W4MoDKpX1N31lnnZU33ngj66yzTi666KJ86UtfSjJ/sNhNN92Un/70p/nzn/+c3r17Z88992zk1QI0Pu1r2j7++OMcc8wxmTBhQtZbb71cfPHFpQ9Fe/fdd3PiiSfm0UcfzUknnZT//d//beTVUq0MWKHebrrppsVOgVprrbVy4YUX5n/+538yefLk3HzzzTn99NOXy5omTJiQ0047LXPnzs3ee++ds88+e7ETGjfZZJP8/Oc/zz777JMPPvhguaytEl1wwQVJkv79++fAAw8sXd6+ffv8+te/zk477ZSnnnoqY8aMSe/evRtrmU1HTbPGXgHQwLSv6Rs0aFCt7xd8ejV1oHtQ9XSvadtiiy3yl7/8pdbJ5Qv07ds3P/zhD3PKKafkqaeeyr///e/SC3N8Du2Dqqd9Td8BBxyw2MvXW2+9XHDBBdlhhx3y3nvv5R//+IfjnUujnu276aabyrSQ+TbddNNsuummpe+33XbbbLbZZjnssMMyevToDBgwoKyPB0WgfdXl3//+dy6//PJsueWWOeCAAwxYqQv7fVD1tA8WontQ9XSv6fvjH/+Y++67L5tttlmuuuqqRV73a926dfr06dNIq2uCtA+qnvZVt1GjRiVJttlmm3Tu3LmRV9NEaB9UPe1r2j744IM88sgjSZLTTjut1ns4mzdvnv322y9///vfc+edd+a+++4zYGVpaB9UPe1r2saMGZMXXnghSXLOOeeUhqskyeqrr55f/vKX+cY3vpGHH344jzzySLbbbrvGWmrToHt1YsBKBbvllltq/eV98MEH17p+zz33zNChQ+t8/x999FFuuumm3HXXXfnPf/6TDz74IKuvvno22GCDfP3rX89ee+2VVq1aLfF+FheiBdq1a5cePXrk3nvvXa4nLl9++eX58MMP07lz55x11lmLDdHClmXK16RJk3L33Xfn/vvvz/jx4/PWW28lSdZZZ5307t07AwcOzGqrrbbY2z7yyCO5/vrrM3bs2EyePDkrrLBCVl111XTt2jU77rhjvv3tb9fa/tVXX82VV16Zv//973nzzTfTrFmzrLrqquncuXO23377HHLIIWnTps1Sr31xXn/99Tz//PNJkv3222+R6zt06JCdd945t9xyS2naJUuwhP+/AZ9N++pO+2g0ugd1pnt1p3tLb+WVV/7c6xd+s+VLL71kwMrS0D6oM+2rO+0rn44dO6Z9+/aZMmVKZsyY0aCPVTXq2b7u3buXaSGfrVevXmnfvn2effbZDBgwIO3atcv777+/yHbTpk3LF7/4xSTJKquskiSLbDd9+vTMnTu3dD3Uh/bVnfbVzZw5c3LGGWckSc4+++xMnjy5bPddKPb7oM60r+60j0aje1Bnuld3urdsrr766iTzP0xocR+qwDLSPqgz7as77SuPd955J3/729+SZJG18Tm0D+pM++pO+5bezJkzM2/evCQpvZ/h09Zbb70kyezZs+v1WIWhfVBn2ld32rf0Hn/88STJGmuska985SuLXL/g8jFjxmT06NEGrCyJ7tWJASsVbLXVVsuXv/zlPPfcc5k1a1Y23njjWidGLfjHcV28/vrr+f73v5+XXnopyfzJXJ07d85bb72Vhx9+OA899FC++tWvZp111qnv08jMmTOTZLm9QWLu3Lm5/fbbk8wfGLI0QV0Wf/7zn3P22WenZcuW6dixYzbccMNMnz49r7zySv7zn//ktttuy+9+97tFJiLffPPN+eEPf5hkfqQ32mijzJs3L2+++WbuvvvuPPvss7Vi9M9//jMHHnhgPvjgg7Ru3TrrrrtuWrdunbfffjuPP/54Hnvssey6666fufO0tJ588skkScuWLT/zje7bbLNNbrnlljz11FP1eqzCMPEL6kz76kb7aFQV2L1HH310kQM5SdKlS5eMHj269P2rr76aIUOG5PHHH0+rVq2yyy675NRTT13kz+6YMWMybNiwjBs3Lh07dszBBx+cQw89tKGfBgWge3Wje+X10UcflX6/4oorNuhjVY0KbB80FdpXN9pXXuPGjcuUKVPSvHnzbLrppg36WFWjCbVvwQvTG2644SIvkM+dOzcvv/xy+vbtmyRZd91107Jly4wfPz477rhjabsFt1v4kzGgrrSvbrSv7q666qo8//zzOeqoo7Lxxhvn0UcfLdt9F0oTah9UGu2rG+2ru0cffTT/+c9/Mnny5LRr1y6bbLJJvvnNb2b99dcv22NUPd2DOtO9utG9ZfP666/nhRdeSLNmzbLddtvl+eefz6hRo/LKK6+kVatW6dq1awYMGOC9NMtC+6DOtK9utK98/vCHP2TOnDlp27Zt/ud//qfBHqfqaB/UmfbVjfYtmw4dOmTNNdfMG2+8kccffzwbb7xxrevnzZtXOhF9WU7GLzTtgzrTvrrRvmUzZcqUJPMHqXyWNddcM0nyxBNP1OuxCkH36sSAlQrWp0+f9OnTJ3379s3EiRPzwx/+MNtuu2297/ejjz7KEUcckZdeeikbb7xxzj333HTr1q10/XvvvZdbbrmlLPF466238thjjyVJtt5663rf39J44YUXMn369CRJz549y37/W2yxRS6//PJst912tUI3adKkDBs2LDfddFN+8pOf5KqrripdN3fu3Jx//vlJkh/+8IfZb7/90qLFJ3/8xo8fn4ceeqjW44wYMSIffPBBdt999/z4xz+u9Q+RSZMm5Y477ljiJ5EvbMCAARkwYMAil7/yyitJkrXXXvszP91gQVhff/31zJkzp7T2ddZZJy+88MJSr6EwTPyCOtO+utG+xfus9tWX9n1KBXdvyJAh6dKlS+n7FVZYofT7999/P4ccckg6deqU4cOHZ+rUqRk6dGjee++9XHjhhaXtxo4dm0GDBqV///4ZPHhwnnnmmZx33nlp3rx5DjrooOX6fKg+ulc3urd4de3egsFTLVu2TI8ePRa5/t57713m+6x6Fdw+qHTaVzfat3jL0r558+bl3XffzeOPP55f/epXSZLDDz98kRcUHe/8DE2gfX/7298yZcqUbLHFFkmS3r1756KLLsqkSZNKn1hy33335cMPP0yfPn2SJK1atUrPnj1zxx13ZODAgaXhLKNHj84qq6zijUmUhfbVjfYt3pLaN378+IwYMSIbbLBBBg0atNT3a79vMZpA+6BSaV/daN/iLc1+3z/+8Y9a399999256KKLMnDgwJx00kmLfDqg/b7F0D2oM92rG91bvM/q3rPPPpskad++fW666aacd955+fjjj0vX33fffbnqqqty5plnZr/99lvk9rq3GNoHdaZ9daN9i1eX97nccsstSZL+/fvXei/gwrRvMbQP6kz76kb7Fu/z2nfKKafk5JNPzi9/+cvMmzcvO+20U1ZZZZW89tprueKKK0qDVxb33nXtWwztgzrTvrrRvsX7rPa1bds2yfz/Vp/ljTfeSJK89tprtc5pT7RvEbpXJwasFNDNN9+c8ePHZ9VVV80111yT1VZbrdb1q622Wg4//PCyPNZPf/rTzJ49Ox07dsxee+1VlvtckjfffLP0+0+/Qb4cFrxB+9M6dOiQs88+Ow888EAeeuihvPPOO+nYsWOS+fGYMmVK2rVrt9idmQ033HCRT8NcMIlt4MCBi0SnQ4cOOeCAA8rxdDJ16tQkySqrrPKZ27Rv3z7J/KhOnz699D1AU6F99VNt7aM4unTp8pknxP3+97/PpEmTMmrUqNLfCSussEKOPfbYPPfcc6WDNSNGjCgdwKmpqUnPnj3z9ttvZ8SIEdl3330/c0AdNCbdq58idW/ChAm5+OKLkyT77ruvfb0m6tFHH83BBx+8yOVdunQpDdBJkldffTVDhgzJ448/nlatWmWXXXbJqaeeusiLEWPGjMmwYcMybty4dOzYMQcffHAOPfTQhn4aUC/aVz/V3L5rrrkm5557bq3LunbtmuHDh2eXXXYp++OxfJx88slZZ5110q1bt6y00koZO3ZsrrjiimyyySbZddddk8z/t83111+fQYMG5aijjsq0adMydOjQ9OvXL5tvvnnpvo4++ugceOCBOeOMM7LHHnvkmWeeye9+97uccsopZf8kESgn7aufamzfxx9/nDPPPDOzZ8/O2Wef7e8woOpoX/1UY/u++MUv5tRTT03Pnj2z9tprZ8UVV8xLL72U3/72t7n55ptzxRVXpHnz5vnBD35QtscEWF50r36qrXtvv/12kpSOb22//fYZPHhwNthgg0yYMCHDhg3LXXfdlZ/+9KdZd91106tXr7I8LsDypH31U23t+yyPP/54Xn755SRZbv/tABqK9tVPNbbvm9/8Ztq2bZtLL700P/vZz/Kzn/2sdN2KK66YY489Nt/97nfLMngAoDFoX/1UW/u6d++eZP6AlSeffDJf/vKXa13/9ttv5/HHH0/inHYajgErBXTXXXclSfbZZ59FQlROF110Ue65557U1NRk6NChy+0f8QsmfSVpsMecOXNm7rrrrvzjH//IxIkTM2PGjMybNy9J8sEHH2TevHn517/+VYrRaqutlhVWWCHvv/9+HnjggdInZH6etddeOy+//HJuv/32bLzxxmnWrFmDPJePPvooST735ODWrVsvsj2fo6Zh/lsBdad99VdN7aPMmmj3xowZk549e9b6O6Fv375p06ZN7r///nTr1i2zZs3KI488khNOOKHWJxzutttuue666/LUU09lm222aYzlw+fSvforQvc++OCDHH300Zk+fXrWX3/9nHjiicv18Zu0Cm3fkCFD0qVLl9L3C39a0/vvv59DDjkknTp1yvDhwzN16tQMHTo07733Xi688MLSdmPHjs2gQYPSv3//DB48OM8880zOO++8NG/efLEH16FSaF/9VWv71lhjjXz5y1/Oxx9/nDfeeCNvv/12xo8fn1tvvTVf/vKXs8YaazT4GqpChbVvwRCxkSNHZubMmVljjTXy7W9/O8ccc0xpoEC7du1y7bXXZsiQITn++OPTunXr7Lzzzhk8eHCt++rRo0cuvvjiDBs2LLfddls6deqUk046yXAxKp721V+1tW/kyJF56qmn8p3vfCdf+cpXGuxxCqPC2gdoXzlUW/uOOuqoRS7bZJNNMmTIkKy77rr51a9+lauuuir77LNP1l577QZbR1XQPag4uld/1dS9Dz/8MEkyZ86crLXWWrnssstKx8A22GCDXHDBBfnWt76VF198MRdccIEBK0tD+6DiaF/9VVP7PsuoUaOSzP8whYWH6bMUtA8qjvbVXzW27/XXX897772XJOnUqVNWX331TJw4MVOnTs2f/vSnfOlLX8pOO+3UoGuoGtoHFUf76q+a2te3b9+svfbamThxYk4//fRccMEF+dKXvpRk/tCVE088sXRcNHFO+xLpXp0YsFJAL774YpL5bxxuKDfccEN+85vfJEl+9KMfZYcddmiwx/q0hSdjffjhh2nXrl1Z73/8+PH5/ve/nwkTJnzudlOmTCn9vlmzZjnssMNy8cUX5/vf/3423njjbLfddtlyyy2z9dZbl6K1sIEDB+bhhx/O5Zdfnj/+8Y/ZYYcd0qNHj2y11VaLTAarjwUnXM2ePfszt5k5c+Yi2/M5FjoBG6gM2lc/1dY+yqwM3Rs7duwybb9gWumSDBo0KJMnT86qq66afv365aSTTipNLR03blz22GOPWtu3aNEi66+/fsaPH58kee211zJ79uxF/v+34Pvx48cbsEJF0r36KUL3Pvrooxx55JH597//nY4dO+ayyy7zyQbLokL3+bp06ZItt9xysdf9/ve/z6RJkzJq1KjSCxMrrLBCjj322Dz33HPp1q1bkmTEiBHZeOONc+6556ampiY9e/bM22+/nREjRmTffff93OGs0Ji0r36quX277LJLdtlll9L3r7zySoYOHZr77rsv//73vzN69OhFPmmBxaiw9h1xxBE54ogjlrjd+uuvn6uuumqJ2/Xp02epXkCGSqJ99VNt7XvttdcyfPjwdOrUKaecckrZ7rfQKqx9jz76aA4++OBFLl8wdGyBV199NUOGDMnjjz+eVq1aZZdddsmpp566yD7/mDFjMmzYsIwbNy4dO3bMwQcfbLgYFU/76qfa2rckhx12WK677rq8/fbbuffeew0OXpIK6x6ge/VVbd1b+P2aBxxwQGm4yqfXftppp2Xs2LGZNGlSOnToULbHr0raBxVH++qn2tq3OB988EHuvPPOJFlun0BfVbQPKo721U81tm/IkCG57rrr0rlz59x4442l9wHOmzcvf/zjH/OjH/0oxx57bC688EJDVpaG9kHF0b76qbb2tWrVKsOHD8/hhx+eV155JXvssUfWWmuttG7dOq+++mqSZO+9987NN9+cJN7juSS6VycGrBTQgmlYbdu2bZD7v/nmm/PTn/40SXLaaaflgAMOaJDH+Sxf+MIXSr9//fXXs9lmm5Xtvj/++OMce+yxmTBhQjbddNMce+yx2WyzzbLqqquWXrg64IAD8vjjj2fOnDm1bnvcccdlrbXWyvXXX59///vfefHFF3PttdempqYm2223XQYPHlyaspUk22+/fa699tpceumleeyxx3LLLbfklltuSZJstNFGOe6447LzzjvX+zktiPXC8fy0Bdc1b95cjJaGiV9QcbSv7qqxfZRZGbq3zz77LNP2L7zwwude37Zt2xx22GHZZptt0qZNm4wdOzaXX355nn766YwaNSqtWrXKtGnTFvt3Qrt27TJ16tQkKf366e1WXnnlNG/evHQ9VBrdq7sidG/WrFk5+uij89hjj2W11VbLtddemy9+8Ytlf5yqVob2NdRwsc8yZsyY9OzZs9bU9759+6ZNmza5//77061bt8yaNSuPPPJITjjhhNQsdKB1t912y3XXXZennnrKYDEqlvbVXRHat7D11lsvF110UXbfffeMGzcu119/fY488sgGfcyq4HgnVBztq7tqbN9ZZ52VGTNm5Pzzz2+w/08UToW2b8iQIenSpUvp+4VPtHz//fdzyCGHpFOnThk+fHimTp2aoUOH5r333suFF15Y2m7s2LEZNGhQ+vfvn8GDB+eZZ57Jeeedl+bNmxtAQEXTvrqrxvYtSYsWLdK9e/f89a9/Lb0Jk89Rgd0zXIyi0726q8burbLKKqXff9ZJDAtfPnHiRANWlqQC2wdFp311V43tW5w77rgjH374YVq2bJndd9+9QR6jqlVY++zzgfbVRzW274UXXsj111+fJBk6dGitD1mrqanJnnvumYkTJ+bCCy/Mr371KwNWlkaFtQ/QvvqoxvYlyRZbbJFbb701V155ZR544IG8+eabWXHFFdO7d+8MGjQor7/+em6++ea0adMmK620Ulkes2rpXp0YsFJAK6+8cqZMmZL333+/7Pf9xz/+MWeddVbmzZuXk08+Od/97nfL/hhL0rVr16y88sqZPn16/v73v5c1Rs8880zGjx+fFVZYIVddddViX4j6rEElNTU12XvvvbP33ntn0qRJefLJJ/PYY4/lz3/+cx5++OEccsgh+dOf/pQ11lijdJttttkm22yzTWbMmJGnn346TzzxRO6666688MILOe6443L55ZfX+5M1119//STJf//738yePXuxn0b9+uuvJ0k6d+6cFi38tQE0PdpXd9XYPqrfpptumk033bT0/bbbbpvNNtsshx12WEaPHp0BAwY04uqg4ele3VV792bNmpVjjjkmDz74YDp06JBrr712uX5yLJ8o93CxJBk0aFAmT56cVVddNf369ctJJ52U9u3bJ0nGjRuXPfbYo9b2LVq0yPrrr5/x48cnmf+p97Nnz17k/xMLvh8/frwBK1Qs7au7am/f4jRv3jy9e/fOuHHj8txzzzXoYwE0FO2ru2ps34Ke/fjHP86Pf/zjWtfNnj279PtevXolSQ477LAMHDiwXo9J4+jSpUutN9Uu7Pe//30mTZqUUaNGlYZrrrDCCjn22GPz3HPPpVu3bkmSESNGZOONN865556bmpqa9OzZM2+//XZGjBiRfffdd7GvFUMl0L66q8b2LY0Ff58t3EKaHsPFKCrdq7tq7N4GG2xQ+v2CEyY+beHLP/7443o9Hsufk8xB++qjGtu3OKNGjUqS7LTTTll11VXLfv80Dvt8FJn21V01tu+JJ57IvHnz0qZNm2y11VaL3aZ379658MIL89JLL2X69Ok+PB1ocrSv7qqxfQt84QtfyA9/+MP88Ic/XOS6e+65J0nSrVu3Wh8cCuViLE0BbbzxxkmSp556qqz3e9ttt+X000/Pxx9/nBNPPDGHH354We9/aTVv3jzf/OY3k8x/I9msWbPKdt8TJkxIMv/kosWFaOrUqXnllVeWeD8dOnTITjvtlDPOOCN33nln1llnnUyZMiW33377YrdfccUVs9122+WYY47JrbfeWprydcMNN9T9yfx/PXr0SDL/TSWf9Qnajz32WJJ85hv2+JSamvp9ldmjjz6arl27LvLVv3//Wtu9+uqrOfzww9OjR49su+22+clPfpIPP/xwkfsbM2ZM9txzz2y++ebp27dvrrnmmrKvGcpN++quGttHmdW3ezU1uemmm5bpqy569eqV9u3b59lnn02StGvXbrEHZ6ZNm1b6BKgFv356u+nTp2fu3Lm1PikKKonu1V01d2/27Nk5/vjj88ADD6R9+/b53//931pvUmAZlKF95dS2bdscdthhOeecc3LNNdfk0EMPzR133JGDDjqo9Odj2rRpi5363q5du0ydOjVJSr9+eruVV145zZs3L10PlUj76q6a2/d5FnxSw9y5c5fL4zV5FdQ9YD7tq7tqbt+77767yNfC/45fcNniXvvhU+rZvrFjxy7TVzmMGTMmPXv2LA1XSZK+ffumTZs2uf/++5PMH7z6yCOPZNddd631BqTddtstU6ZMKfvfKVBO2ld31dy+z/Piiy8mSdZcc83l8nhNWoUd71zYguFiC74W/hTFBcPFLrnkkvTp0ye77757fvKTn+Suu+6qNVB14eFiPXv2zPe///3sv//+GTFihAE8VCzdq7tq7N4mm2xSGqCx4IPyPm3hyxf+tFw+Q4W2b8iQIbnxxhtLX+eff37pugUnmU+dOjXDhw/PmWeembvuuiuDBw+udR8LTjLv2rVrrrjiiuy7774577zzct111zXImqFctK/uqrF9n/bSSy/lySefTJLstddeZb//QqjA7iX2+Sg27au7amzf9OnTl2n7cv48q1aFtg+KTPvqrhrbtzTuvffeJEm/fv2Wy+M1aRV4vLMpnNNuwEoTsOKKKyZJPvroo7Lc3ze+8Y0kyc0335xJkyaV5T7//Oc/Z/Dgwfn4449z/PHH54gjjijL/dbV4YcfnjZt2uS1117Lz372s8ybN+9ztx87dmwefvjhJd7vgqm477777mLv85prrim9OX9prbzyyunatWuS5K233lri9jU1Nfnyl7+81NsvybrrrluaiLa4uE2aNCl/+ctfkiS77rprvR+vEGqa1e+rgXgBjqZE+5ad9tFo6tu9mmbp3r37Mn3Va7n/f8dvww03zPjx42tdN3fu3Lz88svZcMMNk8z/d1LLli0X2W7B9wu2g/rSvWWne8tmzpw5+cEPfpB777037du3z7XXXlvrTQksozK0r5zDxTbddNMMHjw4O+64Y7bddtt8//vfzwUXXJAXX3yx1qfaQSXRvmWnfeUza9as0knGm266aYM/XlWo0OOd0JRo37LTvqX3+OOP54UXXljs18iRI0vbLbjs2GOPrfdjVr16tm+fffZZpq+lNWjQoGyyySbZfvvt86Mf/ajWp1CNGzdukeOVLVq0yPrrr186nvnaa69l9uzZi2y34PtPHweF+tC+Zad95XPvvfdm3LhxSZIddtihwR+vySvD8U7DxSg63Vt2urf0VlhhhdJJBLfccstit7n55puTzP+3/cKfNstnKEP7GoKTzGlKtG/ZaV/djRo1Ksn8AZq9evUq+/0Xgn0+qDftW3bat/Q22GCDJMmHH36YJ554YrHbjBkzJkmy6qqrZtVVV633Y1a9CtvnawonmcOnad+y077y+cMf/pAXX3wx7du3z4ABAxr88Zq8Cj3emVT2Oe3e2doErLvuukmSRx55pCz39+1vfzsbbbRRJk2alO9+97v55z//Wev69957L1deeeVSh+ruu+/OKaeckrlz5+bYY4/NoEGDyrLOJDnttNPStWvXHHTQQct0u86dO+ecc85Js2bNcvPNN2fgwIEZO3bsIgF54YUXctZZZ2X//ffPm2++ucT77dGjR1q2bJm33norF1xwQekTTj/++OP89re/zWWXXZbWrVsvcrtx48bljDPOyOOPP56PP/641nUPPfRQ6b/t5ptvXrr8uOOOy1133ZUZM2bU2v61114rnVy18Pb1seCNlKNHj871119f+jlNmTIlJ554Yj744INsueWW6dOnT1ker+pV2LSvBbwAR1Oifdq3sIZoH2VUgZMuF+dvf/tbpkyZki222CJJ0rt37zz66KO1/tzfd999+fDDD0v/5mnVqlV69uyZO+64o9afpdGjR2eVVVbJlltuuVzWTvXTPd1bWLm7N3fu3Jx66qn561//mvbt2+eaa64xXKW+ytC+hh4u1qtXr7Rv3z7PPvtskqRdu3Z5//33F9lu2rRpWWWVVZKk9Ount5s+fXrmzp1buh7KQfu0b2Hlbt/999+fK664Iv/9738XuW78+PE54ogj8tprr2WllVZaphOaC60J7PNBpdM+7VuY451NQIW1r23btjnssMNyzjnn5Jprrsmhhx6aO+64IwcddFDpk6+mTZuWtm3bLnLbdu3aZerUqUlS+vXT26288spp3rx56XooB+3TvoWVu30PPfRQfvGLX+Sll16qdfncuXPzxz/+MSeffHKS+Z9o161bt3o/XtUrw/FOw8UoOt3TvYU1xD7fMccck1atWmXs2LEZNmxY6YSJjz/+OFdffXUeeOCBJMlRRx1VlseremVo3/I+0dxJ5lQa7dO+hTXk8c65c+fm1ltvTZLsueeeadbM6U91Yp8P6k37tG9h5W5fr1690rFjxyTzf95PP/106bp58+blD3/4Qy699NIk83u48L/3+QwV9lrfApV8kjl8mvZp38IaYr/v4YcfziOPPFJrbbNmzcr111+fH/3oR0mSH//4x2nXrl1ZHq+qleF4Z0Op5HPaW9TrmbFc7LHHHrn33nvzv//7v7n77ruzxhprpFmzZvnqV7+a73//+8t8f61bt86ll16aww8/PP/+97+z5557Zu21106HDh3y9ttv5+233868efPyjW98Ix06dFji/Z1wwgmZM2dOWrVqlYceeigPPfTQYrfr2LFjfvOb3yzzeutq1113zcorr5wzzjijtK727dtnrbXWSk1NTd54441ScDt27JiNNtpoife52mqr5fDDD8/FF1+cSy65JDfeeGPWWmut/Pe//82kSZOy995759VXX81jjz1W63azZ8/OqFGjMmrUqKy44opZd91106pVq7z11lt5++23k8x/Y8euu+5aus3DDz+cv/zlL2nRokU6d+5cevPbq6++mnnz5mW99dbLcccdV5af1Y477pgjjzwyl156ac4+++xcdtll6dixY8aPH5+PPvooa665ZoYNG1aWx2LJlvUFtbqcbPdpS3oBrlu3bqUX4E444YRFXoC77rrr8tRTT2Wbbbap91og0b660r6l98QTT9TagZ45c2aS5Mknn8y2225burx///6lHTOajpNPPjnrrLNOunXrlpVWWiljx47NFVdckU022aT0/7l99903119/fQYNGpSjjjoq06ZNy9ChQ9OvX79aO/xHH310DjzwwJxxxhnZY4898swzz+R3v/tdTjnllLRq1aqxniJVRvfqRveWzh133JHbb789yfxp4j/72c8+c9u99tor3/72t+v9mFSOBftuG2644SJvHJk7d25efvnl9O3bN8n8F0NatmyZ8ePHZ8cddyxtt+B2n35DCtSH9tWN9i2dSZMm5fzzz8/555+fjh07plOnTmnevHnefvvt0guSq666ai644AKf5gosN9pXN9pHU7XgjUXlsummm2bTTTctfb/ttttms802y2GHHZbRo0f7xCYqkvbVjfYtnRkzZuTqq6/O1VdfnQ4dOmTNNddMTU1NXn311dLw4G222SbnnXdevR+LxrFguNg222yTNm3aZOzYsbn88svz9NNPZ9SoUWnVqpXhYlQU3asb3Vt66623Xs4777yccsopufTSS/P73/8+6667bv773//m3XffTZIMHDgwu+22W1kejyVb1uHdL7zwwhK3GTRoUCZPnpxVV101/fr1y0knnZT27dsnmX9CzB577FFr+7qcZO79nZSL9tWN9i27Bx54IO+8805qamocA6si9vloirSvbrRv6ay44or51a9+laOOOiqvv/56vvOd72SNNdbI6quvngkTJpT+PvvKV75S+oB1mqYFJ5kvzoKTzEeNGlU6t2+FFVbIsccem+eee640THzhk8xramrSs2fPvP322xkxYkT23XfftGzZcnk9Haqc9tWN9i29J554IiNGjEibNm2y9tprp2XLlnnllVfy4YcfplWrVvnZz35Wa200rCKe027AShOw88475+c//3luvPHGjBs3LhMmTMi8efOy9tpr1/k+O3funD/84Q+54YYbctddd2XcuHF55513svrqq6dXr17Zeeed06lTp6W6rwUTfmbNmpUnn3zyM7ery3rfeeedJKn1hrFl0bt379x999255ZZbMmbMmPzrX/8qvZiw+uqrZ6eddkq/fv2yyy67ZMUVV1yq+zz++OOz1lpr5be//W3Gjx+fV155JRtttFFOPPHE7L333oudTLbeeuvlnHPOySOPPJJ//vOfefPNN/PBBx+kbdu22X777fOtb30ru+++e62pyr/4xS/y0EMP5amnnspbb72V119/PSussEK6deuWnXbaKQceeGBWXnnlOv1cFucHP/hBevTokZEjR+b555/Pf/7zn6y55prp169fjjzySJ9UvSxq6jcduyFefEu8AEfTon3a19DtmzNnTq1p9591+QcffFCWx6tq9exeQ+jSpUtGjx6dkSNHZubMmVljjTXy7W9/u/SpTsn8F9quvfbaDBkyJMcff3xat26dnXfeeZEpzz169MjFF1+cYcOG5bbbbkunTp1y0kkn5dBDD22EZ0a10j3da8juLfgk6yR544038sYbb3zmtttvv329H68QKrB9n/a3v/0tU6ZMyRZbbJFk/p+Viy66KJMmTSq98HDfffflww8/TJ8+fZIkrVq1Ss+ePXPHHXdk4MCBpYOQo0ePziqrrPKZL+xBXWif9jVk+3r16pVTTz01//jHP0rPZ9asWWnbtm223nrr9O7dO/vss0/puBhLoQm0Dyqd9mnf8nitjzKqZ/vK8UaSJenVq1fat2+fZ599NgMGDEi7du1KQwUWNm3atHzxi19MktLrvZ/ebvr06Zk7d67Xgykr7dO+hmzfZpttlkGDBuWZZ57Jyy+/nJdffjmzZ89O+/bt85WvfCW77bZbdtllF59svrTKsM9nuBhFp3u6tzz2+XbZZZdsuOGGueKKK/Loo4/mX//6V1ZaaaX06dMnBx54YHr37l22x6p6FXa800nmNEXap33L63jnqFGjkszfJ+jcuXNZ77tQ6tk++3ygfYn2NXT7tt1229x+++0ZOXJkHnzwwUyYMCHvvfde2rZtm549e6Z///4ZMGBAmjdvXpbHq3r1bF8RTzKHT9M+7Wvo9n31q1/NhAkT8vTTT+e///1v5s6dmy984Qvp1atXDj744Ky33npleZxCKMPxziKe014zb968eXW6JTSwuXPn5itf+Upmz56de+65x6eJ0mSsuNvF9br9ui9esEzbLylG//znP3Pbbbct8gLcmmuuWXoBbrPNNsvRRx+dQYMG1brtoYcemmbNmuXqq6/OE088kf333z+//e1v85WvfKXWdptuummOO+64HHnkkcu0dqA27aMpqm/3kmTGbYOWvBFQdXSPpqrS2nfyySdnnXXWSbdu3bLSSitl7NixueKKK9K5c+fcdNNNpTdd9u/fP2uttVaOOuqoTJs2LUOHDk337t1z8cWfPJ+nnnoqBx54YHbffffsscceeeaZZzJ8+PCccsophotBGWgfTVV922efD4pL+2iqmkr7tt1223zzm9/MWWedlQMPPDBt2rTJ5ZdfXrp+wZ/BgQMH5phjjsmsWbPy5S9/OSeccEK+973vlbYbO3Zs9tlnn1x33XXedAn1pH00RZV2vPPzbLvtttl1113z4x//ONttt1322GOPRT48YcCAAfniF7+YYcOGZdy4cfnmN7+ZSy+9NDvuuGNpm+nTp2errbbKT37yk+y3337LZe1QjXSPpqoc7fv7kF7LtP2ynmz30EMP5bDDDsu5556bAQMGeH8nVAjto6lqSsc77fNBZdE+mqpKO6/v0UcfzcEHH5zVVlvtM08y1z6oDNpHU1SO451FPKe9RZ1uBcvBP//5z3z44Yf59re/LUQ0LQtNgawLU56huLSPJqme3QOKS/dosiqsfV26dMno0aMzcuTIzJw5M2ussUa+/e1v55hjjkmrVq2SzP/0umuvvTZDhgzJ8ccfn9atW2fnnXde5MW4Hj165OKLL86wYcNy2223pVOnTjnppJMMV4Ey0T6arAprH9B0aB9NVhNo39/+9rdMmTIlW2yxRZL5n4J10UUXZdKkSenQoUOS5L777suHH36YPn36JElatWqVnj175o477sjAgQNLn2w3evTorLLKKtlyyy0b5blANdE+mqQm0L2FLejXhhtuWPr0ugXmzp2bl19+OX379k2SrLvuumnZsmXGjx9f64SDBbf79KfdActG92iyytC+cnw6+efp1atX2rdvn2effTYDBgxIu3bt8v777y+y3bRp0/LFL34xSbLKKqskySLbTZ8+PXPnzi1dD9Sd9tFkNaH9Pvt8UFm0jyarwtrXtm3bHHbYYYucZP7000+XTjKfNm1a2rZtu8ht27Vrl6lTpyZJ6ddPb7fyyiunefPmpeuButM+mqQydK+I57QbsELFeuKJJ9KsWbNan54FTUJNs3rdvKFffEu8AAeVSvtokurZPaC4dI8mq8Lad8QRR+SII45Y4nbrr79+rrrqqiVu16dPn9LJd0B5aR9NVoW1D2g6tI8mq8Lad/LJJ2edddZJt27dstJKK2Xs2LG54oorsskmm2TXXXdNkuy77765/vrrM2jQoBx11FGZNm1ahg4dmn79+mXzzTcv3dfRRx+dAw88MGeccUb22GOPPPPMM/nd736XU045pTSkE6g77aNJqrDufRbDxaDy6B5NVhNpX+Ikc6g02keT1QTaZ58PKpP20WTVs31FPMkcmE/7aJLKsM9XxHPaDVhpwt55550cd9xxy3SbG264oYFWU36HHnqoT0iGBuYFOJoa7QOgSHQPgKLRPgCKRvuApdGlS5eMHj06I0eOzMyZM7PGGmvk29/+do455pjSUJR27drl2muvzZAhQ3L88cendevW2XnnnTN48OBa99WjR49cfPHFGTZsWG677bZ06tQpJ510kj+rLDfaBywNw8WoFroH1JWTzGmqtA9YGvb5qCbaB9WpiCeZw9LSPqC+KuWcdgNWmrCZM2fmySefbOxlAJ/2//+Cr2RegKOp0j6oQE2ge9BU6R5UKO2DBqN9UKG0DxqM9kGFqrD2HXHEETniiCOWuN3666+fq666aonb9enTp/T6Hyxv2gcVqMK6lxguRvXQPahQFdY+J5lTTbQPKlSFtc8+H9VE+6BCVVj7Pk+lnGQOS0v7oAI1ke5V2jntNfPmzZtXv6cEwMJW3PPKet1+xh++V6aVzPdZL8B17tw5N910U1q1apVp06alf//+WWuttWq9ANe9e/dcfPHFpft66qmncuCBB2b33XcvvQA3fPjwnHLKKQ5EAhRUfbuXlL99ANCQtA+Aoqm0450A0NC0D4AicbwTgKKptPZddtllGT16dCZOnFg6yfzrX/96jjnmmLRt27a03csvv5whQ4bkiSeeqHWS+UorrVTr/h544IEMGzYs48aNS6dOnXLggQfmsMMOK9t6AWh6HO8EoGiaQvv+9re/5Xvf+15+8YtfZI899sjll1+eiy66KPfdd1/pJPO77747Rx99dP7v//6vNFzze9/7XiZPnpz/+7//K51kfs455+TWW2/Ngw8+aLgmQAFV2vHOpGmc096iDM8TgIVV2MQvU54BaFAV1j0AaHDaB0DRaB8ARaN9ABSJ7gFQNBXWviOOOCJHHHHEErdbf/31c9VVVy1xuz59+pQ+4RUAklRc+wCgwVVY+z7rJPNNNtkku+66a5Jk3333zfXXX59BgwbVOsm8X79+peEqSXL00UfnwAMPzBlnnFE6yfx3v/tdTjnlFMNVAIqqwrqXNI1z2g1YAahyXoADAAAAAAAAAAAAAAAAgOWnKZxkDgDl1BTOaTdgBaDMaipw4hcANBTdA6BotA+AotE+AIpG+wAoEt0DoGi0D4Ci0T4AiqbS2tcUTjIHoOmqtO41FQasAJSZIAFQJLoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS6VzcGrACUmx4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcnBqx8hhV7HNPYS6ABTf7HiMZeAg1oBX+zQZ1oX3Wb9Jj2VasVWzb2CqDp0r7qZZ+vutnng7rTvur1zt8vbOwl0IBWbu0VMKgL3atu9vuqm/0+qBvtq27aV710D+pO+6qb9lUv7YO6077qpXvVTfugbnSvumlfddM+qBvtq27aV710r2nynw2gzGpqnPAAQHHoHgBFo30AFI32AVA02gdAkegeAEWjfQAUjfYBUDTaB0CR6F7dGLACUGaCBECR6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkehe3RiwAlBmggRAkegeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXt0YsAJQZoIEQJHoHgBFo30AFI32AVA02gdAkegeAEWjfQAUjfYBUDTaB0CR6F7dNGvsBQAAAAAAAAAAAAAAAAAAAAAANJQWjb0AgKpj4BcARaJ7ABSN9gFQNNoHQNFoHwBFonsAFI32AVA02gdA0WgfAEWie3ViwApAmdXUKBIAxaF7ABSN9gFQNNoHQNFoHwBFonsAFI32AVA02gdA0WgfAEWie3VjwApAmQkSAEWiewAUjfYBUDTaB0DRaB8ARaJ7ABSN9gFQNNoHQNFoHwBFont106yxFwAAAAAAAAAAAAAAAAAAAAAA0FBaNPYCAKqNiV8AFInuAVA02gdA0WgfAEWjfQAUie4BUDTaB0DRaB8ARaN9ABSJ7tWNASsAZSZIABSJ7gFQNNoHQNFoHwBFo30AFInuAVA02gdA0WgfAEWjfQAUie7VjQErAOWmRwAUie4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInu1YkBKwBlZuIXAEWiewAUjfYBUDTaB0DRaB8ARaJ7ABSN9gFQNNoHQNFoHwBFont106yxFwAAAAAAAAAAAAAAAAAAAAAA0FBaNPYCAKqNiV8AFInuAVA02gdA0WgfAEWjfQAUie4BUDTaB0DRaB8ARaN9ABSJ7tWNASsAZSZIABSJ7gFQNNoHQNFoHwBFo30AFInuAVA02gdA0WgfAEWjfQAUie7VjQErAOWmRwAUie4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInu1Umzxl4AAAAAAAAAAAAAAAAAAAAAAEBDadHYCwCoNjU1Rn4BUBy6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulc3BqwAlJkgAVAkugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXNwasAJSZIAFQJLoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS6VzfNGnsBAAAAAAAAAAAAAAAAAAAAAAANpUVjLwCg2pj4BUCR6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkehe3RiwAlBuegRAkegeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXp0YsAJQZiZ+AVAkugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXNwasAJSZIAFQJLoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS6VzfNGnsBAAAAAAAAAAAAAAAAAAAAAAANpUVjLwCg2pj4BUCR6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkehe3RiwAlBuegRAkegeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXp0YsAJQZiZ+AVAkugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXN80aewEAAAAAAAAAAAAAAAAAAAAAAA2lRWMvAKDamPgFQJHoHgBFo30AFI32AVA02gdAkegeAEWjfQAUjfYBUDTaB0CR6F7dNGvsBQBUm5qamnp9AUBTUt/uaR8ATY32AVA0ld69OXPmZLfddkvXrl1z++2317ru2Wefzf7775/u3btnhx12yLBhwzJnzpxF7uPWW2/Nrrvums033zy77rpr/vSnPzX4ugGoXJXePgAoJ8c7ASga7QOgaHQPgKLRPgCKxPHOumnR2AsAqDZFDQoAxaR7ABSN9gFQNJXevpEjR2by5MmLXD5hwoQceuih2WqrrXLJJZfk1VdfzXnnnZeZM2fmtNNOK21311135dRTT83AgQPTu3fvPPDAAznllFOy0korpV+/fsvzqQBQISq9fQBQTroHQNFoHwBFo30AFI32AVAkulc3BqwAlJseAVAkugdA0WgfAEVTwe178803M2LEiJx11lkZPHhwreuuvPLKtGnTJhdeeGFat26d7bffPh999FF+9atfZeDAgenYsWOSZPjw4fn617+eU089NUnSs2fPvPzyyxk+fLgBKwBFVcHtA4Cy0z0Aikb7ACga7QOgaLQPgCLRvToxYAUAAAAAAIAGMXbs2GXavnv37ku97c9//vP07ds3X/nKVxa5bsyYMdlpp53SunXr0mX9+/fP0KFD8+CDD2bPPffMhAkTMn78+Bx77LG1brv77rvnBz/4QSZOnJi11157mdYPAAAAAAAAAAAAQGUyYAWgzGpqjPwCoDh0D4Ci0T4Aiqa+7dtnn32WafsXXnhhqbYbM2ZMHnzwwdx5552ZNWtWretmzJiRiRMnZsMNN6x1eceOHdO+ffuMHz8+SUq/fnq7Bd+PHz/egBWAArLfB0CR6B4ARaN9ABSN9gFQNNoHQJHoXt0YsAJQZoIEQJHoHgBFo30AFE0ltm/mzJk5++yzc8wxx6RTp06ZMGFCreunTZuWJGnbtu0it23Xrl2mTp2aJKVf27VrV2ubVVZZpdb1ABRLJbYPABqK7gFQNNoHQNFoHwBFo30AFInu1Y0BKwBlpkcAFEmld2/OnDnZc8898+KLL+bXv/51vvnNb5aue/bZZ3Puuefm+eefT9u2bbPXXnvl2GOPTYsWtXeTbr311lx22WV5/fXX07lz5xx55JHZfffdl/dTAaBCaB8ARVPf9t10003lWchCLr300rRs2TIHHXRQ2e8bACp9vw8Aykn3ACga7QOgaLQPgKLRPgCKRPfqxoAVAACgao0cOTKTJ09e5PIJEybk0EMPzVZbbZVLLrkkr776as4777zMnDkzp512Wmm7u+66K6eeemoGDhyY3r1754EHHsgpp5ySlVZaKf369VueTwUAlor2AVBpunfvXtb7mzhxYq688sqcf/75mTFjRmbMmJHp06cnSWbMmJH3338/bdu2TZK8//77i9x+2rRpWWWVVZKk9Ou0adPyhS98obTN1KlTa10PAAAAAAAAAAAAQNPXrLEXAFBtampq6vUFAE1JfbvXkO178803M2LEiJx88smLXHfllVemTZs2ufDCC7P99ttnv/32y3HHHZfrr78+77zzTmm74cOH5+tf/3pOPfXU9OzZM4MHD86OO+6Y4cOHN9i6Aahs2gdA0VRa9yZMmJBZs2bluOOOy9Zbb52tt9463/rWt5IkZ555Znr37p02bdpkrbXWyvjx42vd9t13382UKVOy4YYbJkk22GCDJFlkuwXfL9gOgGKptPYtbM6cOdltt93StWvX3H777bWue/bZZ7P//vune/fu2WGHHTJs2LDMmTNnkfu49dZbs+uuu2bzzTfPrrvumj/96U8NumYAKlslH+8EgIagfQAUje4BUDTaB0CRON5ZNwasAJRZTU39vgCgKalv92pqkrFjxy7T19L6+c9/nr59++YrX/nKIteNGTMmO+20U1q3bl26rH///pk9e3YefPDBJPNP2hs/fny++c1v1rrt7rvvnhdffDETJ06s408NgKZM+wAomko73rnJJptk5MiRtb5+/etfJ0kGDRqUK664IknSu3fv3HPPPZk5c2bptqNHj06LFi3Sq1evJEnnzp2zwQYb5I477qj1GKNHj06XLl2y9tprl/8JAFDxKq19Cxs5cmQmT568yOUTJkzIoYcempVXXjmXXHJJjj766IwcOTLnn39+re3uuuuunHrqqfna176WK664In369Mkpp5ySe+65p2EXDkDFKsfxzoZkuBgA5Vbp7QOAcqv07tnvA6DcKr19AFBOjnfWTYvGXgBAtSnqxC4Aiqkc3dtnn32WafsXXnhhiduMGTMmDz74YO68887MmjWr1nUzZszIxIkTF/kk8o4dO6Z9+/alTyr/rE8sX/D9+PHjnWwHUEDap30ARVNpxzvbtWuXbbfdttZlEyZMSJJstNFGpUFj3/ve93Lbbbfl+OOPzyGHHJJXX301F1xwQfbff/906tSpdNvjjjsuJ5xwQs4///x89atfzZgxY3LPPfdkxIgRy+9JAVBRKq19C7z55psZMWJEzjrrrAwePLjWdVdeeWXatGmTCy+8MK1bt87222+fjz76KL/61a8ycODAdOzYMUkyfPjwfP3rX8+pp56aJOnZs2defvnlDB8+PP369VvuzwmAxlep3VtgScPFttpqq1xyySV59dVXc95552XmzJk57bTTStstGC42cODA9O7dOw888EBOOeWUrLTSStoHUFCV3r45c+Zkzz33zIsvvphf//rXtT4Y4dlnn825556b559/Pm3bts1ee+2VY489Ni1a1D4d4NZbb81ll12W119/PZ07d86RRx6Z3XfffXk/FQAqRKW3z34fAOVW6e0DgHLSvbpp1tgLAGD5MeEZgCKYOXNmzj777BxzzDG1TppbYNq0aUmStm3bLnJdu3btMnXq1CQp/dquXbta26yyyiq1rgeAxqZ9ALCozp0755prrsnUqVNzxBFHZMSIETnooINKJ5QvsMsuu+QXv/hF7r777gwcODD33HNPfvGLX+TrX/96I60cgKZu7Nixy/S1tH7+85+nb9++pWFiCxszZkx22mmntG7dunRZ//79M3v27Dz44INJ5p+QMH78+Fon5yXJ7rvvnhdffDETJ06s4zMGgIaxYLjYySefvMh1Cw8X23777bPffvvluOOOy/XXX5933nmntN3Cw8V69uyZwYMHZ8cdd8zw4cOX4zMBgKW3pJPMV1555VxyySU5+uijM3LkyJx//vm1tltwkvnXvva1XHHFFenTp09OOeWU3HPPPcvrKQDAUrPfB0DROK8PgKKp1Pa1WPImACyLSh74ZcIzAOVWju7deNNN9b+ThVx66aVp2bJlDjrooLLeLwAk2gdA8VTy8c4F1llnnbzwwguLXL7FFlvkhhtuWOLt99hjj+yxxx4NsDIAmqL6tm+fffZZpu0X17BPGzNmTB588MHceeedmTVrVq3rZsyYkYkTJ2bDDTesdXnHjh3Tvn37jB8/PklKv356uwXfjx8/PmuvvfYyrR2Apq8c+3zLMjAsSbp3775U29VluNjQoUPz4IMPZs899ywNFzv22GNr3Xb33XfPD37wg0ycOFH7AAqoko93LjjJ/KyzzsrgwYNrXbfwSeatW7fO9ttvn48++ii/+tWvMnDgwHTs2DFJ7ZPMk6Rnz555+eWXM3z4cO/xBCio+ravofb5Evt9ADSMSt7vc14fAOVWyd1LKrd9BqwAlFmzZpVZJC++AdAQytG9ZXlBbUkmTpyYK6+8Mueff35mzJiRGTNmZPr06Unmn2jw/vvvp23btkmS999/f5HbT5s2LausskqSlH6dNm1avvCFL5S2mTp1aq3rASgW7QOgaCr1eCcANJT6tm9umdaxwMyZM3P22WfnmGOOSadOnTJhwoRa10+bNi1JSvt+C2vXrl1pn27Br+3atau1zYJ9vQXXA1As5djnM1wMgKakHO0zXAyApqS+7WuIfb7Efh8ADadS3+fivD4AGkKldi+p7PYZsAJQZpU65dmLbwA0hEqbdDlhwoTMmjUrxx133CLXnXnmmTnnnHPy1FNPZa211iq9uLbAu+++mylTppReXNtggw2SzH+RbeONNy5t91kvygFQDNoHQNFUWvsAoKHVt3033XRTeRby/1166aVp2bJlDjrooLLeLwAklbnPZ7gYAA2pHO0zXAyApsR+HwBF47w+AIqkHPt8RWyfASsAZVZTzyJ58Q2ApqS+3Su3TTbZJCNHjqx12bvvvpsTTzwxgwYNSq9evZIkvXv3zj333JPTTjuttDM2evTotGjRorRN586ds8EGG+SOO+7ILrvsUrq/0aNHp0uXLroHUFDaB0DRVFr7AKCh1bd9S/tGkqUxceLEXHnllTn//PMzY8aMzJgxI9OnT08y/zW+9/8fe/cdHlW1sG38SUICQhI6KE2B0ISACAQUBEEsiAVQERUUpUiRLuqxY0MQpYUmQigitvOKghQLh6ZYD9JbAtI9gJRACGnk/SOSYUwiYWZPZs9e9++7cn0nMzsza8jr3Fm7rDl1Kvsig1OnTuX4+cTExOyLCc7//4mJibr88suztzl/kcH5+wEAZrFizsfiYgCAQGLH/Z1cZA4A8CVv22f1nE9i3gcA8C2u6wMAmMSK/Z0mto8FVgDA4Tj4BgAwSWRkpJo2bep22/n2RUVFZa962bNnTy1cuFCDBg3SI488oj179mj8+PF68MEHVa5cueyfHThwoAYPHqwxY8bohhtu0KpVq/Ttt98qNja24F4UAAD/gPYBAAAAgHPt379fqampGjhwYI77nnvuOb3++utat26dKlSokH1iyXlHjx7ViRMnsk8sqVatmqSsE0xq1qyZvV1eJ6QAAJBfLC4GADANi4sBAExi5ZxPYt4HADAP1/UBAEwTCO1jgRUAsJi3C35x8A0AEEhs+ME++VK5cmXNmjVLI0eO1OOPP67IyEh169ZNAwYMcNuuXbt2SklJ0dSpUzVr1ixVqlRJo0aN0s033+ynkQMA/I32AQBME6jtAwDAU3ZqX506dTRnzhy3244ePaqhQ4eqX79+at68uSSpZcuW+vbbb/XMM8+ocOHCkqRFixapUKFC2dtUrlxZ1apV05IlS9SuXbvsx1u0aJFq1KjBJ9oBgKHs1D2JxcUAAL5nRftYXAwAEEiY9wEATMN1fQAAk1gx5zOxfSywAgAWC/KySBx8AwAEEm+7VxAqVaqk7du357i9fv36mj9//kV/vkOHDurQoYMPRgYACES0DwBgmkBoHwAAVrJT+yIjI9W0aVO3285/sk9UVJQaN24sSerZs6cWLlyoQYMG6ZFHHtGePXs0fvx4PfjggypXrlz2zw4cOFCDBw/WmDFjdMMNN2jVqlX69ttvFRsbW3AvCgBgK3bqnsTiYgAA37Nb+7jIHADga3ZrH/M+AICvcV0fAMAkVsz5TGwfC6wAgMXstBOSg28AAF+zU/cAACgItA8AYBraBwAwTSC2r3Llypo1a5ZGjhypxx9/XJGRkerWrZsGDBjgtl27du2UkpKiqVOnatasWapUqZJGjRqlm2++2U8jBwD4m926x+JiAABfs1v7uMgcAOBrdmsf8z4AgK/ZqX1c1wcA8DU7dU8KnPaxwIrD3NCohr56b1CO2zfHH1Tj+97I9zbntW5aSy/3u0P1a1VSYtJZfb58vZ4fv0CJp8/65gXAJ9LT09Xlvo7auWOH3nzrHbW7vb2/h4QCwsE3mOBSuiZJISHBWvvB04quWVEPPxOnT5b9mn3fti9H6MoKpXN9nr9vC3vp0b2bfv3lp1zvGzh4mB7r2buARwQAvmP1vK9a5TJ6+6n71OLaKJ1NSdO/v/6vnh27QGfOpvrmBcASe/fs0exZM7Rp40bF79yhcuXKa8nXy/09LADwifx07e42DTSwaxvVvKq8IooV1sHDJ7VwxQaNfHeJTpxKliQFBwdpUNc2uu2Geqpd7XIVDi2kbbv/0Fszv9KXKzcW6GtC3r75aqmWLF6krVs268SJ46pYsZLu6tBJXR7sptDQ0BzbHzywX/d1vFNnzyZr2fLVKlOmrB9GDQDWsXrOd94/7ReFPTHvQ14qVaqk7du357i9fv36mj9//kV/vkOHDurQoYMPRgZ4xhftu/eWazWoWxtdXb2Czqamaf22/Xrs+dn642ii9S8Altm7Z49GjXxNv/7yiwoXDtMtt7bTkCefUtGiRf09NNgQi4shkFnZvmXTB6ll4xq5Ps8LEz7XmLivLRo1rPb1sqX68suF2ro5az9ohYqV1KHTPXrwodz3g8K5uMgcJrCyfZ7sG4X//fzTj+r56MM5bq8eVUP/9/kiP4wIgYB5HwLZpfTqYvsyr726inrfd4OaRF+l2lXLa81/E3Rrr/EF8jrgHY71QeK6PpjB6mN9d9wYreGP3qLa1S7X2dR0/bp5j16OXagNOw745gXAUkuXLNacWTOVEL9TYWGFVbtOHb0x6i2VLVvu4j8MRwiU9rHAikP1GTFPWxMOZX+f24VxF9umRaMofRHbTwu+/U2vTVusSuVL6pUBd6nmleV0W+8Jvhs8LDfv/Tk6fuy4v4dhDDst+MXBN5gkP+2TpCcevFFlSobnet/9Q6ercJj7n0dDH2mrdi3r6dsftlk3WFju2RdeUtLp0263LVr4uT7+8AO1uKGln0ZlBjt1DzCNFfO+yPAiWjptoA4dOamHnpqhUpFF9eawTipfOlIPPPme7wYPryUk7NSqlStUL7q+MjMzdSqRi0MKCu0D/OefulayeFGt+mWnxs75RidPnVW9GhX0bO92iq5RUbf3mShJuqxwqIb3uFXzFv6ocXO+VWpauu699Vp9Ou5x9X7pfc394ocCf03Iae7sOFWoWFGDhjypUqVLa8Nvv2lK7Hjt3LFdr7w+Ksf2o0e+pmLh4Tp7NtkPozUD7QP8w4o534X+ab8o7Il5n//QPsA/rGrfoG5t9MqAuzRuzrd6bvznKnZZYbW4troKh3Ghsp2dOnVKvR57RGXLldOYseN08uRJjRn9pv7880+9M36iv4fnaIHQPRYXg1NZ0b5BIz9SZLEibrc90D5Gfe5vqaVrNls8Ylhp9qyZqlCxogYPG67SpUtr/W/rNGnCOO3cvl2vjcy5HxTWCYT25YaLzOEEVu7zvJR9o7CPl155TVFRrsXhihQp8g9bwyqB0D7mfXCqi87p8rEv87oG1XRDoyj9snmPioRxGWgg4Vif/9ipfVzXB5NYMedr07S2Pnq7lz5c/ItemfKlil0Wpqd63KrF0waq8X2v82EKNjd71kxNGPuOHnn0MQ0e+qSSk5P1319+VkpKir+H5mh26p4UOO3jL2uH2ppwSD9t/N2rbZ7t1U6bEw6p2zNx2bcdO5mkD9/upXY31NOS1ZssGi186X9//KFpk2P1r+de1PPPPu3v4RghyG5FygcOvsEJ8tO+iuVK6Nne7TRk1Cea8WrO1fDXb9/v9n1wcJBi6lfVV99v1bGTSVYOFxarXj0qx22jRr6mGjVqqmat2n4YkTkCsXuAU1gx7+t5TwuVKRmu5g+N1pHjWQtVJaek6cO3e6lhncpat3WfhSOGlVrd2Eat27SVJL064kV9v2aNn0dkDtoH+M8/dW3WZ2vdvl/9606dTUnT5BcfVOXLS2rfH8eVnJKmq+94SSdOuRbi+PaHbapyRSkNeeQmFlixiXETp6hkqVLZ3zeJaaZMZWpK7HgNGjpcpUuXyb7vP8u/0caN6/VYz8f1zltv+mO4RqB9gH9YMec772L7RWFPzPv8h/YB/mFF+6pVLqNXBtylJ9/6VNM/cb1vcn6L/X368Yc6fvyYPvj43ypdurQkqXDhIho2eIC2bN6kq+vW8/MInYvuAf5jRfu27fojx21vP3WvNu44oE07D3o5QvjShElTVeqC/aAxTZspMzNTkyaO15Bhw1W6TJl/+Gl4IxDax0XmcCor93nmdzvYS1RUDdVvcI2/h2GcQGgf4FT/1Kv87suc/OFKTZq/QpL0eWw/FSnMQtKBgmN9/hOI7eO6PjiBFXO++9s11t5Dx9TjhTnZt23YcUBbF41Q2+vq6P2FP1o0Wlht7549mjD2HT39r2fVucuD2be3urG1H0dlhkDsnuT/9rHACvLUJPoqTf9ktdtt36zdKkm6s3V9TkAJEKPffEOtWrfRtX+t6gTfs3uPOPgGk701/B59uXKj1vwan6/tb2xSS1eULa4Pv/zJxyOD1fbs+V2bN23UoKFP+nsojmf37gH4Z7e2qKsVP+/IXlxFkhat3KhTSWfV7oZ6LLBiY8HBwf4egrFoHxA4jieekSQVKhQiSTp3LtNtcZXz1m3Zp0b3XlmgY0PeLlxc5bw6depKko4cPpy9wErymTMaM+oNPTFwqEL++h3DN2gfEPgudb8o7IF5n//QPiBwPXL3dUpNy8ixCCfsb83qVYpp2ix7cRVJurF1GxUtWlSrVq5ggRUfonuAs1SvUlaN612l58Yt8PdQcBGlctkPenXdrP2gh48cZoEVH6J9AADT0D7AnvK7LzMzM7OARgSrcazPf+zePq7rA/IWWihYp8+kut2WePqspKwPUYd9Lfjs3woNDVXHTvf6eyjGsXv3JHu2jwVWHOrjsb1VpkS4jp44rUUrNuqFCZ9nX1CQ320yMs4pNS3D7WfS0s/p3Llzurr6FQXyOuCd71av0trv1+jzL5cqNTX14j8AAAHsYl27+fo6uqlZbTXo+KrCQvP3J9AD7Zvo5KlkLVq50VfDho98ufALBQcH6/bb7/T3UADAZ6yY99Wudrk+WOS+kFhGxjnt3HNYtatdXiCvAwCA/MpP+4KDgxRaKER1oyro2d7ttGT1Ju3ef/QfH7dFoyht353zk15hH//9788KDQ1VpcpVsm+bPm2ySpcurQ6d7tXCLz7z4+gAwDesmPNJnu0XBQDAH6xoX7MG1bT99/+p651N9Uyv21ShbHFt2XVIL0z4Ql99t6WgXxIuQUJCvO68q4PbbYUKFdKVV1XVrl0J/hkUAPiYVfO+Cz1wexNlZJzTR0t+8fXw4QO//vKLQkNDVfmC/aAA4CRWtu9SGwl7GDSgn04cP64SJUuqdeubNGjIMBUvUcLfwwIAn/mnXrEvEwDgNFbM+WZ//oMWTuqvAQ+11twvflB40cJ6bVAH7Tt0TJ9/u76gXxIuwfrf1qlqtar64vMFmj5tig4f/p+qV4/SoKHD1OKGVv4eHpADZ9E5TOLpZI2b861W/bJTp8+kKCb6Sj352C1qWr+qmj80Wqlp6fnaRpLi9x5Wk2j3T25tXLeKgoODVTKyqD9eHi5BSkqKRr7+qh7v94TKli2nAwf2+3tIxggKhCW/AAfJT9cKhxXS2Kc76413l+iPo4mqckXOT4H5uyKFQ3VX6/r67JvflJKaXgCvBFZa8uVCNWrcROUvZ3EAX6N7QMGzct5XMqKoTpzKeYLJiVNnmPcBeaB9QMHLb9ck6cCKUSoRkdWwr7/fqq5PzfzHx+56Z1M1rV9VDzz5nk9fAzy3KyFe8+fNVad7Oys8PPyC2+bovVnzeF8uAPwbAwXLyjmfJ/tFAdA+oKBZ2b7ypSNUoVwJvdC3vZ4bv0CH/zylvl1a6dOxj6tpl5HauovFNe3qVGKiIiIictweGRmpkydP+mFE5qB7QMGzsn1/16VdE63+dacOHD5RsC8KXkuIj9cH78/RPffdn70fFL5B+4CCZ2X7PG0k/Cs8IkIPd39MjZvEqGjRotq4Yb1mvveu1q//TfM//rfCwsL8PURHo31AwctPr9iXCfgO7QMKlpVzvpU/71CXJ6cr7vVHNPrJeyRJu/cf1e19YnXydLI/XyYu4ujRIzr8v/9pyqQJGjT0SZUuXUbz572vQU/000f/XqCoqBr+HqJj0T3P2HqBlS1btug///mPdu3apRMnTkiSSpQooWrVqunGG29U3bp1/TtAG1q/fb/Wb3ctpLH6151at3W/vpz6hDrf1kjvL/wxX9tI0qT5KzTztUc09JG2mv35WlUqX1Ljn+2i9PQMnTuXWeCvDZfmvXenKjQ0VA8+1M3fQzEOPYI3aN+ly0/Xnupxq1LT0zVp/op8P+6dN9ZXZPhlmr/4Zx+MGr60Yf1v2rdvr3r0etzfQzEC3YM36J5nrJz3Abh0tA/eoH2euZSu3dpzvIpeFqa6URX0TM/b9O/xj6t939hc92c2rV9V4/91v2YvWKsF3/5WEC8Fl+j48eMaNri/KleuogGDhmXfPvK1l3X7HXerbr1oP47OHLQP3qB9l87KOZ8n+0UB0D54h/ZdOivbFxwcrIhiRdTtmZlatibrU15X/bJTWxa+rGGP3qyeL8wt2BcHBAC6B2/QPc/46lhfTPRVql6lrEbPXFYgrwPWOX78mAYP7K/KVapo0JBhF/8BeIX2wRu0zzNWto/zYQJTnTpXq06dq7O/bxLTVHWurqs+vR7Tki8X6e6Onfw4OuejffAG7fNMfnrFvkzAd2gfvEH7Lp2Vc76Y6Kv03qsP66Olv+r/vv6vwosW1tBH2urz2L5q3f0dHT52qsBfH/Ln3LlMnTlzRqPfHqcbWraSJDVpEqP27W5W3Izpen3kaD+P0LnonmeC/T2A3CQnJ2vgwIHq1KmTZsyYod27d+vcuXM6d+6cdu/erRkzZujee+/VgAEDlJzMqlMXs/zHbfrzRJIa1b3ykraZ/+XPGhP3lV7s1177/zNKa94frpU/b9f6HQf0x1E+HcbODh48oFkz31P/AYOUnJysxMREJZ0+LUk6ezZZp07xh4QvBQUFefUFM9E+a13YtSpXlNTQR9rqlclfqliRwioefpkiw4tIki4rEpr9v/+uy+1NtP+P41r1y86CHDos8OWiL1S4cGG1veU2fw/FCN52j/aZie5Zz9N53/FTZ1QiomiObUtEFNXxxDM+GSsQ6GgfPEH7rJdX+zbsOKAf1u/WjH9/pweHv6cbY2rp7jYNcvx8nWqX69/j+2jVrzvV/7X5BTVsXIKkpNMa2K+X0tLSFDtlui4rmvU3y1dLF2v7tq3q/lhPnUpM1KnERJ1NPpv1M6dPK/kMf8NYje7BE7TPWp7M+TzdLwqA9sEztM9anu7vPPHXPs2VP7uO76WlZ2jt+l2qU+0K3w0YXouIjMz1XJbExEQVL17cDyMyB/s74Qm6Zz1P23ehB25vouSzqfrsm998NEr4QlLSafV/vJfS09I0edp7Klo057FbWIv2wRO0z3pWtO9St4O9XHd9cxUvXkKbN23091Acj+7BE7TPen/vFfsyAd+hffAE7bOWp3O+d56+Tz+s36WBr3+oFT/t0KIVG3X3E1NUsngxDejauiCGDg9FRkZKylpQ87zQsDBd0/BaJcTH+2tYRmB/p2cK+XsAuRk9erR+/fVXTZw4UW3atFFISIjb/efOndPy5cv18ssva/To0XrppZf8NNIAk5nzU1ovts0LE77QqPeW6aqKpXXw8EmdPJ2sA/8ZpckfrvDNGGGJA/v3KzU1VcOGDMxx38svPKdRb7yuH35Z54eRmcHQnsBLtM9HMjN1ZYUyKlI4VPPH9Mxx97SXu+rtp+5T2ebun/5SukQx3XxdHU2ct1yZ+eknbCM9PV1fLV2slje2Vnh4uL+HYwS6B0/QPR+6xHnf9t1/qFbV8m53BwcHqcaV5fTlSk5gAHJD++AJ2udD/9C+ddv26dy5c6peuazb7VWuKKVFU55Q/N7DenD4e8rIOOfrUeISpaamaujA/jp48IBmzJqnsuVcf6/s3pWgpKQkdbjj1hw/1+mudmrRspXGx04ryOE6Hu2DJ2ifj1zCnM+T/aIAstA+eIL2+cgl7u/cknBITaKvyrFJkKQihUOtGxcsV61ade3eleB2W0ZGhvb8vls3tm7jp1GZge7BE3TPhzw4x1OSQkKCdc+t12rxqk06lXTWBwODL6SmpmrQE/2yPlBv7gcqV678xX8IXqN98ATt8yEP2+fVdrAX3ph9jn9ieIL2+dBfvWJfJuA7tA+eoH0+colzvjrVrtCy77a43X0q6ax27TuiqCrlrB4dLFQ9KkqbNm7IcXtmZqZSUlL8MCJz0D3P2HKBlSVLluj555/XzTffnOv9wcHBatu2rZKTk/X6668To4toe10dlS5RTD9v3uPRNqfPpGjTzoOSpEc7Xq8ihQtpzuc/+Gy88F6t2nX0Xtwct9uOHj2qZ4YPVe8+/XTd9c39NDIAeaF91rqwaxu279ctPce73X95mUjNefNRvfHuEi3/YVuOn7/3lkYKDQ3R/MU/F9SQYZHvv1uj48ePq/0dd/l7KAD+Ad2znqfzvmVrNuvZ3rerTMlwHT1+WpLUvmW0IooV0dI1m30+bgAwBe2zXn7ad12D6goODtbu/UezbytXKkJfTn1CJ04lq9PAqUo+m1YQw8UlyMjI0L+eGqotmzdq6nuzdVXVam7333l3RzVqEuN22/ffrdHsmdP11jsTVLkKn04I2AHts5Yncz5P9osCADxH+6zl6f7OL1du1CMdrlPrmFpasnqTJCkstJCub1hdy3/c7vNxw3MtbmipaVMm6dixYypVqpQkaeWK/+jMmTO6oWUrP48OwN/RPet5e47nzdfVUdmSEZznEkAyMjL01JNDtHnTRk2fmXM/KAB7oX3W87Z9nmwHe/luzWqdPHlC0dH1/T0UALmgfdb7e6/YlwkA9kL7rOXpnG/PoT917dVV3LaLKFZE1SqX1epf4302XnjvxtY36fPP/k8//rBWrW5sLSlrgel1//1VzZpd7+fRATnZcoGVlJQUlShR4qLbFS9enJWL/mbmaw/r94N/at2WfTp15qya1LtKw7rfrN+27dMnS3/N9zaS1LjulWrVpIbWbz+gQiHBatO0lvo9cKOeevvf+v3An/56iciHyMhINYlp6nbbgQP7JUnVqkfp2kaN/TEsYwSx5Bc8QPs8d7GupaVnaPWvO91+psoVWSflbdv1h75bl5DjMR9o30QbdxzIXmAMgWPxoi9UokQJNW/R0t9DMQbdgyfonnesnPe99+l36tullT4Z21sjpy9VyYiienNYJy38z3r9d8tef71E5ENycrLWrFopSdq/f7+Szybr62VLJUl1o6NVoUJFfw7P0WgfPEH7vJOfrn0xqb9W/LRdWxIOKSUtXdfUqqTBj7TVhh379cV/slbFL1I4VJ9P6qcKZUuo54tzFFWlrKSy2c/z08bf/fDq8Hej3nhFK5Z/o75PDNK5jAxtXP9b9n1Vq0epQsVKqlCxktvPHDx4QJJU/5qGKlOmrGAt2gdP0D7PWTXnO3k6+ZL3i8JemPf5D+2DJ2if56zc37lo5Ub9sH6XJr/4oF6c+IX+92ei+nZppRIRRfXOrK/99RKRD/d27qL5H7yvwQP6qXefvko8magxo99U6zY3qW69aH8Pz9HoHjxB97xjZfvOe6B9Ex09flrLvuMDFALFG6+N0H++/Ub9BwzSuXPntOGC/aDVqkcpPDzcf4NzONoHT9A+71jZvkttJOzhX08/qYoVK+nquvVUrFgxbdywXnEzpqtW7Tq6rd3t/h6e49E+eIL2eSc/vcrvvswyJcN1Q6MoSVK50hEKCy2kjm2vkSSt/jU++4P1YD8c6/Mf2gdP0D7PWTnnm/rhKo1/9n5NfK6LFnz7m8KLFtagbm1UOLSQZv7fd/56iciHG1u3UYNrGmrEi89r4JChKlOmjObPe1+nEhPVvUdPfw/P0eieZ2y5wErjxo0VGxurunXrqmTJkrluc/z4cU2ePFmNG7NQxIW27PpD99/WWP0fuFGXFQ7TgcPHNfvztXp92mKlpWfkextJSk1L1x031tdTPW5VoZAQbdp5QA89NUOfL1/vr5cHBAR6BE/QPs/lt2v5VbVSGTWtX1XPjVtg/WDhU2fOJGnFiuW6864OCg0N9fdwjEH34Am65x0r530nTyfrtt4T9fZT9+qDt3robEq6/u+bdfrXO//nr5eHfDp27E89OXSQ223nv3/ltZG6u2MnfwzLCLQPnqB93slP137Z/Lu63N5EV1UsLUnac/CY3v14tSa8vzx7m3KlInRN7cqSpA/eynnA5rKGTxTQK8I/+f671ZKkKbHjNSV2vNt902bMVuMmTXP7MfgQ7YMnaJ/nrJzzIbAx7/Mf2gdP0D7PWdm+zMxMdRo4VSOHdNSbQzvqssKh+nXLXrV7fIK27vrDXy8R+RAZGanpM2dr1BuvadiQQSocVlg333qrhj35tL+H5nh0D56ge96xet5X7LIwtW8VrfcX/qj09HP+eEnwwPdr1kiSJk0cr0kT3feDvhc3J8cH7ME6tA+eoH3esbJ97BsNTFFRNbT4y0X64P05SklJUbny5dWh073q0+8JhYaF+Xt4jkf74Ana55389Cq/+zLrVLsixzku57+/pef4HB+4APvgWJ//0D54gvZ5zso537ufrNbZ1DT1ub+V7m/XWMkpafpt6z7d1nu8du457K+XiHwIDg7WxElT9faYUXp79CilpJxV3XrRmj5ztqKiavh7eI5G9zwTlJmZmenvQfzd3r179fDDD+vEiRNq1qyZqlWrpsjISElSYmKidu3apR9//FHFixfX7NmzdeWVV1o+Bk6md7bjP8f6ewjwoSJ+XjrqulGrvPr5tU+3tGgkCCS0D7527Cfa51SX+XktGW+7J9E+E9mhexLtczLmfM4W6HM+ifaZiPbB1478MNHfQ4APhRf27xEw9nfCE3ZoH91zNuZ9zhbo8z7aZybaB1+jfc4V6N2TaJ+J7NA9ifY5He1zLtqHQET74Gt0z9kCvX10z0x2aB/dczba52y0D4GI9sHXaJ9zBXr3JDPb5+dfW+6qVKmiRYsWaf78+Vq1apUWLFigxMRESVmfWFK9enX169dPXbp0UUREhJ9HCwCA92gfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAJjFlgusSFJ4eLh69eqlXr16+XsoAHBJgvz7gbIIYLQPQCCie/AU3QMQqGgfPEX7AAQq2gdP0T4AgYr2wVO0D0AgonvwFN0DEKhoHzxF+wAEKtoHT9E+AIGK9sFTtA9AIKJ7nrHtAisAEKiCKBIAwCB0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zzMssAIAFqNHAACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3PsMAKAFiMFb8AACahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe54J9vcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBXCvl7AADgNKz4BQAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd3zDAusAIDF6BEAwCR0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zzMssAIAFmPFLwCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieZ4L9PQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8JVC/h4AADgNC34BAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9zzDAisAYLEgigQAMAjdAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd8wwLrACAxegRAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8zwf4eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4SiF/DwAAnCaYJb8AAAahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe55hgRUAsBg9AgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO55hgVWAMBiQRQJAGAQugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucZjxZYmT59er63DQoKUs+ePT15GgAISMH0yJFoHwDkju45F+0DgNzRPmeiewCQN9rnTLQPAPJG+5yJ9gFA7uiec9E+AMgd7XMmugcAeaN9zkT7ACBvtM+ZaB8A5I7uecajBVbefvvtfG9LjAAATkD7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AABW8miBlW3btlk9DgBwjKAglvxyItoHALmje85F+wAgd7TPmegeAOSN9jkT7QOAvNE+Z6J9AJA7uudctA8Ackf7nInuAUDeaJ8z0T4AyBvtcybaBwC5o3ue8WiBFQBA3ugRAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8zli2wsmbNGm3YsEGHDh1S3759VaFCBf3666+qXLmyypUrZ9XTAIDtBYkimYL2AQDdMw3tAwDaZxK6BwBZaJ85aB8AZKF95qB9AED3TEP7AID2mYTuAUAW2mcO2gcAWWifOWgfANA9T3m9wMrx48f1xBNP6Ndff1Xp0qV17NgxdenSRRUqVNBHH32kiIgIvfDCC1aMFQAAW6B9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AABvBXv7ACNHjtQff/yhBQsWaOXKlcrMzMy+7/rrr9fatWu9fQoACCjBQd59wf5oHwC4eNs92hcYaB8AuNA+56N7AOCO7jkf7QMAd7TP+WgfALiwv9MMtA8AXGif89E9AHBH95yP9gGAO9rnfLQPAFzY3+mZQt4+wIoVK/TSSy+pdu3aysjIcLvviiuu0KFDh7x9CgAIKEFBhhbFILQPAFzonhloHwC40D7no3sA4I72OR/tAwB3tM/5aB8AuNA9M9A+AHChfc5H9wDAHe1zPtoHAO5on/PRPgBwoXue8XqBldTUVEVEROR63+nTpxUSEuLtUwBAQKFHzkf7AMCF7pmB9gGAC+1zProHAO5on/PRPgBwR/ucj/YBgAvdMwPtAwAX2ud8dA8A3NE+56N9AOCO9jkf7QMAF7rnmWBvH6BOnTpasmRJrvctX75cDRo08PYpAACwFdoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHAPBWIW8foG/fvurTp4/OnDmj22+/XUFBQfrtt9/02Wef6fPPP1dcXJwV4wSAgBHMkl+OR/sAwIXumYH2AYAL7XM+ugcA7mif89E+AHBH+5yP9gGAC90zA+0DABfa53x0DwDc0T7no30A4I72OR/tAwAXuucZrxdYadmypSZMmKA333xTy5YtkyS9+uqrqlChgsaPH68mTZp4PUgACCT0yPloHwC40D0z0D4AcKF9zkf3AMAd7XM+2gcA7mif89E+AHChe2agfQDgQvucj+4BgDva53y0DwDc0T7no30A4EL3POP1AiuS1LZtW7Vt21Z79uzRn3/+qeLFi6t69epWPDQABJwgimQE2gcAWeieOWgfAGShfWagewDgQvvMQPsAwIX2mYH2AUAWumcO2gcAWWifGegeALjQPjPQPgBwoX1moH0AkIXuecaSBVbOu/LKK3XllVda+ZAAEHDokVloHwDT0T3z0D4ApqN9ZqF7AED7TEP7AID2mYb2ATAd3TMP7QNgOtpnFroHALTPNLQPAGifaWgfANPRPc9YssDK7t279e6772rjxo06cuSIypYtqwYNGqhnz56qWrWqFU8BAICt0D4AgGloHwDAJHQPAOzrq6++UlxcnHbt2qWkpCSVL19ebdu2Vb9+/VS8ePHs7VatWqWxY8cqPj5eZcuW1cMPP6zu3bvneLy4uDjNnTtXR44cUY0aNTR06FC1aNGiAF+RPdA+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQC84fUCK2vWrFHfvn0VGRmpVq1aqUyZMjp69KhWrFihL774QlOnTlXz5s2tGCsABIRglvxyPNoHAC50zwy0DwBcaJ/z0T0AcGe39p08eVIxMTHq0aOHIiIitGPHDsXGxmrbtm2aPXu2JGn9+vXq16+f7rjjDj399NPasGGDRo8erZCQEHXr1i37seLi4jRmzBgNGjRI9evX12effaY+ffroww8/VL169fz1Egsc7QMAd3ZrH6xH+wDAhe6ZgfYBgAvtcz66BwDuaJ/z0T4AcEf7nI/2AYAL3fOM1wusjBo1So0bN9a0adMUFhaWfXtKSop69+6tN998UwsXLvT2aQAgYJAj56N9AOBC98xA+wDAhfY5H90DAHd2a999993n9n3Tpk1VuHBhvfDCCzp48KAqVKig2NhY1axZUyNHjlRQUJCaNWumw4cPKzY2Vl26dFFoaKhSU1M1efJkde3aVb1795YkxcTEaNu2bYqNjdXUqVP98fL8gvYBgDu7tQ/Wo30A4EL3zED7AMCF9jkf3QMAd7TP+WgfALijfc5H+wDAhe55JtjbB9izZ4+6d+/uFiJJKly4sLp37649e/Z4+xQAEFCCgoK8+oL90T4AcPG2e1a376uvvtIDDzygpk2bql69errppps0cuRInTx50m27VatWqWPHjoqOjlabNm00a9asXB8vLi5Obdq0UXR0tDp16qQ1a9ZYOt5AQfsAwIX2OR/dAwB33nZv/fr1l/TlieLFi0uS0tPTlZqaqrVr1+r222936+6dd96pEydOaN26dZKkdevWKTExUe3bt8/eJjg4WO3bt9d3332n1NRUL/7VAgvtAwB3dprzwTdoHwC42G1/J3yD9gGAC+1zProHAO7onvPRPgBwR/ucj/YBgAv7Oz1TyNsHuPLKK3Xs2LFc7zt27JiuvPJKb58CAABboX0AYF8nT55UTEyMevTooYiICO3YsUOxsbHatm2bZs+eLUlav369+vXrpzvuuENPP/20NmzYoNGjRyskJETdunXLfqy4uDiNGTNGgwYNUv369fXZZ5+pT58++vDDD1WvXj1/vUS/oH0AYF+0z3p0DwCs1blz50vafvv27fnaLiMjQ+np6dnta9WqlapUqaL4+HilpaWpevXqbtuf/z4hIUExMTGKj493u/28qKgopaamat++fTnucyraBwD29tVXXykuLk67du1SUlKSypcvr7Zt26pfv37Zi4xJWQtrjh07VvHx8Spbtqwefvhhde/ePcfjxcXFae7cuTpy5Ihq1KihoUOHqkWLFgX4ivyP9gGAvdE+69E+AIBJ6B4AwDS0DwBgGtoHAPCW1wusPP3003rxxRdVtmxZtwOPq1ev1qRJk/Taa695+xQAEFCCzVywyyi0DwBc7Na9++67z+37pk2bqnDhwnrhhRd08OBBVahQQbGxsapZs6ZGjhypoKAgNWvWTIcPH1ZsbKy6dOmi0NBQpaamavLkyeratat69+4tSYqJidG2bdsUGxurqVOn+uPl+Q3tAwAX2ud8dA8A3Nmtfec1bdpUp06dkiS1aNFC48aNk5S1+JgkRUREuG0fHh6ukJCQ7PsTExMVEhKiYsWKuW0XGRnp9jgmoH0A4M5u7WNhTevRPgBwsVv3JNrnC7QPAFzs1j4WFrMe3QMAd3ZrH6xH+wDAHe1zPtoHAC50zzMeLbDSrl07BQW5/sWTkpLUq1cvXXbZZSpVqpSOHTum5ORkRUZG6rXXXtPixYstGzAA2N2F749wDtoHALmzonvr16+/pO0bNGhwSdufP+EkPT1dqampWrt2rQYPHuw29jvvvFNz587VunXrFBMTo3Xr1ikxMVHt27fP3iY4OFjt27fXxIkTlZqaqrCwsEsaR6ChfQCQO9rnTHQPAPLmbfs+/vhji0bibu7cuUpOTtaOHTs0ZcoU9enTR3FxcT55LieifQCQN7sd62NhTWvQPgDInd26J9E+q9A+AMid3drHwmLWoHsAkDe7tY/FxaxB+wAgb7TPmWgfAOTObt0LFB4tsNKgQQP+wQEgD3Z7e2QiZg3aBwC5s+KtsXPnzpe0/fbt2y+6TUZGhtLT07NPPGnVqpWqVKmi+Ph4paWlqXr16m7bn/8+ISFBMTExio+Pd7v9vKioKKWmpmrfvn057nMa2gcAuaN9zkT3ACBv3r49XupCYflVp04dSdK1116rOnXqqHPnzvr6668VFRUlSTp16pTb9qdPn1ZGRkb2PtHIyEhlZGQoKSlJxYoVy94uMTFRktz2nToR7QOAvHn79ujrRTUlFtb0BO0DgNwFylsj7bt0tA8Acme3t0YWFrMG3QOAvNnt7ZHFxaxB+wAgb3Z7e6R91qB9AJA7O741BsI17R4tsPLmm2969aQA4GR2+2OdiZg1aB8A5M5u3TuvadOm2RfTtWjRQuPGjZOU1UVJioiIcNs+PDxcISEh2fcnJiYqJCTE7SI7KesCvAsfx8loHwDkjvY5E90DgLzZtX0XuvrqqxUUFKS9e/eqTZs2Cg0NVUJCglq3bp29TUJCgiTXYmIXLjZWv3797O3i4+MVGhqqypUrF+ArKHi0DwDy5m37One+7+IbXSA/i2pKLKzpLdoHALmzYs7nq8XFaJ93aB8A5M7O7TuPhcUuHd0DgLzZ7Vgfi4tZg/YBQN5onzPRPgDInd26JwXGNe0eLbACAAgcTMQAAHb38ccfW/6Yc+fOVXJysnbs2KEpU6aoT58+iouLs/x5AADwBO0DAMBa//3vf5WZmalKlSopLCxMzZo105IlS9SjR4/sA4iLFi1S8eLFdc0110iSrr32WkVERGjJkiXZC6xkZmZqyZIlat68uaMvNgAABCYW1gQA2FXnzp0vafv8Li5G+wAAduWL9rGwGADArny9sJjE4mIAAHuhfQAAeCcQrmm3ZIGVEydOaMmSJfr999+VkpKS4/6XX37ZiqcBgIAQ7OWCX0zEAgPtA4As3nZP8qxlF1OnTh1JWRfM1alTR507d9bXX3+tqKgoSco+GfO806dPKyMjI7uRkZGRysjIUFJSkttJl4mJiZJcLTUJ7QOALLTPDHQPAFysaJ+VevTooWbNmqlGjRoKCwvTli1bNGPGDNWqVUtt27aVJPXv319du3bVs88+qw4dOmjDhg364IMPNHz48Ox9mGFhYerbt6/Gjh2rUqVKKTo6WgsWLNDOnTs1YsQIf75Ev6B9AODibft8saimxMKaVqN9AJDFbnO+C9E+a9E+AMhi1/axsJi16B4AuHjbPl8tqsniYtaifQDgQvvMQPsAIIsV+ztNvKbd6wVWdu/erS5duigtLU3JyckqWbKkTp48mX2BRnh4uLdPAQAB5cI3dE907nzfxTe6ABOxgkf7AMDF2+4VhKuvvlpBQUHau3ev2rRpo9DQUCUkJKh169bZ2yQkJEhyde7CDp7/JHNJio+PV2hoqCpXrlyAr8D/aB8AuNA+56N7AODObu2Ljo7WF198of3790uSKlWqpAcffFCPPvpo9sGyhg0bavLkyRo7dqwWLlyocuXKadiwYerevbvbY/Xo0UOSNG/ePI0fP15RUVGaPHmyWwtNQPsAwJ237WvQwDcdYWFN69A+AHCxYs7nq8XFaJ91aB8AuNi1fSwsZh26BwDu7Has7zwWF7MO7QMAd7TP+WgfALhY0T0Tr2n3eoGVUaNGqX79+po4caKuueYaTZ8+XbVq1dLChQs1btw4TZgwwdunAICAYs9pGBMxK9E+AHCxa/cu9N///leZmZmqVKmSwsLC1KxZMy1ZskQ9evTInkguWrRIxYsX1zXXXCMp60TNiIgILVmyJPvCuszMTC1ZskTNmzf3eIXLQEX7AMCF9jkf3QMAd3Zr3+DBgzV48OCLbteqVSu1atXqotv16NEje6EVU9E+AHBnt/blhoU1vUP7AMDFiu558il1l4r2eYf2AYCLXdvHwmLWoXsA4M7b9vlqUU0WF7MO7QMAd7TP+WgfALjY+RwXO1/T7vUCK5s2bdIrr7ySfZFFenq6ChUqpI4dO+r48eN64403NG/ePG+fBgCMwUTM/mgfANhXjx491KxZM9WoUUNhYWHasmWLZsyYoVq1aqlt27aSpP79+6tr16569tln1aFDB23YsEEffPCBhg8fnv3eHhYWpr59+2rs2LEqVaqUoqOjtWDBAu3cuVMjRozw50v0C9oHAPZF+6xH9wAApqF9ABB4WFjTO7QPAAIP7fMO7QOAwMLCYt6hewBgLV8tqsniYtahfQBgLdpnf7QPAKxl4jXtXi+wcubMGUVERCg4OFjFixfXkSNHsu+rU6cOq30BME5wkHdrfjERsz/aBwAu3nbPatHR0friiy+0f/9+SVKlSpX04IMP6tFHH83egdawYUNNnjxZY8eO1cKFC1WuXDkNGzZM3bt3d3us859gPm/ePI0fP15RUVGaPHmy24kopqB9AOBC+5yP7gGAO7u1D9ajfQDgzm7tY2FN69E+AHCxW/ck2ucLtA8AXOzYvr9jYTHv0D0AcBcI7WNxMe/QPgBwR/ucj/YBgIsV3TPxmnavF1ipUqWKDh8+LEmqUaOGPvvss+wDmV9++aVKlSrl7VMAQEAJgHkYEzEv0T4AcLFb9wYPHqzBgwdfdLtWrVqpVatWF92uR48e2Rebm4z2AYAL7XM+ugcA7uzWPliP9gGAO7u1j4U1rUf7AMDFbt2TaJ8v0D4AcLFb+1hYzHp0DwDc2a19uWFxMe/QPgBwR/ucj/YBgEsgdE+y3zXtXi+w0qpVK61du1bt27fX448/rr59+yomJkYhISE6fvy4/vWvf3n7FAAQUIICoEhMxLxD+wDAJRC6B+/RPgBwoX3OR/cAwB3tcz7aBwDu7NY+Fta0Hu0DABe7dU+ifb5A+wDAxW7tY2Ex69E9AHBnt/axuJj1aB8AuKN9zkf7AMDFbt3Li92uaQ/KzMzM9PpVXWDTpk36+uuvdfbsWTVv3lwtW7a08uELzGUNn/D3EOBDx3+O9fcQ4ENFvF46yju9P9ns1c+/e19di0aSJa+JWNmyZfXpp58qLCxM69atU9euXXXXXXdlT8TGjRun4cOHux2EmzFjhsaOHatBgwZlT8QWLVqkDz74wLiDcBeifQgEx36ifU51Wah/n9/b7knWtw++R/tgd8z5nC3Q53wS7Qs0TumeRPuc7MgPE/09BPhQeGH/HgCz2/5O+J5T2kf3nI15n7MF+ryP9gUe2odAQPucK9C7J9G+QET7EAhon3PRPhQ0p3RPon1ORvecLdDbZ3X3xo0bp2+//dZtcbFbbrlFjz76qMLDw7O3W7lypcaOHav4+HiVK1dOXbt21WOPPZbj8WbMmKF58+bp8OHDioqK0tChQwP6vd4KTmkf3XM22udstM8d7fM92odAQPucK9C7J5l5Tbvlv7Z69eqpXr16kqTdu3dr+vTp6tWrl9VPAwC2ZbcFv/iEA9+jfQBMZrfuoWDQPgAmo33moXsATEf7zEP7AJiO9pmH9gEwGd0zE+0DYDLaZx66B8B0dmvf4MGDNXjw4Itu16pVK7Vq1eqi2/Xo0SP7GgdkoX0ATEf7zEP7AJjMbt2TAuOadp+ui7Njxw698847xAiAUYJtViQmYgWL9gEwjd26h4JH+wCYhvaZje4BMBHtMxvtA2Ai2mc22gfANHQPtA+AaWif2egeABPRPrPRPgAmon1mo30ATGPH7gXCNe0+XWAFAExkwx4BAOAzdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8zLLACABYLokgAAIPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPc8E+3sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOArhfw9ALv686eJ/h4CfOjEmTR/DwE+dHlkqF+fn5WrEKiO/xzr7yHAh44kpvh7CPCRyqUK+/X56R4C2cHvxvt7CPCRxGTmfE5WJII5H+Ap5n3OdZL9nY4WXpj2AZ44/MMEfw8BPnTsdKq/hwAfqlAizK/PT/sQqPatHufvIcCHzqRk+HsI8JEihUL8+vx0D4Hszx85x9PJjicx73OqK4oz5wM8dXgt+zyd6vTZdH8PAT5UJNy/l23RPgSqQ99zfqeT0T5no32AZ/74njmfkyWncqzPqTjWF5g8+mulfv36CgoKuuh2GRn8Bw/APPl5f0TgoX0AkDu651y0DwByR/ucie4BQN5onzPRPgDIG+1zJtoHALmje85F+wAgd7TPmegeAOSN9jkT7QOAvNE+Z6J9AJA7uucZjxZY6dWrF//gAJCHYN4eHYn2AUDu6J5z0T4AyB3tcya6BwB5o33ORPsAIG+0z5loHwDkju45F+0DgNzRPmeiewCQN9rnTLQPAPJG+5yJ9gFA7uieZzxaYGXAgAFWjwMAAFujfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAAK3m0wAoAIG+s+AUAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd8wwLrACAxYKCKBIAwBx0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zzMssAIAFmPFLwCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieZ1hgBQAsxoJfAACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3PBPt7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgK4WsfLA//vhDBw8eVO3atVW0aFErHxoAAkYwS34ZhfYBMB3dMw/tA2A62mcWugcAtM80tA8AaJ9paB8A09E989A+AKajfWahewBA+0xD+wCA9pmG9gEwHd3zTLAVD/LJJ5+oVatWat26tR566CHt3r1bkjRgwAC9//77VjwFAASMYC+/EBhoHwBk8bZ7tC9w0D4AyEL7zED3AMCF7pmB9gGAC+0zA+0DgCzs7zQH7QOALLTPDHQPAFzonhloHwC40D4z0D4AyML+Ts94/brnzZunl19+WbfeeqsmT56szMzM7PsaNWqkxYsXe/sUABBQgoK8+4L90T4AcPG2e7QvMNA+AHChfc5H9wDAHd1zPtoHAO5on/PRPgBwYX+nGWgfALjQPuejewDgju45H+0DAHe0z/loHwC4sL/TM4W8fYDZs2fr8ccf18CBA5WRkeF2X9WqVbNX/gIAwCloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDAW14vsHLw4EE1adIk1/vCwsKUlJTk7VMAQEAJNnXJLoPQPgBwoXtmoH0A4EL7nI/uAYA72ud8tA8A3NE+56N9AOBC98xA+wDAhfY5H90DAHe0z/loHwC4o33OR/sAwIXueSbY2we4/PLLtWPHjlzv27p1qypXruztUwBAQAkK8u4L9kf7AMDF2+7RvsBA+wDAhfY5H90DAHd0z/loHwC4o33OR/sAwIX9nWagfQDgQvucj+4BgDu653y0DwDc0T7no30A4ML+Ts94vcDKnXfeqUmTJmnlypXKzMyUJAUFBWnLli2aMWOGOnTo4O1TAEBACQ7y7gv2R/sAwMXb7tG+wED7AMCF9jkf3QMAd3TP+WgfALijfc5H+wDAhf2dZqB9AOBC+5yP7gGAO7rnfLQPANzRPuejfQDgwv5OzxTy9gH69eunnTt36vHHH1dERIQk6dFHH1ViYqJuvvlm9ejRw+tBAgBgJ7QPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAOAtrxdYCQ0NVWxsrH766Sd99913OnbsmIoXL67mzZvruuuus2KMABBQgoMMXbLLILQPAFzonhloHwC40D7no3sA4I72OR/tAwB3tM/5aB8AuNA9M9A+AHChfc5H9wDAHe1zPtoHAO5on/PRPgBwoXue8XqBlfNiYmIUExNj1cMBQMCiR+agfQBA90xD+wCA9pmE7gFAFtpnDtoHAFlonzloHwDQPdPQPgCgfSahewCQhfaZg/YBQBbaZw7aBwB0z1NeL7By8ODBi25ToUIFb58GAAJGMEFyPNoHAC50zwy0DwBcaJ/z0T0AcEf7nI/2AYA72ud8tA8AXOieGWgfALjQPuejewDgjvY5H+0DAHe0z/loHwC40D3PeL3ASps2bRR0keVttm7d6u3TAEDACBJFcjraBwAudM8MtA8AXGif89E9AHBH+5yP9gGAO9rnfLQPAFzonhloHwC40D7no3sA4I72OR/tAwB3tM/5aB8AuNA9z3i9wMo777yT47YTJ05o9erV2r59uwYOHOjtUwAAYCu0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwDgLa8XWLn99ttzvf3BBx/Uyy+/rC1btqhDhw7ePg0ABIxgFvxyPNoHAC50zwy0DwBcaJ/z0T0AcEf7nI/2AYA72ud8tA8AXOieGWgfALjQPuejewDgjvY5H+0DAHe0z/loHwC40D3PBPvywW+55RZ9/vnnvnwKALCd4CDvvhDYaB8A03jbPdoX+GgfANPQPrPRPQAmontmo30ATET7zEb7AJiG/Z2gfQBMQ/vMRvcAmIjumY32ATAR7TMb7QNgGvZ3eqaQLx98x44dCgkJ8eVTAIDtBAUZWhRIon0AzEP3QPsAmIb2mY3uATAR7TMb7QNgItpnNtoHwDR0D7QPgGlon9noHgAT0T6z0T4AJqJ9ZqN9AExD9zzj9QIr06dPz3FbWlqaEhIS9NVXX6ljx47ePgUAALZC+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAA3vJ6gZW33347x21hYWG64oor9Nhjj6lv377ePgUABJRgFvxyPNoHAC50zwy0DwBcaJ/z0T0AcEf7nI/2AYA72ud8tA8AXOieGWgfALjQPuejewDgjvY5H+0DAHe0z/loHwC40D3PeL3AyrZt26wYBwA4RhBBcjzaBwAudM8MtA8AXGif89E9AHBH+5yP9gGAO9rnfLQPAFzonhloHwC40D7no3sA4I72OR/tAwB3tM/5aB8AuNA9zwR788OpqakaNmyYfv31V6vGAwABLzgoyKsv2BvtAwB33naP9tkf7QMAd7TP2egeAORE95yN9gFATrTP2WgfALhjf6fz0T4AcEf7nI3uAUBOdM/ZaB8A5ET7nI32AYA79nd6xqsFVsLCwrR8+XKlp6dbNR4AAGyN9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEArODVAiuSFBMTw2pfAHCB4CDvvmB/tA8AXLztHu0LDLQPAFxon/PRPQBwR/ecj/YBgDva53y0DwBc2N9pBtoHAC60z/noHgC4o3vOR/sAwB3tcz7aBwAu7O/0TCFvH6Bv374aNmyYgoKC1Lp1a5UpU0ZBQe7/mqVLl/b2aQAgYAQZGhST0D4AcKF7ZqB9AOBC+5yP7gGAO9rnfLQPANzRPuejfQDgQvfMQPsAwIX2OR/dAwB3tM/5aB8AuKN9zkf7AMCF7nkmKDMzM/NSfyg2Nlb33Xefypcvr9q1a7seLI/fwtatWz0foZ+cSbvkfxYEkMTkdH8PAT50eWSoX59/0ne/e/Xz/ZtfZck4YC0T2neWt0ZHO5KY4u8hwEcqlyrs1+f3tnsS7bMrE9p3/EyGv4cAH0nLOOfvIcCHykUE9pxPon12ZEL3JOZ9TnbyTJq/hwAfKs/+TviACe07lcK8wMlOcazP0SqUCPPr89M+ZzKhfUdP897oZMGcGedYpYqF+PX52d/pXCa070wq53g62clk9nk61RXFA3vOJ9E+OzKhe5J06iz7PJ0qJZ3frZOVCff6c7G9wv5OZzKhfSeSOb/TydIzmNM7Ge2DL5jQvpPJzAuc7NylL+WAAFGyKMf6ApFHf61MmjRJLVu2VPny5fXGG2/kGSEAMBFvic5E+wAgd7wdOhftA4Dc8XboTHQPAPLGW6Iz0T4AyBtvic5E+wAgd7wdOhftA4Dc8XboTHQPAPLGW6Iz0T4AyBtvic5E+wAgd7wdesajBVYyL1gpqVOnTpYNBgAAu6J9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AAArebTACgAgb8Gs+AUAMAjdAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd84zHC6x88sknWrVq1UW3CwoKUv/+/T19GgAIOMFBFMmpaB8A5ET3nI32AUBOtM+56B4A5I72ORftA4Dc0T7non0AkBPdczbaBwA50T7nonsAkDva51y0DwByR/uci/YBQE50zzMeL7CyYMECBeXjH50YATANPXIu2gcAOdE9Z6N9AJAT7XMuugcAuaN9zkX7ACB3tM+5aB8A5ET3nI32AUBOtM+56B4A5I72ORftA4Dc0T7non0AkBPd84zHC6zMmzdP9evXt3IsAADYGu0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAFjF4wVWAAC5C2bJLwCAQegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieZ1hgBQAsRo8AACahewAA09itfUuXLtXChQu1efNmHT9+XJUqVdI999yjbt26KTQ0NHu7VatWaezYsYqPj1fZsmX18MMPq3v37jkeLy4uTnPnztWRI0dUo0YNDR06VC1atCjAVwQAsBu7tQ8AAF+jfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fNMsL8HAABOE+zlFwAAgcTb7lndvqVLl6p///668cYb1aBBA7Vv314zZ85UWlqa23arVq1Sx44dFR0drTZt2mjWrFm5Pl5cXJzatGmj6OhoderUSWvWrLF4xACAQGO39s2cOVNhYWEaPny4pk2bpjvuuEPjxo3T888/n73N+vXr1a9fP9WqVUvTp09Xly5dNHr0aM2dO9ftseLi4jRmzBh16dJF06dPV40aNdSnTx9t2rTJ4lEDAAKJnbonMe8DAPge7QMAmMRu+zsl2gcA8C07tg8AAF+iewAA09A+AIBJ2N/pmUKe/NC2bdusHgcAOEYQS345Eu0DgNzZrXszZ85UxYoVNXz4cJUuXVrr1q3TuHHjtH37do0aNUqS6yLzO+64Q08//bQ2bNig0aNHKyQkRN26dct+rPMXmQ8aNEj169fXZ599pj59+ujDDz9UvXr1/PUSCwztA4Dc2a19U6dOValSpbK/b9asmTIzMzV+/HgNHz5cZcqUUWxsrGrWrKmRI0cqKChIzZo10+HDhxUbG6suXbooNDRUqampmjx5srp27arevXtLkmJiYrRt2zbFxsZq6tSp/nqJBYLuAUDe7NY+5n3WoH0AkDfa50y0DwByZ7fuSbTPKrQPAHJnt/YtXbpUCxcu1ObNm3X8+HFVqlRJ99xzj7p166bQ0NDs7VatWqWxY8cqPj5eZcuW1cMPP6zu3bvneLy4uDjNnTtXR44cUY0aNTR06FC1aNGiAF+Rf9A9AMib3doHa9A+AMgb7XMm2gcAuaN7nvFogRUAQODgABwAwCRcZA4ACATr16+/pO0bNGiQ530Xdu+8unXrSpIOHz6syMhIrV27VoMHD3bbgXrnnXdq7ty5WrdunWJiYrRu3TolJiaqffv22dsEBwerffv2mjhxolJTUxUWFnZJ4wYAwBeY9wEATEP7AACmoX0AAJOwsBgAwDRc2wAAMA3tAwDAflhgBQAsZrf1vjgABwDwJSu6x0XmAIBAYkX7OnfufEnbb9++/ZK2/+WXXxQaGqoqVapo7969SktLU/Xq1d22Of99QkKCYmJiFB8f73b7eVFRUUpNTdW+ffty3AcAMIO37bNyzicx7wMA+B7tAwCYxG7H+iTaBwDwLbud38nCYgAAX7Nb+7i2AQDga7QPAGASu3VPCozFxVhgBQAsFhxkryRxAA4A4EtWdI+LzAEAgcRuc76/i4+P15w5c3T//fcrPDxcJ0+elCRFRES4bRceHq6QkJDs+xMTExUSEqJixYq5bRcZGSlJ2dsBAMzjbft8PeeTmPcBAKxF+wAAJgmEY30S7QMAWMeK9vFBQgCAQGK381y4tgEA4Gu0DwBgErt1TwqMxcVYYAUALMan2gEATGK/aZg7LjIHAFjNivZ9/PHHFjxKTseOHVP//v1VpUoVDRs2zCfPAQAwD/M+AIBpaB8AwCR2755E+wAA1rKifXyQEAAgkHBtAwDANLQPAGASOx7rC4TFxVhgBQBshk/2AQCYhovMAQCmudgBNU+cPn1avXr1UlpamubMmaOiRYtKkooXLy5JOnXqVI7tMzIysu+PjIxURkaGkpKS3C44SExMdHscAAAula/mfBLzPgCAPdE+AIBpaB8AANZhYTEAgN1wbQMAwDS0DwBgGhMXF2OBFQCwWJAdl/y6AAfgAABWsqJ7XGQOAAgkdpzzpaamql+/fjpw4IA++OADlS9fPvu+KlWqKDQ0VAkJCWrdunX27QkJCZJcB9suPBhXv3797O3i4+MVGhqqypUrF8RLAQDYkLft88WcT2LeBwDwHdoHADCJXY/1SbQPAOAbVrSPDxICAAQSO57nciGubQAAWI32AQBMYkX3TFxcjAVWAMBiQV4WiU/2AQAEEm+75wtcZA4A8CW7tS8jI0NDhgzRxo0bNXv2bFWrVs3t/rCwMDVr1kxLlixRjx49sse/aNEiFS9eXNdcc40k6dprr1VERISWLFmS3b7MzEwtWbJEzZs393h1ZwBA4LNb+yTmfQAA36J9AACT2LF7Eu0DAPiOFe3jg4QAAIGEaxsAAKahfQAAk9j1WN+F7Li4GAusAIDFgr38eT7ZBwAQSLztntW4yBwA4Gt2a9+IESP0zTffaNCgQTp37px+++237PuioqIUHh6u/v37q2vXrnr22WfVoUMHbdiwQR988IGGDx+e3bSwsDD17dtXY8eOValSpRQdHa0FCxZo586dGjFihJ9eHQDADuzWPuZ9AABfo30AAJPYrXsS7QMA+JYd28fCYgAAX+LaBgCAaWgfAMAkVuzvNHFxMRZYAQADcAAOAGAKLjIHAJhmzZo1kqTx48dr/PjxbvfNmTNHTZs2VcOGDTV58mSNHTtWCxcuVLly5TRs2DB1797dbfsePXpIkubNm6fx48crKipKkydPdpsDAgDgb8z7AACmoX0AANPQPgCASVhYDABgIq5tAACYhvYBAOzMxMXFWGAFACx2/gCWXXAADgDgS3brHheZAwB8zW7tW758eb62a9WqlVq1anXR7Xr06JHdQAAAJPu1j3kfAMDXaB8AwCR2655E+wAAvmW39rGwGADA1+zWPq5tAAD4Gu0DAJjEbt07z+6Li7HAisF+WPu9Jk8cr+3btqpYeLja3HSzBg19UhEREf4eGryQnp6uXt3u0674nXrx9dG66Zbbs+/78vN/6/8++kAH9u9V0WLhatCwkXr1G6QKlVih0Ep2yxEH4IDcpaenq8t9HbVzxw69+dY7and7e38PCZfoP98s1acfzNHvu+IVFhamqJq19czLI1W6TFktWvCpvlv5rXbF71BS0mlVqnylOnZ+SLfcfpdtJw6Bym7/mlxkDlMt/3qZli1ZpG1bN+vEiROqUKGi7ri7k+5/oKsKhYZKymrf/Pdna9EXn+mPQwdVokQJXdf8BvXuN1ClSpX28ytAfqWnp6tH16w530uvj1bbW7PmfNu2bNJnn3yoLZs3as/uXWrQsJEmvjvLv4N1KLu1DzDV3j17NHvWDG3auFHxO3eoXLnyWvK162/BjIwMzZ0dp9WrViohIV5pqamqVj1KPXr21o1tbvLjyHEx6379SYP6PJbj9qrVojT7owWSpBXffqWvly7S9q1bdPLECV1RoaJuv6uj7u3ykAoVCi3gETuf3drHvA+m2rd3j+bOjtPmjRsUH79T5cqV08Kl3+a5/cEDB9S54506ezZZS5evUpkyZQtwtLgUv/36s4b0y9m+q6pFKW7+Z5KkA/v26qN5s7Rtyybtit+pMuXK6cMFywp6qMagfYD/rVj+tT56f7b2/L5bZ84kqWy58rrhxjbq3rOPIiNzfgrVoYMH1PW+u3X2bLK+WLZCpemera349mvNnzdbe37fpTNJWb/fljfepEd7uf9+1363WlMnjdPvuxJUukxZ3delqx7o+ogfR+5MduueRPtgrr1792jOrJnavClrn2fZcuW0eFnO/x6+W7NasRPGaldCvMqULasHHuymrg93L/gBI9/W/fqzhvTNfd4368Osed/+fXv10fvu876PPmfe5wt2ax8Li8FU33y9TEu/XKitW7foxInjqlihou7qcI+6PJh1nktGRobmzZ2lNatXandCglLTUlWtWnV179FbrW5s4+/h4x/kZ06fnp6uj+bN1pdfLMg+h6lZ8xvUq+8AleQcJsvZrX1c2wBTffv1Mi1b7H6O550d3M/xnPHuFC3/5isdOnhAGekZqlipkjrcc5/uvf9BBQcH+/kVIC/5ad+MaZM0893JOX62U+cHNOzp5wt6yI5H+wD/+/brZVq6eKG2/TXnq/DXnO/C7klSWlqq5syaocVfLNAffxxS8RIlFNP0er382pt+HD0u5j/ffq357+c81vdY75zH+qbEuo71dX6AY32+YLfuSYGxuBgLrBjql59/0hN9eummtrfo8X5P6H9/HNLEce9oz++79e7M2Vx4HMD+/eH7OnH8eI7bFy34VG+9/rLue/Bh9Rs8XMePH9PMabF6ckBvzZz/fypS5DI/jNaZ7PbfDwfggNzNe3+Ojh/L+X6JwPDJB7M1Y8p43ffgI+rVf7DOJidrw2+/KjU1RZI0b9a7atz0et1+9z0qVixcv/z4vca8/qL+OLhfj/Tq7+fRO4vdugeYat7cOF1xRUU9MehJlSpdWhvWr9O7kycoYecOvfjqSEnSe9Mmae6sGerRu58aXNNQ+/ft07TJ45Wwc6emz/7Az68A+fVpHnO+jevX6bf//qI6daOVmpLih5GZg/YB9pCQsFOrVq5Qvej6yszM1KnERLf7U86e1XvTp+muuzro4e6PKTQ0VMuWLtagAf004rU31KHjPX4aOfLrqedHqGq1qOzvixQpkv2/P3x/li6/ooL6DhyqkqXKaNOGdXpv6kQlxO/Qcy+/4Y/hOhrtA+whISFea1auUN3oaGVKOpV48h+3f2vkayoWXkxnzyYXzADhtSefG6GqVatnf1/4gvbt3hWvtWtWqk7d6Ky/fU4l5vYQsAjtA/wv8eRJNWzcRA8+/JiKhYcrIX6n4t6drPgd2zVh6swc248d/bqKFaN7gSIx8aSubdREDz38qMLDI5QQv0Mz3p2snTu2KXZanCRp88b1empIf93S7g4NHPKUNm/aoEnjx6hQoRDd16Wrn1+Bs9A9wD4S4uO1+oJ9nom5zPs2blivwQP6qd3t7TX0yae0ccMGjXvnLYWEhOiBh7r5YdS4FMOfG6GrqrnmfRfu8/x9V7zWfrdSda5m3udrdmsfC4vBVO/PnqkrKlTUwMHDVLp0Ga1fv05TJo3Xzp3bNeK1N5WSclZx772rO+66W90eflShoWH6atliDRvUXy+OeF13dejk75eAPORnTj/z3Ul6f9ZMPda7r6IbNNSB/fs0fcoEJcTv1LS4eX5+Bc5jt/ZxbQNMNW9OnK6oUFFPDM46x3Pjb+s0bdIExe/YoZdeyzrHM+n0abW/825dVbWaChUqpJ9//EHvjB6pxMRE9Xy8n59fAfKS3/3ZoaGhip0+2+1nS5cuU9DDNQLtA/xv3pysOd+AwcNUqnQZbfhtnaZOGq+dO7ZnL56SmZmpZ54crM2bNqpHrz6qHlVDf/75pzb8ts7Po8fFJJ48qWsbN1HXhx9VsYgIJezMOtYXv9N1rG/TxvUaPjjrWN+goU9p88YNih03RiEhIer8AMf6rGS37kmBsbgYC6wYavrUyaoeVUNvjnkn+z+e4sVL6MkhA7V65Qq1vLG1n0cITxz+3x+a9d4UDRr+rEa+/JzbfV8v/VLXXNtYTwx5Kvu2UqVKa0i/Htq6eaMaNoop6OE6lt3WheUAHJDT//74Q9Mmx+pfz72o55992t/DwSU6sG+vZkwZr35DntZdne7Pvr1ZC9d72JS4D1WiZKns769t0kynEk/q0w/nqutjfRQSElKgY3Yyu3UPMNWYcZNVspTrfa9Rk6bKzJTenTxB/f86GWXZ4kW6td0deqxXn+xtgoOD9PqIF3Tw4AFVqFDRX8NHPh3+3x+Kmz5FQ4Y/q9f/Nue75/6HdN8DWSfODhvwOIus+BDtA+yh1Y1t1LpNW0nSqyNe1Pd/HYg+r3CRIlq89BtFFnethn998xY6dPCgZs+cwQIrAaBqtSjVjW6Q631vvhPrPudrHKPMTGnG1InqO2CoSnECiqVoH2APLVu11o2tb5IkvfHqy1r73eo8t12x/Btt3Lhej/bsrbFvjSqoIcJLVatW19V5tO/6G25Ui1ZZn8z7zpuv6KcfvivIoRmH9gH+d1fHe92+v7ZxjAqHhWnU6y/rj0MHdfkVFbLvW/Wfb7V54wZ1e6yXJr4zuqCHCg/k9vsNCyusN197Kfv3O+PdyYqqUUvPv/y6goKC1KhJUx09cljvTZukjvfc7/bphvAO3QPso9WNrdW6Tda877VXXtL3ucz7pk2ZpBo1a2rEayMVFBSkJjHNdOTIYU2bEqt7O3dRKO+PtnZVtep57vO8cN739kjmfb5E+wB7GDthitt5Lo1jmiozM1NTJ03QwCFPqkSJkvp88Vdun3zd7Prm+uPQQc2dPZMFVmwsP3P6r5Z8qVvatVf3nheewxSska+8oEMHD+gKzmGylN3ax7UNMNXb493P8WzcpKkyJU2bNEFPDMk6x3Pg0OFuPxPT7Hr9749D+vKLBSywYmP53Z8dFBSkennMCWEt2gf439vjp+TSvUxNmzRBA4Y8qdKly+jLhZ/r++9Wa+78fyuqRs3sbW++tZ0/hoxLcHcn9/Y1ahyjsMKF9earFxzrm5Z1rO+FEa5jfUf+OtbX6V6O9VnJbt2TAmNxMTv+u6EAbNywQc2uu95tZaLrmjeXJP1n+bf+Gha8FPvOKDW/4UY1aNg4x30Z6em6rGgxt9uKhYdLkjLPZRbI+ADALka/+YZatW6jaxvnfL+E/S1d9JkKhYaq3Z15HyS98EK782rUvlrJZ87oTFKSL4cHAH5x4Q7I82rXuVqSdPTIYUlSenq6ihYt6rZNsfAISVLmuXM+HiGsMOHtUWre8kY1uDbn3zDBweziAWCWi73vhYSEuC2ucl6dq+vq8OH/+WpYKCC5zflq1f7rb5+jRwp6OABQIPL7N3/ymTMaM+oNPTFwiNvFBwhszPkAQIr4a46Xnp6efVty8hmNGzNSjz8xWBERkf4aGiwQecHvNzU1Vb/89INuuuU2t/Oabm13hxJPntSGDb/5aZQA4FsX+7s/NTVVP/24Vrfedrvb++Pt7e/UyZMntZ5Pdg1ozPsAmCa381zqXF1XknTk8OGsY3257N+sXYdjfYHo73P69PR0FS2W+3UN5ziHCYBD5eccz9xEFi/utk8UgSG3/dkAYJJc53x1suZ857v32acfqVGjJm6LqyBwnZ/DX3isr+2tfzvWd/tfx/rW/+anUaKgLF++XNu3b8/1q2nTptnbtWrVSgsWLNCmTZu0fPlyPfbYY7k+Xo8ePbR8+XJt2rRJCxYsUMuWLb0eI3vkDRUSEpzj0woKFQpVUFCQEhJ2+mlU8MaP36/Rzz9+r76Dnsz1/js63quff/hO3yxbrKTTp7V/7x5NnfCOatSqo/oNGxXwaJ0tKCjIqy8AvvXd6lVa+/0aDX3yKX8PBR7avHG9qlxZVV8t/lwPdrxVt7RoqN7d7tVPa/P+1F5J2vjbrypVuozCIyIKaKRm8LZ7tA/wnd/++4tCQ0NVqVIVSVKHTvdp6ZcL9cP3a5SUlKSd27dp5rtT1KJla1WsVNnPo8XFnJ/z9ctjzoeCQ/uAwPbfX39R1WrV/T0M5MOzTw7QjU3r6+5bW+qt119W4smT/7j9+nVZf/tUrMjfNVaje0BgmT5tskqVLpPj02Jgf88PH6ibrmugTre10pg3Lt4++A7tA+wjIyNDKSkp2rplk+LenaLrmrdUpcpVsu+Pmz5FpUqX1p0d7vHjKOGpC3+/M6ZN1vUtsn6/B/bvVVpamq6q6j5/v6palCTp990J/hiuY7G/Ewgc+/ZlvT9WrVbN7fZq1bPeL3fv3uWPYeESPD98oNo0a6COzPv8ivYB9rXu17/Oc7lg3pdjm//+oqpVq+V5P+zjn+b0d3W8V8u+XKgfz5/DtGObZk2fouYtb+QcJh+ge4B9rfvrHM+Kldzbl56ertOnT2vViuX6cuHn6vzAQ34aIS7FxfZnp6Wl6Y6bW6plTH11vvs2zY2broyMDD+O2LloH2BPF3YvPS1NW7ds1pVVq+md0W+oTYsYtYhpoIH9emnPnt3+HiryKbt9mzdpxrsXHOvbl/uxvqoc6/MJ9nd6ppC/B+CNgwcP6qefflKHDh38PZSAU+XKq7Rx4wa32zZv2qjMzEwO2gSglJQUjX/rdXXv2Vely5TVoYMHcmxzW/u7lZaappEvP5u9AmbN2lfrrQlTVahQQL8V2I6ZOUFBoX3eSUlJ0cjXX9Xj/Z5Q2bLldODAfn8PCR44/udRHT16WHPem6Ke/QarZKnSWvDJB3ph+CBNm/Nx9smVF1r3y49a8c0y9X5iqLF/+PsK/5rwNdrnmd0J8fpo/vu6u9N92Z/w0uPxfjqXeU5DnnhcmZmZkqSm1zXXa2+O8edQkQ8pKSkaO/p1Pdqrr8rkMedDwaF98DXa5zuff/Z/2rD+N709doK/h4J/UCw8Qvc/9IgaNmqiy4oW1ZZNGzVv1nvatHG9ps/5SGFhYTl+5vddCfr0w3m6s6Prbx9Yh/bB12ifdXYlxOvDeXM1fdb77AMLIMXCw9X5wUd0TaMmuuyyotq6eYPmzZ6hLZvWa+qs3NsH3+K/HvgS3bs0t7dprtOnT0mSYppdr1dHvZ193+5d8fpk/vua/N4cuhegbmt9ffbvt2mz5npt1DuSpMTERElSxN8+NKFYsWIKCQnhvCaL8V8PfI32WedU9vtjpNvtxYqF//X+eMIPo0J+hIeHq/NDj+iaa7P2eW7dlDXv27xxvabNZt5X0GgffI32eWZXQrzmfzBXHe/prPA8jvUs/PwzbdywXqPeHl/Ao4Mn/mlO/1jvfsrMzNSwgX2yz2GKaXa9XnmDc5h8gfbB12ifZ3YlxOujD95Xh3vuc2vfjm1b1a2La0Hp7j16q1v3Hv4YIi7RP7WvUuUq6jtgiGrUqqPMc+e0ZvUKvTt5gg4e2K+nnx/hpxE7F+2DL9E9z+xKiNeHH8xVh7/mfEePHlF6epq+/OIzVYuqoVfeGK3U1FRNiR2ngX176ePPvlThwoX9PWxcxK03XnCs77rmen30X8f6TmXty/77B6RnH+tL5FifleieZ4L9PQBvbNy4Uf/617/8PYyA9MBD3fTTD2s1a+Z7On78uLZt3aI3Xn1ZISEhCg4K6P+zMNL7cdNVKDRU93TJe1XSNSuXK/adUbq/a3eNmzpTL73+llJTUvT04H5KOXu2AEfrfEFB3n0B/4T2eee9d6cqNDRUDz7Uzd9DgRfOZWYq+cwZDf3Xy7q53Z1q3PR6vTRyrEqVLq0P587Msf2BfXv1+otPqWHjpup0f1c/jNjZvO0e7cPF0L5Ld+L4cT01dIAqVa6i/oOGZt/+6cfzNX/uLPUdMERT3puj50e8rt27EvTc00OzT1aAPc39a8537z/M+VBwaB98jfb5xvrf1umN10bo7o6d1PaWW/09HPyDmrXqqP/g4br+hhvVsFGMHnqkh0a8+bZ2J+zUt8sW59j+xInjenb4QFWsXFmPPzG44AdsALoHX6N91nnztRG6/Y67VLdetL+HgktQo1Yd9R30pK5r0UrXNGqiBx7uoZffGKPdCfFa/lXO9sH3aB98ie5dmonvxmnqzPc1/NmX9PvuXXpqcP/sT/QcM/JV3Xr7napTl+4FqknTZ2la3Dw99exL2r07QcMH9ecTW/2A/Z3wNdoHZM37+g16Utff0EoNGzXRg4/00IiRWfO+b5n3FTjaB1+jfZfuxPHjenLwE6pcuYoGXHCey4U2rF+nN994RXfe3Uk3tb2lgEcIT/zTnP7/Pp6v+e/PUp8nBmvS9Nl69qXX9PvuXXrhmWGcw+QDdA++Rvsu3Ynjx/XUkAGq/LdzPCWpylVVNWvex5o8fZZ6Pt5P89+frXcnT/TTSHEp/ql9t95+px56pIdiml2vpte30LCnn1fX7j21cMG/dWD/Pj+P3HloH3yJ7l26E8ePa/iQrDnfE391L/Nc1t/9585l6p3xU9Si5Y1q0/YWvTlmvA4dPKBlSxb5c8jIp8nvzdK7cfP09HMvafeuBD3JsT6/YH+nZwr5ewDwj/Z33qWEhHhNnjhe498Zo5CQEHXu8qBCQ8PyXPUZ9vTHoYP6cO5MPf/qKCUnJ0tK1pmk05Kks2fP6vTpUypWLFxj3nhZt91xt3r3H5z9s1dHN1CXu2/V0i8/19333O+fFwAABeTgwQOaNfM9jRw1RsnJyUpOTlbS6fPvl8k6depUjk9Bgz2d/z1dc22T7NtCQ0NVt35D7dmd4Lbt0SOH9fTgx1W23OV6eeRYhYSEFOhYAaCgJSUlacgTjystLU2Tp8/WZZcVlSSdPHlCE94epd79BqjrI1mfZtCwUWNVrFhZfXs+rB++X6Prmt/gz6EjD38cOqj5c2bqhQvmfEl/zflS/przhYfzNwwA/JP4+J0a0K+PGjeJ0Ysvv+rv4cADTZper8jixbV1yya1u7ND9u1nkpL01MA+Sk9L04Spcdl/+wCAib5auljbt23VCyNey/5U87PJyZKkpNOnVaxoMV1WlPfJQNG46fWKjCyubVs26bY7Ovh7OADgNzVr1ZEkRTdoqBo1a6t39we06j/fKOPcOe3YvlX/evEVnfrrE9DOf7BMUlKSihYrxvwgAJz//dZv0FA1a9VWz0ce0Mr/fKOq1apLkk6dOuW2fVJSkjIyMhRZvHiBjxUA7CAiMlKSstt3XlLS6b/eH0v4YVTw1Pl53/Ytm9SOeR8AgyUlJWlg/95KS0/TtBlzct2HmRC/U0MG9FWjxk303Isj/DBKeCKvOX2jJk01cexo9ew7QA89/Jgk6ZprG6tipcrq3+sR/bh2jZpdzzlMAJwrKSlJg/s/rvS0NE15b3aO/ZhFihRRnbr1JEmNmsSocJEimho7Xvd07qLSZcr6Y8jIp7za17pt7h8EddMtt2nOzHe1fesWVaxUuSCHCgAFJikpSYP691Z6Wpqmvjcnu3sREREKCgpSVI0aKlGyZPb21aNqqFTpMtqVEO+vIeMSZB/ru6ahatSqrZ4PP6CVy13H+k7ndawvkmN98D9bLrBy00035Wu7s3+dHIFLFxQUpEFDhqln78d1YP8BlStfTuHhEWrdopm6PNTN38PDJTh0cL9SU1P14tNDctw3+tUXNXHMSM1fsFTHjx1TzTpXu91/+RUVFFm8hPbv3VtQwzVCsAxdsgteoX2+d2B/1vvlsCEDc9z38gvPadQbr+uHX9b5YWS4VFdWjdK2LZty3J6ZmanU1NTs7xNPntQzgx9XSHCI3nhnsooWK1aQwzQG3YOnaJ/1UlNT9dSQJ3To4AFNi3tfZcuVy75v/769Sk1NVe06dd1+pvbVWXOEfXv3sMCKTR06kPU3zAu5zPnefPVFjR8zUl+t/tkPIzMX7YOnaJ9/HDiwX316PaYrr7pKY8ZOUKFCttwljnwKumCp/NTUVP3ryQE6dOigJk2fozJly/3DT8IbtA+eon0Fa/euXUpKSlLHO27Lcd89d92uFi1baVzsVD+MDN4IMvVjYvyM9sETdM/3atWuo6CgoOx9nWeSknR/h9tzbPdAp/a6vkUrvTV+sh9GCU/Vqn119u+3RcvWCg0N1e+7E9Si5Y3Z2/y+K+tk2quqVvfTKJ2J7sFTtK/gVa5cRaGhodq9a5datmqdffuuhKwPoqlatZq/hgZvMO8rcLQPnqJ91ktNTdWwQf118OABvTdrntt5LucdPHBAT/TpqSpXXqXRY8ZzrC9AXTinL3/5FVnnMNV2v66hVp3z5zDtVbPr/TFK56J98BTts15qaqqGD35Chw4d0Lt/O8czL7XrXK2MjAwdPHiQBVYCyIXtuximhdajffAE3bNeamqqnhzcX4cOHdD0OPc5X5HLLtMVFSrm/oOZmUpNSSmgUcIqtS881tcq92N9uznW5xN0zzO23MP0v//9TzVr1lR0dPQ/brd//359//33BTQqZypWLFw1a9WSJP3fpx8rJSVFd3fo5OdR4VJE1aytcVNnut127M+jeuW5p/Rwjz5q3PQ6lShZSpdddpm2b9ms9ne5fr+HDh5Q4skTuqJiHn+MwCNMbuEJ2ud7tWrX0Xtxc9xuO3r0qJ4ZPlS9+/TTddc399PIcKmuv+FGLftygdb98qOatWglKWvivWn9Ol3bpKkkKTn5jJ4d1k+nEhM1dupslSxV2p9DdjS6B0/RPmtlZGTohWeGaevmjYp9N05XXlXV7f7zOyC3btmsxjHNsm/ftmWLJKlCxUoFN1hckqhatTXhb3O+P/88qhHPPaVHevZRk6bX+Wlk5qJ98BTtK3h/Hj2qPj0fU0REpCZOnqrLLrvM30OCh35a+50ST57M/pSmjIwMjXjuSW3bsknjJs9Qlb/97QNr0T54ivYVrDvv7qhGTWLcblv73WrNnvmeRr8zXlWqXOWfgcEjP/3wnRITT6p23X/+7we+QfvgCbrnexvWr1NmZqYqVKysq+tFq2GjJm73//j9Gr0/e4Zef2ucKle+0k+jhKdcv99KCgsLU6MmTbX862V66OHHshcc+2rpYkVERiq6fgM/j9ZZ6B48RfsKXlhYmJrENNNXy5bo4e6u98elS75UZGRxNbjmGv8OEJfkp7VZ8746VzPvK2i0D56ifdbKyMjQs08N1ZbNGzVl+ixdlcuxnj//PKr+fR5TRESExk6coiIc6wtYF87pz5/DtG3rZjW64Bym7Vv/Oocpr4ss4THaB0/RPmtlZGTo+aezzvGclMs5nnlZv+6/CgoKUgWu+wooF7YvL18vXaygoCDVvrpeAY7MDLQPnqB71srIyNBzTw/V1s0bNfndWbl2r2Wr1vrs/z7R8WPHVLJUKUlS/M4dOnbsT9XhvTHgrD/fvkquY33ffuV+rO/rpYsVGRmp6AYc67MS3fOMLRdYqVmzpipVqqQRI0b843bLli0jRh7atHGDfv7pR9WqXVsZ6Rn68Ye1mj9vroY99YwqVc77j3fYT0REpBo2cj9h9tDBA5Kkq6pVU4OGjSRJd9/bRZ98MEfh4eFqFHOdjh37U3NnTlOJkiXV5pZ2BT5uJwtixS94gPb5XmRkpJrENHW77cCB/ZKkatWjdG2jxv4YFjxw3Q036up6DfT2yJfVo+8glSpdWgs+ma/TpxJ1f9dHJUkj/jVUO7Zu1sDhz+vE8T914vif2T8fVbOOwsLC/DV8x6F78BTts9aYka9q5X++Ve9+A3Uu45w2bViffV/VatVVqlRp3XTzrZoxbbLOZWSoXv0GOrB/v96bNklXVa2mGD76xbYiIiLVsHEec76qrjnf8ePH9Nuvv2T97z//VFp6mv7zzVeSpGsaNVbJkqUKcNTORvvgKdpnreTkZK1ZtVJS1kHL5LPJ+nrZUklS3eholSpVWn0f76nDh/+n194Ypb179mjvnj3ZP1+/wTX+GDby4dUXntYVFSqpVp2rVbRoMW3ZvEEfzJ6pGjVr66Zbsj6dfuzo17R6xXL16DNA586d0+aNrr99rqpaXcXCw/01fEeiffAU7bPW2eRkrVm9SpJ0YP8+nU0+q2++WiZJqluvnipUrJjjxMrzc4f61zRUGT7RzrZef+kZXXFFRdWsc7UuK1pMWzdv1IdzZiqqZm21uTnrGN7Zs8n68bvVkqRDB/Yr5exZrfw2a85X6+p6uvyKCn4bvxPRPniC7llrSP9eahzTTFWrRSk0LEw7tm/VB3PiFFWjplq2bqPQ0LAcn2p3vnvR9a/hk1xtbnC/v36/1aMUGhaqHdvO/35rqVXrrE+IfKxXP/Xt9bBeH/G8br/jbm3ZtFH//mS+nhj0pEJDOc5nJboHT9E+6yUnJ2vN6qx9ngf279PZs2f19Vd/7fOsF60KFSqqd59+6vloN4148Tndcdfd2rRxoz7+8AMNHjqc90cbe+3FZ3RFhYqqWTtrn+fWzRs1//y87xbXvO+H8/O+g1nzvhV/zftqM++zFO2Dp2iftUa98apW/Odb9ek/UOfOZWjjht+y76taLUqFChXSgL69dfjwYY147U3t27tH+/a6jvVF17+m4AeNfMnPnL5N21s1890pysg4p7rR9XXwwH7NfHeyrqpaTU04h8lytA+eon3Weuuvczwf7z9QGefOaePfzvE8lXhSr7z4nG657XZVqlxZKSmp+uWnH/Txh/PU8d7OKl26jB9Hj39ysfZJ0qMP3qvb7rhLV15VVecyzmnN6hVa+Nmn6nBP5xz7uuE92gdP0D1rjXbrXs45X3h4uLo+0kNLFi/UkAF99GjPx5Wamqqpk8bryquq6ubbbvff4HFRg/461letepRCQ0O1Y/tWzZvtfqyvR+9+6tMz61hfu7+O9X368XwNGMyxPqvRPc/YcoGVevXqadWqVfnaNjMz08ejcabQ0FCtWP6tZrw7VRkZGapRs5ZGvz1ON918i7+HBh/p1W+gSpYspSULF+jfH32g8IgIXV2vvnr2G6gSJUr6e3iOwopf8ATtA/IvODhYr42J1bSJb2vahDFKSUlRravr6q3Y6bqqWpQk6Zcfs3ZYjBv1So6ff///lujyK9gRaRW6B0/RPmut/X6NJOndyRP07uQJbvdNmj5LjRrH6LmXX9PsmdO16IvPNHP6FJUsWUpNmjbT4/0HsfCUA/yeEK8Xnxnqdtv57ydMnamSf1ukBZ6jffAU7bPWsWN/6smhg9xuO//9K6+NVOOYGG3fttXt9gut37zd94OER6pWi9LXyxbr04/eV8rZFJUtX17t7+6k7r36KjQ0VFLWp7tK0oypEzVj6kS3nx8/dWaOBanhHdoHT9E+ax07dkzPPDnY7bbz37/06hu68+6OBT8oWOKqqlH69qsv9e+P5iklJUVly5VXu7s66pGervadOHZMLz87zO3nzn//9Auv6rY7OhT0sB2N9sETdM9adepGa9niRTp4MOvDEq64oqI63ddFXR56hBPuHKBOvWgtXbxQh/76/V5eIev3+0DX7tm/3+gG1+itsbGaEjtOXy1ZpNJlyqrfgCHq8tDD/hy6I9E9eIr2We/4sT/11LDBbred/37Eq2/org6d1OCahho7YbJiJ4zV4i8XqkzZshoweKge6vZIwQ8Y+Va1WpS+WfbXvO9s1rzv9rs66pEL9nkeP3ZML//rb/O+v75/+sVX1Y55n2VoHzxF+6y19vusRaWmTpqgqZPcz3OZ+t5sVahQUTu2Zx3r+/t+UUn6Zf1Wn48RnsnPnP5fL72quXHvafHCzxT3XtY5TI1jmql3v4Gcw+QDtA+eon3W+uG7rHM8p02aoGl/a9/k6bNUq3YdlStfXnPi3tOfR4+oyGWXqVLlKnr2hRFqd8dd/hgy8ik/7atU5Up9+uE8/Xn0qDKVqSpXXqWBw57RPZ0f8OfQHYv2wRN0z1rnFxLOrXtTps9WoyYxKle+vKZMn61xY97UC/8arkKFCum65i00eNgzKlKkiD+GjXy6uu5fx/r++uD7KypUVKfOXfRgLsf6psaO07LFHOvzJbrnmaBMG76b7927Vzt37tRNN930j9udPXtWf/75pypWtP4C2TNptvtngYUSk9P9PQT40OWRoX59/sWbD3v187fXLWfRSBBI7NC+s7w1OtqRxBR/DwE+UrlUYb8+v7fdk2ifqezQvuNnMix/TNhDWsY5fw8BPlQuIrDnfBLtM5Ud2se8z7lOnknz9xDgQ+XZ34kA5e/2nUphXuBkpzjW52gVSvj3IgraB0/4u3uSdPQ0741OFsyZcY5VqliIX5+f/Z3wlB3adyaVczyd7GQy+zyd6origT3nk2ifqezQvlNn2efpVCnp/G6drEy4fz8Xm/2d8JS/23cimfM7nSw9gzm9k9E+BCJ/d0+STiYzL3Cyc/ZbygEWKVmUY32ByL9/reShSpUqqlKlykW3K1KkiE9CBADeCBYnNuHS0T4AgYruwVO0D0Cgon3wFO0DEKhoHzxF+wAEKtoHT9A9AIGK7sFTtA9AoKJ98BTtAxCoaB88RfsABCraB0/QPQCBiu55xpYLrABAIOODowAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7nmGBFQCwGEECAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7nkm2N8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfKeTvAQCA0wSJJb8AAOagewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe55hgRUAsFgwPQIAGITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITueYYFVgDAYqz4BQAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd3zTLC/BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvlLI3wMAAKcJYsEvAIBB6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5nWGAFACwWJIoEADAH3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fMMC6wAgMWC6REAwCB0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zzMssAIAFmPFLwCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieZ4L9PQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8JVC/h4AADhNEAt+AQAMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQvc8wwIrAGAxegQAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd8wwLrACAxYJZ8gsAYBC6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK655lgfw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHylkL8HAABOw3pfAACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3PsMAKAFiNIgEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3PMICKwBgsSCKBAAwCN0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd3zTLC/BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvlLI3wMAAKcJYsEvAIBB6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5nWGAFACxGjwAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7nmGBFQCwGkUCAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7nmEBVYAwGJBFAkAYBC6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK655lgfw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHylkL8HAABOE8SCXwAAg9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9z7DACgBYjB4BAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9zzDAisAYDWKBAAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd3zSLC/BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvlLI3wMAAKcJYskvAIBB6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5nWGAFACwWRI8AAAahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe55hgRUAsBg9AgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO55hgVWAMBqFAkAYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK655Fgfw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyFBVYAwGJBXv4/AAACibfdo30AgEBjx/bt2bNHL774ojp27Ki6deuqTZs2uW63atUqdezYUdHR0WrTpo1mzZqV63ZxcXFq06aNoqOj1alTJ61Zs8byMQMAAofdugcAgK/ZrX3M+QAAvsT+TgCAaezYPgAAfInuAQBMQ/sAACZhf6dnWGAFACwWFOTdFwAAgcTb7vmifZx0CQDwJTu2b+fOnVqxYoUqVqyoGjVq5LrN+vXr1a9fP9WqVUvTp09Xly5dNHr0aM2dO9dtu7i4OI0ZM0ZdunTR9OnTVaNGDfXp00ebNm2yfuAAgIBgt+4BAOBrdmsfcz4AgC+xvxMAYBo7to/zXAAAvmS37gEA4Gt2ax9zPgCAL9lxf2cgYIEVALBYkJdfVmMiBgDwJW+754v2cdIlAMCX7Ni+Nm3aaNWqVYqNjVX9+vVz3SY2NlY1a9bUyJEj1axZM/Xu3VsPPvigYmNjlZaWJklKTU3V5MmT1bVrV/Xu3VvNmjXTyJEjVb16dcXGxvpg5ACAQGC37gEA4Gt2ax9zPgCAL7G/EwBgGju2j/NcAAC+ZLfuSVzfAADwLbu1jzkfAMCX7Li/MxAU8vcAAAC+dX4iVr9+fWVmZioxMTHHNucnYnfccYeefvppbdiwQaNHj1ZISIi6deuWvd35idigQYNUv359ffbZZ+rTp48+/PBD1atXryBfFgAAeWrTpo3atm0rSXrxxRdzPVh24UmXQUFBatasmQ4fPqzY2Fh16dJFoaGhOU66lKSYmBht27ZNsbGxmjp1aoG+LgCAc6xfv/6Stm/QoME/3h8c/M9rKKempmrt2rUaPHiwgi5YZvrOO+/U3LlztW7dOsXExGjdunVKTExU+/bt3R67ffv2mjhxolJTUxUWFnZJYwcAwBf27NmjGTNmaOPGjdqxY4fKly+v5cuX59hu1apVGjt2rOLj41W2bFk9/PDD6t69e47t4uLiNHfuXB05ckQ1atTQ0KFD1aJFiwJ4JQAAJ2LOBwAwDe0DAMA7nOcCADAN1zcAAEzCnA8AYJpAOL+TBVYAwGo2W7KLiRgAwKcs6B4nXQIAAooF7evcufMlbb99+3avnm/v3r1KS0tT9erV3W4//31CQoJiYmIUHx/vdvt5UVFRSk1N1b59+3LcBwAwgM32d0qcdAkA8DEv28ecDwAQUNjf6dVYAAABiPNcLmnsAAAHsOGxPq5vAAD4lJftY84HAAgoNpzzBcL5nSywAgAWC/KySEzEAACBxNvuSZx0CQAILFa0r6CdPHlSkhQREeF2e3h4uEJCQrLvT0xMVEhIiIoVK+a2XWRkpNvjAADMYsf2cdIlAMCX7Ni+f8KcDwDgjUDrnkT7AADe4TwXznMBANPY7doGiesbAAC+5W37mPMBAAKJHY/1BcL5nSywAgAWC/KyR0zEAACBxNvu+QMnXQIAvGFF+z7++GPvHwQAgALibfs46RIAEGi8bR9zPgBAIGF/JwDANJznAgAwTaBd2yBxfQMAwDuBNu9jzgcA8IYV3bP6HM9AOL+TBVYAwHBMxAAA/sZJlwAA0+TnwnErFS9eXJJ06tQpt9tPnz6tjIyM7PsjIyOVkZGhpKQkt7lfYmKi2+MAAHApOOkSAGAa5nwAANPQPgCAaTjPBQAA3+L6BgCAPzHnAwCYpqDP8bTD+Z0ssAIAFvN2wS8mYgCAQGLFAs+cdAkACCQB9uEGkqQqVaooNDRUCQkJat26dfbtCQkJklw7HS/cKVm/fv3s7eLj4xUaGqrKlSsX4KgBAHYRiO3jpEsAgDcCrX3M+QAA3gi07km0DwDgHc5zAQCYhmsbAACm8bZ9zPkAAIEkEI/12eH8ThZYAQCreVkkJmIAgIASgDMxTroEAHglANsXFhamZs2aacmSJerRo4eCgrJexKJFi1S8eHFdc801kqRrr71WERERWrJkSXb7MjMztWTJEjVv3lxhYWH+egkAAH/ysn2cdAkACDgBNu9jzgcA8EqAdU+ifQAALwVg+zjPBQDglQC7tkHi+gYAgJcCbN7HnA8A4BULumfiOZ4ssAIAFgsKsJkYEzEAgDcCrXsSJ10CALxjx/YlJydr5cqVkqT9+/crOTlZS5culSRFR0erYsWK6t+/v7p27apnn31WHTp00IYNG/TBBx9o+PDh2U0LCwtT3759NXbsWJUqVUrR0dFasGCBdu7cqREjRvjt9QEA/Mvb9nHSJQAg0Nht3secDwDgS3brnkT7AAC+Zcf2XQznuQAAvBGI7eP6BgCANwKtfcz5AADesKJ7BX2Opx3O72SBFQCwWFBgzcOYiAEAvGLH7nHSJQDAl+zYvj///FODBg1yu+389yNHjlSnTp3UsGFDTZ48WWPHjtXChQtVrlw5DRs2TN27d3f7uR49ekiS5s2bp/HjxysqKkqTJ092OxEFAGAWO7bvYjjpEgDgDbu1jzkfAMCX7NY9ifYBAHzLju3jPBcAgC/ZsX0Xw/UNAABv2K19zPkAAL5kt+7lhx3O72SBFQBwOCZiAADTcNIlAMA0lSpV0vbt2y+6XatWrdSqVauLbtejR4/sBgIAEIg46RIA4CTM+QAApqF9AADTcJ4LAMA0XN8AAPh/9u48Tuu63v//c1gGRDZBMfeIgBQQlyNilhzhnEgzQzKjUlQsTdS0XCg165wvJUfPUVOk0jR3zQ6WSWmeUtTKMDeQLBVEEcsldkIBcX5/8GN0BBRm4Vo+93u3udlc12euz/sahnlwfa7ren2KxGM+AGioHF7fWVNXV1fX5HtShZav8m2pZktee6PUS6AFva9z25Lu/+mXljfp6/u8r0MzrWSNefPmZdiwYeu9bu0DsSS57777cvHFF2fWrFnp0aNHjjzyyIwZM2adr7nqqqty44035pVXXskHP/jBfO1rX8sBBxzQrGumNF73q7GqvbpkRamXQAvZqVu7ku6/qd1Lmr99sLEWLl9d6iXQQlatfrPUS6AF9ehU2Y/5Eu2jdDzuq16Ll68q9RJoQds63rmOt7/o8tZbb81f/vKXfOtb30ry1osuH3vssRx55JE59NBD6190eckll+TMM89s8AKUq666KhdffHFOPfXU+hddTpkyJTfddJMXoFS4pSs8LqhmSz3XV9W271raAVfl2D7YGP9Y5ndjNWtViaceY6N027J1SffveCeVbPlKr/GsZotfc8yzWm3XpbIf8yXaR+ksfd0xz2q14g1/ttVs646lPS92OR7v9P4GNsai17y+s5q9sdpj+mqmfdA4i1/zuKCavWmUQ9XaqoPn+t6pEl7facDKBhiwUt0MWKluJR+w8nITH4ht64EYpeGNdtXNgJXqVfIBK03sXqJ9lI4BK9XLgJXqVvIBK9pHBfO4r3oZsFLdSj5gpQyPd3rRJRvDgJXqZsBKdSv5gJUybB9sDANWqpsBK9Wr5ANWHO+kghmwUt0MWKleJR+won1UMANWqpcBK9Wt5G8yd7yTCmXASnUzYKW6aR80jgEr1c2AlepV8gErZXi8sxJe32nAygYYsFLdDFipbqUesPLMy6816et7b7tFM60ENo032lU3A1aqV6kHrDS1e4n2UToGrFQvA1aqW6kHrGgflczjvuplwEp1K/WAFcc7qVQGrFQ3A1aqW6kHrGgflcqAlepmwEr1KvWAFcc7qWQGrFQ3A1aqV6kHrGgflcyAleplwEp1K/WbzB3vpFIZsFLdDFipbtoHjWPASnUzYKV6lXrAiuOdjdOq1AsAAAAAAAAAAAAAAAAAAAAAAGgppR0HB1CFnDgKgCLRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b3GMWBlAzq09RNVzTq0bVvqJVDF/PagUrX3r4KqtlO3dqVeAlVK96hkW3VoXeol0GL82dJytI9K5nFf9Wrf2fFOWo72Uak6tWtV6iXQgjq1qy31Eqhi2kel2rqjB33AptM9KlmHWj/B1axDrcd9tAy/Oahkndo75lmtOsWfLS1H+6hUXbfwGkCgcbSPStVlC48LgE2ne43j1RUAzU2RACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt1rFCOtAAAAAAAAAAAAAAAAAAAAAICq1abUCwCoNjVGfgFQILoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS61zgGrAA0sxo9AqBAdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvcQxYAWhmegRAkegeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXuMYsALQ3BQJgCLRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b1GaVXqBQAAAAAAAAAAAAAAAAAAAAAAtJQ2pV4AQLWpMfILgALRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b3GMWAFoJnV6BEABaJ7ABSN9gFQNNoHQNFoHwBFonsAFI32AVA02gdA0WgfAEWie41jwApAM9MjAIpE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPcap1WpFwAAAAAAAAAAAAAAAAAAAAAA0FLalHoBANWmxsgvAApE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPcax4AVgGanSAAUie4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInuNYYBKwDNzMQvAIpE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPcax4AVgGamRwAUie4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInuNU6rUi8AAAAAAAAAAAAAAAAAAAAAAKCltCn1AgCqTY2RXwAUiO4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInuNY4BKwDNrCaKBEBx6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkehe4xiwAtDc9AiAItE9AIpG+wAoGu0DoGi0D4Ai0T0Aikb7ACga7QOgaLQPgCLRvUYxYKXAnn/++YwfPz4PP/xwamtrc9BBB+Wss85Khw4dSr00msHzzz+fq666Kk888USefvrpbLvttrnnnntKvSyAktK+6qV7AOunfdVL+wDWT/uql/YBrEv3qpv2AaxL+6qX7gGsn/ZVL+0DWD/tq17aB7Au3atu2gewLu2rXrpHpTFgpaCWLl2ao48+Oj169Mgll1ySxYsXZ8KECZk/f34uu+yyUi+PZvDMM89k6tSp2X333VNXV5clS5aUekmFYeAXlCftq266Vzq6B+VL+6qb9pWO9kH50r7qpn2lo31QnnSv+mlf6WgflCftq266Vzq6B+VL+6qb9pWO9kH50r7qpn2lo31QnnSv+mlf6WgflCftq266Vzq61zgGrBTULbfckgULFmTy5Mnp3r17kqR9+/Y55ZRTMnPmzPTv37/EK6Sphg4dmn/7t39Lkpx33nn53e9+V+IVFUeNIkFZ0r7qpnulo3tQvrSvumlf6WgflC/tq27aVzraB+VJ96qf9pWO9kF50r7qpnulo3tQvrSvumlf6WgflC/tq27aVzraB+VJ96qf9pWO9kF50r7qpnulo3uN06rUC6A07r///gwePLg+RMmaX2AdOnTI1KlTS7cwmk2rVv56l0pNE/8HtAztq266VzpN7Z72QcvRvuqmfaWjfVC+tK+6aV/p6B6UJ92rftpXOtoH5Un7qpvulY7jnVC+tK+6aV/paB+UL+2rbtpXOroH5Un3qp/2lY72QXnSvuqme6XjeGfj+IktqFmzZqVXr14NLmvTpk169uyZ2bNnl2hVANBytA+AotE+AIpG+wAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPKCdtSr0ASmPJkiXp1KnTOpd37tw5ixcvLsGKoIoUc2AXlD3tgxaie1C2tA9aiPZB2dI+aCHaB2VJ96AFaR+UJe2DFqJ7ULa0D1qI9kHZ0j5oIdoHZUn3oAVpH5Ql7YMWonuNYsAKQDPTIwCKRPcAKBrtA6BotA+AotE+AIpE9wAoGu0DoGi0D4Ci0T4AikT3GqdVqRdAaXTu3DlLly5d5/IlS5akS5cuJVgRVI+amqZ9AC1D+6BlNLV72gctR/ugZWgflC/tg5ahe1CedA9ajvZBedI+aBmOd0L50j5oGdoH5Uv7oGXoHpQn3YOWo31QnrQPWobjnY1jwEpB9erVK7Nnz25w2erVqzNnzpz06tWrRKuC6lDTxP8BLUP7oGU0tXvaBy1H+6BlaB+UL+2DlqF7UJ50D1qO9kF50j5oGY53QvnSPmgZ2gflS/ugZegelCfdg5ajfVCetA9ahuOdjWPASkEdcMABmTZtWhYsWFB/2b333pvly5dnyJAhJVwZALQM7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE9wAoGu0DykmbUi+A0hg1alRuuOGGjB07NieeeGKWLFmSCRMmZNiwYRkwYECpl0czeO2113LfffclSebNm5fXXnstd911V5JkwIAB2WGHHUq5vKpWU8yBXVD2tK+66V7p6B6UL+2rbtpXOtoH5Uv7qpv2lY72QXnSveqnfaWjfVCetK+66V7p6B6UL+2rbtpXOtoH5Uv7qpv2lY72QXnSveqnfaWjfVCetK+66V7p6F7j1NTV1dWVehGUxpw5czJ+/Pg88sgjadeuXYYPH55x48Zlyy23LPXSaAbz5s3LsGHD1nvd+eefn5EjR27mFRXHwuWrm/T1W3Vo3UwrAd5J+6qX7pVOU7uXaB+0JO2rXtpXOtoH5U37qpf2lY7jnVC+dK+6aV/paB+UL+2rXrpXOo53QnnTvuqlfaWjfVDetK96aV/pON4J5Uv3qpv2lY72QfnSvuqle6XjeGfjGLAC0MwWvda0IHXdongxAqByNbV7ifYBUFm0D4CicbwTgKLRPgCKxPFOAIpG+wAoGsc7ASga7QOgSBzvbJxWpV4AAAAAAAAAAAAAAAAAAAAAAEBLaVPqBQBUm5rUlHoJALDZ6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkehe4xiwAtDMavQIgALRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b3GMWAFoJnpEQBFonsAFI32AVA02gdA0WgfAEWiewAUjfYBUDTaB0DRaB8ARaJ7jWPACkBzUyQAikT3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE9xqlVakXAAAAAAAAAAAAAAAAAAAAAADQUtqUegEA1abGyC8ACkT3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE9xrHgBWAZlajRwAUiO4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInuNY4BKwDNTI8AKBLdA6BotA+AotE+AIpG+wAoknLs3vPPP5/x48fn4YcfTm1tbQ466KCcddZZ6dChQ6mXBkAVKMf2AUBL0j4Aikb7ACgS3WscA1YAAAAAAAAAAACAklq6dGmOPvro9OjRI5dcckkWL16cCRMmZP78+bnssstKvTwAAAAAAACgwrUq9QIoH5dddln69u1b/zF48OCMHj06Dz/8cIvu95e//GX69u2befPm1V/Wt2/fXHHFFRt9G/Pmzctll12Wl156qVnXNmDAgPd8cv6oo47Kcccd1+R9DR06NOedd16TbydJpk2blr59++bxxx9vlttjE9U08QPYbLRvXdrHJmtq97QPNivtW5f2scm0DyqG7q1L92gU3YOKoX3r0j4aRfugYmjfurSPTVZmxztvueWWLFiwIN///vczZMiQHHroofn2t7+du+++OzNnzmzenUEF0r51aR+brMzaB2yY7q1L92gU3YOKoX3r0j4aRfugYmjfurSPTeZ4Z6O0KfUCKC9t27bNDTfckCR5+eWXM2nSpBxzzDG57bbb0qdPn822jp/85CfZbrvtNnr7F198MRMnTsxHP/rRvO9972vBlcF7qylqUaBCaR80je5B5dE+aBrtg8qie9B02geVRfug6bQPKov2QdOUW/fuv//+DB48ON27d6+/bOjQoenQoUOmTp2a/v37l3B1UB60D5qm3NoHvDvdg6bTPqgs2gdNp31QWbQPmkb3GseAFRqoqanJHnvsUf/5gAEDMnTo0Nxyyy0bnES1cuXK1NbWNus63r4GqDQ1egQVRfugaXQPKo/2QdNoH1QW3YOm0z6oLNoHTad9UFm0D5qmObo3ffr0Tdp+4MCBG7xu1qxZGTFiRIPL2rRpk549e2b27NmNWR5UHe2DpvGYDyqL7kHTaR9UFu2DptM+qCzaB02je43TqtQLoLxtv/326datW+bNm5ck+frXv56Pf/zj+cMf/pCRI0emf//+mTx5cpJkxowZGTNmTPbcc8/sueeeOfHEE/PCCy80uL1ly5blG9/4Rvbee+/ss88++eY3v5nXXnttnf327ds3V1xxRYPL7rvvvnz+85/PHnvskb333juf+9zn8sgjj2TatGkZPXp0kuSzn/1s+vbtm759+zbY5/jx43PAAQekf//+OeSQQ/KrX/1qnX3+7//+b4YNG5YBAwbkiCOOyJ///OemffP+f//4xz9yzjnn5N///d+z++67Z+jQofnWt76VJUuWrHf7q6++OkOGDMnuu++eY489Ns8//3yD6+vq6nLNNdfkoIMOSv/+/TNkyJBceumlWb16dbOsF6DotK/ptA+gsmhf02kfQOXQvabTPYDKon1Np30AlUX7mk772FRHHHHEJn28myVLlqRTp07rXN65c+csXry4pe4CVDTtazrtA6gcutd0ugdQWbSv6bQPoLJoX9NpH7y3NqVeAOVt2bJlWbRoUXr06FF/2fz58/PNb34zX/7yl7PTTjule/fumTFjRr7whS9k8ODBufDCC1NXV5eJEyfmmGOOyZ133lk/Deycc87Jfffdl9NOOy0f+MAHcvvtt+fSSy99z3X86le/yte+9rUMGTIkF1xwQdq3b5/p06fnpZdeypAhQ3LeeeflP//zPzN+/Pj07t27/utWrVqVMWPG5O9//3tOOumk7LTTTvnNb36Tr33ta+ncuXM+8pGPJEmmTp2ac845J4ccckg+9alP5dlnn81XvvKVvPnmm03+Hi5atCgdO3bMWWedla5du+bFF1/M97///Zx44om58cYbG2w7derUbL311jn33HPz+uuv56KLLsoXv/jF/OpXv0rbtm2TJBMmTMhNN92U448/PnvvvXf++te/1sfoq1/9apPXS9O195sVKpr2aR+bRveg8mmf9rFptA8qm+7pHptO+6CyaZ/2sem0Dyqb9mkfm0b3oPJpn/axabQPKpvu6R6bTvugsmmf9rHptA8qm/ZpH5tG9xqpDv5/l156aV3//v3rVq1aVbdq1aq6efPm1Z1yyil1ffr0qbv//vvr6urq6saNG1fXp0+fuoceeqjB1x555JF1I0eOrFu9enX9ZS+//HLdgAED6m666aa6urq6ulmzZtX17du37sYbb2zwtYcffnhdnz596l544YX6y/r06VP3wx/+sK6urq5u9erVdQcccEDdkUceucG1//GPf6zr06dP3WOPPdbg8ttuu63uQx/6UN2TTz7Z4PITTzyx7jOf+Uz955/5zGfqDj/88Abb3HDDDXV9+vSpu/TSSze437X3fcyYMe+6zdutWrWq7k9/+lNdnz596p555pn6yw888MC6gQMH1s2fP7/+spkzZ9b16dOnbvLkyXV1dXV1c+fOrfvQhz5Ud9111zW4zR//+Md1AwcOrFu4cGFdXd2Gvx8ANKR92gdQNNqnfQBFonu6B1A02qd9AEWjfdpHeXj88cc36ePdDB48uG7ChAnrXH7YYYfVnXbaaS11F6BiaJ/2ARSJ7ukeQNFon/YBFI32aR+USqtSD3ihvKxcuTL9+vVLv379MnTo0Dz44IM577zz8tGPfrR+m06dOmWfffap//z111/PI488koMOOihvvvlm3njjjbzxxhvp1q1b+vTpkxkzZiRJZsyYkbq6unz84x9vsM+Pfexj77qmOXPm5KWXXspnPvOZTb4/v/vd7/LBD34wvXv3rl/XG2+8kf333z9PPvlkVq9endWrV+fPf/5zhg8f3uBr37nOxqqrq8v111+fQw45JHvssUf69euXL3zhC0mS5557rsG2gwYNSrdu3eo/79evX3bcccf67+GDDz6YN998MwcddFCD+/PhD384r732Wp555plmWTNAkWjfW7QPoBi07y3aB1D9dO8tugdQDNr3Fu0DKAbte4v2USoDBw7cpI9306tXr8yePbvBZatXr86cOXPSq1evlrwbUDG07y3aB1D9dO8tugdQDNr3Fu0DKAbte4v2webTptQLoLy0bds2N998c2pqarLVVltlu+22S6tWDefwdO/evcHnixcvzurVq3PhhRfmwgsvXOc2O3bsmCR59dVX06pVq2y11VYNrt96663fdU2LFi1Kkmy77babeneyYMGCPP300+nXr996r3/11VfTunXrvPHGG+vcr27duq1z3xvjuuuuy/nnn59jjjkmH/7wh9O1a9e8/PLLOfnkk7NixYoG275zDcma78+rr76aJJk/f36SZP/991/vvv72t781eb0ARaN9b9E+gGLQvrdoH0D107236B5AMWjfW7QPoBi07y3aRzU44IADcvnll2fBggX1L+i99957s3z58gwZMqTEq4PyoH1v0T6A6qd7b9E9gGLQvrdoH0AxaN9btA82HwNWaKCmpiYDBgx4z23erlOnTmnVqlWOO+64dSZmJcmWW26ZJNlmm23y5ptvZuHChQ0mWv3jH/941/2tjdfLL7+8Uffh7bp06ZLevXvn/PPPX+/13bp1S+vWrdOmTZv6X/RrLViwIG+++eYm7/Od7rzzzgwZMiRf//rX6y/74x//uN5t37mGZM33Z9ddd02y5v4kyY033ph27dqts+2OO+7Y5PUCFI32vUX7AIpB+96ifQDVT/feonsAxaB9b9E+gGLQvrdoH9Vg1KhRueGGGzJ27NiceOKJWbJkSSZMmJBhw4a95991KArte4v2AVQ/3XuL7gEUg/a9RfsAikH73qJ9sPkYsEKTdejQIXvuuWdmzZqVM844Y4Pb7b777qmpqcldd92Vz3/+8/WX33333e96+z179sz222+fyZMn59BDD13vNm3btk2SdaZn7b///pk6dWq23nrrbLfddhvcR79+/fLrX/86X/ziF+svu+uuu951XRvr9ddfX2ei2e23377ebR966KEsXLiwPsB//vOfM2/evAwcODBJ8uEPfzg1NTWZP3/+esMPwOahfe9O+wCqj/a9O+0DqC669+50D6D6aN+70z6A6qN97077KKXOnTvn2muvzfjx43PqqaemXbt2GT58eMaNG1fqpUFF0753p30A1UX33p3uAVQf7Xt32gdQfbTv3WkfvDcDVmgWX//613PUUUflpJNOyqGHHpqtttoqr776aqZNm5bBgwfn4IMPTq9evTJ8+PBccMEFWbVqVXr27Jnbb7/9Pad41dTUZNy4cTnttNPy5S9/OZ/+9KezxRZbZMaMGXn/+9+fgw8+OO9///vTunXr3HbbbamtrU2bNm0yYMCAfOpTn8rkyZNz1FFH5dhjj02vXr3yz3/+M88880xefPHF/L//9/+SJGPHjs0JJ5yQ008/PZ/61KcyZ86cXHfddWnTZuP+isyfP3+98Ro8eHA+8pGP5Oqrr87VV1+dvn375re//W3+9Kc/rfd2OnfunOOOOy5jx47Na6+9losvvjg77bRTDjnkkCTJ+9///hx77LH5xje+kaeffjp77rln6urqMnfu3Nxzzz35/ve/n9ra2o1aMwBNo33aB1A02qd9AEWie7oHUDTap30ARaN92kf56tmzZ6666qpSLwOqjvZpH0CR6J7uARSN9mkfQNFon/ZBUxiwQrPYfffd85Of/CSXXnppvvnNb+a1117Ltttum3322Sd9+/at3+473/lOvvOd7+R73/teWrdunY9//OM59dRTc/bZZ7/r7X/84x/PD3/4w0yaNCmnn356amtr07dv3+y3335Jkm7duuW8887Lj370o0yZMiVvvPFGnnrqqdTW1ubqq6/OpEmTcvXVV+fll19O586d06dPn4wcObL+9v/1X/813/nOdzJp0qTcfffd2XXXXXPZZZfls5/97Ebd/7/85S859dRT17n8Jz/5SU466aQsWrQoP/zhD/PGG2/kox/9aC666KJ85jOfWWf7f/3Xf8373//+/Od//mcWLlyYvffeO//xH/9RP80sScaNG5f3v//9ufnmm3PFFVekXbt22XnnnXPggQdudDwBaDrt0z6AotE+7QMoEt3TPYCi0T7tAyga7dM+gKLRPu0DKBLd0z2AotE+7QMoGu3TPmiKmrq6urpSLwIAAAAAAAAAAAAAAAAAAAAAoCW0KvUCAAAAAAAAAAAAAAAAAAAAAABaigErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAADGiTWBAAEAAElEQVQAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhabUq9AIBqs8WeJzfp6197bGIzrQQAWl5Tu5doHwCVRfsAKBrHOwEoGu0DoEgc7wSgaLQPgKJxvBOAotE+AIrE8c7GaVXqBQAAAAAAAAAAAAAAAAAAAAAAtJQ2pV4AQNWpMbsKgALRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b1GMWAFoLnV1JR6BQCw+egeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXqMYsALQ3Ez8AqBIdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvUQxYAWhuJn4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkutcoxtIAAAAAAAAAAAAAAAAAAAAAAFWrTakXAFB1asyuAqBAdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvUQxYAWhuNTWlXgEAbD66B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkutcoBqwANDcTvwAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdaxTfNQAAAAAAAAAAAAAAAAAAAACgarUp9QIAqk5NTalXAACbj+4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInuNYoBKwDNraZVqVcAAJuP7gFQNNoHQNFoHwBFo30AFInuAVA02gdA0WgfAEWjfQAUie41igErAM3NxC8AikT3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE9xrFgBWA5mbiFwBFonsAFI32AVA02gdA0WgfAEWiewAUjfYBUDTaB0DRaB8ARaJ7jeK7BgAAAAAAAAAAAAAAAAAAAABUrTalXgBA1ampKfUKGpg2bVpGjx69zuW9e/fOlClT6j9//vnnM378+Dz88MOpra3NQQcdlLPOOisdOnRo8HX3339/Lr744syaNSvbbLNNRo8enWOOOaal7wYA5arMugcALU77ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG9RjFgBaC51bQq9QrWa/z48endu3f95+3bt6///0uXLs3RRx+dHj165JJLLsnixYszYcKEzJ8/P5dddln9dtOnT8/YsWNzyCGHZNy4cZkxY0YuuOCCtG7dOkcdddRmvT8AlIky7R4AtBjtA6BotA+AotE+AIpE9wAoGu0DoGi0D4Ci0T4AikT3GsV3jY0yb9689O3bN3379i31UjaL2267LX379jUwgsapadW0jxbSu3fv7LHHHvUfH/rQh+qvu+WWW7JgwYJ8//vfz5AhQ3LooYfm29/+du6+++7MnDmzfruJEyemT58+Of/88zN48OAcf/zx+fznP5+JEydm1apVLbZ2KAXtg43U1O55IAdlQfdgE2gfVAXtg02ge1AVtA82gfZBVdA+2EiOd0LV0D7YSNoHVUH3YBPoHlQF7YNNoH1QFbQPNpLjnY3SptQL4L1dc801Wbp0aQ477LDsuOOOpV7OOv7617/ml7/8ZWbOnJm5c+dmwYIFWbVqVbbeeusMHDgwo0aNyn777Vey9b366qu59dZb8+CDD+a5557LokWL0rZt22y33XbZfffdc9BBB+WjH/1oWrWq7l8CX//61/Ozn/0s559/fkaOHLnO9atXr87NN9+cn/3sZ3n22WdTU1OTnj17ZuTIkfnc5z633u/Pbbfdlm984xs57LDDMmHChM1xNwph+vTpm7T9wIEDm7zP+++/P4MHD0737t3rLxs6dGg6dOiQqVOnpn///lm5cmUefPDBnHbaaampqanf7pOf/GSuv/76PPbYYxk0aFCT1wKJ9jWV9q3xbu174okn8sgjj2TmzJmZOXNmnnvuudTV1eXkk0/OKaecssHbnDZtWkaPHp1Bgwbl+uuvb+m7ABSE7jWN7q2xoe6tXLkyv/vd7/LAAw9k+vTpef7557NixYp06dIl/fv3z8iRIzN8+PD13ua8efMybNiw7LDDDrnnnns2110BCkD7mkb71thQ+15//fXcdNNNeeKJJ/L0009n/vz5Wbp0abbccsv06tUrw4cPz+c+97m0a9dundt0vBNoKdrXNNq3xns91/dO11xzTc4///wk2eDxTI/7gJaifU2jfWu8W/uGDh2aF1988V2//le/+lV69erV4DKP+4CWon1No31rbMzjvpUrV+bmm2/OXXfdlWeffTbLly9Pt27d8sEPfjBDhw7NF77whQbbe50L0BJ0r2l0b40Nde+yyy7LxIkTN+o2TjnllJx88sn1n+se0FK0r2m0b433esw3Z86cXHPNNfnjH/+Yv//976mrq8s222yTvfbaK6NHj87uu+++ztdoH9BStK9ptG+N92rf3Llz86Mf/Sh/+MMf8vLLL2eLLbZInz59cvjhh2fEiBHrvU3to7kYsFIBrrvuurz44osZNGhQWcbonnvuyRVXXJGampp069Ytu+yyS1atWpUXX3wxd911V+66664cddRROffcczf72q666qpceumlef3115Mk73vf+9K3b9+sWLEiL774YmbPnp2f/exn+dCHPpTrr78+nTt33uxrLAcrV67Ml7/85fz+979PkvTs2TNt27bNn//858ycOTP33HNPfvCDH6Rt27YlXmmFaFXz3tu8iyOOOGKTtn/qqac2aruxY8dm4cKF2WqrrTJs2LCcfvrp6dq1a5Jk1qxZ6/yjo02bNunZs2dmz56dZM0/WFatWrXOC5DWfj579mwDVmg22td42rdxzj333Pz1r38t9TKqQxO71xLWPmB+p969e2fKlCn1nz///PMZP358Hn744dTW1uaggw7KWWedlQ4dOjT4uvvvvz8XX3xxZs2alW222SajR4/OMccc09J3gwLRvcbTvfc2adKkfP/730+y5t/4O++8c9q3b5/nn38+U6dOzdSpU/Oxj30s//M//5Pa2toSr7ZClGH7oNJoX+Np33tbtGhR/uu//itJ0qFDh/To0SPbb799Xn755Tz66KN59NFHc+utt+bHP/5xtt122xKvtkJoHzSZ9jWe9jXO3Llzc8kll5R6GZVL+6DJtK/xtG/T9OnTJx07dlzvdVtsscVmXk2F0j1oFtrXeNq38V544YV88YtfzHPPPZdWrVqlZ8+e2XHHHfPqq6/mD3/4Q+bOnbvOgBXWQ/ugyXSv8XTvvW233XbZa6+9Nnj9okWL8uyzzyZJ9t577821rMqmfdBk2td42rdx7rnnnpx66qlZuXJl2rZtm5122ilt2rTJCy+8kDvuuCNTpkzJueeemyOPPLLUS60M2gdNpn2Np30b5957781Xv/rVvPbaa2nXrl169+6d5cuX509/+lP+9Kc/ZerUqbnooouqfghNs9C9RjFghSbba6+9cvHFF2fw4MHp1q1b/eWvvfZarrrqqlx22WW5/vrrs88++2zwrNgt4bvf/W6uvfba1NTU5Atf+EKOPfbY7LTTTvXXr1q1KtOmTcuVV16ZP/7xj1myZElhY/S9730vv//979O5c+dMmjQp++yzT5Lk6aefzvHHH5/f/e53mThxYr761a+WeKUVoqa8ot2pU6eMGTMmgwYNSocOHTJ9+vRcccUVefzxxzN58uTU1tZmyZIl6dSp0zpf27lz5yxevDhJ6v/7zu06duyY1q1b118PRaB9lW+nnXbKBz7wgfTr1y/9+/fP5ZdfnoceeqjUy6pMZda9txs/fnx69+5d/3n79u3r///SpUtz9NFHp0ePHrnkkkuyePHiTJgwIfPnz89ll11Wv9306dMzduzYHHLIIRk3blxmzJiRCy64IK1bt85RRx21We8PlIruVba6urrsueee+cIXvpChQ4dmyy23TLLm+/PjH/84//M//5O77747l19+ucd8G6uM2wc0D+2rbB06dMjZZ5+d/fbbL3369Glw3R//+MecfvrpmT17dr71rW/lBz/4QYlWWWG0D6qe9lWXurq6nHPOOVm5cmUOPPDA3HvvvaVeUuXRPqh62lc9zj333Oy7776lXkZl0z0oBO2rfIsXL85RRx2Vv//97/nCF76Qk08+ucGf5YIFCzJjxowSrrCCaB9UPd2rbIcffngOP/zwDV4/fvz4PPvss9lhhx0yePDgzbiyCqZ9UPW0r7L985//zNe//vWsXLkyBxxwQL773e9mm222SZIsW7YsEyZMyE9/+tOcf/75OeCAA7LzzjuXeMUVQPug6mlfZXvxxRfrh6sMGzYs559/frp06ZIkefLJJ3PiiSfmzjvvTN++fXPiiSeWeLUVQPcaxYAVmmxDB6a22GKLnHzyyXn88cfzwAMP5K677tpsMbrrrrty7bXXJkkmTJiQESNGrLNN27Zt85GPfCQf+chH8tOf/jRt27bdLGsrNwsWLMj111+fJDnzzDPrh6ska870M378+Bx33HG55pprcuyxx6Zr164lWmkFqWnaxK9bb721mRayxm677Zbddtut/vN99903/fr1y5gxYzJlypSMHDmyWfcHRaB9lW/ixIkNPr/yyitLtJIq0MTutaTevXtnjz32WO91t9xySxYsWJDJkyene/fuSdYMYDnllFMyc+bM9O/fP8man5U+ffrk/PPPT01NTQYPHpxXXnklEydOzKhRowr994ji0L3KdvTRR693cErbtm1z/PHHZ+7cufnpT3+aW265JaeeeqopzxujjNsHNA/tq2ydO3fO0Ucfvd7rBg8enHPOOSdf/epXc99992X58uXp0KHDZl5hBdI+qHraV11uvvnmPPTQQznuuOOyxRZbGLDSGNoHVU/74G10DwpB+yrff/3Xf+Xvf/97jjzyyHzzm99c5/pu3brlX//1Xzf/wiqR9kHV073qtXLlytxxxx1JkpEjR6bG7/SN4/sEVU/7KtvDDz+cxYsXp6amJhdeeGGD9+117Ngx//Ef/5GpU6fm1Vdfzf33358jjzyydIutFNoHVU/7KtsNN9yQ1157LVtttVUmTJjQYMjMbrvtlvPOOy9jx47NFVdckaOOOiodO3Ys4WorgO41igErZey2227LN77xjfrPR48e3eD6ww47LBMmTGj07b/++uu59dZbc/fdd+eZZ57JP//5z2y99db5wAc+kH//93/Ppz/96dTW1jb69tf64Ac/mAceeCCvvfZak29rY9TV1eXSSy9Nknzyk59cb4je6TOf+cxG3/6cOXPyf//3f3nggQcyb968/OMf/0i7du3ywQ9+MAcffHBGjRq13u/bm2++mcmTJ+f222/P008/nX/+85/p2LFjunfvnoEDB+ZTn/rUOmF/8MEHc8MNN2T69OlZuHBh2rdvn6222ip9+/bNgQce+K7TmTfWPffckxUrVqRDhw751Kc+tc71H/nIR7LTTjvlhRdeyD333GMYx2YwcODAFt/H/vvvn65du+aJJ57IyJEj07lz5yxdunSd7ZYsWZJddtklSeqnwL1zu2XLlmX16tX110NTaF/jaB+Vbvr06Zu0fXO08v7778/gwYPrh6skydChQ9OhQ4dMnTo1/fv3z8qVK/Pggw/mtNNOa/Bk7Cc/+clcf/31eeyxxzJo0KAmr4Xi0r3G0b1N8/ap3OszZMiQ/PSnP82iRYuyYMGCbL311k3eJ8CGaF/jaF/z6tWrV/361x4XBWgp2tc42td4f/vb3/Lf//3f2XnnnfOVr3zFYGlgs9O+xtE+gMqlfY2jfZvmH//4R37xi1+kbdu2Oemkk5p8ewCNpXuNo3vN57e//W0WLVqUVq1aeU9DBZs2bdo6vz+SNSfUmzJlSv3nzz//fMaPH5+HH344tbW1Oeigg3LWWWet8/zu/fffn4svvjizZs3KNttsk9GjR+eYY45p6btBQWhf42jfpln759KlS5f1nhS9devW2XHHHfPqq6/mjTfeaPL+AN6N9jWO9m2aRx55JMma966/fbjKWmvf27V8+fL89re/Xe/73qGpDFgpY927d89ee+2VmTNnZuXKlenTp0+DSUvvf//7G33bL7zwQo4//vg8++yzSZLtt98+O+20U15++eX84Q9/yO9///t89KMfzY477tik+/Dmm2/m0UcfTZL079+/Sbe1sZ544onMnj07STZ4ptKmuPjii/PrX/86HTp0yDbbbJO+fftmwYIFeeyxx/LYY4/l//7v/3LVVVetE6Rx48blF7/4RZKkR48e2WmnnbJs2bL8/e9/z+zZs7Nq1aoGMfrpT3+ac889N8mas65+8IMfTF1dXV566aX85je/yRNPPNEsMXrssceSJAMGDEi7du3Wu80+++yTF154IY899piDkRujpnLO+L72zeK9evWq/3uz1urVqzNnzpwMHTo0SbLzzjunbdu2mT17dg488MD67dZ+3do3p0BTaF/jaB8l1QzdO+KIIzZp+6eeemqjths7dmwWLlyYrbbaKsOGDcvpp59ef+B51qxZ6xy0aNOmTXr27Fn/92nu3LlZtWrVOo1b+/ns2bMNWKFJdK9xdK95vf766/X/v3379i2+v6pQQY/5oNxoX+NoX/N6+OGHkyQ77rhjttpqqxbfX1XQPmg07Wsc7Wu8b37zm/nnP/+Zyy+/3GO8ptA+aDTtaxzta7yf/OQn+fGPf5zXXnst3bt3z5577plDDz3UCWI2he5Bk2hf42jfprnvvvuyatWqDBgwIN26dctvfvOb/PrXv84rr7ySLl26ZK+99sqnP/3pdOrUqcn7KgTtg0bTvcbRveYzefLkJMmHP/zhbL/99i26r6pSpu0bP358evfuXf/5249pL126NEcffXR69OiRSy65JIsXL86ECRMyf/78XHbZZfXbTZ8+PWPHjs0hhxyScePGZcaMGbngggvSunXrHHXUUZv1/lCdtK9xtG/T7LrrrqmpqcmiRYsye/bsdV63vmjRojzzzDNJkt13373J+yuEMm0fVALtaxzt2zSLFi1Kkmy77bbrvb6mpiY9evTIc889l0ceecSAlfeie41iwEoZGzJkSIYMGZKhQ4fmxRdfzLnnnpt99923ybf7+uuv54QTTsizzz6bPn365Pzzz28Qivnz5+e2225r0pk7ly1bljlz5uRHP/pRpk+fng984AObbQrs2vh16tSpRQJ46KGH5otf/GIGDBhQP5wiWfMG27PPPjsPPfRQrrnmmhx//PH11/3lL3/JL37xi3Ts2DGTJk1q8OdYV1eXhx9+OK+++mr9ZatXr85///d/J0nOPffcfO5zn0ubNm0a7Ov3v//9Jq17woQJ650O99xzzyVJdtlllw1+7U477ZRkzaSztxs5cqSBK+vztp+LcvXAAw9k0aJF9Q+uDzjggFx++eVZsGBB/Rnu77333ixfvjxDhgxJktTW1mbw4MG58847c9xxx9X//E+ZMiVdunTJHnvsUZL7QnXRvsbRvvXbUPuaYt99993o4R6FUYbd69SpU8aMGZNBgwalQ4cOmT59eq644oo8/vjjmTx5cmpra7NkyZL1vrioc+fOWbx4cZLU//ed23Xs2DGtW7euvx4aS/caR/fWr7HdW3vml379+jU4AJ6seeO57q1HGbYPKoX2NY72rd+mtG/VqlV55ZVX8n//93+55JJL0rZt2/onAt/O8c4N0D5oNO1rHO1bv/dq3+TJk/O73/0uI0eOzH777bdRt+lx3wZoHzSa9jWO9q3fxjzu++Uvf7nO55dccknGjx+fgw46aJ3tPe5bD92DJtG+xtG+9dtQ+2bMmJEked/73pevfOUr+fWvf93g+l//+tf54Q9/mEmTJmXPPfdscJ3XuayH9kGj6V7j6N76berrXF566aX6fXz6059e7za6twFl2r7evXtv8P0Ht9xySxYsWJDJkyene/fuSdYMYDnllFMyc+bM+r9LEydOrP+9UVNTk8GDB+eVV17JxIkTM2rUqLRt23Zz3R2qlPY1jvat34bat8suu+Rzn/tcbrrppowdOzbjxo3LXnvtlTZt2uTJJ5/Mf//3f2fZsmUZOXJk9tprrwZfq30bUGbtmzZtWkaPHr3O5b17965/DW+SPP/88xk/fnwefvjh1NbW5qCDDspZZ521zu+C+++/PxdffHFmzZqVbbbZJqNHj95sf7+pftrXONq3fhtq39r3aL388svr/bq6urq88sorSVI/kGct7VuPMutepTBgpYB++tOfZvbs2dlqq61yzTXX1B9wWKt79+750pe+tMm3u2TJkuyzzz4NLuvQoUO+/OUv50tf+tI6b9RqKS+99FKSZIcddmgQi+byb//2b+u9vFevXrngggvysY99LD/72c8axGjtL/HBgwev8w+Kmpqadb5vCxYsyKJFi9K5c+f1Ts7t1avXOhMpG2vtG4Pf7ew9a6/zJuKNVGYTv84444zsuOOO6d+/f7bccstMnz49V155ZXbdddccfPDBSZJRo0blhhtuyNixY3PiiSdmyZIlmTBhQoYNG5YBAwbU39ZJJ52UI488MmeffXZGjBiRGTNm5KabbsqZZ565zoQ7KCfa1zTV1j6aWTN079Zbb22Ghbxlt912y2677Vb/+b777pt+/fplzJgxmTJlihfOUvV0r2mK1L277747U6dOTZJ8+ctfbvH9VY0ye8wHaF9TVXP7xo4dm9/+9rcNLjvwwANz0kknNTjmxXvQPig72tc01di+V155JRMmTEj37t0zbty4ZrvdwtI+KDva1zTV2L599tknX/nKVzJgwIBst912efPNN/PEE09k0qRJeeihh/K1r30tHTt2zEc/+tFm22fV0j0oS9rXNNXWvrVvdJg6dWpWrVqVo48+Oscee2y6d++eGTNm5D/+4z/y9NNP58QTT8wdd9yRbbbZpln2W7W0D8qO7jVNtXVvQ2677ba8+eab6dq16wbvMxvQxPZNnz59k7YfOHBgk/aXrHnj+ODBgxv8Phg6dGg6dOiQqVOnpn///lm5cmUefPDBnHbaaQ3+bn3yk5/M9ddfn8ceeyyDBg1q8lqgJWhf01Rj+84777z07NkzN9xwQ0488cQG1+2www757ne/6/Xvm6JMH/eNHz8+vXv3rv+8ffv29f9/6dKlOfroo9OjR49ccsklWbx4cSZMmJD58+fnsssuq99u+vTpGTt2bA455JCMGzcuM2bMyAUXXJDWrVuv92cVyoX2NU21tW/gwIGZOXNmfv/732fp0qXrnBR76tSpWb58eRLvad8oZdq9cmfASgHdfffdSZIjjjhinRA1RevWresnIS5cuDB/+9vfsnz58vz617/OgAEDNtuBrGXLliVJk6aVvZf58+fnl7/8ZWbMmJH58+dnxYoVqaurq79+zpw5ef311+v/obv99tsnWfOP2BdeeCE77bTTu95+9+7d0759+yxdujT33XdfhgwZ0mL35fXXX0+Sd53O265duwbb8h7KbOLX2omW1113XVasWJFtt902hx9+eE4++eT6oSidO3fOtddem/Hjx+fUU09Nu3btMnz48HVehLvnnntm0qRJufjii3PHHXekR48eOf300026pOxpX9NVU/toZs3QveZ4Qu297L///unatWueeOKJjBw5Mp07d87SpUvX2W7JkiXZZZddkrw1ZO6d2y1btiyrV69+1wF1UEq613RF6N4zzzyTb3zjG0nWvLDgYx/72GZfQ8Uqs8d8gPY1h2pt3wc/+MEsXLgwK1asyN/+9rcsXLgwf/rTn3LHHXekb9++BgZvrDJrnzP7gPY1h2pr37e//e0sWbIkF110Ubp27dqi+yqEMmsfoH3Nodra91//9V/rXLbffvtl0KBBOfHEE3PfffflO9/5Tu66664WXUdV0D0oS9rXdNXUvrVvJli1alUOPvjgnH322fXX/cu//EuuvPLKfOxjH8vChQtz7bXX5owzzmixtVQF7YOyo3tNV03dW5+6urr87Gc/S7LmNS6e49tETWzfEUccsUnbb+zZ5MeOHZuFCxdmq622yrBhw3L66afXH9+eNWtWRowY0WD7Nm3apGfPnpk9e3aSZO7cuVm1atU6b/Jc+/ns2bMNWKFsaV/TVVv7Xn/99bz44otZvHhxWrdunR122CHt27fP3Llz8+KLL2by5MnZY489nLB2Y5Xp477evXtnjz32WO91t9xySxYsWJDJkyfX/15o3759TjnllMycOTP9+/dPkkycODF9+vTJ+eefn5qamgwePDivvPJKJk6cmFGjRr3r+0OhlLSv6aqpfZ/73Ofyk5/8JAsWLMjpp5+eCRMmpFu3bkmSRx99NN/+9rfrt/We9o1Qpt0rdwasFNDTTz+dZM2ghOa05ZZb5uabb67//PXXX89NN92Uiy66KCeffHIuvfTSzfKGrbVTxdY+qdTc7rrrrnzjG99419uvq6vL4sWL62O0xx57ZNCgQXnooYcyfPjw7L333tlnn32yxx57ZO+9986WW27Z4OtbtWqVMWPGZNKkSTn++OPTp0+f7Lffftljjz2yzz77NOsZBtaucdWqVRvcZsWKFQ22pbKccMIJOeGEE95zu549e+aqq656z+2GDBli8AEVR/uaptraR7GtnQbbq1ev+ifa1lq9enXmzJmToUOHJkl23nnntG3bNrNnz86BBx5Yv93ar3OQmnKle01ThO7NnTs3Y8aMybJlyzJo0KCMHz++RfcH0NK0r2mquX1f+9rXGnz+4IMPZvz48bn22mszb968TJo0qUX2y+bhzD4UmfY1TbW1b8qUKfntb3+bf/3Xf80nPvGJZrtdgHKifU1Tbe17N61bt864ceNy3333Zc6cOXnqqafSt2/fzbJvgOakfU1Tbe17+3GvY489dp3r3/e+9+UTn/hEbrvtttx3330GrAAVR/eaptq6tz4PPfRQ5s6dmyQ5/PDDW3RftLxOnTplzJgxGTRoUDp06JDp06fniiuuyOOPP57JkyentrY2S5YsWecs9smak8quPYP92v++c7uOHTumdevWznRPWdO+pqm29q1atSpHHnlkZs6cmY985CMZP358tttuuyRrvoff+973cs0112TUqFH5xS9+UX8dLWf69OmbtH1znGz2/vvvz+DBgxsMnhg6dGg6dOiQqVOnpn///lm5cmUefPDBnHbaafXviUjWDKC7/vrr89hjjxkuRtnSvqaptvb17t073/rWt/Ltb3879913Xw444IC8//3vz7Jly/L3v/893bp1y8c+9rHcfffd9d9baG4GrBTQ2mlY6zvg0Jzat2+fMWPGZNWqVbnooovyP//zP5slRu973/uSJC+++GLq6uoa/IOxqebNm5czzzwzK1euzEEHHZSjjjoqH/jAB9KpU6e0adMmb775ZnbdddckDQeW1NTU5Ac/+EGuuOKK/PznP89DDz2Uhx56KMma79MnPvGJnHHGGfVTtpLkK1/5SrbffvvccMMN+etf/5qnn3461157bWpqarLffvtl3Lhx+dCHPtTk+9S5c+ckyaJFiza4zdqDS126dGny/gqhplWpVwC8g/Y1XjW2j2ZWId174IEHsmjRouy+++5JkgMOOCCXX355FixYUP9zeO+992b58uX1g8Rqa2szePDg3HnnnTnuuOPq/25NmTIlXbp02eAEaSg13Wu8InRv3rx5Ofroo/PKK69kzz33zA9+8APDNDdVhbQPikT7Gq8I7Xu7/fbbL1deeWX+/d//Pb/97W/z6KOP1p/BgndRpu1zZh+KTPsar9rat3jx4owfPz4dOnRocAYfmqhM2wdFpn2NV23t2xi9evVKly5dsnjx4jz//PMGrLwX3YOypH2NV43te/vrNjd0Ipi1l8+bN6/J+6t62gdlR/carxq7tz6TJ09OkvTr189rSBujie279dZbm2kha+y2227Zbbfd6j/fd999069fv4wZMyZTpkzJyJEjm3V/UI60r/GqsX233nprZs6cma5du+biiy+uf59fknTo0CHf+MY38pe//CXTpk3LD37wg/zHf/xHk/dZ9ZrYviOOOGKTtn/qqac2aruxY8dm4cKF2WqrrTJs2LCcfvrp6dq1a5Jk1qxZGTFiRIPt27Rpk549e9afHHbu3LlZtWrVOscG1n4+e/ZsA1YoW9rXeNXYvmTN79oPfehDufrqq/Pwww/nueeey1ZbbZXPfvazOfnkkzNx4sQkccL2jeF4Z6MYsFJAHTt2zKJFi7J06dLNsr8DDzwwF110UZ577rksW7asxSdGrX1B/NKlSzNz5swMGDCg2W77V7/6VVauXJndd989F110UVq1aviL592GlGy55Zb56le/mq9+9at5/vnn8+ijj+YPf/hD/u///i+TJ0/Os88+mxtvvDGtW7dOsiZgn/nMZ/KZz3wmCxYsyKOPPpqHHnoov/rVr/KHP/whRx99dH7xi19k2223bdJ96tmzZx555JE8//zzG9zmhRdeqN+WjdCM/wACmof2NV41to9mVobdO+OMM7Ljjjumf//+2XLLLTN9+vRceeWV2XXXXXPwwQcnSUaNGpUbbrghY8eOzYknnpglS5ZkwoQJGTZsWIO/QyeddFKOPPLInH322RkxYkRmzJiRm266KWeeeWZqa2tLdRfhXele41V79/7+97/n6KOPzt/+9rcMHDgwP/rRj9aZPs1GKMP2QdFpX+NVe/vWZ/vtt0/fvn3z5z//OTNnzjRgZWM0sX3O7APNT/sar9ra97e//S0LFy5M27Zt13vm1rVnL3rsscey//77J0kuu+wy/XsvHvdB2dG+xqu29m2stcMS33jjjRbfV8XTPShL2td41di+D3zgA/X729BA4LWvX1i9enWT9lUI2gdlR/carxq7907Lli3L3XffnSTrPQbKRmhi+5rjubv3sv/++6dr16554oknMnLkyHTu3Hm9vxOWLFmSXXbZJclbQ+jeud2yZcuyevVqJxemrGlf41Vj+/70pz8lWfP79u3DVd7uox/9aKZNm5YnnniiSfsqjDJ73NepU6eMGTMmgwYNSocOHTJ9+vRcccUVefzxxzN58uTU1tZmyZIl6x080blz5yxevDhJ6v/7zu06duyY1q1b118P5Uj7Gq8a27fW7rvvnksuuWS91z3zzDNJ0qzfy6pVZt2rFMbSFFCfPn2SrHkh3ebw9idsNseTN/37969/Qunaa69t1tteO91/7733XidESfL4449v1O3ssssuOeyww3LhhRfmJz/5SWpqavLYY4/lL3/5y3q379atW/7t3/4tZ599du66667suOOOWbRoUX75y182+r6stfYMnzNnzsyKFSvWu83aB2sbOhso71DTqmkfQLPTvsarxvbRzJravRZoX+/evfPb3/42Z511Vr74xS/m1ltvzeGHH57rr7++/kVFnTt3zrXXXpstt9wyp556asaPH59hw4blwgsvbHBbe+65ZyZNmpS//OUvOe6443LzzTfn9NNPzzHHHNPs64bmonuNV83de/nllzN69OjMmzcvAwYMyFVXXdXiB4urVpm1b9q0aenbt+86H4ccckiD7Z5//vl86Utfyp577pl999033/72t+vfbPl2999/fw477LAMGDAgQ4cOzTXXXNOs64WWoH2NV83tezdr/9zefPPNzbK/itfE7h1xxBGb9LGxxo4dm1133TUf/vCH881vfrPBk8WzZs1a54w9jTmzD5Qr7Wu8am3fqlWr8o9//GOdj7X/5n/79W8/YxEbUEaP+YA1tK/xqrV972b+/PmZP39+krfOGMi7KLPjncAa2td41di+tW/QqKurq79/7zR37twk2rdRyqx9nusD3WuKauzeO02ZMiWvvfZa2rVrt87vRjZSGXXvPZf6/78xsFevXus8V7d69erMmTOn/rm8nXfeOW3btl1nu7Wfv/M5QCgn2td41di+ZcuWbfS2K1eubPL+CqGJ7bv11ls36eO97Lbbbhk3blwOPPDA7Lvvvjn++OPzve99L08//XSmTJmyGb4hUHra13jV2L738uqrr9af1O3f/u3fWnx/Fa/MjndWimLe6wqzxRZbJElef/31Zrm9j3/840mSn/70p1mwYEGz3Oa7ueuuu5IkO+yww2aZAtuqVauccsopSZI77rgjP//5z9/za/73f/83r7zyyntu1759+yRrfkG/U11dXa6++upNW2ySvn371k8OfPnll99z+44dO6Zv374bvf17GTZsWGpra7N8+fLcfvvt61z/u9/9Li+88ELatWuXYcOGNXl/ABtD+zaN9kFDJ5xwQu644448+uij+fOf/5x77rkn3/jGN9aZ1tyzZ89cddVVefzxxzNt2rT853/+Z7bccst1bm/IkCH5+c9/npkzZ+aee+7JmDFjNtddoSB0b9Po3qZ79dVXM3r06MydOzf9+/fP1Vdfvd5J91S28ePH5yc/+Un9x3//93/XX7d06dIcffTRWbx4cS655JKcc845ufvuuzNu3LgGtzF9+vSMHTs2ffv2zZVXXplRo0blggsuyPXXX7+57w5VTvs2jfY1rzlz5uTpp59Okuy6664tvj+a39oz+3znO9/JNddck2OOOSZ33nlnjjrqqPoXEzmzD+VG+zaN9m28XXfdNU899dQGP04++eQkyaBBg+ov23fffZu0TzY/b7ajEmnfptG+5nXllVemrq4uXbp0cVY7YLPRvk2jfZtm7733znbbbZckmTx58jrXL1++PL/61a+SJB/+8IebvD9Kw3N9VBLd2zS61zRr2/exj30snTt3bvbbpzw88MADWbRoUXbfffckyQEHHJBp06Y1+J1w7733Zvny5RkyZEiSpLa2NoMHD86dd96Zurq6+u2mTJmSLl26OLkwzUr7No32bZqePXsmWfPv+SVLlqx3mwceeCBJ6t+8T8saOHDgJn00xv7775+uXbvmiSeeSLLm9SxLly5dZ7slS5bU/71d+993brds2bKsXr16s/z9pji0b9NoX/O66KKLsnr16gwePNhrPCtUJbzOxYCVCrDzzjsnSR588MFmub3DDz88H/zgB7NgwYIce+yxefLJJxtcP3/+/PzoRz/a6FCdddZZeeSRR9Y52+eyZcvywx/+MFdeeWWS5Nhjj93ktQ4dOjR9+/bNZZddtklfd/DBB+fII49Mknz961/P//t//y8vvPBCg23eeOONPPjggxkzZkzOOeecjZriOGjQoCRrAjt16tT6y5ctW5ZzzjknM2bMWO/X3X777fne9763znTcVatW5Uc/+lGWLFmS1q1bZ7fddkuy5uyaZ599dh5++OF1vq+///3v638WmuOFIN26dav/Xl144YX505/+VH/d008/nXPPPTdJMnr06HTt2rXJ+yuEmpqmfQDap30Nvqa520cza2r3tA90T/cafE1zd2/BggU55phj8txzz6Vfv365+uqrveCkqcq0fb17984ee+xR//GhD32o/rpbbrklCxYsyPe///0MGTIkhx56aL797W/n7rvvzsyZM+u3mzhxYvr06ZPzzz8/gwcPzvHHH5/Pf/7zmThxorPc06y0T/verrnbd/XVV+f2229f58UEdXV1+f3vf58vfelLefPNN9O/f//ss88+Td5fITSxe87sA9qnfY53VpwyfMyXeLMdlUX7tO/tmrt9V111Va677rp1/ryXLVuWiy66KD/+8Y+TJGPHjk3btm2bvL+qV6bHO6HSaJ/2vV1zt69Vq1Y57bTTkiTXX3997r777vrr/vnPf+acc87J/Pnz0759+0b9GRZOmbbPc31UEt3TvbdryeOdzzzzTP19+PSnP92st10oZda9M844I5dcckl+85vf5MEHH8wPfvCDnHbaadl1111z8MEHJ0lGjRqVLl26ZOzYsbnvvvtyxx135Fvf+laGDRvW4OfspJNOyl//+tecffbZmTZtWq688srcdNNNGTt2bGpra5t97RSX9mnf2zV3+0aMGJGamposWrQoX/3qV/PSSy/VX7d8+fKcf/75mTZtWpLksMMOa/L+CqHM2vfuS12zv169eq3z87l69erMmTMnvXr1SrLmd1Hbtm3X2W7t52u3g+agfdr3di3xuO/nP/95nnnmmQaXLViwIOedd15uu+22dOzYMf/5n//ZLPuqemV6vDMp79e5tGnSV7NZjBgxIvfcc09+/OMf5ze/+U223XbbtGrVKh/96Edz/PHHb/LttWvXLj/4wQ/ypS99KX/9619z2GGHZYcddki3bt3yyiuv5JVXXkldXV0+/vGPp1u3bu95e7fffntuv/32bLHFFtlpp53SoUOHLFu2LM8//3xWrVqVmpqaHHvssfVx2Fy++c1vZtttt83EiRNzww035IYbbsj222+f7t27Z8WKFZk3b179JKN+/fpt1BvMhg4dmkGDBuWhhx7KCSeckB133DFdunTJs88+mxUrVuT8889f5y9vkixcuDCTJk3KpEmT0rVr1+ywww6pq6vLvHnz6qdLnnHGGfVnGVi1alUmT56cyZMnZ4sttsjOO++c2travPzyy/VTyYYNG1Z/AKmpvvrVr+bJJ5/MH//4xxx55JHp2bNn2rZtm1mzZuXNN9/Mhz/84XzlK19pln0VQo3ZVdBU2tc42rfxrrzyyvzoRz+q//yf//xnkuRHP/pRbrjhhvrLzzvvvHziE59oln1WLd2DJtO9xtG9jXPJJZdk1qxZ9fv98pe/vMFtv/nNb9YfJOVdNEP7pk+fvknbN/YsB2vdf//9GTx4cLp3715/2dChQ9OhQ4dMnTo1/fv3z8qVK/Pggw/mtNNOq3/SLkk++clP5vrrr89jjz1Wf5Aemkr7Gkf7Ns7TTz+dn/3sZ2nVqlV22GGHbLXVVlm9enXmzZuXxYsXJ1lzBoZJkyalVSuPZzZKE9vX1I5tjLef2WfkyJHvemafXXbZJYkz+7B5aV/jaB8lU6bHPNe+2W591r7ZbvLkyfWP/dq3b59TTjklM2fOTP/+/ZM0fLNdTU1NBg8enFdeeSUTJ07MqFGjDCKg2Whf42jfxnnppZdy3XXX5bvf/W7992flypWZPXt2/RuHjznmmBxzzDFN3lchlGn3oNJoX+No38YbMWJEnnzyyVx77bU55ZRT6n8eZs+eneXLl6e2tjYXXnhh/bEv3oXn+qDJdK9xdG/TTZ48OUmy4447ZvDgwc1624VSZo/7evfunSlTpuS6667LihUrsu222+bwww/PySefXD8UpXPnzrn22mszfvz4nHrqqWnXrl2GDx++zs/znnvumUmTJuXiiy/OHXfckR49euT00093TIBmp32No30bp1+/fjnzzDNz4YUX5ne/+12GDh2aHXfcMe3atcvcuXPz+uuvJ1kzJODAAw9s8v4Koczatz4PPPBAFi1alN133z1JcsABB+Tyyy/PggUL6v/e33vvvVm+fHmGDBmSJKmtrc3gwYNz55135rjjjqt/7DdlypR06dJlg88jQmNoX+No38abPHlyxo0bV7+2lStX5tlnn83q1auz9dZb5/vf/75jnRurjLtXzq9zMWClAgwfPjzf/e5385Of/CSzZs3KvHnzUldXlx122KHRt7nTTjvlZz/7WW6++ebcfffdmTVrVl599dVsvfXW2X///TN8+PD06NFjo27rggsuyEMPPZQnnngir776apYsWZLa2tr07Nkze+65Zz7zmc80airVG2+8kYULFyZJo9/gdfzxx2fEiBG59dZb84c//CHPPfdc/vrXv6Zt27bZbrvtMnDgwBx88MH5yEc+0uAJhQ1p1apVrrzyylx++eX51a9+lZdffjnLly/Pvvvum+OOOy6DBg1ab4yGDx+eN998M9OmTcusWbMyZ86crFq1KltvvXU+8pGP5Atf+EL+5V/+pX7797///fnOd76TBx98ME8++WReeuml/POf/0ynTp3y4Q9/OJ/61Kdy6KGHNtsbAGpra3P11VfnxhtvzM9//vPMmTMnSbLrrrvmsMMOy+c///m0bt26WfZVCGUcJKgU2qd9Ld2+119/PYsWLVrv5WsPQibJihUrmmV/VU33oMl0T/dasntvn2z99NNPv+u263sTMuvRDO074ogjNmn7p5566j23GTt2bBYuXJitttoqw4YNy+mnn56uXbsmWTNVfMSIEQ22b9OmTXr27Fk/mXzu3LlZtWrVOmcxWPv57NmzveiSZqN92teS7TvqqKOy7bbb5pFHHsm8efPy1FNPpa6uLt27d89ee+2V4cOH55Of/GTatPH0yEaroMd9G3Nmn6FDhyZpeGaft78IyZl9aAnap30tfbyTZtbE9m3uN9ol3mxH+dE+7WvJ9q09OcITTzyRv/3tb3nqqadSU1OT7bbbLnvttVc++9nPZq+99mryfgqjgh7zQTnTPu3bHI/7zj777AwePDg33nhjZs6cmVdeeSXdu3fP8OHD86UvfcnxrI3luT5oMt3Tvc3RvVWrVuUXv/hFkmTkyJEb9f1gA8rscd8JJ5yQE0444T2369mzZ6666qr33G7IkCH1bzyHlqJ92tfS7TvuuOPyL//yL7nxxhvzyCOP5O9//3v9a10GDhyYz372s9l///2bZV+FUGbtO+OMM7Ljjjumf//+2XLLLTN9+vRceeWV2XXXXesHFYwaNSo33HBDxo4dmxNPPDFLlizJhAkTMmzYsAZ/f0866aQceeSROfvsszNixIjMmDEjN910U84888z6QWXQHLRP+1q6fUcccUQ6duyYv/71r5k1a1batm2bD33oQxk2bFhGjx6dTp06Nct+CqECB0onpX+dS01dXV1dk+8FtIDp06fniCOOSO/evXPHHXc4KEbF2OKTk5r09a/dMbaZVgJUGu2jEjW1e4n2QVHpHpWqOdq389Pf26Tt3+1Fl08++WTuuOOODBo0KB06dMj06dNzxRVXZLvttsvkyZNTW1ubfv365aSTTsrYsQ2be8wxx6RVq1a5+uqr88gjj+Tzn/98brzxxgYHzJM1TxJ85StfyZe//OVNWjfQkPZRqSrheOcDDzyQL37xi/mv//qvjBgxIldccUUuv/zy3HvvvfVnNfnNb36Tk046Kf/7v/9b/wT6F7/4xSxcuDD/+7//W/938jvf+U5uv/32/O53v/PiE2gi7aNSNbV9zfmYL0mmTZuW0aNHp3v37ht8s91+++2XESNGrPPCqZEjR2aXXXbJxRdfnFmzZuUTn/hEfvCDHzQYLrZs2bLsvffe+fa3v53Pfe5zm7R2oCHtoxKV43N9a9v3TmvPcr7W888/n/Hjx+fhhx9ObW1tDjrooJx11lnp0KFDg6+7//7761u4zTbbZPTo0c5mDs1E+6hEnusDGkv3qFSV8FwfUJ60j0pVbu374Q9/mClTpuTFF1/MihUrsu222+bf//3fc/LJJzcYIDBnzpyMHz8+jzzySNq1a5fhw4dn3Lhx2XLLLRvc3n333Vd/vLNHjx458sgjM2bMmGZdMxSV9lGJyu14Z1IZr3NxikbK1sMPP5wk+dKXviREVBY/r0AjaR8Vyc8q0Ei6R8Vqhp/XW2+9tRkWssZuu+3WYEr6vvvum379+mXMmDGZMmVKRo4c2Wz7AppG+6hYZfbz6sw+UDm0j4pVZj+vnTp1ypgxY9Z5s93jjz9e/2a7JUuWrPcMTp07d87ixYuTpP6/79yuY8eOad26df31QONpHxWpjH9Wx48fn969e9d/3r59+/r/v3Tp0hx99NHp0aNHLrnkkixevDgTJkzI/Pnzc9lll9VvN3369IwdOzaHHHJIxo0blxkzZuSCCy5I69atc9RRR23W+wPVSPuoSJ7rAxpJ96hYfl6BRtI+KlaZ/byecMIJOeGEE95zu549e+aqq656z+2GDBmSIUOGNMfSgHfQPipSGf6sVsLrXAxYoWw9/PDD2WGHHfKJT3yi1EuBTVPTqtQrACqU9lGRdA9oJN2jYjVD+wYOHNgMC9mw/fffP127ds0TTzyRkSNHpnPnzlm6dOk62y1ZsiS77LJLkqRLly5Jss52y5Yty+rVq+uvBxpP+6hYZfa4b+0Zy6+77rr6M/scfvjhOfnkk+uHonTu3DnXXnttxo8fn1NPPbXBmX3ebs8998ykSZNy8cUX54477kiPHj1y+umnO5M5NBPto2I1sX3N+Ua7xJvtoJJoHxWpzB7zvV3v3r2zxx57rPe6W265JQsWLMjkyZPTvXv3JGsGsJxyyimZOXNm+vfvnySZOHFi+vTpk/PPPz81NTUZPHhwXnnllUycODGjRo1K27ZtN9fdgaqkfVQkz/UBjaR7VKwyftwHlDfto2JpH9BI2kdFaobuFfF1LgasVLBXX301X/nKVzbpa26++eYWWk3z+/73v1/qJUDjlOHEL6gW2gdlSPegxegelKkKat/a6em9evXK7NmzG1y3evXqzJkzJ0OHDk2S7Lzzzmnbtm1mz56dAw88sH67tV/Xq1evzbRqikz7oEyVWfuc2Ydqon1QpprYvpZ+o13izXZULu2DMtQMj/mmT5++Sds3Ryvvv//+DB48uH64SpIMHTo0HTp0yNSpU9O/f/+sXLkyDz74YE477bQGZ5r85Cc/meuvvz6PPfZYBg0a1OS1wLvRPihDZXa88914ro9Ko3tQpiqofVBptA/KlPZBi9E+KEPN0L0ivs7FgJUKtmLFijz66KOlXgbwTiZdQovRPihDugctRvegTFVA+x544IEsWrQou+++e5LkgAMOyOWXX54FCxakW7duSZJ77703y5cvr39DeW1tbQYPHpw777wzxx13XP0LNqdMmZIuXbps8Eyx0Jy0D8pUBbQPKpX2QZmqoPZ5sx2VRvugDDVD94444ohN2v6pp57aqO3Gjh2bhQsXZquttsqwYcNy+umnp2vXrkmSWbNmZcSIEQ22b9OmTXr27Fnftrlz52bVqlXrNG7t57NnzzZghRanfVCGKuAxn+f6qFS6B2WqAtoHlUr7oExpH7QY7YMyVGHdK5fXuRiwUsF23HHHjX7CGQCqgfYBUCS6B2yMM844IzvuuGP69++fLbfcMtOnT8+VV16ZXXfdNQcffHCSZNSoUbnhhhsyduzYnHjiiVmyZEkmTJiQYcOGZcCAAfW3ddJJJ+XII4/M2WefnREjRmTGjBm56aabcuaZZ6a2trZUd5EC0T4Aikb7gMbyZjsqlfYBG6NTp04ZM2ZMBg0alA4dOmT69Om54oor8vjjj2fy5Mmpra3NkiVL0qlTp3W+tnPnzlm8eHGS1P/3ndt17NgxrVu3rr8eWpL2Ae/Fc31UE90DoGi0D4Ci0T6gscrtdS4GrAA0t///lzQAFILuAVA0Zda+3r17Z8qUKbnuuuuyYsWKbLvttjn88MNz8skn179QsnPnzrn22mszfvz4nHrqqWnXrl2GDx+ecePGNbitPffcM5MmTcrFF1+cO+64Iz169Mjpp5+eY445pgT3DICyUWbtA4AWV2bt82Y7AFpUM3Tv1ltvbYaFvGW33XbLbrvtVv/5vvvum379+mXMmDGZMmVKRo4c2az7A6Bgyuwxn+f6AGhxZdY+AGhx2gdAkZRh9yrhdS4GrAA0s5oyDBIAtBTdA6Boyq19J5xwQk444YT33K5nz5656qqr3nO7IUOG1E99BoCk/NoHAC2t3NrnzXYAtKTm6N7AgQObYSXvbv/990/Xrl3zxBNPZOTIkencuXOWLl26znZLlizJLrvskiTp0qVLkqyz3bJly7J69er66wEolnJ7zOe5PgBaWrm1DwBamvYBUCTl2L1KeJ2LASsAzawcgwQALUX3ACga7QOgaLQPgKIpt/Z5sx0ALancuvde1q63V69emT17doPrVq9enTlz5mTo0KFJkp133jlt27bN7Nmzc+CBB9Zvt/brevXqtZlWDUA5qbT2AUBTaR8ARaN9ABRJOXavEl7n0qpZbw0AAAAAAAAAAACgmTzwwANZtGhRdt999yTJAQcckGnTpmXBggX129x7771Zvnx5/Qssa2trM3jw4Nx5552pq6ur327KlCnp0qVL9thjj816HwAAAAAAAIDSa1PqBZSrLfY8udRLoAW99IdLS70EWlCXLUo8O6r8Bn7BRtG+6rbwTxNLvQRaSPtS/4te96hg2le9dK+6aR80nvZVL+2rbtoHjaN71U37qpv2QeNoX3XTvuqle+s644wzsuOOO6Z///7ZcsstM3369Fx55ZXZddddc/DBBydJRo0alRtuuCFjx47NiSeemCVLlmTChAkZNmxYBgwYUH9bJ510Uo488sicffbZGTFiRGbMmJGbbropZ555Zmpra0t1F2km2lfdtK96aR80nvZVL92rbtoHjaN71U37qpv2QeNoX3XTvuqle5Wp1H9sAFWnpkaRACgO3QOgaLQPgKLRPgCKRvsAKJJy7F7v3r0zZcqUXHfddVmxYkW23XbbHH744Tn55JPrh6J07tw51157bcaPH59TTz017dq1y/DhwzNu3LgGt7Xnnntm0qRJufjii3PHHXekR48eOf3003PMMceU4J4BUA7KsX0A0JK0D4Ci0T4AikT3GseAFYBmJkgAFInuAVA02gdA0WgfAEWjfQAUSTl274QTTsgJJ5zwntv17NkzV1111XtuN2TIkAwZMqQ5lgZAFSjH9gFAS9I+AIpG+wAoEt1rHANWAJqZIAFQJLoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS61zitSr0AAAAAAAAAAAAAAAAAAAAAAICW0qbUCwCoNiZ+AVAkugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLrXOAasADQ3PQKgSHQPgKLRPgCKRvsAKBrtA6BIdA+AotE+AIpG+wAoGu0DoEh0r1EMWAFoZiZ+AVAkugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLrXOK1KvQAAAAAAAAAAAAAAAAAAAAAAgJbSptQLAKg2Jn4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkutc4BqwANDNBAqBIdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvcQxYAWhmggRAkegeAEWjfQAUjfYBUDTaB0CR6B4ARaN9ABSN9gFQNNoHQJHoXuO0KvUCAAAAAAAAAAAAAAAAAAAAAABaSptSLwCg6hj4BUCR6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkeheoxiwAtDMamoUCYDi0D0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG9xjFgBaCZCRIARaJ7ABSN9gFQNNoHQNFoHwBFonsAFI32AVA02gdA0WgfAEWie41jwApAMxMkAIpE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPcap1WpFwAAAAAAAAAAAAAAAAAAAAAA0FLalHoBAFXHwC8AikT3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE9xrFgBWAZlZTo0gAFIfuAVA02gdA0WgfAEWjfQAUie4BUDTaB0DRaB8ARaN9ABSJ7jWOASsAzUyQACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wD4/9i787gqy4T/419AsFTA3Cq3StGyXCoVKU3TdBpzGa3JcRwtizSX3FOb+rVNi0uWkoiWFi6pZTOTW2GWLWT5tJqa5QKaCuqouYCEHEB+fxDneAJTz8K5z3193q9Xrx7OfXG4Tjzjx3u7bpPQPc+EBnoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAvFQI9AQCwG1b8AgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO55hgVWAMDHCBIAwCR0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zzMssAIAvkaPAAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXseYYEVAPAxVvwCAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7nkmNNATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/qRDoCQCA3bDiFwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHTPMyywAgA+RpAAACahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe55hgRUA8DV6BAAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd3zSGigJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/lIh0BMAALsJCWHJLwCAOegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieZ0IDPQEAsJuQkBCv/vGngoIC9ejRQ1dffbXeffddt21btmxRv3791KJFC7Vr107Tp09XQUFBqfdYsWKF7rjjDjVr1kx33HGHVq5c6dc5AwCszdvusSMHAAg2tA8AYBq6BwAwDe0DAJiE450AANPQPgCAaegeAMA0tA8AYBKOd3qmQqAnAAB2Y+WgLFy4UMeOHSv1ekZGhgYOHKiWLVtq9uzZ2rNnj6ZOnaq8vDw98sgjznFr167VhAkTFB8fr/bt2+vTTz/V+PHjVblyZd12223l+VEAABZh5e4BAOAPtA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieZ1hgBQAMcfDgQSUmJuqJJ57QxIkT3bbNmzdPlSpV0syZM1WxYkXdfPPNOnXqlF588UXFx8erZs2akqQZM2aoS5cumjBhgiQpLi5Ou3fv1owZM1hgBQAAAAAAAAAAAAAAAAAAAAAAAAAAAABgSSywAgA+5u2KX5s2bbqg8S1atDivcc8//7w6deqkVq1aldqWmpqqzp07q2LFis7XunfvrsmTJ2v9+vXq3bu3MjIylJ6erhEjRrh9b8+ePTVmzBhlZmaqTp06FzR3AEDwY6VLAIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9z7DACgD4mpc96tOnzwWN3759+znHpKamav369VqzZo0cDofbttzcXGVmZqphw4Zur9esWVNVq1ZVenq6JDn//ftxJV+np6ezwAoAmMji+2EFBQXq3bu3duzYoZdeekndunVzbtuyZYsmTZqkrVu3KjIyUnfddZdGjBihChXcd5NWrFihV155Rfv27VO9evU0ZMgQ9ezZs7w/CgDAKizePgAAfI72AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnERZYAQAfs9qKX3l5eXrmmWf00EMPqVatWsrIyHDbnpWVJUmKjIws9b1RUVE6ceKEJDn/HRUV5TYmOjrabTsAwCxW697vLVy4UMeOHSv1ekZGhgYOHKiWLVtq9uzZ2rNnj6ZOnaq8vDw98sgjznFr167VhAkTFB8fr/bt2+vTTz/V+PHjVblyZd12223l+VEAABZh9fYBAOBrtA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPc+wwAoA+Ji3QVq2bJmPZlJszpw5Cg8P14ABA3z6vgAASNbeETt48KASExP1xBNPaOLEiW7b5s2bp0qVKmnmzJmqWLGibr75Zp06dUovvvii4uPjVbNmTUnSjBkz1KVLF02YMEGSFBcXp927d2vGjBkssAIAhrJy+wAA8AfaBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieZ1hgBQAspkWLFj57r8zMTM2bN0/Tpk1Tbm6ucnNzdfLkSUlSbm6usrOzFRkZKUnKzs4u9f1ZWVmKjo6WJOe/s7KydNlllznHnDhxwm07AAAXatOmTRc0/nxb+fzzz6tTp05q1apVqW2pqanq3LmzKlas6Hyte/fumjx5stavX6/evXsrIyND6enpGjFihNv39uzZU2PGjFFmZqbq1KlzQXMHAAAAAAAAAAAAAAAAAACAVFBQoN69e2vHjh166aWX1K1bN+e2LVu2aNKkSdq6dasiIyN11113acSIEapQwf1WuBUrVuiVV17Rvn37VK9ePQ0ZMkQ9e/Ys748CAMA50T0AAKyBBVYAwMestOBXRkaGHA6HRo4cWWrbY489pueee04bN25U7dq1lZ6e7rb9yJEjOn78uBo2bChJatCggSQpPT1djRs3do4r+b6ScQAAs/iie3369Lmg8du3bz/nmNTUVK1fv15r1qyRw+Fw25abm6vMzMxS7apZs6aqVq3qbNvZGlfydXp6OgusAICBrLTPBwBAeaB9AADT0D4AgEnoHgDANLQPAGAaq7dv4cKFOnbsWKnXMzIyNHDgQLVs2VKzZ8/Wnj17NHXqVOXl5emRRx5xjlu7dq0mTJig+Ph4tW/fXp9++qnGjx+vypUr67bbbivPjwIAsAgrt4/uAQB8zcrdszIWWAEAHwuxUJGaNGmihQsXur125MgRjR07VsOGDVPbtm0lSe3bt9e6dev0yCOPqGLFipKk1atXq0KFCs4x9erVU4MGDZSSkqKuXbs632/16tVq1KgRN5gDgKGs1L0SeXl5euaZZ/TQQw+pVq1aysjIcNuelZUlSYqMjCz1vVFRUTpx4oQkOf8dFRXlNiY6OtptOwDALFZsHwAA/mT19vF0HwCAr1m9fQAA+BLdAwCYhvYBAExj5fYdPHhQiYmJeuKJJzRx4kS3bfPmzVOlSpU0c+ZMVaxYUTfffLNOnTqlF198UfHx8apZs6YkacaMGerSpYsmTJggSYqLi9Pu3bs1Y8YMbjQHAENZtX10DwDgD1btntWxwAoA+JiVehQVFaU2bdq4vVZyk3lMTIxatWolSXrggQe0atUqjRo1Svfee6/27NmjhIQE9evXT7Vq1XJ+78iRIzV69GhNmzZNt9xyi1JTU7Vu3TolJiaW34cCAFiKL7q3bNky79/kDHPmzFF4eLgGDBjg0/cFAECy1j4fAADlwert4+k+AABfs3r7AADwJboHADAN7QMAmMbb9m3atOmCxrdo0eK8xz7//PPq1KmT856GM6Wmpqpz587Oh8dKUvfu3TV58mStX79evXv3VkZGhtLT0zVixAi37+3Zs6fGjBmjzMxMHiILAAayavvoHgDAHzje6RkWWAEAqF69epo/f74mTZqkBx98UFFRURowYECpna6uXbsqLy9Pc+bM0fz581W3bl1NmTJFXbp0CdDMAQB2cCEn1M4lMzNT8+bN07Rp05Sbm6vc3FydPHlSkpSbm6vs7GxFRkZKkrKzs0t9f1ZWlqKjoyXJ+e+srCxddtllzjEnTpxw2w4AAAAACAye7gMAAAAAAAAAAAD4T58+fS5o/Pbt289rXGpqqtavX681a9bI4XC4bcvNzVVmZqYaNmzo9nrNmjVVtWpVpaenS5Lz378fV/J1eno6N5oDAC6YP9pH9wAAsBYWWAEAHwux+JJfdevWLXPnrXnz5lq6dOk5v79Xr17q1auXH2YGAAhGVuteRkaGHA6HRo4cWWrbY489pueee04bN25U7dq1nQcZSxw5ckTHjx93HmRs0KCBpOKDjY0bN3aOO9vBSQCAGazWvt8rKChQ7969tWPHDr300kvq1q2bc9uWLVs0adIkbd26VZGRkbrrrrs0YsQIVajgfohwxYoVeuWVV7Rv3z7Vq1dPQ4YMUc+ePcv7owAALMLb9vFUOwBAsLH6fh8AAL5E9wAAprF6+zjXBwDwNSu2Ly8vT88884weeugh1apVSxkZGW7bs7KyJMn5ML0zRUVFOR+SV/LvqKgotzElD88r2Q4AMIvV2kf3AAD+ZLXuBQsWWAEAH6NHAACTWK17TZo00cKFC91eO3LkiMaOHathw4apbdu2kqT27dtr3bp1euSRR5w3261evVoVKlRwjqlXr54aNGiglJQUde3a1fl+q1evVqNGjbjJDgAMZbX2/d7ChQt17NixUq9nZGRo4MCBatmypWbPnq09e/Zo6tSpysvL0yOPPOIct3btWk2YMEHx8fFq3769Pv30U40fP16VK1fWbbfdVp4fBQBgEd62j6faAQCCjZX3+7jRDgDga1buHgAA/mD19nGuDwDga962761ly3wzkTPMmTNH4eHhGjBggM/fGwAAq7WP7gEA/MnqxzutigVWAMDHQkMpEgDAHFbrXlRUlNq0aeP2WskqzzExMc6nmj/wwANatWqVRo0apXvvvVd79uxRQkKC+vXrp1q1ajm/d+TIkRo9erSmTZumW265RampqVq3bp0SExPL70MBACzFau0708GDB5WYmKgnnnhCEydOdNs2b948VapUSTNnzlTFihV1880369SpU3rxxRcVHx+vmjVrSpJmzJihLl26aMKECZKkuLg47d69WzNmzOCiSwAwlLftK/TRPM7E030AAP5k5f0+brQDAPialbsHAIA/WLl9nOsDAPiDt+1r0aKFj2ZSLDMzU/PmzdO0adOUm5ur3NxcnTx5UlLxQxSys7Od5/iys7NLfX9WVpbzXF7Jv7OysnTZZZc5x5Sc4yvZDgAwi5XaR/cAAP5m5eOdknUfJMQCKwAAAACMU69ePc2fP1+TJk3Sgw8+qKioKA0YMEAjRoxwG9e1a1fl5eVpzpw5mj9/vurWraspU6aoS5cuAZo5AABn9/zzz6tTp07OBcXOlJqaqs6dO6tixYrO17p3767Jkydr/fr16t27tzIyMpSenl6qhz179tSYMWOUmZmpOnXq+P1zAADsZRlPtQMAwCe40Q4AAAAArGHTpk0XNP58b87jXB8AwAQZGRlyOBwaOXJkqW2PPfaYnnvuOW3cuFG1a9dWenq62/YjR47o+PHjatiwoSSpQYMGkqT09HQ1btzYOa7k+0rGAQAQKHQPAGA6qz5IiAVWAMDHQqy94BcAAD4VDN2rW7eutm/fXur15s2ba+nSpef8/l69eqlXr15+mBkAIBj5on3+uOgyNTVV69ev15o1a+RwONy25ebmKjMzs9QJtJo1a6pq1arOE2xnO9FW8nV6ejoXXQKAgbxtH0+1AwAEG2/bx412AIBgYvVzfVZ9qh0AIHj5on19+vS5oPFlXbPye5zrAwD4i9X2+5o0aaKFCxe6vXbkyBGNHTtWw4YNU9u2bSVJ7du317p16/TII484j3uuXr1aFSpUcI6pV6+eGjRooJSUFHXt2tX5fqtXr1ajRo3oHgAYykrto3sAAH+zUvd+z8oPEmKBFQDwsRArFwkAAB+jewAA0/iifb6+6DIvL0/PPPOMHnroIdWqVUsZGRlu27OysiTJebP5maKiopw3kZf8Oyoqym1Myc3lJdsBAGax2n4fT/cBAPibt+3jRjsAQDCx2j7f71n1qXYAgOBlxfZxrg8A4E9Wa19UVJTatGnj9lpJ+2JiYpwLTD/wwANatWqVRo0apXvvvVd79uxRQkKC+vXrp1q1ajm/d+TIkRo9erSmTZumW265RampqVq3bp0SExPL70MBACzFSu2jewAAf/NF90x8kBALrACAj1loPwwAAL+jewAA01ixfXPmzFF4eLgGDBgQ6KkAAGzIau3j6T4AAH+zWvu40Q4A4E9W696ZrPxUOwBA8PJF+5YtW+b9m5yBc30AAH+y8n7fH6lXr57mz5+vSZMm6cEHH1RUVJQGDBhQ6sa6rl27Ki8vT3PmzNH8+fNVt25dTZkyRV26dAnQzAEAgRaM7aN7AABP+aJ7Jj5IiAVWAMDHrLTSJQAA/kb3AACm8UX7fHnRZWZmpubNm6dp06YpNzdXubm5OnnypKTig4/Z2dnOm+yys7NLfX9WVpbzZrqSf2dlZemyyy5zjim5ya5kOwDALFbb7+PpPgAAf/O2fdxoBwAIJlbb5zuTlZ9qBwAIXr5o3/k+ofV8cK4PAOBvVt7vK1G3bt0yb9Br3ry5li5des7v79Wrl3r16uWHmQEAgpHV20f3AAC+ZMXuBcODhFhgBQAAAAAAAChHvrzoMiMjQw6HQyNHjiy17bHHHtNzzz2njRs3qnbt2s5VnEscOXJEx48fd67i3KBBA0nFqzk3btzYOe5sqz8DAGBlPN0HABAo3GgHADDNpk2bLmj8+bTS6k+1AwDAVzjXBwAAAAAAACCQTHyQEAusAICPWXHFLwAA/IXuAQBMY7X2NWnSRAsXLnR77ciRIxo7dqyGDRumtm3bSpLat2+vdevW6ZFHHnE+1XX16tWqUKGCc0y9evXUoEEDpaSkqGvXrs73W716tRo1asTNBgBgKKu1ryw83QcA4EtWah832gEA/M0X3evTp88FjS9r/+1MwfBUOwBA8LLSPp/EuT4AgP9ZrX0AAPgb7QMAmMQX3TPxQUIssGJDt7RspLXzRpV6fWvafrW6+3lJ0l86tdDI/p3U+MpLFVm5ovYfOqFVn2zWpFdTdDw71/k9jwz6s3p3vl5XXF5dFSqEanfGL3r9v59rzlupKioqKrfPhLNb98H7WvPeKm376UcdP35MtWvXUc9ed+lvf++vCuHhznEbPv9MSTOna/eudFWvUVN/+3t/9RswMHATtzH2w4DydT7dO1NYWKg2LJmoZo3r6J5HkvX2+986t914bX0NvvsWtW52pa656lKt/y5dtw9K8Ov84RsfvL9G7767Sj9t3Vrcwzp11evOu9TvHwMUfkYP4Xt0Dyh/F9K+v/7pRo0a0EnXNqytU458bdqWofv/3wIdPFJ88THtC1579+zRgvmv6YctW5S2c4dq1bpUKR98FOhpGcFq7YuKilKbNm3cXiu54SAmJkatWrWSJD3wwANatWqVRo0apXvvvVd79uxRQkKC+vXrp1q1ajm/d+TIkRo9erSmTZumW265RampqVq3bp0SExPL70MBv3M+7TvfPvbufL36dm2tG5rUU/WqVfTz/l+0cMUGzVr6iQoKTvvvQ8CnCgoK1Pfu3tq5Y4cmv/CSut7RLdBTsjWrtQ8wgS/3++6/s616dmqu5o3rKrLyRdq555CSln6iN1Z9WS6fBZ758IO1WrQgWT/v3qWcnBzVuvRSdezUWQ8OGaYoLy4OwPmxUvu40Q4mOJ/uvT93lNq3alTm9z/+8gpNS/5AEsc7g93ePXs0ZdKz+vabb1SxYoT+dHtXjXl4gipVqhToqdmalbpXIhieagd4w5f7fFJx/6aOu1M3NKmvEydztWD5Bj37ynsqLOR4p5VxnUvgWK19nOuDCXx5jWf/Hm0091+l/574XuoPumvUHN9OHD4TP3CAvvn6qzK3jRw9TvGDBpfzjMxitfYBJvBl+yTp7ttbavz9f1LjK2vpyLGTWvLu13p2znty5Bf47TPAexzvDBzaB5QvrnGBJH391Zd64L57Sr3eMKaR/rtidQBmZA6rdS9YHiTEAis2NuTpxfop/YDz619POZz/9yXRlZT6zU5NX/ihTmSfUtNGtfXo4K5q1qiO7hgy0zkuqvJFWrzqK23bfVD5BYXq1OZqTRt/l6pGXaxJr64p18+Dsi1e+Lour11HI0aPU7XqNbT5+42aMytBO3ds11PPTpYk/bBlk8aNGq7bu3bTqHETtXXLZs2cMU1hFSrob3/vH+BPYD+sdAkExh9170wP9btVNS6pUua2m1o00C0tY/TN1j26KIK/JgWTBfNfV+06dTR63HhVr15dm77fqFkvz9DO7dv17KQpgZ6erdE9IHDO1b5RAzrpXyN6asbCdXosYYUqX1xR7W5sqIoRrgvyaF/wSk/fqdRPP1HTZs1VVFSk7Kysc38TfCJY21evXj3Nnz9fkyZN0oMPPqioqCgNGDBAI0aMcBvXtWtX5eXlac6cOZo/f77q1q2rKVOmqEuXLgGaOeByPvt95xozesBt2nPgqB5LWKH//ZKluBYN9OSw7mraqI4GPbHIf5OHTy1+Y6GOHT0W6GkYI1jbB9iBL/b7Hnngdn2w4Scl//cLnTiZqy43NdErT/1DV9aprmfnvFdunwUXJuvECbVuHauB98erSpVI7dy5Q68kJWrH9m2a+/qCQE/P9qzUPm60g0n+qHujJr2lqMoXuY3/e7dYDflbe61Zv9X5Gsc7g1d2drYG3X+vataqpWnTZ+jEiROaNnWyfvnlF72UMPPcbwCP+aJ7y5Yt88FMigXLU+0AX/DFPl/9y6vpvTkj9MX36frrmFfUsF5NTRrTWxdfFK5HXnqn3D4LLhzXuQSOlfb5LgTn+mAHvrjGs0SvEUk6duJX59fHsn79g9EItEf/35PKyTnp9trqlSv01ptLdEv79gGalTmCtX2AHfiifX3vaK3k5+7VnLdS9c/p76hpo9p6fGg3XVYjSoOffMMv84b3ON4ZWLQPCAyucYEkPfmvZxUT43pwxkUXXfQHo+ELVutesDxIiKsJbOyn9AP6asvPZW6b/84Gt68/+3anTuXlK+mJfqp32SXad7D44vRHZyx3G/fxl9tV99JLNKBHHAusWMSLCbN1SbVqzq9btW6jIhXplVkva8SYh1W9eg3NmzNLMY0b64l/Pa+QkBC1at1Ghw8f0tw5ibrrr39TBZ54AMAG/qh7JerUqqpHB3fVmClv67VnSq+KmPTmp5q19BNJ0orEYbqoIn8+BouXZ81RtTN6GNsmTkVFRZo1M0Fjxo1X9Ro1Ajg7APCPP2pfg3o19K8RPfXwC//W3LfXO19P+ewHt3G0L3h1uLWTOnbqLEl65ukn9MX69ef4Dpikbt262r59e6nXmzdvrqVLl57z+3v16qVevXr5YWaAd85nv+9cY+4a/YqOHHNdvJf6zU6FhEhPDe+hx2Ys16GjpW/MgbX87+BBvZKUqH8+9oT+36MTAz0dAPArX+z33fyPqW7t++SrHbokurJG9u+k519N0enTRX6ZO7xz51/vdvu6dWwbVYyoqH899bgO7N+vy2vXDtDMYFXcaAc7+KPubdt1sNRrL074q7bsyNQPO/c7X+N4Z/D697I3dezYUS1Z9h9Vr15dklSx4kUaN3qEftz6g669rmmAZ4g/0qJFC5+9V7A81Q7wBV/s840d2Fk5uXn6+8PzlOco0MdfbleliyL0zMiemr7gQ/3vF453WhXXueCPcK4PduWLazxLfP/TPjoXRBrGxJR6bfLzz6pR48ZqfPU1AZgRAJQPX7Tv8SF3aNUnmzVmcvECt+v+b5uKiqQp4+5UwqKPtDVtf6nvQeBxvBOAibjGBZIUE9NIzVtcH+hpIICC5UFCLLACp5KVmytUCDvnuPBzjEH5OXNxlRJNmlwnSTpy+JAiI6P09Vf/pyHDR7mtRPXnO7pr2dI3tHnTRt3YKrbc5msCiy34BeAML4y/S+9+ukXrv00rc3tRETtawapaGT289rriHh46fIgLT/yI7gHWdO9fbpIjv7DU4pq/R/uCV2hoaKCnYCzaBwS3M0++ldj40z5J0uU1o1lgJQhMnfy8OnTspBt/O8kC/6N9gDWd735f2e3bq/t636yoyhfpeHauv6YIH4uOjpYkFRQUBHgm9mf19nGjHSA1rF9TrZpeqcd+99AgjncGr/WfpSq2TZzzZgNJurVjJ1WqVEmpn37CDQd+ZLXuBctT7QB/O999vj+3u04rP96sPIdrP+GtlK81Zdyd6nzztVq86kt/TxUe4jqXwLFa+wC4O9c1nrCHPXt+1tYftmj02IcDPRUj0D7A2v6ofdWrVlaDejX18hsfu73+4YafJEndb23GAisWxfHOwKJ9gPVwjQvgP8HavUA/SIgFVmxs2fTBqlG1io4cP6nVn2zR4y+vcC6iUiI0NEThFcJ0XUxtPTq4q1I++0G7M46Ueq+wsFBVuihC7Vs10j+6x2ry3DXl9THggY3ffaPw8HDVqVtfGfv2Kj8/X1f+9lSWElc1KF4JevfuXSyw4mMhwVokIMidq3tdbm6i2+KuUYvezyginL8CmeDbb4p7WK9e/UBPxdboHhA4f9S+uBYNtP3n/6l/jzZ6ZNCfVbtmtH7cdUCPv7xSaz//McAzB4Ib7QMC53yOd57PmN9rd2OM8hz52lXGcVFYy+efpWrDF+u14t01cjgcgZ6OMWgfEDj+2u9rd2OMDhw+wYUnQaCwsFAFBQVK27lDc2Yn6pb2HVSvPsc7/Y32AYFxIftzf7+jtQoLT+utlG/KeZbwl/T0NPXo2cvttQoVKuiKK6/Srl3pgZmUIazWvWB5qh3gC97u8118UbiuqF1d23cfdHvf//2SrV+O5+iaqy4t988E73CdS/mwWvsAk/jyGs//e/OfqnlJFR04fELL1nyjZ+a8p1N5+f7+CPCRd1etVGhoqO7o1iPQUzEC7QMCx9v2FRaeliQ58t0X38/77etrG17ux9nDGxzvDCzaBwQG17hAkkaNGKbjx46p6iWXqGPH2zRqzDhFV60a6GnZWjB0z4oPErL03cU//vijPv74Y+3atUvHjx+XJFWtWlUNGjTQrbfequt+W60d7rJO5mrGwnVK/WanTv6ap9hmV+jh+/+kNs2vUtt/THXbscr8ZIqqRlaSJH3wxU/qP+H1Uu/XvHEdffnWP51fT5n3vqYvXOf/DwKP7EpP05tLFqnXXX1UpUoVpe/MkiRFRka5jatcubLCwsKUdeJEIKZpa0HQI1gY7btw59O9ihEVNH1iHz3/aooOHslS/ctLPwUG9pKelqYlbyzUXXf/TVWqVAn0dGyN7sEbdM8z59O+S6tHqnatqnp8aDc9lrBch37J1tC+HfTv6Q+qTd9J+mnXwXP/IABlon3wBu3zzPm070KOiZ7pmgaXafjfb9Xr//1C2TmnyvmT4ULk5eVp0nPP6MFhD6lmzVrKzMwI9JSMQfvgDdrnGX/u93Vo3Vh//dONenTG8vL9UPBIh7ZtlJ2dLUm66eZ2mvrijMBOyBC0D96gfRfOk/25vl1b67Nvdyrz0PHynzD8IjsrS5GRkaVej4qK0gmua/GrYO1eoJ9qh2J0zzO+2ue75LfrPsu6seB41q+6JKpyeX80eIHrXMpPsLYP1kD7POPLazwPHsnSs3Pe09c//CxHfoE6tGqsUQM6qfnVddVj2Kxy/mTw1HurV6llq9a69LLLAj0VI9A+eIP2ecZX7TuenavDx7LVutmVSn7nC+frrZteKUns91kYxzsDi/bBG7TvwnGNCySpSmSk7hl4v1q1jlWlSpW0ZfMmvT7vVW3a9L2WLvuPIiIiAj1F26J7nrHkAiu5ubmaOHGi1q5dq0qVKunKK69UdHS0JGn37t36+OOPlZiYqM6dO2vq1Km6+OKLAzxja9m0PUObtrsuLv/s253a+FOG3p3zkPr8uaXeWPWlc9vtDySo0sURui6mth554M/6T8KD6jY0UadPFznH7NhzSG3/MVWVL66o9q0aadzAziooLNSzc94r18+Fczt+7JjGj3lI9erV10OjxgZ6OsYKhhW/YD20z3Pn070J8bfLUVCgWUs/CdxEUW6OHTuq0SOHq179+ho1Zlygp2N7dA+eoHveOZ/2hYaGKrLyRRrwyOt6f33xqs6p3+zUj6ue0rj7uuiBxxcFavpA0KN98ATt8875tO9CjomWqF61spa9NFjp+w7r/yWsKJfPAs/Ne3WOwsPD1e8fAwI9FePQPniC9nnHX/t9DerV0MLJ9+njr3Zo5uKPy+3zwHPzkhfp1Klc7dy5Q3Nfma2Rw4folXnJCgsLC/TUbI32wRO0z3MXuj8X2+xKNaxfU1Nff7+8pwrYUjB0z4pPtTMd3fMO5/rwe1znUr6CoX2wHtrnHV9e4/nhhp/04YafnF9/8tUO7T1wVElP9NMtLRvps293+utjwEc2b/pe+/btVfzgBwM9FWPQPniC9nnHl+1LWvqp/jnoz9rw/S6t+niTrmtUW8+M6KmCgkKdLjrt508CBCfaB0/QPs9xjQskqUmTa9WkybXOr1vHtlGTa6/TkEH3K+Xd1fpL7zsDODt7o3ueseQCK1OnTtW3336rmTNnqlOnTqUuEDt9+rQ++ugjPfXUU5o6daqefPLJAM00eHz05Tb9cjxHLa+7wu3ik807MiVJ/7dptzZvz1DqovH6S6cWeufD751jTuXl67sf90oqjtupPIeeGt5Dc9/+TP/7JbtcPwfOLicnR6OGD1ZBfr7mzFuoiy8ufkJFZFSUJCk7O6vU+MLCQkX99hc9AIFF+3zrzO6lfrNDY+/trPseW6DKF1WUJEVVuUiSdPFF4YqqcpGyTvKUcrvIyTmp4Q8OUkF+vl6bv1CVKlUK9JQAlIHu+d7v9/mOZ/0qSfr0a9eFI/kFhdqwaZeaNLg8UNMEAGPRPt872/HO8x1TpVJFrUgcpojwMN0+KEG/nnKUx7Thof37MzX/9XmaNGWacnNzlZubq5yTJyVJp07lKjs7u8wn/wAIHNrne97u911eM1qrkx5SxsFj6jturtvDFmBd1zRpIkm6/oYbdfU1TTTg73300YcfqMvtfw7wzAD8Hu3zrT/an/v7Ha2Ve8rhdl0Lgl9kVJSys0tfg5SVlaX6V1wRgBkB+CN0z/c82ec7np0rSaoaWfpmjqpRlXQsK6ccZg5vcZ0LEBxon+/58hrPf6/9TklP9FOr6+qzwEoQWL1qpSpWrKguf+IYJ2BltM/3PG3fS/M/1JW1q2v2E/306tP9dSovX8/Mflej7rlNBw9nnfXnIbA43gkEH9rnW1zjAkm66ea2io6uqq0/bGGBFVhOaKAnUJaUlBT985//VJcuXcp8+lZoaKg6d+6siRMnKiUlJQAzDGJFZw/Jxm37dPr0aTWsV/MP3+K7n/apQoUwXVG7uq9nBw85HA49PHq4DhzI1Muz56lmrVrObXXr1Vd4eLh+3rXL7Xt270qTJF11VYNynasJQkK8+wdmon1+UlSkK2rX0EUVw7V02gM6+NkLOvjZC/p62aOSpFee6q/0958L8CThKw6HQ6MeGqb9+zM1+9V5qlXr0kBPyQjedo/2mYnu+dFv+3w/ph8oc3OIpIsqhpfjhAD7oX3wBO3zoz843nm2MRHhFfT29MGqX7uaegybpQOHT/hpcvCVzIwMORwOjRszUrfc1Fq33NRad9/5F0nSU48/pi4d2wd4hvZG9+AJ2udHHuz3XRJVSauShqvw9Gn1eihJJ3/N8/cs4QdNmlyrkJAQ7d27N9BTsT3aB0/QPj/53f5cWFio7rr9Rr2X+oOyc3iAgp00aNBQu3elu71WWFioPT/vVoMGDQM0KzNwvBOeoHt+dAH7fL+ecmjvgaO6+qrL3MbUqhap6lUra9vu//l1qvAe17kEBu2DJ2ifH/nwGs/zOW2IwCooKNDaNe+pw60dVaVKlUBPxxh0D56gfX50ge1z5BdoyNOLVa/TI2rd53nVv+2fWrTy/1SrWqQ2bNp1tp+CAON4Z2DRPniC9vkJ17hA4g9XP+N4p2cqBHoCZcnLy1PVqlXPOS46Olp5efzheD4639RE1atW1tdb95x1zE0tGio0NFS7M4784XvdfH1DnT59Wj9n/uLracIDhYWFemziWP20dYuSXp2vK668ym17RESEWsXG6cO1a9T/3vsV8tufdmtT3lVUVLSatbg+ALO2txBTiwKv0D7fOrN7m7dn6E8PJLhtv6xGlBZOvk/Pv5qij/5vW4BmCV8qLCzUhIfHaOsPWzT39QW6kgXEyg3dgyfonu/9fp/v3U+36N5eN6lj7NVK+ewHScU3k998Q0N99OX2QE4VCHq0D56gfb53Psc7yxoTGhqiRZPvU8vrrlDXwS9r555D5TFdeOnqa5poXvJCt9eOHDmiR8aP1eAhw3TTzW0DNDMz0D54gvb5nqf7fZUuitDymUNVLbqyOt33kg4fOxmQ+cN732/8TkVFRapbr26gp2J7tA+eoH2+dbZ9vi43NVHNSyK19L2vAzQz+Eu7W9rrldmzdPToUVWrVk2S9OknH+vXX3/VLe07BHh29kb34Am653ue7vOtWb9VPW5tpkde+q/yHAWSpD5/bqn8/EKt2/BT+X8QnDeucwkc2gdP0D7f8+U1nn3+3FKS9PXWn/01XfjIF5+v17Fjx9Ste89AT8UotA+eoH2+5237jmX9qmNZv0qSxg3soV+O5+i/H2wsl7njwnG8M7BoHzxB+3yLa1wgSZ+v/0wnThxXs2bNAz0VW6N7nrHkAiutWrVSYmKirrvuOl1yySVljjl27JiSkpLUqlWrcp6d9b3+7D36ef8v2vjjPmX/ekqtm16pcQO76Ptt+/T2mm8lSStnDdcnX23Xj+kHlJdfoOuvrqvR93bW5h0ZWvnxZklS/csv0atPD9CyNd9qV8ZhXRQRro5trtbQv3XQvP98rkNHswP5MfGbqZOe0acfr9ODw0eq8HShtmz+3rntqgYxqlKliuIHD9WD8ffo2af+n+7o/hdt/WGz3l62VCNHP6zw8IjATd6m6BE8Qfs8d67u5RcU6rNvd7p9T/3Liw9Sbdt1UJ9vdK0MXOOSKrqlZYwkqVb1SEWEV1DvztdLkj77Nk1H2DGzrOeffVofr/tQw0eM0unTp7V50/fObQ0axvC0Az+ie/AE3fPO+ezzrf50i/5v0y4lPdFPT8xcqf/9kqWhfTuoamQlvTT/A+d70b7glZubq/Wpn0qSMjIylHsqVx+8v0aSdF2zZqpdu04gp2drtA+eoH3eOZ/2nc8YSZrxz7+pZ6cWemrWKoWFhSq22ZXObT/tOsgT0C0qKipKrWPbuL2WmZkhqXif78aW/O/Gn2gfPEH7vOPL/b6l0x5Qy+uu0Mjn31KtapGqVS3Sue37bRly5BeU++fDuQ0ZFK82cXFqGNNIERER2vbTj5qf/JoaN75anTp1DvT0bI/2wRO0z3Pnuz8nSX/v1lpHjp3U+59vLfO9ON4ZvP7ap6+WLnlDo0cM0+AhQ5V1IkvTpk5Wx0636bqmzQI9PVuje/AE3fOOL/f5pi/4UH27ttLiqfFKXPKxGtarqSeGddcry1J18EhWoD4izgPXuQQO7YMnaJ93fHmN56qk4fr0m53aunO/HPkFujW2sR7q11Epn/2gz79LF6zt3VUrVbVqVbW9pX2gp2IU2gdP0D7v+LJ9t7e7Vg3r1dSP6QcUVfki9ejYQn27ttI/JrzGNS4WxvHOwKJ98ATt8xzXuECS/jnxYdWpU1fXXtdUlStX1pbNm5T82lxdfU0T/bnrHYGenq3RPc9YcoGVxx9/XPfcc486duyouLg4NWjQQFFRUZKkrKws7dq1S19++aWio6M1ZcqUAM/Wen7cdVB/+3MrDf/7rbq4YoQyDx3TghUb9Nwr7ym/oFCS9M3Wn9X3jta6sk51SdKe/Uf16rLP9PIbHznHHM/OVeb/juvh+7roshpRysl1aNe+wxr2zBItefergH0+uPu/zz+TJL0y62W9Mutlt22z5y5Qy9axat7iBr04Y5aSZs7QmvdWqUaNmnpo5Fj9vf+9gZgygDLQPs+dT/fOV5MGl2vJCw+4vVby9Z8eSCh1IBPW8cX69ZKkWTMTNGum+4re85IXlroRD0Bg0T3vnE/7ioqKdOfIOZo0prcmj+2tiyuG69sf96rrgy/rp10Hne9F+4LX0aO/6OGxo9xeK/n6X89O0l963xmIaQE4C9rnnfNp3/nuG/7p5iaSpKeG99BTw3u4/RzaBwC+Q/u848v9vj+1vVaSNOvxv5f6OVff8YT2HjhaPh8KF6Rps2Z6d/VKZWYULyhWu05d/a1vPw249z6FR/DwBMCKaJ/nznd/rvLFEerWoZneWPWlCgpOl/leHO8MXlFRUZr7+gJNef5ZjRszShUjKqrL7bdr3MMTAz01AGWge97x5T7fz5m/qNuQRE0Zd6f+mzBEx7NzNfvNT/XMnHcD9fFwnrjOBQgutM87vrzGc9uugxrQo41q16qq8Aqh+jnzF73w+lpNS/7g3N+MgPo1J0effPKRevbspfDw8EBPB8A50D7v+LJ9+fmn1b9HnBpdUUtFRUX65oc96jpkptZ/m+an2cMXON4JBB/a5zmucYEkxcQ00nvvrtaSNxYqLy9PtS69VL3u/KuGDHuI61xgSSFFRUVFgZ5EWU6ePKmlS5cqNTVV6enpysoqXk0/KipKDRs2VPv27dW3b19FRkae4508c/END/nlfWENB794+dyDELSiLw4N6M+/aUqqV9+/YSKrcpuK9sGfjn2dGOgpwE8uCvCSid52T6J9pgp09yTaZ2d0z95oH4IV7YM/0T57C/b20T1zBbp9dM/eaJ+90T4EK9oHf6J99hXs3ZNon6kC3T2J9tkd7bMv2odgRfvgT3TP3oK9fXTPXIFuH92zN9pnb7QPwYr2wZ9on30Fe/ckM9sX4F/b2VWpUkWDBg3SoEGDAj0VALggISGBngGCFe0DEIzoHjxF9wAEK9oHT9E+AMGK9sFTtA9AsKJ98BTtAxCM6B48RfcABCvaB0/RPgDBivbBU7QPQLCiffAU7QMQjOieZyy7wAoABKsQigQAMAjdAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd80xooCcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP5SIdATAAC7YcEvAIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5nWGAFAHwshCIBAAxC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9zzDAisA4GMECQBgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnGRZYAQAfo0cAAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPc+EBnoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAvFQI9AQCwmxCW/AIAGITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITueYYFVgDAx+gRAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8zLLACAD7Gil8AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPc+EBnoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAvFQI9AQCwGxb8AgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO55hgVWAMDHQikSAMAgdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8zLLACAD5GjwAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7ngkN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwF8qePJNc+fOPe+xISEheuCBBzz5MQAQlEJY8suWaB8AlI3u2RftA4Cy0T57onsAcHa0z55oHwCcHe2zJ9oHAGWje/ZF+wCgbLTPnugeAJwd7bMn2gcAZ0f77In2AUDZ6J5nPFpg5cUXXzzvscQIgGlC6ZEt0T4AKBvdsy/aBwBlo332RPcA4Oxonz3RPgA4O9pnT7QPAMpG9+yL9gFA2WifPdE9ADg72mdPtA8Azo722RPtA4Cy0T3PeLTAyrZt23w9DwCwDVb8sifaBwBlo3v2RfsAoGy0z57oHgCcHe2zJ9oHAGdH++yJ9gFA2eiefdE+ACgb7bMnugcAZ0f77In2AcDZ0T57on0AUDa65xmPFlgBAJwdPQIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuecZnC6ysX79emzdv1oEDBzR06FDVrl1b3377rerVq6datWr56scAAGAZtA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8A4CmvF1g5duyYHnroIX377beqXr26jh49qr59+6p27dp66623FBkZqccff9wXcwWAoBAilvyyO9oHAC50zwy0DwBcaJ/90T0AcEf77I/2AYA72md/tA8AXOieGWgfALjQPvujewDgjvbZH+0DAHe0z/5oHwC40D3PhHr7BpMmTdLBgwe1fPlyffrppyoqKnJuu/nmm7VhwwZvfwQABJXQEO/+gfXRPgBw8bZ7tC840D4AcKF99kf3AMAd3bM/2gcA7mif/dE+AHDheKcZaB8AuNA++6N7AOCO7tkf7QMAd7TP/mgfALhwvNMzFbx9g08++URPPvmkrrnmGhUWFrptu/zyy3XgwAFvfwQABJWQEEOLYhDaBwAudM8MtA8AXGif/dE9AHBH++yP9gGAO9pnf7QPAFzonhloHwC40D77o3sA4I722R/tAwB3tM/+aB8AuNA9z4R6+wYOh0ORkZFlbjt58qTCwsK8/REAAFgK7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAeMvrBVaaNGmilJSUMrd99NFHatGihbc/AgCCSkiId//A+mgfALh42z3aFxxoHwC40D77o3sA4I7u2R/tAwB3tM/+aB8AuHC80wy0DwBcaJ/90T0AcEf37I/2AYA72md/tA8AXDje6ZkK3r7B0KFDNWTIEP3666+64447FBISou+//17vvPOOVqxYoeTkZF/MEwCCRqipRTEI7QMAF7pnBtoHAC60z/7oHgC4o332R/sAwB3tsz/aBwAudM8MtA8AXGif/dE9AHBH++yP9gGAO9pnf7QPAFzonme8XmClffv2evnllzV58mS9//77kqRnnnlGtWvXVkJCglq3bu31JAEgmFitR2vXrlVycrJ27dqlnJwcXXrppercubOGDRum6Oho57jU1FRNnz5daWlpqlmzpu655x4NHDiw1PslJydr0aJFOnz4sBo1aqSxY8eqXbt25fiJAo/2AYCL1boH/6B9AOBC++yP7gGAO9pnf7QPANzRPvujfQDgQvfMQPsAwIX22R/dAwB3tM/+aB8AuKN99kf7AMCF7nnG6wVWJKlz587q3Lmz9uzZo19++UXR0dFq2LChL94aAIJOiMWKdOLECcXGxio+Pl6RkZHasWOHEhMTtW3bNi1YsECStGnTJg0bNkzdu3fXxIkTtXnzZk2dOlVhYWEaMGCA872Sk5M1bdo0jRo1Ss2bN9c777yjIUOG6M0331TTpk0D9REDgvYBQDGrdQ/+Q/sAoBjtMwPdAwAX2mcG2gcALrTPDLQPAIrRPXPQPgAoRvvMQPcAwIX2mYH2AYAL7TMD7QOAYnTPMz5ZYKXEFVdcoSuuuMKXbwkA8NLdd9/t9nWbNm1UsWJFPf7449q/f79q166txMRENW7cWJMmTVJISIji4uJ06NAhJSYmqm/fvgoPD5fD4VBSUpL69++vwYMHS5JiY2O1bds2JSYmas6cOYH4eAFH+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAAnvDJAiu7d+/Wq6++qi1btujw4cOqWbOmWrRooQceeEBXXXWVL34EAASNYFjwKzo6WpJUUFAgh8OhDRs2aPTo0W6rlfXo0UOLFi3Sxo0bFRsbq40bNyorK0vdunVzjgkNDVW3bt00c+ZMORwORURElPtnCRTaBwDFrNa9tWvXKjk5Wbt27VJOTo4uvfRSde7cWcOGDXP2T5JSU1M1ffp0paWlqWbNmrrnnns0cODAUu+XnJysRYsW6fDhw2rUqJHGjh2rdu3aleMnsg7aBwDFrNY++AfdAwAX2mcG2gcALrTPDLQPAIrRPXPQPgAoRvvMQPcAwIX2mYH2AYAL7TMD7QOAYnTPM14vsLJ+/XoNHTpUUVFR6tChg2rUqKEjR47ok08+0cqVKzVnzhy1bdvWF3MFgKAQ6mWRNm3adEHjW7RocV7jCgsLVVBQoB07digxMVEdOnRQ/fr1lZaWpvz8fDVs2NBtfMnX6enpio2NVVpamtvrJWJiYuRwOLRv375S2+yK9gGAi7fd87UTJ04oNjZW8fHxioyMdHZv27ZtWrBggaTi1g4bNkzdu3fXxIkTtXnzZk2dOlVhYWEaMGCA872Sk5M1bdo0jRo1Ss2bN9c777yjIUOG6M0331TTpk0D9REDgvYBgIvV2gffo3sA4I722R/tAwB3tM/+aB8AuNA9M9A+AHChffZH9wDAHe2zP9oHAO5on/3RPgBwoXue8XqBlSlTpqhVq1Z65ZVXFBER4Xw9Ly9PgwcP1uTJk7Vq1SpvfwwABA1vc9SnT58LGr99+/bzGtemTRtlZ2dLktq1a6cZM2ZIKr4RXZIiIyPdxlepUkVhYWHO7VlZWQoLC1PlypXdxkVFRbm9jwloHwC4WG037O6773b7uk2bNqpYsaIef/xx7d+/X7Vr11ZiYqIaN26sSZMmKSQkRHFxcTp06JASExPVt29fhYeHy+FwKCkpSf3799fgwYMlSbGxsdq2bZsSExM1Z86cQHy8gKF9AOBitfbB9+geALijffZH+wDAHe2zP9oHAC50zwy0DwBcaJ/90T0AcEf77I/2AYA72md/tA8AXOieZ0K9fYM9e/Zo4MCBbiGSpIoVK2rgwIHas2ePtz8CAOADixYt0tKlS/X0008rLS1NQ4YMUWFhYaCnFZRoHwAEl+joaElSQUGBHA6HNmzYoDvuuEMhZ6zS2aNHDx0/flwbN26UJG3cuFFZWVnq1q2bc0xoaKi6deumzz//XA6Ho3w/RIDRPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7gGAta1du1Z///vf1aZNGzVt2lS33XabJk2aVOphr6mpqerdu7eaNWumTp06af78+WW+X3Jysjp16qRmzZrpzjvv1Pr168vhU1gL7QMAa6N9vkf7AADequDtG1xxxRU6evRomduOHj2qK664wtsfAQBB5cybtT2xbNkyH83EXZMmTSRJN954o5o0aaI+ffrogw8+UExMjCQpOzvbbfzJkydVWFjovCk9KipKhYWFysnJUeXKlZ3jsrKyJLluXjcB7QMAF2+7J0mbNm26oPEtWrQ455jCwkIVFBRox44dSkxMVIcOHVS/fn2lpaUpPz9fDRs2dBtf8nV6erpiY2OVlpbm9nqJmJgYORwO7du3r9Q2O6N9AODii/bB2ugeALijffZH+wDAHe2zP9oHAC50zwy0DwBcaJ/90T0AcGe19p04cUKxsbGKj49XZGSk8xrPbdu2acGCBZKKrykdNmyYunfvrokTJ2rz5s2aOnWqwsLCNGDAAOd7JScna9q0aRo1apSaN2+ud955R0OGDNGbb76ppk2bBuojljvaBwDuaJ/90T4AcLFa94KF1wusTJw4UU888YRq1qypdu3aOV//7LPPNGvWLD377LPe/ggACCqhXvbofG4a99a1116rkJAQ7d27V506dVJ4eLjS09PVsWNH55j09HRJrhvLz7zxvHnz5s5xaWlpCg8PV7169fw+b6ugfQDg4m33JKlPnz4XNH779u3nHNOmTRvn4mHt2rXTjBkzJMm50nNkZKTb+CpVqigsLMy5PSsrS2FhYW6LiknFC46d+T6moH0A4OKL9sHa6B4AuLNa+9auXavk5GTt2rVLOTk5uvTSS9W5c2cNGzbMbRHo1NRUTZ8+XWlpaapZs6buueceDRw4sNT7JScna9GiRTp8+LAaNWqksWPHuv35bwLaBwDurNY++B7tAwAXumcG2gcALrTP/ugeALizWvvuvvtut6/btGmjihUr6vHHH9f+/ftVu3ZtJSYmqnHjxpo0aZJCQkIUFxenQ4cOKTExUX379lV4eLgcDoeSkpLUv39/DR48WJIUGxurbdu2KTExUXPmzAnExwsI2gcA7mif/dE+AHCxWveChUcLrHTt2tVtRZucnBwNGjRIF198sapVq6ajR48qNzdXUVFRevbZZ/Xee+/5bMIAYHXBsOLXd999p6KiItWtW1cRERGKi4tTSkqK4uPjnfNfvXq1oqOjdf3110uSbrzxRkVGRiolJcW5wEpRUZFSUlLUtm1bRUREBOrjlAvaBwBls2r3Fi1apNzcXO3YsUOzZ8/WkCFDlJycHOhpBRXaBwBls2r74B26BwBnZ7X28WQf36B9AHB2VmsffIP2AUDZ6J590T4AKBvtsye6BwBn5237Nm3adEHjPXnYbMlDFAoKCuRwOLRhwwaNHj3abe49evTQokWLtHHjRsXGxmrjxo3KyspSt27dnGNCQ0PVrVs3zZw5Uw6Hw9b3N9A+ADg72mdPtA8AysbxTs94tMBKixYt+A8OAEEiPj5ecXFxatSokSIiIvTjjz/qtdde09VXX63OnTtLkoYPH67+/fvr0UcfVa9evbR582YtWbJE48ePd+5cRUREaOjQoZo+fbqqVaumZs2aafny5dq5c6eefvrpQH7EckH7AMB/li1b5vP3bNKkiaTiBcKaNGmiPn366IMPPlBMTIwkKTs72238yZMnVVhY6DxYGRUVpcLCQuXk5Khy5crOcVlZWZLk9lR0u6J9ABAc1q5dq+TkZO3atUs5OTm69NJL1blzZw0bNsytV6mpqZo+fbrS0tJUs2ZN3XPPPRo4cGCp90tOTtaiRYt0+PBhNWrUSGPHjnVb4d+u6B4ABA+e7OMbtA8AYBraBwAwDe0DgODAuT7foHsA4D99+vS5oPHbt28/r3GFhYUqKChwPkyhQ4cOql+/vtLS0pSfn6+GDRu6jS/5Oj09XbGxsUpLS3N7vURMTIwcDof27dtXapud0D4A8B/aZ020DwDgSx4tsDJ58mRfzwMAbMNqf1dv1qyZVq5cqYyMDElS3bp11a9fP913333OxVNuuOEGJSUlafr06Vq1apVq1aqlcePGlToBFx8fL0lavHixEhISFBMTo6SkJDVv3rxcP1Mg0D4AKJsvuufJqs0X4tprr1VISIj27t2rTp06KTw8XOnp6erYsaNzTHp6uiTXAcczD0ie2bm0tDSFh4erXr16fp2zFdA+ACib1fb5Tpw4odjYWMXHxysyMtJ58m3btm1asGCBpOInKgwbNkzdu3fXxIkTtXnzZk2dOlVhYWEaMGCA872Sk5M1bdo0jRo1Ss2bN9c777yjIUOG6M0331TTpk0D9RHLBd0DgLPztn082ceaaB8AnJ3V9vu42c43aB8AlM1q3YPv0D4AKJvV2se5Pt+gewBwdlZrX4k2bdo4H5TXrl07zZgxQ1JxGyUpMjLSbXyVKlUUFhbm3J6VlaWwsDC3B+hJxQ/XO/N97Ir2AcDZ0T57on0AUDYrdi8YrnPxaIEVAMDZWW01xNGjR2v06NHnHNehQwd16NDhnOPi4+OdC60AAGC17pXlu+++U1FRkerWrauIiAjFxcUpJSVF8fHxzvmvXr1a0dHRuv766yVJN954oyIjI5WSkuJcYKWoqEgpKSlq27atrW+yAwD8Mau17+6773b7uk2bNqpYsaIef/xx7d+/X7Vr11ZiYqIaN26sSZMmKSQkRHFxcTp06JASExPVt29fhYeHy+FwKCkpSf3799fgwYMlSbGxsdq2bZsSExM1Z86cQHw8AIAFeNu+Pn3uPvegM/BkHwBAoFltv4+b7QAA/mS17gEA4G9Wax/n+gAA/uZt+5YtW+ajmbhbtGiRcnNztWPHDs2ePVtDhgxRcnKyX34WAMAstA8AYBKrHe+UguM6F58ssHL8+HGlpKTo559/Vl5eXqntTz31lC9+DAAEhVDr9Qh+QPsAoJjVuhcfH6+4uDg1atRIERER+vHHH/Xaa6/p6quvVufOnSVJw4cPV//+/fXoo4+qV69e2rx5s5YsWaLx48c7F06JiIjQ0KFDNX36dFWrVk3NmjXT8uXLtXPnTj399NOB/IgBQ/sAoJgv2rdp06YLGt+iRYsLGl+ysnNBQYEcDoc2bNig0aNHux1A7dGjhxYtWqSNGzcqNjZWGzduVFZWlrp16+YcExoaqm7dumnmzJlyOBxGLTBG9wDAxWr7fSV4so9v0T4AcLFa+7jZzj9oHwAUs1r3pOB4ql0won0AUIxzfWagewDg4m37LrRj56tJkyaSih+G16RJE/Xp00cffPCBYmJiJMl5HrDEyZMnVVhY6OxkVFSUCgsLlZOT43a+LysrS5Lc9h9NQPsAwIX2mYH2AUAxK57rC4brXLxeYGX37t3q27ev8vPzlZubq0suuUQnTpxwxrtKlSre/ggACCpWXPELvkX7AMDFat1r1qyZVq5cqYyMDElS3bp11a9fP913333OC0VuuOEGJSUlafr06Vq1apVq1aqlcePGlbrgMj4+XpK0ePFiJSQkKCYmRklJSWrevHm5fiYroH0A4OKL9vXpc/e5B51h+/bt5xxTWFiogoIC5wrPHTp0UP369ZWWlqb8/Hw1bNjQbXzJ1+np6YqNjVVaWprb6yViYmLkcDi0b9++Utvsiu4BgDue7GN/tA8A3HnbPn/faCdxs523aB8AuFjtXJ8UHE+1Cza0DwBcONdnf3QPANxZcb/v96699lqFhIRo79696tSpk8LDw5Wenq6OHTs6x6Snp0tyte7MFp55TWdaWprCw8NVr169cvwEgUX7AMAd7bM/2gcALr7ononXuXi9wMqUKVPUvHlzzZw5U9dff73mzp2rq6++WqtWrdKMGTP08ssve/sjAACwFNoHANY1evRojR49+pzjOnTooA4dOpxzXHx8vHOhFZPRPgCwvjZt2jifYNCuXTvNmDFDUvHNCJIUGRnpNr5KlSoKCwtzbs/KylJYWJjbkw2k4qcenPk+JqB7AOBbPNnH+mgfAPhWnz59Lmj8+dxoJ3GznS/RPgCwtmB4ql2woX0AYH2c6/MdugcAwee7775TUVGR6tatq4iICMXFxSklJUXx8fHOm+1Wr16t6OhoXX/99ZKKzxFGRkYqJSXFeZN5UVGRUlJS1LZtW2MWk5ZoHwAEI9rnHdoHAL5l4nUuXi+w8sMPP+hf//qXM8AFBQWqUKGCevfurWPHjun555/X4sWLvf0xABA0rL/OJbxF+wDAhe6ZgfYBgIsv2rds2TIfvIu7RYsWKTc3Vzt27NDs2bM1ZMgQJScn+/znmIDuAYC7YNjv48k+3qF9AODOqu3jZjvfoX0A4OKL7pn4VLtgQ/sAwIVzffZH9wDAndWOd8bHxysuLk6NGjVSRESEfvzxR7322mu6+uqr1blzZ0nS8OHD1b9/fz366KPq1auXNm/erCVLlmj8+PHOP98jIiI0dOhQTZ8+XdWqVVOzZs20fPly7dy5U08//XQgP2K5o30A4I722R/tAwAXq3XvTFa+zsXrBVZ+/fVXRUZGKjQ0VNHR0Tp8+LBzW5MmTVjtC4BxQkOsnCT4Au0DABe6ZwbaBwAuvmifJzcQnEuTJk0kFT+loEmTJurTp48++OADxcTESJLz4GSJkydPqrCw0HljQlRUlAoLC5WTk+N2EDIrK0uS6wYGE9A9AHAXDPt9PNnHO7QPANx52z5/3GgncbOdL9E+AHDxxT6fiU+1Cza0DwBcONdnf3QPANxZ7Vxfs2bNtHLlSmVkZEiS6tatq379+um+++5znp+74YYblJSUpOnTp2vVqlWqVauWxo0bp4EDB7q9V3x8vCRp8eLFSkhIUExMjJKSktwermAC2gcA7mif/dE+AHDxRfdMvM7F6wVW6tevr0OHDkmSGjVqpHfeece5ctq7776ratWqefsjACCoWGw/DH5A+wDAhe6ZgfYBgEswtO/aa69VSEiI9u7dq06dOik8PFzp6enq2LGjc0x6erok180FZ958cObJtrS0NIWHh6tevXrl+AkCi+4BgDurtY8n+/ge7QMAd962zx832kncbOdLtA8AXKy2z3cmKz/VLtjQPgBwsXL7SnCuzzt0DwDcWa19o0eP1ujRo885rkOHDurQocM5x8XHxztvNjcV7QMAd7TP/mgfALj4onsmXufi9QIrHTp00IYNG9StWzc9+OCDGjp0qGJjYxUWFqZjx47pn//8p7c/AgAAS6F9AADT0D4ACC7fffedioqKVLduXUVERCguLk4pKSmKj49XyG9HUVevXq3o6Ghdf/31kooPXEZGRiolJcV50WVRUZFSUlLUtm1b583oJqB7AGBtPNnH92gfAAQfbrbzDu0DAN8y8al2wYb2AUBw4Vyfd+geAMA0tA8AYBraBwDBx2rXuXi9wMqYMWOc//ctt9yiN998Ux988IFOnTqltm3bqn379t7+CAAIKiFWW+oSPkf7AMCF7pmB9gGAi9XaFx8fr7i4ODVq1EgRERH68ccf9dprr+nqq692rsg/fPhw9e/fX48++qh69eqlzZs3a8mSJRo/frzzYsqIiAgNHTpU06dPV7Vq1dSsWTMtX75cO3fu1NNPPx3Ij1ju6B4AuLNa+3iyj+/RPgBwZ7X2lYWb7bxD+wDAxRfdM/GpdsGG9gGAi9X2+TjX53t0DwDcWa198D3aBwDuaJ/90T4AcAmW7lntOhevF1j5vaZNm6pp06aSpN27d2vu3LkaNGiQr38MAFhWkPQIPkT7AJiM7pmJ9gEwmdXa16xZM61cuVIZGRmSpLp166pfv3667777nAcNb7jhBiUlJWn69OlatWqVatWqpXHjxmngwIFu71Vyc/nixYuVkJCgmJgYJSUlua34bCK6B8B0Vmsf/I/2ATCd1drHzXb+R/sAmMxq3Tsbqz3VLtjRPgAms1r7ONfnf3QPgOms1j74H+0DYDraZx7aB8BkVuxeMFzn4vMFVs60Y8cOvfTSS8QIgFFCrVgklBvaB8A0dA+0D4BprNa+0aNHa/To0ecc16FDB3Xo0OGc4+Lj450XX6I0ugfARFZrH8oX7QNgIqu1j5vtyhftA2Aaq3XvbKz2VDs7oX0ATGO19nGur3zRPQAmslr7UL5oHwAT0T6z0T4AprFi94LhOhe/LrACACayYI8AAPAbugcAMA3tAwCYhvYBAExjtfZxsx0AwJ+s1j0pOJ5qBwAIXlZsHwAA/kT7AACmoX0AAJNYsXvBcJ0LC6wAAAAAAAAAAAAAAAAAAICAC4an2gEAAAAAAAAAAAAITiywAgA+FmLFJb8AAPATugcAMA3tAwCYhvYBAExD+wAAJrFi94LhqXYAgOBlxfYBAOBPtA8AYBraBwAwCd3zDAusnMWxrxMDPQX40cHjpwI9BfhR9MUXBfTnhwb0pwOeO/oV7bOz/cdon101qEn3AE/t/zwh0FOAn+Q6CgM9BfjRRRXCAvrzaR+C2aENLwd6CvCTrNz8QE8BfnRRZHhAfz7tQ7D6H92ztZy8gkBPAX50UYXAXsZA+xCsDn5B++yMY572xfFOwHNHvpwZ6CnAj47/yjFPu7osiuOdgKdon30dz6F7dnZZNO0DPLE3dUagpwA/OnmKc312dlEVzvUBnjj8f+zz2RnXudgX17gEJ49+a82bNz+vFW0KCzm5D8A8rPhlT7QPAMpG9+yL9gFA2WifPdE9ADg72mdPtA8Azo722RPtA4Cy0T37on0AUDbaZ090DwDOjvbZE+0DgLOjffZE+wCgbHTPMx4tsDJo0CD+gwMAjEL7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AAC+5NECKyNGjPD1PADANkL5u7ot0T4AKBvdsy/aBwBlo332RPcA4Oxonz3RPgA4O9pnT7QPAMpG9+yL9gFA2WifPdE9ADg72mdPtA8Azo722RPtA4Cy0T3PeLTACgDg7AgSAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8zLLACAD4WEkKRAADmoHsAANPQPgCAaWgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXueCQ30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAXyoEegIAYDehLPgFADAI3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3fMMC6wAgI+FECQAgEHoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonmd8usDKwYMHtX//fl1zzTWqVKmSL98aAIJGKEUyCu0DYDq6Zx7aB8B0tM8sdA8AaJ9paB8A0D7T0D4ApqN75qF9AExH+8xC9wCA9pmG9gEA7TMN7QNgOrrnmVBfvMnbb7+tDh06qGPHjvrHP/6h3bt3S5JGjBihN954wxc/AgCCRqiX/yA40D4AKOZt92hf8KB9AFCM9pmB7gGAC90zA+0DABfaZwbaBwDFON5pDtoHAMVonxnoHgC40D0z0D4AcKF9ZqB9AFCM452e8fpzL168WE899ZRuv/12JSUlqaioyLmtZcuWeu+997z9EQAAWArtAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwB4q4K3b7BgwQI9+OCDGjlypAoLC922XXXVVc6VvwDAFCEhgZ4B/I32AYAL3TMD7QMAF9pnf3QPANzRPvujfQDgjvbZH+0DABe6ZwbaBwAutM/+6B4AuKN99kf7AMAd7bM/2gcALnTPM14vsLJ//361bt26zG0RERHKycnx9kcAQFAJpUi2R/sAwIXumYH2AYAL7bM/ugcA7mif/dE+AHBH++yP9gGAC90zA+0DABfaZ390DwDc0T77o30A4I722R/tAwAXuueZUG/f4LLLLtOOHTvK3PbTTz+pXr163v4IAAgqISHe/QPro30A4OJt92hfcKB9AOBC++yP7gGAO7pnf7QPANzRPvujfQDgwvFOM9A+AHChffZH9wDAHd2zP9oHAO5on/3RPgBw4XinZ7xeYKVHjx6aNWuWPv30UxUVFUmSQkJC9OOPP+q1115Tr169vP0RAABYCu0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAHirgrdvMGzYMO3cuVMPPvigIiMjJUn33XefsrKy1KVLF8XHx3s9SQAIJqGGrthlEtoHAC50zwy0DwBcaJ/90T0AcEf77I/2AYA72md/tA8AXOieGWgfALjQPvujewDgjvbZH+0DAHe0z/5oHwC40D3PeL3ASnh4uBITE/XVV1/p888/19GjRxUdHa22bdvqpptu8sUcASCohIZQJLujfQDgQvfMQPsAwIX22R/dAwB3tM/+aB8AuKN99kf7AMCF7pmB9gGAC+2zP7oHAO5on/3RPgBwR/vsj/YBgAvd84zXC6yUiI2NVWxsrK/eDgCCFj0yB+0DALpnGtoHALTPJHQPAIrRPnPQPgAoRvvMQfsAgO6ZhvYBAO0zCd0DgGK0zxy0DwCK0T5z0D4AoHue8nqBlf37959zTO3atb39MQAAWAbtAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwB4y+sFVjp16qSQcyxv89NPP3n7YwAgaISy4pft0T4AcKF7ZqB9AOBC++yP7gGAO9pnf7QPANzRPvujfQDgQvfMQPsAwIX22R/dAwB3tM/+aB8AuKN99kf7AMCF7nnG6wVWXnrppVKvHT9+XJ999pm2b9+ukSNHevsjACCohIgi2R3tAwAXumcG2gcALrTP/ugeALijffZH+wDAHe2zP9oHAC50zwy0DwBcaJ/90T0AcEf77I/2AYA72md/tA8AXOieZ7xeYOWOO+4o8/V+/frpqaee0o8//qhevXp5+2MAIGiw4pf90T4AcKF7ZqB9AOBC++yP7gGAO9pnf7QPANzRPvujfQDgQvfMQPsAwIX22R/dAwB3tM/+aB8AuKN99kf7AMCF7nkm1J9v/qc//UkrVqzw548AAMsJDfHuHwQ32gfANN52j/YFP9oHwDS0z2x0D4CJ6J7ZaB8AE9E+s9E+AKbheCdoHwDT0D6z0T0AJqJ7ZqN9AExE+8xG+wCYhuOdnvHrAis7duxQWFiYP38EAACWQvsAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAOejgrdvMHfu3FKv5efnKz09XWvXrlXv3r29/REAEFRCQgxdsssgtA8AXOieGWgfALjQPvujewDgjvbZH+0DAHe0z/5oHwC40D0z0D4AcKF99kf3AMAd7bM/2gcA7mif/dE+AHChe57xeoGVF198sdRrERERuvzyy3X//fdr6NCh3v4IAAgqofTI9mgfALjQPTPQPgBwoX32R/cAwB3tsz/aBwDuaJ/90T4AcKF7ZqB9AOBC++yP7gGAO9pnf7QPANzRPvujfQDgQvc84/UCK9u2bfPFPADANljwy/5oHwC40D0z0D4AcKF99kf3AMAd7bM/2gcA7mif/dE+AHChe2agfQDgQvvsj+4BgDvaZ3+0DwDc0T77o30A4EL3PBPqzTc7HA6NGzdO3377ra/mAwCApdE+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIAveLXASkREhD766CMVFBT4aj4AEPRCQ0K8+gfWRvsAwJ233aN91kf7AMAd7bM3ugcApdE9e6N9AFAa7bM32gcA7jjeaX+0DwDc0T57o3sAUBrdszfaBwCl0T57o30A4I7jnZ7xaoEVSYqNjWW1LwA4Q2iId//A+mgfALh42z3aFxxoHwC40D77o3sA4I7u2R/tAwB3tM/+aB8AuHC80wy0DwBcaJ/90T0AcEf37I/2AYA72md/tA8AXDje6ZkK3r7B0KFDNW7cOIWEhKhjx46qUaOGQn63Wk316tW9/TEAEDQMXbDLKLQPAFzonhloHwC40D77o3sA4I722R/tAwB3tM/+aB8AuNA9M9A+AHChffZH9wDAHe2zP9oHAO5on/3RPgBwoXueCSkqKiq60G9KTEzU3XffrUsvvVTXXHON683O8lv46aefPJ9hgJwqCPQM4E8Hj58K9BTgR1fWuCigP3/W5z979f3D217pk3nAt0xoX25+oGcAfzpA+2yrQc3g7p5E+6zKhPYd+7Uw0FMA4IFLKoUF9OfTPnsyoXuSlH3qdKCnAD/JzefvNXZWKzI8oD+f4532ZEL7suiereUX8vu1s+qVvX5OjFdonz2Z0L4TufzZaGenL/zyLgQJjnfCX0xoX46DPxvtLJuLeG3rsqjgPt4p0T4rMqF7Eu2zs+xcumdnl0UHd/vonjWZ0L7D2fzZaGfcCGxvNapwrg++Z0L7Tuaxz2dneQVc42lXwX6Ni2Rm+zz6rc2aNUvt27fXpZdequeff/6sEQIAwC5oHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDAlzxaYKXojKei3HnnnT6bDADYAX8/tyfaBwBlo3v2RfsAoGy0z57oHgCcHe2zJ9oHAGdH++yJ9gFA2eiefdE+ACgb7bMnugcAZ0f77In2AcDZ0T57on0AUDa65xmPFlgBAJxdKEECABiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7nnG4wVW3n77baWmpp5zXEhIiIYPH+7pjwGAoBPKkl+2RfsAoDS6Z2+0DwBKo332RfcAoGy0z75oHwCUjfbZF+0DgNLonr3RPgAojfbZF90DgLLRPvuifQBQNtpnX7QPAEqje57xeIGV5cuXK+Q8/qMTIwAIrDVr1mjVqlXaunWrjh07prp16+quu+7SgAEDFB4e7hyXmpqq6dOnKy0tTTVr1tQ999yjgQMHlnq/5ORkLVq0SIcPH1ajRo00duxYtWvXrhw/UeDQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAr3i8wMrixYvVvHlzX84FAGzBagt+vf7666pTp47Gjx+v6tWra+PGjZoxY4a2b9+uKVOmSJI2bdqkYcOGqXv37po4caI2b96sqVOnKiwsTAMGDHC+V3JysqZNm6ZRo0apefPmeueddzRkyBC9+eabatq0aaA+YrmhfQBQmtW6B9+ifQBQGu2zL7oHAGWjffZF+wCgbLTPvmgfAJRG9+yN9gFAabTPvugeAJSN9tkX7QOAstE++6J9AFAa3fOMxwusAADKFmqxIs2ZM0fVqlVzfh0XF6eioiIlJCRo/PjxqlGjhhITE9W4cWNNmjRJISEhiouL06FDh5SYmKi+ffsqPDxcDodDSUlJ6t+/vwYPHixJio2N1bZt25SYmKg5c+YE6iMCAALIat1bs2aNVq1apa1bt+rYsWOqW7eu7rrrLg0YMEDh4eHOcampqZo+fbrS0tJUs2ZN3XPPPRo4cGCp90tOTtaiRYt0+PBhNWrUSGPHjlW7du3K8RMBAKzGau0DAMDfaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe55hgRUA8DFve7Rp06YLGt+iRYs/3H7m4iolrrvuOknSoUOHFBUVpQ0bNmj06NEKOWPyPXr00KJFi7Rx40bFxsZq48aNysrKUrdu3ZxjQkND1a1bN82cOVMOh0MREREXNHcAQPCz2n7Y66+/rjp16mj8+PGqXr26Nm7cqBkzZmj79u2aMmWKpOLWDhs2TN27d9fEiRO1efNmTZ06VWFhYRowYIDzvZKTkzVt2jSNGjVKzZs31zvvvKMhQ4bozTffVNOmTQP1EQEAAWa19gEA4G+0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKaxWvt4gCwAwJ+s1r1gwQIrAGAxffr0uaDx27dvv+Cf8c033yg8PFz169fX3r17lZ+fr4YNG7qNKfk6PT1dsbGxSktLc3u9RExMjBwOh/bt21dqGwAA5W3OnDlui4vFxcWpqKhICQkJGj9+vGrUqKHExEQ1btxYkyZNUkhIiOLi4nTo0CElJiaqb9++Cg8Pl8PhUFJSkvr376/BgwdLkmJjY7Vt2zYlJiZqzpw5gfqIAAAAAAAAAAAAAAAAAAAAAADA4niALAAA1uPRAivbtm3z9TwAwDZCAz2Bc0hLS9PChQv1t7/9TVWqVNGJEyckSZGRkW7jqlSporCwMOf2rKwshYWFqXLlym7joqKiJMk5zq5oHwCUzRfd27Rp0wWNb9GixVm3nbm4SonrrrtOknTo0CFFRUVpw4YNGj16tELOWKazR48eWrRokTZu3KjY2Fht3LhRWVlZ6tatm3NMaGiounXrppkzZ8rhcCgiIuKC5h1saB8AlM3q+3zwDN0DgLOzWvt4so9v0D4AODurtQ++QfsAoGx0z75oHwCUjfbZE90DgLOzWvs41+cbtA8Azs5q7eMBsr5B+wCgbFbrXrDwaIEVAMDZnXmztieWLVvmo5mUdvToUQ0fPlz169fXuHHj/PZzAADm8LZ7ktSnT58LGr99+/YLGv/NN98oPDxc9evX1969e5Wfn6+GDRu6jSn5Oj09XbGxsUpLS3N7vURMTIwcDof27dtXahsAwAy+aJ8vceEJAMDfrNY+nuwDAPA3q7UPAAB/onsAANNYrX2c6wMA+JvV2se5PgCAv3nbPl8+PFbiAbIAAP+y2j5fsGCBFQDwMW9zdK4dK0+dPHlSgwYNUn5+vhYuXKhKlSpJkqKjoyVJ2dnZpcYXFhY6t0dFRamwsFA5OTmqXLmyc1xWVpbb+wAAzGL13bC0tDQtXLhQf/vb31SlShWdOHFCkhQZGek2rkqVKgoLC3Nuz8rKUlhYmFvzpOIeSnKOAwCYx2rt48ITAIC/Wa19PNkHAOBvVmsfN9sBAPzJat0DAMDfrNY+zvUBAPzNau3jXB8AwN+8bZ+/Hx4r8QBZAIDvWG2fL1iwwAoA+FioBVf8cjgcGjZsmDIzM7VkyRJdeumlzm3169dXeHi40tPT1bFjR+fr6enpklw7XmfumDVv3tw5Li0tTeHh4apXr155fBQAgMX4onvLli3zwUxKO3r0qIYPH6769etr3LhxfvkZAADzWG2fjwtPAAD+5m37eLIPACDYWG2/j5vtAAD+ZLXuSSwuBgDwL6u1j3N9AAB/41wfAMA0Vtvv+z0eIAsA8CUrdi8YzvWxwAoA2FxhYaHGjBmjLVu2aMGCBWrQoIHb9oiICMXFxSklJUXx8fHOA5GrV69WdHS0rr/+eknSjTfeqMjISKWkpDgXWCkqKlJKSoratm3LAUgAgMfOdULNEydPntSgQYOUn5+vhQsXqlKlSpKk6OhoSVJ2dnap8YWFhc7tUVFRKiwsVE5OjttByKysLLf3AQDAE768+IQLTwAAVseTfQAA8A432wEATMPiYgAAq+NcHwDAJJzrAwCYxl8Pj5V4gCwAwAzBcK6PBVYAwMestt7X008/rQ8//FCjRo3S6dOn9f333zu3xcTEqEqVKho+fLj69++vRx99VL169dLmzZu1ZMkSjR8/3nlSLSIiQkOHDtX06dNVrVo1NWvWTMuXL9fOnTv19NNPB+jTAQACzWrdkySHw6Fhw4YpMzNTS5Ys0aWXXurcVr9+fYWHhys9PV0dO3Z0vp6eni7JdbLtzJNxJQuLScUrRoeHh6tevXrl8VEAABbki/b5++ITLjwBAPiSFff7zsSTfQAAvuZt+3iiKwAgmFhxn4/FxQAA/sS5PgCAaay433cmzvUBAHzN2/b54+GxEg+QBQD4hxX3+YLhXB8LrACAj4VYrEjr16+XJCUkJCghIcFt28KFC9WmTRvdcMMNSkpK0vTp07Vq1SrVqlVL48aN08CBA93Gx8fHS5IWL16shIQExcTEKCkpye3GcwCAWazWvcLCQo0ZM0ZbtmzRggUL1KBBA7ftERERiouLU0pKiuLj4503HKxevVrR0dG6/vrrJUk33nijIiMjlZKS4uxcUVGRUlJS1LZtW240AACDWa19v8eFJwAAX/O2fTzZBwAQbLxtH090BQAEE18c72RxMQBAMOFcHwDANJzrAwCYxor7fTxAFgDgL5zr8+xcHwusAICPhVhsT+yjjz46r3EdOnRQhw4dzjkuPj7eudAKAABW697TTz+tDz/8UKNGjdLp06f1/fffO7fFxMSoSpUqGj58uPr3769HH31UvXr10ubNm7VkyRKNHz/euWMVERGhoUOHavr06apWrZqaNWum5cuXa+fOnXr66acD9OkAAFbgi/b56+ITLjwBAPiDt+3jyT4AgGBjtWOev8fNdgAAX/JF91hcDAAQTDjXBwAwDef6AACmsdq5Ph4gCwDwJ871eXaujwVWAAAAANjG+vXrJUkJCQlKSEhw27Zw4UK1adNGN9xwg5KSkjR9+nStWrVKtWrV0rhx4zRw4EC38SULii1evFgJCQmKiYlRUlKS24rPAAB4wh8Xn3DhCQDAJDzZBwBgZTzRFQAA32JxMQCA1XCuDwAA73CuDwBgEh4gCwAwnRXP9bHACgD4WGigJwAAQDmyWvc++uij8xrXoUMHdejQ4Zzj4uPjnQutAAAgWa99EheeAAD8y2rt48k+AAB/87Z9PNEVABBMfLHPx+JiAIBgYrXjnRLn+gAA/mW19nGuDwDgb1ZrHw+QBQD4E+f6PMMCKwDgYyUH8QAAMAHdAwCYxmrt48ITAIC/Wa19PNkHAOBvVmufxM12AAD/8UX3WFwMABBMrLbPx7k+AIC/Wa19nOsDAPib1drHA2QBAP7EuT7PsMCKwfbu2aMF81/TD1u2KG3nDtWqdalSPji/v7DBej75cI3+8+ZC7dmVrvCICMU0vkYTnnhe1WvUlFR8omT1O8u0+p1lyszYq0qVKuvqJk31xKTpCg8PD/Ds7cVau2EASnz91ZcadP89pV5vGNNI/1m+OgAzgqcmPBSvLd9/U+a2+x4cqT4D4vXein9rQ+pH2pW2Q7/+elJ16l2hv/y1nzp37Wm5A2bBjv+agDV89MH7ej9ltbb9tFXHjx9X7dp11P0vd+pvf++vCmf8fX/Z0jf09puLdfDAftWsdanuvPtv+sc99/Nno8Xx+7UWq/3X5MITmOrDD97XmndX6aefftTx48dUp3Yd9ex1l/r2c/3Z+H8bPtfqlcv1w5bNyti3V9179tJTz0wK8MxxoQoKChTf/27tStupJ5+bqs633yFJWvGfZXp3xX+VkbFXeXl5uvTSy9Wlazf1u+d+VaxYMcCzthertY8n+8BU637XvtpltO/LDZ9r1crl2vpb+7rRvqDwyboP9ObiBdrz8279mpOjmrUu1S23dtJ9g4YoKqr0hQAH9mfqH3/9i06dytWqtZ84zwXCd6zWPm62g4nWffC+1ry3Stt+172S42GFhYVasmi+Pv/sU+3elS5HvkNXNWiogfcPVvtbOwV6+jiH8zneGXfDtWf9/nkLlqppc/9c5Gciq3WvBIuLwUR79+7Rovmva+sPxddz1qxVS+++77qes7CwUG8snK/1qZ9o16505TuK+3f/Aw+qQ0f6FywKCgo0aEDx8c4nnpuq2/50h3NbUVGRlv/7La34z1vK3LdHF1eqrCbXNdWzL7zMNZ4+ZLX2ca4PpjpX90rk5zu04PXXtGrlch08sF/RVasq7qab9a/npgRg1jgfG7/9SqOH3l/q9asaxGj+m8slSZ+sW6sP1qzWjm0/6sTx47q8dh3d0bO37vrbP1ShAs3zNau1j3N9MNWnHxWfD9r78279+muOatS6VO07dNK9D7jOBxUUFOitxQv03qozunfzLRo0dIQuqVY9wJ8AZ/PJRx/orTd+O9f3q+tc38AzfrfJc2frk3VrdWD/fhUWFqp2nbrqeefduqvP3xUaGhrgT2A/VmsfYKp9e/do0YLXi+9fT9uhWrVqafUa9/2+ls2vOev3z1/0ppq1uN7Ps4Qnzvc6l/x8h95Y8LpSVq3Q/w4eUHR0VbWOu0mP/4trmXzJqt2z+rk+FlgxWHr6TqV++omaNmuuoqIiZf+2Yg+Cz7+XLlDynJd119/vVfzQ0Tp1Klc/fP+d8h15zjGzXpqkdWtWq+898WrStIVOZmfp26826PTpQkkciPQlbl4ErO3Jp59Vw5hGzq8vuuiiAM4Gnhg+7lH9mpPj9tpH76/W6nfeUuubbpEkvblgrlq2uVl/7nmnKlWO1HdffaHpk57UwQOZGhA/LBDTti26B1jD4kXJuvzyOnpo1MOqVr26Nm/aqFeTXlb6zh164reb6V6fO0evvTJL99w3SNe3bKVN332r2TNnKDc3V4OGPBTgT4A/wu/XWqzWPi48ganeWPC6Lq9dRyNHj1P16jW0adNGzZ6VoJ07t+vpZydLkr5Y/5m2b/tJ199wo7KzOfYZrP795hs6fuxYqdezs7PU7tZOatiosS6+uJK2btmk+fPm6OD+TP3zyWcDMFP7slr7eLIPTHVm+6pVr6HNmzZqzqwEpe3crqfOaN+ObT+pBe0LKllZJ3RDy9bqd8/9qlKlitLTdur1V5OUtmO7Zr7yeqnxL015TpWrVNapU7kBmK0ZrNY+braDiRYvLO7eiJLufV/cvZ07iruXl3dK8197Vd16/EX/uPc+hVeI0Adr39PDo4fr8aeeU49edwb6I+APnM/xznkLlpb6vhnTJiszM0PXXHtdeU/Z1qzWPYnFxWCuXWlp+uzTT3Tdb9dzZmWdcNuel3dKr899Rd3/0ksDBt6v8PBwrV2TojEjh+nJfz2nv/S+K0Azx4X4z1mOd0pSwgvP6/33Vqr/wEG6rlkLZWdn6ev/+0KnCwslFljxGau1j3N9MNW5uicV/91t/NhR2rplix54cKhiYhrpl19+0abvvwvAjHGhJjz2tK5sEOP8+sxrdd9aPF+XXV5bQ0aM1SXVamjr5o2aN2em0nfu0KNPPR+I6dqa1drHuT6Yynk+aMD9qlylinal7VTy3CSl7dyuhNnF54Nef3WWFi94XfcNGqrm19+gzIx9mjv7Ze1K36k5ry8O8CfA2WSdOKEbWhWf66v827m+5N/O9b08p/h3m5OTo67d/6IrrmqoChUq6JsvNyhh2iRlZ53Q/YO5t8HXrNY+wFTp6a79Pqns/b75i94s9dqLL0xSZkaGmlzXtBxmCU+cz3UuRUVFemz8GP24dYvue2CIGsQ00tFfftHmTRsDPHv7sWL3guFcX0hRUVGRx99tY6cKAj0D/zt9+rRzlcNnnn5CX6xfr5QPzu9gRbA7ePxUoKfgM5kZezX4H701ZPRE9ejdp8wxmzd+o/EPxevZabPU+qZ25TzD8ndljcAulvDvTQe8+v6/trjcRzMBLkxufqBn4F9ff/WlBt1/jxYufkvNDVzB8oCN2leWUYP6yeFwaPaCf0uSjh87qqqXVHMbM2PyU0pd977eXrNeYWFhgZimXzSoGdzdk2gfAufYr4WBnoLPHDt6VJdUc/9z7/W5c/Rq0st698NUVa5cRV07tVWPXndp7IRHnWNenPKcVvz3ba1c87GqXnJJeU8b54nfr7tLKgW247QPwSz71OlAT8Fnyvqzcd6rszVn1st6/6PPVL16Dbfjn3f95Q41a95CTz1jz5Xvc/Pt8/eaMx3630EN6PMXjRn/qJ576jE9+dxUdb79jrOOf3VWgt5avEDvp35pq6fb1YoM7GfheCeCVZaNuieV3b7XfmvfmjLa99e/3KGmNm5ffqG9fr+/t+K/b2vKs0/pv+9+oMsur+18/dOP12nKM0/qnvsH6eWXpmrV2k9UvUbNAM7UP6pXDuxzYqzWvk6dOikzM7PMbSU320nSp59+qunTpystLU21atVS//79df/9pZ8W/Nprr2nx4sU6dOiQYmJiNHbsWLVv396nc0ZgnMi1z5+NZXZv7my9Mutlpaz7TFWrXqKcnJNuT0CTpOEP3qcjhw/rrf+uLs/plovTNrq861zHO6tXr1Hqe7Kzs9Stc3v95c67NW7iY+U11XLB8c7SnnjiCb311lsaNWqUbr75ZrdtJYuLbdy4Uf3791fPnj2di4vNmDFD48ePd7vZ/LXXXtP06dM1atQo5+Jiq1ev1pIlS7jZ3AZyHPb5s1Fyv57zuX89qS8+/0zvvu+6nrOwsFA5J08qKtq9f0MeuE+HDx/Sf1a8W67z9bdsG17Ee+h/B3Xv3/6iUeMf1aSnHtMTz03VbX8qPt75/bdfa9SQ+zRlxmzFtb0lwDP1r8uigvt4p8QxTwSOndp3ru5J0qoV7+iZpx7X4rf+o0aNrw7ENMtNdq59urfx2680euj9Snptsa5r1qLMMWVd37nwtVf02isz9U7KJ6pWxn5hMLssOrjbR/cQKIez7fNn49msfOdtTX3uKf179Qe67LLaurvnn3T9ja302BmLTa1e8V9NfuZxvb1yrS6vXSeAs/UtC94H7FMr//u2pjz3lP6z2v1c35meemyCtm7ZpLdXvl/Os/O/GlU41wd44mSeffb5JPf9vuefKd7vW73mj+9fz87K0p86tVPvv/bRhEf+X3lMs9zkFdjzGs8Sv7/O5b1VyzXpmSc1f/HbatiocaCn51fBfo2LZOa5vsD+1hBQJXFCcHt/9XJVCA/Xn7v3PuuYd1f8W3Xq1TdicRUr4H9ZAFC+Mvft0Y6ftur+oaOdr/3+5JskxVx9rd5f/Y5+zclRZFRUOc7Q3ugeYA2/vxhdkq5pcq0k6cjhQzp08KByc3PV5qa2bmPa3NRWb7+5WBu++Exdu/Usl7niwvH7tRbaB1hDWX82NvntCdaHDx1S9eo1OP5pAy+/OEVt29+qFje2Oq/xUdHRKiws1OnT9jrZHGj8LwmwhjL3C35r3xHaZzslN0wWFLguHs7N/VUzXpikISNG22oBaSuy2v+SeKIrTFTmPl+T37p3uLh7v19cRZKuaXKd/rv1Lb/PD9451/HOshZYWffB+3I4HPpztx5+n59prNY9SVq/fr0kKSEhQQkJCW7bShYXu+GGG5SUlKTp06dr1apVqlWrlsaNG+d2waUkZ/MWL16shIQExcTEKCkpicVVYEnn2qcLCwsrtbiKVHxc9Me3t/hrWvChxJemqO0tt6rFDaWPd658523VrX+F7RdXsQIrtg8w0fkcy/zP22+pZatY2y+uYqKyru9sXLJfeOSw7RZYCTTaB1hXyTHOwt/OBxUUFKhSpcpuY6pUqSKp+CZ1BI/IMs71/V5UdPQfbofnaB9gDZ5cw/LB2jVyOBy6g+veg87vr3NZ/p+3dWPL1rZfXMUKrNi9YDjXxwIrQJD76YdNqlf/Kn2QslJL58/VkSOHdMVVDRU/ZJRzQZWftmxSzNVNtGT+q1rx76U6mZ2lxk2a6sER43TNdVww4Gshdl9KFQhyo0cM0/Hjx1S16iW6tdNtGjVmnKKjqwZ6WvDCR2vfVWhoqG7tcvanmEvSD99/q0uq11CVyMhympkZ6B5gXd9/943Cw8NVt259ZWTslSRVCHd/Ikp4RIQkaXd6WrnPD97h9xs4tA+wro3f/vZnY736gZ4KfODLL9br6y+/0OL/rFa+w3HWcQUFBcrPd2jb1h/09tJF6nnn3Yr4rYHwDdoHWFdJ++rQPlsoLCxUQUGBdqXv1OuvzNZN7dq7/b3m9Vdnq1r16urR6y69t2p54CZqANoHWNPG346H1al79u5t/O4bXXVVg3KcFXzlzOOdZXn/3VWqf8WVuq4p17j4mhW7x+JiwIX57tuvdWWDhoGeBs6h5HjnG/9eLUcZxzu3bv5eja+5Vgtfe0X/XbZY2VlZuubapho+ZoKupX8+ZcX2ASgtPz9fP27dqrvu7qMXpjyvVSvekSMvTy1bx2rCI4/piiuvCvQUcQ6PjR+hE8ePK7pqVbVt30kPDh9T5mJxJTZv/G2/v069cpylGWgfYC0l54N2p+9U8tzZuqlte+cxz569/6q3Fi/Uzbd0ULPmNygzc5+S581W21tuVZ26/PlodWee60t+tfh3+/trmAoKCpR36pS++/YrpaxeoYEPDAnQbO2N9gHBK+XdlbriiivVtBnHw4LB2a5zKcjP17Yff1Cvu/poxguT9N6qFXI48nRDy9YaM+FR1b/iykBP3Vas2L1gONfHAitAkDv6yxH9cviQFs2brfhho3TJJdW14j9L9eTEUUqa/5aubBCjo0eP6LuvNmjPrjQ9NO4xRVSM0NL5c/XPMUOV/NZKVb2keqA/hq1YL0cAJCkyMlL33Hu/WrWO1cWVKumHLZv02rxXtXnT91ry1n+4+SqIfbz2PTW7vqVq1rr0rGO+//ZLpX70vuKHjbHkjkMw478mYE2709P01tI39Jc771blKlVUt94VCg0N1dYtm9Um7mbnuK1bNkuSsrJOBGqq8AC/38CifYA17UpP09Ili9T7rj7Op/cgeOXl5Wn61Od036ChqlGjpg7szyxzXHZ2lu7o6Grfn7v11KiH/1le0zQG7QOsaVd6mt6kfbbStWNbnTyZLUmKjbtZz0550blt9640vb30DSW9tpDjm+WA/8KA9ZR0r9cfdG/1inf0w+ZNmjwtocztsK7fH+/8vYMH9uv7jd/qgQeHB2B29kf3gOC2cvl/tWXzJr3wEv2zsry8PCW88JwGPjBU1c9yvPPoL0f09ZdfaHd6msZMfFwRERFa+PqrevihwVr833d1STWu8fQV2gcEhxMnjqugIF+rVryjhjGN9NzkF+TIy9Osl2do+JAH9J8V76lixYqBnibKULlKpP72j3t1/Y2tdXGlSvrphy1avGCetm7ZpFcXvFXmtbo/70rXv99crO69yt4vhHdoH2At3W5zPx/0r8mu80H3DRqm06eL9PDIISoqKnKOeXrStIDMFRfmjk7uv9tnzjjXJ0k7tv+k+/r91fn1PfcP1j/uub9c52gK2gcEpwMH9mvjd99q8NCHAj0VnKezXedSvE9foPdWLddVDRvpyeemyOHI0yuzXtaY4YO15D+r2Kf3IbrnmdBAT8Ab+/fv1/LlywM9DSCgiopOKzf3V4155El1/nMPtWxzsx5/7iVdUr26li1OLh5zunjM48+/pFs6dlabm9vrqSkJKiws0Ip/vxngTwDgQtA+z13T5FqNHT9R7W/tqNaxbXRf/GC98GKC0nbuUMp7qwM9PXjopx8260DmPnX8U7ezjtmfsVeTn5yo61u2Ua8+/ctxdgB8gfZduOPHjmnC2BGqW6++ho8aK0mqXLmyuvXopSULk5X68TplZ2cp9ZOP9NaShZKkkJCgPjxgFH6/gP3Rvgt3/NgxPTz6IdWrV18jfvuzEcFtUfJcVQgP11/7/uMPx1WqVFlzF76pxLkLNHz0w/r8s080+V+Pl88kAfgM7btwx48d0/jf2vcQ7bONxLnJeiX5DU149En9vHuXxo8arsLCQknSC88/o9u79dC11zUL8CwBeIvuXbjjx45p/Jg/7t7mTRs1ZdK/1OMvd6pT5z+V8wzhjbKOd/7e2pR3VVRUpD9361HOswPgC7TPfzZ9v1GTn/uXeva6U7d1uT3Q08EfeOO34513/cHxztOnTyv311/1zNQZ6tCpi25q10GTXpypwsJC/XfZ0nKcLQBv0T7fKDp9WpJ0uqhIMxLn6Jb2t+q2Lrfrhekva39mJtd8Wljjq5to2KjxuvmWW3VDy1j1uzdeT016UbvTd2rd2vdKjT9+/JgeGz9SderV04MPjS7/CQPwGu27MDNfSdbs197Qw/8sPh80cYzrfNB/316qNxfP14PDRyvx1QV69Mln9fPuXXrikXHOBVdgXTNfTdac19/Q+N/O9U0Y7frdStIVV1yleYve0sxXknX/4GF6c/ECzZuTGMAZA/AE3fOfNe+tVlFRke7o3jPQU8F5Ott1Lqd/+3vL6dNFemHGLLW9pYM63vYnPf/CDB3Yn6kPUt4N8MyBIF9gZcuWLfrnP3kaJcxWJTJKktSiZWvna+Hh4bqu2fXaszvdOeaSatV1ZYMY55iql1TTVQ0aOcfAd0JCvPsH+CO0z7duurmtoqOrausPWwI9FXjo47WrFRFRUe06dilz+y9HDumxMUNUs9Zl+n/Pv6SwsLBynqH9eds92odzoX0XJicnR2MeelD5+fmakfiqLr64knPbyHET1OLGlpowdoS6tI/TU/9voh4cNlKSVKNGzUBNGReA36810D74G+27MDk5ORo5fLDyC/I1M2muLq5U6dzfBEs7eGC/li58XQ8MGaHc3FxlZ2cpJ+ekJCnv1CnnEw8kKSwsTNdc21Qtbmipvv0Hatwjj2vNuyu17ccfAjV9W6J78Dfad2HObN/LtM9WGl/dRM1a3KBef+2j56ZO13fffKVPP/5QH76foh3bf9KAe+OVnZ2l7OwsnTp1SlLx/z/k5v4a4JnbD+2DP9G9C5OTk6NRwwerID9fCbPmuh0PK5GetlNjRw5Vy5at9c/Hnw7ALOGpPzreeab3U1arWfPrVaduvXKeoRk43gl/o33+kZ62U6MfGqKWrWL1/578V6Cngz9w8MB+vbnodcWfcbzz19+Od54643hnZFSUqlWrrqsaul/j2SCmkX7elRaQudsV7YO/0T7fqBIZpZCQEMU0aqxLLrnE+XrDmEaqXr2GdqXtDODscKFat7lZUVHRpc7h/ZqTowmjhqigIF8vJLxy1v1CeIfuwd9o34VpVHI+6K4+emZK8fmg1I8/VNaJ40qcPlX3PTBU/Qc+oOtvbKU7evTWE89M0RfrP9WXG9YHeuo4h8Zn/G6fPeN3W6LiRRepybVNdWOrWMU/OFzxg4dp4euv6pcjhwM4a3uiffAnuuc/Ke+uUvMW16su54OCxtmuc4msEqmQkBA1jGmkqmfs0zdoGKNq1atrF8c7fYrjnZ6pEOgJAPDOFVc11PYybhgoKiqSIy/POWbvz7tKj1GR8h0Ov8/RNKEytChAEAsx9W+CQa6woECffrRWbdp2UOXKVUptz846ocfGDFFoWJieeXGWKlWqHIBZ2h/dA6zD4XBowpiHdGB/pl5JfkM1a9Vy2x4ZGaUXE5L0yy9HdOzoUdWtW0/p6cUXnDS//oZATBkXgN+vddA+wDocDofGjRqu/fszNW/+4lJ/NiI4HcjMkMPh0OMTx5TaNvmZJ5QwbZLWfvZ1md97dZPrJEkZ+/bqmmub+nWeJqF9gHU4HA49PGq4DuzP1FzaZ2tXX9NEISEhyti3V448h37NyVGfXneUGte3dzfd3K6Dpr2cFIBZ2hftA6zB4XDo4dHDdeBApuYml929/ZmZGjn0AdW/4kpNnpagChW4DCpYnOt4Z4kd239SetpOPfzPx8t5huage0Dw2Z+ZoWEPxqv+FVdq6kv0z+oO7C8+3vlEGcc7pz7zhGZOm6Q1qV/rygYx2rOr9MPyioqK5HDklcdUjUH7gOBw8cUXq3btOmVuKyoqUl4e178HozOv1XU4HHr04RE6eGC/EucuVI2aHO/2F9oHWJfzfFDGXl162eVyOBy6usm17mN++zpj717p5kDMEp4481zfWcc0uU6FhYU6cGC/qvMQPZ+ifUDw2b6t+HzQxEefCPRU4KEz23fRxRfr8rPu08t53zt8g+55xpJnVm677bbzGlfyZC7AZDe1u1Vr312hjd98qbi2HSQVH3DcunmjbmgVJ0mKa3erNn33tX7etVNXNmgkSTp+7Bf9nJ6mv/a7N2BztyvWaYAnaF9gfPH5Zzpx4riaNm0e6KnAA99+9YWyjh9Tp9u7ldp2KvdXPf7wcGVnZWla0nxVvaR6AGZoBroHT9E+3yosLNTjj4zTT1u3KPHVZF1x5VVnHVu9eg1Vr15DkrRs6Ruqf8WVatm6TXlNFR7g92sttA+eon2+VVhYqEcnjNWPW7do9tz5+v/t3Xuc1XWd+PH3DMOIKKh4IQVdkFsGA7IqsV6gRstLpsmuZl5RvKElrpZ4Kcpb3nbFgDA1wERN/WXlZqL+ypC1TNM1UfMG649EExFQNFEE5veHOTgOcjmX+X7P+TyfPng8mnO+M/OemZgX53vOeZ8ea/ndSGXp3e/TMeFHU1tctmjR63HB+WfHsSecErt99l8+8X1n//l/IiJiu25exaKUtI9CaV9prVy5Ms7/R/sma1/Vm/3E49HU1BTdum0fnxnQEP+8624trv/jHx6Mm26YEt+/8urYfod/ymjK6qV9FEL3SmvlypVx/tgz45mnn4zJ192wxvNhixa9Ht845fjYtFOnuGrCNdFh440zmJRCbMj5znvvvivq6uriC1/cvw0nTIvuUSjty8ai11+P0SeNik6dOscPfvij2Fj/cq9330/H1R8737l40etx4flnxzGjTold/3G+c4+9Ph+PP/pI/O+cF2LH3h88xnPJ4kXxv3NeiMOPHtnWY1c17aNQ2tf2hn2+MX7xs9tjyeLFsUWXLhER8cLzz8XixYviM/37ZzwdG+KRh34fS5e+2fwCCStXrowLzv9mPPvMUzF+8pTY4Z+c7y4n7aNQ2ld+s//8wf1B23XbvvlJyM/+5enYZbehzcc898xfIiJi225rfpIy+fThfX1re/zK7D//T9TU1HziUjkKp30UQveyNePXv4q6uvbxxf3cH1SpPvo4l4iIPYd9Lu78xc9iyZLFscUWH9ymn/vC87Fk8SIvnldiuleYXC5YWbBgQfTt2zcaGhrWetz8+fPjD3/4QxtNVX2WLVsWD856ICI++F4ue3dZ/N9774mIiP4NDf6BXiGG7vm52GnAoLj6sgviuFNOjy5dtoo7f/bTePutt+LQI0dGRMQBB42I/7rj1rjg3DPj2BNPi4026hA/vfH66LDxxvHlEV/N9gsAIkL72sJ5Y78Z3bp3j50+MyA22WSTeHL2E3HD1Ouj36d3iv0OaP3Kn+Tf/ff+OjpvtnnsOnSPVtddfP5Z8cKzT8dpZ50fbyxZHG8sWdx8Xa++n476+vq2HBVYA+0rrf+49KJ44He/jZNOPT1WrVwVT81+ovm6njv2ik023TRm/Pq/4r13343td/inWLJkccz49a/isUcejok/mhK1tbUZTs+6+PlCddC+0rr8+xfFzN/9Nk457fRYtWplPDn7z83X9dyxd2y66abxt1dejqeffioiIt75+9/jb6+8Er/5v/dGRMSeew7z5Luc6tSpcwzedUiLy/72yssREdGj544xaPAuERFxwtGHxX5fOji2/6ceERHx1OzH47abb4zP7r5nfGbA2v+eAW1D+0rrivVs318+0r5XX3klfvuP9u2hfbl1xqknxq5DhkbPXr2jvr4+nn/2mbj5xmnRu0/fGPb5xmjfvr7VK/t82MaGQTt7RTvICd0rrSv+cT7s5NNOj5Vr6F5dXV2MOfWkeG3ha/G9iy6Ll/46L17667zmYxoG7tz2Q7Pe1ud8Z0TEqlWr4r577o6hu+8Vm22+eUbTAp9E+0pv2bJl8fv//uDxnC/Pfynefffd+M19Hzye8zMDGqJLly3j66NPjIWvLYgLL7ks/jpvXvx13ur+DRy0cxZjsw6dOnWOwbt8wvnOHVef7zzwkH+NX/yfW+LbZ4+JE075Rmy0UYeYPu262Lhjx/jKvx3e5nMDrWlfaa2re9tt1y2OHTkqZtz1X3H6aSfHqBNPieXLl8fkSVdHjx49Y9/9W78oG/lw8bixse123aPvpz8THTtuEn95enb89Map0bvvp2PvL37wWN2rr7g4Hnzg/hh18jdi1cpV8fSTq28X9ui5+nYhkC3tK60zv35i7LLbB/cHtW9fHy8890zcMn1a9OrTN4Z97oP7gz6/z74x7fprYtWqVdG/YWC8Mn9+TL1+cvTouWPs9tnds/4S+AT/fto/7uvbsXe0r6+P5597Jm75yH19r/7tlbj4u+fFF/Y7ILp13yGWv/dePPqnP8bPbr0lDh5xWHT5xwvqAdnSvdL76O2++fNfineXrb7d139AQ/PjIFatWhX3zvh17L7HnrH55ltkNi/rb12Pc4mIOPLY4+PeGXfFN08fHceOOjneX748rps8IXbo0TO+sK9FOmQvlwtW+vbtG927d48LLrhgrcfde++9YlSExYsXxTfPHNPisg/fvvDiS+PgQ0ZkMRYbqLa2Ni68cmJcP+k/47qJ/xnL33sv+u7UPy6fcH302LF3RER02LhjXDHh+vjRhCvjB5dfGKuaVkXDoF3im9++OLbosmXGX0H1qQkrv9hw2ld+vXr3iRl33xW33HRjvPfee7FN167xlRH/FieP/nq0b2/ZRqVZ9s478cffz4x99jso6urat7r+sUc++Hsy8cqLWl13w/+5O7pua5FcqegehdK+0nroDw9GRMR1kyfEdZMntLjuh9ffELvsOiRqamritlumxysvz4/6+o1i0OBd4vqf3BJ9+vbLYmQ2gJ9vvmgfhdK+0nroD/8dERE/+uGE+NEPW/5u/NGPfxK77jYkHv3TI3HBuPOaL1+48LV47NFHIiLiv+7+TWzn1X0qWt9PfyZ+fvtPY+FrC6Kuri627dY9TjjlG/GVf7NQutS0j0JpX2mtq327/KN9F35C++7Uvtz6zICGuPfuu+Jvr8yPiIhPbdctRhx6eHztqGOdu86I9lEI3SutP/7+g+5d+8MJce3HunfN9T+JbbfrFs8/90xERJz7rTNavf8jf36m7DNSuPU53xkR8T+PPhILX1sQY846u81nTInuUSjtK70lixfF2Wed0eKyD9/+3kXfj113GxLPPftMi8s/6n+efLbME1JOG2/cMcZfMzUmXXV5XPn970XTqlUxcPCuce73LvFkuxLTPgqlfaW1ru4d9JURsU3XrnHtlJ/EVVdeHued882oq6uL3ffYK8761tjo0KFD2w/NeumxY+/4zb13x89uuynee/e92HqbrnHAQSNi5Imjo337Dx7r+cgffx8REVOunRhTrp3Y4v2vvmZqq+VkFEf7KJT2ldZO/Rvivhl3xSv/uD9o2227xSH/dngcfuTq+4POHXdRTJ/24/j1r34R0358TWyxRZfYdcjQOHH06V5cNMd26v/BfX0f/dmOOHT1z3bTTTvFNl0/FTfdMCVef31hbNxh4+i2/Q4x9tvfi/2+dFDG01cn7aMQuld6SxYvirHfPKPFZR++/d2Lvh8HHfzB89cf/dMj8dprC+Lfv3VOG09IodbncS5bb9M1Jl07LSZcdUV877yzo66uLj67+55x+llnx0Zu05eU7hUmlwtWBgwYELNmzVqvY5uamso8TfXq1q17PPH0c1mPQQl07rxZnHXehXHWeZ98zDaf2jbGff+qthsqYTV6RAG0r/xGnXhyjDrx5KzHoEQ27tgxfvmbhz/x+hkPPvGJ11FaukehtK+0fnn3b9Z5zH4HfDn2O+DLbTANpebnmy/aR6G0r7R+NeO36zzmywcfEl8++JA2mIZy23a7bvHfjz7V4rKzz/9eNsMkSPsolPaV1n9pX9U66dTT46RTT9+g9/nSQYfElw7ysy4X7aMQuldad65H9yxRqVzrc74zImLXIUPjj4//pczToHsUSvtKb7tu3de5JMUSleqw7Xbd4oE/PdXq8q6f2jYuuuLqth8oMdpHobSvtNanexERffr2i2uun9oGE1EqR408MY4aeeJaj7ntzvvaaBoitI/CaV9pnTj69Dhx9NrvD+rYcZM4+bQxcfJpY9Z6HPmyrvv6Nu3UKcZddFkbToT2UQjdK73tunWPx2av+3bfkM8OXa/jyI/1fZxLrz594wfX/LgNJkqb7hUmlwtWTjjhhBg+fPg6jxs+fHj89rfrflAFQFuqtfGLAmgfUKl0j0JpH1CptI9CaR9QqbSPQmkfUKm0j0LoHlCpdI9CaR9QqbSPQmkfUKm0j0JpH1CptI9C6B5QqXSvMLlcsLLDDjvEDjvssM7jOnToEN26dWuDiQDWn41fFEL7gEqlexRK+4BKpX0USvuASqV9FEr7gEqlfRRC94BKpXsUSvuASqV9FEr7gEqlfRRK+4BKpX0UQveASqV7hanNegAAAAAAAAAAAAAAAAAAAAAAgHKpy3oAgGpj4xcAKdE9AFKjfQCkRvsASI32AZAS3QMgNdoHQGq0D4DUaB8AKdG9wliwAlBiNaFIAKRD9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9wpjwQpAidXqEQAJ0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b3C1GY9AAAAAAAAAAAAAAAAAAAAAABAudRlPQBAtakJK78ASIfuAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInuFcaCFYASq9EjABKiewCkRvsASI32AZAa7QMgJboHQGq0D4DUaB8AqdE+AFKie4WxYAWgxGz8AiAlugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAluleY2qwHAAAAAAAAAAAAAAAAAAAAAAAol7qsBwCoNrUWfgGQEN0DIDXaB0BqtA+A1GgfACnRPQBSo30ApEb7AEiN9gGQEt0rjAUrACVWE4oEQDp0D4DUaB8AqdE+AFKjfQCkRPcASI32AZAa7QMgNdoHQEp0rzAWrACUWI0eAZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3SuMBSsAJaZHAKRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9wpTm/UAAAAAAAAAAAAAAAAAAAAAAADlUpf1AADVprbGzi8A0qF7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7hbFgBaDE5AiAlOgeAKnRPgBSo30ApEb7AEiJ7gGQGu0DIDXaB0BqtA+AlOheYSxYASg1RQIgJboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbpXkNqsBwAAAAAAAAAAAAAAAAAAAAAAKJe6rAcAqDY1Vn4BkBDdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkBLdK4wFKwAlVqNHACRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9wpjwQpAiekRACnRPQBSo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+A1GgfACnRvcJYsAJQaooEQEp0D4DUaB8AqdE+AFKjfQCkRPcASI32AZAa7QMgNdoHQEp0ryC1WQ8AAAAAAAAAAAAAAAAAAAAAAFAudVkPAFBtaqz8AiAhugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAlulcYC1YASqxGjwBIiO4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxoIVgBLTIwBSonsApEb7AEiN9gGQGu0DICW6B0BqtA+A1GgfAKnRPgBSonuFqc16AAAAAAAAAAAAAAAAAAAAAACAcqnLegCAqmPlFwAp0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b2CWLACUGI1igRAQnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnSvMBasAJRYjR4BkBDdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkBLdK0xt1gMAAAAAAAAAAAAAAAAAAAAAAJSLBSsAJVZT5J9SmzdvXowbNy4OOeSQ6N+/fzQ2Nq7xuFmzZsUhhxwSDQ0N0djYGDfccMMaj5s2bVo0NjZGQ0NDjBgxIh588MEyTA1ApSi2exZlAlBptA+A1OgeAKnRPgBS4nwnAKnRPgBSo3sApEb7AEiJ852FsWAFoNRyVqMXXnghZs6cGd26dYs+ffqs8ZgnnngiTj311OjXr19cf/31cfjhh8cVV1wR06dPb3HctGnT4j/+4z/i8MMPj+uvvz769OkTp5xySjz11FOlHxyAypDDW2KWiwFQVjlsHwCUle4BkBrtAyAlzncCkBrtAyA1ugdAanLWPs9tAKCsnO8siAUrACVWU+R/pdbY2BizZs2KSZMmxcCBA9d4zKRJk6Jv375x6aWXxtChQ+Okk06KI444IiZNmhTvv/9+REQsX748Jk+eHEcddVScdNJJMXTo0Lj00kujV69eMWnSpJLPDUBlKLZ75Wif5WIAlFMe2wcA5aR7AKRG+wBIifOdAKRG+wBIje4BkJq8tc9zGwAoJ+c7C1OX9QAA1aamyJ488cQTG3T8oEGD1np9be3ad2ktX748HnrooTjjjDOi5iPDf/nLX47p06fH448/HkOGDInHH388li5dGl/60pdafOwvfelLMXHixFi+fHnU19dv0OwAVL5iu1cOjY2Nsc8++0RExLhx49a4lfmjy8Vqampi6NCh8dprr8WkSZPi8MMPj/bt27daLhYRMWTIkHj22Wdj0qRJ8aMf/ahNvy4A8iGP7Zs3b15MmTIlnnzyyXj++eeja9eucf/997c6btasWTF+/PiYM2dObL311nHMMcfEyJEjWx03bdq0mD59eixcuDD69OkTZ555Zuy5555t8JUAkEd5bB8AlJP2AZAS3QMgNdoHQGq0D4DU5K19ntsAQDnlrXuVYu3PugegzR122GEb9KdYf/3rX+P999+PXr16tbj8w7fnzp0bERFz5sxpcfmHevfuHcuXL4+XXnqp6FkAoBTWd7nYAQcc0Gq52BtvvBGPP/54RMRal4v9/ve/j+XLl5fnCwCADeQVDgBIzbx582LcuHFxyCGHRP/+/aOxsXGNx82aNSsOOeSQaGhoiMbGxrjhhhvWeNy0adOisbExGhoaYsSIEWt8MAsAZEX3AEiN9gGQGu0DIDXaB0BKPLcBAPKnLusBAKpNpS38evPNNyMiolOnTi0u33TTTaNdu3bN1y9dujTatWsXm2yySYvjOnfu3OLjAJCWUnTviSee2KDjBw0aVNTnW5/lYkOGDFmv5WIfvw6A6pfH23xe4QCAcspj+z5cLjZw4MBoamqKpUuXtjrmw+ViBx54YIwdOzZmz54dV1xxRbRr1y6OPvro5uM+XC42ZsyYGDhwYPziF7+IU045JW699dYYMGBAW35ZAORE3tqnewCUU966F6F9AJSX9gGQGu0DIDXFts9zGwCoJHm8zTdv3ryYMmVKPPnkk/H8889H165d4/7772913KxZs2L8+PExZ86c2HrrreOYY46JkSNHtjpu2rRpMX369Fi4cGH06dMnzjzzzNhzzz2LmtGCFYBSK7JIt99+e2nmAIC2UIJbYocddtgGHf/cc88V9fksFwOgKCVoX6nvgFvfVzg444wzWr3CwfTp0+Pxxx+PIUOGrPUVDiZOnBjLly+P+vr6DZodgCqQw3vgLBcDoKxy1j7dA6Cscta9CO0DoMy0D4DUaB8AqSmyfZ7bAEBFyeFtvkpYqmnBCkCJ1RRZpGI3V26ozTbbLCIi3nrrrRaXv/3227Fy5crm6zt37hwrV66Mv//97y1ujH0Ytw+PAyAtxXYPACpNKdrX1nfAeYUDAIpRbPvK8co+losBUE55a5/uAVBOpTjfqX0AVBLt0z6A1OTxMZ7aB0A55bF9AFAueexeJSzVtGAFIHE77LBDtG/fPubOnRuf//znmy+fO3duRKx+Yt1Hn3g3cODA5uPmzJkT7du3j+23374Npwagmtx+++1t+vksFwMgNV7hAIAstfVisQjLxQDIlqWaAKRG+wBIjfYBkJJyvJjCumgfAFny3AYAUpPiQmkLVgBKrCZ/C7/Wqr6+PoYOHRozZsyIUaNGNQfprrvuis022yx23nnniIj453/+5+jUqVPMmDGjecFKU1NTzJgxI/bYYw/bnQESVYruleIOtQ1huRgAxShF+9r6DjgAKEalne+MsFwMgOJUWvt0D4BiVFr3IrQPgOJoHwCpKbZ9WbyYgvYBUIxi2+e5DQBUklKc70xxobQFKwAllrf735YtWxYPPPBARETMnz8/li1bFvfcc09ERDQ0NES3bt3itNNOi6OOOirOO++8+MpXvhKzZ8+OW265Jb71rW81L06pr6+P0aNHx/jx46NLly7R0NAQv/zlL+OFF16ICy64ILOvD4Bs5a1768NyMQCKUYr2tfUdcF7hAIBiFNs+i8UAqDTaB0BKSnG+U/sAqCTaB0BqKvExngBQjEprn+c2AFCMSuteRD6WalqwAlBqOSvSokWLYsyYMS0u+/DtSy+9NEaMGBGDBw+OyZMnx/jx4+NXv/pVbLPNNnHWWWfFyJEjW7zfqFGjIiLi5ptvjh/84AfRu3fvmDx5covNlwAkJmfdi7BcDIAyy2H71sUrHABQlAp7ZZ8Iy8UAKFKFtU/3AChKCc53ah8AFUX7AEhNke3LYrGY9gFQlJw9xtNzGwAoqxJ0L8WF0hasAFS57t27x3PPPbfO44YPHx7Dhw9f53GjRo1qXrQCAHlkuRgAtOQVDgBIjeViAKRE9wBIjfYBkBrtAyBLWbyYgvYBUE08twGAvEtxobQFKwAlVpO3VZcAUEZ57J7lYgCUUx7b5xUOACinPLZvXSwXA6AYldY+3QOgGJXWvQjtA6A42gdAarQPgNTkrX2e2wBAOeWte+sjD0s1LVgBKLGayusRABRM9wBITR7b5xUOACinPLbPcjEAyilv7dM9AMopb92L0D4Aykv7AEiN9gGQmjy2DwDKpRK7l4elmjVNTU1NRX8lVejdFVlPQDm9+sa7WY9AGfXYqkOmn//5V98p6v37fqpjiSaBDbPs/awnoJz+pn1Va8etK7t7EdpHdpa8szLrEYACbNGxXaafX/uoZG+9uyrrESiTZe/7d00126ZT+0w/fx7Pd86fPz/23nvvNV734XKxiIgHHnggxo8fH3PmzIltttkmjjrqqDj++ONbvc+UKVPi5ptvjtdeey169+4dZ555ZgwbNqzkc9O2lupeVXt/pZ9vNdtyk2xfJyZv7dM91teby/xurGarPLyrajnf2Zr2sb7+vtzvxmr2lgfxVq1Pda7s850R2kd2tK96vbVM96rZpzar7Pa5r4+sLHzL78ZqVolPBGb9bbWp+/qgEG+/5zZfNXtvhcd4VqtKf4xLROnb99Glmrfffns888wz8d3vfjciVi/VfPzxx+Ooo46Kgw46qHmp5tVXXx3f+ta3WryA7JQpU2L8+PExZsyY5qWad911V9xyyy1FvYCsBSufwH0z1c2CleqW+YKVBUXeEOvqhhjZsGClulmwUr0yX7BSZPcitI/sWLAClSnzJxxoHxXMgpXqZcFKdct8wYrznVQoC1aqmwUr1S3zB59oHxXKgpXqZsFK9XK+EwrnSebVzYKV6pX5ghXto4JpX/WyYKW6Zb5gxflOKpQFK9XNgpXqlvmCFe2jQlmwUt0sWKlelf4Yl4jSt68Slmpm+1MDAAAAAAAAAAAAAAAAAAAAACpW9+7d47nnnlvnccOHD4/hw4ev87hRo0bFqFGjSjFaMwtWAEqsJqxSBSAdugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAlulcYC1YASqxGjwBIiO4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxoIVgBLTIwBSonsApEb7AEiN9gGQGu0DICW6B0BqtA+A1GgfAKnRPgBSonuFsWDlE3TwnalqPbbqkPUIALmzcfusJ6Ccdtxa+wA+bouO7bIeAQDaVKcOtVmPQJn42QK01tnvxirn5wvwcZtt7HcjAGnZpN7DhqvZJvUeyATwcdpXvXQPoLWtO3liHwBp2XQjt/mq2aYb+bcN5Im/kQCl5t+yAKRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9wpiwQpAidUoEgAJ0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b3CWLACUGI1egRAQnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnSvMBasAJSYHgGQEt0DIDXaB0BqtA+A1GgfACnRPQBSo30ApEb7AEiN9gGQEt0rTG3WAwAAAAAAAAAAAAAAAAAAAAAAlEtd1gMAVB0rvwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxIIVgBKrUSQAEqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7hbFgBaDEavQIgIToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXmFqsx4AAAAAAAAAAAAAAAAAAAAAAKBc6rIeAKDaWPgFQEp0D4DUaB8AqdE+AFKjfQCkRPcASI32AZAa7QMgNdoHQEp0rzAWrACUWI0iAZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3SuMBSsAJadIAKRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9wpRm/UAAAAAAAAAAAAAAAAAAAAAAADlUpf1AADVpsbCLwASonsApEb7AEiN9gGQGu0DICW6B0BqtA+A1GgfAKnRPgBSonuFsWAFoMT0CICU6B4AqdE+AFKjfQCkRvsASInuAZAa7QMgNdoHQGq0D4CU6F5hLFgBKDEbvwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxoIVgBKrsfMLgIToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXmFqsx4AAAAAAAAAAAAAAAAAAAAAAKBc6rIegOzMmzcvLr744nj00Uejvr4+9t9//zj77LOjY8eOWY9GCcybNy+mTJkSTz75ZDz//PPRtWvXuP/++7MeKw0WfkFuaV/10r0M6R7kmvZVL+3LkPZBrmlf9dK+DGkf5JbuVTfty5D2QW5pX/XSvQzpHuSa9lUv7cuQ9kGuaV/10r4MaR/klu5VN+3LkPZBbmlf9dK9DOleQSxYSdRbb70Vxx57bGyzzTZx9dVXx5tvvhmXXXZZLFq0KCZOnJj1eJTACy+8EDNnzoyBAwdGU1NTLF26NOuRkqFHkE/aV910Lzu6B/mlfdVN+7KjfZBf2lfdtC872gf5pHvVT/uyo32QT9pX3XQvO7oH+aV91U37sqN9kF/aV920LzvaB/mke9VP+7KjfZBP2lfddC87ulcYC1YSdeutt8bixYvjjjvuiC233DIiIjp06BDf+MY34qmnnooBAwZkPCHFamxsjH322SciIsaNGxcPPvhgxhOlo0aRIJe0r7rpXnZ0D/JL+6qb9mVH+yC/tK+6aV92tA/ySfeqn/ZlR/sgn7SvuulednQP8kv7qpv2ZUf7IL+0r7ppX3a0D/JJ96qf9mVH+yCftK+66V52dK8wtVkPQDZmzZoVQ4cObQ5RxAe/wDp27BgzZ87MbjBKprbWX2+Aj9K+6qZ7AK1pX3XTPoDWtK+6aR9AS7pX/bQPoCXtq266B9Ca9lU37QNoTfuqm/YBtKR71U/7AFrSvuqme1Qa/49N1Jw5c6JXr14tLqurq4uePXvG3LlzM5oKqkNNkf8B5aF9UB7Fdk/7oHy0D8pD+yC/tA/KQ/cgn3QPykf7IJ+0D8rD+U7IL+2D8tA+yC/tg/LQPcgn3YPy0T7IJ+2D8nC+szB1WQ9ANpYuXRqdOnVqdXnnzp3jzTffzGAiqCJp9gRyT/ugTHQPckv7oEy0D3JL+6BMtA9ySfegjLQPckn7oEx0D3JL+6BMtA9yS/ugTLQPckn3oIy0D3JJ+6BMdK8gFqwAlJgeAZAS3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3StMbdYDkI3OnTvHW2+91erypUuXxmabbZbBRFA9amqK+wOUh/ZBeRTbPe2D8tE+KA/tg/zSPigP3YN80j0oH+2DfNI+KA/nOyG/tA/KQ/sgv7QPykP3IJ90D8pH+yCftA/Kw/nOwliwkqhevXrF3LlzW1y2cuXKePHFF6NXr14ZTQUA5aN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0T0AUqN9QJ5YsJKoYcOGxcMPPxyLFy9uvux3v/tdvPPOOzF8+PAMJ4PKV1Pkf0B5aB+UR7Hd0z4oH+2D8tA+yC/tg/LQPcgn3YPy0T7IJ+2D8nC+E/JL+6A8tA/yS/ugPHQP8kn3oHy0D/JJ+6A8nO8sTF3WA5CNww8/PG666aY49dRTY/To0bF06dK47LLLYu+9946Ghoasx6MEli1bFg888EBERMyfPz+WLVsW99xzT0RENDQ0RLdu3bIcr6rVpNkTyD3tq266lx3dg/zSvuqmfdnRPsgv7atu2pcd7YN80r3qp33Z0T7IJ+2rbrqXHd2D/NK+6qZ92dE+yC/tq27alx3tg3zSveqnfdnRPsgn7atuupcd3StMTVNTU1PWQ5CNF198MS6++OJ47LHHYqONNop99903xo4dG5tssknWo1EC8+fPj7333nuN11166aUxYsSINp4oHUveWVnU+2/RsV2JJgE+Tvuql+5lp9juRWgflJP2VS/ty472Qb5pX/XSvuw43wn5pXvVTfuyo32QX9pXvXQvO853Qr5pX/XSvuxoH+Sb9lUv7cuO852QX7pX3bQvO9oH+aV91Uv3suN8Z2EsWAEoMTfEAEiJG2IApEb7AEiN850ApEb7AEiJ850ApEb7AEiN850ApEb7AEiJ852Fqct6AIBqU1OT9QQA0HZ0D4DUaB8AqdE+AFKjfQCkRPcASI32AZAa7QMgNdoHQEp0rzAWrACUWE0oEgDp0D0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b3CWLACUGI2fgGQEt0DIDXaB0BqtA+A1GgfACnRPQBSo30ApEb7AEiN9gGQEt0rTG3WAwAAAAAAAAAAAAAAAAAAAAAAlEtd1gMAVBsLvwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxoIVgFJTJABSonsApEb7AEiN9gGQGu0DICW6B0BqtA+A1GgfAKnRPgBSonsFsWAFoMRqFAmAhOgeAKnRPgBSo30ApEb7AEiJ7gGQGu0DIDXaB0BqtA+AlOheYSxYASixGj0CICG6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6V5jarAcAAAAAAAAAAAAAAAAAAAAAACgXC1YASqymyD8AUEmK7Z72AVBptA+A1OgeAKnRPgBSksfznfPmzYsTTzwxBg8eHJ/97Gfje9/7Xrzzzjtl+EwApCiP7QOActI9AFKTx/Y55wlAuTjfWRgLVmg2ceLE6NevX/OfoUOHxjHHHBOPPvpoWT/vr3/96+jXr1/Mnz+/+bJ+/frFddddt94fY/78+TFx4sR49dVXSzpbQ0NDTJw4ca3HHH300TFq1KiiP1djY2OMGzeu6I8TEfHwww9Hv3794s9//nNJPh4bSI2gYmhfa9rHBnNLDCqK9rWmfWww7YOKoXut6R4F0T2oGNrXmvZREO2DiqF9rWkfGyxn5zvfeuutOPbYY+PNN9+Mq6++Os4///y47777YuzYsaX9RFChtK817WOD5ax9wCfTvdZ0j4LoHlQM7WtN+yhIztrnnCd8Mu1rTfvYYM53FqQu6wHIl/bt28dNN90UERELFiyIyZMnx8iRI+PnP/959O3bt83muO2222Lbbbdd7+NffvnlmDRpUuy1117xqU99qoyTwbrVpFoUqFDaB8XRPag82gfF0T6oLLoHxdM+qCzaB8XTPqgs2gfFyVv3br311li8eHHccccdseWWW0ZERIcOHeIb3/hGPPXUUzFgwICMJ4TsaR8UJ2/tA9ZO96B42geVRfugeHlrn3OesHbaB8XJW/cqhQUrtFBTUxM777xz89sNDQ3R2NgYt9566yduolq+fHnU19eXdI6PzgAA5aR9AKRG+wBIie4BkBrtAyA12gfZe+KJJzbo+EGDBn3idbNmzYqhQ4c2P9Eg4oNXUOzYsWPMnDnTkw0gtA+AtOgeAKnRPsheKc93RjjnCeuifUAWarMegHzbbrvtokuXLjF//vyIiDjnnHNiv/32iz/84Q8xYsSIGDBgQNxxxx0RETF79uw4/vjjY/DgwTF48OAYPXp0vPTSSy0+3ttvvx3nnntu7LLLLrHbbrvFd77znVi2bFmrz9uvX7+47rrrWlz2wAMPxBFHHBE777xz7LLLLvG1r30tHnvssXj44YfjmGOOiYiIr371q9GvX7/o169fi8958cUXx7Bhw2LAgAFx4IEHxt13393qc/7sZz+LvffeOxoaGuKwww6Lp59+urhv3j+8/vrrcf7558cXvvCFGDhwYDQ2NsZ3v/vdWLp06RqPnzp1agwfPjwGDhwYxx13XMybN6/F9U1NTXHDDTfE/vvvHwMGDIjhw4fHhAkTYuXKlSWZl+LV1BT3B8iW9hVP+9JSbPe0D7KnfcXTvrRoH1Q23Sue7qVH96CyaV/xtC892geVTfuKp31pKcX5zsMOO2yD/qzNnDlzolevXi0uq6uri549e8bcuXPL+a2AiqV9xdO+tLivDyqb7hVP99Kje1DZtK942peePJ3vjHDOEzaU9hVP+9LifGdh6rIegHx7++2344033ohtttmm+bJFixbFd77znTjllFNi++23jy233DJmz54dRx55ZAwdOjSuvPLKaGpqikmTJsXIkSNjxowZzdvAzj///HjggQfijDPOiB133DHuvPPOmDBhwjrnuPvuu+PMM8+M4cOHxxVXXBEdOnSIJ554Il599dUYPnx4jBs3Li688MK4+OKLo0+fPs3v9/7778fxxx8ff/vb3+K0006L7bffPn7zm9/EmWeeGZ07d44999wzIiJmzpwZ559/fhx44IFx8MEHx//+7//G6aefHqtWrSr6e/jGG2/EpptuGmeffXZsvvnm8fLLL8c111wTo0ePjptvvrnFsTNnzoytttoqvv3tb8e7774bV111VZxwwglx9913R/v27SMi4rLLLotbbrklTjrppNhll13i2WefbY7Rv//7vxc9L8Xr4DcrVDTt0z42jO5B5dM+7WPDaB9UNt3TPTac9kFl0z7tY8NpH1Q27dM+Nkzeurd06dLo1KlTq8s7d+4cb775ZgYTQf5pn/axYfLWPmDD6J7useG0Dyqb9mkfGy5v7XPOEzaM9mkfGyZv3asUvm20smLFioiIWLBgQVx++eWxcuXK2HfffZuvX7p0aUyePDl222235suOPvro6Nu3b1x77bVRW1sbERGDBg2KffbZJ+6444742te+FnPnzo177703xo0bF0cccURERAwbNiwOPfTQWLBgwSfOs2rVqrj88stjt912i2uvvbb58mHDhjX/7969e0dERJ8+fWLnnXduvvyuu+6KJ598Mn7+85/HTjvtFBERe+yxRyxYsCAmTJjQHKPJkyfHwIED4z//8z+bP3b79u3jwgsv3PBv4Mf07t07zj333Oa3Bw8eHN27d48jjzwy5syZ0zx7xAff21/+8pfRpUuXiIjYcccdY8SIEfGrX/0qRowYES+99FLceOONcd5558XRRx8dERG777571NbWxtVXXx3HHXdcbL755kXPDJAa7dM+gNRon/YBpET3dA8gNdqnfQCp0T7tI1u333571iNAcrRP+wBSonu6B5Aa7dM+suV8J7Q97dM+aGu1WQ9Avixfvjz69+8f/fv3j8bGxnjooYdi3LhxsddeezUf06lTpxYhevfdd+Oxxx6L/fffP1atWhUrVqyIFStWRJcuXaJv374xe/bsiIiYPXt2NDU1xX777dfic37xi19c60wvvvhivPrqq3HooYdu8Nfz4IMPRu/evaNPnz7Nc61YsSL22GOP+Mtf/hIrV66MlStXxtNPP90iuBHRas5CNTU1xfTp0+PAAw+MnXfeOfr37x9HHnlkRET8v//3/1ocO2TIkOYQRUT0798/unfv3vw9fOihh2LVqlWx//77t/h6dt9991i2bFm88MILJZkZICXat5r2AaRB+1bTPoDqp3ur6R5AGrRvNe0DSIP2raZ9ZGXQoEEb9GdtOnfuHG+99Vary5cuXRqbbbZZub4EqCjat5r2AVQ/3VtN9wDSoH2raR9ZKeX5zgjnPGFdtG817YO2U5f1AORL+/bt46c//WnU1NTEFltsEdtuu23z9q4Pbbnlli3efvPNN2PlypVx5ZVXxpVXXtnqY2666aYREbFw4cKora2NLbbYosX1W2211VpneuONNyIiomvXrhv65cTixYvj+eefj/79+6/x+oULF0a7du1ixYoVrb6uLl26tPraC3HjjTfGpZdeGiNHjozdd989Nt9881iwYEF8/etfj/fee6/FsR+fIeKD78/ChQsjImLRokUR8cHGsjV55ZVXip4XIDXat5r2AaRB+1bTPoDqp3ur6R5AGrRvNe0DSIP2raZ9VINevXrF3LlzW1y2cuXKePHFF6OxsTGjqSBftG817QOofrq3mu4BpEH7VtM+qoVznrB22rea9kHbsWCFFmpqaqKhoWGdx3xUp06dora2NkaNGtVqY1ZExCabbBIREVtvvXWsWrUqlixZ0mKj1euvv77Wz/dhvBYsWLBeX8NHbbbZZtGnT5+49NJL13h9ly5dol27dlFXV9f8i/5DixcvjlWrVm3w5/y4GTNmxPDhw+Occ85pvuyPf/zjGo/9+AwRH3x/dtppp4iI5q2EN998c2y00Uatju3evXvR8wKkRvtW0z6ANGjfatoHUP10bzXdA0iD9q2mfQBp0L7VtI9qMGzYsPjhD38Yixcvbv5797vf/S7eeeedGD58eMbTQT5o32raB1D9dG813QNIg/atpn1UC+c8Ye20bzXtg7ZjwQpF69ixYwwePDjmzJkT3/zmNz/xuIEDB0ZNCov+ugAABUNJREFUTU3cc889ccQRRzRfft9996314/fs2TO22267uOOOO+Kggw5a4zHt27ePiGi1PWuPPfaImTNnxlZbbRXbbrvtJ36O/v37x7333hsnnHBC82X33HPPWudaX++++26rjWZ33nnnGo995JFHYsmSJc0Bfvrpp2P+/PkxaNCgiIjYfffdo6amJhYtWrTG8APQNrRv7bQPoPpo39ppH0B10b210z2A6qN9a6d9ANVH+9ZO+8jS4YcfHjfddFOceuqpMXr06Fi6dGlcdtllsffee6/zAdbAJ9O+tdM+gOqie2unewDVR/vWTvvImnOeUHrat3baB+tmwQolcc4558TRRx8dp512Whx00EGxxRZbxMKFC+Phhx+OoUOHxgEHHBC9evWKfffdN6644op4//33o2fPnnHnnXeuc4tXTU1NjB07Ns4444w45ZRT4l//9V9j4403jtmzZ0ePHj3igAMOiB49ekS7du3i5z//edTX10ddXV00NDTEwQcfHHfccUccffTRcdxxx0WvXr3i73//e7zwwgvx8ssvx0UXXRQREaeeemqcfPLJcdZZZ8XBBx8cL774Ytx4441RV7d+f0UWLVq0xngNHTo09txzz5g6dWpMnTo1+vXrF7/97W/jT3/60xo/TufOnWPUqFFx6qmnxrJly2L8+PGx/fbbx4EHHhgRET169Ijjjjsuzj333Hj++edj8ODB0dTUFH/961/j/vvvj2uuuSbq6+vXa2YAiqN92geQGu3TPoCU6J7uAaRG+7QPIDXap33kU+fOneMnP/lJXHzxxTFmzJjYaKONYt99942xY8dmPRpUPO3TPoCU6J7uAaRG+7SP/HLOE8pD+7QPimHBCiUxcODAuO2222LChAnxne98J5YtWxZdu3aN3XbbLfr169d83CWXXBKXXHJJ/OAHP4h27drFfvvtF2PGjInzzjtvrR9/v/32i2uvvTYmT54cZ511VtTX10e/fv3iX/7lXyIiokuXLjFu3Lj48Y9/HHfddVesWLEinnvuuaivr4+pU6fG5MmTY+rUqbFgwYLo3Llz9O3bN0aMGNH88T/3uc/FJZdcEpMnT4777rsvdtppp5g4cWJ89atfXa+v/5lnnokxY8a0uvy2226L0047Ld5444249tprY8WKFbHXXnvFVVddFYceemir4z/3uc9Fjx494sILL4wlS5bELrvsEhdccEHzNrOIiLFjx0aPHj3ipz/9aVx33XWx0UYbxQ477BCf//zn1zueABRP+7QPIDXap30AKdE93QNIjfZpH0BqtE/7yK+ePXvGlClTsh4Dqo72aR9ASnRP9wBSo33aR7455wmlp33aB8WoaWpqasp6CAAAAAAAAAAAAAAAAAAAAACAcqjNegAAAAAAAAAAAAAAAAAAAAAAgHKxYAUAAAAAAAAAAAAAAAAAAAAAqFoWrAAAAAAAAAAAAAAAAAAAAAAAVcuCFQAAAAAAAAAAAAAAAAAAAACgalmwAgAAAAAAAAAAAAAAAAAAAABULQtWAAAAAAAAAAAAAAAAAAAAAICqZcEKAAAAAAAAAAAAAAAAAAAAAFC1LFgBAAAAAAAAAAAAAAAAAAAAAKqWBSsAAAAAAAAAAAAAAAAAAAAAQNWyYAUAAAAAAAAAAAAAAAAAAAAAqFoWrAAAAAAAAAAAAAAAAAAAAAAAVcuCFQAAAAAAAAAAAAAAAAAAAACgalmwAgAAAAAAAAAAAAAAAAAAAABULQtWAAAAAAAAAAAAAAAAAAAAAICqZcEKAAAAAAAAAAAAAAAAAAAAAFC1/j/NWDezAguVIgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "confusion_matrix_source_dict, confusion_matrix_dist_dict = stats_predict.get_confusion_matrices_tiles(plot=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "2c389d4b-5383-4fa9-ba93-5d90c036d0d8", + "metadata": {}, + "outputs": [], + "source": [ + "model_performance_dict = stats_predict.get_model_performence_stats_tiles(confusion_matrix_dist_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "b04206e8-a5d4-43be-8c8e-c34d680ab2e7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Cluster Class TN FP FN TP Accuracy Balanced Accuracy Precision \\\n", + "0 t_cl2 0 559 4 9 48 0.979032 0.917500 0.923077 \n", + "1 t_cl2 1 547 7 4 62 0.982258 0.963379 0.898551 \n", + "2 t_cl2 2 550 1 28 41 0.953226 0.796194 0.976190 \n", + "3 t_cl2 3 532 24 12 52 0.941935 0.884667 0.684211 \n", + "4 t_cl2 4 554 1 14 51 0.975806 0.891407 0.980769 \n", + "5 t_cl2 5 556 0 34 30 0.945161 0.734375 1.000000 \n", + "6 t_cl2 6 557 2 10 51 0.980645 0.916244 0.962264 \n", + "7 t_cl2 7 555 5 22 38 0.956452 0.812202 0.883721 \n", + "8 t_cl2 8 561 1 23 35 0.961290 0.800834 0.972222 \n", + "9 t_cl2 9 558 6 26 30 0.948387 0.762538 0.833333 \n", + "10 t_cl0 0 568 9 17 46 0.959375 0.857280 0.836364 \n", + "11 t_cl0 1 551 2 12 75 0.978125 0.929226 0.974026 \n", + "12 t_cl0 2 571 6 25 38 0.951562 0.796388 0.863636 \n", + "13 t_cl0 3 570 5 28 37 0.948438 0.780268 0.880952 \n", + "14 t_cl0 4 570 19 8 43 0.957812 0.905440 0.693548 \n", + "15 t_cl0 5 586 0 34 20 0.946875 0.685185 1.000000 \n", + "16 t_cl0 6 576 0 14 50 0.978125 0.890625 1.000000 \n", + "17 t_cl0 7 578 3 17 42 0.968750 0.853350 0.933333 \n", + "18 t_cl0 8 582 1 26 31 0.957812 0.771072 0.968750 \n", + "19 t_cl0 9 544 19 23 54 0.934375 0.833775 0.739726 \n", + "20 t_cl3 0 533 20 1 66 0.966129 0.974454 0.767442 \n", + "21 t_cl3 1 541 2 5 72 0.988710 0.965691 0.972973 \n", + "22 t_cl3 2 561 1 29 29 0.951613 0.749110 0.966667 \n", + "23 t_cl3 3 552 4 21 43 0.959677 0.832340 0.914894 \n", + "24 t_cl3 4 562 3 21 34 0.961290 0.806436 0.918919 \n", + "25 t_cl3 5 571 0 22 27 0.964516 0.775510 1.000000 \n", + "26 t_cl3 6 560 2 12 46 0.977419 0.894772 0.958333 \n", + "27 t_cl3 7 545 7 16 52 0.962903 0.876012 0.881356 \n", + "28 t_cl3 8 549 0 38 33 0.938710 0.732394 1.000000 \n", + "29 t_cl3 9 562 5 17 36 0.964516 0.835213 0.878049 \n", + "30 t_cl1 0 568 0 17 35 0.972581 0.836538 1.000000 \n", + "31 t_cl1 1 558 3 6 53 0.985484 0.946479 0.946429 \n", + "32 t_cl1 2 568 0 32 20 0.948387 0.692308 1.000000 \n", + "33 t_cl1 3 557 2 30 31 0.948387 0.752309 0.939394 \n", + "34 t_cl1 4 526 12 10 72 0.964516 0.927872 0.857143 \n", + "35 t_cl1 5 555 2 28 35 0.951613 0.775982 0.945946 \n", + "36 t_cl1 6 552 5 5 58 0.983871 0.955829 0.920635 \n", + "37 t_cl1 7 553 3 16 48 0.969355 0.872302 0.941176 \n", + "38 t_cl1 8 557 3 22 38 0.959677 0.813988 0.926829 \n", + "39 t_cl1 9 543 13 18 46 0.950000 0.847684 0.779661 \n", + "\n", + " Recall True Negative Rate Informedness F1 \n", + "0 0.842105 0.992895 0.835000 0.880734 \n", + "1 0.939394 0.987365 0.926759 0.918519 \n", + "2 0.594203 0.998185 0.592388 0.738739 \n", + "3 0.812500 0.956835 0.769335 0.742857 \n", + "4 0.784615 0.998198 0.782814 0.871795 \n", + "5 0.468750 1.000000 0.468750 0.638298 \n", + "6 0.836066 0.996422 0.832488 0.894737 \n", + "7 0.633333 0.991071 0.624405 0.737864 \n", + "8 0.603448 0.998221 0.601669 0.744681 \n", + "9 0.535714 0.989362 0.525076 0.652174 \n", + "10 0.730159 0.984402 0.714561 0.779661 \n", + "11 0.862069 0.996383 0.858452 0.914634 \n", + "12 0.603175 0.989601 0.592776 0.710280 \n", + "13 0.569231 0.991304 0.560535 0.691589 \n", + "14 0.843137 0.967742 0.810879 0.761062 \n", + "15 0.370370 1.000000 0.370370 0.540541 \n", + "16 0.781250 1.000000 0.781250 0.877193 \n", + "17 0.711864 0.994836 0.706701 0.807692 \n", + "18 0.543860 0.998285 0.542144 0.696629 \n", + "19 0.701299 0.966252 0.667551 0.720000 \n", + "20 0.985075 0.963834 0.948908 0.862745 \n", + "21 0.935065 0.996317 0.931382 0.953642 \n", + "22 0.500000 0.998221 0.498221 0.659091 \n", + "23 0.671875 0.992806 0.664681 0.774775 \n", + "24 0.618182 0.994690 0.612872 0.739130 \n", + "25 0.551020 1.000000 0.551020 0.710526 \n", + "26 0.793103 0.996441 0.789545 0.867925 \n", + "27 0.764706 0.987319 0.752025 0.818898 \n", + "28 0.464789 1.000000 0.464789 0.634615 \n", + "29 0.679245 0.991182 0.670427 0.765957 \n", + "30 0.673077 1.000000 0.673077 0.804598 \n", + "31 0.898305 0.994652 0.892957 0.921739 \n", + "32 0.384615 1.000000 0.384615 0.555556 \n", + "33 0.508197 0.996422 0.504619 0.659574 \n", + "34 0.878049 0.977695 0.855744 0.867470 \n", + "35 0.555556 0.996409 0.551965 0.700000 \n", + "36 0.920635 0.991023 0.911658 0.920635 \n", + "37 0.750000 0.994604 0.744604 0.834783 \n", + "38 0.633333 0.994643 0.627976 0.752475 \n", + "39 0.718750 0.976619 0.695369 0.747967 \n" + ] + } + ], + "source": [ + "import pprint;\n", + "pprint.pprint(model_performance_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "858b938a-c628-41c8-8038-b02d383283b6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEVgAAAbiCAYAAADGbC4WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABWIAAAViAHE10CgAAEAAElEQVR4nOzde3zO9eP/8edmB2abUwhDDiPnM4sio3xIQpIODqGcSUJHnz61IinKQijHUvrpZKWUMEpEDBUywoYcZ8NsM/v9se8urjbMddh1eD3ut1s3Xdf7fb2v15vaw/V+X+/X2ycrKytLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCFfF09AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwFiZYAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC1mGAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNdighUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXosJVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4LSZYAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC1mGAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNdighUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXosJVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4LSZYAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC1mGAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNdighUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXsvP1QMAAG9TpNFwu16fujXaQSMBAMD57O2eRPsAAJ6F9gEATMPxTgCAaWgfAMAkHO8EAJiG9gEATMPxTgCAaWgfAMAkHO+0DROsAICj+fi6egQAABQcugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASumcTftcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeC0/Vw8AALyOj4+rRwAAQMGhewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahezZhghUAcDQfX1ePAACAgkP3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3bMIEKwDgaMz4BQAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd2zCdPSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBafq4eAAB4HR/mrgIAGITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu2YQJVgDA0Xx8XD0CAAAKDt0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd2zCROsAICjMeMXAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8mTLACAI7GjF8AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPZswLQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr+Xn6gEAgNfxYe4qAIBB6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5NmGAFABzNx8fVIwAAoODQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPZswwQoAOBozfgEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3bMLvGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACv5efqAQCA1/HxcfUIAAAoOHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHTPJkywAgCO5uPr6hEAAFBw6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5N+F1DviQkJKhmzZqqWbOmq4dSID777DPVrFlTvXv3dvVQ4Il8fO37B4BboH1APtnbPdoHuAW6B9wA2gd4BdoH3AC6B3gF2gfcANoHeAXaB+QTxzsBr0H7gHyifYBXoHvADaB7gFegfcANoH2AV6B9QD5xvNMmfq4eAK5v/vz5SklJUbdu3RQWFubq4VzVP//8oxkzZmjdunU6fvy4QkJC1KRJEw0YMEANGzZ02biOHz+upUuXasOGDfr777+VlJQkf39/lStXTvXr11fHjh11xx13yNfXu38IPPPMM/r88881ceJEde/ePdfyzMxMLVmyRJ9//rn27dsnHx8fValSRd27d9dDDz2U5+/PZ599pmeffVbdunXTpEmTCmI3ABiC9tmH9mW7Vvt27NihLVu2aOfOndq5c6f+/vtvZWVlafjw4RoxYsRVt7lx40b16dNHzZs316JFi5y9CwAMQffsQ/eyXa176enpWr9+vdatW6e4uDgdOHBAaWlpKlasmOrWravu3burQ4cOeW4zISFB7dq1U4UKFfTjjz8W1K4AMADtsw/ty3a19l24cEEfffSRduzYoT179ujkyZNKSUlR0aJFVa1aNXXo0EEPPfSQAgMDc22T450AnIX22Yf2Zbveub5/mz9/viZOnChJVz2eyec+AM5C++xD+7Jdq32RkZFKTEy85uu/+eYbVatWzeo5PvcBcBbaZx/aly0/n/vS09O1ZMkSffvtt9q3b5/Onz+vkiVLqnr16oqMjNQjjzxitT7fcwHgDHTPPnQv29W6N336dEVHR+drGyNGjNDw4cMtj+keAGehffahfdmu95lv//79mj9/vn755RcdOXJEWVlZKl26tBo3bqw+ffqofv36uV5D+wA4C+2zD+3Ldr32HTx4UHPnztXPP/+sf/75R0WKFFGNGjXUo0cPde3aNc9t0j44ChOseICFCxcqMTFRzZs3d9sY/fHHH+rbt6+Sk5NVpEgRhYeH6/jx41q5cqVWrVqlV155Rffff3+Bj+v999/XO++8owsXLkiSbr75ZtWsWVNpaWlKTExUfHy8Pv/8c916661atGiRQkNDC3yM7iA9PV2DBw/WTz/9JEmqUqWK/P399fvvv2vnzp368ccfNWvWLPn7+7t4pB7C18fVIwA8Hu2zHe3LnxdeeEG7du1y9TC8A90D7Eb3bEf3rm/GjBmaOXOmJMnPz0+VKlVS4cKFdeDAAa1Zs0Zr1qzR3XffrTfffFMBAQEuHq2HoH2A3Wif7Wjf9SUlJen111+XJAUFBalMmTIqX768/vnnH/3222/67bfftHTpUs2bN09ly5Z18Wg9BO0D7Eb7bEf7bHPw4EFNmzbN1cPwXLQPsBvtsx3tuzE1atRQcHBwnsuKFClSwKPxUHQPcAjaZzval3+HDh3SwIED9ffff8vX11dVqlRRWFiYjh8/rp9//lkHDx7MNcEK8kD7ALvRPdvRvesrV66cGjdufNXlSUlJ2rdvnySpSZMmBTUsz0b7ALvRPtvRvvz58ccfNWrUKKWnp8vf318VK1aUn5+fDh06pOXLlysmJkYvvPCCHn30UVcP1TPQPsButM92tC9/Vq9erdGjRys1NVWBgYEKDw/X+fPn9euvv+rXX3/VmjVr9NZbb3n9JDQO4Ybdy5kI59/Cw8MVExNjeXzgwAFFRUVp8+bNCggIUMeOHTVu3DgFBQVZvS42NlZTp07V3r17Vbp0afXp00f9+vWza4xMsAK7paWladiwYUpOTlbLli01depUFS9eXFlZWVq8eLGioqI0YcIENWjQQNWrVy+wcb322mtasGCBfHx89Mgjj+ixxx5TxYoVLcszMjK0ceNGzZkzR7/88ouSk5ONjdHbb7+tn376SaGhoZoxY4aaNWsmSdqzZ4+eeOIJrV+/XtHR0Ro9erSLR+ohfIg24O1on+erWLGiqlatqjp16qhu3bp69913tWnTJlcPyzPRPcDr0T3PlpWVpUaNGumRRx5RZGSkihYtKin792fevHl68803tXLlSr377rt85ssv2gd4Pdrn2YKCgvTcc8/ptttuU40aNayW/fLLLxozZozi4+P13//+V7NmzXLRKD0M7QO8Hu3zLllZWXr++eeVnp6utm3bavXq1a4ekuehfYDXo33e44UXXlCLFi1cPQzPRvcAI9A+z3fmzBn17t1bR44c0SOPPKLhw4erZMmSluWnTp3S9u3bXThCD0L7AK9H9zxbjx491KNHj6suj4qK0r59+1ShQgVFREQU4Mg8GO0DvB7t82znzp3TM888o/T0dLVu3VqvvfaaSpcuLUk6e/asJk2apE8//VQTJ05U69atValSJReP2APQPsDr0T7PlpiYaJlcpV27dpo4caKKFSsmKXvinCFDhmjFihWqWbOmhgwZ4uLRegA37l5UVJTCw8MtjwsXLmz595SUFPXt21dlypTRtGnTdObMGU2aNEknT57U9OnTLevFxcVp6NCh6ty5s8aPH6/t27dr8uTJKlSokHr37m3z2Nz3dw0e49NPP9Xhw4dVtGhRvfXWWypevLgkycfHR71791bnzp118eJFvfvuuwU2pm+//VYLFiyQJE2aNEkTJkywCpEk+fv76/bbb9eCBQsUFRUlf3//AhufOzl16pQWLVokSRo7dqxlchUp+04/UVFRkqT58+crKSnJFUP0PD4+9v0DwO3RPs8XHR2tqVOnauDAgYqIiFBAQICrh+S57O0e7QPcHt3zbH379tXHH3+se++91zK5ipT9+/PEE0/ogQcekCR9/PHHunTpkquG6VloH+D1aJ9nCw0NVd++fXNNriJJERERev755yVJa9eu1fnz5wt6eJ6J7gFej/Z5lyVLlmjTpk3q16+f6tSp4+rheCbaB3g92gdcgeOdgBFon+d7/fXXdeTIET366KOaMGGC1eQqklSyZEndeeedrhmcp6F9gNeje94rPT1dy5cvlyR1795dPvxMzh+6B3g92ufZNm/erDNnzsjHx0dvvPGGZXIVSQoODtb//vc/lS5dWhcvXlRsbKwLR+pBaB/g9WifZ1u8eLFSU1NVokQJTZo0yTK5iiTVrl1bEyZMkCTNnj1bZ8+eddUwPYcbH+8MDw9Xw4YNLf/ceuutlmUff/yxTp06pZkzZ6pNmzbq0qWLXnrpJa1cuVI7d+60rBcdHa0aNWpo4sSJioiI0BNPPKGHH35Y0dHRysjIsHlsfnbtGZzqs88+07PPPmt53KdPH6vl3bp106RJk2ze/oULF7R06VKtXLlSf/31l86dO6ebbrpJVatW1V133aX7778/Xxcbr1ixQpLUsWNHlShRItfyXr16KSYmRqtXr1ZqaqqKFCli85jzIysrS++8844k6d5771XXrl2v+5qcC8ryY//+/fr++++1bt06JSQk6MSJEwoMDFT16tXVqVMn9erVK8/ft0uXLmnZsmX68ssvtWfPHp07d07BwcEqVaqUGjRooPvuuy/XLMobNmzQ4sWLFRcXp9OnT6tw4cIqUaKEatasqbZt215zdub8+vHHH5WWlqagoCDdd999uZbffvvtqlixog4dOqQff/xR3bt3t/s9vZ4bz/gFuDvaZxvaB5dyw+5t3Lgx188PKfuDWUxMjOXxgQMHFBUVpc2bNysgIEAdO3bUuHHjFBQUZPW62NhYTZ06VXv37lXp0qXVp08f9evXz9m7AQPQPdvQvRvz7y9X/lubNm306aefKikpSadOndJNN91k93t6PTdsH+ApaJ9taJ9jVatWzTL+nOOiuA7aB9iM9tmG9tnu8OHDmjJliipVqqSRI0dqzpw5Dt2+MWgfYDPaZxvaB5eie4BdaJ9taN+NOXHihL766iv5+/tr2LBhdm/PeLQPsBndsw3dc5xVq1YpKSlJvr6+XNNwI2gfYDPaZxvad2NSU1MlScWKFbNMEHClQoUKKSwsTMePH9fFixftfj8j0D7AZrTPNrTvxmzZskVS9rXroaGhuZZHRkYqKChI58+f16pVq/K87h1XcED34uLibmj9Bg0a2P2esbGxioiIUKlSpSzP5fzZr1mzRnXr1lV6ero2bNigJ5980mqS1XvvvVeLFi3S1q1b1bx5c5venwlW3FipUqXUuHFj7dy5U+np6apRo4aCg4Mty2+55Rabt33o0CE98cQT2rdvnySpfPnyqlixov755x/9/PPP+umnn3THHXcoLCzsmtvJzMzU9u3bJUnNmjXLc50GDRrI399fqamp+vPPP9W4cWObx50fO3bsUHx8vKTsO3U72tSpU/Xdd98pKChIpUuXVs2aNXXq1Clt3bpVW7du1ffff6/3338/V5DGjx+vr776SpJUpkwZVaxYUWfPntWRI0cUHx+vjIwMqxh9+umneuGFFyRl33W1evXqysrK0tGjR/XDDz9ox44dDonR1q1bJUn16tVTYGBgnus0a9ZMhw4d0tatWzkYCcCpaJ9taB+Qt6ioKIWHh1seFy5c2PLvKSkp6tu3r8qUKaNp06bpzJkzmjRpkk6ePKnp06db1ouLi9PQoUPVuXNnjR8/Xtu3b9fkyZNVqFAh9e7du0D3B96H7tmG7jnWhQsXLP9+5c9JAHAG2mcb2udYmzdvliSFhYXleXIVAByJ9tmG9tnuxRdf1Llz5/Tuu+/yGQ+AS9A+29A+233yySeaN2+eUlNTVapUKTVq1EhdunSxutMdADgT7bMN7bsxa9euVUZGhurVq6eSJUvqhx9+0Hfffadjx46pWLFiaty4se6//36FhITY/V4AcC10zzZ0z3GWLVsmSWrZsqXKly/v1PcCAIn22Yr23ZhatWrJx8dHSUlJio+Pt9w4KEdSUpL++usvSVL9+vXtfj8AuBbaZxvad2OSkpIkSWXLls1zuY+Pj8qUKaO///5bW7ZsYYKVAtCzZ88bWn/37t35Wm/o0KE6ffq0SpQooXbt2mnMmDGWCeX27t2bazIiPz8/ValSxfL/08GDB5WRkZHr70c5j+Pj45lgxRu1adNGbdq0UWRkpBITE/XCCy+oRYsWdm/3woULGjRokPbt26caNWpo4sSJqlu3rmX5yZMn9dlnn+Xrzp2HDx9Wenq6JKlSpUp5rhMQEKBy5crp4MGD2r9/v9Nj9Ntvv0mSQkJCrPbLUbp06aKBAweqXr16VjMexcfH67nnntOmTZs0f/58PfHEE5Zlf/75p7766isFBwdrxowZVn+OWVlZ2rx5s44fP255LjMzU1OmTJEkvfDCC3rooYfk5+dn9V4//fTTDY170qRJec4O9/fff0uSKleufNXXVqxYUVL2TGdX6t69OxOu5OWK/y4A3BjaZxval7ertc8eLVq0yPeHAGO4cffCw8PVsGHDPJd9/PHHOnXqlJYtW2aZ7bJw4cIaMWKEdu7cafl/KTo62vJzw8fHRxERETp27Jiio6PVq1cv+fv7F9TuwAvRPdvQvbzZ2r2YmBhJUp06dawOgEvZF57TvTy4cfsAd0f7bEP78nYj7cvIyNCxY8f0/fffa9q0afL397ecCLwSxzuvgvYBNqN9tqF9ebte+5YtW6b169ere/fuuu222/K1TT73XQXtA2xG+2xD+/KWn899X3/9da7H06ZNU1RUlDp27JhrfT735YHuAXahfbahfXm7WvtyLhi5+eabNXLkSH333XdWy7/77ju99957mjFjhho1amS1jO+55IH2ATaje7ahe3m70e+5HD161PIe999/f57r0L2roH2AzWifbWhf3q7WvsqVK+uhhx7SRx99pKFDh2r8+PFq3Lix/Pz89Mcff2jKlCk6e/asunfvnuvPjvZdBe0DbEb7bEP78na19uVMFP3PP//k+bqsrCwdO3ZMkiwT8uSgfXlww+6FhISof//+at68uYKCghQXF6fZs2dr27ZtWrZsmQICApScnJznpOGhoaE6c+aMJFl+/fd6wcHBKlSokGW5LZhgxUCffvqp4uPjVaJECc2fP99yQWmOUqVK6fHHH8/XtnJmipJ0zbu/5CxLTk6+8QHfoKNHj0qSKlSoYBULR2nfvn2ez1erVk2TJ0/W3Xffrc8//9wqRjk/xCMiInL9hcLHxyfXTGmnTp1SUlKSQkND1bt37zzf698zLtkq5wdIfv787PlhYxQfX1ePAMC/0D77eFv74GAO6F5cXNwNrd+gQQO73zM2NlYRERFWPw8iIyMVFBSkNWvWqG7dukpPT9eGDRv05JNPWv2/de+992rRokXaunWrzTNdAs5E9+xjUvdWrlypNWvWSJIGDx7s9PfzGnzmA9wO7bOPN7dv6NChWrVqldVzbdu21bBhw1SvXj2Hv5/Xon2A26F99vHG9h07dkyTJk1SqVKlNH78eIdt11i0D3A7tM8+3ti+Zs2aaeTIkapXr57KlSunS5cuaceOHZoxY4Y2bdqkp556SsHBwbrjjjsc9p5ei+4Bbon22cfb2pdzocOaNWuUkZGhvn376rHHHlOpUqW0fft2/e9//9OePXs0ZMgQLV++XKVLl3bI+3ot2ge4HbpnH2/r3tV89tlnunTpkooXL37VfcZV0D7A7dA++3hj+yZMmKAqVapo8eLFGjJkiNWyChUq6LXXXmPi6BtB+wC3Q/vs423ta9CggXbu3KmffvpJKSkpuSbPWLNmjc6fPy+Ja9rzxQHdW7p0qQMGclnt2rVVu3Zty+MWLVqoTp066t+/v2JiYtzi7zVMsGKglStXSpJ69uyZK0Q3Ki0tzfLvAQEBV10vMDBQkpSammrX++XH2bNnJSlfs5XZ6uTJk/r666+1fft2nTx5UmlpacrKyrIs379/vy5cuKDChQtLksqXLy8p++LhQ4cOqWLFitfcfqlSpVS4cGGlpKRo7dq1atOmjdP25cKFC5Ikf3//q66T8+eXsy6uww1n/AJMR/vs503tg4M5oHs9e/a8ofXzO9vo0KFDdfr0aZUoUULt2rXTmDFjVLx4cUnS3r171bVrV6v1/fz8VKVKFcXHx0uSDh48qIyMjFwHAXIex8fHM8EK3BLds58J3fvrr7/07LPPSsqeOOruu+8u8DF4LD7zAW6H9tnPW9tXvXp1nT59WmlpaTp8+LBOnz6tX3/9VcuXL1fNmjWv+WeMK9A+wO3QPvt5W/teeuklJScn66233rIc/4IdaB/gdmif/bytfa+//nqu52677TY1b95cQ4YM0dq1a/Xqq6/q22+/deo4vALdA9wS7bOfN7Uv52KCjIwMderUSc8995xlWdOmTTVnzhzdfffdOn36tBYsWKCnn37aaWPxCrQPcDt0z37e1L28ZGVl6fPPP5eU/R0XzvHdINoHuB3aZz9va9+FCxeUmJioM2fOqFChQqpQoYIKFy6sgwcPKjExUcuWLVPDhg25YW1+0T7A7dA++3lT+x566CF98sknOnXqlMaMGaNJkyapZMmSkqTffvtNL730kmVdrmnPBwd0zxE3Qr+eVq1aqXjx4tqxY4e6d++u0NBQpaSk5FovOTlZlStXlnR5oqR/r3f27FllZmZec5Kl62GCFQPt2bNHktSoUSO7t5UTGUlKT0+/6no50SpSpIjd73k9wcHBki6fVHK0b7/9Vs8+++w1t5+VlaUzZ85YYtSwYUM1b95cmzZtUocOHdSkSRM1a9ZMDRs2VJMmTVS0aFGr1/v6+qp///6aMWOGnnjiCdWoUUO33XabGjZsqGbNmjn0DgM5Y8zIyLjqOjl/fjnrAoCnoX328bb2wfuFhISof//+at68uYKCghQXF6fZs2dr27ZtWrZsmQICApScnJxrllNJCg0NtcxwmvPrv9cLDg5WoUKFmAkVbovu2ceE7h08eFD9+/fX2bNn1bx5c0VFRTn1/QDA2Wiffby5fU899ZTV4w0bNigqKkoLFixQQkKCZsyY4ZT3BQBno3328bb2xcTEaNWqVbrzzjt1zz33OGy7AOBOaJ99vK1911KoUCGNHz9ea9eu1f79+7V7927VrFmzQN4bAByJ9tnH29p35fc2H3vssVzLb775Zt1zzz367LPPtHbtWiZYAeBx6J59vK17edm0aZMOHjwoSerRo4dT3wsACgLts4+3tS8jI0OPPvqodu7cqdtvv11RUVEqV66cpOzfw7ffflvz589Xr1699NVXX1mWAYAnoX328bb2hYeH67///a9eeuklrV27Vq1bt9Ytt9yis2fP6siRIypZsqTuvvturVy50vJ7C+/h838TwlSrVs1yg/QcmZmZ2r9/vyIjIyVJlSpVkr+/v+Lj49W2bVvLejmvs2fyOSZYMVDObFh5XVB6o66c3ScpKemq6+VcfBoaGmr3e17PzTffLElKTExUVlaW5X82R0hISNDYsWOVnp6ujh07qnfv3qpatapCQkLk5+enS5cuqVatWpKsJyzx8fHRrFmzNHv2bH3xxRfatGmTNm3aJCn75Nc999yjp59+2jLLliSNHDlS5cuX1+LFi7Vr1y7t2bNHCxYskI+Pj2677TaNHz9et956q937lPNnkp8/P3tmczKKj6+rRwDgX2if7byxfXAwB3Rv6dKlDhjIZbVr11bt2rUtj1u0aKE6deqof//+iomJUffu3R36foC7oXu2M6F7CQkJ6tu3r44dO6ZGjRpp1qxZTKZ5o/jMB7gd2mc7E9p3pdtuu01z5szRXXfdpVWrVum3335T48aNnfqeXoH2AW6H9tnO29p35swZRUVFKSgoyOoOPrAT7QPcDu2znbe1Lz+qVaumYsWK6cyZMzpw4AATrFwP3QPcEu2znTe278o/w6t9YTzn+YSEBLvfz+vRPsDt0D3beWP38rJs2TJJUp06dfgOqS1oH+B2aJ/tvLF9S5cu1c6dO1W8eHFNnTrV6s8oKChIzz77rP78809t3LhRs2bN0v/+9z+739Pr0T7A7dA+23lj+ySpZ8+euvXWW/XBBx9o8+bN+vvvv1WiRAk9+OCDGj58uKKjoyWJG7bnh4d0b926dUpKSlL9+vUlSa1bt9a7776rU6dOWf47XL16tc6fP682bdpIkgICAhQREaEVK1ZowIABlv+3YmJiVKxYMTVs2NDm8TDBioGCg4OVlJSklJQUu7dVoUIFBQQEKD09XQcPHlSTJk1yrZOenq4jR45IkqpUqWL3e15PzhfiU1JStHPnTtWrV89h2/7mm2+Unp6u+vXr66233pKvr/UPnmsFuWjRoho9erRGjx6tAwcO6LffftPPP/+s77//XsuWLdO+ffv04YcfqlChQpKyA/bAAw/ogQce0KlTp/Tbb79p06ZN+uabb/Tzzz+rb9+++uqrr1S2bFm79qlKlSrasmWLDhw4cNV1Dh06ZFkX+eDAvwABcAzaZztvbB8czAHda9CggQMGcm2tWrVS8eLFtWPHDnXv3l2hoaF5/kxITk5W5cqVJV0+8PLv9c6ePavMzEwmn4Pbonu28/buHTlyRH379tXhw4fVoEEDzZ07N9fs08gHPvMBbof22c7b25eX8uXLq2bNmvr999+1c+dOJljJD9oHuB3aZztva9/hw4d1+vRp+fv753nn1py7F23dulWtWrWSJE2fPp3+XQ/tA9wO7bOdt7Uvv/z9/SVJFy9edPp7eTy6B7gl2mc7b2xf1apVLe+X07h/CwgIkJR9h09cB+0D3A7ds503du/fzp49q5UrV0pSnsdAkQ+0D3A7tM923ti+X3/9VVL29+mvNgnAHXfcoY0bN2rHjh12vZcxaB/gdmif7byxfTnq16+vadOm5bnsr7/+kiSH/l56LTfs3tNPP62wsDDVrVtXRYsWVVxcnObMmaNatWqpU6dOkqRevXpp8eLFGjp0qIYMGaLk5GRNmjRJ7dq1s/pzHzZsmB599FE999xz6tq1q7Zv366PPvpIY8eOtRwXt4VnTEsDh6pRo4ak7C/S2atQoUKW/1Bz/kL/b3FxccrIyFDhwoUtM2E5U926dS0nlBYsWODQbefM7t+kSZNcIZKkbdu25Ws7lStXVrdu3fTGG2/ok08+kY+Pj7Zu3ao///wzz/VLliyp9u3b67nnntO3336rsLAwJSUl6euvv7Z5X3LkzNC0c+dOpaWl5blOzp+tPbM5GcXH175/ADgc7bOdN7YPDmZv9wq4fTmzVVarVk3x8fFWyzIzM7V//37LnZ0qVaokf3//XOvlPL7anaEAV6N7tvPm7v3zzz/q06ePEhISVK9ePb3//vsKDg522PaN4mHtA0xA+2znze27lpyLDC5dulQg7+fx6B7gdmif7by1fRkZGTpx4kSuf3ImWLly+ZV3LMJV0D7A7dA+23lr+67l5MmTOnnypKTLdwzENXC8E3BLtM923ti+nAs0srKyLPv3bwcPHpRE+/KF9gFuh+7Zzhu7928xMTFKTU1VYGCgOnfu7PDtG4HuAW6H9tnOG9t39uzZfK+bnp5u9/sZgfYBbof22c4b23c9x48fV1xcnCSpffv2Tn8/j+eGxzvDw8O1atUqjRs3TgMHDtTSpUvVo0cPLVq0yDIpSmhoqBYsWKCiRYtq1KhRioqKUrt27fTGG29YbatRo0aaMWOG/vzzTw0YMEBLlizRmDFj1K9fP7vGSPE9QJEiRSRJFy5ccMj2/vOf/0iSPv30U506dcru7XXs2FGS9O233+r06dO5ln/88ceSpDvvvNOyL87k6+urESNGSJKWL1+uL7744rqv+X//7//p2LFj112vcOHCkrJ/QP9bVlaWPvjggxsbrKSaNWsqJCREUvYFb9cTHBysmjVr5nv962nXrp0CAgJ0/vx5ffnll7mWr1+/XocOHVJgYKDatWtn9/sBQH7QvhtD+4DrW7dunZKSklS/fn1JUuvWrbVx40arnwmrV6/W+fPn1aZNG0nZd3iKiIjQihUrlJWVZVkvJiZGxYoVY/I5OAzduzF078YdP35cffr00cGDB1W3bl198MEHljEBgCvQvhtD+xxr//792rNnjyQVyMlTAJBo342ifflXq1Yt7d69+6r/DB8+XJLUvHlzy3MtWrSw6z0BID9o342hfY41Z84cZWVlqVixYtzVDkCBoX03hvbdmCZNmqhcuXKSpGXLluVafv78eX3zzTeSpJYtW9r9fgBwPXTvxtA9++S07+6771ZoaKjDtw8A+UH7bgztuzFVqlSRlD0ZQHJycp7rrFu3TpIsF+8DgLPRvhtD+xzrrbfeUmZmpiIiIviOp4caNGiQli9frt9++02///67fvzxRz377LO5rmGpUqWK3n//fW3btk0bN27Uyy+/rKJFi+baXps2bfTFF19o586d+vHHH9W/f3+7x8gEKx6gUqVKkqQNGzY4ZHs9evRQ9erVderUKT322GP6448/rJafPHlSc+fOzXeoHnjgAd188806d+6cnnrqKSUlJUnK/uG8aNEixcTEyM/PT8OGDbvhsUZGRqpmzZqaPn36Db2uU6dOevTRRyVJzzzzjF555RUdOnTIap2LFy9qw4YN6t+/v55//vl8zeLYvHlzSdnhXbNmjeX5s2fP6vnnn9f27dvzfN2XX36pt99+W/Hx8VbPZ2RkaO7cuUpOTlahQoVUu3ZtSdLevXv13HPPafPmzbnuovrTTz9Z/ltwxBdBSpYsafm9euONN6xmbduzZ49eeOEFSVKfPn1UvHhxu9/PCD4+9v3jYBs3blTNmjVz/fPvWbwPHDigxx9/XI0aNVKLFi300ksvWe5seKXY2Fh169ZN9erVU2RkpObPn+/wMQO0j/ZdydHtg4PZ2z0ntO/pp5/WtGnT9MMPP2jDhg2aNWuWnnzySdWqVUudOnWSJPXq1UvFihXT0KFDtXbtWi1fvlz//e9/1a5dO6v/zoYNG6Zdu3bpueee08aNGzVnzhx99NFHGjp0qGXWTMBedI/uXcnR3Tt16pT69eunv//+W3Xq1NEHH3zAF07s5YbtAzwN7aN9V3J0+z744AN9+eWXSklJsXo+KytLP/30kx5//HFdunRJdevWVbNmzex+PyO4Wfc43glPRPto35U43ukBaB9gN9pH+67k6Pa9//77WrhwYa4/77Nnz+qtt97SvHnzJElDhw6Vv7+/3e/n9TjeCTgE7aN9V3J0+3x9ffXkk09KkhYtWqSVK1dalp07d07PP/+8Tp48qcKFC+uxxx6z+/28Hu0D7Eb36N6VnHm886+//rLsw/333+/QbRuF7gF2o32070qObl/Xrl3l4+OjpKQkjR49WkePHrUsO3/+vCZOnKiNGzdKkrp162b3+xmB9gF2o32070rO+Nz3xRdf6K+//rJ67tSpU5owYYI+++wzBQcH6+WXX3bIe3k9jnfaxM/VA8D1de3aVT/++KPmzZunH374QWXLlpWvr6/uuOMOPfHEEze8vcDAQM2aNUuPP/64du3apW7duqlChQoqWbKkjh07pmPHjikrK0v/+c9/VLJkyetur3DhwoqOjtZjjz2mn3/+WXfeeaeqVq2q48eP69ixY/L19dVLL72kGjVq2LL7NnvxxRdVtmxZRUdHa/HixVq8eLHKly+vUqVKKS0tTQkJCZYvlNWpUydfF5hFRkaqefPm2rRpkwYNGqSwsDAVK1ZM+/btU1pamiZOnKjx48fnet3p06c1Y8YMzZgxQ8WLF1eFChWUlZWlhIQEy+ySTz/9tOUuAxkZGVq2bJmWLVumIkWKqFKlSgoICNA///xjmZWsXbt2lguE7TV69Gj98ccf+uWXX/Too4+qSpUq8vf31969e3Xp0iW1bNlSI0eOdMh7GcHHPeeuioqKUnh4uOVxzux1kpSSkqK+ffuqTJkymjZtms6cOaNJkybp5MmTVn8ZjIuL09ChQ9W5c2eNHz9e27dv1+TJk1WoUCH17t27QPcH3o322Yb25d+cOXM0d+5cy+Nz585JkubOnavFixdbnp8wYYLuueceh7yn13LD7oWHhysmJkYLFy5UWlqaypYtqx49emj48OGWSVFCQ0O1YMECRUVFadSoUQoMDFSHDh1y/ffcqFEjzZgxQ1OnTtXy5ctVpkwZjRkzRv369XPBnsFb0T3b0L38mTZtmvbu3Wt538GDB1913RdffNFykBTX4IbtAzwN7bMN7cufPXv26PPPP5evr68qVKigEiVKKDMzUwkJCTpz5oyk7DswzJgxQ76+/EzPFzdtH8c74Ulon21oH1yG9gF2o322oX35c/ToUS1cuFCvvfaa5fcnPT1d8fHxysjIkCT169ePczn55abdAzwN7bMN7cu/rl276o8//tCCBQs0YsQIy38P8fHxOn/+vAICAvTGG2+ocuXKDnk/r0b7ALvRPdvQvRu3bNkySVJYWJgiIiIcum2j0D7AbrTPNrQvf+rUqaOxY8fqjTfe0Pr16xUZGamwsDAFBgbq4MGDunDhgiTpscceU9u2be1+PyPQPsButM82tC//li1bpvHjx1vGlp6ern379ikzM1M33XSTZs6cybHO/KJ7NmGCFQ/QoUMHvfbaa/rkk0+0d+9eJSQkKCsrSxUqVLB5mxUrVtTnn3+uJUuWaOXKldq7d6+OHz+um266Sa1atVKHDh1UpkyZfG+vXr16Wr58uWbOnKl169Zpz549CgkJUfv27TVw4EA1atTohsd48eJFnT59WpJsvsDriSeeUNeuXbV06VL9/PPP+vvvv7Vr1y75+/urXLlyatCggTp16qTbb79dPvmYZcnX11dz5szRu+++q2+++Ub//POPzp8/rxYtWmjAgAFq3rx5njHq0KGDLl26pI0bN2rv3r3av3+/MjIydNNNN+n222/XI488oqZNm1rWv+WWW/Tqq69qw4YN+uOPP3T06FGdO3dOISEhatmype677z516dLFYRcABAQE6IMPPtCHH36oL774Qvv375ck1apVS926ddPDDz+sQoUKOeS9jOCmQQoPD1fDhg3zXPbxxx/r1KlTWrZsmUqVKiUp+y+aI0aM0M6dO1W3bl1JUnR0tGrUqKGJEyfKx8dHEREROnbsmKKjo9WrVy/u/gSHoX20z9ntu3DhgmWG0n8/n3MQUpLS0tIc8n5ezQ27N2jQIA0aNOi661WpUkXvv//+dddr06aN2rRp44ihAXmie3TPmd27cmbrPXv2XHPdlJQUu9/PCG7YPsDT0D7a58z29e7dW2XLltWWLVuUkJCg3bt3KysrS6VKlVLjxo3VoUMH3XvvvfLz4/RIvrlp+zjeCU9C+2ifs493wsFoH2A32kf7nNm+nJsj7NixQ4cPH9bu3bvl4+OjcuXKqXHjxnrwwQfVuHFju9/HGG7aPcDT0D7aVxCf+5577jlFREToww8/1M6dO3Xs2DGVKlVKHTp00OOPP65q1ao57L28Gu0D7Eb36F5BdC8jI0NfffWVJKl79+75+v3AVdA+wG60j/Y5u30DBgxQ06ZN9eGHH2rLli06cuSI5bsuDRo00IMPPqhWrVo55L2MQPsAu9E+2ufs9vXs2VPBwcHatWuX9u7dK39/f916661q166d+vTpo5CQEIe8jxHonk18srKyslw9CCAvcXFx6tmzp8LDw7V8+XIOisFjFOky067X//JKyxtav0GDBtdcvnHjRvXp00effPLJVb902bt3bxUpUkSzZ8+2PHfx4kU1a9ZMAwYM0PDhw5Wenq7GjRvrySef1MCBAy3r5fy/umjRIjVv3vyGxg7AGu2DJ7K3e5KU+tUQB4wEgKehe/BUtA+ArWgfPJW97XN09zjeCXgO2gdPxbk+ALaiffBEHO8EYA/aB09E+wDYiu7BU7nbuT4AnoP2wVPRPgC2on3wRBzvtA23aITb2rx5syTp8ccfJ0QwSs+ePW9o/d27d+drvaFDh+r06dMqUaKE2rVrpzFjxqh48eKSpL1796pr165W6/v5+alKlSqKj4+XJB08eFAZGRm57nSR8zg+Pp4vXQJ2on0AAJPQPcAxci60+7fw8HDFxMRYHh84cEBRUVHavHmzAgIC1LFjR40bN05BQUFWr4uNjdXUqVO1d+9elS5dWn369FG/fv2cvRuAEWgfTBUXF3dD61/vIvMcHO8E3B/tg6k41weYi/YBAExD+wD7ca4P8Bx0D3AM2gd4DtoHADAN7QPMwQQrcFubN29WhQoVdM8997h6KMCN8fF19QishISEqH///mrevLmCgoIUFxen2bNna9u2bVq2bJkCAgKUnJyskJCQXK8NDQ3VmTNnJMny67/XCw4OVqFChSzLAdiO9sEjuVn3AHgOugeP5abti4qKUnh4uOVx4cKFLf+ekpKivn37qkyZMpo2bZrOnDmjSZMm6eTJk5o+fbplvbi4OA0dOlSdO3fW+PHjtX37dk2ePFmFChVS7969C3R/AG9E++Cx7Gyfoy8y53gn4DloHzyWm33uo32A56B98Ehu1j0AnoX2wSO5afs41we4P7oHj0X7ANiI9sFjuWn7ALg/2gePRPdswgQrHuz48eMaOXLkDb1myZIlThqN482cOdPVQwBsY+fsdEuXLnXQQLLVrl1btWvXtjxu0aKF6tSpo/79+ysmJkbdu3d36PsBzkT7ADfErKyA09A9wE25afvCw8PVsGHDPJd9/PHHOnXqlJYtW6ZSpUpJyv5iyogRI7Rz507VrVtXkhQdHa0aNWpo4sSJ8vHxUUREhI4dO6bo6Gj16tVL/v7+BbU7MBTtA9yUm7WP453wJrQPcFOc6wOchvYBbsjNPvMB3ob2AW7ITdvHuT54A7oHuCnaBzgN7QPclJu2D/AGtA9wQ3TPJkyw4sHS0tL022+/uXoYAP7Nzhm/GjRo4KCBXF2rVq1UvHhx7dixQ927d1doaKhSUlJyrZecnKzKlStLkooVKyZJudY7e/asMjMzLcsBZ6J9gBtipkvAaege4KYc0L64uLgbWt/ez4mxsbGKiIiwfOlEkiIjIxUUFKQ1a9aobt26Sk9P14YNG/Tkk0/K54oDrffee68WLVqkrVu3qnnz5naNA7ge2ge4KTvb5+iLzPPC8U54KtoHuCnO9QFOQ/sAN8S5PsCpaB/ghjywfZzrg6ege4Cbon2A09A+wE15YPsAT0H7ADdE92zCBCseLCwsTLt373b1MAB4sJyDidWqVVN8fLzVsszMTO3fv1+RkZGSpEqVKsnf31/x8fFq27atZb2c11WrVq2ARg2T0T4AgEnoHuC9evbseUPr5+dnwdChQ3X69GmVKFFC7dq105gxY1S8eHFJ0t69e9W1a1er9f38/FSlShXLZ7qDBw8qIyMj12e7nMfx8fF88QROR/sA71QQF5nn4HgnPA3tA2Av2gdPQ/sAAKahfYB3csbNFDjXB29A9wDv5KybCNE+eAPaByA/Nm7cqD59+uR6Pjw8XDExMZbHBw4cUFRUlDZv3qyAgAB17NhR48aNU1BQkNXrYmNjNXXqVO3du1elS5dWnz591K9fP2fvBiCJ9gHwHkywAgCOdsUMyO5q3bp1SkpKUv369SVJrVu31rvvvqtTp06pZMmSkqTVq1fr/PnzatOmjSQpICBAERERWrFihQYMGGD5wmZMTIyKFSumhg0bumRfAAAu5gHdAwDAodysfSEhIerfv7+aN2+uoKAgxcXFafbs2dq2bZuWLVumgIAAJScnKyQkJNdrQ0NDdebMGUmy/Prv9YKDg1WoUCHLcgCAgdysfXnheCcAwKFoHwDAJG7YPS44AAA4lQPa58ibKXCuDwDgdHa2z9E3EaJ9AACnc8NjnpIUFRWl8PBwy+PChQtb/j0lJUV9+/ZVmTJlNG3aNJ05c0aTJk3SyZMnNX36dMt6cXFxGjp0qDp37qzx48dr+/btmjx5sgoVKqTevXsX6P4AANyEm3bP3THBCgA4mI+bBenpp59WWFiY6tatq6JFiyouLk5z5sxRrVq11KlTJ0lSr169tHjxYg0dOlRDhgxRcnKyJk2apHbt2qlevXqWbQ0bNkyPPvqonnvuOXXt2lXbt2/XRx99pLFjxyogIMBVuwgAcCF36x4AAM7miPYtXbrUASPJVrt2bdWuXdvyuEWLFqpTp4769++vmJgYde/e3WHvBQAwk7t97uN4JwDA2WgfAMAk7ta9K3HBAQDAGdytfZzrAwA4G+0DAJjG3dqXIzw8/Ko3PPj444916tQpLVu2TKVKlZKUfTx0xIgR2rlzp+rWrStJio6OVo0aNTRx4kT5+PgoIiJCx44dU3R0tHr16iV/f/+C2h0AgJtw1+65OyZYAQAHc7cg5dzBZ+HChUpLS1PZsmXVo0cPDR8+3PJFydDQUC1YsEBRUVEaNWqUAgMD1aFDB40fP95qW40aNdKMGTM0depULV++XGXKlNGYMWO4sw8AGMzdugcAgLM5on0NGjRwwEiurlWrVipevLh27Nih7t27KzQ0VCkpKbnWS05OVuXKlSVJxYoVk6Rc6509e1aZmZmW5QAA87jb5z6OdwIAnI32AQBM4m7duxIXHAAAnMHdbqaQF871AQAcyd72Obt7Eu0DADiWve2Li4u7ofUd8X3Q2NhYRUREWI51SlJkZKSCgoK0Zs0a1a1bV+np6dqwYYOefPJJq3289957tWjRIm3dulXNmze3eywAAM/izuf63BkTrACAo7lZjwYNGqRBgwZdd70qVaro/fffv+56bdq0UZs2bRwxNACAN3Cz7gEA4HQe1L6cA6bVqlVTfHy81bLMzEzt379fkZGRkqRKlSrJ399f8fHxatu2rWW9nNdVq1atgEYNAHA7btY+jncCAJyO9gEATOJm3csvLjgAANjMAe1z9s0UcnCuDwDgEHa2r6C6J9E+AICD2Nm+nj173tD6u3fvztd6Q4cO1enTp1WiRAm1a9dOY8aMUfHixSVJe/fuVdeuXa3W9/PzU5UqVSxtO3jwoDIyMnI1LudxfHw8xzsBwEQeeq7P1Zhg5SqKNBru6iHAiU5snO7qIcCJigZQBMAWtM+7nf412tVDgJMU5m/0gM1on/eie96N9l3funXrlJSUpPr160uSWrdurXfffVenTp1SyZIlJUmrV6/W+fPnLRfVBQQEKCIiQitWrNCAAQMsX1qJiYlRsWLFrnqnWHgW2ue9aJ93o32Abeiedzv68zuuHgKcqFgRX1cPAfBItM+78bnPe3nDZz5n3dGVCw5wPbTPu9E+7+UN7XM2zvXhamif96J73o32XR/tQ17onnejfd6N9lkLCQlR//791bx5cwUFBSkuLk6zZ8/Wtm3btGzZMgUEBCg5OVkhISG5XhsaGqozZ85IkuXXf68XHBysQoUKWZbDc9E+78Y17d6L69k9E39dAQAHu/KuNwAAeDu6BwAwjbu17+mnn1ZYWJjq1q2rokWLKi4uTnPmzFGtWrXUqVMnSVKvXr20ePFiDR06VEOGDFFycrImTZqkdu3aqV69epZtDRs2TI8++qiee+45de3aVdu3b9dHH32ksWPHKiAgwFW7CABwMXdrHwAAzkb7AAAmcUT3HH1HVy44AAA4k7t95uNcHwDA2WgfAMA09rZv6dKlDhpJttq1a6t27dqWxy1atFCdOnXUv39/xcTEqHv37g59PwCAWdztM5+nYIIVAHAwggQAMAndAwCYxt3aFx4erpiYGC1cuFBpaWkqW7asevTooeHDh1u+LBIaGqoFCxYoKipKo0aNUmBgoDp06KDx48dbbatRo0aaMWOGpk6dquXLl6tMmTIaM2aM+vXr54I9AwC4C3drHwAAzkb7AAAmccfuccEBAMCZ3K19nOsDADgb7QMAmMbe9jVo0MBBI7m6Vq1aqXjx4tqxY4e6d++u0NBQpaSk5FovOTlZlStXliQVK1ZMknKtd/bsWWVmZlqWAwDM4m6f+TwFE6wAgIMRJACASegeAMA07ta+QYMGadCgQdddr0qVKnr//fevu16bNm3Upk0bRwwNAOAl3K19AAA4G+0DAJjEEd1z9B1d88IFBwAAR3G3z3yc6wMAOBvtAwCYxt3ady05Y61WrZri4+OtlmVmZmr//v2KjIyUJFWqVEn+/v6Kj49X27ZtLevlvK5atWoFNGoAgDvxpO65EyZYAQAAAAAAAAAAAAAAAAAAN6wg7uiagwsOAAAAAAAAAHi6devWKSkpSfXr15cktW7dWu+++65OnTqlkiVLSpJWr16t8+fPWyYSCwgIUEREhFasWKEBAwZYjpXGxMSoWLFiatiwoUv2BQAAT8QEKwDgYMz4BQAwCd0DAJiG9gEATEP7AACmoX0AAJN4Sve44AAA4Cie0j4AAByF9gEATONu7Xv66acVFhamunXrqmjRooqLi9OcOXNUq1YtderUSZLUq1cvLV68WEOHDtWQIUOUnJysSZMmqV27dqpXr55lW8OGDdOjjz6q5557Tl27dtX27dv10UcfaezYsQoICHDVLgIAXMjduucpmGAFAByNHgEATEL3AACmoX0AANPQPgCAaWgfAMAkbtg9LjgAADiVG7YPAACnon0AANO4WfvCw8MVExOjhQsXKi0tTWXLllWPHj00fPhwyzHK0NBQLViwQFFRURo1apQCAwPVoUMHjR8/3mpbjRo10owZMzR16lQtX75cZcqU0ZgxY9SvXz8X7BkAwC24Wfc8BROsAICDMeMXAMAkdA8AYBraBwAwDe0DAJiG9gEATOKO3eOCAwCAM7lj+wAAcCbaBwAwjbu1b9CgQRo0aNB116tSpYref//9667Xpk0btWnTxhFDAwB4AXfrnqdgghUAAAAAAAAAAAAAAAAAAOByXHAAAAAAAAAAAAAAwFmYYAUAHIwZvwAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7tmGCFQBwMIIEADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3bMNE6wAgIMRJACASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeiebZhgBQAcjR4BAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC92zi6+oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICz+Ll6AADgbXx8mPILAGAOugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASumcbJlgBAAcjSAAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A92zDBCgA4GEECAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7tnG19UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABn8XP1AADA6zDhFwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHTPJkywAgAO5uNDkQAA5qB7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7tmGCFQBwMIIEADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3bONr6sHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADO4ufqAQCAt2HGLwCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeiebZhgBQAcjCABAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC92zDBCsA4Gj0CABgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErpnEyZYAQAHY8YvAIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5tfF09AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwFj9XDwAAvA0zfgEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3bMMEKwDgYAQJAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASumcbJlgBAEejRwAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9m/i6egAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Cx+rh4AAHgbHx+m/AIAmIPuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu2YYJVgDAwQgSAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM82TLACAA5GkAAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJqF7tmGCFQBwMIIEADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3bONr6sHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADO4ufqAQCA12HCLwCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASeieTXxdPQAA8DY+Pj52/QMAgCext3u0DwDgaWgfAMA0dA8AYBraBwAwCcc7AQCmoX0AANPQPQCAaWgfAMAk7n688+LFi7r33ntVs2ZNff3111bLduzYoYcfflgNGjTQ7bffrqlTp+rixYu5tvHll1+qU6dOqlevnjp16qSvvvrK7nExwQoAOJg7xwgAAEfjgxgAwDTu3j4AAByN7gEATEP7AAAm4XgnAMA0tA8AYBq6BwAwDe0DAJjE3Y93Lly4UKdPn871fEJCgvr166fg4GDNnDlTw4YN08KFCzVlyhSr9VauXKlx48bpzjvv1Jw5c9SmTRuNHTtWq1atsmtcfna9GgAAAADc2PU+iDVp0kQzZ87UgQMHNHnyZKWlpemZZ56xrJfzQWzAgAFq3bq11q5dq7Fjx6po0aJq165dQe4KAAAAAAAAAAAAAAAAAAAAAAAAAABu7ejRo4qOjtaECRM0fvx4q2Vz585VUFCQpk+frsDAQLVs2VIXLlzQm2++qQEDBqh06dKSpGnTpumuu+7SuHHjJEkRERHav3+/pk2bZtd1fUywAgAOxmSVAACTuHP33PmDGADAc7lz+wAAcAbaBwAwDe0DAJiE7gEATEP7AACmoX0AANPQPgCASRzRvbi4uBtav0GDBvla77XXXlNkZKSaNm2aa1lsbKzat2+vwMBAy3OdO3fWpEmTtH79enXr1k0JCQmKj4/XiBEjrF7bpUsXjR49WomJiapQocINjT0HE6wAgIP58EkMAGAQd+6eO38QAwB4LnduHwAAzkD7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwiSO617Nnzxtaf/fu3dddJzY2VuvXr9e3336r9PR0q2WpqalKTExUtWrVrJ4vXbq0ihcvrvj4eEmy/Prv9XIex8fHM8EKALgLPocBAEzirjNduvsHMQCA5+IzHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACTuGP30tLS9Morr2j48OEqU6aMEhISrJYnJydLkkJCQnK9NjQ0VGfOnJEky6+hoaFW6xQrVsxquS2YYAUAAACASzl6pktP+CAGAAAAAAAAAAAAAAAAAAAAAAAAAICrLF261KHbmzVrlvz9/dW7d2+HbteRmGAFABzMxx2n/AIAwEncsXue8EEMAOC53LF9AAA4E+0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkjuhegwYNHDCSbImJiZo7d66mTJmi1NRUpaam6uzZs5Kk1NRUpaSkWG6YnpKSkuv1ycnJlhuj5/yanJysm2++2bJOzg3Tc5bbgglWAMDB+BwGADCJI7r3iQNnuvSUD2IAAM/FZz4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAExD+wAAJnG37iUkJCg9PV0jR47Mtez555/Xq6++qq1bt6p8+fKKj4+3Wn7ixAklJSWpWrVqkqSqVatKkuLj41WjRg3Lejmvy1nPFkywAgAO5uvrZkW6wsWLF9WtWzft2bNHb731lu655x7Lsh07dmjixIn6/fffFRISovvvv18jRoyQn591Kr788ku99957OnTokCpWrKjBgwerS5cuBb0rAAA34YjuOXKmS0/5IAYA8Fzu/JkPAABnoH0AANO4c/s41wcAcDR37h4AAM5A+wAApqF9AADT0D4AgEncrXu1atXSwoULrZ47ceKEnnrqKQ0dOlStWrWSJLVu3VqrVq3SM888o8DAQElSTEyM/Pz8LOtUrFhRVatW1YoVK9SxY0fL9mJiYhQeHq4KFSrYPE4mWAEAB3O3Gb+utHDhQp0+fTrX8wkJCerXr5+aNGmimTNn6sCBA5o8ebLS0tL0zDPPWNZbuXKlxo0bpwEDBqh169Zau3atxo4dq6JFi6pdu3YFuSsAADfhbt3zlA9iAADP5W7tAwDA2dy9fVxoDgBwNHduH+f6AACO5s7dAwDAGWgfAMA0tA8AYBraBwAwibt1LzQ0VC1atLB6LiEhQZJUvXp1NW3aVJI0cOBALV++XKNGjVLfvn114MABvf3223r44YdVpkwZy2tHjhypJ598UlOmTNEdd9yh2NhYrVq1StHR0XaNkwlWAMAQR48eVXR0tCZMmKDx48dbLZs7d66CgoI0ffp0BQYGqmXLlrpw4YLefPNNDRgwQKVLl5YkTZs2TXfddZfGjRsnSYqIiND+/fs1bdo0vnQJAHALnvJBDAAAAADgGFxoDgAwBef6AAAAAAAAAAAAAAAA4OkqVqyo+fPna+LEiRo0aJBCQ0PVu3dvjRgxwmq9jh07Ki0tTbNmzdL8+fMVFham119/XXfddZdd788EKwDgYD52TvkVFxd3Q+s3aNAgX+u99tprioyMtFxYfqXY2Fi1b99egYGBluc6d+6sSZMmaf369erWrZsSEhIUHx+fK1BdunTR6NGjlZiYqAoVKtzQ2AEAns/e7rmKqz+IAQA8l6e2DwAAW7lz+7jQHADgDJzrAwCYxJ0/8wEA4Ay0DwBgGtoHADAN7QMAmMQTuhcWFqbdu3fner5+/fpasmTJdV/ftWtXde3a1aFjYoIVAHAwe3vUs2fPG1o/r7D8W2xsrNavX69vv/1W6enpVstSU1OVmJioatWqWT1funRpFS9eXPHx8ZJk+fXf6+U8jo+P50uXAGAgD/gc5pYfxAAAnsvd23fx4kV169ZNe/bs0VtvvaV77rnHsmzHjh2aOHGifv/9d4WEhOj+++/XiBEj5OdnfYjwyy+/1HvvvadDhw6pYsWKGjx4sLp06VLQuwIAcBP2ts9ZF5lLXGgOAHAOzvUBAEzi7sc7AQBwNHdvH+f6AACORvsAAKZx9/YBAOBIdM82TLACAA7mbjN+paWl6ZVXXtHw4cNVpkwZJSQkWC1PTk6WJIWEhOR6bWhoqM6cOSNJll9DQ0Ot1ilWrJjVcgCAWdytewAAOJu7t2/hwoU6ffp0rucTEhLUr18/NWnSRDNnztSBAwc0efJkpaWl6ZlnnrGst3LlSo0bN04DBgxQ69attXbtWo0dO1ZFixZVu3btCnJXAABuwt72OeMic4kLzQEAzuNun/s41wcAcCZ36x4AAM7m7u3jXB8AwNFoHwDANO7ePgAAHInu2YYJVgDAzSxdutSh25s1a5b8/f3Vu3dvh24XAAAAAOBejh49qujoaE2YMEHjx4+3WjZ37lwFBQVp+vTpCgwMVMuWLXXhwgW9+eabGjBggEqXLi1JmjZtmu666y6NGzdOkhQREaH9+/dr2rRpfPEEAOA2uNAcAODOONcHAAAAALAF5/oAAKahfQAA01y8eFHdunXTnj179NZbb+mee+6xLNuxY4cmTpyo33//XSEhIbr//vs1YsQI+flZXwL+5Zdf6r333tOhQ4dUsWJFDR48WF26dCnoXQEAwKMxwQoAOJi9M341aNDAQSOREhMTNXfuXE2ZMkWpqalKTU3V2bNnJWXfxTUlJcVykUFKSkqu1ycnJ1suJsj5NTk5WTfffLNlnZyLDHKWAwDMwkyXAADTOKJ9cXFxN7R+fj8nvvbaa4qMjFTTpk1zLYuNjVX79u0VGBhoea5z586aNGmS1q9fr27duikhIUHx8fEaMWKE1Wu7dOmi0aNHKzExURUqVLihsQMAPJ+97XP0ReYSF5oDAJyLc30AAJNwrg8AYBrO9XGuDwBMY2/7nNU9ifYBAJzDnY95Lly4UKdPn871fEJCgvr166cmTZpo5syZOnDggCZPnqy0tDQ988wzlvVWrlypcePGacCAAWrdurXWrl2rsWPHqmjRokwsBgCGcufuuTMmWPEydzQJ18q5o3I9//vew2r6wGtWz/W4u7FG9Y5U7WrldSE9Q3G7EtT/hQU6eiI51+tDgwtr22cvqlzpYmrTZ4o27fjbWbsAGxw8eECL5n+g33fu0N6/9qh0mTL6+rsfrdaZM2uGfvj+Ox05nKiLmZkKqxCm7j16qudDj8jX19dFI/dO7tSjhIQEpaena+TIkbmWPf/883r11Ve1detWlS9fXvHx8VbLT5w4oaSkJFWrVk2SVLVqVUlSfHy8atSoYVkv53U56wEF7UbaJ0mFCvlqw0fjVa9GBfV5Zp4+/W6LZdmj97bQnJdzX5jzTexO3T9qlmMHDodb/eMPen/ObO2L36uAwEDVrVtPw0eO1q21arl6aF7NnboHmCI/7ftuzii1bhqe5+tffOdLTZn3vSSpf/dW6hJZX/VrhCmkaGH9deCYZixZo8XLNzpvB+AQv27aqIGP9cn1fLXq4frsyxgXjMgcjmhfz549b2j93bt3X3ed2NhYrV+/Xt9++63S09OtlqWmpioxMTHX57bSpUurePHils91V/t8l/M4Pj6eL57AJTjmaZ6DBw5owfz3tXNH9vHOMmXKasX31sc7N/z8k7764jPt2L5dhw4dVJf7uumV1ya5aMTezd72OfIic4kLzWEG2meWVd9/p2+/Wa5df/6hpKTTKl++grp0vV8PPvSo/Pz9JUmzZ0Zr7nvv5nrtAw8+rLHPvljQQ/Z67nTMk3N9MEF+u9f5znoa+9jdurXqzbqQflFbfj+gl6KXa/ueRMs6zzz+H3Vr31CVy5WSn5+v9iec1Aef/aRZn8QqKyurQPYHtvnh+5VatGCe/t6/T+fOnVOZsmXVNrK9Bg0eqlD+Xu5U7tS9vHBHV3gjR57rG3B/K/XrepuqViytIoH+OnT0tD5e8avemv+D0tIvOm8nYDfa5zqc6+NcHwoe33OBJP2y4WdFvzNNu3f9qaLBwWrX/i49+dRYyzkdOI+97XNG9yTaB+/myPZJ0gMdmmhs/7tV45YyOnH6rD76+ldFzfpG6Rl87vMUFy9eVK8HuumvPXs06Y231LHTPdd/EWzmrsc8jx49qujoaE2YMEHjx4+3WjZ37lwFBQVp+vTpCgwMVMuWLXXhwgW9+eabGjBggEqXLi1JmjZtmu666y6NGzdOkhQREaH9+/dr2rRpTLACl3HkdX2S1Lh2JU0e012NalXSmbOpWvDFBkW9940yMy85bR9wY35Y+a1WfB2jP//4Pft7LhXCdF+37ur1cG/5/9/3XLieveC4a/fcHROseKnB//tQf8YfsTw+f8H6gMOo3pF6eUQXTVu4Ss+//aWKFgnU7Y2rKTDAP8/tvTTsXqeOF/bZt3ev1q1dozr16isrK0vJyWdyrXP23Fnd26WrqlStJj8/P238ZYPeeP01JScn64khw1wwau/lTjN+1apVSwsXLrR67sSJE3rqqac0dOhQtWrVSpLUunVrrVq1Ss8884xllueYmBj5+flZ1qlYsaKqVq2qFStWqGPHjpbtxcTEKDw8nIOPcLnrtS/H8Ifv1E0lgq+5ra4jZuj0mfOWx6eTz19jbbiDDT//pNEjh6tT53s1dPhIpaam6v3Zs/TEgH5a9uVylS5dxtVD9Fru1D3ANNdq36iJnyi0aGGr9R+6p7kGP9ha367/3fLcMwM76PsNf2reZz/rzNlU3XVbLb330iO6pUIpRc36xvk7Abv99+UoVa9++URr4cKFr7E2HMEd25eWlqZXXnlFw4cPV5kyZZSQkGC1PDk5++LavL6YFBoaarmIPOfX0NBQq3VyLi7PWQ64Csc8zREf/5di165R3f873pmSnHuSgPXrYrXrzz/VqHETpaTkXg7Hcbf2caE5TEL7zPDhwg9UrnwFjXhyjEqWuknbt23VrHff1l97duulqMuTh/n7+2vW+9bnfEqVKl3QwzWCO7WPc30wybW6F9niVn3y5uP6+JvNennm1ypaJEDjBnTQN++NVNMHXrVMLBZatLA+XL5Ju/YfVcbFTEW2qKkpY+9X8dAimjj72wLfJ+Rf8pkzatasufr1H6Dg4BD99dcevTcjWnt279KcDxa4enhezZ26lxfu6Apv5ohzfSVCg/TV6u3a+ddhnUtNU/P6VfTc4/9R5XKlNPh/Hzp/J2Az2uc67tg+zvXBFHzPxVybf92koYMGqt1dd2vI0OE6evSo3pn2pv7ev19z5y10y5/N3sQdf39pH0zhiPb16tRM817tq1mfxOrZqZ+rbnh5vTjkHt18U6ie+O9i5+8EHOLDxQt1+lTuY1xwDnvbFxcXd0Pr5/fGQ6+99poiIyPVtGnTXMtiY2PVvn17y3k+SercubMmTZqk9evXq1u3bkpISFB8fLxGjBhh9douXbpo9OjRSkxM5HwfXMoR1/VVKldS38waoZ+3xavH6PdUrWJpTRzdTUUK++uZtz53yrhx4xYumKfy5Sto1FNPq2SpUorbtk0zpmd/z+XlV1+XxPXsBckdP/N5AiZY8VJ/xh+56l3nqla8SS+P6KKn3/h/mvPpesvzK9btzHP9hreGqc99EXr6jf+nmRMeccZwYafWd7bVnZHZJ/1fffm/+vmndbnWGT1mnNXjFre11D9Hj2j5l58TJAdzpx6FhoaqRYsWVs/lHICsXr265UPZwIEDtXz5co0aNUp9+/bVgQMH9Pbbb+vhhx9WmTKXJyUYOXKknnzySU2ZMkV33HGHYmNjtWrVKkVHRxfcTgFXca325ahQpriee6KjRr/+qd5/pc9V19v25yH9czL3HY7hvr75OkblypfXqxMnWz4Y1Kx5q+75T3v9vH697uvW3cUj9F7u1D3ANNdq3659R3M99+a4HtqxJ1E7/zpsea7lI5N14vRZy+M1m/aoRLGiGvlopF6bvUKXLnFXV3dXvXq46jdo6OphGMUR7Vu6dKn9G7nCrFmz5O/vr969ezt0u4C74ZinOdrcGam2ke0lSa/8b4J+Xr8+1zpjxo7X2PHPSpLu6/yfAh2fadztcx8XmsMktM8Mb749UyVKlrQ8btqshbKUpffefUcjRj+tUqVukpT9hYh69Ru6aJRmcaf2ca4PJrlW9x7s2FQHj5zSgBcv/z1w+55E/RnzP7W/rZblTuXPTfvC6nWrN+5WWNkS6n1vBBOsuLnuPR6wetyseQsFBgTq5Zde1JHDh1WufHkXjcz7uVP3/o07usLbOeJc35V3NJek2M1/KbhIoEb1jtTwV5fo4kXu6uquaJ/rcK4PcB2+52Ku92a+q+rVwzV5ylTL9zuLFS+uMU+OUOzaNWpzZ1sXj9C72ds+R3dPon0whyPa9+LgTlq+ZrtGT8r+f3HVL7uUlSW9Pqa73l70o37fezjXduBe/jl6VO/NiNazz0/QC8+Nv/4LYDd729ezZ88bWn/37t3XXSc2Nlbr16/Xt99+q/R060knUlNTlZiYmOsmQKVLl1bx4sUtNwm62s2Cch7Hx8fzPRe4lCOu63uqX3udS03TQ0/PVVr6Ra3euFtBhQP0ysgumrrgB671cxNvT7f+nkuz5hFSVpZmRL+tUaPHqtRNN3E9ewFy53N97owJVgzU977blJ6Rqfmfb7juuj4+Ppr+fC9NX7xa8QdPFMDoYAtfX1+bXhdarJguXrzo4NHAE1WsWFHz58/XxIkTNWjQIIWGhqp37965ZrXs2LGj0tLSNGvWLM2fP19hYWF6/fXXddddd7lo5MCNeWPs/fp67Q6t37LX1UOBg128mKGgoKJWsy4Gh2TPaHopiy8MAUC1SqXVtO4tev5fFxhc+aWTHFv/PKjHurVUaNHCSkpJLaARAmbJ7x0L8iMxMVFz587VlClTlJqaqtTUVJ09m/3/dmpqqlJSUix39ElJyX1iITk52XLnnpxfk5OTdfPNN1vWybmjT85ywB1xzNO75Od4p63HROH5uNAcyEb7vMeVXzrJUatWHUnSiePHLBOsANfCuT54O38/X509b/2F4+SzFyRJvr7X/sbY6eTz8vcr5LSxwXlyjkXxvRb3xx1dAee72rm+vJxOPie/Qr7y9fGVxPclPAnt8xyc6wOcj++5eJcd27erZ69eVt/vbNkyezL81T/+wAQrbs6R3ZNoH3A1ebWvVPGiqlqxtN5ZvNpq3R82/ClJ6nxnPSZY8QCTJ72mNm0j1TiPY1wwQ1paml555RUNHz5cZcqUsXzHJUdycrIkWfp3pdDQUEvXcn4NDQ21WiendznLAXd2vev6/nN7HX21ervS0i8fH/tkxa96fUx3tW9ZWx/+300X4Fp5fs+ldvb3XI4fP6ZSN+X9PReuZ4c7YYIVL7V06hO6qXiwTiSdVcyaHXrxnS91Ovm8JCmiQVXt/vsfPXpvCz3z+H9UvnQx/bHviF585yut/OkPq+0M7NFKZUqFavIH36lpnVtcsCdwtIsXL+rChQva8usmxXz1hQYOGurqIXkdHzef8issLCzP2THr16+vJUuWXPf1Xbt2VdeuXZ0wMsA+12qfJN3VspbaRdyqBt1eUYD/tf8K9MvHz6p0iWAdOX5GS7/drFdmfaMLaRnO3gXYoWu3+zV00EAtWjBf93XtpvPnz2vaW1N0883l1K793a4enldz9+4B3ux67bvSQ52aKTPzkj5Zsfm62729cXUdOX6GL514iFEjhirp9GkVL1FCbdu206jRY1SseHFXD8uruVv7EhISlJ6erpEjR+Za9vzzz+vVV1/V1q1bVb58ecsdDHKcOHFCSUlJljsYVK1aVVL2nQxq1KhhWe9qdz4AChrHPAHXcLf25RcXmsMb0D5zbf1ts/z9/VUhrJLluYyMDP0n8nadOZOkcuUr6L5uPfRo3/4qVIhJAxzN3dvHuT54q2t1b8GXv2j5u8M04pG2WvTVLwoOClTUqK46dOSUvlyVe2KHQoV8FVQ4QK2bhuuRzs01ac63Bb07sFFmZqYuXryovX/t0ayZ0bqjdRtVrFTp+i+EzRzRPe7oCtjGkef6ChXyVaC/n5rUqazhD7fV3GU/KT2DL6p7AtpX8NztMx/n+mASvudirkKFfOXvH2D1nJ+/v3x8fBS/lxsmOhvtA1zH3vZlZmZPmvnvz3dp//e4drVyTho5HOWndbHa8PN6ffl17mNccB5727d06VIHjSTbrFmz5O/vr969ezt0u4C7sfe6viKF/VW5fCnt3n/U6vl/TqboZNI53VqlrNP3Abb7bcuv8vf3V1hF62ObXM/ufO72mc9TuPUEK3/88YdWr16tffv2KSkpSZJUvHhxVa1aVXfeeafq1Knj2gG6oeSzqZq2cJViN/+ls+fT1LxeZT3d/261qF9FrR6ZrPSMiypbKkTlyxTXi0Pu0fNvf6FjJ1M0pFcb/b+pg9Si10T9uS87QKVLBOulYfdq2CtLlHqBi8q9we5df+qhB7pZHvd/fJD6PjbAhSPyTvQI9qB9Ny4/7QsM8NPU8T312uwVOnoiWZXK5Z4pUZKOnkhW1Kxv9OvOv5WecVFtmtbQqN6Rql8zTPcOfbeA9ww3okXEbXpz2nQ9N/5pTZk8UZJUISxM770/L9cMvXAsugd70D3b5Kd9/9arYzOt2/KXEo8lXXPbbZrVUI+7G+u5fNz9Dq4VHBKiPv36q2mz5goKCtKO7XH6YO5sxcVt05KlyxQQEHD9jcAm7ta+WrVqaeHChVbPnThxQk899ZSGDh2qVq2y7/rUunVrrVq1Ss8884zlrq4xMTHy8/OzrFOxYkVVrVpVK1asUMeOHS3bi4mJUXh4OBcbOADtsw3HPAHXcrf25YULzd0X7bMN7TPbvvi9+vijRep6f08FBwdLkipWqqRhI59SzVtr6VJWltavXa2Z0dOUmHBIz0142cUj9j6e0D64L9p34/LTvbW/7lGvp+do3qt9Nfnp+yVJ+xNOqNPgaJ05a30BXf0aFbTxk2ctj1+f+52mLlxVoPsE27Vp1cJyd+rbWt6uyW9Oc+2ADOCO3eOOrp6D7tnG0ef6igUX0dF1b1geL16+UWMmf+rMXYAD0b6C527t41yfZ6F9tuF7Lqhc+Rbt2G49QerOHduVlZWlM2eSXDMog9A+2IP22cZR7UtKSdXx0ylqVu8Wzfv8Z8vzzereIkkqEVrU2bsCO6SlpWniq69o0NDhKl26jBITE67/IjiEve1r0KCBYwYiKTExUXPnztWUKVOUmpqq1NRUnT17VlL2RNIpKSmW45w5xweulJycbDmemfNrcnKybr75Zss6Occ5c5bDPrTvxjnqur4SIUGSlOfkmUnJ5+meG9sXv1dLPlyk7j0uf89F4nr2guJun/k8hVtOsJKamqrx48dr5cqVCgoK0i233GIJ/P79+7V69WpFR0erffv2mjx5sooUKeLiEbuPuN0Jitt9+S/c67b8pa1/JujrWcPV8z9NtHj5Rvn6+iqkaGH1fuYDfbc++w52sZv/0h/LX9KYx+7SwBcXSZImPtVNv/1xUF+s2uaKXYETVL6lihZ//KnOnz+vzb9u0oIP5qpQoUIaMiz37L+wHTN+wRa0z3b5ad+4AR2UfvGi3l2y5prb+mHDn/phw5+Wx2s27dHBI6c0Y8LDuqNJuNZt+ctZuwE7bY/bpheeG6+O93TW3R066vz5c5r//lwNG/y4Fi7+WKVuusnVQ/RadA+2oHv2yU/7rtS83i2qVqm0Jn/w3TW3W7XiTVo46TGt3rRH0z9c7ZSxw3Fq1aqtWrVqWx43a95CtWrX0eDH+2vF1zG6r1t3F47Ou7lb+0JDQ9WiRQur53IuOKhevbqaNm0qSRo4cKCWL1+uUaNGqW/fvjpw4IDefvttPfzwwypTpozltSNHjtSTTz6pKVOm6I477lBsbKxWrVql6OjogtspL0T77MMxT8C13K198Ay0zz60z1xJp09r7OjhqlixkoaPesryfMd7ulitd1vL21U0OEQLPpitvv0fV4WwigU9VK9G+2AL2me7/HSveb1bNPeVPvrk2y367PvfFBwUqKf6tteX0UPUtt9bOnbq8peO9xw4plaPTFbRIoFq3TRcY/q118XMTEXN+sYVu4cbNHfeIl24kKq//tqjOe/N1Mhhg/Xe3HkqVKiQq4fmtRzRPe7oah66Zx9Hn+tLOX9BrR6ZrCKB/mpat7LGDeig9156VI9PWOTU/YBj0L6C526f+TjX5xlon334ngseerS3Xnh2vOa9P0ddu9+vo0eP6tVX/qdChQrJ19fX1cPzerQPtqB99nFk+2YsWatnH/+PNmzbp+Wr41QnvLxeGdFFFy9m6lLWJafvC2w3d3b2Ma6HH+EYV0Fzp/YlJCQoPT1dI0fmvnbz+eef16uvvqqtW7eqfPnyio+Pt1p+4sQJJSUlqVq1apKkqlWrSpLi4+NVo0YNy3o5r8tZD7ahfbZz5HV98DynT5/WU6OGKaxiJY18cozVMq5nLxju1D1P4pYTrEyePFlbtmzR9OnTFRkZmetEwaVLl/Tjjz/qpZde0uTJk/Xf//7XRSP1DD9u3KWTSefUpE5lLV6+UUnJ5yVJa3+9fJF4xsVMbYjbp1pVy0nK/nDWs0NTtR8wVcWCs2MfHJQ962vRoEAFBwXq7Pm0At4T2Ktw4cKqXaeeJKlpsxYqHFhY706fpgcefEg33VTaxaMDzEb7HOvK9sVu3qOn+rbXY88vUNHC2S0LDS4sSSpS2F+hwYWVfPbCVbf1/1b+phkTHlbTOpWYYMWNTXr1FTVs2Egv/vfy3VqbNY/Qf+5qq0UL5+vJp5524egA/Bvdc7x/f+670kOdmin1Qro+/2HbVV9frnQxxcwYroSjp9VrzBxdupTl5BHDGW5r2UrFihXX7zt3MMEKcqlYsaLmz5+viRMnatCgQQoNDVXv3r01YsQIq/U6duyotLQ0zZo1S/Pnz1dYWJhef/113XXXXS4auXegfY7HMU8AcG+0z/Fon/c7d+6cRg17QhczMjRr7kIVKRJ0zfXv6tBR899/T3/+8TsTrABugPY51r+799b4B/RL3D6NfPVjyzprf/1Lu795WSMebasX3/nK8vyFtAz99sdBSdlf4LyQlq6Xht2rOZ+u0z8nc9/9Ee7l1lq1JEkNGzVWzVtrqfdDPfXjD9/rrg7/cfHIcC3c0dU8dM/x7DnXd+lSlqV9P22NV+I/SVr0en/N/Hit5Xm4L9qH/OJcn2vRPsfjey5m6XzvfYrfu1fvTn9b096aokKFCunBhx5WQIC/ihYNvv4GYCTa51q0z/Fsbd9b83/QLeVLaeaEhzX7f4/qQlqGXpn5tUb1aaejx5MLaPS4UYcPJ2r+B3M18fXLx7jO/d8xrgsXrI9xwbvVqlVLCxcutHruxIkTeuqppzR06FC1atVKktS6dWutWrVKzzzzjAIDs8/px8TEyM/Pz7JOxYoVVbVqVa1YsUIdO3a0bC8mJkbh4eGqUKFCAe2Vd6J9jmXLdX1JKamSpOIhuSevKR4apNPJ5wpuB5Av586d1YghjysjI0NzPlioIkHW33Phena4M7ecYGXFihV64YUXrvqB1tfXV+3bt1dqaqpeffVVYpRfWdkHDv+IP6Jm9W7JtdhHUuFAf0lSjVvKyt+/kNYuzH0x8jezRuj3vYfV9IHXnDlaFIBatesoMzNThxMTCZIDMeEXbEH7nCQrS5XL36TCgf5aMmVgrsXvvfSo3hz3gEq3GpPHi3NtCm4sPn6vWt3R2uq54OBgVapYSQcPHHDRqMxA92ALuudE/wpWoUK+ur9DY30Tu1Mp5/KeUKxEaJCWzximzEuX1HX4DC6u8wb8cHYqT/jtDQsL0+7du3M9X79+fS1ZsuS6r+/atau6du3qhJGZi/Y5Ecc8AafzhPbB/dA+J6J9Xik9PV1PPzlMR44kas68D1X6irtvXg93onE8fkthC9rnJP/XvVpVy+m7n/6wWpRy7oL2HTqu6pWu/TPztz8Pyc+vkCqXL8UEKx6mVq3a8vHx0cGDTA7gTO7WPe7o6hnonhPZcK7v3377M/vnZrWKpZlgxcPQvoLhbu3LC+f63A/tcyK+52IEHx8fPfnU03p80GAlJiSoTNmyCg4OUZtWLfTQI71dPTyvR/tgC9rnRDfYvvSMixr8vw/17NTPVaFscR04fEqFA/z06pNdtSFuX0GNGjco8f+OcY0ZnfsY10svPq/XX3tVv2ze6oKRmcGd2hcaGqoWLVpYPZeQkCBJql69upo2bSpJGjhwoJYvX65Ro0apb9++OnDggN5++209/PDDKnPFueORI0fqySef1JQpU3THHXcoNjZWq1atUnR0dMHtlJeifU5yA9f1nb+QroNHTqlmlZut1ilTMkSlihfVrv3/FNSokQ/p6ekaPXKYDh9O1AcLPlTpMmWv+xquZ3cOd+qeJ3HLCVbS0tJUvHjx665XrFgxpaVxQOx62t9WS6WKF9Wvv2dfXPz12h3q2/U2tW1eUyvW7ZQkBfj7qWWjavpxY/ZBie9//kN3D3zbajsNalbQG2N7aNRrn2jL71yo7A22bt0iHx8fVagQ5uqheBW+yApb0D7HurJ923cn5GrazTeFauGkx/Ta7BX68Zdd19xWz/80kST9+vvfzhouHKB8+Qr64/edVs+dPXtWBw8dVJNmzV00KjPQPdiC7jnevz/35bjrtloqXSJES775Nc/XBRUO0BfTh6hksaKKfOwtHT99tiCGCyf5af06nTmTpHr16rt6KF6N9sEWtM/xOOYJFBzaB1vQPsejfd4rMzNTz49/Sn/+vkMzZs9X5Vuq5Ot1K7/9Wj4+PqpVu66TR2ge2gdb0D7H+nf3Dhw5qca1K1mtE1K0sKpWLK11W/Zec1stG1bTpUuX9HfiSaeNF86xbetvysrKUlhFvtPiTO7WPe7o6hnonuPZeq4vLy0bZk8etD/hhEPHCOejfQXD3doHz0D7HI/vuZipaNFg1ah5qyRp2adLlZaWpq7d7nfxqLwf7YMtaJ/j2fu573TyeZ1OPi9JGtPvXp1MOqfPvmeCDndV89Zamjsv9zGuZ8Y+pScGD9VtLVu5aGRm8MT2VaxYUfPnz9fEiRM1aNAghYaGqnfv3hoxYoTVeh07dlRaWppmzZql+fPnKywsTK+//vpVJwVB/tE+x7L1ur5v1/+ue++sp2fe+kxp6RclZV/Xl5GRqVUb/izQfcDVZWZm6tmxT+mPnTv03vsLdEuVqvl6HdezO4cnds8duOUEK02bNlV0dLTq1KmjEiVK5LnO6dOnNWPGDMssbcj2QVQf/X34pLb+cUgp5y+oWd1bNKbfXdq265A+/XaLJClm7Q79ErdPMyY8rAnTv9I/J5M1pFcbFQ8J0lvzv5ck/XMy5ap37tm265C2cGcDt5Kamqqf1q2VJCUmHNKFCxf0w8pvJUm169aTJL30wrPq0PEehVWspPT0NG36ZYM+WfKh7n/gQZW66SaXjd0b0SPYgvbZ7nrty7iYqXVb/rJ6TaVyJSVJu/Yd1U9bL9/VavmMYVq7+S/9/tdhpWdc1J3Na2j4w221Yt1O/fSb9d2v4F56PfyIXot6WS+/NEHt77pb58+f16L5HygjPV3393jA1cPzanQPtqB79snP574cD93TTCdOn9V3P/2e57aWTBmoJnUqa+Rrn6hMyRCVKRliWbZtV4LSMy46dV9gu2fHP60KFcJUu05dFS1aVDu2x2ne+3NU89Za+k/HTq4enlejfbAF7bMPxzzNk5qaqvWx2cc7ExISlHohVd9/l328s069eipfvoIOH07U7zt2SJLOnTunw4cTLevc3rqNihQp4prBeyHaB1vQPvvQPrNMnviK1q5epUHDRirzUqZ2bN9mWValanUFBwerd6/u6tT5Pt1SpaoyMzO1LnaNvvzsU3Xv8aDKc2Gww9E+2IL22S4/3Zv1cazefu5BTX++l75YtU3BQYEa1TtSgf5++uCznyRJlcqV0Oz/9dbSb7doX8JxFQ7wV9sWNTXkwTaau+wnHTuVdxPhHgY/PkAtIiJUrXq4AgICtOvPPzR/3vuqUaOmIiPbu3p4Xs3duscdXT0D3bOPI8/1rf9wnD5cvlF/HTgmSYpoUEUjH43Udz/9rs1MqunWaJ/ruFv74Blon334ngt2bN+uXzf9opq31lJmZqY2bvhZH324SE+Pf1ZhFSu6enhej/bBFrTPPo5sX4fba6taxdL6I/6IQosW1r1tG6hXx6Z6ZNz7Sjl3oSB2BzYIDQ1Vs+bWx7gSE7OPcVWtVl2Nm/D/jTO5e/vCwsK0e/fuXM/Xr19fS5Ysue7ru3btqq5duzphZGajfbZz5HV9Uxf8oF4dm+rDyQMU/dFqVatYWhOGdtZ7S2N19ERyge4Xrm7Sqy9r9Y8/aOjwUcrMzNT2uG2WZVWrVVdy8hmuZy9A7t49d+WWE6y8+OKL6tOnj9q2bauIiAhVrVpVoaGhkqTk5GTt27dPGzduVLFixfT666+7eLTu5Y99R/Xgf5pq2EN3qkhggBKPndaCLzfo1fe+UcbFTElSVlaWuo+cpYmju2nSU91UJNBfW/44qI6D3tGf+466eA9gi9OnTmrcmCetnst5/NIrr6ltu7tUpuzNmv/+HJ04cVxFihRRWKXKeuG/L+uee+8r+AEDyIX22S4/7cuvXfuOqve9LVS+THH5+/nq78STeuODlZoy73snjR6O0rPXwwoIDNTHH32oFV8vV2DhwqpVq7bmzFuY75kwARQcumef/LavaJEA3dOmnhYv36iLFy/lua27W9WWJL374kO5ltXsNEEHj5xyzk7AbtWrh+ubr2P00eKFSktLU5myZdW1ew8NHjpc/gEBrh4egH+hffbhmKd5Tp06qaefGmX1XM7jl6Mm6r5u3fXrxo2a8MKzluXHjx3T5l83SZK+WbmKuxwALkb77EP7zPLLT+skSe+9+47ee/cdq2Uz5yxQk2bNVbFSZX2yZLFOnjwhZWWpUuUqGj32WT3w4MOuGDKAPNA+2+Wne7M/XacL6Rka/GAbPdixqVLTMrTtz0P6zxNvWy4oT0pJVeI/SXr6sbt0802hOpearn2HjmvoKx/po683uXIXkQ9169XT1zFfKfH/JtIoXyFMD/Z6WL37PsbxTuSJO7q6Ft2zjyPP9W3785AGP9haFcoWV8bFTO1POKmXZ8Ro9qfrC2p3YCPaB3gW2mcfvucCf39/rVn9o+bOnqXMzEyF16ipN956W+3vutvVQwNwFbTPPo5sX0bGJT16b4TCK5dRVlaWNu88oI6Dp2v9lr0FtTsAYATaZztHXtf3d+JJ3TM4Wq+P6a7P3h6spJRUzfx4rV6Z9bWTRg9b/Px/33OZEf22ZkS/bbVs9gcLVPPW2lzPDrfnk5WVleXqQeTl7NmzWrJkiWJjYxUfH6/k5OzZpUJDQ1WtWjW1bt1avXr1UkhIyHW2ZJsijYY7ZbtwDyc2Tnf1EOBERQNcO+XWba/H2vX6DeNbO2gk8DS0D850+lfuwOWtCrt4ykR7uyfRPlO5unsS7fNmdM+70T54KtoHZ6J93s3T20f3zOXq9tE973b053euvxI8VrEivi59f9oHW9E+OBOf+7yXp3/mk2ifqVzdPYn2eTva571oHzwV7YMz0T3v5unto3vmcnX76J53o33ejfbBU9E+OBPXtHsvT7+eXTKzfS7+68rVBQcH6/HHH9fjjz/u6qEAwA3xcW0P4cFoHwBPRPdgK7oHwFPRPtiK9gHwVLQPtqJ9ADwV7YOtaB8AT0T3YCu6B8BT0T7YivYB8FS0D7aifQA8Fe2DrWgfAE9E92zjthOsAICn8qFIAACD0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3bMMEKADgYPQIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu2cbX1QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGfxc/UAAMDb+DDlFwDAIHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHTPNkywAgAORpAAACahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe7ZhghUAcDB6BAAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd2zja+rBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzuLn6gEAgLfxYcovAIBB6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5tmGAFAByMHgEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3bMMEKwDgYMz4BQAwCd0DAJiG9gEATEP7AACmoX0AAJPQPQCAaWgfAMA0tA8AYBraBwAwCd2zja+rBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzuLn6gEAgLdhwi8AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonm2YYAUAHMyXIgEADEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3bMMEKwDgYPQIAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASumcbJlgBAAfzoUgAAIPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPdvYNMHKnDlz8r2uj4+PBg4caMvbAADgNmgfAMA0tA8AYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMCRbJpg5c0338z3usQIgGl8mfDLK9E+AMgb3fNetA8A8kb7vBPdA4Cro33eifYBwNXRPu9E+wAgb3TPe9E+AMgb7fNOdA8Aro72eSfaBwBXR/u8E+0DgLzRPdvYNMHKrl27HD0OAPAaPj4UyRvRPgDIG93zXrQPAPJG+7wT3QOAq6N93on2AcDV0T7vRPsAIG90z3vRPgDIG+3zTnQPAK6O9nkn2gcAV0f7vBPtA4C80T3b2DTBCgDg6ugRAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM82DptgZf369dq+fbuOHDmiIUOGqHz58tqyZYsqVqyoMmXKOOptAABwG7QPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAruydYOX36tIYPH64tW7aoVKlSOnXqlHr16qXy5cvrk08+UUhIiF588UVHjBUAPIKPmPLL29E+ALiM7pmB9gHAZbTP+9E9ALBG+7wf7QMAa7TP+9E+ALiM7pmB9gHAZbTP+9E9ALBG+7wf7QMAa7TP+9E+ALiM7tnG194NTJw4UUePHtUXX3yhtWvXKisry7KsZcuW2rBhg71vAQAexdfHvn/g/mgfAFxmb/don2egfQBwGe3zfnQPAKzRPe9H+wDAGu3zfrQPAC7jeKcZaB8AXEb7vB/dAwBrdM/70T4AsEb7vB/tA4DLON5pGz97N7BmzRr997//1a233qrMzEyrZeXKldORI0fsfQsA8Cg+PoYWxSC0DwAuo3tmoH0AcBnt8350DwCs0T7vR/sAwBrt8360DwAuo3tmoH0AcBnt8350DwCs0T7vR/sAwBrt8360DwAuo3u2sXuClfT0dIWEhOS57OzZsypUqJC9bwEAHoUeeT/aBwCX0T0z0D4AuIz2eT+6BwDWaJ/3o30AYI32eT/aBwCX0T0z0D4AuIz2eT+6BwDWaJ/3o30AYI32eT/aBwCX0T3b+Nq7gVq1amnFihV5Lvvxxx/VoEEDe98CAAC3QvsAAKahfQAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAPbys3cDQ4YM0eDBg3X+/Hl16tRJPj4+2rZtmz7//HN9+eWXmjdvniPGCQAew5cpv7we7QOAy+ieGWgfAFxG+7wf3QMAa7TP+9E+ALBG+7wf7QOAy+ieGWgfAFxG+7wf3QMAa7TP+9E+ALBG+7wf7QOAy+iebeyeYKV169Z65513NGnSJH333XeSpFdeeUXly5fX22+/rWbNmtk9SADwJPTI+9E+ALiM7pmB9gHAZbTP+9E9ALBG+7wf7QMAa7TP+9E+ALiM7pmB9gHAZbTP+9E9ALBG+7wf7QMAa7TP+9E+ALiM7tnG7glWJKl9+/Zq3769Dhw4oJMnT6pYsWKqVq2aIzYNAB7HhyIZgfYBQDa6Zw7aBwDZaJ8Z6B4AXEb7zED7AOAy2mcG2gcA2eieOWgfAGSjfWagewBwGe0zA+0DgMtonxloHwBko3u2ccgEKzkqV66sypUrO3KTAAC4NdoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHALCFQyZY2b9/v2bPnq0dO3bo+PHjKl26tBo0aKCBAweqSpUqjngLAPAYTPhlBtoHANnonjloHwBko31moHsAcBntMwPtA4DLaJ8ZaB8AZKN75qB9AJCN9pmB7gHAZbTPDLQPAC6jfWagfQCQje7Zxu4JVtavX68hQ4YoNDRUbdq00U033aQTJ05ozZo1+uqrrzRr1iy1atXKEWMFAI/gS5G8Hu0DgMvonhloHwBcRvu8H90DAGu0z/vRPgCwRvu8H+0DgMvonhloHwBcRvu8H90DAGu0z/vRPgCwRvu8H+0DgMvonm3snmDl9ddfV9OmTfXee+8pICDA8nxaWpqeeOIJTZo0ScuXL7f3bQDAY5Aj70f7AOAyumcG2gcAl9E+70f3AMAa7fN+tA8ArNE+70f7AOAyumcG2gcAl9E+70f3AMAa7fN+tA8ArNE+70f7AOAyumcbX3s3cODAAfXr188qRJIUGBiofv366cCBA/a+BQAAboX2AYD7WrlypR566CG1aNFCdevWVbt27TRx4kSdOXPGar3Y2Fh169ZN9erVU2RkpObPn5/n9ubNm6fIyEjVq1dP3bt31/r16wtgL9wP7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHAO7NE67t87N3A5UrV9apU6fyXHbq1ClVrlzZ3rcAAI/i48OcX96O9gHAZe7WvTNnzqh58+YaMGCAQkJCtGfPHkVHR2vXrl1asGCBJCkuLk5Dhw5V586dNX78eG3fvl2TJ09WoUKF1Lt3b8u25s2bpylTpmjUqFGqX7++Pv/8cw0ePFgff/yx6tat66pddAnaBwCXuVv74Hh0DwCs0T7vR/sAwBrt8360DwAuo3tmoH0AcBnt8350DwCs0T7vR/sAwBrt8360DwAuc8fuecK1fXZPsDJ+/HhNmDBBpUuX1u233255ft26dXr33XcVFRVl71sAgEfxdb8ewcFoHwBc5m7de+CBB6wet2jRQoGBgXrxxRd1+PBhlS9fXtHR0apRo4YmTpwoHx8fRURE6NixY4qOjlavXr3k7++v9PR0zZgxQ48++qieeOIJSVLz5s21a9cuRUdHa9asWa7YPZehfQBwmbu1D45H9wDAGu3zfrQPAKzRPu9H+wDgMrpnBtoHAJfRPu9H9wDAGu3zfrQPAKzRPu9H+wDgMnfsnidc22fTBCsdO3a0mtHm3Llzevzxx1WkSBGVLFlSp06dUmpqqkJDQxUVFaVvvvnG5gECgKdxxxm/YD/aBwB5c0T34uLibmj9Bg0a3ND6xYoVkyRdvHhR/5+9O4+zsi4bP37NwIymLIWKKchPZZME3BLJDUUrd1HTTNFQXCEVNTM1Tcsts3BB3EVFyGxR08S0x8ws0ywSNxTQUtx3ZHNgnN8fyIwnFuEsc865v+/38+LVM+fczPkeqPlwb9dpaGiIRx55JEaNGpWz9j333DPGjx8fkydPjgEDBsTkyZNj1qxZsfvuuzdvU1tbG7vvvntcfvnl0dDQEPX19Su1jmqjfQBLZ58vm3QPYNm0L5u0D2DZtC+btA9g6XQvu7QPYOm0L5t0D2DZtC+btA9g2bQvm7QPYOmq4b6+iMq7ty+vASubbLKJf2gALIMfj9mkfQBLV4wfjQcccMBKbf/cc8995jaNjY2xcOHCeP7552PMmDExaNCg6NatW0yfPj0WLFgQ3bt3z9l+8dczZsyIAQMGxPTp03MeX6xHjx7R0NAQL7/88hLPZY32ASydH43ZpHsAy+bHYzZpH8Cy+fGYTdoHsHR+NGaX9gEsnR+N2aR7AMvmx2M2aR/AsvnxmE3aB7B0lXpfX0Rl39uX14CVCy+8MK8XA6D13XfffTFu3Lh44YUXYs6cObH22mvHzjvvHCNGjGie+hUR8dBDD8Xo0aNj+vTpsdZaa8Whhx4aw4YNW+L7jRs3LsaPHx9vvfVW9OzZM0466aTYdtttW/EdlYf2AVSXrbbaKj788MOIiNh2223jkksuiYiIDz74ICIi2rdvn7N9u3btok2bNs3Pz5o1K9q0aROrr756znYdOnTI+T5Zpn0ApET3AEiN9gFUD+f6ikP7AEiN9gGQEt0DIDXaB0BqtA+g+lTyvX15DVgBYNkqbRriBx98EAMGDIjhw4dH+/btm6d9TZ06NW666aaIiHjiiSdixIgRsccee8Spp54aU6ZMiYsuuijatGkThxxySPP3GjduXFx88cVxwgknRP/+/eP222+PY445Jm699dbo27dvud4iAGVUjO7ddtttRVhJrvHjx8e8efPi+eefjyuvvDKOOeaYGDduXNFfB4D0VNo+HwCUmvYBkJpKa59zfQCUUqV1DwBKTfsASI32AZAa7QMgJZV6X19EZd/bV5QBK++//35MmjQp/vOf/8RHH320xPNnn312MV4GoCrUVth+2P7775/z9VZbbRWrrLJKnHnmmfHqq6/GuuuuG2PGjIlevXrFBRdcEDU1NTFw4MB48803Y8yYMXHggQdGXV1dNDQ0xNixY2Po0KFx1FFHRUTEgAEDYurUqTFmzJi46qqryvH2ykb7ABYpRvc22WSTwr/J/+jTp09ERGy++ebRp0+fOOCAA+L++++PHj16REQ0T8BcbPbs2dHY2Nj8ia8dOnSIxsbGmDNnTs6ky1mzZkVE5HwybCq0D2CRStvnozR0D6BFpbXvvvvui3HjxsULL7wQc+bMibXXXjt23nnnGDFiRM6+2kMPPRSjR4+O6dOnx1prrRWHHnpoDBs2bInvN27cuBg/fny89dZb0bNnzzjppJNi2223bcV3VBm0D6BFpbXPub7S0D6ARSqte5SO9gEson1p0D2AFtqXBu0DaKF9adA+gEUq9b6+iMq+t6/gASsvvvhiHHjggbFgwYKYN29efOELX4gPPvig+Q20a9eu0JcAqCqFTvx64oknVmr7fOK1OBwLFy6MhoaGeOSRR2LUqFE5a99zzz1j/PjxMXny5BgwYEBMnjw5Zs2aFbvvvnvzNrW1tbH77rvH5ZdfHg0NDVFfX7/Sa6lG2gfQohomPH/pS1+KmpqaeOmll2Lw4MFRV1cXM2bMiB133LF5mxkzZkRERPfu3XP+c8aMGdG/f//m7aZPnx51dXWx3nrrteI7KD/tA2hRae1zk3nx6R5Arkpr3wcffBADBgyI4cOHR/v27eP555+PMWPGxNSpU+Omm26KiEXHWEeMGBF77LFHnHrqqTFlypS46KKLok2bNnHIIYc0f69x48bFxRdfHCeccEL0798/br/99jjmmGPi1ltvjb59+5brLbY67QPI5Vxf9mkfQItK2+ejNLQPoEWltc+5vuLTPYBcldY+ik/7AHJpX/ZpH0CLaulepd3bV/CAlZ/85CfRv3//uPzyy2PTTTeNa6+9Nnr37h133XVXXHLJJXHZZZcV+hIASTnggANWavvnnntuhbZrbGyMhQsXNt9wMGjQoOjWrVtMnz49FixY0BybxT4dnwEDBsT06dNzHl+sR48e0dDQEC+//PISz2WV9gFUl3/961/R1NQUXbt2jfr6+hg4cGBMmjQphg8f3rwjeffdd0fHjh1j0003jYhF0zHbt28fkyZNat4Ja2pqikmTJsU222yTzI0Gi2kfQOVyk3nx6R5AZdt///1zvt5qq61ilVVWiTPPPDNeffXVWHfddWPMmDHRq1evuOCCC6KmpiYGDhwYb775ZowZMyYOPPDAqKuri4aGhhg7dmwMHTo0jjrqqIiIGDBgQEydOjXGjBkTV111VTneXlloH0BxOddX+bQPgNRoH0Dlcq6v+HQPoLIZLlZ82gdAarQPoPpU2r19BQ9Yeeqpp+JHP/pR8yIWLlwYbdu2jX322Sfee++9OP/882PChAmFvgxA1ajUeV9bbbVVfPjhhxERse2228Yll1wSEYtO0EVEtG/fPmf7du3aRZs2bZqfnzVrVrRp0yZWX331nO06dOiQ831SoH0ALSqte8OHD4+BAwdGz549o76+Pp555pm4/vrro3fv3rHzzjtHRMTIkSNj6NChcfrpp8eQIUNiypQpMXHixDjllFOaf7bX19fHscceG6NHj45OnTpFv3794o477ohp06bFOeecU863WBbaB9Ci0trnJvPi0z2AXIW274knnlip7TfZZJOVfo3FF1suXLgwGhoa4pFHHolRo0blfDrDnnvuGePHj4/JkyfHgAEDYvLkyTFr1qzYfffdm7epra2N3XffPS6//PJoaGhIZrim9gHkqrT9vsWc6yse7QNoUando7i0D6BFpbXPub7i0z2AXJXWPsPFik/7AHJVWvsMFys+7QNoUWndi6iOe/sKHrAyd+7caN++fdTW1kbHjh3jrbfean6uT58+pn0ByamtKSxJt912W5FWkmv8+PExb968eP755+PKK6+MY445JsaNG1eS18o67QNoUWj3iq1fv37xu9/9LmbOnBkREV27do2DDjooDjvssOYdrM022yzGjh0bo0ePjrvuuis6d+4cJ5988hIHIIcPHx4RERMmTIhLL700evToEWPHjm2eepkS7QNoUYz2lfpGczeZF0b3AHIV2r4DDjhgpbZ/7rnnVmi7xsbGWLhwYfNFl4MGDYpu3brF9OnTY8GCBdG9e/ec7Rd/PWPGjBgwYEBMnz495/HFevToEQ0NDfHyyy8v8VxWaR9ALuf6sk/7AFpU2rm+CDcclIL2AbRwri/7dA8gV6Xt9xkuVnzaB5Cr0tpnuFjxaR9Ai0rrXkR13NtX8ICVbt26xZtvvhkRET179ozbb7+9eXrM73//++jUqVOhLwFQVQrtUT6f0Loi+vTpExERm2++efTp0ycOOOCAuP/++6NHjx4REc2feLfY7Nmzo7GxsflkXYcOHaKxsTHmzJmT88l2s2bNiojIuYgl67QPoEWl7YeNGjUqRo0a9ZnbDRo0KAYNGvSZ2w0fPrx5Zyxl2gfQohjtK8WN5m4yLx7dA8hVaft9i2211VbNxzS33XbbuOSSSyJi0YUpERHt27fP2b5du3bRpk2b5udnzZoVbdq0yTnWGbHoOOinv08KtA8gl3N92ad9AC0qcZ/PDQfFp30ALZzryz7dA8hVaPtKPVgswnCxQmkfQK5KO+ZpuFjxaR9Ai0rrXkR13NtX8ICVQYMGxSOPPBK77757HH300XHsscfGgAEDok2bNvHee+/FaaedVox1AlSNmkos0v/40pe+FDU1NfHSSy/F4MGDo66uLmbMmBE77rhj8zYzZsyIiJYTbp8+Iffp6V7Tp0+Purq6WG+99VrxHZSX9gG0qIbuUTjtA2hRqe1zk3nx6B5ArkLbd9tttxVpJbnGjx8f8+bNi+effz6uvPLKOOaYY2LcuHElea2s0z6AXJW63/dpzvUVRvsAWlRi99xwUHzaB9CiEtsX4VxfMekeQK5C21eKwWIRhosVk/YB5Cq0fYaLVT7tA2hRqcc7K13BA1ZOPPHE5v9/u+22i1tvvTXuv//+mD9/fmyzzTax/fbbF/oSABTZv/71r2hqaoquXbtGfX19DBw4MCZNmhTDhw9vDurdd98dHTt2jE033TQiFn0aXvv27WPSpEnNF102NTXFpEmTYptttklmJyxC+wBIj/YBFFcpbjR3k3nx6B5AceVzIcmK6NOnT0QsOm7Zp0+fOOCAA+L++++PHj16REQ034yw2OzZs6OxsbH5IpUOHTpEY2NjzJkzJ+emg1mzZkVEy8UsKdA+gOrjXF9htA+guNxwUPm0D6C4nOurbLoHUB0MFyse7QMoLsPFKp/2AVCogges/K++fftG3759IyLixRdfjGuvvTaOPPLIYr8MQMWqtIFfw4cPj4EDB0bPnj2jvr4+nnnmmbj++uujd+/esfPOO0dExMiRI2Po0KFx+umnx5AhQ2LKlCkxceLEOOWUU5ovJqmvr49jjz02Ro8eHZ06dYp+/frFHXfcEdOmTYtzzjmnnG+x7LQPSFmldY/WoX1AyorRvlLcaO4m89LRPSB11bDf96UvfSlqamripZdeisGDB0ddXV3MmDEjdtxxx+ZtZsyYEREtF5p8+kKUxTeZR0RMnz496urqYr311mvFd1BZtA9IXaW1z7m+0tM+IGXF6J4bDqqP9gEpc64vPboHpK7Q9pVisFiE4WKlpH1A6irtXN9ihouVjvYBKavU7lW6og9Y+bTnn38+fv7zn4sRkJTaCitSv3794ne/+13MnDkzIiK6du0aBx10UBx22GHNF1RuttlmMXbs2Bg9enTcdddd0blz5zj55JNj2LBhOd9r+PDhERExYcKEuPTSS6NHjx4xduzYnBsQUqd9QGoqrXu0Pu0DUlMN7XOTeenoHpCiamjfv/71r2hqaoquXbtGfX19DBw4MCZNmhTDhw9v/jTzu+++Ozp27BibbrppRCy6UaF9+/YxadKk5vY1NTXFpEmTYptttknmU8w/i/YBKaq09jnX17q0D0hNpXXv09xw0Dq0D0hNJbdvMef6Skf3gBQV2r5SDBaLMFystWgfkKJC22e4WHXTPiA11XC8sxKVdMAKQIoqrUejRo2KUaNGfeZ2gwYNikGDBn3mdsOHD2+++BIAKq17AFBq1dA+N5kDUEyV1r7hw4fHwIEDo2fPnlFfXx/PPPNMXH/99dG7d+/YeeedIyJi5MiRMXTo0Dj99NNjyJAhMWXKlJg4cWKccsopzU2rr6+PY489NkaPHh2dOnWKfv36xR133BHTpk2Lc845p5xvEYAyq7T2OdcHQCkVo3tuOACgmlTaPt/SONcHQDFVQ/sMFwOgmAptn+FiAFSTatjnq0QGrAAAAABAlXKTOQCp6devX/zud7+LmTNnRkRE165d46CDDorDDjusuWubbbZZjB07NkaPHh133XVXdO7cOU4++eQYNmxYzvdafHP5hAkT4tJLL40ePXrE2LFjcy7CBAAAYPnccAAA+XOuDwAMFwMgPYaLAUB5GbACUGQ1Rn4BkBDdAyA1ldY+N5kDUGqV1r5Ro0bFqFGjPnO7QYMGxaBBgz5zu+HDhzc3EAAiKq99AFBK1dI9NxwAUCyV1j7n+gAotUprn+FiAJRapbVvaQwXA6BYqqF7lciAlWV47x9jyr0ESujtDxvKvQRKaPUy7xDUlvXVIX/al22vvDev3EugRLqv9bmyvr7uUc3eeezyci+BEnl/zoJyL4ES+mLHurK+fqW1z03mrIx3H7Pfl1Wz5mlflq3aXvsgH453ZtsHc7Uvyzp+rrz10T6q1ZuPXFbuJVBCcz9qLPcSKJFV27Yp6+tXS/fccMDSONeXbe/Odo1nVq37edd3fppzfawMxzyzy7m+bHOuL5fhYqyotx+1z5dlH85bWO4lUEKrti/vLcuV1j7DxVhR9vmy7R3HOzPL/ezVKa9/rfTv33+FJto0Njq5D6THxK9s0j6ApdO97NI+gKXTvmzSPYBl075s0j6AZdO+bNI+gKWrxO654aA4tA9g6SqxfRRO9wCWrdLaZ7hYcWgfwLJVWvsMFysO7QNYukrrXrXIa8DKkUce6Q8cgKRoHwCp0T4AUqJ7AKRG+wBIjfYBVA83HBSH9gGQEt0DIDXaB1A9DBcrDu0DoJjyGrBy3HHHFXsdAJlR69/qmaR9AEune9mlfQBLp33ZpHsAy6Z92aR9AMumfdmkfQBLV4ndc8NBcWgfwNJVYvsonO4BLJv2ZZP2ASyb9mWT9gEsne7lJ68BKwAsmyABkBLdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkBLdy48BKwBFVlOjSACkQ/cASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPfyY8AKQJGZ+AVASnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnQvP7XlXgAAAAAAAAAAAAAAAAAAAAAAQKm0LfcCALKmxsQvABKiewCkRvsASI32AZAa7QMgJboHQGq0D4DUaB8AqdE+AFKie/kp6oCV119/PV599dXYaKONYrXVVivmtwaoGrWKlBTtA1Kne+nRPiB12pcW3QPQvtRoH4D2pUb7gNTpXnq0D0id9qVF9wC0LzXaB6B9qdE+IHW6l5/aYnyTX/3qVzFo0KDYcccd4+CDD44XX3wxIiKOO+64uOWWW4rxEgBVo7bAX1QH7QNYpNDuaV/10D6ARbQvDboH0EL30qB9AC20Lw3aB7CI453p0D6ARbQvDboH0EL30qB9AC20Lw3aB7CI4535Kfh9T5gwIc4+++z4+te/HmPHjo2mpqbm57bYYou45557Cn0JAKgo2gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAodoW+g1uuummOProo+P444+PxsbGnOc22GCD5slfAKmoqSn3Cig17QNooXtp0D6AFtqXfboHkEv7sk/7AHJpX/ZpH0AL3UuD9gG00L7s0z2AXNqXfdoHkEv7sk/7AFroXn4KHrDy6quvxpZbbrnU5+rr62POnDmFvgRAValVpMzTPoAWupcG7QNooX3Zp3sAubQv+7QPIJf2ZZ/2AbTQvTRoH0AL7cs+3QPIpX3Zp30AubQv+7QPoIXu5ae20G/wxS9+MZ5//vmlPvfss8/GeuutV+hLAFSVmprCflH5tA+gRaHd077qoH0ALbQv+3QPIJfuZZ/2AeTSvuzTPoAWjnemQfsAWmhf9ukeQC7dyz7tA8ilfdmnfQAtHO/MT8EDVvbcc8+44oor4s9//nM0NTVFRERNTU0888wzcf3118eQIUMKfQkAqCjaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7gGQGu0DIDXaB0Ch2hb6DUaMGBHTpk2Lo48+Otq3bx8REYcddljMmjUrvvrVr8bw4cMLXiRANalNdGJXSrQPoIXupUH7AFpoX/bpHkAu7cs+7QPIpX3Zp30ALXQvDdoH0EL7sk/3AHJpX/ZpH0Au7cs+7QNooXv5KXjASl1dXYwZMyYee+yx+Otf/xrvvvtudOzYMbbZZpv4yle+Uow1AlSV2hpFyjrtA2ihe2nQPoAW2pd9ugeQS/uyT/sAcmlf9mkfQAvdS4P2AbTQvuzTPYBc2pd92geQS/uyT/sAWuhefgoesLLYgAEDYsCAAcX6dgBVS4/SoX0Aupca7QPQvpToHsAi2pcO7QNYRPvSoX0Aupca7QPQvpToHsAi2pcO7QNYRPvSoX0AupevggesvPrqq5+5zbrrrlvoywBUjVpByjztA2ihe2nQPoAW2pd9ugeQS/uyT/sAcmlf9mkfQAvdS4P2AbTQvuzTPYBc2pd92geQS/uyT/sAWuhefgoesDJ48OCo+YzxNs8++2yhLwMAFUP7AEiN9gGQEt0DIDXaB0BqtA+A1GgfACnRPQBSo30ApEb7AChUwQNWfv7zny/x2Pvvvx9/+ctf4rnnnovjjz++0JcAqCo1YeRX1mkfQAvdS4P2AbTQvuzTPYBc2pd92geQS/uyT/sAWuheGrQPoIX2ZZ/uAeTSvuzTPoBc2pd92gfQQvfyU/CAld12222pjx900EFx9tlnxzPPPBNDhgwp9GUAqkatHmWe9gG00L00aB9AC+3LPt0DyKV92ad9ALm0L/u0D6CF7qVB+wBaaF/26R5ALu3LPu0DyKV92ad9AC10Lz+1pfzmX/va1+LOO+8s5UsAVJzamsJ+Ud20D0hNod3TvuqnfUBqtC9tugekSPfSpn1AirQvbdoHpMbxTrQPSI32pU33gBTpXtq0D0iR9qVN+4DUON6Zn5IOWHn++eejTZs2pXwJAKgo2gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gfAimhb6De49tprl3hswYIFMWPGjLjvvvtin332KfQlAKpKTU2iI7sSon0ALXQvDdoH0EL7sk/3AHJpX/ZpH0Au7cs+7QNooXtp0D6AFtqXfboHkEv7sk/7AHJpX/ZpH0AL3ctPwQNWfvazny3xWH19fayzzjpx+OGHx7HHHlvoSwBUlVo9yjztA2ihe2nQPoAW2pd9ugeQS/uyT/sAcmlf9mkfQAvdS4P2AbTQvuzTPYBc2pd92geQS/uyT/sAWuhefgoesDJ16tRirAMgMwz8yj7tA2ihe2nQPoAW2pd9ugeQS/uyT/sAcmlf9mkfQAvdS4P2AbTQvuzTPYBc2pd92geQS/uyT/sAWuhefmoL+c0NDQ1x8sknxz//+c9irQeg6tXW1BT0i8qmfQC5Cu2e9lU+7QPIpX3ZpnsAS9K9bNM+gCVpX7ZpH0AuxzuzT/sAcmlftukewJJ0L9u0D2BJ2pdt2geQy/HO/BQ0YKW+vj4eeOCBWLhwYbHWAwAVTfsASI32AZAS3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsAKIaCBqxERAwYMMC0L4BPqa0p7BeVT/sAWhTaPe2rDtoH0EL7sk/3AHLpXvZpH0Au7cs+7QNo4XhnGrQPoIX2ZZ/uAeTSvezTPoBc2pd92gfQwvHO/LQt9Bsce+yxcfLJJ0dNTU3suOOOseaaa0ZNTe6f5hprrFHoywBUjZpEg5IS7QNooXtp0D6AFtqXfboHkEv7sk/7AHJpX/ZpH0AL3UuD9gG00L7s0z2AXNqXfdoHkEv7sk/7AFroXn5qmpqamlb2N40ZMyb233//WHvttWOjjTZq+WbL+Ft49tln819hmcxfWO4VUEpvf9hQ7iVQQl2/UF/W17/ir/8p6PeP3Gb9oqyD4tI+qt0r780r9xIoke5rfa6sr19o9yK0r1Kl0L65C1Z6d5gqMWuuf9hk2Rc71pX19bUvm1LoXkTEvAXlXgGl8uF8f7lZ1rl9dbdP9ypTCu1zvDPbPpirfVm2dgfto/hSaN+H8z8u9xIooQWNjmdnVafV25T19R3vzK4U2udcX7a9P8d+X1at+/nqvr4zQvsqUQrdi3DMM8tmOZGbac71UQoptG9Og32+LJv7UWO5l0AJrdW+bVlfX/uyKYX22efLtndmu6c9q7o43lmV8vrXyhVXXBHbb799rL322nH++ecvM0IAkBXaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7gGQGu0DIDXaB0Ax5TVgpampZQrkvvvuW7TFAGSBf59nk/YBLJ3uZZf2ASyd9mWT7gEsm/Zlk/YBLJv2ZZP2ASyd7mWX9gEsnfZlk+4BLJv2ZZP2ASyb9mWT9gEsne7lJ68BKwAsW60gAZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3ctP3gNWfvWrX8VDDz30mdvV1NTEyJEj830ZgKpTa+RXZmkfwJJ0L9u0D2BJ2pddugewdNqXXdoHsHTal13aB7Ak3cs27QNYkvZll+4BLJ32ZZf2ASyd9mWX9gEsSffyk/eAlTvuuCNqVuAPXYwAyArtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtA6BY8h6wMmHChOjfv38x1wKQCQZ+ZZf2ASxJ97JN+wCWpH3ZpXsAS6d92aV9AEunfdmlfQBL0r1s0z6AJWlfdukewNJpX3ZpH8DSaV92aR/AknQvP3kPWAFg6WoVCYCE6B4AqdE+AFKjfQCkRvsASInuAZAa7QMgNdoHQGq0D4CU6F5+DFgBKDI9AiAlugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAlupcfA1YAiqy23AsAgFakewCkRvsASI32AZAa7QMgJboHQGq0D4DUaB8AqdE+AFKie/nJa8DK1KlTi70OAKho2gdQHe69996466674umnn4733nsvunbtGvvtt18ccsghUVdX17zdQw89FKNHj47p06fHWmutFYceemgMGzZsie83bty4GD9+fLz11lvRs2fPOOmkk2LbbbdtxXdUPtoHQEp0D4DUaB8AqdE+AFKjfQCkRPcASI32AZAa7QOgmPIasALAstXU1JR7CQDQaiqtezfccEN06dIlTjnllFhjjTVi8uTJcckll8Rzzz0XP/nJTyIi4oknnogRI0bEHnvsEaeeempMmTIlLrroomjTpk0ccsghzd9r3LhxcfHFF8cJJ5wQ/fv3j9tvvz2OOeaYuPXWW6Nv377leosAlFmltQ8ASk37AEiN9gGQEt0DIDXaB0BqtA+A1GgfACmpxO5Vw4enG7ACUGSVlyMAKJ1K695VV10VnTp1av564MCB0dTUFJdeemmccsopseaaa8aYMWOiV69eccEFF0RNTU0MHDgw3nzzzRgzZkwceOCBUVdXFw0NDTF27NgYOnRoHHXUURERMWDAgJg6dWqMGTMmrrrqqnK9RQDKrNLaBwClpn0ApEb7AEiJ7gGQGu0DIDXaB0BqtA+AlFRi96rhw9MNWAEostoKm/hVDdO+AKhexejeE088sVLbb7LJJst87tPDVRbbeOONIyLizTffjA4dOsQjjzwSo0aNypnSueeee8b48eNj8uTJMWDAgJg8eXLMmjUrdt999+ZtamtrY/fdd4/LL788Ghoaor6+fqXWDUA2VNo+HwCUmvYBkJpKa59zfQCUUqV1DwBKTfsASI32AZAa7QMgJZXYvWr48HQDVgAyrhqmfQGQtgMOOGCltn/uuedWavvHH3886urqolu3bvHSSy/FggULonv37jnbLP56xowZMWDAgJg+fXrO44v16NEjGhoa4uWXX17iOQAAAACAYnOuDwAAILsM1QQAAAAAyqmYH5weUR0fnm7ACkCRVdq8r2qY9gVA9aq07v2v6dOnx8033xzf/OY3o127dvHBBx9ERET79u1ztmvXrl20adOm+flZs2ZFmzZtYvXVV8/ZrkOHDhERzdsBkJ5Ka5+LLgEoNe0DIDWV1j7n+gAopUrrHgCUWqW1z1BNAEqt0toHAKWmfQCkpBjdK/UHp0dU3oenG7ACUGQ1BRYpxWlfAFSvQrsXEXHbbbcV/k2W4t13342RI0dGt27d4uSTTy7JawCQnmK0r5hcdAlAqWkfAKlxrg+AlFTaPl+EwZoAlFaltc9QTQBKrdLaZ58PgFLTPgBSUmndW5pK/PB0A1YAiqymwCKlOO0LgOpVaPciPvsGgnzMnj07jjzyyFiwYEHcfPPNsdpqq0VERMeOHSMi4sMPP1xi+8bGxubnO3ToEI2NjTFnzpycHbFZs2blfB8A0lOM9hWTiy4BKDXtAyA1zvUBkJJK2+eLMFgTgNIqRvuKOVjTUE0ASq3S9vvs8wFQatoHQEqK0b1SfXB6ROV+eLoBKwCJqcRpXwBQTA0NDTFixIh45ZVXYuLEibH22ms3P9etW7eoq6uLGTNmxI477tj8+IwZMyKi5eaCT9980L9//+btpk+fHnV1dbHeeuu1xlsBIKNcdAlASorZvQjtAwDn+gDIOoM1Aah0pR6saagmAFlmnw+A1GgfAJWuFB+cHlHZH55uwApAkdUW+PtTnPYFQPUqtHvF1tjYGCeeeGI8+eSTcdNNN8WGG26Y83x9fX0MHDgwJk2aFMOHD2++2e7uu++Ojh07xqabbhoREZtvvnm0b98+Jk2a1DxgpampKSZNmhTbbLONm+wAElaM9rnoEoBqUmj7St29CO0DoLic6wMgJcU43mmwJgDVpNKuc/lfhmoCUGyFts8+HwDVRvsASEmlHu+s9A9PN2AFoMg+vTOTjxSnfQFQvQrtXrGdc8458cc//jFOOOGE+Pjjj+Pf//5383M9evSIdu3axciRI2Po0KFx+umnx5AhQ2LKlCkxceLEOOWUU5oPKtbX18exxx4bo0ePjk6dOkW/fv3ijjvuiGnTpsU555xTpncHQCWotPb9LxddAlBs2gdAapzrAyAlxdjnM1gTgGpSjPaVarCmoZoAlEKh7bPPB0C10T4AUlKJ13dWw4enG7BCREQsXLgwDtx/n5j2/PNx4U9/Hrvutvtn/yYqwr//+Y84eeThSzy+/oY94vqJtzd//c/HHolxV4+J6dOmxuqrt4ttd9gpjhx5YrRr136J30thKi9HlT/tC1rD8GGHxOP/eGypzx0/6uQYfuRRrbwiCvHIX/4Ut42/IV76zwtRX18fvfpsHIce9Z3o3nOjnO0e//tf46ZrLo+X/vNCdFpjzdjrG9+Kfb55SJlWnU2V1r2HH344IiIuvfTSuPTSS3Oeu/nmm2OrrbaKzTbbLMaOHRujR4+Ou+66Kzp37hwnn3xyDBs2LGf74cOHR0TEhAkT4tJLL40ePXrE2LFjczoIleSll/4bN4+7IZ5+6smYPu35WKtz57jnvgeW2O6vD/8lxlw6Ol6YMT3WXGut+NbBh8TQQ4e1/oJZYZP/+ViMOnbJ/b4NNuwRN956R0REPPSn++O2iTfHS/95MebOnRNrrrV2bDtocHx7+NHRvoMbpIqpGO1z0SUUblH3ro+nmru3dkxaSvcWe+WVmbHfkD1i/rx58ccHH44111yrFVfLypj8+GNx/DFL797Nt90REREzX34pbh0/Lp55+ql4Yfq0WKtz5/jVXfe18krTUWj7StW9CO2DT3OuLzsWLlwYRxyyf7wwfVr88LyLYqev7RYREQfs9bV4/bVXl/p7Pr0dhau0Y54RzvWRnj/e/4e49/d3xbPPPhPvv/9edFm3S+w1ZL848KCh0bauLiIi/v7IX+Pu390RTz05JWa+/FLssdeQOPvHF5R55ayIB//v/vjFhJviv/95IebOmRNrdV47tt9hpzjsyGOiwyfHMm+49sr40x/vi9deeyUaFzbGul27xpB994/9Djgoamsr9XPYqlMldu9/GaxJyv70wP/FuOuuiRdmTI/6VVaJjTfuF985YVT03qhPuZfGSvj3P/8RJ45Y+jWe435xe85jD9x/b/xq4k3x4ozpUb9KffTo1SfOOOeCWMMx7aIpRvtKMVjTUE1S89J//xs33Xh9PPXkonN9nTuvHZPuX8o1Ln95KC771DUuBx18aBzy7WGtv2DytnDhwhg+tOV4585fbzmO+cc/3BPjx10bL//3P/H5L3SKr+22Rxx+1MiCbpBiSZW+32efj1S89NJ/Y/yNudd3/v4Pue279qqx8cf7/xCvvfpKLGxsjK5dusa+3zggDvjWwY6JVZHF7Zsx/fk4+7yf5rRvsdmzP4yD99sj3nnn7bhq3MTo2680w/tTpX1QGVZkv+/qK6+IP973h3h1cfu6rhf77X9AHKh9VeFP998bt028Kf7zqWOZpy/lWObs2R/GsAP2inffeTvGXHdLfEn3iqoSu1cNH55uwAoRETHhlpvjvXffK/cyKMDJp58T62/YMmVwlVVWbf7/n/jXP+L7Jx4b2++wcxx6xLHx1huvx3VXXhov//c/8bMrrq/ICVXVrNL+PKth2he0htN/8MOYM2d2zmN3/+7O+OWtE2O77bcv06rIx7/+8Uice/pJscPXdotDjjg25s+bH78cf12cfsLRceXNv45On+yITX36yfjR90+IHb66axzxnZPjuaefjOvHXhJt2rSNvb7xrTK/i+yotO498MCyb6r9tEGDBsWgQYM+c7vhw4c3D1qBSjdj+vT4y0MPRt++/aOpqSlmzVryQPmTU56IUd8ZEbvuvnucdMr34skpU+KSn/002rRpE9862ACqSve9M86J9Tfs0fz1qqu27PfN+uCD2HTzLePAoYfF6u3axQvTp8VN110ZM6Y9F6PHXl+O5WZWMdrnokso3Izp0+KhnO7NWu72Pzn/3Gi3eruYP29eK62QQp36g3Nig+4t3VvlU917ccb0+NvDD0WfjftGNDXFhx8u/++fwhTavlJ0L0L74H8515cdv771lnj/vSX/Ls/96aWxoKEh57GJN98Qjzz85/jygK1ba3lJqLRjns71kaJbbroh1lm3Sxw/6uRYY40144knJseVV1wa06Y9F+ece2FERPzt4b/Ec1OfjU0329w+QZWZNeuD2HyLLePgQw+Ldu3ax4zpz8f114yNac9PjTFXj4uIiDmzZ8due+4d62+wYbRp2zYef/TvMfqnF8SsWbNi+FEjyvwOsqUY3TNYE0rj73/7a5x8wndit933jGNHHhfz5s2L66+9Oo4ePix+dcddsdZancu9RFbSd884JzbY4FPXeH7qmGdExG0Tboprx14SBxw8LI4aeWLMnz8vnpj8z2ho+Ki1l5pplbbPF2GoJmmaMWNaPPTnB6Nvv0Xn+j5cyrm+KVOeiOO/MyJ2232POPmUU+PJKVNi9M8uijZt28RBrnGpGss63vmHe+6Kc886LfbZ/8AYOeq78cL0aXH9VVfEO2+/HWecfV4ZVppdhbbPPh8UxwvTp8df/vxgbNxv2dd3zp4zO/bca0hssGH3aNu2bTz690fipz85P2bNmhVHHTuyDKsmH7+69ZZ4/713l7vNtWMva6XVpEn7oDKsyH7fnDmzY8+994kNu28YbdvWxd8f+VtcdMF5MeuDD+KYEd8pw6pZUbdNuCmu+59jmVOWcSzzhqsuL8MK01GJxzur4cPTDVgh3nj99bh67Jg47Yyz4genn1ru5ZCn9TfsHl/qu/QL1cffcHVssGGP+MG5P23+Ydmh4+fj7NNOjL//9aH4yraffXMx1asapn1Ba+jeo8cSj114/rnRs1ev6NV7ozKsiHw9eP+k6PzFdeK7Pzi3uWsb9OgVw7+5R/zzsb/FV3fbOyIiJo67Ktbv3itOPP1HUVNTE5tsvmW8+85bMeGGq2K3Id+Itm3ryvk2AIpu0A47xo6Dd4qIiHPP+WH87a9/WWKbq6+8Inr26hXnnHtB1NTUxJYDBsZbb74ZV48dE9844MCoq/OzsZKtv2GP2HgZE5v3GPKNnK8322JA1K+ySlx8/tnxxuuvxdpfXKc1lkiZuOiSFA3aYXDsOHjniIg495yz4q9/fXiZ2z7wf3+MJ6f8Ow4/8pj42UU+zbxabNB92d3bZvsdYrsdBkdExMXnnxOPPvLX1lwaFUD7IJdzfdnx5huvx43XXRmjTjk9zj/7jJznevXO/YT6xsbGeOapKTHgK9tGx89/vhVXSWtzro8Ujb7syvhCp07NX395wFbR1NQUV11xWRx/4ndjjTXWjFEnfy9OOuX7ERGx395LfgIolWuvfXKPZW7+5QFRX79KXHjuD+P1116NL66zbhx34ik52wzYaut4443X4p677jBgpQIZrAmlMemeu2OdddeNH1/wk+ZrI3r13ij23PWr8chfH469huxb5hWysjbYoPsyP531lZdfimvHXhLfOen7sfd+32x+3LWd2WeoJqn69Lm+H59zVvzt4SXP9V09dkz06t0rfnTeomtcBmw1MN5668246ooxsb9rXKrCm2+8HuOuvTJOPOX0OO9/jnfecPUVse32O8ZJp/4gIiIGDNwmImriikt+GgcO/XZ079GrDCtmaezzQXFsv8OOscMn13ee96OlX9954snfy/l6q69sHW+8/lrcdeftBqxUiUXtGxsnnnJGnHf26Uvd5rmpz8Tvf3d7nPDd78dPzv1hK6+QFaF9UBwrst930ndzr3EZ+En7fnfn7QasVLBXXn4prht7SYxcgWOZz099Ju69644YedKp8bPzz27FVVJO1fDh6bVF/W5UpYsuPD8G7Tg4Nv/yl8u9FErk2aenxBYDvpIzierLWy36JLu//nnFflCx4moL/FVsn5729c1vfjPn19NPPx0R0Tzt69lnn43hw4fHL37xi2VO+zrxxBPjF7/4RRxxxBExderUokz7gnL473//E08/9WTsvsde5V4KK6lx4cJY9XOr5XRt9XbtIiKi6eOmiIhY0NAQ//7nY7H9Tl/L2W6Hr+4WH876IJ598onWXXSGFdo9OyRQPLW1y/9fVENDQzz290fi67vslvOzcbc99owPPvggnvj35FIvkVbWocOikyULFy4o80qypdLa9+mLLq+55prlXnTZ1NTU/PjyLrpczEWXVLLP6t5i8+bOjZ9eeF4cd8LJ0aFDhxKvitayon//FEcldS9C+2BpnOvLjst//pPYZrsdYpPNPvvv8l+PPxrvvP1WfG3XPVphZWmptPY510eKPj1cZbE+X9o4IiLeevPNiLBfkDUdOi4+lrlw2dt06Ljc58lPpR3vXOzTgzWvu+66ZQ7W/LTlDdb8NIM1qRYLFyyM1VbLvTaiXftF10Z8/HHTsn4bVeqeu26PtnV1sdteBueUWqW1b/FQzSOPPLJ5qObiX7Nnz46IiJEjR8bUqVPj9NNPj0cffTSuvfbamDhxYowYMWKJoZrjx4+Pa6+9Nv7+97/HaaedFtOmTYuRI92MS+VZkWtcHl3mNS7vu8alSlz2s5/ENtvvEJtsnnu88/3334tXX5kZWw7cOufxAZ98/fCDf2q1Naagkrq3mH0+UpTv8cwOHR0TqyaX/ezC2Hb7HWPTzZd+ru/jjz+Oi88/Jw446JDo0rVbK68uHdoHlSH/9n1e+yrcpBU8lvnxxx/H6J/8OPb71lDdK6FKO95ZLdqWewGU11//8lA88reH487f3xsNDQ3lXg4FOPOU42PWB+9Hh46fj2223zGOGHFi8wUobWrbRNu2uVO627RtGzU1NfGfF6eXY7mZ9ukD+ZWgGqZ9QTn8/q7fRW1tbey2+57lXgor6au7D4kzTxoRt/9yfOy8694xf97cuOHKS2Ktzl+MrQcNjoiI1155ORYuWBDr/b/cm6y6bbDo65f++2L0W4GbFPhsldY9YNlefvmlWLBgQWzwPzegbvjJAfcXX3ghvrzlgHIsjRV0xinHxQfvvx8dP//52Gb7wXH0yJb9vsUaGxtj4cKF8eKMaXHjdWNj4DbbOSBZZJXWPp9kDst39VVXRKc11oh99vtG/O7O28u9HFbCaSe3dG/bQYPjmO8s2T1ah/ZBZXOuLzse/dvD8Y9H/xa3/PruWLACf5f3Tbo7Vl+9XWyz/Y6tsLq0VFr7nOuDRSb/8/Goq6uLrus51pUVi49lvjBjWlx/9djYetvtl/j7XbhwYXw0f37865+PxT133xmHHXFMmVabXZXWvYjcwZo33XTTcgdrDh8+vPk9LG+w5uJhYgZrUk323ne/GHn0EXHLzTfGXnvvE3Pnzo1LR18cX/ziOrHTzl8t9/LIww9OOT4++OD96Njx87H19jvGUZ861/f0k/+Obv9vg/jD7++MW8ZdE2+99Wasv0H3OGrkqNhq6+3KvPJsqbT2fXqo5qWXXprz3M033xxbbbVV81DN0aNHx1133RWdO3de5lDNiIgJEybEpZdeGj169DBUk6r18kuLr3HpnvP44ptKX3hhhmtcKtzi450TfrPk8c42n9xo2bYu9/6Guk/+jf7iC+5vKKZKa599PvhsCxcujPnz58c///FY3P27O+KIo0eUe0msgL//7S/x2KN/i4m/+f0yz/Xd+dvb4t1334lDDz8qnnnqyVZeYTq0D6rP4vY9/tijcdedt8dRx2hfJfvfY5lvf3Is88j/OZZ51+2/ivfefScOHnZkTH36qTKuONsqrXvVwoCVhH300UdxwXk/jqNHfCfWWqtzvPLKzHIviTys3q5d7H/Qt2OTzbeMz31utXj26Snxi5uvj2eeeiLGjvtl1NfXR9du/y+mPj0l5/c998xT0dTUFB/OmlWmlWeXHEF1uOfuu2KLL28Za3/xi+VeCitp0y0GxA/O+1lc9KPT49rLfxYREV9cp0ucd8nV0a79ok+k//DDRX1r1659zu9dbbXVo7ZNm5g964PWXXSG6R5Ujw8/WPSzsX2HDjmPr756u2jTpk3M+uD9MqyKFbF6u/bxzYO/HZtuvmV8brXV4tmnnowJN10XTz/5RFxz0y9zTors9dVtY/bsDyMiYsutto6zz/9ZuZadWZXWPhddwrLNmDE9Jt5yc9xw0wQnEKrI6u3ax4FDvx2bbrFlrPa51eKZp56MW268Lp6e8kRcO/6XLgYog0r7X4/2QQvn+rLjo48+ikt+el4MO+LYWHPNteK1V19Z/vbz58dfHvy/2GHwV2OVVVZppVWmo9LaB0S8MGN6/GLi+NhnvwOiXbt25V4ORbLLjls3H8vcauA2ce5Pfp7z/PPPPRvf/tZ+zV9/+/CjYui3DYgqtkrsnsGasMiArQbGxZdcFmecekr87KILIyKiS9eucdV1Nyxxvo/Ktnq7dnHAQYuOeS6+xnPCTYuu8bzqxkXHPN995+14+60348Zrx8ZRI0+ML3RaI27/1cQ447vHx7W3/Co22LBHud9GZlRa+wzVhKWb9cn1fe3b517/13KNi+v/KtlHH30Uoy86Lw47cunHO9t36BgdP/+FeOapKbHXPt9ofvyZpxbd7zDL9Z1FVWnts88Hy/fc1GfjW/vv0/z14UceHd8+zL/vKl1L+0Ys81zfe+++E9eMvTROPeOcWHXVz5VhlenQPqguU599Nr75jSHNXx9x1DEx7PAjyrcgPtPiY5k3XTs2jvzUscwffPf4uOaTY5nvvftO3HDVZXHyaWfrXolVWveqRVUPWHn11VfjscceiyFDhpR7KVXpumuuirq6ujjo4EPKvRQK0LN3n+jZu0/z15tusWX07N0nTj3h6Hjgvntilz2GxD4HHBwXnnN63Dr+hth1z33izTdej0t/+uOobdMmat1cAlVF+4pjyhP/jpdffimGH3V0uZdCHqY+NSV+du4PYoev7hrb7fjVmDdvbvx64o1x1ndHxs+uuim+0GmNci8RKCLtg4hevftEr0/t9222xYDouVGf+O5xR8X/3XdP7LrHkObnLrlqXHw0f168MH1a3HzD1XHaSd+Jn425Ntq0aVOGldMaXHSZPdpXPOf/+OzYfc+9o28/gxKqSa+N+kSvjT7VvS8PiF4b9YmTvnNU/PEP98Ruew4p3+KoCNqXPdqXP+f6suOWcddG27q6+MaBB6/Q9g8/9EDMnTMnvrrrniVeGVBsurfy3n/vvfjuqO/Eeut1i+NOOKncy6GIrrj2xpg/f37MmPZ83Hj91XHKCSPj0iuvaz6W2e3/bRA33HJbzJs7N/71+GMx/qbro02bNnHksceVeeWUmsGa2aJ9+ZvyxL/jzNO/H7vstkd89eu7xNy5c+OmG66L7xxzVNx4yy9ijTXXLPcSWUHLusbzlONbrvFs+rgp5s2dG2ed+9MYuM32zdsdvO+u8Yubb4jTzz6/XMsHVpL2QcT4FTje+Y0DD46brrsq+m2yWWy/w+CYMX1aXHPFJdGmTZuora1txdXS2uzzZY/2Fdf/W3+DuOXWX8XcuXPj8X88FjfdsOh42bEjjy/30liO8eOuibq6uth/Oe0bc8nFsVGfvrHDTl9rxZVRCbQvW3Sv+NbfYIOY+MtfN7dv3PWLrnsf8R3tq1SLj2We+T/HMofuu2vcevMNcdrZ58dVl/0sem20cWw/+KtlXi0sXVUPWHnyySfjtNNOE6M8vPrqK3HjDdfFBT+5OObNmxfz5s2LObNnR0TE/Pnz4sMPP1xi4jPV48tbbR3tO3SM5559KnbZY0jsvMse8Z8XpseN14yJa68YHbVt2sTe+x0YdXX1sdrqPt2p2MysoZS0rzjuvut3scoqq8RXv7ZLuZdCHq685MLo02+TOO6UHzQ/tsnmW8aw/XaNO355Sxx27AnRvv2iT2ta/Kl3i82dOyc+bmyMdh06tuqas0z3KDXtK572HRf9bPxw1qycx+fMmR2NjY3RoePny7Aq8rXlVltHhw4dY+ozT+UMWOnZa6OIiOjbf7Po0WujOPbwgxZ9qrmTckWjfZSa9hXHHybdE1OffSZ++KPzYtYn7Zs/f15ERMyZPTtWX231+Nxqq5VziayELQduHR06LuqeASutT/soNe3Lj3N92fH6a6/GL8bfED/48U9i3rx5ETEv5s5Z/Hc5P2bP/jDatcv9u7xv0t2xVue1Y7MttizDirNP+ygl3Vs5c+bMieNHHhULFi6Iq6+/2X5cxiweKt1/k82iV++N4ohvfyv+/Kc/xuCdvx4REauuumr0+VLfiIjY/MsDYpVVV42rr7g09t3/wFhjzbXKtu6sqcTuGayZLdqXv5+cf25ssslm8YMftnwC8ZYDtordvjY4bhl/U5xw4sllXB2F+vKnzvXtsseQaNdh0bnczbYY0LxNXV1d9O2/WfznhenlWmYmVWL7yBbtK44On1zf9+GHudf/tVzj4vq/SvX6a6/GL26+Ic781PHOOZ8c7/zoU8c7Dzr08HjtlZlx0bk/jAt/dGbU19fH4Ud/J2695cZYYw2D5Iqp0tpnny97tK+4Vl111fjSxv0iIuLLW24Vq66yalxx+SWx/ze/FWs6JlaRXn/t1Zh48w1x1lLat/hc339efCH++Id74orrbo4PP1x0HdO8eXMX/efcuTF3zpxYbfXVy/UWMkf7KCXdK75VV101Nu67qH1bDtgqVllllRhz2SVxwDe/FWuupX2V6LOOZT7z5BPxwH2T4tKrb4zZ/9u9ebpXbJXWvWpR1QNWyN8rM2dGQ0NDnHziklO8zj7zjPjJ+efF3x+fXIaVUUw1n/xkrKmpiSNHnhgHDzsqXnt1ZqzZee1ot3q72Ofr28U+BxxU5lVmT20oElSyhQsXxn333hODdtgx2rUzZKoavfTiC/HlgdvmPLba6u1ina7rxSszX4qIiHW6rBdt6+ri5f++EFt9Mg1z8e+NWPSJdxSH7kH1WG+9blFXVxcvvvBCbL/Djs2PvzBjRkREbLDhhuVaGgWoWc4RsV4b9YmamprmPlIc2gfV4YUXZsScOXNir92WHDC19x67xHbb7xCXj726DCujEDV+BpeF9kFlcq4vO157ddHf5VmnnrjEcz/58Vlx2cUXxB8e+kfzY++//1489sjf4oCDDvFJriWifVAZGhoa4uQTRsarr74S1904Idbq3LncS6KEem/0paipqYmZLy/7WGbvPl+KxsbGeO3VVw1YKSLdg8r1wozpsc122+c81q5du1hvvW7x0n//U55FUXSLz/Wtv0H3mPr0k0s83xRN0dDQ0NrLyjTtg+qwXrfF17jMiEGfusZlxifXuGy4YfdyLY3P8Nori453nrmU450X/visuPTiC+K+v/wj6uvr47QfnhsjR50Sb775eqyzTpdoaPgorrr859Fvk83KsPLs0j6obn2+tHE0NjbGq6+8YsBKhXr1k/b9YKntOzMuvfj8OPF7Z0Rj48I45rAl7+E7ceQRscGGPWL8bXe2xnKToH1Q3b60cd9F7Xv1FQNWKtRnHct86b8vRmPjwvjOEUOX2OaU446K9TfsETf84vbWWGoSdC8/FTlgZaeddlqh7ebPn1/ilWRX7436xHXjbs557O23347vn3JSHHXMiPjK1tuUaWUUwz/+/tf4cNYHsdGX+uU8vtrqq0f3nr0jIuL3d/w6Gho+iq9/6pPOKQ4Tv8iH9rWev/314Xjvvfdi9z32KvdSyFPnddaNaVOfznls7pzZ8drMl6Pfpl+OiIi6+vrYZPMB8ZcH7ov9vvXt5gtS/vzHSdGufYfYqO8mrb7urNI98qV9ra++vj623Gpg3PeHSXHoYYc3/2y8957fR4cOHWOTTTct7wJZKY898teYNeuD2OiTT3BdmiefmBxNTU2xzrpdW3Fl2ad95Ev7WtdeQ/aJL285IOexv/31LzHu+mvjZ6Mvj27/7/+VaWXk49FH/hqzPvgg+my87O5ROtpHvrSvtJzry44evTaKS6+6Ieexd995O84543vx7eHHxJe3+krOcw/cd280Ni6Mr+26R2suMynaRz50r7gaGxvj9O+dFM88/WRcee2Nsf76Budn3ZRPjmWu22XZxzKnTP5X1NTUxLpdurTiyrJP98iX9pXeOut2iWeefirnsdmzZ8fLL78UW3x5yzKtimJ57O+fnOv75JPpt9l+h7j37jviX48/Gl/ZdtGnVTc0NMRTT0yOzbccWM6lZo72kS/ta1319fUxYKuBcd+9k+Lbhw1vucbl93cvusZlk03Lu0CWqUfvjeKy/zne+c7i451HHBNb/s/xzg4dO0aHjh0jImLCFddHh44dY8edv95q602B9pEv7asMkyf/M2pqaqLLco6bUV49e28Ul101Luexd995O84+45QYdsQxseVWW0fX9botsc3056fGZT//SZx06g+iz3KuA2XlaR/50L3KMflf2lfptl7Gscwnn5gcW2w5MAZ8Zdv4+djc/cLpz0+NsZdcFCecckb01r2i0r38VOSAlTfeeCN69eoV/fr1W+52M2fOjL/97W+ttKps6dChQ2w5YKucx155ZWZERGzYvUdsvsWXy7Es8nD+D78f66zbJXpu9KVYbbXV49mnn4xfjr8hevTaKHb86q4RETH16Sdj8j8fix69NorGxsb41z8eidtvmxjHnvC9WLfLemV+B9njk3TJh/a1nt/f9bv4/Oc/v8Sn/FA99tz3mzH25xfE5Rf9OLbZYaeYN29e/PbWm2PBggWxy177Nm930GFHxfdGDo9LLjg7dtplj3ju2afi7t/eFsNHjoq6uroyvoNs0T3ypX3FN2/evHj4L3+OiIhXZr4c8+fPj/vvuzciIjbu2y/WXbdLHHXMiDhi2CFxzplnxB577R1PPfVk3HbrxBh18ilRV1dfzuWzHOeedWqss27X6PXJft8zT0+JX9y8aL9vp6/tFhER3z3uqNh8y4GxwYbdo66+PqY992zcesuN0b1Hr9huhxU76M+K0T7ypX3F9enuzZw5M+bPn5fTvS5dui5xgu3VV1+JiIhNNtvMp/pUsB+deWqsu27X6NXnk+49NSUm3nRD9Oy1Uez09UXdmz9/Xjzy8F8iYtEnAc2fPz/+9Mf7IiKiz8Z944vrrFu29WeR9pEv7Sst5/qyo337DrHZFrmD4V775N8t62+4YWyy2RY5z91/792xYY+ezR+qQPFpH/nQveL6yfk/jgf/9H9xzMjj4+OPG+PJKf9ufm6DDXtEu3bt4rVXX4mnP7npfO6cOfHaq6/GH+//Q0REbLvt9rHq5z5XjqWzAkaNODK+PGBgbNC9R9TV18XzU5+NiTePix49e8egHXeK1159Jc49+4z46td3iy5d14uGhoZ4/LG/x69+OSGG7HdAdFpjzXK/hUzRPfKlfaV34EEHxwXn/ijOPees2Gnnr8XcuXNj/E3jYkFDQ+z7jf3LvTxWwnk//H6ss06X6NXnS/G5T67xvPWTc32DP7nGc+vtdoyN+20SPz3vh3HkiBOi0xprxu23TYwPZ82KAw85rMzvIFu0j3xpX3HNmzcvHn6o5VzfvPnz4v4/fHKur9+ia1yOPnZkHP7tofHDM0+PPfcaEk89OSV+eevEOPHkU6Ku3jUulap9+w6x2ZeXcbxzg5bjnY88/FC8MvOlWH/DHjF3zuz4y4MPxP33/j5+dOHPYvV27Vp93VmmfeRL+4pr3rx58df/ub7zj59c5/Klvov+jM/+wWnx9V13j67rdYuGho/isb8/Er/8xYTYb/9vxhprOiZWqdq37xCbL7N93Zvbt8YyrlXqtdGXos/Gy//fGStH+8iH7hXfZ+33RUScefr3Y9fd9oj1unWLjz76KB79+yNx68Rb4hsHaF8l23q7HeNL/TaJi8/7YRzxqWOZs2fNim8eclh0WmPNZZ7P69m7z3I/YJaVp3v5qcgBK7169YquXbvGOeecs9zt/vCHP4gRyVt/wx7xwH2/j9/+ckJ89NFHsVbntWOXPfeJQ484tvnm8bZ1dfG3v/wpJt54bTQ2NsaGPXrFWef9LLbbcecyrx5YTPtax9w5c+LBBx+IvfYaYsBGFdt9nwOivn6VuOu3t8aD90+K+lVWiR69+sQFl10bXbut37xdn76bxFkXXhI3XXN5/On+e6LTGmvGYcccH0MOGFq+xQPNtK/43nv3nfjeSaNyHlv89Tnnnh97Ddk3Ntl0sxh9+dgYc+nouOf3d8Waa60Vx406KQ4+5Nutv2BW2Pob9og//uGe+PUvb4mP5i/a79ttr31j2JEt+319Nu4X9997V/OJuS+u0yWG7PfNOOCgb/t3D1QI7Suud999J0456YScxxZ/fc65F8TeQ/Zd2m+jCmywYY/44733xK9uXdS9zmuvHbvvvW8cdlRL995799046/sn5fy+xV+f9sNzY7c9h7T2soGl0D4ovldmvhRPP/lEHHPcSZ+9MdCqdK+4HvnbooGKV11xWVx1xWU5z1113U3x5S0HxOP/eCzOOev05sffeuvN+Ofjj0VExO/u+WOs26VL6y2YldKnb7+495674rVXFw2H++K6XWLf/Q+Mbw0dFnV19dG+fYfo3HntGH/jdfH222/F5z73uejatVuc9oNzYpfd9yrz6oHFtK/09v/mt6K+fpX45S8mxKTf3x2rrLpq9Onzpbjmhpti/Q02LPfyWAnrb9Aj/u++38dvPnWN56577RPf/tQ1nrW1tXH+z66IKy+7OK687OL46KOPYqM+G8fPr7guNtiwR5nfARChfcX27rvvxHf/51zf4q9/dO4Fsfc+i65xuXTM2LjsktFxz913xVprdY7jTzw5hh46rAwrptjatm0b99x1Z8x86T8RNTXRZ+N+MXrsdbHZFluWe2nAJ7SvuN5795343smjch5b/PXZPz4/dtzpq9F57S/Gjddf23JMrNv/ix/88Eex+557t/6CARKje8X3Wft9g3f+aqz9xS/GDddfE2+/tah963X7f3HW2T+OPfbSvkq2+FjmVZddHFd9ciyzd5+N42eOZVJFKnLASt++feOhhx5aoW2bmppKvJp0dOnSNZ54+rlyL4OVdNC3j4iDvn3Ecrfp0WujuPzaW1ppRdQY+EUetK91rLb66vHo4/8u9zIoUE1NTXxtjyHxtT2GfOa2W35l29jyK9uWflEJ0z3ypX3Ft26XrjH5qamfud22220f2263fSusiGIZOuzIGDrsyOVuM/yY42L4Mce10orSpn3kS/uKq0uXrvHvp1buWObeQ/Y1eKUKHHLYkXHIYcvv3jrrdom/PP5UK60I7SNf2tf6nOvLjnXW7RIP/WPJ1nXp2m2pj1Nc2kc+dK+47pr0f5+5zZ577xN77r1PK6yGYjt6xPFx9Ijjl/l8u/bt44fn/qQVV5Q23SNf2ld6NTU1MWTf/WLIvvuVeykU6OBhR8TBw5Z/jWdERIeOHePUM38cET8u/aISpn3kS/uKa0WPZW673aDYdrtBrbAiSmlp5/a2HLh1bDlw6zKtKC3aR760r7jW7dI1/vXk8q/vPPeCi1ppNZTaOut2iYcff3q522z+5QGfuQ350T7yoXvFtyL7fedf+NNWWg3F1qFjx/jeShzL3HSLLeOBR58s7aISpXv5qcgBK0cccUQMGvTZB8IGDRoU//d/n31RBUBrqg1FYuVpH1CtdI98aR9QrbSPfGkfUK20j3xpH1CttI986B5QrXSPfGkfUK20j3xpH1CttI98aR9QrbSPfOgeUK10Lz8VOWClW7du0a1bt8/cbtVVV40uXbq0wooAVpyJX+RD+4BqpXvkS/uAaqV95Ev7gGqlfeRL+4BqpX3kQ/eAaqV75Ev7gGqlfeRL+4BqpX3kS/uAaqV95EP3gGqle/mpLfcCAAAAAAAAAAAAAAAAAAAAAABKpW25FwCQNSZ+AZAS3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3cuPASsARVYTigRAOnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnQvPwasABRZrR4BkBDdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkBLdy09tuRcAAAAAAAAAAAAAAAAAAAAAAFAqbcu9AICsqQkjvwBIh+4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie7lx4AVgCKr0SMAEqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7+TFgBaDITPwCICW6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6lx8DVgCKrFaPAEiI7gGQGu0DIDXaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7uWnttwLAAAAAAAAAAAAAAAAAAAAAAAolbblXgBA1tSEkV8ApEP3AEiN9gGQGu0DIDXaB0BKdA+A1GgfAKnRPgBSo30ApET38mPACkCR1egRAAnRPQBSo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+A1GgfACnRvfwYsAJQZHoEQEp0D4DUaB8AqdE+AFKjfQCkRPcASI32AZAa7QMgNdoHQEp0Lz+15V4AAAAAAAAAAAAAAAAAAAAAAECptC33AgCyprbGzC8A0qF7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7+TFgBaDI5AiAlOgeAKnRPgBSo30ApEb7AEiJ7gGQGu0DIDXaB0BqtA+AlOhefgxYASg2RQIgJboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXFwNWAIqsRpEASIjuAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInu5ae23AsAAAAAAAAAAAAAAAAAAAAAACiVtuVeAEDW1Bj4BUBCdA+A1GgfAKnRPgBSo30ApET3AEiN9gGQGu0DIDXaB0BKdC8/BqwAFJkeAZAS3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3cuPASsAxaZIAKRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9/JSW+4FAAAAAAAAAAAAAAAAAAAAAACUSttyLwAga2qM/AIgIboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXHwNWAIqsRo8ASIjuAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInu5ceAFYAi0yMAUqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7+akt9wIAAAAAAAAAAAAAAAAAAAAAAEqlbbkXAJA5Rn4BkBLdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkBLdy4sBKwBFVqNIACRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9/JjwApAkdXoEQAJ0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b38GLACUGR6BEBKdA+A1GgfAKnRPgBSo30ApET3AEiN9gGQGu0DIDXaB0BKdC8/teVeAAAAAAAAAAAAAAAAAAAAAABAqbQt9wIAMsfILwBSonsApEb7AEiN9gGQGu0DICW6B0BqtA+A1GgfAKnRPgBSont5MWAFoMhqFAmAhOgeAKnRPgBSo30ApEb7AEiJ7gGQGu0DIDXaB0BqtA+AlOhefgxYASiyGj0CICG6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6l5/aci8AAACgmP773//GWWedFfvss09svPHGMXjw4KVu99BDD8U+++wT/fr1i8GDB8eNN9641O3GjRsXgwcPjn79+sW+++4bDz/8cAlXDwAAAAAAAAAAAAAAAAAUmwErAEVWU+CvYnOTOQClVGj3StG+adOmxYMPPhhdunSJnj17LnWbJ554IkaMGBG9e/eOa6+9Ng488MC46KKLYvz48TnbjRs3Li6++OI48MAD49prr42ePXvGMcccE0899VQJVg5ANajE9gFAKekeAKmptPY51wdAKTneCUBqKrF99vsAKKVK6x4AlJr2AZCSSjzeWQ0MWAEotgqrkZvMASipCtwTGzx4cDz00EMxZsyY6N+//1K3GTNmTPTq1SsuuOCCGDhwYBx11FFx0EEHxZgxY2LBggUREdHQ0BBjx46NoUOHxlFHHRUDBw6MCy64ILp37x5jxowp/sIBqA4V2D4XXQJQUhXWPQAouQprn3N9AJSU450ApKYC22e/D4CSqrDuAUDJVVj7HO8EoKQq8HhnNWhb7gUAZE1NhRVl8ODBsfPOO0dExFlnnbXUHadP32ReU1MTAwcOjDfffDPGjBkTBx54YNTV1S1xk3lExIABA2Lq1KkxZsyYuOqqq1r1fQFQGYrRvSeeeGKltt9kk02W+3xt7fLnSDY0NMQjjzwSo0aNipqalvXvueeeMX78+Jg8eXIMGDAgJk+eHLNmzYrdd98953vvvvvucfnll0dDQ0PU19ev1NoBqH6Vts8X0XLRZf/+/aOpqSlmzZq1xDaLL7rcY4894tRTT40pU6bERRddFG3atIlDDjmkebvFF12ecMIJ0b9//7j99tvjmGOOiVtvvTX69u3bmm8LgApRie0DgFKqtPY51wdAKVVa9yIc7wSgtCqxffb7ACilSmwfAJRSpbXP8U4ASqnSuhexaLjY9ddfH08++WQ8//zzsfbaa8cDDzywxHYPPfRQjB49OqZPnx5rrbVWHHrooTFs2LAlths3blyMHz8+3nrrrejZs2ecdNJJse222xa0RgNWACqMm8wBSM0BBxywUts/99xzBb3eSy+9FAsWLIju3bvnPL746xkzZsSAAQNi+vTpOY8v1qNHj2hoaIiXX355iecAoBxcdAlAaqrhBBwA6XKuDwAK43gnAJXOfh8AFMa5PgBS4ngnAKmphuFiBqwAFFlNgQO/3GQOQDUptHvl8MEHH0RERPv27XMeb9euXbRp06b5+VmzZkWbNm1i9dVXz9muQ4cOOd8HgLQUo30uugSgmlTifl81nIADoHo51wdAShzvdLwTIDXFaJ/9PgCqiXN9AKSm0PY53glANanEfb5qGC5mwApAkVVgj5bLTeYAFKIY3bvtttuK8F0AoHUUo30uugSgmlTi8c5qOAEHQPWqxPYtj3N9ABTC8U7HOwFSU237fBH2+wAoTCW2z7k+AEqp0PY53glANSnGPl+Kw8UMWAEotgKL5CZzAKpKEfbEPmvHqtg6duwYEREffvhhzuOzZ8+OxsbG5uc7dOgQjY2NMWfOnJyLTxZ/WsLi7QBITCVeefIZXHQJQEEq7JN9IqrjBBwAVcy5PgBS4ngnAKkpQvvs9wFQVZzrW6n1A5ABVXbM0/FOAApShO6lOFzMgBWAIqspsEhuMgegmhTavXLo1q1b1NXVxYwZM2LHHXdsfnzGjBkR0bLj9ekds/79+zdvN3369Kirq4v11luvFVcNQKUoRvtcdAlANSm0fa198i2iMk7AAVC9nOsDICWOdwKQmmK0z34fANXEuT7n+gBSU2j7HO8EoJpU4319lTBczIAVgMS5yRyA1NTX18fAgQNj0qRJMXz48OZPOLj77rujY8eOsemmm0ZExOabbx7t27ePSZMmNbevqakpJk2aFNtss41PNgAgby66BIDSqoQTcADQWpzrA6DcHO8EgNKy3wdAapzrA6CcHO8EIDUpDhczYAWgyGqqbOCXm8wBKEQldm/evHnx5z//OSIiZs6cGfPmzYt77703IiL69esXXbp0iZEjR8bQoUPj9NNPjyFDhsSUKVNi4sSJccoppzQ3rb6+Po499tgYPXp0dOrUKfr16xd33HFHTJs2Lc4555yyvT8AyqsS2/dZXHQJQCEKbV+KJ98AqG7Vtt/nXB8Ahai27kU43glAYaqxffb7ACiEc30ApKba9vsc7wSgEMXoXorDxQxYASiyStsPc5M5AKVUad2LiHjnnXfihBNOyHls8dcXXHBB7LvvvrHZZpvF2LFjY/To0XHXXXdF586d4+STT45hw4bl/L7hw4dHRMSECRPi0ksvjR49esTYsWNzDkoCkJZKbN9ncdElAIUotH2tffItojJOwAFQvSptv8+5PgBKqdK6tyIc7wSgEJXYPvt9AJSSc30ApKYS9/uWx/FOAApRbd2LqIzhYgasABRbhRXJTeYAlFSFdS8iomvXrvHcc8995naDBg2KQYMGfeZ2w4cPb24gAFRi+1x0CUBJVWD7PkslnIADoIpVWPuc6wOgpCqsexGOdwJQYhXYPvt9AJRUBbbvszjXB0BBKqx9jncCUFIV1r0VUQnDxWqampqaCn4nGTR/YblXQCm9/WFDuZdACXX9QnknLj7/xtyCfn+vtVcr0kpg5Whftr3y3rxyL4ES6b7W58r6+oV2L0L7KJ+5C+wOZ9Wsuf5hk2Vf7FhX1tevxPbNnDkzdtppp6U+t/iiy4iIP//5zzF69OiYPn16dO7cOYYOHRqHH374Er/n+uuvjwkTJsSbb74ZPXr0iJNOOim23377oq6Z8pi3oNwroFQ+nO8vN8s6t6/u9pV6n++ss86Khx9+OB544IGcx4844oh477334te//nXzCbjzzjsv7rzzznj44Yejvr4+GhoaYuutt479998/Tj311IhYdAJu3333jc6dO8fVV19d0rVTWo53ZtsHc7Uvy9buoH2Qjw/nf1zuJVBCCxodz86qTqu3KevrO95JNXOuL9ven2O/L6vW/Xx1X98ZYb+P8nHMM7tmOZGbac71LZ9zfSzLnAb7fFk296PGci+BElqrfduyvn6ltc/xTlaUfb5se2e2e9qzqovjnUv49HCx2267LZ599tn44Q9/GBEtw8UmT54cQ4cOjb322qt5uNgll1wSp5xySs5Q6euvvz5Gjx4dJ5xwQvNwsbvvvjsmTpxY0FBpA1aWQYyyzYCVbCv3gJVpbxQ2xKDn2uW9UZ50aV+2GbCSXeUesFJo9yK0j/Jx0WV2GbCSbeUesKJ9VDPX5WWXASvZVu6LLivxeGc1nICj/BzvzDYDVrKt3ANWKrF9sCIMWMk2A1ayq9wDVhzvpJo515dtBqxkV7kHrGgf1cwxz+wyYCXbnOtbknN9rAgDVrLNgJVsK/eAlUpsH6wI+3zZZsBKdpV7wEolHu+shuFiBqwsgxhlmwEr2VbuASvT3ywsSD062xGjPLQv2wxYya5yD1gptHsR2kf5uOgyuwxYybZyD1jRPqqZ6/Kyy4CVbCv3RZeVeLyzGk7AUX6Od2abASvZVu4BK5XYPlgRBqxkmwEr2VXuASuOd1LNnOvLNgNWsqvcA1a0j2rmmGd2GbCSbc71Lcm5PlaEASvZZsBKtpV7wEoltg9WhH2+bDNgJbvKPWDF8c78GLCyDGKUbQasZFu5B6zMKDBI3ROMEZVB+7LNgJXsKveAlUK7F6F9lI+LLrPLgJVsK/eAFe2jmrkuL7sMWMm2cl906Xgn1crxzmwzYCXbyj1gRfuoVgasZJsBK9lV7gErjndSzZzryzYDVrKr3ANWtI9q5phndhmwkm3O9UF+DFjJNgNWsq3cA1a0j2plny/bDFjJrnIPWHG8Mz/l/ddKBVvVn0ymlXsABxlXU+4FQH60L9vKPYSDDNM9qthqdf4LnFWrlXkABxnnRwdV7HN+PGbW5+r85VJC2keVcrwz21Yt8wAOMk77qFLtV60t9xKAaqR7VDHn+rJttTJflE6G+dFBFXPMM7tWLfMADjJO+6hSq9f7L2+WrV7vHzaUkB8fVCn7fNlW7iEcZJju5cXVFQAAAAAAAAAAAAAAAAAAAABAZplpBVBkNUZ+AZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3cuPASsARVajRwAkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPfyY8AKQJHpEQAp0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b381JZ7AQAAAAAAAAAAAAAAAAAAAAAApdK23AsAyBwjvwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie7lxYAVgCKrUSQAEqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7+TFgBaDIavQIgIToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXn5qy70AAAAAAAAAAAAAAAAAAAAAAIBSaVvuBQBkjYFfAKRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9/JjwApAkdUoEgAJ0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b38GLACUHSKBEBKdA+A1GgfAKnRPgBSo30ApET3AEiN9gGQGu0DIDXaB0BKdC8fBqwAFJmJXwCkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPfyU1vuBQAAAAAAAAAAAAAAAAAAAAAAlErbci8AIGsM/AIgJboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXHwNWAIqsRpEASIjuAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInu5ceAFYAiqzHzC4CE6B4AqdE+AFKjfQCkRvsASInuAZAa7QMgNdoHQGq0D4CU6F5+asu9AAAAAAAAAAAAAAAAAAAAAACAUmlb7gVQPv/973/j3HPPjccffzzq6+tj1113je9973ux2mqrlXtpFMF///vfuP766+PJJ5+M559/PtZee+144IEHyr2sNBj4BRVL+7JL98pI96CiaV92aV8ZaR9UNO3LLu0rI+2DiqV72aZ9ZaR9ULG0L7t0r4x0Dyqa9mWX9pWR9kFF077s0r4y0j6oWLqXbdpXRtoHFUv7skv3ykj38mLASqI+/PDD+Pa3vx2dO3eOSy65JD744IO48MIL45133onLL7+83MujCKZNmxYPPvhg9O/fP5qammLWrFnlXlIy9Agqk/Zlm+6Vj+5B5dK+bNO+8tE+qFzal23aVz7aB5VJ97JP+8pH+6AyaV+26V756B5ULu3LNu0rH+2DyqV92aZ95aN9UJl0L/u0r3y0DyqT9mWb7pWP7uXHgJVE3XrrrfHuu+/Gb37zm1hjjTUiImLVVVeN4447Lp566qno27dvmVdIoQYPHhw777xzREScddZZ8fDDD5d5RemoUSSoSNqXbbpXProHlUv7sk37ykf7oHJpX7ZpX/loH1Qm3cs+7Ssf7YPKpH3Zpnvlo3tQubQv27SvfLQPKpf2ZZv2lY/2QWXSvezTvvLRPqhM2pdtulc+upef2nIvgPJ46KGHYuDAgc0hilj0A2y11VaLBx98sHwLo2hqa/3Pu1xqCvw/oDS0L9t0r3wK7Z72QeloX7ZpX/loH1Qu7cs27Ssf3YPKpHvZp33lo31QmbQv23SvfBzvhMqlfdmmfeWjfVC5tC/btK98dA8qk+5ln/aVj/ZBZdK+bNO98nG8Mz/+G5uo6dOnR/fu3XMea9u2bWywwQYxY8aMMq0KAEpH+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7AKRG+4BK0rbcC6A8Zs2aFe3bt1/i8Q4dOsQHH3xQhhVBhqQ5sAsqnvZBiegeVCztgxLRPqhY2gclon1QkXQPSkj7oCJpH5SI7kHF0j4oEe2DiqV9UCLaBxVJ96CEtA8qkvZBieheXgxYASgyPQIgJboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXn9pyL4Dy6NChQ3z44YdLPD5r1qzo2LFjGVYE2VFTU9gvoDS0D0qj0O5pH5SO9kFpaB9ULu2D0tA9qEy6B6WjfVCZtA9Kw/FOqFzaB6WhfVC5tA9KQ/egMukelI72QWXSPigNxzvzY8BKorp37x4zZszIeayxsTFefPHF6N69e5lWBQClo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+A1GgfACnRPQBSo31AJTFgJVHbb799PProo/Huu+82P/anP/0p5s6dG4MGDSrjyqD61RT4f0BpaB+URqHd0z4oHe2D0tA+qFzaB6Whe1CZdA9KR/ugMmkflIbjnVC5tA9KQ/ugcmkflIbuQWXSPSgd7YPKpH1QGo535qdtuRdAeRx44IFxyy23xIgRI+LYY4+NWbNmxYUXXhg77bRT9OvXr9zLowjmzZsXf/7znyMiYubMmTFv3ry49957IyKiX79+0aVLl3IuL9Nq0uwJVDztyzbdKx/dg8qlfdmmfeWjfVC5tC/btK98tA8qk+5ln/aVj/ZBZdK+bNO98tE9qFzal23aVz7aB5VL+7JN+8pH+6Ay6V72aV/5aB9UJu3LNt0rH93LT01TU1NTuRdBebz44otx7rnnxj//+c9YZZVV4utf/3qceuqpsfrqq5d7aRTBzJkzY6eddlrqcxdccEHsu+++rbyidLw3t7Gg3/+F1doUaSXA/9K+7NK98im0exHaB6WkfdmlfeWjfVDZtC+7tK98HO+EyqV72aZ95aN9ULm0L7t0r3wc74TKpn3ZpX3lo31Q2bQvu7SvfBzvhMqle9mmfeWjfVC5tC+7dK98HO/MjwErAEVmRwyAlNgRAyA12gdAahzvBCA12gdAShzvBCA12gdAahzvBCA12gdAShzvzE/bci8AIGtqasq9AgBoPboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXHwNWAIqsJhQJgHToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXn4MWAEoMhO/AEiJ7gGQGu0DIDXaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7uXHgBWAItMjAFKiewCkRvsASI32AZAa7QMgJboHQGq0D4DUaB8AqdE+AFKie/mpLfcCAAAAAAAAAAAAAAAAAAAAAABKpW25FwCQOUZ+AZAS3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3cuLASsARVajSAAkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPfyY8AKQJHV6BEACdE9AFKjfQCkRvsASI32AZAS3QMgNdoHQGq0D4DUaB8AKdG9/NSWewEAAAAAAAAAAAAAAAAAAAAAAKXSttwLAMgaA78ASInuAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInu5ae23Augclx++eXRu3fv5l8DBw6MQw89NB5//PGSvu7vf//76N27d8ycObP5sd69e8c111yzwt9j5syZcfnll8frr79e1LX169cvLr/88uVuc8ghh8Tw4cMLfq3BgwfHWWedVfD3iYh49NFHo3fv3vHvf/+7KN+PlVRT4C+g1WjfkrSPlVZo97QPWpX2LUn7WGnaB1VD95ake+RF96BqaN+StI+8aB9UDe1bkvax0hzvhKqifUvSPlaa9kHV0L0l6R550T2oGtq3JO0jL9oHVUP7lqR9rDTHO/PSttwLoLLU1dXFLbfcEhERb7zxRowdOzaGDRsWv/3tb6NXr16tto5f/vKXsc4666zw9q+88kqMGTMmtttuu/jiF79YwpXBZ6tJtShQpbQPCqN7UH20DwqjfVBddA8Kp31QXbQPCqd9UF20Dwqje1B9tA8Ko31QXXQPCqd9UF20DwqnfVBdtA8Ko3v5MWCFHDU1NbHppps2f92vX78YPHhw3HrrrcucRNXQ0BD19fVFXcen1wAApaR9AKRG+wBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9QDnUlnsBVLZ11103OnXqFDNnzoyIiO9///uxyy67xN/+9rfYd999o2/fvvGb3/wmIiKmTJkShx9+eGy22Wax2WabxbHHHhsvv/xyzvebPXt2nHbaabHFFlvElltuGWeeeWbMmzdvidft3bt3XHPNNTmP/fnPf46DDjooNt1009hiiy3iW9/6Vvzzn/+MRx99NA499NCIiPjmN78ZvXv3jt69e+e85rnnnhvbb7999O3bN/bYY4+45557lnjNX//617HTTjtFv3794oADDoinn366sD+8T7z99ttxxhlnxFe/+tXo379/DB48OH74wx/GrFmzlrr9DTfcEIMGDYr+/fvHYYcdFv/9739znm9qaoobb7wxdt111+jbt28MGjQoLrvssmhsbCzKeilcTU1hv4Dy0r7CaV9aCu2e9kH5aV/htC8t2gfVTfcKp3vp0T2obtpXOO1Lj/ZBddO+wmlfWhzvhOqnfYXTvrRoH1Q33Suc7qVH96C6aV/htC892gfVTfsKp31pcbwzP23LvQAq2+zZs+P999+Pzp07Nz/2zjvvxJlnnhnHHHNMrLfeerHGGmvElClT4uCDD46BAwfGT3/602hqaooxY8bEsGHDYtKkSc3TwM4444z485//HKNGjYoNN9ww7rzzzrjssss+cx333HNPnHTSSTFo0KC46KKLYtVVV40nnngiXn/99Rg0aFCcddZZ8aMf/SjOPffc6NmzZ/PvW7BgQRx++OHx2muvxciRI2O99daLP/7xj3HSSSdFhw4dYtttt42IiAcffDDOOOOM2GOPPWLvvfeOF154IY4//vj4+OOPC/4zfP/996Ndu3bxve99Lz7/+c/HK6+8EldeeWUce+yxMWHChJxtH3zwwVhzzTXjBz/4QcyfPz9+/vOfxxFHHBH33HNP1NXVRUTEhRdeGBMnToyjjjoqtthii5g6dWpzjE488cSC10vhVvWTFaqa9mkfK0f3oPppn/axcrQPqpvu6R4rT/ugummf9rHytA+qm/ZpHytH96D6aZ/2sXK0D6qb7ukeK0/7oLppn/ax8rQPqpv2aR8rR/fy1ASfuOyyy5r69u3btGDBgqYFCxY0zZw5s+m4445r6tWrV9NDDz3U1NTU1HTqqac29erVq+mxxx7L+b1Dhw5t2nfffZsaGxubH3vjjTea+vXr1zRx4sSmpqampunTpzf17t27acKECTm/9xvf+EZTr169ml5++eXmx3r16tV09dVXNzU1NTU1NjY2bb/99k1Dhw5d5tr//ve/N/Xq1atp8uTJOY//9re/bdpoo42annnmmZzHjz322Kb999+/+ev999+/6Rvf+EbONrfccktTr169mi677LJlvu7i93744Ycvd5tPW7BgQdM//vGPpl69ejVNmzat+fEdd9yxaZNNNml65513mh976qmnmnr16tX0m9/8pqmpqanppZdeatpoo42abr755pzvOW7cuKZNNtmk6b333mtqalr2nwcAubRP+wBSo33aB5AS3dM9gNRon/YBpEb7tA8gNdqnfQAp0T3dA0iN9mkfQGq0T/ugXGrLPeCFytLQ0BAbb7xxbLzxxjF48OB45JFH4qyzzortttuueZv27dvHlltu2fz1/Pnz45///Gfsuuuu8fHHH8fChQtj4cKF0alTp+jVq1dMmTIlIiKmTJkSTU1Nscsuu+S85te+9rXlrunFF1+M119/Pfbff/+Vfj8PP/xw9OjRI3r27Nm8roULF8Y222wTzzzzTDQ2NkZjY2M8/fTT8fWvfz3n9/7vOvPV1NQU48ePjz322CM23XTT2HjjjePggw+OiIj//Oc/OdsOGDAgOnXq1Pz1xhtvHF27dm3+M3zkkUfi448/jl133TXn/Wy99dYxb968mDZtWlHWDJAS7WuhfQBp0L4W2geQfbrXQvcA0qB9LbQPIA3a10L7ANKgfS20DyD7dK+F7gGkQftaaB9AGrSvhfZB62lb7gVQWerq6uIXv/hF1NTUxBe+8IVYZ511orY2dw7PGmuskfP1Bx98EI2NjfHTn/40fvrTny7xPdu1axcREW+99VbU1tbGF77whZzn11xzzeWu6f3334+IiLXXXntl3068++678fzzz8fGG2+81OffeuutaNOmTSxcuHCJ99WpU6cl3ns+br755rjgggti2LBhsfXWW8fnP//5eOONN+I73/lOfPTRRznb/u8aIhb9+bz11lsREfHOO+9ERMQ222yz1Nd69dVXC14vQGq0r4X2AaRB+1poH0D26V4L3QNIg/a10D6ANGhfC+0DSIP2tdA+gOzTvRa6B5AG7WuhfQBp0L4W2getx4AVctTU1ES/fv0+c5tPa9++fdTW1sbw4cOXmJgVEbH66qtHRMRaa60VH3/8cbz33ns5E63efvvt5b7e4ni98cYbK/QePq1jx47Rs2fPuOCCC5b6fKdOnaJNmzbRtm3b5h/0i7377rvx8ccfr/Rr/q9JkybFoEGD4vvf/37zY3//+9+Xuu3/riFi0Z9Pnz59ImLR+4mImDBhQqyyyipLbNu1a9eC1wuQGu1roX0AadC+FtoHkH2610L3ANKgfS20DyAN2tdC+wDSoH0ttA8g+3Svhe4BpEH7WmgfQBq0r4X2QesxYIWCrbbaarHZZpvF9OnT47vf/e4yt+vfv3/U1NTEvffeGwcddFDz4/fdd99yv/8GG2wQ6667bvzmN7+Jvfbaa6nb1NXVRUQsMT1rm222iQcffDDWXHPNWGeddZb5GhtvvHH84Q9/iCOOOKL5sXvvvXe561pR8+fPX2Ki2Z133rnUbR977LF47733mgP89NNPx8yZM2OTTTaJiIitt946ampq4p133llq+AFoHdq3fNoHkD3at3zaB5Aturd8ugeQPdq3fNoHkD3at3zaB5A92rd82geQLbq3fLoHkD3at3zaB5A92rd82gefzYAViuL73/9+HHLIITFy5MjYa6+94gtf+EK89dZb8eijj8bAgQNjt912i+7du8fXv/71uOiii2LBggWxwQYbxJ133vmZU7xqamri1FNPjVGjRsUxxxwT++23X3zuc5+LKVOmxPrrrx+77bZbrL/++tGmTZv47W9/G/X19dG2bdvo169f7L333vGb3/wmDjnkkDjssMOie/fuMWfOnJg2bVq88sor8eMf/zgiIkaMGBFHH310nHzyybH33nvHiy++GDfffHO0bbti/xN55513lhqvgQMHxrbbbhs33HBD3HDDDdG7d+/4v//7v/jHP/6x1O/ToUOHGD58eIwYMSLmzZsXo0ePjvXWWy/22GOPiIhYf/3147DDDovTTjstnn/++dhss82iqakpXnrppXjggQfiyiuvjPr6+hVaMwCF0T7tA0iN9mkfQEp0T/cAUqN92geQGu3TPoDUaJ/2AaRE93QPIDXap30AqdE+7YNCGLBCUfTv3z9++ctfxmWXXRZnnnlmzJs3L9Zee+3Ycssto3fv3s3bnXfeeXHeeefFpZdeGm3atIlddtklTjjhhDj99NOX+/132WWXuPrqq2Ps2LFx8sknR319ffTu3Tu+8pWvREREp06d4qyzzorrrrsu7r777li4cGE899xzUV9fHzfccEOMHTs2brjhhnjjjTeiQ4cO0atXr9h3332bv/8OO+wQ5513XowdOzbuu+++6NOnT1x++eXxzW9+c4Xe/7PPPhsnnHDCEo//8pe/jJEjR8b7778fV199dSxcuDC22267+PnPfx7777//EtvvsMMOsf7668ePfvSjeO+992KLLbaIc845p3maWUTEqaeeGuuvv3784he/iGuuuSZWWWWV6NatW+y4444rHE8ACqd92geQGu3TPoCU6J7uAaRG+7QPIDXap30AqdE+7QNIie7pHkBqtE/7AFKjfdoHhahpampqKvciAAAAAAAAAAAAAAAAAAAAAABKobbcCwAAAAAAAAAAAAAAAAAAAAAAKBUDVgAAAAAAAAAAAAAAAAAAAACAzDJgBQAAAAAAAAAAAAAAAAAAAADILANWAAAAAAAAAAAAAAAAAAAAAIDMMmAFAAAAAAAAAAAAAAAAAAAAAMgsA1YAAAAAAAAAAAAAAAAAAAAAgMwyYAUAAAAAAAAAAAAAAAAAAAAAyCwDVgAAAAAAAAAAAAAAAAAAAACAzDJgBQAAAAAAAAAAAAAAAAAAAADILANWAAAAAAAAAAAAAAAAAAAAAIDMMmAFAAAAAAAAAAAAAAAAAAAAAMgsA1YAAAAAAAAAAAAAAAAAAAAAgMwyYAUAAAAAAAAAAAAAAAAAAAAAyCwDVgAAAAAAAAAAAAAAAAAAAACAzDJgBQAAAAAAAAAAAAAAAAAAAADILANWAAAAAAAAAAAAAAAAAAAAAIDMMmAFAAAAAAAAAAAAAAAAAAAAAMgsA1YAAAAAAAAAAAAAAAAAAAAAgMwyYAUAAAAAAAAAAAAAAAAAAAAAyCwDVgAAAAAAAAAAAAAAAAAAAACAzDJgBQAAAAAAAAAAAAAAAAAAAADILANWAAAAAAAAAAAAAAAAAAAAAIDMMmAFAAAAAAAAAAAAAAAAAAAAAMgsA1YAAAAAAAAAAAAAAAAAAAAAgMwyYAUAAAAAAAAAAAAAAAAAAAAAyCwDVgAAAAAAAAAAAAAAAAAAAACAzDJgBQAAAAAAAAAAAAAAAAAAAADILANWAAAAAAAAAAAAAAAAAAAAAIDMMmAFAAAAAAAAAAAAAAAAAAAAAMgsA1YAAAAAAAAAAAAAAAAAAAAAgMwyYAUAAAAAAAAAAAAAAAAAAAAAyCwDVgAAAAAAAAAAAAAAAAAAAACAzDJgBQAAAAAAAAAAAAAAAAAAAADILANWAAAAAAAAAAAAAAAAAAAAAIDMMmAFAAAAAAAAAAAAAAAAAAAAAMgsA1YAAAAAAAAAAAAAAAAAAAAAgMwyYAUAAAAAAAAAAAAAAAAAAAAAyCwDVgAAAAAAAAAAAAAAAAAAAACAzDJgBQAAAAAAAAAAAAAAAAAAAADILANWAAAAAAAAAAAAAAAAAAAAAIDMMmAFAAAAAAAAAAAAAAAAAAAAAMgsA1YAAAAAAAAAAAAAAAAAAAAAgMwyYAUAAAAAAAAAAAAAAAAAAAAAyCwDVgAAAAAAAAAAAAAAAAAAAAD4/+zdd3hUdd6G8ScVCCT0IJDQQlA6SEkUJdJWQUCK8rIsIAIKhiotLq6dJoK0iEhRihUFRYIIikhgF1EUE0ApCUhHakiQkEbeP9jMEhMgmZI5M+f+XBeXZs6Zmd9YuDkzZ74HcFsMWAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgthiwAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBtMWAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNtiwAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt8WAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuiwErAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwWA1YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuC0GrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwWwxYAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC2GLACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG0xYAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA22LACgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3xYAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG6LASsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3BYDVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4LQasAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBbDFgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LYYsAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAbTFgBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDbYsAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfFgBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbosBKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcFgNWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgtBqwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcFsMWAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgthiwAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBtMWAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNtiwAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt8WAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuiwErAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwWA1YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuC0GrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwWwxYAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC2GLACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG0xYAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA22LACgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3xYAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG6LASsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3BYDVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4LQasAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBbDFgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LYYsAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAbTFgBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDbYsAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfFgBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbosBKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcFgNWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgtBqwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcFsMWAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgthiwAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBtMWAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNtiwAoAAAAAAAAAql3f7AABAABJREFUAAAAAAAAAAAAAAAAAAAAAAAAt8WAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuiwErAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwWA1YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuC0GrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwWwxYAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC2GLACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG0xYAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA22LACgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3xYAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG6LASsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3BYDVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4LQasAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBbDFgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LYYsAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAbTFgBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDbYsAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfFgBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbosBKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcFgNWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgtBqwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcFsMWAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgthiwAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBtMWAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNtiwAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt8WAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuiwErAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwWA1YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuC1vZy8AANxNiabDbbp/6q5oO60EAADHs7V7Eu0DALgW2gcAMBve7wQAmA3tAwCYCe93AgDMhvYBAMyG9zsBAGZD+wAAZsL7ndbxdPYCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBRvJ29AABwOx7MrgIAmAjdAwCYDe0DAJgN7QMAmA3tAwCYCd0DAJgN7QMAmA3tAwCYDe0DAJgJ3bMKA1YAwN48PJy9AgAAig7dAwCYDe0DAJgN7QMAmA3tAwCYCd0DAJgN7QMAmA3tAwCYDe0DAJgJ3bMKA1YAwN6Y+AUAMBO6BwAwG9oHADAb2gcAMBuDtW/Hjh3q379/nttDQ0MVExNj+fnIkSOaNGmSdu7cKV9fX3Xs2FETJkyQn59frvvFxsZq1qxZSkhIUMWKFdW/f38NGDDA0S8DAGBUBuseAAAOR/sAAGZD+wAAZkP7AABmQveswoAVAAAAAAAAAAAAAAAAA5s0aZJCQ0MtPxcvXtzy9ykpKXr88ccVGBio2bNn69KlS5o2bZrOnz+vefPmWfaLi4tTZGSkOnfurKioKMXHx2v69Ony8vJSv379ivT1AAAAAAAAAAAAAAAAAEWNASsAYG8eHs5eAQAARYfuAQDMhvYBAMyG9gEAzMag7QsNDVWTJk3y3fbRRx/pwoULWrVqlcqXLy/p+gCWESNGaM+ePWrQoIEkKTo6WnXq1NHUqVPl4eGh8PBwnTlzRtHR0erdu7d8fHyK6uUAAIzCoN0DAMBhaB8AwGxoHwDAbGgfAMBM6J5VPJ29AABwOx6etv0CAMCV2No92gcAcDW0DwBgNnQPAGA2Lti+2NhYhYeHW4arSFLbtm3l5+en7777TpKUnp6u7du3q1OnTvK44QSbLl26KCkpSbt27SrqZQMAjID3OwEAZkP7AABmQ/cAAGZD+wAAZsL7nVbxdvYCAMDtMPELAGAmdA8AYDa0DwBgNrQPAGA2NrYvLi6uUPs3bty4QPtFRkbq4sWLKlu2rNq1a6exY8eqTJkykqSEhAR169Yt1/7e3t6qWbOmEhMTJUlHjx5VRkaGQkJCcu2X83NiYqJatmxZqLUDANwAx3wAALOhfQAAs6F9AACzoX0AADOhe1ZhwAoAAAAAAAAAAAAAAIAd9OrVq1D779+//5bb/f39NXDgQLVs2VJ+fn6Ki4vTwoUL9csvv2jVqlXy9fVVcnKy/P3989w3ICBAly5dkiTLX/+6X6lSpeTl5WXZDgAAAAAAAAAAAAAAALgrBqwAgL15eDp7BQAAFB26BwAwG9oHADAb2gcAMBuDta9evXqqV6+e5eewsDDVr19fAwcOVExMjHr06OHE1QEAXJ7BugcAgMPRPgCA2dA+AIDZ0D4AgJnQPaswYAUA7M3Dw9krAACg6NA9AIDZ0D4AgNnQPgCA2djYvpUrV9ppITfXqlUrlSlTRrt371aPHj0UEBCglJSUPPslJyerevXqkqTSpUtLUp79Ll++rKysLMt2AIDJcMwHADAb2gcAMBvaBwAwG9oHADATumcVBqwAgL0x8QsAYCZ0DwBgNrQPAGA2tA8AYDY2tq9x48Z2Wsjtefz3RJmQkBAlJibm2paVlaXDhw+rbdu2kqRq1arJx8dHiYmJatOmjWW/nPuFhIQU0aoBAIbCMR8AwGxoHwDAbGgfAMBsaB8AwEzonlX4pwYA9ubhYdsvAABcia3do30AAFdD+wAAZkP3AABm4wLt27p1q5KSktSoUSNJUuvWrbVjxw5duHDBss/mzZt15coVRURESJJ8fX0VHh6u9evXKzs727JfTEyMSpcurSZNmhTJ2gEABsP7nQAAs6F9AACzoXsAALOhfQAAM+H9Tqt4O3sBAAAAAAAAAAAAAAAAyGvcuHEKCgpSgwYNVLJkScXFxWnRokWqW7euOnXqJEnq3bu33nvvPUVGRurpp59WcnKypk2bpnbt2qlhw4aWxxo2bJj69u2riRMnqlu3boqPj9cHH3yg8ePHy9fX11kvEQAAAAAAAAAAAAAAACgSDFgBAHvz8HT2CgAAKDp0DwBgNrQPAGA2tA8AYDYGa19oaKhiYmK0fPlypaWlqVKlSnr00Uc1fPhwy1CUgIAALVu2TJMmTdKoUaNUrFgxPfjgg4qKisr1WE2bNtX8+fM1a9YsrV27VoGBgRo7dqwGDBjghFcGADAEg3UPAACHo30AALOhfQAAs6F9AAAzoXtWYcAKANibh4ezVwAAQNGhewAAs6F9AACzoX0AALMxWPuGDBmiIUOG3Ha/mjVrasmSJbfdLyIiQhEREfZYGgDAHRisewAAOBztAwCYDe0DAJgN7QMAmAndswoDVgDA3pj4BQAwE7oHADAb2gcAMBvaBwAwG9oHADATugcAMBvaBwAwG9oHADAb2gcAMBO6ZxX+qaFAjh8/rjvvvFN33nmns5dSJHbs2KE777xTbdu2dfZSAABOQvsAAGZC9wAAZkP7AABmQ/sAAGZD+wAAZkL3AABmQ/sAAGZD+wAAZkP7ANeV89/zX3917tw5135HjhzRk08+qaZNmyosLEwvvfSSrly5kufxYmNj1b17dzVs2FBt27bV0qVLbV6jt82PAIdbunSpUlJS1L17dwUFBTl7OXlcvXpV27Zt0549eyy/Ll68KEnatGmT09eckpKiTz/9VNu2bdOBAweUlJQkLy8vVaxYUQ0aNFCHDh3Uvn17+fr6OnWdjjZv3jxFR0dr+PDhGjFiRL77fPHFF/r444914MABZWRkKDg4WJ06ddLAgQNVrFixPPvv2LFD/fv3V8uWLbVixQpHvwTXwcQvwGa0zza077pbtS8hIUE//PCD5d9fYmKiMjMz1b17d02bNu2mj3n8+HG1a9dOVatW1bfffuvol+Aa6B5gM7pnG7p33c26l5WVpR9++EFbtmzRrl27dPjwYf35558qVaqU6tatq86dO6t79+7y8vLK93Fz3pTev39/kbwOl0D7AJvRPtvQvutudcz3/vvvKz4+Xr/99pvOnTun5ORkFStWTDVq1FCbNm3Uv39/BQQE5HlM3u+8CdoH2Iz22Yb2XVeQz/pu9M0332jYsGGSdMv3MznuywftA2xG+2xD+667Vfv69eunH3744Zb3X7RokVq3bp3rNo778kH3AJvRPdvQvesKcsx37do1ff7551q7dq3279+v5ORklSlTRjVr1lRYWJiGDx+ea3/OcbkJ2gfYjPbZhvZdd7P2rV69Wv/85z8L9Bg9evTQ1KlTLT/TvpugfYDNaJ9taN91tzvu++OPP7R06VJt27ZNx44dU2ZmpsqWLavGjRurd+/euu+++/Lch/bdBO0DbEb7bEP7rrtd+86ePat33nlH3333nU6ePClvb2/VrFlTXbt2VZ8+feTtnXcEBu3Lh4G7N2nSJIWGhlp+Ll68uOXvU1JS9PjjjyswMFCzZ8/WpUuXNG3aNJ0/f17z5s2z7BcXF6fIyEh17txZUVFRio+P1/Tp0+Xl5aV+/fpZvTYGrLiA5cuX68SJE2rZsqXTf2PPz+HDhy0n5xnNF198oVdffVXJycmSpAoVKig0NFSZmZk6deqUvvzyS3355ZcKDg7WO++8o2rVqjl5xc6RnZ2tf/7zn/rss88kXT/JMiAgQAkJCZo9e7Y2btyoFStWqFSpUk5eqYvw9HD2CgCXR/usR/sK5o033tCmTZucvQz3QPcAm9E969G921u9erX+9a9/SZI8PDxUrVo1BQUF6cSJE9q+fbu2b9+uVatWaeHChfL393fyal0E7QNsRvusR/sKZvLkycrKylLx4sUVGBioypUr69y5c5YPUz/66CO9++67uT64wS3QPsBmtM96tM86ly5d0ksvveTsZbgu2gfYjPZZj/YVTo0aNVSuXLl8t5UuXbqIV+Oi6B5gM7pnPbpXcBcuXNDQoUMVFxcnSapevbqqVKmiCxcu6Oeff9ZPP/2UZ8AKboL2ATajfdajfbdXvnx53X333TfdfuXKFe3bt0+SbrkfbkD7AJvRPuvRvoKJj4/XoEGDlJycLC8vLwUFBcnPz0/Hjh3T119/ra+//lqDBg3ShAkTnL1U10D7AJvRPuvRvoKJj4/XU089pYsXL8rb21u1a9fWtWvXtHfvXu3evVsbNmzQkiVLcg3kwE0YuHuhoaFq0qRJvts++ugjXbhwQatWrVL58uUlXR/AMmLECO3Zs0cNGjSQJEVHR6tOnTqaOnWqPDw8FB4erjNnzig6Olq9e/eWj4+PVWtjwAps5u3trUaNGqlBgwZq0KCBqlSpogEDBjh7WVq6dKllIvHDDz+soUOHqk6dOpbt165d065du7R06VJ9/fXXOnXqlGlj9OGHH+qzzz6Tj4+PZs6cqQcffFCSdOrUKQ0ZMkS//vqrXnzxRc2cOdPJK3URBp74BcA+aJ/rCwwMVPv27S3/Dj///HPFxMQ4e1muie4Bbo/uub46deqob9++evDBB1WmTBlJ1wdtrl69Wi+++KJ+/vlnvfTSSxzzFRTtA9we7XN9Y8aMUVhYmOrXry9Pz//9vr13716NGzdOhw4d0pgxY7R27VonrtKF0D7A7dE+9zNlyhSdPXtWHTp00Ndff+3s5bge2ge4PdrnPoYMGaIePXo4exmuje4Bbo/uub709HQNHjxYe/fu1UMPPaSoqChVqVLFsv3y5cvavn27E1foYmgf4PZon2uLiIhQRETETbfn/HP08/NTp06dinBlLoz2AW6P9rm27OxsjR8/XsnJyWrQoIFmzZpl+eeQnp6ut956S/Pnz9eSJUv0wAMPqGXLlk5esQugfYDbo32u7fLly4qMjNTFixfVtGlTzZkzR5UqVZIkHTt2TJGRkdq5c6cmTZqkSZMmOXm1LsAO3csZ7F1QjRs3tvk5Y2NjFR4ebhmuIklt27aVn5+fvvvuOzVo0EDp6enavn27Ro8eLQ+P/w2S6dKli1asWKFdu3ZZ/WcjBqzAZqGhofrkk08sP589e9aJq7kuLi5O06dPlySNHDky32lknp6eatasmZo1a6bNmzeb9krdmZmZevPNNyVJgwYNsgxXkaTKlStr1qxZ6ty5s9atW6enn35atWvXdtZSAcAwaJ/r++vVW/mSAQDcHN1zbR06dNCjjz6a6w0lSfLw8FDPnj115swZzZ49W+vXr9fzzz9vGcACAGZG+1zf4MGD8729fv36mjZtmnr16qUDBw4oMTFRISEhRbw6ADAe2udetmzZos8//1wPPfSQIiIieO8TAPJB+wAAZkL3XN+iRYu0d+9etWnTRrNnz87zuV+pUqXUoUMHJ60OAIyH9rm3VatWSZIeeughlSxZ0smrAQBjoH2uLTExUb///rsk6dVXX831RXtfX1+NGjVKW7du1e7du7V582YGrACAaJ+rW7Nmjc6ePSsfHx+9/vrrluEqkhQcHKzp06erR48eWrVqlQYPHqwaNWo4b7Em0atXr0Ltv3///gLtlzNIp2zZsmrXrp3Gjh1r+b5KQkKCunXrlmt/b29v1axZU4mJiZKko0ePKiMjI895vjk/JyYmMmDFHa1evVr//Oc/LT/3798/1/bu3btr2rRpVj/+1atXtXLlSm3cuFEHDx7Un3/+qQoVKqhWrVrq0KGDevbsKV9fX6sf35nmzp2rrKwsNWvWTJGRkbfdv02bNgV+7NOnT2vDhg2KjY3VkSNHdObMGXl7e6tGjRpq3769+vfvr1KlSuV73w0bNmjlypX69ddflZycLD8/P5UrV07169dXx44d83zItXfvXr3zzjv6+eefLcEoW7asatasqVatWumJJ57I82FZYf344486d+6cJKl37955toeEhKhFixbasWOH1q9frxEjRtj0fKZg478TwMxon/VoH5zGgP8+duzYkef3D+n6mygxMTGWn48cOaJJkyZp586d8vX1VceOHTVhwgT5+fnlul9sbKxmzZqlhIQEVaxYUf379zfEdFu4PrpnPbpXcLcbmBIREaHZs2crKytLR44cYcBKQRiwfYCroH3Wo332c+MHLampqQ59LrdB+wCr0T7r0T7rXL58WS+++KJKly6t559/XrGxsXZ7bFOhfYDVaJ/1aB+chn8fgNXonvXoXsGlp6frvffek6Q8V+mElfhnCFiN9lmP9tlHfHy8Dhw4IEl69NFHHfY8bof2AVajfdajfQV347kr1atXz3ef6tWra/fu3crIyLDpuUyD9gFWo33Wo30Ft3PnTklSw4YNFRwcnGd73bp1LUM2vvzyywL98zQ1A3bP399fAwcOVMuWLeXn56e4uDgtXLhQv/zyi1atWiVfX18lJyfnO2QoICBAly5dkiTLX/+6X6lSpeTl5WXZbg0GrBhY+fLldffdd2vPnj1KT09XnTp1cv0mZ8vUpWPHjumpp57SoUOHJElVqlRRcHCw/vjjD/3nP//Rv//9b91///0KCgqy9WUUuQsXLmjbtm2Srgfc3m/SLVu2TO+8846KFy+uChUqqE6dOkpKStK+ffu0d+9erVu3Th988IFKly6d636zZ8/WW2+9JUkqV66c7rzzTqWlpen06dNat26dTp06lStGsbGxioyMVEZGhvz8/FSzZk15e3vr9OnT2rZtm7Zt26b+/fvL29u2/4137dolSQoKClLlypXz3adly5basWOHZV/choens1cAuCzaZx3aB6cycPcmTZqk0NBQy8/Fixe3/H1KSooef/xxBQYGavbs2bp06ZKmTZum8+fPa968eZb94uLiFBkZqc6dOysqKkrx8fGaPn26vLy81K9fvyJ9PXA/dM86dM++rl69avn7EiVKOPS53IaB2wcYHe2zDu2zr59++kmSVLJkSdWqVcuhz+U2aB9gNdpnHdpnvenTp+vUqVOaNGmSKlSoYLfHNR3aB1iN9lmH9llvw4YN2rRpk1JSUlSmTBk1aNBAjzzySK4r3eE26B5gNbpnHbpXOD///LMuXLigcuXK6a677tKOHTu0du1aHT9+XH5+fmrUqJF69uypihUr2vQ8pmKw9nERIbgS2mcd2mc/q1atkiTVrFlTzZo1c9jzuB3aB1iN9lmH9hVOrVq1VKJECaWmpmrnzp2KiIjItT09PV3x8fGSpCZNmtj0XKZhsPYBroT2WYf2FU5SUpIk3fLzvMqVKysxMdFyviduwQ7dW7lypR0W8j/16tVTvXr1LD+HhYWpfv36GjhwoGJiYtSjRw+7Pp81+HaqgUVERCgiIkJt27bViRMn9K9//UthYWE2P+7Vq1c1ZMgQHTp0SHXq1NHUqVPVoEEDy/bz589r9erVed54cBU3/oZpj39ef9W6dWu1adNGzZo1k5eXl+X2U6dO6ZVXXtG3336rmTNn6pVXXrFsu3DhghYuXChvb2/NmDFDDz30UK5I7tmzR7/99luu55k5c6YyMjI0ePBgjRgxItcXgk+ePKl169bJ07Pgv/GNGDFCI0aMyHP777//LunmUy4lWaaAHT58ONftYWFh2r9/f4HXYBoGnPgFuAraZx3al7+btc8WQUFBtO+vDNy90NDQm76R/NFHH+nChQtatWqVypcvL+n6AJYRI0Zoz549lt8joqOjLb9veHh4KDw8XGfOnFF0dLR69+4tHx+fono5cEN0zzp0L3/Wdi/nxIRy5copJCQkz3a6lw8Dtw8wOtpnHdqXv8K0LysrS2fPntXWrVv1xhtvyMPDI9+T73i/8yZoH2A12mcd2pe/27Vv+/btWrlypcLCwvTYY48V+HFpXz5oH2A12mcd2pe/ghz3fffdd7l+3rBhg+bOnasJEybk+2UtjvvyQfcAq9E969C9/N2sezlfoqtataqmTJmiZcuW5dq+adMmvf3225oxY4batWuXaxvnuNyEQdvHRYTgCmifdWhf/gp7nsvVq1e1bt06SVLPnj3z3Yf23QTtA6xG+6xD+/J3s/aVLFlSw4YN04wZMzRx4kRFRUWpVatW8vPzU0JCgubOnaujR4/qnnvuUadOnXLdl/bdhEHbB7gC2mcd2pe/m7XP399fkvTHH3/c9L6nTp2SJMtAnhy0Lx926F7jxo3tsJBba9WqlcqUKaPdu3erR48eCggIUEpKSp79kpOTLfMOcoYG/XW/y5cvKysrK89QocJgwIoJffLJJ0pMTFTZsmW1dOlSyxdKc5QvX15PPvmkk1Znu9OnT0u6/pts2bJl7f7499xzT763V65cWW+88YZatGihtWvX6sUXX7TE6ujRo8rKylLdunXVsWPHPPdt0KBBrj8QSP/7jX/o0KG5QiRdn85mr39Hly5dkqRb/kZSpkyZXPviNph0CRgO7bONu7UPdmaH7sXFxRVqf3scuMXGxio8PDzX7wdt27aVn5+fvvvuOzVo0EDp6enavn27Ro8eneuNhC5dumjFihXatWuXWrZsafNaAHuje7YxU/fi4+P18ccfS5KeeuqpXG+44hY45gMMh/bZxp3bN3nyZC1fvjzXbc2bN9ewYcN077332v353BbtAwyH9tnGHduXmpqq559/Xr6+vnr11Vft9rimRfsAw6F9tnHH9uWsq1mzZqpataq8vLy0b98+LVmyRF9//bUmT56sEiVKFGromGnRPcBw6J5t3K17Z8+elSTt27dPu3fvVufOnTVy5EhVrlxZCQkJmjJlin788Uc988wz+vTTT1WnTh27PK9bM2j7uIgQzIz22cbd2nczGzZsUEpKiry9vdWtWzeHPpfboX2A4dA+27hj+5588klVqlRJ77zzjsaPH59rW9myZfXPf/5T//jHPwr1pXZTM2j7ADOjfbZxt/Y1btxYGzZs0J49e3Ts2DEFBwfn2r5v3z4dPnxYEt9pLxAX617O9/NCQkKUmJiYa1tWVpYOHz6stm3bSpKqVasmHx8fJSYmqk2bNpb9cu6X3wWGC4oBKya0ceNGSVKvXr3yhMgdXL58WZIcOq3s8uXL+vLLL7Vr1y6dOXNGqampys7OlnT9f+4rV67o999/t/zPWaVKFUnS77//rt27d6thw4a3fY4qVaro999/19q1a9WnTx+HvZarV69K0i3fPPL19c21LwC4Gtpnn+dwl/bBeHr16lWo/Qs6bTQyMlIXL15U2bJl1a5dO40dO9YyOC4hISHPB63e3t6qWbOm5UDr6NGjysjIyHPAlfNzYmIiA1ZgSHTPPs/h7t07c+aMRowYoczMTLVo0SLfq7kCgKugffZ5DndsX3BwsO6++25lZmbq5MmTOnfunHbv3q01a9aoUaNGKlWqVJGsAwDsjfbZ5zncqX0zZ87UsWPHNHbsWMtVXADAndA++zyHO7Vv4sSJeW5r2rSpoqOj9cILL+jjjz/WjBkz9PDDD7vs1Q7NbMeOHfm+Zx0aGqqYmBjLz0eOHNGkSZO0c+dO+fr6qmPHjpowYUKef+exsbGaNWuWEhISVLFiRfXv318DBgxw9MsArEb37PMc7tK9K1euSJIyMjLUpEkTzZgxw3ICer169bRw4UJ16NBB586d01tvvaVZs2Y5bC34n6K+kBAXEYK7o332eQ53ad/NrFq1StL1K7dXrFixyJ/fzLiAHmB/tM8+z+FO7cvKytKxY8d08eJFeXp6qnLlyvL399fRo0d18eJFffbZZ2rYsKGaNWvm0HUAgKPQPvs8h7u0r3v37nrzzTf1559/asyYMZo1a5aCgoIkXf+e1rhx43Tt2jVJfKfdnWzdulVJSUlq1KiRpOvH92+++aYuXLigcuXKSZI2b96sK1euKCIiQtL12Qbh4eFav369Bg0aZDn2i4mJUenSpW86tLMgGLBiQgcOHJB0/cQCd5RzUnzOB0v29uOPP2rUqFE6f/78LfdLSkqy/H1gYKAeeeQRrVmzRo899pgaNWqkli1bqkmTJmrRooVKly6d5/5PPvmknnvuOb388st69913de+996pp06Zq0aKFqlatarfXkzNJLCMj46b7pKen59oXt3HDG3QAjIH22cbd2gc7M2D3/P39NXDgQLVs2VJ+fn6Ki4vTwoUL9csvv2jVqlXy9fVVcnKy/P3989w3ICDAMuE0569/3a9UqVLy8vJiEioMi+7Zxgzdu3DhggYOHKjTp0+rdu3amjt3rmVaNQrAgO0DzI722cad29e/f/9cX8jau3evJk2apM8//1wHDx7UJ598QgMLgvYBhkP7bONu7fv555/1/vvvq27duho4cKDdHtfUaB9gOLTPNu7WvtsZN26cVq9eraSkJH3//feWK5zhJgzcvUmTJik0NNTy843nLaWkpOjxxx9XYGCgZs+erUuXLmnatGk6f/685s2bZ9kvLi5OkZGR6ty5s6KiohQfH6/p06fLy8tL/fr1K9LXAxQU3bONu3Xvxt/7BgwYkOvLw9L1L238/e9/17x58xQbG6tr165xRfPbsUP7HHEhIS4iBDOjfbZxt/bl59ixY/rhhx8kST179nToc7klG9vHBfQA+6N9tnHH9o0YMUKbNm1S/fr1tWTJEtWuXVvS9e/6LVu2TK+//roGDBigDz74oEBfkDc9g73nyUBpgPbZyt3aV65cOb3xxhsaNWqU4uPj1aFDB1WrVk3Xrl3TsWPHVLx4cXXr1k2ff/45F9ErCIN1T7r+eW1QUJAaNGigkiVLKi4uTosWLVLdunXVqVMnSVLv3r313nvvKTIyUk8//bSSk5M1bdo0tWvXLtefd4YNG6a+fftq4sSJ6tatm+Lj4/XBBx9o/Pjx8vX1tXqNDFgxoZxpWPl9odQd3HHHHZKuf5Ce84aLvVy+fFkjR47UhQsXdM899+ipp57SnXfeqYCAAPn4+EiSHnjgAZ06dUqZmZm57jt58mTVqVNHn3zyieLi4iyTfL29vdW2bVtFRUVZpmxJ0qOPPqrSpUtryZIliouL00cffaSPPvpI0vWpvmPHjlVYWJjNrykgIEBS7nj+Vc62/KKJfHjwASVgNLTPeu7YPtiZHbq3cuVKOyzkf+rVq6d69epZfg4LC1P9+vU1cOBAxcTEqEePHnZ9PsBo6J71zNC9S5cuaeDAgTp48KBq1KihpUuXWib+ooA45gMMh/ZZzwztu1H9+vW1aNEitW/fXnv37tWXX36pLl26OPQ53YLB2seJJwDts4W7tS8zM1MTJ06Uh4eHXn31VXl78/G/XRisfQBony3crX0FERAQoNDQUP366686cuSIw5/P5Rm4e6GhoTe98txHH32kCxcuaNWqVZarXRYvXlwjRozQnj171KBBA0lSdHS06tSpo6lTp8rDw0Ph4eE6c+aMoqOj1bt3b8v/B4CR0D3ruWP3bjxn869fHv7r7ZcvX1ZSUhKf/d2OwdrHRYQA2mcLd2xfflavXq3s7GxVqFBBDzzwgEOew63RPsBwaJ/13LF93333nTZt2iRvb2/NmTNHwcHBlm0+Pj4aPHiwEhMTtXr1as2ZM0eLFy+2+TndnsHal4OB0jAz2mc9d2xfzppXr16txYsX6/vvv9eJEyfk7++vhx9+WMOHD9fXX38tSapYsaJdns+tGbB7OedyLl++XGlpaapUqZIeffRRDR8+3DIUJSAgQMuWLdOkSZM0atQoFStWTA8++KCioqJyPVbTpk01f/58zZo1S2vXrlVgYKDGjh1r8zmenGFlQqVKlVJSUpJSUlKcvRSHaNasmeXvd+zYoYceeshuj71lyxZduHBBlStX1oIFC3L9QVaSsrOzb/pGTM5BzeDBg3X69Gn9/PPP+v777/XVV19p48aN2rdvnz7//HOVLFnScp8OHTqoQ4cOSklJ0c8//6ydO3fqq6++UlxcnAYNGqRPP/1Ud911l02vqWbNmpJ0y5NKjh07lmtf3IYBJ34BZkf7rOeO7YOd2aF7jRs3tsNCbq1Vq1YqU6aMdu/erR49eiggICDf3xOSk5NVvXp1Sf87Uemv+12+fFlZWVkMn4Nh0T3ruXv3UlJS9MQTT+i3335T9erVtXz5ct50tAbHfIDh0D7ruXv78lOqVCm1bNlSGzZs0J49exiwUhAGbR8nnsDMaJ/13K19V65c0eHDh+Xl5aWhQ4fm2X716lVJ0qlTp9SqVStJ0nPPPWe5GgxuwqDtA8yM9lnP3dpXUDknlGZkZDj8uVyei3YvNjZW4eHhluEqktS2bVv5+fnpu+++U4MGDZSenq7t27dr9OjR8rjhdXbp0kUrVqzQrl27uJo5DInuWc8du1erVi3L39/sapw33n7t2jWbns8U7NA+e15IiIsIAbTPFu7Yvr+6du2aPv/8c0lSt27dGDJtDRvbxwX0APujfdZzx/b9+OOPkqQaNWrkGq5yo/vvv1+rV6/W7t27bXou0zDoe54MlIaZ0T7ruWP7coSEhGjq1Kn5bjtw4IAkqWHDhnZ5LrdmwO4NGTJEQ4YMue1+NWvW1JIlS267X0REhCIiIuyxNAvjjaWBw9WpU0eStGvXLievxDHKlSun++67T5K0fPlyZWdn2+2xjx8/Lun6b8p/DZF0/TftK1eu3PZx7rjjDnXq1EmvvPKK1q5dq1KlSuno0aPatm1bvvv7+/srIiJCY8eO1fr169WkSRNlZGTok08+se0F6fr0Jkk6ceKETp06le8+P/zwgyTd9A/xAGB0tM967tg+mFvOyZMhISFKTEzMtS0rK0uHDx+2XN2pWrVq8vHxybNfzs83uzoU4Gx0z3ru3L3Lly9r4MCB2rt3r4KDg7V8+XJVqlTJbo8PAM5E+6znzu27lZwrNWRlZRXJ88Exck48yfl14we3OSeevPXWW4qIiFDXrl310ksvaePGjdqzZ49lvxtPPAkPD9dTTz2lPn36KDo6mi9iwtBon/XctX1ZWVk6d+5cnl85V4G6du2a5bacoSsA4Epon/XctX23kpmZqUOHDkmSKleu7PDngyxXPSzor4KKjIxU3bp1de+99+r5559XUlKSZVtCQkKez+q8vb1Vs2ZNy2d5R48eVUZGRp79cn7+62eAgFHQPeu5Y/fuvvtuy9/nXCjvr3JuL1asmMqUKWPzc+L2GjduXKhfhXXjRYQk3fIiQjkXB+IiQnBltM967ti+v/r3v/+tkydPSpJ69uxp98fH7Tm6exLtg/nQPuu5Y/tyPs8riPT0dJufD7fnqPc7b+V2A6UlWQZKd+rUKc9A6aSkJLf9PQXugfZZzx3bdzvp6enaunWrJKl9+/YOfz6YEwNWXECJEiUkyW4nu+VMv/rkk0904cIFuzym0QwfPlxeXl766aefNH/+/Nvu/9133+m333677X45ATp79my+2wsyKemvKlWqpKCgIEnSH3/8cdv9vb291ahRowLvfzstWrSw/OH7o48+yrM9MTFRP/74ozw8PNSxY0ebn88UPDxt+wWA9lmB9sFpbO1eEbVv69atSkpKsvy31Lp1a+3YsSPX7wmbN2/WlStXLFMtfX19FR4ervXr1+d6gyMmJkalS5dm+Bzshu4VHt0rnD///FODBw9WfHy8goKCtHz5ct1xxx12eWxTcpH2AUZG+wqP9tnPxYsXLQOlb7wyGm7Bxu5x4glA+6xB+womICBA+/fvv+mvnCv9VK1a1XIbV/8sAI75AJvRvsKjffbz4YcfKiUlRd7e3goPD3f487k8O7zf2atXr0L9uh1/f38NHDhQkydP1tKlSzVgwACtX79e/fr1s3yJJDk5Wf7+/nnuGxAQYLlSY85f/7pfqVKl5OXlddMrOgKFRfcKj+4VXJUqVSxDVlatWpVn+7Vr1yy3h4WFydvb2+bndHsu9FkfFxGCUdG+wqN91svp3N13361atWrZ/fFNwUW6J9E+GBftKzzaV3A1a9aUJP3+++83HayZ8yXznH1xGwZ7vzMHA6XhSmhf4dE++1m4cKGSkpJUo0YNtWnTxuHP5/Jc6P1OIzHnq3Yx1apVkyRt377dLo/36KOPqnbt2rpw4YKeeOIJ/frrr7m2nz9/XosXLzZEqPr166c777xTzz77bKHu17RpU40bN06SNHfuXI0ZM0YHDx7Mtc+1a9cUFxen0aNHa+jQoUpOTr7t47Zo0ULS9UlpH3/8seX29PR0zZ49W2vXrpWPj0+e+/3nP//R5MmTtXfv3lxfzr127Zq++OILy9oaNmwo6fr0yZEjR2rr1q15pkvu2bNH69evz7W/Lby9vRUZGSnpekw3bNhg2Xbq1Ck988wzunbtmjp27KjQ0FCbn88UPDxs+wWA9tG+XI9l7/bBzmztngPaN27cOM2ePVvffPONtm/frgULFmj06NGqW7euOnXqJEnq3bu3SpcurcjISG3ZskVr167Viy++qHbt2uX672zYsGHat2+fJk6cqB07dmjRokX64IMPFBkZKV9fX7uvHeZE9+jejezdvdTUVA0dOlS7du1S1apVtWLFClWpUsXmxzU1A7YPcDW0j/bdyN7tW716tT744AOdP38+z7b4+HgNGjRIKSkpqlKliuWDW9yGjd3jxBOA9tE+3u90ORzzATajfbTvRvZu3+eff6758+fr1KlTuW5PT0/X0qVL9dprr0mS+vTpo4oVK9r8fG7PgO931qtXT1FRUWrTpo3CwsL01FNPac6cOTpw4IBiYmLs/nyArege3buRI475nnnmGXl4eOirr77S+++/b1ljenq6pk2bpgMHDsjT01NDhgyxy/O5PQO276+4iBCMjvbRvhs58v3OpKQkbdq0SZLUs2dPuz62qRi8exLtg/HRPtp3I3u3r2PHjipevLgyMzM1atSoXOcqZGRkaPHixVq9erUkcSGFgjJY+xgoDVdE+2jfjRxx3Pf1118rPj4+121//vmn5s6dq+joaPn4+GjKlCny8vKyy/O5NRd4v9OIGFXuArp166Zvv/1W7777rr755htVqlRJnp6euv/++/XUU08V+vGKFSumBQsW6Mknn9S+ffvUvXt3Va1aVeXKldOZM2d05swZZWdn66GHHlK5cuUK9Jjdu3fXyZMn89zeo0cP3Xjlxx07dhR6vdYaOHCgypYtq8mTJ2vdunVat26dKlasqMDAQGVlZenUqVOWPzjWqFGjQF8wq1evnh555BGtWbNGL7zwgqKjoxUYGKgjR44oJSVFo0eP1ieffKITJ07kut+VK1e0fPlyLV++XKVKlVJwcLA8PT116tQpS/T79eunpk2bSroeqQ0bNmjDhg3y8fFR9erV5efnp/Pnz1seu3Hjxurfv79d/ln94x//UFxcnL744guNHDlSQUFB8vf3V0JCgjIyMnTnnXfq5ZdftstzmYLBJnbt2LEj3/9WQkNDc514cuTIEU2aNEk7d+6Ur6+vOnbsqAkTJsjPzy/X/WJjYzVr1iwlJCSoYsWK6t+/vwYMGODolwGToX3WoX0Ft27dOr3yyiuWn1NTUy23b9682XL74MGD9eSTT9rlOd2Wwbon/a9xy5cvV1pamipVqqRHH31Uw4cPtwxFCQgI0LJlyzRp0iSNGjVKxYoV04MPPqioqKhcj9W0aVPNnz9fs2bN0tq1axUYGKixY8fSPtgV3bMO3SuY5cuX64cffpAk+fj4aOzYsTfdd+jQoZaTEHALBmsfx3xwRbTPOrSvYE6cOKHo6Gi9/PLLqly5sipUqCBJOnnypGXoStWqVbVgwYI8vwfiJgzWvpwTT1q2bCk/Pz/FxcVp4cKF+uWXX7Rq1Sr5+vpy4gkMh/ZZh/bBaQzWPsAV0T7r0L6CSUpK0pw5czRnzhxVqlRJgYGBunbtmg4dOmT5zK9Tp06aMGGCzc9lCnbo3sqVK+2wkFtr1aqVypQpo927d6tHjx4KCAhQSkpKnv2Sk5NVvXp1SVLp0qUlKc9+ly9fVlZWlmU7YCu6Zx26V3AtW7bUs88+q2nTpumVV17RW2+9pcqVK+vIkSO6dOmSPD099dxzz6l58+Z2eT63Z7BjvnHjxikoKEgNGjRQyZIlFRcXp0WLFuW5iNB7772nyMhIPf3000pOTta0adPyvYhQ3759NXHiRHXr1k3x8fH64IMPNH78eC4iBLuifdahfYW3du1apaeny8/PTx07drTrY5sK7QNsRvusQ/sKplKlSpoyZYqioqK0d+9ede7cWZUrV1ZAQICOHj2qP//8U9L1QSx///vfbX4+U7CxffZ+v7NevXqqV6+e5eewsDDVr19fAwcOVExMDINzYEi0zzq0r+A2bdqkzz77TP7+/qpataqys7N1+PBhpaenq2TJkpoxY4aaNWtml+dyewY75nMVDFhxAQ8++KCmTJmijz/+WAkJCTp+/Liys7NVtWpVqx8zODhYn332mT788ENt3LhRCQkJOnv2rCpUqKBWrVrpwQcfVGBgYIEf79KlS7muDnnj7bY4c+aMJOX6Q2RhdO/eXe3atdMnn3yibdu26eDBgzpw4IC8vb1VsWJF3Xffffrb3/6m9u3by9u7YP87TJ06VaGhoVq1apWOHz+utLQ01atXT/3791f79u31ySef5LlPs2bN9MILL+j777/XgQMHdOzYMV29elVly5ZVmzZt1KtXL7Vt29ayf04Avv/+e8XHx+vMmTNKSUlRqVKl1Lx5c3Xs2FG9evWy25s+Hh4eev3119WqVSutXLlSBw4c0Llz51SjRg116tRJgwYNUrFixezyXKZg0CBNmjRJoaGhlp+LFy9u+fuUlBQ9/vjjCgwM1OzZs3Xp0iVNmzZN58+f17x58yz7xcXFKTIyUp07d1ZUVJTi4+M1ffp0eXl5qV+/fkX6euDeaB/tc3T70tLS8v33l56enmvS5tWrV+3yfG7NgN0bMmRIga7MVLNmTS1ZsuS2+0VERDBwAA5F9+ieI7t3Y9d+//13/f777zfdN+dL57gNA7ZP4pgProX20T5Htq9z587y8vLSzp079fvvvyshIUGZmZkqU6aMWrVqpXbt2qlHjx4qUaKEzc9lGpx4AtiM9tE+R7/fCTsz6HEf4EpoH+1zZPvuu+8+DR48WPHx8Tp27JgOHjyoa9euqUKFCoqIiFCPHj34XKcw7NC9xo0b22EhBZNzUnRISEiuq/lKUlZWlg4fPmz5b7NatWry8fFRYmKi2rRpY9kv534hISFFtGq4O7pH94rimG/AgAFq0KCBli5dql27dum3335T6dKl9dBDD+mJJ55QkyZN7PZcbs9gx3xcRAiuiPbRvqJ6v3PVqlWSrn+hvGTJknZ9bFOhfYDNaB/tc3T7Hn74Yd11111atmyZfvjhB506dUpnzpxRmTJl1KJFC3Xr1o1hY4VhY/uK4v1OBkrD6Ggf7XN0+zp16qSrV69qz549OnLkiDw8PFS9enVFRERYznlHARnsmM9VeGRnZ2c7exFAfs6dO6dWrVqpbNmy2rx5Mye8w2WU6DLfpvunro2000quy7ma+ccff3zTD1IXLVqkefPmafPmzSpfvrwkaePGjRoxYoRWrVqlBg0aSJKefPJJnT9/XqtWrbKctDJp0iStXbtW27Ztk4+Pj13XDpgN7YMrsrV7kv3bB8A10D24KqO1j2M+wHXQPrgqo73feTNhYWHq1KmTXnzxRd1zzz3q1q1bnpMse/TooerVq2vWrFlKSEjQww8/rAULFuT6ot3ly5fVrFkzvfTSS1z9CbAR7YOrcpX2ATAe2gdXZLT3O29m69atGjx4sF577TV169ZNCxcu1JtvvqnNmzdbrmb5zTffaNiwYfr0008tVzQfPHiwLl68qE8//dTynufkyZO1Zs0abdu2jYF3gA3oHlyVq7QPgPHQPrgq3u8EYC3aB1flKu0LCwvTww8/rBdeeEF9+/aVn5+fFi5caNmelZWl5s2ba9CgQRo+fLjS09N19913a/To0Ro8eLBlv7i4OPXq1UsrVqxQy5Yti2TtgLuifXBFvN9pnYKNNwKcYOfOnZKk/v37EyK4lv+ekGGtuLi4Qu1vj8mYsbGxCg8Pt3zRTpLatm0rPz8/fffdd2rQoIHS09O1fft2jR492nLSiSR16dJFK1as0K5duzgQA2xE++CSbOweAPOie3BZdmhfUR/3ccwHGAPtg8tyoeM+rmQOGAvtg8tyofYBMBbaB5dkwO6NGzdOQUFBatCggUqWLKm4uDgtWrRIdevWVadOnSRJvXv31nvvvafIyEg9/fTTSk5O1rRp09SuXTvLcBVJGjZsmPr27auJEyeqW7duio+P1wcffKDx48czXAWwEd2DyzJg+wC4BtoHl0X7AFiJ9sFluUD7tm7dqqSkJDVq1EiS1Lp1a7355pu6cOGCZaD05s2bdeXKFUVEREiSfH19FR4ervXr12vQoEGWc2RiYmJUunTpm16gD0DB0T64JBfonhExYAWGtXPnTpUsWVL/+Mc/nL0UoHA8PG26e69evQq1//79+wu0X2RkpC5evKiyZcuqXbt2Gjt2rMqUKSNJSkhIULdu3XLt7+3trZo1a1q+UHD06FFlZGTk+WJBzs+JiYl82Q6wEe2DS7KxewDMi+7BZdmhfY447uOYDzA+2geX5QLHfZx4AhgT7YPLcoH2ATAm2geXZMDuhYaGKiYmRsuXL1daWpoqVaqkRx99VMOHD7cMRQkICNCyZcs0adIkjRo1SsWKFdODDz6oqKioXI/VtGlTzZ8/X7NmzdLatWsVGBiosWPHasCAAU54ZYB7oXtwWQZsHwDXQPvgsmgfACvRPrgsg7WPgdKA66B9cEkG656r8MjOzs529iJgnbNnz2rkyJGFus+HH37ooNUAyFGi20Kb7l/tt5mF2v92X7T79ddftXbtWrVs2VJ+fn6Ki4vTwoULVblyZa1atUq+vr6qX7++hg0bpsjIyFz3HTBggDw9PfXOO+/op59+Up8+ffT++++refPmufarV6+eRo4cqaFDhxZq7UBh0T7AeGztniSlfv6UHVYCuB+6BxiTPdpnz+M+jvngTmgfYEy2ts/ex3w3O/EkODhYK1eulK+vr5KTk9W5c2dVqVIl14knjRs31vz58y2PtWvXLvXt21ddu3a1nHgye/ZsjR8/ni/boUjQPsCYjNY+wJ3QPsB4+KwPcBy6BxgT7QMch/YBxsT7nYDj0D7AmIzWvrffflsxMTE6ceKEZaB0hw4dNHz4cPn7+1v2O3z4sCZNmqSffvop10DpkiVL5nq8LVu2aNasWUpISFBgYKD69u2rgQMH2nXNwM3QPsB4eL/TOt7OXgCsl5aWpp9//tnZywBgZytXrrTr49WrV0/16tWz/BwWFqb69etr4MCBiomJUY8ePez6fIAj0T4AgJnQPcB92fO4j2M+uBPaB6AguJI53AntAwCYDe0DAJgJ3QMAmA3tAwCYDe0DUBBDhgzRkCFDbrtfzZo1tWTJktvuFxERoYiICHssDSg02gfAXTBgxYUFBQXd8grGAJzEw9Omuzdu3NhOC7m5Vq1aqUyZMtq9e7d69OihgIAApaSk5NkvOTlZ1atXlySVLl1akvLsd/nyZWVlZVm2A45E+wADsrF7AG6O7gEGZYf2Ofq4j2M+uCraBxiUwY77OPEE7oT2AQZlsPYB7oT2AQZE9wCHoXuAQdE+wGFoH2BQtA9wGNoHGBTtAxyG9gEGRPeswj81ALA3Dw/bfhXpUq8/X0hIiBITE3Nty8rK0uHDhxUSEiJJqlatmnx8fPLsl/Nzzn4AAJOxtXtF3D4AAGzmQu3jmA8AYBcu0j0AAOyG9gEAzMSF3u8EAMAuaB8AwGzoHgDAbGgfAMBMeL/TKgxYAQA78/DwsOlXUdi6dauSkpLUqFEjSVLr1q21Y8cOXbhwwbLP5s2bdeXKFcvVW319fRUeHq7169crOzvbsl9MTIxKly6tJk2aFMnaAQDGYmv3iqp9AADYiyu0j2M+AIA9Gb17AADYG+0DAJiJK7zfCQCAPdE+AIDZ0D0AgNnQPgCAmfB+p3W8nb0AAIBjjRs3TkFBQWrQoIFKliypuLg4LVq0SHXr1lWnTp0kSb1799Z7772nyMhIPf3000pOTta0adPUrl07NWzY0PJYw4YNU9++fTVx4kR169ZN8fHx+uCDDzR+/Hj5+vo66yUCAAAAgGlxzAcAAAAAAAAAAAAAAAAAAAAAAHB7DFgBADsz2sSu0NBQxcTEaPny5UpLS1OlSpX06KOPavjw4ZYvyAUEBGjZsmWaNGmSRo0apWLFiunBBx9UVFRUrsdq2rSp5s+fr1mzZmnt2rUKDAzU2LFjNWDAACe8MgCAERitewAAOJrR2scxHwDA0YzWPgAAHI32AQDMhO4BAMyG9gEAzIb2AQDMhvYBAMyE7lmHASsAYG8G69GQIUM0ZMiQ2+5Xs2ZNLVmy5Lb7RUREKCIiwh5LAwC4A4N1DwAAhzNY+zjmAwA4nMHaBwCAw9E+AICZ0D0AgNnQPgCA2dA+AIDZ0D4AgJnQPaswYOUmSjQd7uwlwIEu/hjt7CXAgYo7+Xc2Jn7BVdE+93bm+7nOXgIcxL+Yp1Ofn+7BldE+98Uxn3vjmA+wHu1zX7TPvdE+wDp0z72d+s8cZy8BDlSmhJdTn5/2wVXRPvfGcZ/74pgPsB7tc2/nd8xz9hLgIH6+zm0P7YMro33ui2M+98ZxH2AduufeaJ97o32AdWifezv/A+93uis/H97vdEUMWAEAOyNIAAAzoXsAALOhfQAAs6F9AACzoX0AADOhewAAs6F9AACzoX0AALOhfQAAM6F71nHu5e4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIG8nb0AAHA3TPwCAJgJ3QMAmA3tAwCYDe0DAJgN7QMAmAndAwCYDe0DAJgN7QMAmA3tAwCYCd2zDgNWAMDOCBIAwEzoHgDAbGgfAMBsaB8AwGxoHwDATOgeAMBsaB8AwGxoHwDAbGgfAMBM6J51GLACAPZGjwAAZkL3AABmQ/sAAGZD+wAAZkP7AABmQvcAAGZD+wAAZkP7AABmQ/sAAGZC96zi6ewFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICjeDt7AQDgbjw8GPkFADAPugcAMBvaBwAwG9oHADAb2gcAMBO6BwAwG9oHADAb2gcAMBvaBwAwE7pnHQasAICdESQAgJnQPQCA2dA+AIDZ0D4AgNnQPgCAmdA9AIDZ0D4AgNnQPgCA2dA+AICZ0D3rMGAFAOyMIAEAzITuAQDMhvYBAMyG9gEAzIb2AQDMhO4BAMyG9gEAzIb2AQDMhvYBAMyE7lnH09kLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABH8Xb2AgDA3TDxCwBgJnQPAGA2tA8AYDa0DwBgNrQPAGAmdA8AYDa0DwBgNrQPAGA2tA8AYCZ0zzoMWAEAe6NHAAAzoXsAALOhfQAAs6F9AACzoX0AADOhewAAs6F9AACzoX0AALOhfQAAM6F7VmHACgDYGRO/AABmQvcAAGZD+wAAZkP7AABmQ/sAAGZC9wAAZkP7AABmQ/sAAGZD+wAAZkL3rMOAFQCwM4IEADATugcAMBvaBwAwG9oHADAb2gcAMBO6BwAwG9oHADAb2gcAMBvaBwAwE7pnHU9nLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHMXb2QsAAHfDxC8AgJnQPQCA2dA+AIDZ0D4AgNnQPgCAmdA9AIDZ0D4AgNnQPgCA2dA+AICZ0D3rMGAFAOyNHgEAzITuAQDMhvYBAMyG9gEAzIb2AQDMhO4BAMyG9gEAzIb2AQDMhvYBAMyE7lmFASsAYGdM/AIAmAndAwCYDe0DAJgN7QMAmA3tAwCYCd0DAJgN7QMAmA3tAwCYDe0DAJgJ3bOOp7MXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACO4u3sBQCAu2HiFwDATOgeAMBsaB8AwGxoHwDAbGgfAMBM6B4AwGxoHwDAbGgfAMBsaB8AwEzonnUYsAIAdkaQAABmQvcAAGZD+wAAZkP7AABmQ/sAAGZC9wAAZkP7AABmQ/sAAGZD+wAAZkL3rOPp7AUAgLvx8PCw6RcAAK7E1u7RPgCAq6F9AACzoXsAALMxcvsyMzPVpUsX3XnnnVq3bl2ubbt371afPn3UuHFj3XfffZo1a5YyMzPzPMaaNWvUqVMnNWzYUJ06ddIXX3zh0DUDAIyN9zsBAGZD+wAAZkP3AABmQ/sAAGbC+53W8Xb2AgDA7ZizJwAAs6J7AACzoX0AALOhfQAAszFw+5YvX66LFy/muf348eMaMGCAmjVrprfeektHjhzR9OnTlZaWpmeffday38aNGzVhwgQNGjRIrVu31pYtWzR+/HiVLFlS7dq1K8qXAgAwCgN3DwAAh6B9AACzoX0AALOhfQAAM6F7VmHACgAAAAAAAAAAAAAAgIGdPn1a0dHReuGFFxQVFZVr2+LFi+Xn56d58+apWLFiuvfee3X16lXNnDlTgwYNUsWKFSVJs2fPVocOHTRhwgRJUnh4uA4fPqzZs2czYAUAAAAAAAAAAAAAAABujwErAGBnHh6M/AIAmAfdAwCYDe0DAJgN7QMAmI2t7YuLiyvU/o0bNy7QflOmTFHbtm3VvHnzPNtiY2PVvn17FStWzHJb586dNW3aNG3btk3du3fX8ePHlZiYqBEjRuS6b9euXfXMM8/oxIkTqlq1aqHWDgBwfRzzAQDMhvYBAMyG9gEAzIb2AQDMhO5ZhwErAGBnBAkAYCZ0DwBgNrQPAGA2tA8AYDa2tq9Xr16F2n///v233Sc2Nlbbtm3TV199pfT09FzbUlNTdeLECYWEhOS6vWLFiipTpowSExMlyfLXv+6X83NiYiIDVgDAhDjmAwCYDe0DAJgN7QMAmA3tAwCYCd2zDgNWAMDOCBIAwEzoHgDAbGgfAMBsaB8AwGyM1r60tDS9+uqrGj58uAIDA3X8+PFc25OTkyVJ/v7+ee4bEBCgS5cuSZLlrwEBAbn2KV26dK7tAABzMVr3AABwNNoHADAb2gcAMBvaBwAwE7pnHQasAAAAAAAAAAAAAAAA2MHKlSvt+ngLFiyQj4+P+vXrZ9fHBQAAAAAAAAAAAAAAAMyGASsAYG8M/AIAmAndAwCYDe0DAJgN7QMAmI2N7WvcuLF91iHpxIkTWrx4sWbMmKHU1FSlpqbq8uXLkqTU1FSlpKTI399fkpSSkpLn/snJySpdurQkWf6anJysO+64w7LPpUuXcm0HAJgMx3wAALOhfQAAs6F9AACzoX0AADOhe1ZhwAoA2JmHB0UCAJgH3QMAmA3tAwCYDe0DAJiNkdp3/Phxpaena+TIkXm2Pffcc5o8ebJ27dqlKlWqKDExMdf2c+fOKSkpSSEhIZKkWrVqSZISExNVp04dy34598vZDwBgLkbqHgAARYH2AQDMhvYBAMyG9gEAzITuWYcBKwBgZwQJAGAmdA8AYDa0DwBgNrQPAGA2Rmpf3bp1tXz58ly3nTt3TmPGjFFkZKRatWolSWrdurU2bdqkZ599VsWKFZMkxcTEyNvb27JPcHCwatWqpfXr16tjx46Wx4uJiVFoaKiqVq1aRK8KAGAkRuoeAABFgfYBAMyG9gEAzIb2AQDMhO5ZhwErAAAAAAAAAAAAAAAABhMQEKCwsLBctx0/flySVLt2bTVv3lySNHjwYK1du1ajRo3S448/riNHjmjOnDnq06ePAgMDLfcdOXKkRo8erRkzZuj+++9XbGysNm3apOjo6KJ7UQAAAAAAAAAAAAAAAICTMGAFAOyMiV8AADOhewAAs6F9AACzoX0AALNxxfYFBwdr6dKlmjp1qoYMGaKAgAD169dPI0aMyLVfx44dlZaWpgULFmjp0qUKCgrSa6+9pg4dOjhp5QAAZ3PF7gEAYAvaBwAwG9oHADAb2gcAMBO6Zx0GrACAnREkAICZ0D0AgNnQPgCA2dA+AIDZGL19QUFB2r9/f57bGzVqpA8//PC29+/WrZu6devmgJUBAFyR0bsHAIC90T4AgNnQPgCA2dA+AICZ0D3reDp7AQDgdjxs/AUAgCuxtXu0DwDgamgfAMBs6B4AwGxoHwDATHi/EwBgNrQPAGA2dA8AYDa0DwBgJgZ/vzMzM1NdunTRnXfeqXXr1uXatnv3bvXp00eNGzfWfffdp1mzZikzMzPPY6xZs0adOnVSw4YN1alTJ33xxRc2r8vb5kcAAOTCxC8AgJnQPQCA2dA+AIDZ0D4AgNnQPgCAmdA9AIDZ0D4AgNnQPgCA2dA+AICZGL17y5cv18WLF/Pcfvz4cQ0YMEDNmjXTW2+9pSNHjmj69OlKS0vTs88+a9lv48aNmjBhggYNGqTWrVtry5YtGj9+vEqWLKl27dpZvS5Pq+8JAAAAAAZn1EmXAAAAAAAAAAAAAAAAAAAAAAAAAAC4m9OnTys6Olrjxo3Ls23x4sXy8/PTvHnzdO+99+rvf/+7Ro4cqffee09nz5617Dd79mx16NBBEyZMUHh4uKKiotSmTRvNnj3bprV523RvAEAeRp/4BQCAPRm9e0addAkAcF1Gbx8AAPZG+wAAZkP7AABmQvcAAGZj9PZlZmaqe/fuOnDggN544w09/PDDlm27d+/W1KlTtXfvXvn7+6tnz54aMWKEvL1zfx1gzZo1evvtt3Xs2DEFBwdr6NCh6tq1a1G/FACAQRi9fQAA2BvtAwCYiT26FxcXV6j9GzduXKD9pkyZorZt26p58+Z5tsXGxqp9+/YqVqyY5bbOnTtr2rRp2rZtm7p3767jx48rMTFRI0aMyHXfrl276plnntGJEydUtWrVQq09BwNWAMDOOA4DAJiJkbuXM+nyhRdeUFRUVK5tN066LFasmO69915dvXpVM2fO1KBBg1SxYkVJuSddSlJ4eLgOHz6s2bNnM2AFAEzKyO0DAMARaB8AwGxoHwDATOgeAMBsjN4+LiQEALA3o7eP4WIAAHszevsAALAne3SvV69ehdp///79t90nNjZW27Zt01dffaX09PRc21JTU3XixAmFhITkur1ixYoqU6aMEhMTJcny17/ul/NzYmIiA1YAwCiYdAkAMBMmXVp3IAYAcF0c8wEAzIb2AQDMhvYBAMyE7gEAzMbI7eNCQgAARzBy+ySGiwEA7M/o7QMAwJ6M2L20tDS9+uqrGj58uAIDA3X8+PFc25OTkyVJ/v7+ee4bEBCgS5cuSZLlrwEBAbn2KV26dK7t1mDACgAAAACnMuOkSwAAAAAAAAAAAAC3xpXMAQBGxIWEAACwD4aLAQAAAIDzrVy50q6Pt2DBAvn4+Khfv352fVx7YsAKANiZAQd+AQDgMEbsnitMugQAuC4jtg8AAEcyevv4sh0AwN6M3j4AAOzJ6N3jSuYAAHuzR/u4kBAAwJXY2j5HDRaTGC4GAHAMI7/nyTkuAAB7s0f3CnMcdzsnTpzQ4sWLNWPGDKWmpio1NVWXL1+WdP19zpSUFMv3+VJSUvLcPzk52fK9vZy/Jicn64477rDsk/N9vpzt1mDACgDYmYeRj8QAALAze3TPjJMuAQCui2M+AIDZGL19fNkOAGBvRm8fAAD2ZOTucSVzAIAjGLF9XEgIAOBItrbPEYPFJIaLAQAcx4jHfTk4xwUAYG9G697x48eVnp6ukSNH5tn23HPPafLkydq1a5eqVKliOabLce7cOSUlJVmO6WrVqiXp+rFdnTp1LPvd7FiwMBiwAgB2ZrAeAQDgUEy6BACYDcd8AACzMXL7+LIdAMARjNw+AADszR7dc9TVzLmSOQDAEezRvo+5kBAAwIXY2r5s+ywjF4aLAQAcyaif9XGOCwDAEYzWvbp162r58uW5bjt37pzGjBmjyMhItWrVSpLUunVrbdq0Sc8++6zl876YmBh5e3tb9gkODlatWrW0fv16dezY0fJ4MTExCg0NtelzPgasAICdeXoarEgAADiQ0brnKpMuAQCuy2jtAwDA0Wxtn6O+aCfxZTsAgGNw3AcAMBN7dM8RVzPnSuYAAEexR/u4kBAAwJXY2r4P7TxYTGK4GADAsYx6ngvnuAAAHMFo57gEBAQoLCws1205QzVr165t6eDgwYO1du1ajRo1So8//riOHDmiOXPmqE+fPgoMDLTcd+TIkRo9erRmzJih+++/X7Gxsdq0aZOio6NtWicDVgDARDIzM9W9e3cdOHBAb7zxhh5++GHLtt27d2vq1Knau3ev/P391bNnT40YMULe3rlTsWbNGr399ts6duyYgoODNXToUHXt2rWoXwoAAPlylUmXAAA4Csd9AACjccQX7SS+bAcAAAAA7oormQMAzIQLCQEAjM6eg8UkhosBAIyPgdIAADhecHCwli5dqqlTp2rIkCEKCAhQv3798gwS69ixo9LS0rRgwQItXbpUQUFBeu2119ShQwebnp8BKwBgZx7GGviVy/Lly3Xx4sU8tx8/flwDBgxQs2bN9NZbb+nIkSOaPn260tLS9Oyzz1r227hxoyZMmKBBgwapdevW2rJli8aPH6+SJUuqXbt2RflSAAAGYbTuucqkSwCA6zJa+/6K4z4AgL0ZsX182Q4A4EhGbB8AAI5ij+6ttPPVzLmSOQDAkYx2zMeFhAAAjma09jFcDADgaEZrH+e4AAAcyWjdy09QUFC+A8kaNWqkDz/88Lb379atm7p162bXNTFgBQDszMOgRTp9+rSio6P1wgsvKCoqKte2xYsXy8/PT/PmzVOxYsV077336urVq5o5c6YGDRqkihUrSpJmz56tDh06aMKECZKk8PBwHT58WLNnz+aLdgBgUkbt3u04e9IlAMB1Gbl9HPcBABzB1vbZ+4t2El+2AwA4lpGP+wAAsDd7dM+eVzPnSuYAAEcz2jEfFxICADia0drHcDEAgKMZ7TwXznEBADiS0Y75XAUDVgDAzmztUVxcXKH2L+iJKlOmTFHbtm0tH7jdKDY2Vu3bt7e8+ShJnTt31rRp07Rt2zZ1795dx48fV2JiYp4vnnft2lXPPPOMTpw4wZuQAGBCrnAcZsRJlwAA12WP9nHcBwBwJba2z55ftJP4sh0AwPFc4T1PAADsxWjd40rmAABHM1r7CooLCQEArGW09jFcDADgaEY6z4VzXAAAjma0Yz5XwYAVADCYXr16FWr//L4w/lexsbHatm2bvvrqK6Wnp+falpqaqhMnTuQ5caRixYoqU6aM5cSSm51gkvNzYmIiX7QDAAAAgALguA8AAOvxZTsAAAAAcF9cyRwAAC4kBACAxHAxAIB74BwXAACMiQErAGBnHgYb+ZWWlqZXX31Vw4cPV2BgoGXCc47k5GRJsky8vFFAQIBlkmXOXwMCAnLtkzPhMmc7AMBcjNY9AAAczYjt47gPAOBIRmsfX7YDADia0doHAIAjGa17XMkcAOBoRmsfAACO5grtY7gYAMCejNQ+znEBADiakbrnShiwAgB2ZmuQVq5caaeVXLdgwQL5+PioX79+dn1cAAAkDsQAAOZjj/Zx3AcAcCVGO+7jy3YAAEczWvsAAHAkV+0eVzIHAFjLVdsHAIC1aB8AwGyM1D7OcQEAOJqRuudKGLDiZu5vFqqNi0fluX1vwkk1f2xKrtse/dvdGtWvreqFVNHV9AzF7Tuugf9aptPnrl/VuG+XMC16Je8Xc76M3aOeoxY45gXALr75eqNWLHtXvx8+pD///FOBlSqpTdv2GjI0UgH/veo0HMfWHjVu3Ng+C5F04sQJLV68WDNmzFBqaqpSU1N1+fJlSVJqaqpSUlIsVzBPSUnJc//k5GTLlcpz/pqcnKw77rjDsk/OFcxL898WnKQw7ZMkLy9Pbf8gSg3rVFX/Z9/VJxt+smyjfa7h2NEjWrHsXe3dHa+EhIMKDAzU2q825dkvIyNdy95donVffK7Tp06pdJkyCgu/Vy9PnuaEVbsvjsOAosdxHySO+5zJHu3juA8onIK0r7DHhrdrJIyF7jmXqx738WU7uLKCdK1WcAWN7t9ezetXV4PaVXTybJLuevjFWz5utcrl9POq51SyRDHVaP9P/XE+758PUfQ2fb1BG76M0b7f9iopKUlVqlRVl2499H9/7ytvH588+588cUJ/79lVV6+m6stvtqh8hYpOWLV7c9X2Aa7Knsd8j7RtrJF926pOjUryL1lMJ89c0trv4jV14XolpaQ67kXArjIzM9X7se46eOCApr3+hjp2etjZS3JrrtA9rmQOd2PP81xyPPXY/XrysftVu1pFpVy5qp17juj/xixSRmaWQ14DCufo0SNavvQd7d2zWwkHD6hiYKC+3PBtrn2+/8+/9cWaz7Rnd7yOHTuqLl276RXOb3EIV2gf4G5on/kcPXJEy5Yu0Z7d19sXGFhJ67/+Ns9+/94aq7lzZulQYoIqVKyoPv/or36PDyj6Bbs52gcUPUec5yIVrJEwlq/Wf6nlS99RYsJB+foW011162rKa6+rYsXA298ZVnPF9nGOC1xZQZpWmM/wfLy9NGZAe/XtEqbgO8rqwqUr2vT9Pj35wooieT24va83fqX1MTH67de9Skq6qCpVg/RI9x76+z/6yeeG81z+vW2rom845vv7P/qpb/8Bzlu4m3LF7hkBA1bc1NCX39dviacsP1+5mp5r+6h+bfXKiK6avXyTnpuzRiVLFNN9d4eomG/ek/S6jZivi5euWH6+mHwlzz4wluRLl9SiRUsNGDhIpUr56+DBA3p7frQO7N+nRe8sc/byUISOHz+u9PR0jRw5Ms+25557TpMnT9auXbtUpUoVJSYm5tp+7tw5JSUlKSQkRJJUq1YtSVJiYqLq1Klj2S/nfjn7Ac5yu/blGN7nAVUoW+qWj0X7jC0xMUHbtnyn+g0bKltSSvKlPPtkZ2drwpjR+nXPbg0aMlQhtUN14fx5xe3aVfQLBgAH4bjP3DjuQw6O+2AmBTnuK8g+hWkkjIHu4Xb4sh3c1a26Vi+ksjrdX1879xyRh4dUNsDvto/3RtRjSr58VSVLFHPIemGd95e/q8pVqmr46HEqV768dv+yS2+/OVcJBw7oxUlT8+w/87XJKlmqpK5eZVAAAPdij2O+sqX9FLvzoGYt/0aXUq6qQWgVTXyqoxqGVlWnofMct3jY1fvvLdfFCxedvQwAcDh7necyK+ox9encUq+/s1Hfxx9WWX8/tbvnLnl5efIlc4NITEjQ1i3fqUHDRsrOzlZyPue5bNsWq337flOTpncrJYVB4ADcE+0zj8TEg4q9oX0pyXnbFh8fp5HDI9Xp4c4aOz5Ku+PjNWvmdHl5e6nPP/JeLAoAXJG9znPJUZDvQcA4li19R3NnvaHHnxio0WPGKTU1VT/v/FFpaWnOXhqcjHNc4K5u1bTCfIb3wYzBal6/uqYt+kp7E0+qUjl/3dOkVpG9DtzeiqXXz3MZNWacylcor7hdv2j+vDk6eGC/Xp3ymiRpd3ycRg+PVMeHH9aY8RO0Oz5es2e+Li8vL/2dYz4YAANW3NRviaf0w+7f891WK7iCXhnRVeNe/1SLPtlmuX391j357v/Lb8e4gp2L6fHoY7l+btEyTMV8i+mVl57XqZMnVblKFSetzBw8DDTyq27dulq+fHmu286dO6cxY8YoMjJSrVq1kiS1bt1amzZt0rPPPqtixa6fWB0TEyNvb2/LPsHBwapVq5bWr1+vjh07Wh4vJiZGoaGhqlq1ahG9KiB/t2pfjqqBZTTxqY565rVPtOTV/jfdj/YZW+uINnqgTTtJ0pRXX9L2f2/Ns8+6L9boP//eqvc/WqXaN3w5uMODHfPsC9sYqXuA2XDcZ24c9zmP0drHcR/MpCDHfbfbp7CNhDHQPecyWvsAM7lV19Zt2aOY73ZLkuY+11t/u7fuLR+rywON1LJRDb2+ZKOmj+tp76XCBjPnzFfZcuUsPzdvEaZsSW+/OVfDnxmr8uUrWLZt+fYb7dkdpwEDn9Lsma85YbXmQPsA57DHMd/Sz7bn+nnrTwd1NS1D81/oo+A7yurYaYZ2GN0fp0/r7fnR+udzL+hfE6OcvRxToHuA89jjPJf7mtXW0N4RemT4fG3896+W29d+F2/v5cIGEQ+0UZu2189zmfTKi/pPPue5jBkXpXET/ilJ6t6Fc1scifYBzkP7zCPigbZq07a9JOnVl1/Qf7Zty7PP2/OjVefOOnpl8lR5eHioZVi4zp49owVvRuuxXr1zXfUctqF9gPPY4z3PHAX9HgSM4eiRI5o76w1F/XOievXuY7k94oE2TlyVedA+wDlu1bSCfob3jy5hevDeerqnz2vam3DSsv+qr7nYtpHMjn5L5W44z6VFy3BlK1vz583R6DHjVb5CBb391psKrVNHL0+6fszXomW4zp45o7fnR+tRjvnsiu5ZhwErJvT4I/coPSMrT5Tg3kqXLi1JyszMdPJK3J+RehQQEKCwsLBctx0/flySVLt2bTVv3lySNHjwYK1du1ajRo3S448/riNHjmjOnDnq06ePAgMDLfcdOXKkRo8erRkzZuj+++9XbGysNm3apOjo6KJ7UYANXh/fU+u27Na2nxKcvRTYwNPT87b7rP70YzVr3iLXcBU4hpG6B+B/OO4zJ477iobR2sdxH1A4NNJ90L2iY7T2AbguOzu7wPv6FffVjAmP6oV5Xygz85oDVwVr3DhcJcdddetJks6dPWMZsJKaekVvvD5VkSOekZeXV5Gu0WxoH+BeLiZfkSR5e/N7pyuYPm2KItq01d3/fU8Ljkf3AGO73Xkug3vep4NHzuT6gjmMpyDnuRRkH9gH7QOMjfa5h9t1LT09XTu+367hI0fn+iJYp85d9OH7KxT3yy41b9HS0cs0DdoHuAe+B+FaPv9slXx8fNS9x6POXoop0T7ANeT3Gd7gnq0U+9PBXMNVYDzl8jnPpW69+pKks2fPyD8gQD98v13DRuQ95vvog/c45rMzumcdBqy4qZWznlKFMqV0LumyYr7brefnrrEEJ7xxLe3//Q/17RKmZ598SFUqltavh07p+blf5Ptm4/cf/VMVy5bSqbOXtPKrnXp1wZe6mpZR1C8JVsjKylJmZqYSDh7QgreidX/rCAVXq+bsZbk9V5z4FRwcrKVLl2rq1KkaMmSIAgIC1K9fP40YMSLXfh07dlRaWpoWLFigpUuXKigoSK+99po6dOjgpJUD/3Or9klSh3vrql34XWrc/VX5+tz6j0C0z7VlZmTo17171eOxXpr52hSt/eJzpaelqVnzlhr37ERVr1HT2Ut0K67YPcBdcNwHieM+Z3DV9nHcB3dwu+O+guxT2EbCWOiec7hq+wB3UJD2FcTEpzrqzPlkLf1su/p2Cbv9HeB0u37eKR8fH1UN+l/nlrz9lsqVq6Cu3Xtq3RefO29xJkD7AOewxzFfDk9PD/l4e6l+7Sqa+FRHrd+6R4ePnyuqlwIr/XtrrLb/Z5vWrPtK6enpzl6OadA9wHnscZ5LeOOa2vXbMUUNflBP945Q2QA//bT3iKJmrtaPe44U1UsBXArtA5yH9iHHsaNHlZGRoZq1QnLdHhJy/edDhxL5sp0d0T7Aeez1nmdhvgcBY4j7ZZdq1qqpL9Z8rkVvv6UzZ/5QSEhtjRozVvfdH+Hs5bk92gc4R0GadqvP8Ly9PXV3vWpasurfen1cT/XtGqbivj6K3XlQY6d/qoSjZ5zxslBAP+/8UT4+PgoKrqZjx3KO+Wrl2qfWf4/5Dh86xDGfHdE96xj6T9W//vqrNm/erEOHDikpKUmSVKZMGdWqVUsPPPCA6tev79wFGlDy5VTNXr5JsTsP6vKVNLVsWF3jBv5NYY1qqtU/pis9I1OVyvurSmAZPf/0w3puzuc6cz5FT/eO0Kezhiis91T9dui0JOn0uWRNWvClftzzu9IzMhXRvI5G9WurRncGqUvkm05+pSiIiFZhSklJkSTdc+99mj5ztnMXZBJG71FQUJD279+f5/ZGjRrpww8/vO39u3Xrpm7dujlgZZBonzUK0r5ivt6aFdVLUxau1+lzyapWOe+kRIn2uYukS0nKzMxQzJrPFFI7VJOmTldaWrrmz5utEUOf1Cdr1qlYsWLOXqbbMHr3YGx0zzoc9+FGHPcVPVdoH8d9xkX7rFOQ9hVkH0kFbiSMie45hyu0D8ZF+6xT0K4VxF217tCwPg+o/cBZDlwx7OlQYoI+/uA9dev5mEqVKnXDbSv09jsrODGiCPCPGLagfYVnz2O+HCe+e01l/P0kSV//5zf1nfCOM14aCiEtLU1TJ7+qIZHDVbFioE6cOO7sJZkG3YMt6J517HmeS6XyAWoXfpfqhVTW6KkrdTUtQ88++ZDWzh+uho+8rLMXLxfxqwOMj/bBFrTPOrQPf5WcfEmS5O/vn+v2kiVLycvLS8mXLjljWW6L9sEWtM869nzPs6CNhLGcO3dWZ/74Q2+9OVejxoxT+fIV9OH772nU8Eh9vOpz1a4d6uwlujXaB1vQvsIrzOd4t/oMr3zpkvL18VbfLmH6NfGUnpi4TMWL+eilYZ21dn6kmvSYpLT0gp8vg6KTmJigD99foR6P9VKpUqWUcCBZkuQfEJBrv/8d8yU5YZXui+5Zx5ADVlJTUxUVFaWNGzfKz89PNWrUUOnSpSVJhw8f1ubNmxUdHa327dtr+vTpKlGihJNXbBxx+48rbv//TjLY+tNB7frtuNYtGK5eDzXTe2t3yNPTU/4li6vfs+9ow7brV2WN3XlQv659SWOf6KDBz6+QJH2z/Td9s/03y2N998MBHT11QfNf6KP7m4Vq608Hi/bFodAWv7tCV6+m6uDBA1r09lsaOWyo3l78rry8vJy9NAB/QfusV5D2TRj0oNIzM/Xmh9/d8rFon3vIvpYtSbp2LVuz5r2lMmXLSpJq1Kyp/+vRVV99GaNHuvd05hIB06N7tuG4DzfiuA9wDbTPNgVpX0H2kVTgRsKY6B7gOmifbQratYKYO/H/9MG6H/TTr0cdsVTYWdLFi5rwzAgFB1fTsFFjLLdPn/KKOj7cVfUaNHTi6gDcCu2znj2P+XI8OHiO/Er4qn7tKnp28ENaNWeIHn46Wtf++xkSjGfxwgXy8fFRn3/0c/ZSABQA3bONPc9z8fT0kH/J4oroP8MyPHrn3iPat+5lDe0doVffWufIlwIApkH7bEP7AMD10D7b2PM9z4I2EsZy7Vq2rly5oukzZ+v+1hGSpBYtWurhjh307pJFmjx1upNXCOCvaJ/1CvM53q0+w/P09JR0/biv56gFOp/0pyRp/+HT+nnVv/R/HZtr+Zrvi/bF4bYuXryoMSOHKTi4mkaNHuvs5QAFZsgBK9OnT9dPP/2kefPmqW3btnlOjr527Zq+/fZbvfTSS5o+fbpefPFFJ63UNXy7Y5/OJ/2pZvWr6721O5SUfEWStOXH/31RLiMzS9vjDqlurcq3fKxPN/6s+S/0UfP61fiinQu4q25dSVKTpnfrzrvqqt/fe+nbb75WhwcfcvLK3BtXDoQ1aJ993di+2J0HNObx9nriuWUqWbyYJCmgVHFJUoniPgooVVzJl6/e9LFon+vx9/eXh4eHaoeGWoarSFJI7VCVL19BhxITnLg690P3YA26Z38c95kXx31Fj/bBGrTP/v7avoLuY0sj4Xx0zzloH6xB++yvIO37q0f/drca3xmkoS+/r9Klrp/c41fcV5LkX7KEUv5M05Wr6Q5bMwrnzz//1OhhQ5SZkaG3Fi9TiRL/vWrThvXav+83Pffiq0pJvn6Vn6tXr1ru41eypGVf2AftgzVon31Ze8yXI/7ACUnS93GHFb//uGJXjNcjbRvrs29+cfTSYYWTJ09o6TuLNfW1GUpNTVVqaqr+vHz9qvNXr6YqJSUlz1XNYT90D9age/Zn7XkuF5OvKDtbli+YS9K5i5e19+BJ1Qvh/U4gP7QP1qB99kf7zC0g4PoXVVNSUnLd/uefl5WVlaWA/36RFfZB+2AN2md/1rznWa1yWZu+BwHnCQgIkCS1aBlmuc3H11dNmt6txAS+y+BotA/WoH32dbPu3eozvKSUK7p27Zr2HjxpGa4iXT/+O30umWM+A/rzz8saPvRJZWRkaNG7y1XC7/q5K/6lr3cw5xyXG/e/fsxXpqiX6tbonnUMOWBl/fr1+te//qUOHTrku93T01Pt27dXamqqJk+eTIwKKvv6lXh+TTylFg1r5NnsIal4MZ/CPBRcSN269eTh4aGjR7lCoaPRI1iD9jlIdraqV6mg4sV89OGMwXk2v/1SX82c8Jgqtrr9hETa5zqKlyihKlWq5rstOztb6WlpRbwi90b3YA2650Ac95kax31Fg/bBGrTPgQoSrBv2sUcjYQx0r+jQPliD9jlQIQ7W7qx5hwJKldDeL17Ks233mhf0Zewe9Ry1wH5rg9XS09M1fvRwnTp1QgvffU8VAwMt234/lKgrf/6pR7t2zHO/xx7ppFb3R+iNeW8V5XLdHu2DNWifgxTymC8/u/Yd07Vr1xQSXNFOi4K9nTh+XOnp6Rr7zMg82156/jm9NmWyvt+5ywkrMwe6B2vQPQcq5HkuvyWe0l35DI728PBQMV9Dnh4MOB3tgzVonwPRPlMKrlZNPj4+OnwoUREPtLHcnpiYKEmqVSvEWUtzS7QP1qB9DlSI9zzt9T0IFL2Q2rW1Z3d8ntuzs7OVxncZHI72wRq0z0Fu0b2/foaXejVDR05eyHdfDw+pmC/ndxpJenq6nhkxTCdPntC7y99XYGAly7bg4JxjvkNqfcMx36H/HvPVrFWryNfrzuiedQz5LlJaWprKlClz2/1Kly7NHyoLoP09dVW+TEn9uPeIJGndlt16vNs9atPyTq3fukeS5OvjrXubhujbHftv+Vi9HmomSfpx7+8OXTPs75ddPys7O1tBwUHOXorbY+IXrEH77OvG9sXvP66/DZ6Ta/sdFQK0fNoTmrJwvb79ft8tH4v2uabWD7TR6lWf6OKFCypbrpwkKeHAAV24cF516zdw8urcC92DNeie/XHcB4njvqJC+2AN2md/f21fQfexpZEwFrpXdGgfrEH77K8g7furFV98r9idB3Pd9rdWdTXuib+p99hFSjh61t7LhBWysrL0r6ix+m3vbr258F1Vr1Ez1/aHu3bX3c1b5rrt+/9s0/J3F2vazDkKrla9KJdrCrQP1qB99mXtMV9+7mkcIk9PTx0+fs7ey4Sd3HlXXS1+d3mu286dO6dnx4/RU0Mjdc+9rZy0MnOge7AG3bM/a89zWbdltx5oeafqhVTWr4mnJEkVy5ZS/dpVNGv5N0X6GgBXQftgDdpnf7TP3Hx9fdUyLFwbv1qvx58YZPm9+at1MQoIKK3GjZs4d4FuhvbBGrTP/qx5z9PW70HAeR5o005rPlutHd9vtwwTS09P166ff1J4+L1OXp37o32wBu2zr4J0L7/P8NZt2a2BPVqpQtlSOnfxsiSpfu0qqlQ+QD//yoXYjCIrK0vPjhujvXt2a+GSZapRM/fAFF9fX7UIC9fGDevV/4mB/zvm+3Ld9WO+Jk2csGr3RfesY8gBK82bN1d0dLTq16+vsmXL5rvPxYsXNX/+fDVv3ryIV2ds70zqr99PnteuX48p5cpVtWhQQ2MHdNAv+47pk69+kiTFbNmt7+MOaf4LffTCvC/0x/lkPd07QmX8/fTG0q8tj7V2/jBt2XlQew+eVHpGph5oWUfD+7TR+q179O+fE531ElEAQ58cpLDwcIXUDpWvr6/2/farlr67RHXq3Km2bds7e3kA8kH7rHe79mVkZmnrT7m/RFCt8vWBG/sOnda/d/2vabTPNVxNTdW2rbGSpBPHj+lq6lV9s3GDJKl+gwaqXKWq+g0YpC/XrdWo4UM18MkhykhP11vRc1S9Rk397aFOzlw+ANE9W3HcB4njPsDV0D7bFKR9BdlHKngjYSx0D3A9tM82BelaieI+eui++pKkmlXLq0RxX3Vv30SS9NPeIzp66qKOnrqgo6dyX92nepXr741+H3dIf5xPKboXhZt6feqr2rJ5k4YMG6msa9e0Oz7Osq1mrRBVqVpVVapWzXWfUydPSJIaNW6i8hUqFul6AeSP9lnPnsd8X7w5TN/9sF+/Jp5SWkammtwZpNGPt1f8geP6YnPeq4XCGAICAtSiZViu206cOC5JqhVSW3c34/8ZwGjonm3seZ7LO6v/o6H/F6GP33hSL78Zo9S0DEUNelCXU9O0cOXWIn1duLnU1FRt27pF0n/Pc7l6VV9v/EqSVL9BQ1WpUlUnT57Q3j27JUl/XvlTp06dtOxz3/0RKlGihHMWD0AS7bMV7TOf1NRUbYu93r7jx48r9Wqqvt7w3/Y1vN6+IU8P08DH++rF5yeqS9du2rM7Xh9/9IGeGTtePr6+zlw+ANE+W9nrPc9Ll1ML3EgYywNt2qpxk6Z6+YV/aeQzY1ShQgV9+P57SklO1oBBg529PAD5oH3WK0jTCvoZ3qxl36h3pxb6bO5QvbZkg4r5eOvFYV20//BpfbLhp5stAUVs6qRXtPnbbxQ5YpSyrmUpPu4Xy7ZaIbVVqlQpPTU0UoMH9NPLzz+nzl0f0Z49u7Xyow80eux4+fhwzAfnM+SAleeff179+/dXmzZtFB4erlq1aikgIECSlJycrEOHDmnHjh0qXbq0XnvtNSev1lh+PXRa//dQcw37+wMqUcxXJ85c1LI12zX57S+VkZklScrOzlaPkQs09Znumjamu0oU89FPvx5VxyFz9duh05bH2nfotPp1CVOVwDLy8fbU7yfO6/V3NmrGu3zRwOgaNGyodTFf6MTx6yecVKkapP/r3Uf9Hn+CNxyLAAO/YA3aZ72CtK+gaJ9ruHDhgp4dNzrXbTk/v/jqFHV5pLsCK1XS24uX6Y0Z0/SvqPHy9vHWPa3u05hxz6p48eJFv2g3RvdgDbpnG477IHHc50y0D9agfbYpSPsKemxY0EbCWOiec9E+WIP22aYgXatY1l8fvJ775Lucn598YYXeW7ujyNcN63z/722SpLffnKu335yba9v8RUvVrEVLZyzL1GgfrEH7rGfPY76de39X704tVKNqeUnSkZMXtHDlVs1979tCf24ImAXdgzXonm3seZ7Llavp6jhkrqaP66k3n/+7PD09te3nBA1+YYXOXGCoplFcvHBeE8aOznVbzs8vvzpFXbv10M4fdujF5ydatp89c0Y7f/xBkrTuq29UompQUS3X7dE+WIP22Yb2mc+FC+c1bsyoXLfl/PzKpKl6pHsPNW7SVHOi52vu7Fn6MmatKlYM1Mhnxqpv/wFOWLF7o32wBu2zjT3f84Rr8vT01Lw3F2jmjNc0c/prSku7qvoNGmrRO8tUu3aos5fn9mgfrEH7rFeQphX0M7yTZy/poafm6rWxPbR0ygBlZGbp6//8pqiZq3U1LcMprw95/eff1weczp83R/Pnzcm1bdE7y9S8ZZgaN2mqWfPmK3rOLH25bq0qVKyoEaPH6B/9HnfGkt0a3bOOR3Z2drazF5Gfy5cv68MPP1RsbKwSExOVnJws6fpVS0JCQtS6dWv17t1b/v7+Dnn+Ek2HO+RxYQwXf4x29hLgQMWdPDrqntdibbr/9qjWdloJXA3tgyOd+X7u7XeCS/Iv5unU57e1exLtMytnd0+ife6MYz735urHfBLtMyvaB0eife7N1dtH98zL2e2je+7t1H/m3H4nuKwyJbyc+vy0D9aifXAkjvvcl6sf80m0z6yc3T2J9rm78zvmOXsJcBA/X+ee8U/7YC3aB0fimM+9ufpxH90zL2e3j+65N9rn3mgfXBXtgyOd/4H3O92Vnw/vd7oiJ/9x5eZKlSqlJ598Uk8++aSzlwIAhcLEL1iL9gFwRXQP1qJ7AFwV7YO1aB8AV0X7YC3aB8BV0T5Yi/YBcEV0D9aiewBcFe2DtWgfAFdF+2At2gfAVdE+WIv2AXBFdM86zr3cPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4kLezFwAA7saDkV8AABOhewAAs6F9AACzoX0AALOhfQAAM6F7AACzoX0AALOhfQAAs6F9AAAzoXvWYcAKANgZPQIAmAndAwCYDe0DAJgN7QOA/2fvzuOsquvHj79nYMaUrVygFCllc2FxyZGSJNHvtwUttTQyNQo1lkrUn/nNyrRM0ixEJ9RIUUkzW7RQMe3rV8mynUQtlUETkUpzYRDRAZzfH8SMtwGXu3DPPZ/nswcPm3vO3Pu5kfOaz7nnfA6p0T4AUqJ7AKRG+wBIjfYBkBrtAyAlulccC6wAlJkVvwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxwIrAGUmSACkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPeKU1/tAQAAAAAAAAAAAAAAAAAAAAAAVEr3ag8AIG8s+AVASnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnSvOBZYASizOkUCICG6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6VxwLrACUmR4BkBLdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkBLdK059tQcAAAAAAAAAAAAAAAAAAAAAAFAp3as9AIC8qbPkFwAJ0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b3iWGAFoMz0CICU6B4AqdE+AFKjfQCkRvsASInuAZAa7QMgNdoHQGq0D4CU6F5xLLACUGb1igRAQnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnSvOBZYASgzPQIgJboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbpXnPpqDwAAAAAAAAAAAAAAAAAAAAAAoFK6F/NNs2fPfs371tXVxXHHHVfMywDUpDpLfuWS9gFsnO7ll/YBbJz25ZPuAWya9uWT9gFsmvblk/YBbJzu5Zf2AWyc9uWT7gFsmvblk/YBbJr25ZP2AWyc7hWnqAVWvvnNb77mfcUISE29HuWS9gFsnO7ll/YBbJz25ZPuAWya9uWT9gFsmvblk/YBbJzu5Zf2AWyc9uWT7gFsmvblk/YBbJr25ZP2AWyc7hWnqAVWHnjggXKPAyA3rPiVT9oHsHG6l1/aB7Bx2pdPugewadqXT9oHsGnal0/aB7Bxupdf2gewcdqXT7oHsGnal0/aB7Bp2pdP2gewcbpXnPpqDwAAAAAAAAAAAAAAAAAAAAAAoFK6l+uJ7rrrrli0aFH8/e9/j8mTJ8f2228ff/zjH2PHHXeMvn37lutlADLPgl/p0D4A3UuN9gFoX0p0D2A97UuH9gGsp33p0D4A3UuN9gFoX0p0D2A97UuH9gGsp33p0D4A3StWyQusPPPMM/HpT386/vjHP8Y222wTTz/9dIwfPz623377+MEPfhC9evWKL33pS+UYK0BNqAtFyjvtA+ike2nQPoBO2pd/ugdQSPvyT/sACmWtfbfeemvMmTMnHn744Vi1alX069cvDjrooJgyZUr06dOnY78FCxbEjBkzoqWlJbbbbrs49thjY8KECV2eb86cOTF37tx48sknY/DgwXHyySfH6NGjN+M7qj7tA+iUte5RGdoH0En78k/3AAppX/5pH0Ah7cs/7QPopHvFqS/1CaZPnx7/+Mc/4oYbbog777wz2tvbO7a9853vjLvvvrvUlwCoKfV1pf0h+7QPoFOp3dO+2qB9AJ20L/90D6CQ7uWf9gEUylr7VqxYEU1NTfG1r30tLrvsspgwYULccMMN8dnPfrZjn3vuuSemTJkSQ4cOjdmzZ8f48ePjvPPOi7lz5xY815w5c+L888+P8ePHx+zZs2Pw4MExadKkuO+++8o/8AzTPoBOjnemQfsAOmlf/ukeQCHdyz/tAyikffmnfQCdHO8sTvdSn+COO+6IL3/5y7HLLrvEunXrCra95S1vib///e+lvgQAZIr2AZAa7QMgJboHQGq0DyDbjjjiiIKv991339hiiy3iS1/6Uixfvjy23377aG5ujiFDhsT06dOjrq4uRo0aFU888UQ0NzfH+PHjo6GhIdra2mLWrFlx9NFHxwknnBAREU1NTfHAAw9Ec3NzXHLJJdV4e1WhfQCkRvsASInuAZAa7QMgNdoHQKlKXmClra0tevXqtdFtzz33XHTr1q3UlwCoKXV1iS7ZlRDtA+ike2nQPoBO2pd/ugdQSPvyT/sACpXavnvuued17T9y5MjX/Rp9+vSJiIi1a9dGW1tb3H333TFt2rSCsR9yyCExd+7cWLhwYTQ1NcXChQujtbU1xo0b17FPfX19jBs3Li666KJoa2uLxsbG1z2WWqR9AJ3M+dKgfQCdtC//dA+gkPbln/YBFNK+/NM+gE66V5ySF1jZddddY/78+bH//vt32Xb77bcXdTIQQC3To/zTPoBOupcG7QPopH35p3sAhbQv/7QPoFCp7TvyyCNf1/4PPvjga9pv3bp1sXbt2njooYeiubk5xowZEwMGDIiWlpZYs2ZNDBw4sGD/DV8vWbIkmpqaoqWlpeDxDQYNGhRtbW3x2GOPddmWV9oH0MmcLw3aB9BJ+/JP9wAKaV/+aR9AIe3LP+0D6KR7xSl5gZXJkyfHpEmT4vnnn4/3v//9UVdXF3/+85/j+uuvj5/+9KcxZ86ccowToGbUK1LuaR9AJ91Lg/YBdNK+/NM9gELal3/aB1Aoq+3bd999Y+XKlRERMXr06LjgggsiImLFihUREV3u0tazZ8/o1q1bx/bW1tbo1q1b9OjRo2C/3r17FzxPCrQPoFNWu0d5aR9AJ+3LP90DKKR9+ad9AIW0L/+0D6CT7hWn5AVW9t9//7jwwgvj61//evz85z+PiIivfvWrsf3228fMmTNjn332KXmQALVEj/JP+wA66V4atA+gk/bln+4BFNK+/NM+gEKltu+6664rz0D+w9y5c2P16tXx0EMPxcUXXxyTJk1ycmCRtA+gkzlfGrQPoJP25Z/uARTSvvzTPoBC2pd/2gfQSfeKU/ICKxERBx10UBx00EHx6KOPxlNPPRV9+vSJgQMHluOpASCTtA+A1GgfACnRPQBSo30A5TNy5MiKPO+uu+4aERF77bVX7LrrrnHkkUfGbbfdFoMGDYqIiJUrVxbs/9xzz8W6deuiT58+ERHRu3fvWLduXaxatSp69OjRsV9ra2tERMd+qdA+AFKjfQCkRPcASI32AZAa7QOgFGVZYGWDt771rfHWt761nE8JUHPqLPmVFO0DUqd76dE+IHXalxbdA9C+1GgfQG20b7fddou6urpYunRpjB07NhoaGmLJkiVxwAEHdOyzZMmSiIiOEwk3/HPJkiUxYsSIjv1aWlqioaEhdtxxx834DrJD+4DU1UL3KC/tA1KnfWnRPQDtS432AWhfarQPSJ3uFacsC6w88sgj8Z3vfCfuvffeePLJJ2O77baLkSNHxnHHHRc77bRTOV4CoGboURq0D2A93UuH9gGsp31p0D2ATtqXBu0D6FQL7fvTn/4U7e3t0b9//2hsbIxRo0bF/PnzY+LEiR0nz9x4443Rp0+f2GOPPSIiYq+99opevXrF/PnzOxZYaW9vj/nz58d+++0XjY2N1Xo7VaF9AOvVQvcoD+0DWE/70qB7AJ20Lw3aB9BJ+9KgfQDr6V5xSl5g5a677orJkydH7969Y8yYMbHtttvGv/71r7jjjjviZz/7WVxyySWx3377lWOsADWhXpFyT/sAOuleGrQPoJP25Z/uARTSvvzTPoBCWWvfxIkTY9SoUTF48OBobGyMv/zlL3HZZZfF0KFD46CDDoqIiKlTp8bRRx8dp59+ehx66KGxaNGiuOaaa+LUU0/tWDilsbExJk+eHDNmzIitt946hg8fHjfccEMsXrw4zjrrrGq+xc1O+wA6Za17VIb2AXTSvvzTPYBC2pd/2gdQSPvyT/sAOulecUpeYOXcc8+Nt7/97XHppZcW3NHoxRdfjBNOOCG+/vWvx7x580p9GQDIDO0DyK5bb7015syZEw8//HCsWrUq+vXrFwcddFBMmTIl+vTp07HfggULYsaMGdHS0hLbbbddHHvssTFhwoQuzzdnzpyYO3duPPnkkzF48OA4+eSTY/To0ZvxHWWD9gGQEt0DIDXaB5Btw4cPj5/97GexbNmyiIjo379/HHXUUfGJT3yi4+f2nnvuGbNmzYoZM2bEvHnzom/fvnHKKad0OeY5ceLEiIi4+uqrY+bMmTFo0KCYNWtWjBgxYrO+p2rTPgBSo30ApET3AEiN9gGQGu0DoFT1pT7Bo48+GhMmTCgIUUTEFltsERMmTIhHH3201JcAqCl1Jf4h+7QPoFOp3St3+1asWBFNTU3xta99LS677LKYMGFC3HDDDfHZz362Y5977rknpkyZEkOHDo3Zs2fH+PHj47zzzou5c+cWPNecOXPi/PPPj/Hjx8fs2bNj8ODBMWnSpLjvvvvKPOrs0z6ATllrH+WnewCFdC//tA+gUNbaN23atJg3b14sXLgwFi5cGPPmzYvPfOYz0bNnz4L9xowZEzfccEPcd999cfvtt8cnP/nJjT7fxIkT4/bbb4/77rsvbrjhhth///0rMOps0z6ATo53pkH7ADplrX233nprfPSjH4199903hg0bFgceeGBMnz49VqxYUbDfggUL4rDDDovhw4fH2LFj44orrtjo882ZMyfGjh0bw4cPj8MPPzzuuuuuMo84+3QPoFCWukdlaB9AIe3LP+0D6JS1450RtXHMs3upT/DWt741nn766Y1ue/rpp+Otb31rqS8BUFPq6kyn8k77ADplrXtHHHFEwdf77rtvbLHFFvGlL30pli9fHttvv300NzfHkCFDYvr06VFXVxejRo2KJ554Ipqbm2P8+PHR0NAQbW1tMWvWrDj66KPjhBNOiIiIpqameOCBB6K5uTkuueSSary9qtE+gE5Zax/lp3sAhbQv/7QPoJD25Z/2AXTSvTRoH0CnrLVvw42EJk6cGL169YqHHnoompub44EHHogrr7wyIjpvJHTwwQfHaaedFosWLYrzzjsvunXrFsccc0zHc224kdCJJ54YI0aMiOuvvz4mTZoU1157bQwbNqxab3Gz0z2AQllrH+WnfQCFtC//tA+gUxa7VwvHPEteYOW0006LM844I7bbbrsYPXp0x+O//OUv49vf/nacffbZpb4EQE2pz16PKDPtA+hUju7dc889r2v/kSNHvq79+/TpExERa9eujba2trj77rtj2rRpBZPIQw45JObOnRsLFy6MpqamWLhwYbS2tsa4ceM69qmvr49x48bFRRddFG1tbV1WPM4z7QPoZM6Xf7oHUEj78k/7AAppX/5pH0CnLHbv1ltvjTlz5sTDDz8cq1atin79+sVBBx0UU6ZM6fjcL2L9Xe1mzJgRLS0tsd1228Wxxx4bEyZM6PJ8c+bMiblz58aTTz4ZgwcPjpNPPrng538KtA+gU9ba50ZC5ad7AIWy1j5zvvLTPoBCWWsf5ad9AJ2y2L1aOOZZ1AIr73vf+wouRly1alUcf/zxseWWW8bWW28dTz/9dKxevTp69+4dZ599dtx8881FDxCg1mRxxS9Kp30AG1eO7h155JGva/8HH3zwVfdZt25drF27tmOVyzFjxsSAAQOipaUl1qxZEwMHDizYf8PXS5YsiaampmhpaSl4fINBgwZFW1tbPPbYY1225Y32AWycOV8+6R7ApmWtfU66LA/tA9i0rLWP8tA+gI3LYvdq4a52tUD7ADauHO1zI6Hs0T2ATcvavM+crzy0D2DTstY+57mUh/YBbFwtHO+MyN4xz6IWWBk5cmTmftEAgErSPoDasu+++8bKlSsjImL06NFxwQUXRMT6D+ciInr16lWwf8+ePaNbt24d21tbW6Nbt27Ro0ePgv169+5d8Dx5pn0ApET3AGqHky7LQ/sASI32AdSOWrirXS3QPoDKcSOh7NE9gNphzlce2gdQO5znUh7aB1A5lTjeGZHtY55FLbDy9a9/vagXA0iB39XzSfsANq4c3bvuuutKf5L/MHfu3Fi9enU89NBDcfHFF8ekSZNizpw5ZX+dPNM+gI0z58sn3QPYtKy1z0mX5aF9AJuWtfZRHtoHsHHl6F6Kd7WrBdoHsHFZnfO5kVBpdA9g00ptnzlfNmkfwKZlbd7nPJfy0D6Ajcta914uy8c8i1pgBYBNy9pqiLfeemvMmTMnHn744Vi1alX069cvDjrooJgyZUrHwciIiAULFsSMGTOipaUltttuuzj22GNjwoQJXZ5vzpw5MXfu3HjyySdj8ODBcfLJJ8fo0aM34zsCIEvK0b2RI0eUYSSFdt1114iI2GuvvWLXXXeNI488Mm677bYYNGhQRETHBG2D5557LtatW9fRxt69e8e6deti1apVBROx1tbWiIiChgKQFnM+AFJTavucdAlArcnavA8AKqkc3TvyyCNefaeXycNd7QCoXeVonxsJAVBLSm2fOR8AtcZ5LgCkJKvHOyOyfcyzLAusPPvsszF//vz429/+Fi+++GKX7WeeeWY5XgagJtRn7JzLFStWRFNTU0ycODF69erVcRDygQceiCuvvDIi1k/+pkyZEgcffHCcdtppsWjRojjvvPOiW7duccwxx3Q815w5c+L888+PE088MUaMGBHXX399TJo0Ka699toYNmxYtd5iVWgfwHpZ697G7LbbblFXVxdLly6NsWPHRkNDQyxZsiQOOOCAjn2WLFkSEZ0ftr38w7gRIzoXgGlpaYmGhobYcccdN+M7yAbtA1gva+0z56sM3QPoVGr7jjzyyNe1v5Muq0P7ADplbd5HZWgfwHpZ7l6W72pXi7QPYL1ytK+Yi+dejRsJlZfuAXTK6rzPnK+8tA+gk/Nc0qB9AOtl9XhnRLaPeZa8wMojjzwS48ePjzVr1sTq1avjTW96U6xYsaLjDfTs2bPUlwCgBEccUbhq9L777htbbLFFfOlLX4rly5fH9ttvH83NzTFkyJCYPn161NXVxahRo+KJJ56I5ubmGD9+fDQ0NERbW1vMmjUrjj766DjhhBMiIqKpqSkeeOCBaG5ujksuuaQab68qtA+gtvzpT3+K9vb26N+/fzQ2NsaoUaNi/vz5MXHixI6VOm+88cbo06dP7LHHHhGxfvLWq1evmD9/fscCK+3t7TF//vzYb7/9klvdWfsAssucr/x0D6A2OOmyfLQPgNRoH0B5pXhXu1qjfQC1xY2ESqN7AOVlzpd92gdQG5znUj7aB1B7snbMs+QFVs4999wYMWJEXHTRRbHHHnvE7NmzY+jQoTFv3ry44IIL4sILLyz1JQBqyoYLtYt1zz33vK79i1kdbMPKXGvXro22tra4++67Y9q0aQVjP+SQQ2Lu3LmxcOHCaGpqioULF0Zra2uMGzeuY5/6+voYN25cXHTRRdHW1pbMxebaB9Cp1O6V28SJE2PUqFExePDgaGxsjL/85S9x2WWXxdChQ+Oggw6KiIipU6fG0UcfHaeffnoceuihsWjRorjmmmvi1FNP7WhZY2NjTJ48OWbMmBFbb711DB8+PG644YZYvHhxnHXWWdV8i1WhfQCdytG+Ss/7zPlKo3sAhUptn5Mus0/7AApl7Zgn5ad9AJ3K0b2RI0e8+k5FyPJd7WqN9gF0qoU5nxsJlUb3AAqV2j5zvuzTPoBCznPJP+0D6FQLxzsjsnfMs+QFVu677774yle+0jGItWvXRvfu3eOwww6LZ555Js4555y4+uqrS30ZgJpRao6OPPLI17X/gw8++Jr2W7duXaxduzYeeuihaG5ujjFjxsSAAQOipaUl1qxZ07Ga1wYvX92rqakpWlpaCh7fYNCgQdHW1haPPfZYl215pX0AnbI2DRs+fHj87Gc/i2XLlkVERP/+/eOoo46KT3ziEx0/t/fcc8+YNWtWzJgxI+bNmxd9+/aNU045JSZMmFDwXBMnToyIiKuvvjpmzpwZgwYNilmzZhWsepkK7QPoVI72VWLeZ85XProHUKjU9hWzQPRr4aTL8tE+gEJZO+ZJ+WkfQKda6V7W7mpXa7QPoFPW2udGQuWnewCFsta+jTHnK432ARRynkv+aR9ApyzO+WrhmGfJC6w8//zz0atXr6ivr48+ffrEk08+2bFt1113tdoXkJz6jK74te+++3ZMtkaPHh0XXHBBRESsWLEiIiJ69epVsH/Pnj2jW7duHdtbW1ujW7duBZOwiPUTtJc/Twq0D6BT1ro3bdq0mDZt2qvuN2bMmBgzZsyr7jdx4sSOhVZSpn0AnbLWvg3M+cpH9wAKZbV9L+eky9JoH0ChWmgfpdE+gE610r2s3dWu1mgfQKestc+NhMpP9wAKZa19G2POVxrtAyhUC+1znktptA+gUxa7VwvHPEteYGXAgAHxxBNPRETE4MGD4/rrr+9YPeamm26KrbfeutSXAEjKddddV5HnnTt3bqxevToeeuihuPjii2PSpEkxZ86cirxW3mkfAKnRPoDyqsS8z5yvfHQPoPY46bI02gdAarQPINtq4a52tUb7ALLLjYTKT/cAss2cr/y0D6D2OM+lNNoHkG21cMyz5AVWxowZE3fffXeMGzcuPvWpT8XkyZOjqakpunXrFs8880x8/vOfL8c4AWpGqQt+jRw5sjwD+Q+77rprRKyfUO26665x5JFHxm233RaDBg2KiOi40/kGzz33XKxbty769OkTEevvWr5u3bpYtWpVwR3NW1tbIyI69kuB9gF0yuBCl1SA9gF0Kkf7KjHvM+crH90DKJS1eZ+TLstP+wAKZa19lJ/2AXTKYvdq4a52tUb7ADplsX2Ul+4BFMpa+8z5yk/7AAplrX3Ocyk/7QPolLXu1YqSF1g56aSTOv77u971rrj22mvjtttuixdeeCH222+/2H///Ut9CYCaUlcDRdptt92irq4uli5dGmPHjo2GhoZYsmRJHHDAAR37LFmyJCIiBg4cWPDPJUuWFBx0bGlpiYaGhthxxx034zuoLu0D6FQL3aN02gfQqRbaZ85XGt0DKJS19jnpsvy0D6BQ1tpH+WkfQKcsdq8W7mpXa7QPoFMW20d56R5Aoay1z5yv/LQPoFDW2uc8l/LTPoBOWeterSh5gZX/NGzYsBg2bFhERDzyyCMxe/bsOP7448v9MgCZVQs9+tOf/hTt7e3Rv3//aGxsjFGjRsX8+fNj4sSJHUG98cYbo0+fPrHHHntExPq7oPfq1Svmz5/fMfFqb2+P+fPnx3777dcxqUuR9gEpq4XuUX7aB6SsFtpnzldeugekLmvtc9Jl5WkfkLqstY/K0z4gZbqXJu0DUqZ96dE9IHXalx7tA1KXtfY5z6XytA9IWda6VyvqK/nkDz30UHzrW9+q5EsAZE59XV1Jf8pt4sSJMXv27Ljjjjvi17/+dXz3u9+NadOmxdChQ+Oggw6KiIipU6fGAw88EKeffnr89re/jdmzZ8c111wTU6ZM6biIrrGxMSZPnhxz586N2bNnx29+85v4/Oc/H4sXL46pU6eWfdy1SvuA1JTavUq0j81L+4DUZK195nybl+4BKcpS99j8tA9IkfalTfuA1GTteCebn/YBqdG+tOkekCLdS5v2ASnSvrRpH5AaxzuL073aAwCgsoYPHx4/+9nPYtmyZRER0b9//zjqqKPiE5/4RMeFdHvuuWfMmjUrZsyYEfPmzYu+ffvGKaecEhMmTCh4rg0rXF599dUxc+bMGDRoUMyaNavj7uYAAABsXuZ8AAAAAAAAAAAAAAAAr84CKwBllrUFu6ZNmxbTpk171f3GjBkTY8aMedX9Jk6c2HHRHQBkrXsAUGlZa585HwCVlrX2AUClaR8AKdE9AFKjfQCkRvsASI32AZAS3SuOBVYAyqxOkQBIiO4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxwIrm/D075qrPQQqaMXza6o9BCroDb0bqvr69VV9dSjeM7/Xvjz718q2ag+BCum1RWNVX1/3qGVP/ObCag+BCln14tpqD4EKekP36h7O0j5q2b9+e1G1h0CFPOt4Z6692fFOKIrjnfm29Knnqz0EKuiNW25V1dfXPmqVOV++PbvKvC+v3tzHnA+KZd6Xb85zya+tGp3nAsXSvvzyWV+++awPivOU45251rpa+/LsDb20D4phzpdvK19wfUNebdXg2oZaVNTf2ogRI17Tijbr1q0r5ukBIHO0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3QMgNdoHQGq0D4ByKmqBleOPP/41xQggRX4+5pP2AWycn435pX0AG+dnYz7pHsCm+fmYT9oHsGl+PuaT9gFsnJ+N+aV9ABvnZ2M+6R7Apvn5mE/aB7Bpfj7mk/YBbJyfjcUpaoGVz3zmM+UeB0Bu1OtRLmkfwMbpXn5pH8DGaV8+6R7ApmlfPmkfwKZpXz5pH8DG6V5+aR/AxmlfPukewKZpXz5pH8CmaV8+aR/AxulecYpaYAWATRMkAFKiewCkRvsASI32AZAa7QMgJboHQGq0D4DUaB8AqdE+AFKie8Wpr/YAAAAAAAAAAAAAAAAAAAAAAAAqpXu1BwCQN3V1lvwCIB26B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6VxwLrACUWb0eAZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3SuOBVYAysyCXwCkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPeKU9YFVv7xj3/E8uXLY5dddomtttqqnE8NUDPqFSkp2gekTvfSo31A6rQvLboHoH2p0T4A7UuN9gGp0730aB+QOu1Li+4BaF9qtA9A+1KjfUDqdK849eV4kh/+8IcxZsyYOOCAA+JjH/tYPPLIIxER8ZnPfCa+973vleMlACBTtA+A1GgfACnRPQBSo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+AUpS8wMrVV18dZ555ZrznPe+JWbNmRXt7e8e2vffeO26++eZSXwKgptSX+Ifs0z6ATqV2T/tqg/YBdNK+/NM9gEK6l3/aB1BI+/JP+wA6Od6ZBu0D6KR9+ad7AIV0L/+0D6CQ9uWf9gF0cryzON1LfYIrr7wyPvWpT8VnP/vZWLduXcG2nXbaqWPlL4BU1NVVewRUmvYBdNK9NGgfQCftyz/dAyikffmnfQCFtC//tA+gk+6lQfsAOmlf/ukeQCHtyz/tAyikffmnfQCddK84JS+wsnz58thnn302uq2xsTFWrVpV6ksA1JR6Rco97QPopHtp0D6ATtqXf7oHUEj78k/7AAppX/5pH0An3UuD9gF00r780z2AQtqXf9oHUEj78k/7ADrpXnHqS32CN7/5zfHQQw9tdNtf//rX2HHHHUt9CQDIFO0DIDXaB0BKdA+A1GgfAKnRPgBSo30ApET3AEiN9gGQGu0DoFQlL7ByyCGHxLe//e248847o729PSIi6urq4i9/+Utcdtllceihh5b6EgA1pa6utD9kn/YBdCq1e9pXG7QPoJP25Z/uARTSvfzTPoBC2pd/2gfQyfHONGgfQCftyz/dAyike/mnfQCFtC//tA+gk+Odxele6hNMmTIlFi9eHJ/61KeiV69eERHxiU98IlpbW+O//uu/YuLEiSUPEqCW1CcalJRoH0An3UuD9gF00r780z2AQtqXf9oHUEj78k/7ADrpXhq0D6CT9uWf7gEU0r780z6AQtqXf9oH0En3ilPyAisNDQ3R3Nwcv/vd7+JXv/pVPP3009GnT5/Yb7/94h3veEc5xghQU+pTXbIrIdoH0En30qB9AJ20L/90D6CQ9uWf9gEU0r780z6ATrqXBu0D6KR9+ad7AIW0L/+0D6CQ9uWf9gF00r3ilLzAygZNTU3R1NRUrqcDqFl6lA7tA9C91GgfgPalRPcA1tO+dGgfwHralw7tA9C91GgfgPalRPcA1tO+dGgfwHralw7tA9C9YpW8wMry5ctfdZ/tt9++1JcBgMzQPgBSo30ApET3AEiN9gGQGu0DIDXaB0BKdA+A1GgfAKnRPgBKVfICK2PHjo26V1ne5q9//WupLwNQM+qt+JV72gfQSffSoH0AnbQv/3QPoJD25Z/2ARTSvvzTPoBOupcG7QPopH35p3sAhbQv/7QPoJD25Z/2AXTSveKUvMDKt771rS6PPfvss/HLX/4yHnzwwfjsZz9b6ksA1JS6UKS80z6ATrqXBu0D6KR9+ad7AIW0L/+0D6CQ9uWf9gF00r00aB9AJ+3LP90DKKR9+ad9AIW0L/+0D6CT7hWn5AVW3v/+92/08aOOOirOPPPM+Mtf/hKHHnpoqS8DUDOs+JV/2gfQSffSoH0AnbQv/3QPoJD25Z/2ARTSvvzTPoBOupcG7QPopH35p3sAhbQv/7QPoJD25Z/2AXTSveLUV/LJ//u//zt++tOfVvIlACBTtA+A1GgfACnRPQBSo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+A16J7JZ/8oYceim7dulXyJQAyx4pfadM+IDW6h/YBqdG+tOkekCLtS5v2ASnSvrRpH5Aa3UP7gNRoX9p0D0iR9qVN+4AUaV/atA9Ije4Vp+QFVmbPnt3lsTVr1sSSJUvi1ltvjcMOO6zUlwCoKXV1ipR32gfQSffSoH0AnbQv/3QPoJD25Z/2ARTSvvzTPoBOupcG7QPopH35p3sAhbQv/7QPoJD25Z/2AXTSveKUvMDKN7/5zS6PNTY2xlve8pb45Cc/GZMnTy71JQBqihW/8k/7ADrpXhq0D6CT9uWf7gEU0r780z6AQtqXf9oH0En30qB9AJ20L/90D6CQ9uWf9gEU0r780z6ATrpXnJIXWHnggQfKMQ4AqBnaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7gGQGu0DIDXaB0Cp6kv55ra2tjjllFPij3/8Y7nGA1Dz6upK+0O2aR9AoVK7p33Zp30AhbQv33QPoCvdyzftA+hK+/JN+wAKOd6Zf9oHUEj78k33ALrSvXzTPoCutC/ftA+gkOOdxSlpgZXGxsa4/fbbY+3ateUaD0DNq6+rK+kP2aZ9AIVK7Z72ZZ/2ARTSvnzTPYCudC/ftA+gK+3LN+0DKOR4Z/5pH0Ah7cs33QPoSvfyTfsAutK+fNM+gEKOdxanpAVWIiKampqs9gXwMvV1pf0h+7QPoFOp3dO+2qB9AJ20L/90D6CQ7uWf9gEU0r780z6ATo53pkH7ADppX/7pHkAh3cs/7QMopH35p30AnRzvLE73Up9g8uTJccopp0RdXV0ccMABse2220bdf6xWs80225T6MgA1I9EFu5KifQCddC8N2gfQSfvyT/cACmlf/mkfQCHtyz/tA+ike2nQPoBO2pd/ugdQSPvyT/sACmlf/mkfQCfdK05de3t7++v9pubm5jjiiCOiX79+scsuu3Q+2Sb+Fv76178WP8IqWb2m2iOgklr9Bedav94NVX39i371SEnf/5n9dirTSCinFNr3wtpqj4BK+tfKtmoPgQrp/6bGqr5+qd2L0L6sSqF9K198qdpDoELa1vq7zbNtepS8XnBJtC+fUuheRMSqttd9KJgasdKkPtfe7HgnFZBC+/xozLelTz1f7SFQQUP6bVXV19e+fEqhfeZ8+bZytV9u8urNfWp7zhehfVmVQvvM+/LNeS755TwXKiGF7kVoX549+7xrG/LMZ31UQgrte97xzlx77kW/2ORZ317aR/ml0D5zvnxzjmd+bdfTtQ21qKi/tW9/+9ux//77R79+/eKcc87ZZIQAUlQffibmkfYBbJzu5Zf2AWyc9uWT7gFsmvblk/YBbFrW2nfLLbfEvHnz4v77749nnnkm+vfvHx/60IfimGOOiYaGzhNUFyxYEDNmzIiWlpbYbrvt4thjj40JEyZ0eb45c+bE3Llz48knn4zBgwfHySefHKNHj96M76g6tA9g47LWPcpH+wA2TvvySfcANk378kn7ADZN+/JJ+wA2TveKU9QCK+3tnatAHn744WUbDEAe+P08n7QPYON0L7+0D2DjtC+fdA9g07Qvn7QPYNOy1r7LL788dthhhzj11FNjm222iYULF8YFF1wQDz74YJx77rkREXHPPffElClT4uCDD47TTjstFi1aFOedd15069YtjjnmmI7nmjNnTpx//vlx4oknxogRI+L666+PSZMmxbXXXhvDhg2r1lvcLLQPYOOy1j3KR/sANk778kn3ADZN+/JJ+wA2TfvySfsANk73ilPUAisAbFq9IAGQEN0DIDXaB0BqtA+A1GStfZdccklsvfXWHV+PGjUq2tvbY+bMmXHqqafGtttuG83NzTFkyJCYPn161NXVxahRo+KJJ56I5ubmGD9+fDQ0NERbW1vMmjUrjj766DjhhBMiIqKpqSkeeOCBaG5ujksuuaRabxGAKspa9wCg0rQPgNRoHwCp0T4AUqJ7xSl6gZUf/vCHsWDBglfdr66uLqZOnVrsywBAZmgfAKnRPgBSonsApEb7ACrjnnvueV37jxw58hW3v3xxlQ123333iIh44oknonfv3nH33XfHtGnTou5ltyY65JBDYu7cubFw4cJoamqKhQsXRmtra4wbN65jn/r6+hg3blxcdNFF0dbWFo2Nja9r7LVG+wBIjfYBkBLdAyA12gdAarQPgHIpeoGVG264oeDknE0RIyA19a/hZyO1SfsAutK9fNM+gK60L790D2DjtC+/tA9g40pt35FHHvm69n/wwQdf92v84Q9/iIaGhhgwYEAsXbo01qxZEwMHDizYZ8PXS5YsiaampmhpaSl4fINBgwZFW1tbPPbYY1225Y32AXRlzpdv2gfQlfbll+4BbJz25Zf2AWyc9uWX9gF0pXvFKXqBlauvvjpGjBhRzrEA5IIe5Zf2AXSle/mmfQBdaV9+6R7AxmlffmkfwMZlvX0tLS1x1VVXxUc+8pHo2bNnrFixIiIievXqVbBfz549o1u3bh3bW1tbo1u3btGjR4+C/Xr37h0R0bFfnmkfQFdZ7x6l0T6ArrQvv3QPYOO0L7+0D2DjtC+/tA+gK90rTtELrACwcVb8AiAlugdAarQPgNRoHwCpKbV91113XZlG0tXTTz8dU6dOjQEDBsQpp5xSsdcBIB3mfACkRvsASI32AZAa7QMgJbpXHAusAAAAuXHLLbfEvHnz4v77749nnnkm+vfvHx/60IfimGOOiYaGho79FixYEDNmzIiWlpbYbrvt4thjj40JEyZ0eb45c+bE3Llz48knn4zBgwfHySefHKNHj96M7wgAAAAAqCUjR46syPM+99xzcfzxx8eaNWviqquuiq222ioiIvr06RMREStXruyy/7p16zq29+7dO9atWxerVq2KHj16dOzX2tpa8DwAAAAAAAAAAJBX9dUeAEDe1NWV9gcAakmp3St3+y6//PJobGyMU089NS699NI4+OCD44ILLogvfvGLHfvcc889MWXKlBg6dGjMnj07xo8fH+edd17MnTu34LnmzJkT559/fowfPz5mz54dgwcPjkmTJsV9991X3kEDUFOy1j4AqDTdAyA1WWxfW1tbTJkyJR5//PH47ne/G/369evYNmDAgGhoaIglS5YUfM+GrwcOHFjwz//cr6WlJRoaGmLHHXeszOAByDTHOwFITdbad8stt8TUqVPj3e9+d4wcOTLGjRsXl19+eaxZs6ZgvwULFsRhhx0Ww4cPj7Fjx8YVV1yx0eebM2dOjB07NoYPHx6HH3543HXXXeUdMAA1J0vdA4DNQfsASEnWjnfWiu7FfNMDDzxQ7nEA5IaVq/JJ+wA2Lmvdu+SSS2Lrrbfu+HrUqFHR3t4eM2fOjFNPPTW23XbbaG5ujiFDhsT06dOjrq4uRo0aFU888UQ0NzfH+PHjo6GhIdra2mLWrFlx9NFHxwknnBAREU1NTfHAAw9Ec3NzXHLJJdV6i5uN9gFsXNbaR3noHsCmaV8+aR/ApmWtfevWrYuTTjop7r333rjyyitj5513Ltje2NgYo0aNivnz58fEiROj7t9nv9x4443Rp0+f2GOPPSIiYq+99opevXrF/PnzY8SIERER0d7eHvPnz4/99tsvGhsbN+v72ty0D2DjstY9ykf7ADYua+27/PLLY4cddohTTz01ttlmm1i4cGFccMEF8eCDD8a5554bEZ03Ejr44IPjtNNOi0WLFsV5550X3bp1i2OOOabjuTbcSOjEE0+MESNGxPXXXx+TJk2Ka6+9NoYNG1att7hZ6B7ApmWtfZSH9gFsmvblk/YBbJzuFaeoBVYA2LS6VJfsAiBJ5ejePffc87r2Hzly5Ca3vXxxlQ123333iIh44oknonfv3nH33XfHtGnTCsZ+yCGHxNy5c2PhwoXR1NQUCxcujNbW1hg3blzHPvX19TFu3Li46KKLoq2tLfcXHACwceZ8AKQma+275ZZbYt68eXH//ffHM888E/37948PfehDccwxx0RDQ0PHfgsWLIgZM2ZES0tLbLfddnHsscfGhAkTujzfnDlzYu7cufHkk0/G4MGD4+STT47Ro0dvxncEQNZkrX1nnXVW/OIXv4gTTzwxXnrppfjzn//csW3QoEHRs2fPmDp1ahx99NFx+umnx6GHHhqLFi2Ka665Jk499dSO45iNjY0xefLkmDFjRmy99dYxfPjwuOGGG2Lx4sVx1llnVendAVBtWetehHkfAJWVtfa5kRAAlZa19pnzAVBpWWsfAFRSFrtXC/M+C6wAlFn2cgQAlVOO7h155JGva/8HH3zwde3/hz/8IRoaGmLAgAGxdOnSWLNmTQwcOLBgnw1fL1myJJqamqKlpaXg8Q0GDRoUbW1t8dhjj3XZBkAazPkASE3W2ueOrgBUWtbad9ddd0VExMyZM2PmzJkF26666qrYd999Y88994xZs2bFjBkzYt68edG3b9845ZRTupx4MnHixIiIuPrqq2PmzJkxaNCgmDVrVowYMWKzvBcAsidr3Ysw7wOgssrRPjcSAqCWZG3eZ84HQKVlrX21cJE5ALUra92LqI15nwVWAHLORAyAlLW0tMRVV10VH/nIR6Jnz56xYsWKiIjo1atXwX49e/aMbt26dWxvbW2Nbt26RY8ePQr26927d0REx34AUG3mfACkxh1dAUjN7bff/pr2GzNmTIwZM+ZV95s4cWLHQisAkEXmfQBknRsJAUDxzPkASE0tXGQOAOVUC/M+C6wAlFl9XbbW/DIRA6CSytG96667rgwj6erpp5+OqVOnxoABA+KUU06pyGsAkB5zPgBSU2r7ynk31wh3dAWg8rI27wOASipH98z7AKglWZ/zuZEQAOWWtfaZ8wFQaVlrXy1cZA5A7fJZX3HzPgusAJRZtqZhJmIAVFY5uvdqE6tiPPfcc3H88cfHmjVr4qqrroqtttoqIiL69OkTERErV67ssv+6des6tvfu3TvWrVsXq1atKjj5pLW1teB5AEiPOR8AqSm1fZW+m2uEO7oCUF5Zm/cBQCWVo3vmfQDUknK0z42EAKglpbav3BfabYw5HwDllLX21cJF5gDULp/1FTfvs8AKQJmVuuCXiRgAtSRjCzxHRERbW1tMmTIlHn/88bjmmmuiX79+HdsGDBgQDQ0NsWTJkjjggAM6Hl+yZElEdE66Xj4pGzFiRMd+LS0t0dDQEDvuuOPmeCsAZFA52lfOeZ85HwCVlsV538u5oysA5Zb19gFAOdVC98z7ACincrTPjYQAqCWltq/SF9qZ8wFQbllvX0T2LjIHoHb5rK84FlgByBgTMQAo3rp16+Kkk06Ke++9N6688srYeeedC7Y3NjbGqFGjYv78+TFx4sSOC81vvPHG6NOnT+yxxx4REbHXXntFr169Yv78+R0LrLS3t8f8+fNjv/32c4E5ACWp9LzPnA+ALKnU3Vwj3NEVAAAgC8z7AKA0biQEQKrM+QBIURYvMgcgbSl+1meBFYAyq8v4kl8mYgCUU9a6d9ZZZ8UvfvGLOPHEE+Oll16KP//5zx3bBg0aFD179oypU6fG0UcfHaeffnoceuihsWjRorjmmmvi1FNP7Vg4pbGxMSZPnhwzZsyIrbfeOoYPHx433HBDLF68OM4666wqvTsAsiBr7ftP5nwAlFup7avE3Vwj3NEVgMrJ+rwPAMqpHN0z7wOglmRtzudGQgBUWqntq9SFduZ8AFRKVtsXkd2LzAGoXT7rK44FVgDKrL7E7zcRA6CWlNq9crvrrrsiImLmzJkxc+bMgm1XXXVV7LvvvrHnnnvGrFmzYsaMGTFv3rzo27dvnHLKKTFhwoSC/SdOnBgREVdffXXMnDkzBg0aFLNmzSq40w8A6SlH+yo17zPnA6ASsjbvi3BHVwAqK4vtA4BKyWr3zPsAqJSstc+NhACotFLbV4kL7cz5AKikLLYvItsXmQNQu7J2vHODrM/7LLACUGbu6ApASrJ2Z5/bb7/9Ne03ZsyYGDNmzKvuN3HixI6FVgAgIrurPJvzAVApWZv3uaMrAJWWtfYBQCVlsXvmfQBUUtba50ZCAFRa1tpnzgdApWWtfRHZv8gcgNqVxe7VwrzPAisAZZa9HJmIAVA5WeweAFRSFttnzgdAJWWtfe7oCkClZa19AFBJWeyeeR8AlZS19rmREACVlrX2mfMBUGlZa18tXGQOQO3KWvciamPeZ4GVRE2ccEz88Q+/2+i2z047JT553AmbeUSUy9q1a+O4Y46Ih1sWx5e/dl4c+N/vj4iI+fNuiOlf+WKX/d8xev84d8aszT1MNiMTMVjvtp/fEjfdNC/+ev/98eyzz8T2O/SPQw//UBz1sWOioaGh2sPjdfjzH38fp0z9ZJfH37bzoLjsmusjIuLkyZ+Iexb+YaPff9yUE+Ojxx5X0TECVMNjSx+NuVfOifvvXRQtLYujb9++Me+W/y3YZ+3atXH1VVfEvJ9eH3//+/J44xvfFO8c/a6YPPWzsfU221Rp5LyaO/73trj26ivj0b89Es+vWhXb9e0X73r32PjE8ZOid+8+Xfb/+/LH42Mf/mC88MLqmHfrHbHNtttVYdRsLuZ8pGrp0kdj7hWXx/333Rstix+K7fr2jZt+XngS8uxLZsUvbvt5/H3547F23brov0P/OPzDR8aRH/1Y1NfXV2nkvF5r166N4/99vPOMlx3vjIi46ac/jp/84Jp4fNnS2KpHzxi5595x/JQTY/v+FoXKM3d0hfV+cdutMffKOfG3Rx6OVatWRd9+/eKAsQfFpyZNid59us4TyK7Pf/a4uO/Pf9zotmNP+EwccfT6Y6EL/veW+OHcy2PZY3+LPm98Uxzw3+PiqE9Miga/qwM5Zd6XXwv/+LuYNrnrZ3077Tworrj2ho6vlz22NC785vRYtPAP0di4Rbz7oPfE5M+eEltuudVmHC3VYN4HXa1duzbGH3FYLH7oofj6N74V73v/uGoPidfhtZznEhHxx9/dHXMubY6WxQ9Ejx49Y/S7D4zjp54UPXv22pzDBdgslj76aFx5xWVx373r53x9+/aL+bcVzvnu/vWv4mc3/CTuXbQoHntsaXzgg4fFV8/5epVGzGu18I+/i2mTNjHn+8ENERGx4Pbb4rprroqlf3sknn9+VWy7Xb8Y/e6x8fGJn4peGzkPhnwx5yNVS5c+Glf9x/HOm3++6cX2lj++LD502CHxwurVcdv//TK2dQ5gzVi7dm1MPLrzur6D3tN5nkt7e3vc8KMfxA0/+kEse+zR2HKrHrHr7sPinPMvdE1LjtXCReZQCa9l3nfxty+KS2Y1d/nej3z0Y3H6F8/YXEOlBGvXro2JHzsilrQ8FGee842C7v3i5zfH3Mtnx9JHH4k3vmnreM/7D4lPfmqqc9ITUAvzPgusJOr0L305Vj33XMFjN877aVx37TUx+l37V2lUlMOPrv1ePPvMM5vcfu4FswouwOvVq/fmGFZSNlyslhUmYrDelVdcHtvvsENMO+XU2GabbeKePy+Mb194QSx+8ME4e/q51R4eRTjl9LPibTsP7Ph6iy3e0PHfP/u5L8bzqwp/17lt/rz42Y9/EE3veNdmG2MKstY9SNmSJS1x1513xO7Dh0d7RKxsXdFln+9c3BxXzrksjp80JfbYY69Y9tjSuLj5wliy+KG4fO73N/+geU1aW1fEnnvvE0cd+8no2bNnLGlZHJd/Z1a0PPRgXHTp5V32/9a5X4sePXvECy+srsJo8y9r7TPnI1UPt7TEL++8I3YfPiLa29ujdSPde27Vc3HIBw6NnXYeGN27d4/f/ubu+Ma550Rra2ucMHlqFUZNMX68ieOdN97wo/jG186MI446NqZMOzWeeebpuPzS5vh/nzkhLv/+T+INb9iyCqPNp6y1zx1dYb3WFStin32aYsInJ0bPnr1i8eKH4tJZzfHQgw/E7MuvrPbweB0mn/z5eH7VqoLH/u/nN8XNN1wXb3/H6PVf33pTfOvsL8b7Dz0yPjHlpHj04cVx9eUXx9NP/StOOv0r1Rh2rmWtfZAq8778+9wXzoq37Tyo4+s3vKHzs77nnlsZJ035ZGy7Xd84c/q3YmXrivj2BefFM08/FV8994IqjDa/stg98z7o6urvXRXPPL3pcwKpDa90nss9f/p9/M9Jk2P/dx8Uxx43OZ785z/iuxfPjMce/Vt889uXZfLnda3yvyVkw5Ili2PBnXfEsH/P+Va2tnbZ565fLogH/vrX2HOvvWPlyq7bybbPfXHTc77W1hWxx977xPhjPhE9evaMh1sWx5WzL44lDz0YMy6+rBrDzbWstc+cj1Qt+ffxzmGvcLzz5c6dfnb07NEzXljtHMBa80rX9V1w3jlxy80/i2M+cXzsPnxkrFzZGr//za/jpXXrIiywUjZZa18tXGQOlfBa5n0REQ0NDXH5ld8reGybbbfdHEOkDH74/e/Fs8883eXxn988L776pf+Jw44YH1On/b9Y0rI4LrukOZ7615PxhbPOqcJI8ytr3YuojXmfBVYSNXDgoC6PnTv97Bg8eEgMGbpLFUZEOTzxz3/EFd+9OKadenqcc+YXNrrPkKG7+QWjwrJ2HywTMVjvwm9fEltvvXXH1037jor29vb49kUz46RTTvWzsQa9beeBsduwkRvfttPALo81f+vrsdPAwTFw8NBKDy0pWesepGz/MQfEuw84MCIizvnqmXH3r37ZZZ9bbrox3vf+g+O4EyZHRMTbm/aNuvr6+OqXvxjLH388tt9hh806Zl6bDxz24YKv93p7UzQ2Nsa5Z58Z//j78njzW7bv2Hbn//1v3H/vojj2k8fHhd86b3MPNQlZa585H6na/90HxLvHru/e177y5fj1Rrp30imfK/h633e8M/75j7/HvJ9e70K7GrHheOeJp54e0//jeOdtt9wUe+z19vj0SZ1/z1tvvU2cNGVi/PX+e2PPvZs293BzK2vtA9Y7/MNHFHy9T9O+sUXjFvGVM78Uf1++PN6y/fab+E6yZsDbuh7L/M7M8+JtOw+OnQYOiYiIay6/JPbdb0xMPvnzERGxV9M7oq6uLi779rfisI8cE28bOHizjjnvtA+ywbwv/96286DYffjGP+v72U9+GM8++0x858ofxJu23iYiIrbYYov40mknxYN/vT+G7rr75hxqrukeZN8///GPuHRWc3z+C2fEF08/rdrDoQSvdJ7L3MsvjZ12HhRfPPsbHSfE9+7zxjjz8yfFb361IN4x+tVPMue10T7IhjHvHhsHjD0oIiK+etYZ8et/f+79cqecelqcetr642EfPPi9m3V8lO6V5nwHH1p4HsyeezdFY+MWcf45Z8Y///H36Pfmt2yOISZD+yAbxrz7gDjg38c7z97E8c4N/u9/fxGLFt0TE4/7VHzzG1/fXEOkDJ745z9izuyL46RTT4+v/cd5Lgv/+Pv4yQ+/H9+YeXGM2q/zhrH7v/vAzT3M3Mta+2rhInOohNcy74tYvzjEiJF7bMaRUS7ruzcrTvrcF+JrXz69YNtll3w7Ro85IE75ny9FRETTO/aLurqI5hnfiPFHT4iBg4dUY8i5lLXu1QoLrBAREY8++re4/75748ST/1+1h0IJLvrWubHfu94dI/d8e7WHkrSsrfhlIgbrvXxxlQ122339iXdPPPmEBVZybtnSR+PBv9wXx089qdpDyZ2sdQ9SVl//6odG1q5dG1v16FHwWM+evSIi4qX2lyoyLiqjd58+EbH+73SD1aufjwu+MT0mfWZadOvWrVpDy72stc+cj1S9lu5tTO8+fQp+dpJtza9wvHPd2rXRs1fvgsd69OwZERHtL7VvlvGlImvtAzatz0bmCdSe5Y89GosfuD8mTDoxIiJWPPtM/GP5sjj0yKML9ttzn3dERMRv77rDAitlpn2QDeZ9afvtrxfEXm9v6lhcJSLine86ILbcaqu4+647LbBSRroH2Xfe18+JMQeMjb3e7pzAPPvr/YviA4d/pODn8tv3fWdERPzqztstsFJG2gfZ8FrmfMXOC6lNnefBrKnySPJH+yAbXmvXVj//fJx37jnxmRNPju7OAaw5F37z3Nhv/3fHyL26zuF/9pMfRv8Bby1YXIXK0D7IBnO6/Lvwm1+P0fsfEHv8R/eefeaZWP74Y/GRo48teLxp1H4R8Y345Z23W2CljHSvOBZYISIibpr3s6ivr4/3v/+Qag+FIv3213fF73/76/jej26MNW1tm9xv4sc+FM8++0xss+12cdB73h+fPGFqbPGGN2zGkQJkxx//8IdoaGiIHXccUO2hUIQvnfrZaF3xbPTu88bYb/8D4rgpJ3V8yPaffvHzG6O+vj4OfM/7N/MoAbLlsA8fEVfPvTLetf+7Y8Qee8bjyx6L7146K9415oDo33/Hag+PV7Fu3bpYu3ZtPLxkcVx+6cXxjtH7R/+X/R5z+Xcujq232SYOOfRDcfO8G6o3UICMWbt2bbzwwgvxx9//Lm782Q1x3KemVHtIvAYvP97ZtpHjnQcf9uH4xtlfjl/8/OZ4x377xzNPPxWXXPitGDx01xix595VGDFAdWyYJ7Qsfiguubg53rX/mNhxgOOdtez/brs56uvrY8xB74uI6FhAs3tDQ8F+Df/+eunflmzeAQJkkHlfbfrCqZ+JFc8+G33e+MbYb/+x8ampnZ/1/e2Rh+M9/3EOU/fu3WPHAW+LR//2cDWGC1AVv/rlgrj713fFT2+6ZaPHyKgtr3SeS7f6btG9e+G8r1v37lFXVxd/e6SlGsMFgJJ84f/9x5zv013P79xwfPuRJYvjitmzYtR+74od+ju+DaTtO5fMim222SYOO/zDMe+n11d7OLwOG85zufrHG7+u775Ff46hu+wWV3730vjxdVfHytbW2GW3YfHpkz8Xuw8bUYURA2TDmjVr4oD93xkrnn02tt9+hzjsQ0fEhE9OdLPRjPvNr38Zv/vNr+OaH98Ua9YUdq++2/rFdRr+43hnQ2NjREQ88rDjnVRfTS+wsnz58vjd734Xhx56aLWHUvPm3zQv9n77PtHvzW+u9lAowosvvhgXfONrMeG4ybHtttvF35c/3mWfbbbdLiYcPzl2231ENDQ0xJ/++Lv4wdVXxuKHHohvNc+uwqjzy3pfVJL2lc+Slpa45ntXxYeO+Ej0/PcdrqkNPXr2jCOO+niM3Guf2HLLreKv9y+K7191Wfzlvnti1pwfROO/J1wv978/vylG7Pn22K6v33XKTfeoNO0rr+MnTY2XXmqPz045Idrb2yMiYtQ794vp532zyiPjtXjfAfvFc8+tjIiIplHvjLPP7fx7e+Thlvjh978Xsy67yirEFeZ/XSpN+8rrwQf+Gh894rCOrz95/Kfi45+YWMUR8Vq8+OKLMfPfxzu32cTxzveO+2CsaVsT0888vePu9EN22S2+ceEl0b17TX/0kTnaR6VpX2nG7LdvrFy5fp7wjneOjvO+eUF1B0TJ7rxtfgwbuXds27dfRET07NU7evd5Yzz4l3vjPYcc3rHfg3+9LyIiVra2VmWceaZ9VJLulZ95X+3p0bNXfORjH4899tonttxqq/jrfffG1Vd+N+6/9574zpXrP+tb2doaPXv27vK9vXr1jtbWFVUYdX7pHpWmfcV78cUXY/rXvhqfmvLp2G67vvH448uqPSSK9FrOc+k/4K3xwP2LCr7vwb/cF+3t7eZ9ZaZ9VJr2kbqOOd/eL5vzXfHvOd9Vhed3fuCg0R3nwewz6p1x5nTnL1WC9lFp2lc+S5a0xDVXXxWXX3m1cwBrzIsvvhgzzvtafOL4TV/X9/RT/4rf/fbX8fCSljj5tC9F4xaNcdVl34lTpp4Q37/+pnjT1ttUYeT55N8eKkn3ymvHAQPixJNOiV123S1eeumluPOO/4vmC2fE48seizPO+mq1h8cmvPjiizHj3K/FJ46fEttu17V7vXv3iTe+8U3xl/vujQ8cfkTH43+5b/3xz5UrfNZXTrpXnJo+y/jee++Nz3/+82JUokX3/Dkee2xpTDz+U9UeCkX63pzZ0b2hIT48/mOb3KfpHftF0zv26/h676ZR8eY3bx/fOOfMWPjH38WeezdtjqEmwXEMKkn7yuOZZ56OaZ+d2jERo7YMHrprDB66a8fXe+y9TwweumucduKn4vZbb473Hnxowf5/ue+eWL7ssTjq48dv5pGmQfeoNO0rrx9ee01cfdWcmHriSTFixB7x+OPL4pLmC+N/Tj0pZlx0sQ/lMq559px48YUXYsnixXHFZZfGqSdOjZkXfze6desW3zjnq/GecYfEbrsPr/Ywc8+/JlSa9pXXW9+2U3zv2h/G888/H3/4/e/iysvX/9ycPPWz1R4ar2DD8c4PvcLxzrvuvD2av3VufOToCbHPqHfGM089FVd+95I4bdqUuOg7V8YWb3jDZhxxvmkflaZ9pfnunLnxwgurY/Hih2L2pRfHZ6dOiku/O8edfGrUA/cvir8//lgccfQnCx4/5MMfjR9cOTt2G75HjHrXAfG3JYvjqksvivpu3aKu3g/qctM+Kkn3ys+8r/YMGbprDHnZZ3177t0Ug3fZNf7fZ06I/7315njff3zWR2XpHpWmfcX77ncuiYaGhjjqY8dUeyiU6LWc53LYkR+Lr591elw79/J43yGHxRP//EfM/MZXo75bt6j3w7qs/M9JpWkfqdvknO/TJ8T//vzmeN8hh3Zsu+CSOfHiC6vj4SWL46rLLo3Pn/zp+GbzbMe3y0z7qDTtK59zvnpmjDvkg7H7MOcA1pq5r+G6vpdeeinann8+vvaNC2KngYMiImLX3YfHkYe8J3583ffjuEmf3lzDzT3to5J0r7wOPuSDBV/vN/pd0atXr7hs9qXxyeNOiP477lilkfFK5l7+nWhoaIgjXqF7Hx7/sbjiu5fE8D32jHe9e2w83LI4Lm2+ILp16xZ19fWbcbT5p3vFqekFViiPm278WWyxxRZx0H+/t9pDoQj/+Pvy+P7cy+OLXz03Vq9eHRGr4/lVz0VExAsvvBDPPbcyevbstdHvHftf741vnHNmPPCX+yywUkb11vyCTFu16rmY+qnjY+2aNXHZFVfFVlttVe0hUQZv3/ed0at3n3jwr/d1WWDlF7fcGI1bbBH7j/2v6gwu53QPaseKFc/GjPPPjUlTPxvH/vsOrnu9fZ/YYYf+ccInj427f3VXvHP0u6o8Sl7JhhNQho/cMwYP3SWO//hH487/+0W8tO6leOjBv8bpZ3wlVq5cfwe7F154ISIiVq1aFVv16BFbbul3nnLRPqgtb3jDGzoWn3r7PvvGG7Z4Q3z7ogviiI98NLbddrsqj46N+cffl8e1r3K8s0ePnnH+OWfGew/+YJwwdVrH9+42fGSM/+B74pabfhof/NBHqvMGckj7INt22XX9PGGPPfeKobvsGsd89Mi4/Re3xX+9x+d+teiOW2+OxsYtYr93H1Tw+Ic+OiH++fflcdF5X4mZXz8zGhob42OfnBzXX3tVbL2N32nKTfugtpj35cM++74zevfuEw/85b5438GHRq/eveO551q77LdyZWv033FAFUaYX7oH2bR8+eNxxeXfjennnh+rV6+O1atXx6rnNhwjWx0rV66MXr02fk4gteE/z3M56L0Hx98ebokrvtMcs789I+q7dYsPfmh8NDQ0xlY9elZ7uLmifQCb3z77vjN69/n3nO9lC6wMHrpLREQMG7lnDBqyS0z+xFHxyzv+N9594H9XaaT5pH1QG35+y83x4AN/jS9/5WuxsvU/zgF87rnosVWP2NJ1D5n0j78vj+9fdXl86WXnuaz693kuL77sur5evXtHXV1dx+IqERFvetPWsfOgwfG3JS1VGn0+aR/Utve8933x3e9cEn/5y30WWMmgf/x9eVxz1eVxxtnnxuoXVke80Nm9F154IZ5buTJ69uoVR318Yixf/nic+9UzYvpZX4zGxsaYOOnT8f25V8Q2PsMtK90rTiYXWDnwwANf034bJgoUb+3atXHrLTfH/u8+IHr29CFMLfr78mXR1tYWZ5x2Updt5371jLjw/Onx8wW/f5Vn8QMUqk37No+2trY48dNT1p+IMvea6Nu3X7WHRJnV/ceyi+vWro07fvHzeMfoMdHDCSeQKdq3+T22dGm0tbXFrrvtXvD4hq+XLn003hkWWKkVQ3fZNerq6mLZY0uj7cW2eH7Vqjjy0Pd32W/8YePinaPHxPkXzqrCKIGX075s2HW33WPdunWx/PHHXWiXUa90vPO8r54RF50/Pb5/wy3xzNNPx5BddyvY/ua3bB+9+7wxli1durmGC7wC7dv8dt11t6irq4ulfg7WpHVr18Yvb/957LPf/l0unmtobIwT/+fM+OSUk+JfT/4z+r15+2hra4srLpkZuw4bWaURAy+ne9lh3lfbNnzW99a37RyP/u3hgm3r1q2Lx5b+LfZ717urMDLgP2lfZT2+bP0xslNO+myXbWd+6Qtx7jlfi9/8YWEVRka5bWhfXV1dHD/1pPjYhBPi78uXxbZ9+0XPHj3jsPe8Kw478qgqjxKI0D4oh/88v/Plhvz7PJjHH3N8G7JC+zavRx5eEqtWrYoPjntPl22HHvK+eNf+Y+LCb19ahZHxav7++Po5/Jc2cp7L1796Rsw8f3rc+svfx047D4q/PbKkyz7t7e3xYtuLm2OowCvQveypc81zJi3/d/e++LmNdO8rX4qZ3zgnbrvrD9HY2Binf/ns+PS0/xdPPPHPeMtbdoi2thfj4gu/FSNG7lmFkUOhTC6w8s9//jOGDBkSw4cPf8X9li1bFr/+9a8306jy6de/uiueeeaZGHfwB6o9FIo0aMguMfOSywsee/qpf8VZX/hcfHzipHj7vu/Y5Pf+4tabIyJi191f+d81Xp9XOPYLm6R9lbdu3br43P87Ke6/796YffmV8baddq72kCij3//mV7GydUXsslvhv0O//+2vY8Wzz8RB7zm4SiPLP92jWNq3+W2//Q4REfGX+++LffYd1fH4X/9yf0RE7LDDDlUZF8VZdM/CaG9vjx122DF2GzY89nr7PgXbf/Pru+J7V1wW53zjgthxwFurNMp80j6KpX3ZsHDhH6Ouri522KF/tYfCJgwasktcsJHjnV/5wufi2H8f73zjm7aOLbfcMh78y/0x7gOHd+z39+WPR+uKZ+Mtfq8pK+2jWNq3+f154Z+ivb09+u+oc7XoT7+/O1pXPBsH/FfXxTM36NW7T/Tq3SciIn50TXP06t0nRh/wX5triMnQPoqhe9lh3lebfnf3r6K1dUXsstuwiIgY9c53xRXfvTiefebpeOObto6IiF//8o5Y/fzzMWq//as40vzRPYqlfZU1dJdd47tzrip47F//+lf8z6knxwmTpsQ73rlflUZGuWzqPJetevSIgYOHRkTETTf8KNraXoz3HHxoFUaYX9pHsbQPive7u38VrStWxC67D9vkPvf++zyYt5jPl532USzt27w+8MHD4u37NBU89qu77oorLp8d58+4MAY4BzCzBg3dJS78j/NcntpwXd9xk2Kff1/Xt9/+B8Sf/vC7eLhlcew8aHBERDzz9FPxcMvi+OixEzb3sHNN+yiG7mXH/Jtvirq6utht2KbnD1TP4KG7xIWXzil47Omn/hVnnn5qTDhuUuwz6p0F23r3eWP07vPGiIj43rcvi959+sQBB3VdUI7i6V5xMrnAypAhQ6J///5x1llnveJ+P//5z8WoRDff+LN44xvfGPuNdvJBrerVq3fsuXfhJPrvyx+PiIi37bxzjNxz74iIOPnTx8deezfFzoMGR/eGhvjT738XP7p2boza712xx15v3+zjzjOr41EM7au8c84+K/7vf38RUz9zYrz00kux6J4/d2zbeeCg6Nmz56a/mUw558v/E2/ZfocYvMtusdVWPeKv998bP5h7eQwasksc8F/vK9j3F7fcGL37vDGa3jm6SqPNP92jWNpXfi+sXh13/XJBREQ8vuyxeGH1C/GLW38eERG7DxsWb9l+hzjov98bsy+ZFS+99FIMHzEyli17LGZf/O3YaeeBse87nIiZVdOmHB9vbxoVOw0cFI2NjfHQA3+Nq6+aE4MGD4n9DxgbDQ2N8ZbtCy8k3zAvHD5yj9jGnXrLSvsolvaV1+rVq+NXv7wzIv7dvRdeiF/cektEROw2bP2HnGd+8fPxnveNi/47Doi2thfjd7+5O37w/avjQ0d8JLbZdtuqjZ1X9lqPd37ww+Pjh9dcFT179oy9m94RTz/9VMy9/NJ445veFGP/+31dnpfiaR/F0r7KmnT8xNh31KgYOGhwNDY2xgN//UtcMeeyGDJkaIwde1C1h0cR7rj1pujV542x96iu8/M/3P3LWP74Y/HWnQbG86tWxW9++X9xxy/mx/+cdV5s1cOx7XLTPoqhe+Vn3pdfZ59xWrxl+/4x5N+f9f3l/kXx/avWf9Z34H+vX2jskMOPiJ/88Jo4/f99Jo6dOClWtrbGrAvOi9H7j+1YhIXy0D2KpX2V1bt379inad+Cxx5/fFlErD/HZa+9ne9XS17LeS4P3H9vLPzj72LQkF1i3bp18aff3x3XX3dNTD7xc7H9DjtW+R3ki/ZRLO0rr9WrV8ddC9bP+ZYtWxarX1gdt/18/Zxv9+HDY/vtd4jlyx+P+++9NyIiVq1aFcuXP96xz+j9x8SWW25ZncHzis7+0r/nfLu+bM53ZeGc7/995oTYa59RsdPOA6OhoTEWP/TXuHbuFTFw8JB417sPrPI7yB/to1jaV16rV6+Ou/7jeOdt/z7eufuw4bH9Dv1j+/9YZGr54+vPlRi5x56xrXMAM6tXr96x59s3cZ7LTp3nuRxy2IfiJ9ddE1849cQ4bvJnYost3hBXXf6d2HKrreKwD4/f7OPOM+2jGLpXfq9l3veRDx8Wh3zgg7HTTjvHupdeijvvuD1+8qMfxhFHjnczhYzq1at37LWp7u08sKN7d9+1IJY9tjR2GjgoVj33XPzyjv+N2265Kb7y9W9FD9dwlpXuFSeTC6wMGzYsFixY8Jr2bW9vr/Bo8uv551fFHXfcHod84NBoaGio9nCosLftNDDm3/jT+NeT/4y1a9fGW7bvHx+bcFx87OPHVXtouWPFL4qhfZX367vuioiIb180M7590cyCbd+dc1WXE1PIrrftPChuv/Wm+MkPro4XX3wxtuvbL957yGFx7HGTC36nWf3883H3L++I/37/B6J7d7/rVIruUSztK7+nn346/uf/TSt4bMPXX/7qOXHIBw+LM75ydsz57uyY99OfxHcvnRVv2nrraBr1jpj86ROjsbFx8w+a12S3YcPj5zffGH9fvv7E2Tdvv0McfsT4+OjRH4+GBn9vm5v2USztK69nnn4qPnfKtILHNnx95lfPiQMO/K/o2+/NccVls+Nf/3oyttxyy+g/4K3xxS9/JcYd8sHNP2DK7vgpn403vWnrmD/vhvjxD66Jnr16xW7DRsRxUz4bb3zjm6o9vFzRPoqlfZU1bPjwuOnGn8Xjy9bPE7bfoX98ZPxRcczHPxEN5nc1Z/Xzz8dvf3VnjH3vIRs9ltmte0P87/x5sXzZo1EXdTF412Fx9oxLYvgeLqqsBO2jGLpXfuZ9+fW2nQfFL35+c/zoB9+LF19Y/1nf+z9weEw4vvOzvl69eseMb18WF35zenz5f06OxsbGePeB/x2TTzy1yqPPH92jWNoHr91rOc+le0ND/PqX/xfXXDE71q1bFzsPGhJnfO2b8a4DLKJabtpHsbSvvJ5++qn4fyefWPDYhq+/cvb0+OBhh8fvf/vbOOOLn+/Y/uQTT8Qffv+7iIi4+db/dbFdRnWZ8/XrF+//YOGcb9fdhsdt8+d1XIT35rfsEId++CNx5FEfd11LBWgfxdK+8nql451nffWc+MChh2/+QbFZbbnlVjHzksvjom+eG+d97cxof+mlGLnn2+MLZ30ttt7GguHlpH0UQ/fK77XM+wa89a1xzdVz46l//Sva29vjbW/bKU79n9Nj/Ec/Vo0hU0bdu3eP+fNuiMeW/i2iri522314XHDxZbHn3vtUe2i5o3vFqWvP4E/zpUuXxuLFi+PAA1959dkXXnghnnrqqdhhhx1ecb9irF5T9qckQ1r9Bedav97VPbB6y/1PlvT9793dyrIpykL7Xlhb9qckQ/61sq3aQ6BC+r+puhfMlNq9CO1LVRbat/LFl8r+nGRD21p/t3m2TY/qrhesfRQrC+1b1Za5Q8GUyUqT+lx7s+Od1Khqt8+Pxnxb+tTz1R4CFTSk31ZVfX3toxjV7l6EOV/erVztl5u8enOf2p7zRWhfqrLQPvO+fHOeS345z4VapX1U0rPPu7Yhz3zWR62qdvued7wz15570S82eda3l/ZRe6rdvQhzvrxzjmd+bdfTtQ21qLp/a5swYMCAGDBgwKvu94Y3vKEiIQKAzU37AEiN9gGQGu0DIDXaB0BKdA+A1GgfAKnRPgBSo30ApET3ANKSyQVWAGpZXV21RwAAm4/uAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInuFccCKwBlJkgApET3AEiN9gGQGu0DIDXaB0BKdA+A1GgfAKnRPgBSo30ApET3imOBFYAyqwtFAiAdugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAlulec+moPAAAAAAAAAAAAAAAAAAAAAACgUrpXewAAeVNvwS8AEqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7xbHACkCZ1YUiAZAO3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3SuOBVYAyqxOjwBIiO4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxwIrAGVmxS8AUqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7xamv9gAAAAAAAAAAAAAAAAAAAAAAACqle7UHAJA39Rb8AiAhugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAlulccC6wAlFldKBIA6dA9AFKjfQCkRvsASI32AZAS3QMgNdoHQGq0D4DUaB8AKdG94lhgBaDM6vQIgIToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXnHqqz0AAAAAAAAAAAAAAAAAAAAAAIBK6V7tAQDkjQW/AEiJ7gGQGu0DIDXaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7hXHAisAZVZfJ0kApEP3AEiN9gGQGu0DIDXaB0BKdA+A1GgfAKnRPgBSo30ApET3imOBFYAykyMAUqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7xamv9gAAAAAAAAAAAAAAAAAAAAAAACqle7UHAJA7lvwCICW6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6VxQLrACUWZ0iAZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3SuOBVYAyqxOjwBIiO4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxwIrAGWmRwCkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPeKU1/tAQAAAAAAAAAAAAAAAAAAAAAAVEr3ag8AIHcs+QVASnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnSvKBZYASizOkUCICG6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6VxwLrACUWZ0eAZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3StOfbUHAAAAAAAAAAAAAAAAAAAAAABQKd2rPQCAvLHgFwAp0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b3iWGAFoNwUCYCU6B4AqdE+AFKjfQCkRvsASInuAZAa7QMgNdoHQGq0D4CU6F5RLLACUGZ1igRAQnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnSvOPXVHgAAAAAAAAAAAAAAAAAAAAAAQKV0r/YAAPKmzoJfACRE9wBIjfYBkBrtAyA1WWvfo48+Gpdddlnce++98dBDD0W/fv3i9ttv77LfggULYsaMGdHS0hLbbbddHHvssTFhwoQu+82ZMyfmzp0bTz75ZAwePDhOPvnkGD169GZ4JwBkUda6BwCVpn0ApEb7AEiN9gGQEt0rTn21BwCQN3Ul/gGAWlJq97QPgFqjfQCkRvcASE3W2rd48eK44447YocddojBgwdvdJ977rknpkyZEkOHDo3Zs2fH+PHj47zzzou5c+cW7Ddnzpw4//zzY/z48TF79uwYPHhwTJo0Ke67774KjByAWuB4JwCp0T4AUqN7AKRG+wBIieOdxele7QEA5E6qRQEgTboHQGq0D4DUaB8AqclY+8aOHRsHHXRQREScccYZcdddd3XZp7m5OYYMGRLTp0+Purq6GDVqVDzxxBPR3Nwc48ePj4aGhmhra4tZs2bF0UcfHSeccEJERDQ1NcUDDzwQzc3Ncckll2zW9wVARmSsewBQcdoHQGq0D4DUaB8AKdG9olhgBaDM6hQJgIRksXuPPvpoXHbZZXHvvffGQw89FP369Yvbb7+9y34LFiyIGTNmREtLS2y33XZx7LHHxoQJE7rsN2fOnJg7d248+eSTMXjw4Dj55JNj9OjRm+GdAJBFWWwfAFSS9gGQmlLbd88997yu/UeOHPmK2+vr619xe1tbW9x9990xbdq0qKvrHPshhxwSc+fOjYULF0ZTU1MsXLgwWltbY9y4cQXPPW7cuLjooouira0tGhsbX9fYAah95nwApEb7AEiN9gGQGu0DICW6VxwLrAAAALmyePHiuOOOO2LEiBHR3t4era2tXfa55557YsqUKXHwwQfHaaedFosWLYrzzjsvunXrFsccc0zHfnPmzInzzz8/TjzxxBgxYkRcf/31MWnSpLj22mtj2LBhm/NtAQAAAAA14Mgjj3xd+z/44IMlvd7SpUtjzZo1MXDgwILHN3y9ZMmSaGpqipaWloLHNxg0aFC0tbXFY4891mUbAAAAledGQgAAAAAAm88r3+oIgNetrq60PwBQS0rtXiXaN3bs2FiwYEE0NzfHiBEjNrpPc3NzDBkyJKZPnx6jRo2KE044IY466qhobm6ONWvWRMT6O7/OmjUrjj766DjhhBNi1KhRMX369Bg4cGA0NzeXf+AA1IQstg8AKimL3Xv00UfjjDPOiMMOOyx23333GDt27Eb3W7BgQRx22GExfPjwGDt2bFxxxRUb3W/OnDkxduzYGD58eBx++OFx1113VWbgANSELLbvlaxYsSIiInr16lXweM+ePaNbt24d21tbW6Nbt27Ro0ePgv169+5d8DwApCWLxzvN+QCopCy2b8ONhHbYYYcYPHjwRvfZcCOhoUOHxuzZs2P8+PFx3nnnxdy5cwv223AjofHjx8fs2bNj8ODBMWnSpLjvvvvKP3AAakLWugcAlaZ9AKQki8c7a0H3ag8AIG+y1hN3NwCgksrRvXvuued17T9y5MhX3F5f/8rrSLa1tcXdd98d06ZNi7qXzQQPOeSQmDt3bixcuDCamppi4cKF0draGuPGjSt47nHjxsVFF10UbW1t0djY+LrGDkDty9qcL8K8D4DKymL7NlxwMGLEiGhvb4/W1tYu+2y44ODggw+O0047LRYtWhTnnXdedOvWLY455piO/TZccHDiiSfGiBEj4vrrr49JkybFtddeG8OGDducbwuAjCi1fdddd11ZxgEAm4M5HwCpyWL7xo4dGwcddFBERJxxxhkbXQzs5TcSqquri1GjRsUTTzwRzc3NMX78+GhoaOhyI6GIiKampnjggQeiubk5Lrnkks36vgDIhiy2DwAqKWvtc34nAJWUte7VCgusAJRbxorkxBMAKqoM3TvyyCNf1/4PPvhgSa+3dOnSWLNmTQwcOLDg8Q1fL1myJJqamqKlpaXg8Q0GDRoUbW1t8dhjj3XZBkACMjbnizDvA6DCMtg+FxwAUFEltu/VFogutz59+kRExMqVKwsef+6552LdunUd23v37h3r1q2LVatWRY8ePTr22zCH3LAfAIkx5wMgNWVonxsJAVBTMjjvc6E5ABWVsfY5vxOAispY92qFBVYAcs6JJwBQaMWKFRER0atXr4LHe/bsGd26devY3traGt26dSu42CBi/YUIL38eAKg28z4AsqzcFxtEuOAAAF5uwIAB0dDQEEuWLIkDDjig4/ElS5ZEROcC0i9fYHrEiBEd+7W0tERDQ0PsuOOOm3HUAOSJi8wBSI0bCQFAaVxoDkBKnN8JANljgRWAMqsrcckvJ54AUEtK7V5ExHXXXVeGkQDA5lGO9pn3AVBLSm3f5r7YIMIFBwCUphzzvs2psbExRo0aFfPnz4+JEyd2zPtuvPHG6NOnT+yxxx4REbHXXntFr169Yv78+R0LrLS3t8f8+fNjv/32M98DSFQ5uucicwBqSa3N+SLcSAiA0mSxfS40B6CSXNcHQEqyOOd79NFH47LLLot77703HnrooejXr1/cfvvtXfZbsGBBzJgxI1paWmK77baLY489NiZMmNBlvzlz5sTcuXPjySefjMGDB8fJJ58co0ePLmmMFlgBKLO6EnvkxBMAakmp3Yt4bXcnL6c+ffpERMTKlSsLHn/uuedi3bp1Hdt79+4d69ati1WrVhWcfLLhbgkb9gMgLeVon3kfALWkHO3b3FxwAEApsta+1atXx5133hkREcuWLYvVq1fHLbfcEhERw4cPjx122CGmTp0aRx99dJx++ulx6KGHxqJFi+Kaa66JU089teNEysbGxpg8eXLMmDEjtt566xg+fHjccMMNsXjx4jjrrLOq9v4AqK6sde+1MOcDoBTlaJ8bCQFQS0ptX7kvMo9woTkAleW6PgBSksXP+hYvXhx33HFHjBgxItrb2zuuw3u5e+65J6ZMmRIHH3xwnHbaabFo0aI477zzolu3bnHMMcd07Ddnzpw4//zz48QTT4wRI0bE9ddfH5MmTYprr702hg0bVvQYLbACUGYZ7NErcuIJAKWote5FRAwYMCAaGhpiyZIlccABB3Q8vmTJkojoPOj48oOSG+7oGhHR0tISDQ0NseOOO27GUQOQFbXYPvM+AEpRavtcbABArcnavO+pp56KE088seCxDV9Pnz49Dj/88Nhzzz1j1qxZMWPGjJg3b1707ds3TjnllC539pk4cWJERFx99dUxc+bMGDRoUMyaNavg+CcAaSlH98z7AKgl5WifGwkBUEtKbd/mvsg8woXmAJQma5/1vRrndwJQiix2b+zYsXHQQQdFRMQZZ5wRd911V5d9mpubY8iQITF9+vSoq6uLUaNGxRNPPBHNzc0xfvz4aGhoiLa2tpg1a1YcffTRccIJJ0RERFNTUzzwwAPR3Nwcl1xySdFjtMAKQLmVWCQnngBQU7I4E3sVjY2NMWrUqJg/f35MnDix4w4HN954Y/Tp0yf22GOPiIjYa6+9olevXjF//vyOCwza29tj/vz5sd9++7mzAUCq3NUOgNSU2L7NfbFBhAsOAChRxo559u/f/zVdlDBmzJgYM2bMq+43ceLEjoVWAKAc3XOROQA1JWNzvtfCjYQAKEkNts+F5gCUxHV9AKSkDHO+e+6553Xt/2qfDdbX17/i9ra2trj77rtj2rRpHdf0RUQccsghMXfu3Fi4cGE0NTXFwoULo7W1NcaNG1fw3OPGjYuLLroo2trair62zwIrABnjxBMAKM3q1avjzjvvjIiIZcuWxerVq+OWW26JiIjhw4fHDjvsEFOnTo2jjz46Tj/99Dj00ENj0aJFcc0118Spp57aMblqbGyMyZMnx4wZM2LrrbeO4cOHxw033BCLFy+Os846q2rvD4DaZ94HAJXlggMAAID8MucDIDVuJARANbnIHIDUOL8TgNQceeSRr2v/13KToFeydOnSWLNmTcdneRu8/LO9pqamaGlpKXh8g0GDBkVbW1s89thjXba9VhZYASizuhpb5tmJJwCUIovde+qpp+LEE08seGzD19OnT4/DDz889txzz5g1a1bMmDEj5s2bF3379o1TTjklJkyYUPB9G+7kevXVV8fMmTNj0KBBMWvWrIIWApCWLLbv1Zj3AVCKWmyfCw4AKEUttg8AilWL3TPnA6AUWWyfGwkBUEmltm9zX2Qe4UJzAEqTxXnfK3F+JwClqLXuRUSsWLEiIiJ69epV8HjPnj2jW7duHdtbW1ujW7duBfO9iPVzwZc/TzEssAJQZnU11iMnngBQiix2r3///q9pNcwxY8bEmDFjXnW/iRMndiy0AgBZbN+rMe8DoBRZbJ8LDgCopCy2DwAqJYvdM+cDoJKy2D43EgKgkrLYvlfjQnMASlFr7XN+JwClKEf3rrvuutKfpMZYYAWgzLI2D3PiCQCVlLXuAUClZbF95n0AVFIW2+eCAwAqKYvtA4BKyWL3zPkAqKQsts+NhACopCy279W40ByAUmStfc7vBKCSytG9kSNHluFZXrs+ffpERMTKlSsLHn/uuedi3bp1Hdt79+4d69ati1WrVkWPHj069mttbS14nmJYYAUg55x4AgAAkG/mfQCkxgUHAAAA+WXOBwAAkG8uNAcgJc7vBIBCAwYMiIaGhliyZEkccMABHY8vWbIkIiIGDhxY8M8lS5YUtK6lpSUaGhpixx13LHoMde3t7e1Ff3eOrV5T7RFQSa3+gnOtX++Gqr7+Q/98vqTvH9JvqzKNBF6fF9ZWewRU0r9WtlV7CFRI/zdVd4X9UrsXoX1Uz8oXX6r2EKiQtrX+bvNsmx7VXS9Y+6hlq9ocCs6rlSb1ufZmxzuhKH405tvSp0r/vZzsqnY7tI9aZc6XbytX++Umr97cp7bnfBHaR/WY9+Wb81zyy3kuUDzty69nn3dtQ575rK+rZcuWxYEHHrjRbRsuNI+IuPPOO2PGjBnR0tISffv2jaOPPjo++clPdvmeyy67LK6++up44oknYtCgQXHyySfH/vvvX/Zxs3k973hnrj33ol9s8qxvL+2DYpjz5ZtzPPNru56ubXglZ5xxRtx1111x++23Fzx+3HHHxTPPPBM/+tGPoq6uLiIivva1r8VPf/rTuOuuu6KxsTHa2trine98ZxxxxBFx2mmnRUREe3t7HH744dG3b9+49NJLix5Xdf/WAHKoLuqqPQQA2Gx0D4DUaB8AqdE+AFKjfQCkRPcASI32AZCaLLavf//+8eCDD77qfmPGjIkxY8a86n4TJ06MiRMnlmNoAORAFtsHAJWSxe6tXr067rzzzohYv8Dm6tWr45ZbbomIiOHDh8cOO+wQU6dOjaOPPjpOP/30OPTQQ2PRokVxzTXXxKmnnhqNjesX6W5sbIzJkyfHjBkzYuutt47hw4fHDTfcEIsXL46zzjqrpDFaYAWgzOqy1yMAqBjdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkJIsdu+pp56KE088seCxDV9Pnz49Dj/88Nhzzz1j1qxZMWPGjJg3b1707ds3TjnllJgwYULB921YTPPqq6+OmTNnxqBBg2LWrFkxYsSIksZogRUAAAAAAAAAAAAAAAAAAAAAoCj9+/ePBx988FX3GzNmTIwZM+ZV95s4cWLHQivlYoGVTdiyodojoJK2bPAXTOVkcMEveE3e4LeCXOv/psZqD4Gc0j1qWa8t6qs9BCrF3y0VpH3Ush6N/h+cVz0aHe+kcvzkoFY53plvQ/ptVe0hkGPaR60y58s38z4qxU8Oapl5X745z4VK0T5qmfbl15t7m/NROdpHrdrK8c5c28rxTirITw9qlTlfvr2hp79gKkP3iuPfSIByUyQAUqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7RbHACkCZ1SkSAAnRPQBSo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+A1GgfACnRveJYYAWgzOr0CICE6B4AqdE+AFKjfQCkRvsASInuAZAa7QMgNdoHQGq0D4CU6F5x6qs9AAAAAAAAAAAAAAAAAAAAAACASule7QEA5I0FvwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie4VxwIrAOWmSACkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPeKYoEVgDKrUyQAEqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7xamv9gAAAAAAAAAAAAAAAAAAAAAAACqle7UHAJA3dRb8AiAhugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAlulccC6wAlJkeAZAS3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3SuOBVYAysyKXwCkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPeKU1/tAQAAAAAAAAAAAAAAAAAAAAAAVEr3ag8AIH8s+QVASnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnSvGBZYASizOj0CICG6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6VxwLrACUmR4BkBLdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkBLdK44FVgDKzIpfAKRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE94pTX+0BAAAAAAAAAAAAAAAAAAAAAABUSvdqDwAgb+rCkl8ApEP3AEiN9gGQGu0DIDXaB0BKdA+A1GgfAKnRPgBSo30ApET3imOBlYQ9+uijcfbZZ8cf/vCHaGxsjPe9733xuc99LrbaaqtqD40yePTRR+Oyyy6Le++9Nx566KHo169f3H777dUeVhr0CDJL+/JL96pI9yDTtC+/tK+KtA8yTfvyS/uqSPsgs3Qv37SvirQPMkv78kv3qkj3INO0L7+0r4q0DzJN+/JL+6pI+yCzdC/ftK+KtA8yS/vyS/eqSPeKYoGVRK1cuTI+/vGPR9++feOCCy6IFStWxNe//vV46qmn4qKLLqr28CiDxYsXxx133BEjRoyI9vb2aG1trfaQkqFHkE3al2+6Vz26B9mlffmmfdWjfZBd2pdv2lc92gfZpHv5p33Vo32QTdqXb7pXPboH2aV9+aZ91aN9kF3al2/aVz3aB9mke/mnfdWjfZBN2pdvulc9ulccC6wk6tprr42nn346fvzjH8c222wTERFveMMb4jOf+Uzcd999MWzYsCqPkFKNHTs2DjrooIiIOOOMM+Kuu+6q8ogAqkv78k33ALrSvnzTPoCutC/ftA+gkO7ln/YBFNK+fNM9gK60L9+0D6Ar7cs37QMopHv5p30AhbQv33SPWlNf7QFQHQsWLIhRo0Z1hChi/Q+wrbbaKu64447qDYyyqa/3r3e11NWV9geoDO3LN92rnlK7p31QOdqXb9pXPdoH2aV9+aZ91aN7kE26l3/aVz3aB9mkffmme9XjeCdkl/blm/ZVj/ZBdmlfvmlf9egeZJPu5Z/2VY/2QTZpX77pXvU43lkc/49NVEtLSwwcOLDgse7du8dOO+0US5YsqdKoIB/qSvwPUBnaB5VRave0DypH+6AytA+yS/ugMnQPskn3oHK0D7JJ+6AyHO+E7NI+qAztg+zSPqgM3YNs0j2oHO2DbNI+qAzHO4vTvdoDoDpaW1ujV69eXR7v3bt3rFixogojghxJsyeQedoHFaJ7kFnaBxWifZBZ2gcVon2QSboHFaR9kEnaBxWie5BZ2gcVon2QWdoHFaJ9kEm6BxWkfZBJ2gcVontFscAKQJnpEQAp0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b3i1Fd7AFRH7969Y+XKlV0eb21tjT59+lRhRABQWdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3QMgNdoHZIkFVhI1cODAWLJkScFj69ati0ceeSQGDhxYpVFBPtTVlfYHqAztg8ootXvaB5WjfVAZ2gfZpX1QGboH2aR7UDnaB9mkfVAZjndCdmkfVIb2QXZpH1SG7kE26R5UjvZBNmkfVIbjncWxwEqi9t9///jtb38bTz/9dMdj//d//xfPP/98jBkzpoojg9pXV+J/gMrQPqiMUrunfVA52geVoX2QXdoHlaF7kE26B5WjfZBN2geV4XgnZJf2QWVoH2SX9kFl6B5kk+5B5WgfZJP2QWU43lmc7tUeANUxfvz4+N73vhdTpkyJyZMnR2tra3z961+PAw88MIYPH17t4VEGq1evjjvvvDMiIpYtWxarV6+OW265JSIihg8fHjvssEM1h5drqa7YBVmnffmme9Wje5Bd2pdv2lc92gfZpX35pn3Vo32QTbqXf9pXPdoH2aR9+aZ71aN7kF3al2/aVz3aB9mlffmmfdWjfZBNupd/2lc92gfZpH35pnvVo3vFqWtvb2+v9iCojkceeSTOPvvs+OMf/xhbbLFFvOc974nTTjstevToUe2hUQbLli2LAw88cKPbpk+fHocffvhmHlE6nnl+XUnf/6atupVpJMB/0r780r3qKbV7EdoHlaR9+aV91aN9kG3al1/aVz2Od0J26V6+aV/1aB9kl/bll+5Vj+OdkG3al1/aVz3aB9mmffmlfdXjeCdkl+7lm/ZVj/ZBdmlffule9TjeWRwLrACUmYkYACkxEQMgNdoHQGoc7wQgNdoHQEoc7wQgNdoHQGoc7wQgNdoHQEoc7yxO92oPACBv6uqqPQIA2Hx0D4DUaB8AqdE+AFKjfQCkRPcASI32AZAa7QMgNdoHQEp0rzgWWAEos7pQJADSoXsApEb7AEiN9gGQGu0DICW6B0BqtA+A1GgfAKnRPgBSonvFqa/2AAAAAAAAAAAAAAAAAAAAAAAAKqV7tQcAkDd1FvwCICG6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6VxwLrACUmR4BkBLdAyA12gdAarQPgNRoHwAp0T0AUqN9AKRG+wBIjfYBkBLdK44FVgDKTZEASInuAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInuFcUCKwBlVqdIACRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE94pTX+0BAAAAAAAAAAAAAAAAAAAAAABUSvdqDwAgb+os+AVAQnQPgNRoHwCp0T4AUqN9AKRE9wBIjfYBkBrtAyA12gdASnSvOBZYASgzPQIgJboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbpXnPpqD4DsuOiii2Lo0KEdf0aNGhXHHnts/OEPf6jo6950000xdOjQWLZsWcdjQ4cOje985zuv+TmWLVsWF110UfzjH/8o69iGDx8eF1100Svuc8wxx8TEiRNLfq2xY8fGGWecUfLzRET89re/jaFDh8af//znsjwfr1NdiX+AzUb7utI+XrdSu6d9sFlpX1fax+umfVAzdK8r3aMougc1Q/u60j6Kon1QM7SvK+3jdXO8E2qK9nWlfbxu2gc1Q/e60j2KontQM7SvK+2jKNoHNUP7utI+XjfHO4vSvdoDIFsaGhrie9/7XkRE/POf/4xZs2bFhAkT4ic/+UkMGTJks43jBz/4QbzlLW95zfs//vjj0dzcHO9617vizW9+cwVHBkDeaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJboHQGq0D4DUaB9QDRZYoUBdXV3sscceHV8PHz48xo4dG9dee+0mV6Jqa2uLxsbGso7j5WOAWlOX6pJdUKO0D0qje1B7tA9Ko31QW3QPSqd9UFu0D0qnfVBbtA9Ko3tQe7QPSqN9UFt0D0qnfVBbtA9Kp31QW7QPSqN7xamv9gDItu233z623nrrWLZsWURE/M///E+8973vjV//+tdx+OGHx7Bhw+LHP/5xREQsWrQoPvnJT8aee+4Ze+65Z0yePDkee+yxgud77rnn4vOf/3zsvffesc8++8SXvvSlWL16dZfXHTp0aHznO98peOzOO++Mo446KvbYY4/Ye++946Mf/Wj88Y9/jN/+9rdx7LHHRkTERz7ykRg6dGgMHTq04DXPPvvs2H///WPYsGFx8MEHx80339zlNX/0ox/FgQceGMOHD48jjzwy7r///tL+x/u3f/3rX/GFL3wh/uu//itGjBgRY8eOjS9/+cvR2tq60f0vv/zyGDNmTIwYMSI+8YlPxKOPPlqwvb29Pa644op43/veF8OGDYsxY8bEhRdeGOvWrSvLeCldXV1pf4Dq0r7SaV9aSu2e9kH1aV/ptC8t2ge1TfdKp3vp0T2obdpXOu1Lj/ZBbdO+0mlfWhzvhNqnfaXTvrRoH9Q23Sud7qVH96C2aV/ptC892ge1TftK9//Zu/f4r+f7/+P3zkQfOZShDClDNGNEk+/C18IsxxmiyYYopyljs+8m08yGyfkwYrPxzearjZkcwow5LIdt6ONYziqFdPL5/dGvNx8V9fm8P/X+vF/X6+XSpT7v1+v9fj/fqW5er8/79XhrX7E439kwrVf0Aqhs7777bqZPn57OnTuXbnv77bfzwx/+MEcddVS6du2aNddcM48//ngOPvjg9O7dOz//+c9TV1eX0aNHZ9CgQbn11ltL08BOO+203HPPPTn++OOz0UYb5eabb86vfvWrz1zHn//855x44onZaaedcvbZZ2ellVbKxIkT89prr2WnnXbK6aefnp/85CcZOXJkunfvXrrf3Llzc/jhh+fVV1/NMccck65du+aOO+7IiSeemJqamnzlK19Jktx999057bTTsueee+Yb3/hGnnvuuQwbNiwffvhho38Pp0+fnlVXXTXDhw9Px44dM2XKlFx88cU5+uij85vf/KbevnfffXfWWmut/OAHP8gHH3yQX/7ylzniiCPy5z//OW3atEmSjBo1Kr/97W/z3e9+N1tvvXX+85//lGJ0wgknNHq9NN5K/mWFZk37tI9lo3vQ/Gmf9rFstA+aN93TPZad9kHzpn3ax7LTPmjetE/7WDa6B82f9mkfy0b7oHnTPd1j2WkfNG/ap30sO+2D5k37tI9lo3sNVAf/369+9au6nj171s2dO7du7ty5dZMnT64bOnRoXY8ePeomTJhQV1dXVzdixIi6Hj161D300EP17nvIIYfU7bPPPnXz588v3fb666/XbbHFFnW//e1v6+rq6uomTZpUt8kmm9T95je/qXff/fbbr65Hjx51L7/8cum2Hj161F166aV1dXV1dfPnz6/r27dv3SGHHLLEtf/973+v69GjR91jjz1W7/abbrqp7gtf+ELdv/71r3q3H3300XX7779/6ev999+/br/99qu3z3XXXVfXo0ePul/96ldLfN6Fr/3www//1H0+bu7cuXX/+Mc/6nr06FH37LPPlm7/6le/WterV6+6t99+u3Tbk08+WdejR4+6sWPH1tXV1dW99NJLdV/4whfqxowZU+8xf/3rX9f16tWrbtq0aXV1dUv+/QCgPu3TPoCi0T7tAygS3dM9gKLRPu0DKBrt0z6AotE+7QMoEt3TPYCi0T7tAyga7dM+WFFarugBL1SWOXPmZPPNN8/mm2+efv365YEHHsjpp5+eHXfcsbRPhw4d8uUvf7n09QcffJBHHnkk/fv3z4cffph58+Zl3rx5WWONNdKjR488/vjjSZLHH388dXV1+drXvlbvOf/7v//7U9f0/PPP57XXXsv++++/zK/nvvvuy8Ybb5zu3buX1jVv3rz06dMn//rXvzJ//vzMnz8/Tz31VHbbbbd69/3kOhuqrq4u1157bfbcc8988YtfzOabb56DDz44SfLCCy/U23fbbbfNGmusUfp68803T5cuXUq/hw888EA+/PDD9O/fv97r2WGHHTJr1qw8++yzZVkzQJFo30e0D6AYtO8j2gdQ/XTvI7oHUAza9xHtAygG7fuI9gEUg/Z9RPsAqp/ufUT3AIpB+z6ifQDFoH0f0T5Yflqv6AVQWdq0aZPrr78+LVq0yOqrr5511lknLVvWn8Oz5ppr1vv6nXfeyfz58/Pzn/88P//5zxd5zFVXXTVJ8uabb6Zly5ZZffXV621fa621PnVN06dPT5Ksvfbay/pyMnXq1DzzzDPZfPPNF7v9zTffTKtWrTJv3rxFXtcaa6yxyGtviDFjxuSss87KoEGDssMOO6Rjx455/fXXc+yxx2b27Nn19v3kGpIFvz9vvvlmkuTtt99OkvTp02exz/XKK680er0ARaN9H9E+gGLQvo9oH0D1072P6B5AMWjfR7QPoBi07yPaB1AM2vcR7QOofrr3Ed0DKAbt+4j2ARSD9n1E+2D5MWCFelq0aJEtttjiM/f5uA4dOqRly5YZPHjwIhOzkmSVVVZJknTq1Ckffvhhpk2bVm+i1VtvvfWpz7cwXq+//vpSvYaPW2211dK9e/ecddZZi92+xhprpFWrVmndunXpH/qFpk6dmg8//HCZn/OTbr311uy000455ZRTSrf9/e9/X+y+n1xDsuD3Z9NNN02y4PUkyW9+85u0a9dukX27dOnS6PUCFI32fUT7AIpB+z6ifQDVT/c+onsAxaB9H9E+gGLQvo9oH0AxaN9HtA+g+uneR3QPoBi07yPaB1AM2vcR7YPlx4AVGq19+/bZaqutMmnSpHzve99b4n5bbrllWrRokdtuuy0HHXRQ6fbbb7/9Ux9/ww03zLrrrpuxY8dmr732Wuw+bdq0SZJFpmf16dMnd999d9Zaa62ss846S3yOzTffPH/5y19yxBFHlG677bbbPnVdS+uDDz5YZKLZzTffvNh9H3rooUybNq0U4KeeeiqTJ09Or169kiQ77LBDWrRokbfffnux4Qdg+dC+T6d9ANVH+z6d9gFUF937dLoHUH2079NpH0D10b5Pp30A1Uf7Pp32AVQX3ft0ugdQfbTv02kfQPXRvk+nffDZDFihLE455ZQMHDgwxxxzTPbaa6+svvrqefPNN/Pggw+md+/e2X333dOtW7fstttuOfvsszN37txsuOGGufnmmz9zileLFi0yYsSIHH/88TnqqKOy7777ZuWVV87jjz+eDTbYILvvvns22GCDtGrVKjfddFPatm2b1q1bZ4sttsg3vvGNjB07NgMHDsy3v/3tdOvWLe+9916effbZTJkyJWeccUaSZMiQITnyyCNz0kkn5Rvf+Eaef/75jBkzJq1bL91fkbfffnux8erdu3e+8pWv5KqrrspVV12VTTbZJOPHj88//vGPxT5OTU1NBg8enCFDhmTWrFk599xz07Vr1+y5555Jkg022CDf/va38/3vfz/PPPNMttpqq9TV1eWll17KnXfemYsvvjht27ZdqjUD0Djap30ARaN92gdQJLqnewBFo33aB1A02qd9AEWjfdoHUCS6p3sARaN92gdQNNqnfdAYBqxQFltuuWV+//vf51e/+lV++MMfZtasWVl77bXz5S9/OZtssklpvzPPPDNnnnlmzj///LRq1Spf+9rXctxxx+XUU0/91Mf/2te+lksvvTQXXXRRTjrppLRt2zabbLJJtt9++yTJGmuskdNPPz1XXHFFxo0bl3nz5uXpp59O27Ztc9VVV+Wiiy7KVVddlddffz01NTXp0aNH9tlnn9Lj/9d//VfOPPPMXHTRRbn99tuz6aab5oILLsg3v/nNpXr9//73v3Pcccctcvvvf//7HHPMMZk+fXouvfTSzJs3LzvuuGN++ctfZv/9919k///6r//KBhtskJ/85CeZNm1att566/z4xz8uTTNLkhEjRmSDDTbI9ddfn8suuyzt2rXL+uuvn69+9atLHU8AGk/7tA+gaLRP+wCKRPd0D6BotE/7AIpG+7QPoGi0T/sAikT3dA+gaLRP+wCKRvu0DxqjRV1dXd2KXgQAAAAAAAAAAAAAAAAAAAAAQFNouaIXAAAAAAAAAAAAAAAAAAAAAADQVAxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMi/aQSgAAQAASURBVGAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKhaBqwAAAAAAAAAAAAAAAAAAAAAAFXLgBUAAAAAAAAAAAAAAAAAAAAAoGoZsAIAAAAAAAAAAAAAAAAAAAAAVC0DVgAAAAAAAAAAAAAAAAAAAACAqmXACgAAAAAAAAAAAAAAAAAAAABQtQxYAQAAAAAAAAAAAAAAAAAAAACqlgErAAAAAAAAAAAAAAAAAAAAAEDVMmAFAAAAAAAAAAAAAAAAAAAAAKharVf0AgCqzcpbHduo+896bHSZVgIATa+x3Uu0D4DmRfsAKBrnOwEoGu0DoEic7wSgaLQPgKJxvhOAotE+AIrE+c6GMWAFoNxatFzRKwCA5Uf3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE9xrEgBWAcmvRYkWvAACWH90DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdaxBjaQAAAAAAAAAAAAAAAAAAAACAqtV6RS8AoOq0MLsKgALRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b0GMWAFoNxatFjRKwCA5Uf3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE9xrEgBWAcjPxC4Ai0T0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG9BvG7BgAAAAAAAAAAAAAAAAAAAABUrdYregEAVadFixW9AgBYfnQPgKLRPgCKRvsAKBrtA6BIdA+AotE+AIpG+wAoGu0DoEh0r0EMWAEotxYtV/QKAGD50T0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG9BjFgBaDcTPwCoEh0D4Ci0T4Aikb7ACga7QOgSHQPgKLRPgCKRvsAKBrtA6BIdK9BjKUBAAAAAAAAAAAAAAAAAAAAAKpW6xW9AICq08LsKgAKRPcAKBrtA6BoKqx9Dz74YA499NBFbu/evXvGjRtX+vrFF1/MyJEj8/DDD6dt27bp379/hg8fnvbt29e734QJE3Luuedm0qRJ6dSpUw499NAMGjSoqV8GAJWswtoHAE1K9wAoGu0DoGi0D4Ci0T4AikT3GsSAFYBya9FiRa8AAJYf3QOgaLQPgKKp0PaNHDky3bt3L3290korlX49c+bMHHbYYencuXPOO++8vPPOOxk1alTefvvtXHDBBaX9Jk6cmCFDhmTPPffMiBEj8vjjj+fss89Oq1atMnDgwOX6egCoIBXaPgBoEroHQNFoHwBFo30AFI32AVAkutcgBqwAlJuJXwAUie4BUDTaB0DRVGj7unfvni9+8YuL3fa73/0uU6dOzdixY7PmmmsmWTCAZejQoXnyySfTs2fPJMno0aPTo0ePnHXWWWnRokV69+6dN954I6NHj86BBx6YNm3aLK+XA0AlqdD2AUCT0D0Aikb7ACga7QOgaLQPgCLRvQYxYAWg3Ez8AqBIdA+AotE+AIqmke2bOHHiMu3fq1evRj1fkkyYMCG9e/cuDVdJkn79+qV9+/a5++6707Nnz8yZMycPPPBAjj/++LT42Gv8+te/nmuvvTaPPfZYtt1220avBYBmyHEfAEWiewAUjfYBUDTaB0DRaB8ARaJ7DWLACgAAAAAAAE3igAMOWKb9n3766aXab8iQIZk2bVpWX3317LzzzjnppJPSsWPHJMmkSZMyYMCAevu3bt06G264YWpra5MkL730UubOnZtu3brV22/h17W1tQasAAAAAAAAAAAAAFSRlit6ATQPkydPziabbJJNNtlkRS9luSja66XMWrRs3A+gIhStBUV7vZRRY7unfVARitaBor1eykz7oCoUrQVFe72UWYV1r0OHDjn88MNz5pln5uqrr86gQYNy6623ZuDAgZkzZ06SZMaMGenQocMi962pqck777yTJKWfP7nfqquumlatWpW2Q7UoWguK9nopswprH9AwRWtB0V4vZeR8J1SFonWgaK+XMtM+qApFa0HRXi9lpntQFYrWgqK9XspM+6AqFK0FRXu9lJHznQ3SekUvgM929dVXZ+bMmdl7773TpUuXFb2cRbz++uu544478uCDD+Zf//pXXn/99bRs2TKf+9znsv322+fQQw/NRhtttMLWN3v27PzhD3/IPffck3//+9+ZNm1a6urqsuaaa2bTTTdNv379svvuu6d9+/YrbI3Lw0033ZTvf//72XvvvTNq1KjF7nPPPfdkzJgxefLJJzNr1qyss8462WWXXXLkkUempqZmkf0nT56cnXfeOeutt17uvPPOpn4JzUdBgwLlpH2No30LfFr7Jk+enAceeCBPPvlknnzyyTz99NOZO3dutt1221x77bWf+rgLD1aX9hO1q57uQaPpXuPo3gJL6l5dXV0mTpyYu+66K4888khqa2szY8aMtG/fPhtvvHF22223HHjggVlppZUW+7j9+vXLlClTMn78+Ir887lCaB80mvY1jvYt8GnHfP/3f/+Xhx56KP/617/yxhtvZPr06WnTpk26du2ar3zlKznssMOy9tprL/KYzncuQSPbd8MNN5RpIQtsttlm2WyzzUpfb7fddtl8881z+OGHZ9y4cdlnn33K+nxQDtrXONq3wNJ8r+/jnnjiiXzzm9/M/Pnzkyz5fKbjvsVw3AeNpn2No30LfFr7TjnllPzhD3/41Pv/z//8T771rW/Vu81x32LoHjSa7jWO7i2wtMd8f/3rX3PTTTfliSeeyPTp01NTU5OuXbtm2223zZAhQ7LyyivX2997XBZD+6DRtK9xtG+BJbXvwQcfzKGHHrpUj7G493tq32JoHzSa9jWO9i3wWcd9M2fOzDXXXJM777wzL7zwQmbPnp3VVlstm222WfbZZ5/svvvui31c7VsM7YNG077G0b4FlrZ9f/3rX/PSSy8lSbp06ZKvfe1rOfzwwxc517mQ9n2C7jWIASvNwJgxYzJlypRsu+22FRmjAw44IK+99lqSBZ/+uPHGG+f999/Pyy+/nBdeeCFjx47NmWeemb322mu5r+1vf/tbhg8fnjfffDNJ0rFjx2ywwQZp2bJlXn311YwfPz7jx4/PueeemwsvvDBf/OIXl/saK8WvfvWrXHjhhUmSzp07Z7311kttbW2uuOKK/PnPf87111+fz33ucyt4lc1EyxYregXQ7Glfw2nf0rnmmmsyZsyYFb2M6lCB3VvSN1m7d++ecePGlb5+8cUXM3LkyDz88MNp27Zt+vfvn+HDhy9ykmLChAk599xzM2nSpHTq1CmHHnpoBg0a1NQvgwLRvYbTvc/297//vd6/Weutt17WXXfdvPbaa3n00Ufz6KOP5ve//31+/etfO+ZbWhXYPmhutK/htG/pXHDBBXnppZfStm3bdOrUKZtsskmmTZuWZ599Nk8//XR+//vf56KLLsp22223opfaPDSyfb169SrTQpasT58+6dixY5544onss88+qampycyZMxfZb8aMGfn85z+fJFlttdWSZJH93n333cyfP7+0HcpB+xpO+xpm7ty5OfXUU0vDVVhGjvug0bSv4bRv2ayzzjpZZ511FrutU6dOy3k1zZTuQaPpXsPp3tL74IMPcvzxx+euu+5Kkqy77rr5whe+kOnTp+epp57KP//5zxx88MFLvOiAj9E+aDTtazjt+2wdOnTIl770pSVunz9/fiZOnJgk2XrrrZfXspo37YNG076G076l8/LLL2fgwIF59dVX06JFi6y77rrp2LFjpkyZknvvvTf33ntv/vrXv+aXv/xlWrTw7/pn0j5oNO1rOO1bOi+99FK+/e1vZ/LkyWnRokW6deuWtm3b5tlnn82vfvWr/OlPf8p1112XNdZYY0UvtfLpXoMYsEKjtWnTJgcccED233//9OzZMy1bLph29Morr+T73/9+/v73v+f73/9+Nttss2y88cbLbV1/+ctfcsIJJ2T+/Pnp06dPhg0bll69etU7kPj3v/+da6+9NjfffHOee+65wsbonnvuKQ1X+eEPf5iDDz44LVq0yPTp03P88cfngQceyPHHH5/f/e53K3ilAJVB+5q/1VdfPTvttFM233zz9OzZMw8//HCuuuqqFb0symzkyJHp3r176euVVlqp9OuZM2fmsMMOS+fOnXPeeeflnXfeyahRo/L222/nggsuKO03ceLEDBkyJHvuuWdGjBiRxx9/PGeffXZatWqVgQMHLtfXAyuK7jVvdXV1WW+99TJw4MDsscce6dy5c2nbnXfemVNOOSXPPfecYz6Aj9G+5m/QoEHZZJNN0qtXr7Rp06Z0+wsvvJBTTz01jzzySE444YSMHz/eBQdVZuHfh27duqW2trbetvnz5+f5559Pv379kiTrr79+2rRpk9ra2nz1q18t7bfwft26dVtOq4YVT/uqz8UXX5xnnnkmu+66a/7617+u6OUAVBztqx777rtvhg4duqKXAVDRdK86LByust122+X000+v999q9uzZ+fvf/54OHTqswBUCVA7ta94222yzXH/99Uvc/te//jXHHntsWrRokX333Xc5rgygcmlf83f66afn1VdfTZcuXXLhhRfmC1/4QpIF73O44YYb8uMf/zh//vOf07dv3+y9994reLUAK572NW8ffvhhjj322EyePDkbbLBBLrrootJ79d56662ceOKJefDBB3PSSSfl17/+9QpeLdXKgBUa7YYbbljsFKh11103F1xwQf77v/8706ZNy4033pjvf//7y2VNkydPzimnnJL58+dn//33zxlnnLHYCY2bbrppfvrTn+aAAw7Ie++9t1zWVonOP//8JMmee+6ZQw45pHR7x44d88tf/jK77LJLHnvssUyYMCF9+/ZdUctsPlq0XNErAJqY9jV/Q4YMqff1Jy+6YhlUcPe6d+++xJMNv/vd7zJ16tSMHTs2a665ZpIFA1iGDh2aJ598Mj179kySjB49Oj169MhZZ52VFi1apHfv3nnjjTcyevToHHjggfUu1oRqpXvN25Zbbpm//OUvi/33ql+/fvnBD36Qk08+OY899lj+85//lL4xx6eosPY9+OCDOfTQQxe5vXv37hk3blzp6xdffDEjR47Mww8/nLZt26Z///4ZPnx42rdvX+9+EyZMyLnnnptJkyalU6dOOfTQQzNo0KCmfhlQUbSv+Tv44IMXe/sGG2yQ888/P1/5ylfy9ttv5x//+IfznUujwtq3OPfee2+mT5+eLbfcMknSt2/fXHjhhZk6dWrp7/Ndd92V999/PzvttFOSpG3btundu3duvfXWDB48uPR3aty4cVlttdUK+c1rikv7qst//vOfXHbZZfniF7+Ygw8+2ICVhmgG7QMaR/vgY3QPqp7uNX9//OMfc9ddd2XzzTfPlVdeucj3/dq1a1c658VS0D6oetpX3caOHZsk2XbbbdO1a9cVvJpmQvug6mlf8/bee+/lgQceSJKccsop9d7D2apVq3zrW9/K3//+99x222256667DFhZGtoHVU/7mrcJEybk6aefTpKceeaZ9T4Iba211srPf/7zfO1rX8vf/va3PPDAA9l+++1X1FKbB91rEANWKthNN91U7x/vT14ss/fee2fUqFENfvwPPvggN9xwQ26//fY8++yzee+997LWWmtlo402yq677pp99903bdu2/czHWVyIFqqpqclWW22VO++8c7leuHzZZZfl/fffT9euXXP66acvNkQftyxvlJ46dWruuOOO3H333amtrc3rr7+eJOnSpUv69u2bwYMHly7S/aQHHngg1113XSZOnJhp06ZlpZVWyuqrr55NNtkkX/3qV7PffvvV2//FF1/MFVdckb///e957bXX0rJly6y++urp2rVrdthhhxx22GGLXAi1rF5++eU89dRTSZJvfetbi2xfY401sttuu+Wmm24qTbvkM3zGnzdgybSv4bSPFaYM3Zs4ceIy7d+rV69GP+eECRPSu3fven92+/Xrl/bt2+fuu+9Oz549M2fOnDzwwAM5/vjj6/2d+vrXv55rr702jz32WLbddttGr4Xi0r2G072lt+qqq37q9o+/2fK5554zYGVpVOgx38iRI9O9e/fS1yuttFLp1zNnzsxhhx2Wzp0757zzzss777yTUaNG5e23384FF1xQ2m/ixIkZMmRI9txzz4wYMSKPP/54zj777LRq1SoDBw5crq+H6qR9Dad95dOpU6d07Ngx06dPz6xZs5r0uapGhbXve9/7Xrp06ZKePXtmlVVWycSJE3P55Zdn0003ze67754kOfDAA3PddddlyJAhOfroozNjxoyMGjUqO++8c7bYYovSYx1zzDE55JBDcuqpp2bAgAF5/PHH89vf/jYnn3zyUv17AZ9F+xpO+xpm3rx5OfXUU5MkZ5xxRqZNm1a2xy6UCmsfNCfa13Daxwqje9BgutdwurdsrrrqqiQLPkzIh8CUgfZBg2lfw2lfebz55pu59957k2SRtfEptA8aTPsaTvuW3uzZs1NXV5ck+fznP7/YfTbYYIMkydy5cxv1XIWhfdBg2tdw2rf0Hn744STJ2muvnW222WaR7QtvnzBhQsaNG2fAymfRvQYxYKWCrbnmmvnSl76UJ598MnPmzEmPHj3qXRi18H+OG+Lll1/Od7/73Tz33HNJFkzm6tq1a15//fX87W9/y/33358dd9wxXbp0aezLyOzZs5Nkub1BYv78+fnTn/6UZMHAkHK/CfrPf/5zzjjjjLRp0yadOnVKt27d8u677+aFF17Is88+m1tuuSW//e1vF5mIfOONN+YHP/hBkgWR3njjjVNXV5fXXnstd9xxR5544ol6MfrXv/6VQw45JO+9917atWuX9ddfP+3atcsbb7yRhx9+OA899FB23333JR48La1HH300SdKmTZslXqy87bbb5qabbspjjz3WqOcqDBO/oMG0r2G0jxWqDN074IADlmn/hZNKP8uQIUMybdq0rL766tl5551z0kknpWPHjkmSSZMmZcCAAfX2b926dTbccMPSSZSXXnopc+fOrTcNNUnp69raWgNWaBTdaxjdK68PPvig9OuVV165SZ+ralToMV/37t2XeLL9d7/7XaZOnZqxY8eWTqCvtNJKGTp0aJ588sn07NkzSTJ69Oj06NEjZ511Vlq0aJHevXvnjTfeyOjRo3PggQd60y6Npn0No33lNWnSpEyfPj2tWrXKZptt1qTPVTUqrH3du3fPuHHjMmbMmMyePTtrr7129ttvvxx77LGlvx81NTW55pprMnLkyBx33HFp165ddtttt4wYMaLeY2211Va56KKLcu655+aWW25J586dc9JJJ2XQoEEr4JVRjbSvYbSv4a688so89dRTOfroo9OjR488+OCDZXvsQqmw9kFzon0No30N9+CDD+bZZ5/NtGnTUlNTk0033TR77LFHNtxww7I9R9XTPWgw3WsY3Vs2L7/8cp5++um0bNky22+/fZ566qmMHTs2L7zwQtq2bZtNNtkk++yzj/fSLAvtgwbTvobRvvL5wx/+kHnz5qVDhw757//+7yZ7nqqjfdBg2tcw2rds1lhjjayzzjp59dVX8/DDD6dHjx71ttfV1ZUuRF+Wi/ELTfugwbSvYbRv2UyfPj3JgkEqS7LOOuskSR555JFGPVch6F6DGLBSwXbaaafstNNO6devX6ZMmZIf/OAH2W677Rr9uB988EGOPPLIPPfcc6WLZhZeSJMkb7/9dm666aayxOP111/PQw89lCT58pe/3OjHWxpPP/103n333SRJ7969y/74W265ZS677LJsv/329UI3derUnHvuubnhhhvyP//zP7nyyitL2+bPn59zzjknSfKDH/wg3/rWt9K69Ud//Wpra3P//ffXe57Ro0fnvffey1577ZUf/ehH9f5HZOrUqbn11ls/85PIP26fffbJPvvss8jtL7zwQpJkvfXWW+KFUgvD+vLLL2fevHmltXfp0mWpL3AuFBO/oMG0r2G0b/GW1L7G0r5PqMDudejQIYcffni23XbbtG/fPhMnTsxll12Wf/7znxk7dmzatm2bGTNmpEOHDovct6amJu+8806SlH7+5H6rrrpqWrVqVdoODaV7DaN7i9fQ7o0bNy7JgqGbW2211SLb77zzzmV+zKpXge37LBMmTEjv3r3rTSfv169f2rdvn7vvvjs9e/bMnDlz8sADD+T444+vNzX961//eq699to89thjBovRaNrXMNq3eMvSvrq6urz11lt5+OGH84tf/CJJ8p3vfGeRbyg637kEFda+I488MkceeeRn7rfhhhvW+3O7JAv/bYKmoH0No32L91ntq62tzejRo7PRRhtlyJAhS/24jvsWo8LaB82J9jWM9i3e0hz3/eMf/6j39R133JELL7wwgwcPzkknnbTIpwM67lsM3YMG072G0b3FW1L3nnjiiSRJx44dc8MNN+Tss8/Ohx9+WNp+11135corr8xpp52Wb33rW4vcX/cWQ/ugwbSvYbRv8RryPpebbropSbLnnntmpZVWWuw+2rcY2gcNpn0No32L92ntO/nkk/O9730vP//5z1NXV5dddtklq622Wl566aVcfvnlpcErAwcOXOS+2rcY2gcNpn0No32Lt6T2LbxG6/XXX1/ifV999dUkCz44++PXtCfatwjdaxADVgroxhtvTG1tbVZfffVcffXV9S6uSRZMGfvOd75Tluf68Y9/nLlz56ZTp07Zd999y/KYn+W1114r/fqTb5Avhy233HKxt6+xxho544wzcs899+T+++/Pm2++mU6dOiVZEI/p06enpqZmsQcz3bp1S7du3erdtnAS2+DBgxeJzhprrJGDDz64HC+ndGHwaquttsR9OnbsmGRBVN99993S1wDNhfY1TrW1j8pzww03lPXxNttss3qfRL/ddttl8803z+GHH55x48Y1yeAdqCS61zhF6t7kyZNz0UUXJUkOPPBAx3rL0cSJE5dp/169en3mPkOGDMm0adOy+uqrZ+edd85JJ51U+m86adKkDBgwoN7+rVu3zoYbbpja2tokC05Az507d5E/qwu/rq2tNWCFiqV9jVPN7bv66qtz1lln1bttk002yXnnnZf+/fuX/fkAlhfta5xqbN+HH36Y0047LXPnzs0ZZ5xR9k9DAljRtK9xqrF9n//85zN8+PD07t076623XlZeeeU899xz+c1vfpMbb7wxl19+eVq1apUTTjihbM8JsLzoXuNUW/feeOONJMmMGTMyatSo7LDDDhkxYkQ22mijTJ48Oeeee25uv/32/PjHP87666+fPn36lOV5AZYn7Wucamvfkjz88MN5/vnnk2S5/bcDaCra1zjV2L499tgjHTp0yCWXXJKf/OQn+clPflLatvLKK2fo0KH59re/XZbBAwArgvY1TrW1b+H74l9//fU8+uij+dKXvlRv+xtvvJGHH344iWvaaToGrBTQ7bffniQ54IADFglROV144YUZP358WrRokVGjRi23/4lfOOkrSZM95+zZs3P77bfnH//4R6ZMmZJZs2alrq4uSfLee++lrq4u//73v0sxWnPNNbPSSitl5syZueeee5bq0zDXW2+9PP/88/nTn/6UHj16pGXLlk3yWj744IMkCz6tfEnatWu3yP58ihZN898KaDjta7xqah9lVobuLc1F443Vp0+fdOzYMU888UT22Wef1NTUZObMmYvsN2PGjHz+859P8tEAuk/u9+6772b+/PmfOqAOViTda7widO+9997LMccck3fffTcbbrhhTjzxxOX6/M1aGdp3wAEHLNP+nzZpu0OHDjn88MOz7bbbpn379pk4cWIuu+yy/POf/8zYsWPTtm3bzJgxozTt++NqampKg1cX/vzJ/VZdddW0atWqtB0qkfY1XrW2b+21186XvvSlfPjhh3n11VfzxhtvpLa2NjfffHO+9KUvZe21127yNVQF5zuh4mhf41Vb+8aMGZPHHnss3/zmN7PNNts02fMURoW178EHH8yhhx66yO3du3fPuHHjSl+/+OKLGTlyZB5++OG0bds2/fv3z/Dhwxf5ezRhwoSce+65mTRpUjp16pRDDz00gwYNauqXAY2ifY1Xbe07+uijF7lt0003zciRI7P++uvnF7/4Ra688soccMABWW+99ZpsHVWhwroH6F45VFP33n///STJvHnzsu666+bSSy8tDdXcaKONcv755+cb3/hGnnnmmZx//vkGrCyNCmufYz7QvnKopvYtydixY5Ms+DCFLbbYYrk+d7NXYe0DtK8cqrF9L7/8ct5+++0kSefOnbPWWmtlypQpeeedd/J///d/+cIXvpBddtmlSddQNbQPKo72NV41ta9fv35Zb731MmXKlHz/+9/P+eefny984QtJFgxdOfHEE0vnRRPXtH8m3WsQA1YK6JlnnkmSbLXVVk32HNdff31+9atfJUl++MMf5itf+UqTPdcnfXwy1vvvv5+ampqyPn5tbW2++93vZvLkyZ+63/Tp00u/btmyZQ4//PBcdNFF+e53v5sePXpk++23zxe/+MV8+ctfLkXr4wYPHpy//e1vueyyy/LHP/4xX/nKV7LVVltl6623XmQyWGOstNJKSZK5c+cucZ/Zs2cvsj+fokWLFb0C4BO0r3GqrX2UWTPrXov/v95u3bqltra23rb58+fn+eefT79+/ZIk66+/ftq0aZPa2tp89atfLe238H7+XFKpdK9xitC9Dz74IEcddVT+85//pFOnTrn00kt9ssGyqLD2bbbZZtlss81KX2+33XbZfPPNc/jhh2fcuHHZZ599VuDqYPnQvsap5vb1798//fv3L339wgsvZNSoUbnrrrvyn//8J+PGjVvkkxZYjAprH6B9jVVt7XvppZdy3nnnpXPnzjn55JPL9riFVqHtGzlyZLp37176+uPft505c2YOO+ywdO7cOeedd17eeeedjBo1Km+//XYuuOCC0n4TJ07MkCFDsueee2bEiBF5/PHHc/bZZ6dVq1aL/dQqqBTa1zjV1r7Pcvjhh+faa6/NG2+8kTvvvNO/b5+lQrsHRaZ7jVNt3fv4//cffPDBpeEqn1z7KaeckokTJ2bq1KlZY401yvb8ValC2+eYjyLTvsaptvYtznvvvZfbbrstSZbbJ9BXlQprn+FioH2NVY3tGzlyZK699tp07do1v//97/PFL34xSVJXV5c//vGP+eEPf5ihQ4fmggsuMGRlaVRY+wDta6xqa1/btm1z3nnn5Tvf+U5eeOGFDBgwIOuuu27atWuXF198MUmy//7758Ybb0wS7/H8LLrXIAasFNDCaViL++Ticrjxxhvz4x//OElyyimn5OCDD26S51mSz33uc6Vfv/zyy9l8883L9tgffvhhhg4dmsmTJ2ezzTbL0KFDs/nmm2f11VcvfePq4IMPzsMPP5x58+bVu++wYcOy7rrr5rrrrst//vOfPPPMM7nmmmvSokWLbL/99hkxYkRpylaS7LDDDrnmmmtyySWX5KGHHspNN92Um266KUmy8cYbZ9iwYdltt90a/ZoWxvrj8fykhdtatWolRkvDxC+oONrXcNXYPsqsmXTv3nvvzfTp07PlllsmSfr27ZsLL7yw3puL7rrrrrz//vulyaxt27ZN7969c+utt2bw4MGl4Szjxo3LaqutVjp5DZVG9xquCN2bM2dOjjnmmDz00ENZc801c8011+Tzn/982Z+nqpWhfTfccEMZFrJkffr0SceOHfPEE09kn332SU1NTWbOnLnIfjNmzCj9919ttdWSZJH93n333cyfP7+0HSqR9jVcEdr3cRtssEEuvPDC7LXXXpk0aVKuu+66HHXUUU36nFWhmRz3QZFoX8NVY/tOP/30zJo1K+ecc06T/ZkonAptX/fu3Zd4TvJ3v/tdpk6dmrFjx5Y+8WullVbK0KFD8+STT6Znz55JktGjR6dHjx4566yz0qJFi/Tu3TtvvPFGRo8enQMPPDBt2rRZXi8Hlon2NVw1tu+ztG7dOr169cpf//rX0psw+RQV2D0X21F0utdw1di9j39/ZkkXMXz89ilTphiw8lkqsH2JYz6KTfsarhrbtzi33npr3n///bRp0yZ77bVXkzxHVavQ9hkuRpFpX8NVY/uefvrpXHfddUmSUaNG1TsuaNGiRfbee+9MmTIlF1xwQX7xi18YsLI0Kqx9zneC9jVGNbYvSbbccsvcfPPNueKKK3LPPffktddey8orr5y+fftmyJAhefnll3PjjTemffv2WWWVVcrynFWrwrrXXBiwUkCrrrpqpk+fvtgLaxrrj3/8Y04//fTU1dXle9/7Xr797W+X/Tk+yyabbJJVV1017777bv7+97+XNUaPP/54amtrs9JKK+XKK69c7DeiljSopEWLFtl///2z//77Z+rUqXn00Ufz0EMP5c9//nP+9re/5bDDDsv//d//Ze211y7dZ9ttt822226bWbNm5Z///GceeeSR3H777Xn66aczbNiwXHbZZaULgBtqww03TJK88sormTt37mK/gfLyyy8nSbp27ZrWrf2z0dw4EAPta4xqbB/V73vf+166dOmSnj17ZpVVVsnEiRNz+eWXZ9NNN83uu++eJDnwwANz3XXXZciQITn66KMzY8aMjBo1KjvvvHO22GKL0mMdc8wxOeSQQ3LqqadmwIABefzxx/Pb3/42J5988iKfDAWVQvcartq7N2fOnBx77LG57777ssYaa+Saa65Zrp8cy0d69eq1XJ5n4XCwbt26pba2tt62+fPn5/nnn0+/fv2SJOuvv37atGmT2trafPWrXy3tt/B+/qxQybSv4aq9fYvTqlWr9O3bN5MmTcqTTz7ZpM8F0FS0r+GqsX0Le/ajH/0oP/rRj+ptmzt3bunXffr0SZIcfvjhGTx4cKOek083ceLEZdq/HMeIEyZMSO/evUsX2iVJv3790r59+9x9993p2bNn5syZkwceeCDHH3986XgxSb7+9a/n2muvzWOPPZZtt9220WuBpqB9DVeN7VsaC9/78vEW0vy42I6i0r2Gq8bubbTRRqVfL+k9Ch+//cMPP2zU87F0lvdxn2M+qp32NVw1tm9xxo4dmyTZZZddsvrqq5f98VkxDBejyLSv4aqxfY888kjq6urSvn37bL311ovdp2/fvrngggvy3HPP5d133/Xh6c2U850UmfY1XDW2b6HPfe5z+cEPfpAf/OAHi2wbP358kqRnz571znXRPDSHa9qNpSmgHj16JEkee+yxsj7uLbfcku9///v58MMPc+KJJ+Y73/lOWR9/abVq1Sp77LFHkgUnVubMmVO2x548eXKSBRcVLS5E77zzTl544YXPfJw11lgju+yyS0499dTcdttt6dKlS6ZPn54//elPi91/5ZVXzvbbb59jjz02N998c2nK1/XXX9/wF/P/bbXVVkkWvKlkSd/0eeihh5JkiSew+IQWLRr3o4mMHDkyv//970s/zjnnnNK2hQdi77zzTs4777ycdtppuf322zNixIh6j7HwQGyTTTbJ5ZdfngMPPDBnn312rr322iZbN5SD9jVcNbaPMmts95qgfd27d8/48eMzfPjwHHHEEbnhhhuy33775dprry29saimpibXXHNNVllllRx33HEZOXJkdt555/z85z+v91hbbbVVLrroovz73//O4MGDc/311+ekk04yXIyKpnsNV83dmzt3bo477rjcc8896dixY37961/X+0YNy6AC2/dJ9957b6ZPn54tt9wyyYJvsD744IOZOnVqaZ+77ror77//fukkd9u2bdO7d+/ceuutqaurK+03bty4rLbaas4JUNG0r+GquX2fZuEnNcyfP3+5PF+zV+HdgyLSvoar5va99dZbi/x45513Ftn+/vvvl+05q1Yj23fAAQcs04+lNWTIkGy66abZYYcd8sMf/rDem6QmTZq0yGDM1q1bZ8MNNywNznzppZcyd+7cRfZb+PUnB3NCJdG+hqvm9n2aZ555JkmyzjrrLJfna9Yq+HznwovtFv74+KcoLrzY7uKLL85OO+2UvfbaK//zP/+T22+/vd5A1Y9fbNe7d+9897vfzUEHHZTRo0cbwEPF0r2Gq8bubbrppqU3ky/8oLxP+vjtH/+0XJagDO1riuM+x3wUmfY1XDW275Oee+65PProo0mSfffdt+yPXwiN7N7EiROX6Uc5fNZwsSSl4WK77757PjlcbPr06WX/NwXKSfsarhrb9+677y7T/uX8/axazndCxdG+hqvG9i2NO++8M0my8847L5fna9Yq+Ht9lXxNuwErzcDKK6+cJPnggw/K8nhf+9rXkiQ33nhjvQtrGuPPf/5zRowYkQ8//DDHHXdcjjzyyLI8bkN95zvfSfv27fPSSy/lJz/5Sb0LgxZn4sSJ+dvf/vaZj7twMuBbb7212Me8+uqrS2/OX1qrrrpqNtlkkyTJ66+//pn7t2jRIl/60peWev/Psv7665cmoi0ublOnTs1f/vKXJMnuu+/e6OcrhBYtG/ejiTgQoznRvmWnfawwje1eE7TvyCOPzC233JJHH300Tz31VO688858//vfT4cOHertt+GGG+bKK6/MP//5zzz44IP5yU9+klVWWWWRx9tpp53yxz/+MU8++WTuvPPOHH744WVfM8Wme8tO95bNvHnzcsIJJ+TOO+9Mx44dc80119Q7HmAZVVj7vve97+W8887LHXfckQceeCCXXHJJjj/++Gy66aal4/gDDzwwq622WoYMGZJ77rknt9xyS370ox9l5513zhZbbFF6rGOOOSb/+c9/cuqpp+bBBx/M5Zdfnt/+9rcZMmTIEj8VERpC+5ad9pXPnDlzSm+622yzzZr8+apCBXUPmivtW3bat/QefvjhPP3004v9MWbMmNJ+C28bOnRoo5+z6lVY+zp06JDDDz88Z555Zq6++uoMGjQot956awYOHFh6Y9aMGTMWOf+ZLBg0vXDQzsKfP7nfqquumlatWtUbyAONpX3LTvvK584778ykSZOSJF/5ylea/PmavTKc73SxHUWne8tO95beSiutVLqI4KabblrsPjfeeGOSBRdZfPzTZlmCCvten2M+miPtW3ba13Bjx45NsmCAZp8+fcr++IXQyO4ZKA3a1xDat/Q22mijJMn777+fRx55ZLH7TJgwIUmy+uqrZ/XVV2/0c1Y95zuh0bRv2Wlf+fzhD3/IM888k44dO2afffZp8udr9irsfOfHVfI17d7Z2gysv/76SZIHHnigLI+33377ZeONN87UqVPz7W9/O//617/qbX/77bdzxRVXLHWo7rjjjpx88smZP39+hg4dmiFDhpRlnUlyyimnZJNNNsnAgQOX6X5du3bNmWeemZYtW+bGG2/M4MGDM3HixEUC8vTTT+f000/PQQcdlNdee+0zH3errbZKmzZt8vrrr+f8888vfcLphx9+mN/85je59NJL065du0XuN2nSpJx66ql5+OGH8+GHH9bbdv/995f+2378oqZhw4bl9ttvz6xZs+rt/9JLL+WGG25YZP/GWPhGynHjxuW6664r/T5Nnz49J554Yt5777188YtfLH2qNZ/BlGdoNO3Tvo9rivZRRhU86RKaC93TvY8rd/fmz5+f4cOH569//Ws6duyYq6++2nCVxqqw9nXv3j3jx4/P8OHDc8QRR+SGG27Ifvvtl2uvvbY0FKWmpibXXHNNVllllRx33HEZOXJkdt555/z85z+v91hbbbVVLrroovz73//O4MGDc/311+ekk07KoEGDyrpm0D7t+7hyt+/uu+/O5ZdfnldeeWWRbbW1tTnyyCPz0ksvZZVVVlmmN/gVWgV1D5or7dO+j3O+sxloZPtuuOGGZfrxWTbbbLOMGDEiX/3qV7Pddtvlu9/9bs4///w888wzGTdu3HL4DYFlp33a93Hlbt/999+fn/3sZ3nuuefq3T5//vz88Y9/zPe+970kCz7RrmfPno1+vqpXhvOdLraj6HRP9z6uKY75jj322LRt2zYTJ07MueeeW7pg4sMPP8xVV12Ve+65J0ly9NFHl+X5ql4Z2lfO4z7HfDRH2qd9H9eU5zvnz5+fm2++OUmy9957p2VLlz81SIV9r89wMZoj7dO+jyt3+/r06ZNOnTolWfD7/c9//rO0ra6uLn/4wx9yySWXJFnQwxZN8G9z1XG+ExpN+7Tv45riuO9vf/tbHnjggXprmzNnTq677rr88Ic/TJL86Ec/Sk1NTVmer6qV4XxnEa9pb93ge7LcDBgwIHfeeWd+/etf54477sjaa6+dli1bZscdd8x3v/vdZX68du3a5ZJLLsl3vvOd/Oc//8nee++d9dZbL2ussUbeeOONvPHGG6mrq8vXvva1rLHGGp/5eMcff3zmzZuXtm3b5v7778/999+/2P06deqUX/3qV8u83obafffds+qqq+bUU08tratjx45Zd91106JFi7z66qul4Hbq1Ckbb7zxZz7mmmuume985zu56KKLcvHFF+f3v/991l133bzyyiuZOnVq9t9//7z44ot56KGH6t1v7ty5GTt2bMaOHZuVV14566+/ftq2bZvXX389b7zxRpIFb+xY+MnSyYJA/OUvf0nr1q3TtWvX0smgF198MXV1ddlggw0ybNiwsvxeffWrX81RRx2VSy65JGeccUYuvfTSdOrUKbW1tfnggw+yzjrr5Nxzzy3Lc/HZlvXCjqeffnqp9hsyZEimTZuW1VdfPTvvvHNOOumkdOzYMcmC/2EaMGBAvf0bciC27bbbLtPaYUm0r2G0b+k98sgj9Q6gZ8+enSR59NFHs91225Vu33PPPUsHZgBNRfcaRveWzq233po//elPSRZME//JT36yxH333Xff7Lfffo1+TpavI488cqmmrm+44Ya58sorP3O/nXbayYBVmpz2NYz2LZ2pU6fmnHPOyTnnnJNOnTqlc+fOadWqVd54443SNyRXX331nH/++T7NFVhutK9htI/mqlevXk3+HH369EnHjh3zxBNPZJ999klNTU1mzpy5yH4zZszI5z//+STJaqutliSL7Pfuu+9m/vz5pe1QDtrXMNq3dGbNmpWrrroqV111VdZYY42ss846adGiRV588cXSv3Hbbrttzj777EY/FyvGwovttt1227Rv3z4TJ07MZZddln/+858ZO3Zs2rZt62I7KoruNYzuLb0NNtggZ599dk4++eRccskl+d3vfpf1118/r7zySt56660kyeDBg/P1r3+9LM/HZ2vq4z7HfFQ67WsY7Vt299xzT9588820aNHCp5avQEszJHpZbLbZZtlss81KX2+33XbZfPPNc/jhh2fcuHH+W1ORtK9htG/prLzyyvnFL36Ro48+Oi+//HK++c1vZu21185aa62VyZMnl85hbbPNNqUPWKd5cb6T5kj7Gkb7lt4jjzyS0aNHp3379llvvfXSpk2bvPDCC3n//ffTtm3b/OQnP6m3NppWEa9pN2ClGdhtt93y05/+NL///e8zadKkTJ48OXV1dVlvvfUa/Jhdu3bNH/7wh1x//fW5/fbbM2nSpLz55ptZa6210qdPn+y2227p3LnzUj3W3LlzkyyYBPToo48ucb+GrPfNN99MknonUJZF3759c8cdd+Smm27KhAkT8u9//7v0F2uttdbKLrvskp133jn9+/fPyiuvvFSPedxxx2XdddfNb37zm9TW1uaFF17IxhtvnBNPPDH777//YieTbbDBBjnzzDPzwAMP5F//+ldee+21vPfee+nQoUN22GGHfOMb38hee+1Vb6ryz372s9x///157LHH8vrrr+fll1/OSiutlJ49e2aXXXbJIYccklVXXbVBvy+Lc8IJJ2SrrbbKmDFj8tRTT+XZZ5/NOuusk5133jlHHXWUb64sixaVNR3bgRjNkfZpX1O3b968efUm/i7p9vfee68sz1fVKqx70Bzpnu41ZfcWfrJLkrz66qt59dVXl7jvDjvs0OjnKwTtg0bTPu1ryvb16dMnw4cPzz/+8Y/S65kzZ046dOiQL3/5y+nbt28OOOCA0jdpWAraB42mfdq3PL7XRxk1o/Yt/ISebt26LfKpdPPnz8/zzz+ffv36JVnwKWNt2rRJbW1tvvrVr5b2W3i/T74hBRpD+7SvKdu3+eabZ8iQIXn88cfz/PPP5/nnn8/cuXPTsWPHbLPNNvn617+e/v37+2TzpVWG7rnYjqLTPd1bHsd8/fv3T7du3XL55ZfnwQcfzL///e+sssoq2WmnnXLIIYekb9++ZXuuqueYDxpN+7RveZ3vHDt2bJIFxwRdu3Yt62MXSiPbZ6A0aF+ifU3dvu222y5/+tOfMmbMmNx3332ZPHly3n777XTo0CG9e/fOnnvumX322SetWrUqy/NVvUa2z/lO0L5E+5q6fTvuuGMmT56cf/7zn3nllVcyf/78fO5zn0ufPn1y6KGHZoMNNijL8xRCBZ7vbA7XtLeoq6ura/C9oQnNnz8/22yzTebOnZvx48f7NFGajZW/flGj7v/3kX2Waf+GnLS8//77c/jhh+ess87KPvvsk8033zzHHHNMhgwZUm+/QYMGpWXLlrnqqqvyyCOP5KCDDspvfvObbLPNNvX222yzzTJs2LAcddRRy7wW4CPaR3PU2O4lyaxbhnz2TkDV0T2aK+0DGkr7aK4a2z7dg+LSPpqr5tC+e++9N0cccUR+9rOfZcCAAbnsssty4YUX5q677ip9otcdd9yRY445Jv/7v/+bLbbYIklyxBFHZNq0afnf//3f0oV6Z555Zm6++ebcd999adu2bZOvHaqZ9tEcNafzndttt1123333/OhHP8r222+fAQMGZMSIEfX22WefffL5z38+5557biZNmpQ99tgjl1xySb0Lzd99991svfXW+Z//+Z9861vfWi5rh2qkezRXzaF9jvmgMmkfzVVzON+ZLDjm22OPPXL66afnkEMOSfv27XPZZZeVti/8Ozh48OAce+yxmTNnTr70pS/l+OOPzxFHHFHab+LEiTnggANy7bXXNviTzIEFtI/mqjm1z/lOqCzaR3NUjvOdRbymvXWD7gXLwb/+9a+8//772W+//YSI5uX/f2OqoUx5huLSPpqlRnYPKC7do9nSPqCBtI9mS/uABtI+mq0Ka9/3vve9dOnSJT179swqq6ySiRMn5vLLL8+mm26a3XffPUly4IEH5rrrrsuQIUNy9NFHZ8aMGRk1alR23nnn0oV2SXLMMcfkkEMOyamnnpoBAwbk8ccfz29/+9ucfPLJLrSDMtA+mqUK695nWXixeLdu3Uqf+LjQ/Pnz8/zzz6dfv35JkvXXXz9t2rRJbW1tvQsOFt6vW7duy2nVUJ10j2arwtrnmA+aD+2j2aqw9i3Ovffem+nTp2fLLbdMkvTt2zcXXnhhpk6dWhoudtddd+X999/PTjvtlCRp27ZtevfunVtvvTWDBw8uHS+OGzcuq622Wr74xS+ukNcC1UT7aLaaQfsWcr4TKov20SyVoXtFvKbdgBUq1iOPPJKWLVvWmyYLzUKLlit6BUvNgRhUFu2jWWpG3QMqi+7RbGkf0EDaR7OlfUADaR/NVoW1r3v37hk3blzGjBmT2bNnZ+21185+++2XY489tnSBXE1NTa655pqMHDkyxx13XNq1a5fddtttkU+522qrrXLRRRfl3HPPzS233JLOnTvnpJNOyqBBg1bAK4Pqo300SxXWvSVxsR1UHt2j2aqw9jnmg+ZD+2i2Kqx9hotB86F9NFsV1r7Fcb4TKpP20Sw1g+59XKVc096irq6ursH3ZoV68803M2zYsGW6z/XXX99EqwEWWvkblzbq/rNuPrJMK1mye++9N0cccUR+9rOfZcCAAbnsssty4YUX5q677iodiN1xxx055phj8r//+7+lE5FHHHFEpk2blv/93/8thezMM8/MzTffnPvuu8+JSJqc9kHlaWz3kuXTPmiOdA8qk/ZB09E+qEzN4XwnNFfaB5VJ+6DpaB9Unko837mki+26du2aG264IW3bts2MGTOy5557Zt111613sV2vXr1y0UUXlR7rscceyyGHHJK99tqrdLHdeeedl5NPPtnF5jQ53YPKVIntg2qhfVCZKu1856WXXppx48ZlypQppeFiu+66a4499th06NChtN/zzz+fkSNH5pFHHqk3XGyVVVap93j33HNPzj333EyaNCmdO3fOIYccksMPP7ysa4Yl0T6oTJXWPuc7qSbaB5WnuZzvrLRr2luX52WxIsyePTuPPvroil4G8En//x/pSmHKM9VE+6ACVVj3oJroHlQo7YMmo31QobQPmoz2QYXSPmgy2gcVqAK7171794wbNy5jxowpXWy333775dhjjy29N6WmpibXXHNNRo4cmeOOO67exXYft9VWW+Wiiy7Kueeem1tuuSWdO3fOSSed5GIDlgvdgwpVge2DaqF9UKEqrH1HHnlkjjzysy/e23DDDXPllVd+5n477bRTdtppp3IsDZaZ9kGFqrD2Od9JNdE+qEAV1r2keVzT3qKurq6u0a8UgJKV976iUfef9YcjyrSSBUx5BqApNbZ7SfnbBwBNSfsAKJpKO98JAE1N+wAoEuc7ASga7QOgaJzvBKBotA+AIqnE853N4Zr21o26NwCLqrCJX6Y8A9CkKqx7ANDktA+AotE+AIpG+wAoEt0DoGi0D4Ci0T4Aikb7ACiSCuxec7imvWVZHw0AAAAAAAAAAAAAAAAAAAAAoIK0XtELAKg2LSpw4hcANBXdA6BotA+AotE+AIpG+wAoEt0DoGi0D4Ci0T4Aikb7ACgS3WsYA1YAykyQACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt1rGANWAMpNjwAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdaxADVpZg5a2OXdFLoAm9/dAFK3oJNKH2bRQBGkL7qtsbD/xqRS+BJtJhpZYregnQbGlf9Zr2j9Eregk0oZWczYIG077q9cr956/oJdCEVm/fakUvAZol3atujvuqm+M+aBjtq27aV710DxpO+6qb93hWL+/vhIbTvurlmK+6Oe6DhtG96qZ91U37oGG0r7ppX/XSvebJfzaAMmvRwjcAASgO3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt1rGANWAMpMkAAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdaxgDVgDKTJAAKBLdA6BotA+AotE+AIpG+wAoEt0DoGi0D4Ci0T4Aikb7ACgS3WsYA1YAykyQACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt1rmJYregEAAAAAAAAAAAAAAAAAAAAAAE2l9YpeAEDVMfALgCLRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b0GMWAFoMxatFAkAIpD9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPcaxoAVgDITJACKRPcAKBrtA6BotA+AotE+AIpE9wAoGu0DoGi0D4Ci0T4AikT3Gqblil4AAAAAAAAAAAAAAAAAAAAAAEBTab2iFwBQbUz8AqBIdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvYQxYASgzQQKgSHQPgKLRPgCKRvsAKBrtA6BIdA+AotE+AIpG+wAoGu0DoEh0r2EMWAEoNz0CoEh0D4Ci0T4Aikb7ACga7QOgSHQPgKLRPgCKRvsAKBrtA6BIdK9BDFgBKDMTvwAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLda5iWK3oBAAAAAAAAAAAAAAAAAAAAAABNpfWKXgBAtTHxC4Ai0T0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG9hjFgBaDMBAmAItE9AIpG+wAoGu0DoGi0D4Ai0T0Aikb7ACga7QOgaLQPgCLRvYYxYAWg3PQIgCLRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b0GabmiFwAAAAAAAAAAAAAAAAAAAAAA0FRar+gFAFSbFi2M/AKgOHQPgKLRPgCKRvsAKBrtA6BIdA+AotE+AIpG+wAoGu0DoEh0r2EMWAEoM0ECoEh0D4Ci0T4Aikb7ACga7QOgSHQPgKLRPgCKRvsAKBrtA6BIdK9hDFgBKDNBAqBIdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvYVqu6AUAAAAAAAAAAAAAAAAAAAAAADSV1it6AQDVxsQvAIpE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPcaxoAVgHLTIwCKRPcAKBrtA6BotA+AotE+AIpE9wAoGu0DoGi0D4Ci0T4AikT3GsSAFYAyM/ELgCLRPQCKRvsAKBrtA6BotA+AItE9AIpG+wAoGu0DoGi0D4Ai0b2GMWAFoMwECYAi0T0Aikb7ACga7QOgaLQPgCLRPQCKRvsAKBrtA6BotA+AItG9hmm5ohcAAAAAAAAAAAAAAAAAAAAAANBUWq/oBQBUGxO/ACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt1rGANWAMpNjwAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLda5CWK3oBANWmRYsWjfoBAM1JY7unfQA0N9oHQNFUevfmzZuXr3/969lkk03ypz/9qd62J554IgcddFB69eqVr3zlKzn33HMzb968RR7j5ptvzu67754tttgiu+++e/7v//6vydcNQOWq9PYBQDk53wlA0WgfAEWjewAUjfYBUCTOdzaMASsAAAAAAAA0S2PGjMm0adMWuX3y5MkZNGhQVl111Vx88cU55phjMmbMmJxzzjn19rv99tszfPjw/Nd//Vcuv/zy7LTTTjn55JMzfvz45fUSAAAAAAAAAAAAAFgOWq/oBQBUm6JO7AKgmHQPgKLRPgCKppLb99prr2X06NE5/fTTM2LEiHrbrrjiirRv3z4XXHBB2rVrlx122CEffPBBfvGLX2Tw4MHp1KlTkuS8887LrrvumuHDhydJevfuneeffz7nnXdedt555+X+mgBY8Sq5fQBQbroHQNFoHwBFo30AFI32AVAkutcwBqwAlJkgAVAkugdA0WgfAEXT2PZNnDhxmfbv1avXUu/705/+NP369cs222yzyLYJEyZkl112Sbt27Uq37bnnnhk1alTuu+++7L333pk8eXJqa2szdOjQevfda6+9csIJJ2TKlClZb731lmn9ADR/jvsAKBLdA6BotA+AotE+AIpG+wAoEt1rGANWAMpMkAAokkrv3rx587L33nvnmWeeyS9/+cvssccepW1PPPFEzjrrrDz11FPp0KFD9t133wwdOjStW9c/TLr55ptz6aWX5uWXX07Xrl1z1FFHZa+99lreLwWAClHp7QOAcmts+w444IBl2v/pp59eqv0mTJiQ++67L7fddlvmzJlTb9usWbMyZcqUdOvWrd7tnTp1SseOHVNbW5skpZ8/ud/Cr2traw1YASggx30AFInuAVA02gdA0WgfAEWjfQAUie41jAErAOWmRwAUSYV3b8yYMZk2bdoit0+ePDmDBg3K1ltvnYsvvjgvvvhizj777MyePTunnHJKab/bb789w4cPz+DBg9O3b9/cc889Ofnkk7PKKqtk5513Xp4vBYBKUeHtA4Cyq8D2zZ49O2eccUaOPfbYdO7cOZMnT663fcaMGUmSDh06LHLfmpqavPPOO0lS+rmmpqbePquttlq97QAUTAW2DwCajO4BUDTaB0DRaB8ARaN9ABSJ7jWIASsAAEBVeu211zJ69OicfvrpGTFiRL1tV1xxRdq3b58LLrgg7dq1yw477JAPPvggv/jFLzJ48OB06tQpSXLeeedl1113zfDhw5MkvXv3zvPPP5/zzjvPgBUAAIClcMMNN5T9MS+55JK0adMmAwcOLPtjAwAAAAAAAAAAAFCdDFgBKLMWLYz8AqA4ytG9iRMnLtP+vXr1Wqr9fvrTn6Zfv37ZZpttFtk2YcKE7LLLLmnXrl3ptj333DOjRo3Kfffdl7333juTJ09ObW1thg4dWu++e+21V0444YRMmTIl66233jKtHYDmr9KP+ebNm5e99947zzzzTH75y19mjz32KG174oknctZZZ+Wpp55Khw4dsu+++2bo0KFp3br+KcKbb745l156aV5++eV07do1Rx11VPbaa6/l/VIAqBCNbd/SHsMtrSlTpuSKK67IOeeck1mzZmXWrFl59913kySzZs3KzJkz06FDhyTJzJkzF7n/jBkzstpqqyVJ6ecZM2bkc5/7XGmfd955p952AIql0o/7AKCcdA+AotE+AIpG+wAoGu0DoEh0r2EMWAEoM0ECoEjK0b0DDjhgmfZ/+umnP3OfCRMm5L777sttt92WOXPm1Ns2a9asTJkyJd26dat3e6dOndKxY8fU1tYmSennT+638Ova2loDVgAKqNKP+caMGZNp06YtcvvkyZMzaNCgbL311rn44ovz4osv5uyzz87s2bNzyimnlPa7/fbbM3z48AwePDh9+/bNPffck5NPPjmrrLJKdt555+X5UgCoEJXWvsmTJ2fOnDkZNmzYIttOO+20nHnmmXnsscey7rrrlo7rFnrrrbcyffr00nHdRhttlGTB8V2PHj1K+y3peBCAYqi09gFAU9I9AIpG+wAoGu0DoGi0D4Ai0b2GMWAFoMz0CIAiqcTuzZ49O2eccUaOPfbYdO7cOZMnT663fcaMGUlS+kTzj6upqSl9UvnCn2tqaurts/ATzBduB6BYKrF9C7322msZPXp0Tj/99IwYMaLetiuuuCLt27fPBRdckHbt2mWHHXbIBx98kF/84hcZPHhwOnXqlCQ577zzsuuuu2b48OFJkt69e+f555/PeeedZ8AKQEFVWvs23XTTjBkzpt5tb731Vk488cQMGTIkffr0SZL07ds348ePzymnnJJ27dolScaNG5fWrVuX9unatWs22mij3Hrrrenfv3/p8caNG5fu3bsbqglQUJXWPgBoSroHQNFoHwBFo30AFI32AVAkutcwBqwAAAAr1A033FDWx7vkkkvSpk2bDBw4sKyPCwCV7qc//Wn69euXbbbZZpFtEyZMyC677FK6wDxJ9txzz4waNSr33Xdf9t5770yePDm1tbUZOnRovfvutddeOeGEEzJlyhQXmgOwwtXU1GS77bard9vCwZobb7xxqYNHHHFEbrnllhx33HE57LDD8uKLL+b888/PQQcdlM6dO5fuO2zYsBx//PE555xzsuOOO2bChAkZP358Ro8evfxeFAAspXnz5mXvvffOM888k1/+8pfZY489StueeOKJnHXWWXnqqafSoUOH7Lvvvhk6dGhat67/tpCbb745l156aV5++eV07do1Rx11VPbaa6/l/VIAAABYDMd9AAAAAABNy4AVgDJrYeQXAAVSju716tWrDCtZYMqUKbniiityzjnnZNasWZk1a1befffdJMmsWbMyc+bMdOjQIUkyc+bMRe4/Y8aMrLbaaklS+nnGjBn53Oc+V9rnnXfeqbcdgGIpR/smTpy4TPsvTSsnTJiQ++67L7fddlvmzJlTb9usWbMyZcqUdOvWrd7tnTp1SseOHVNbW5skpZ8/ud/Cr2traw1YASig5nq+s2vXrrn66qtz1lln5cgjj0xNTU0GDhy4yCCx/v37Z/bs2bnkkkty9dVXp0uXLvnZz36WXXfddQWtHIAVrZLbN2bMmEybNm2R2ydPnpxBgwZl6623zsUXX5wXX3wxZ599dmbPnp1TTjmltN/tt9+e4cOHZ/Dgwenbt2/uueeenHzyyVlllVWy8847L8+XAkCFqOTuAUBTqPT2Oe4DoNwqvX0AUG7aB0CR6F7DGLACUGaV3COfbgBAuVVa9yZPnpw5c+Zk2LBhi2w77bTTcuaZZ+axxx7LuuuuW7qIfKG33nor06dPL11EvtFGGyVZcDF5jx49Svst6eJzAIqhHO074IADlmn/p59++lO3z549O2eccUaOPfbYdO7cOZMnT663fcaMGUlSGjL2cTU1NaXhYQt/rqmpqbfPwqFiC7cDUCyVdty3OF26dFlsL7fccstcf/31n3n/AQMGZMCAAU2wMgCao0pt32uvvZbRo0fn9NNPz4gRI+ptu+KKK9K+fftccMEFadeuXXbYYYd88MEH+cUvfpHBgwenU6dOSZLzzjsvu+66a4YPH54k6d27d55//vmcd955LrQDKKhK7d5C3ucCQLlVcvsc9wHQFCq5fYnjPgDKr9LbBwDlpHsNY8AKQJlV8sQvn24AQLlVWvc23XTTjBkzpt5tb731Vk488cQMGTIkffr0SZL07ds348ePzymnnJJ27dolScaNG5fWrVuX9unatWs22mij3Hrrrenfv3/p8caNG5fu3btnvfXWW06vCoBKUmntS5JLLrkkbdq0ycCBA1f0UgCoQpXYPgBoSo1t38SJE5dp/169ei3Vfj/96U/Tr1+/bLPNNotsmzBhQnbZZZfSuc4k2XPPPTNq1Kjcd9992XvvvTN58uTU1tZm6NCh9e6711575YQTTsiUKVOc8wQooEo/5vM+FwDKrRztc9wHQHPiuA+Aoqnk9hksBkC5VXL3ksptnwErAAXh0w0AKIKamppst9129W6bPHlykmTjjTcuvQnliCOOyC233JLjjjsuhx12WF588cWcf/75Oeigg9K5c+fSfYcNG5bjjz8+55xzTnbcccdMmDAh48ePz+jRo5ffiwKg6txwww1le6wpU6bkiiuuyDnnnJNZs2Zl1qxZeffdd5Mks2bNysyZM9OhQ4ckycyZMxe5/4wZM7LaaqslSennGTNm5HOf+1xpn3feeafedgAAAJbsgAMOWKb9n3766c/cZ8KECbnvvvty2223Zc6cOfW2zZo1K1OmTEm3bt3q3d6pU6d07NgxtbW1SVL6+ZP7Lfy6trbWhXYAVBTvcwGgUjnuA4DycNwHQNEYLAZA0VRq+wxYASizSh345dMNAGgKldq9z9K1a9dcffXVOeuss3LkkUempqYmAwcOXKRz/fv3z+zZs3PJJZfk6quvTpcuXfKzn/0su+666wpaOQArWjnat7SfUrc0Jk+enDlz5mTYsGGLbDvttNNy5pln5rHHHsu6665belPlQm+99VamT59eelPlRhttlGTBmyt79OhR2m9Jb8YEoBia63EfADRUY9tXV55llMyePTtnnHFGjj322HTu3Lk0UHqhGTNmJElpuObH1dTUlIZmLvy5pqam3j4Lh2ku3A5AsZTjmG/ixInLtP/Snh/1PhcAmkI52ue4D4DmpLHta6pjvsRxHwBNo1Lf52KwGABNoVK7l1R2+wxYASizli0bV6SmOAnp0w0AaCqN7d7y0KVLl8V+GtCWW26Z66+//jPvP2DAgAwYMKAJVgZAc1Rp7dt0000zZsyYere99dZbOfHEEzNkyJD06dMnSdK3b9+MHz8+p5xySunNJ+PGjUvr1q1L+3Tt2jUbbbRRbr311vTv37/0eOPGjUv37t0d8wEUVKW1DwCaWmPbd/0NN5RpJQtccskladOmTQYOHFjWxwWApDzHfAcccMAy7b+479t9kve5ANBUytE+x30ANCeNbV9THPMljvsAaDqVeF1fYrAYAE2jkt/fWcntM2AFoMwaO/Gr3CchfboBAE2pkiddAkBTqLT21dTUZLvttqt328Ljvo033rh0QvKII47ILbfckuOOOy6HHXZYXnzxxZx//vk56KCD0rlz59J9hw0bluOPPz7nnHNOdtxxx0yYMCHjx4/P6NGjl9+LAqCiVFr7AKCpNbZ9y/IJrZ9lypQpueKKK3LOOedk1qxZmTVrVt59990kCy4ymDlzZul7fDNnzlzk/jNmzCh9L2/hzzNmzMjnPve50j4Lv8e3cDsAxVKJx3ze5wJAUypH+xz3AdCcOO4DoGgq7bq+xGAxAJpOOY75mmK4WKW3z4AVgDJrUWFnIX26AQBNqdK6BwBNrbm2r2vXrrn66qtz1lln5cgjj0xNTU0GDhy4yETn/v37Z/bs2bnkkkty9dVXp0uXLvnZz36WXXfddQWtHIAVrbm2DwAaqpLaN3ny5MyZMyfDhg1bZNtpp52WM888M4899ljWXXfd0htLFnrrrbcyffr00htLNtpooyQL3mDSo0eP0n5LekMKAMVQju7dcMMNZVjJR7zPBYCmVEnHfInjPgCaXmPbV+5jvsRxHwBNq9KO+wwWA6AplaN75R4u1hzaZ8AKQIUp50lIn24AAABQPF26dFnsicstt9wy119//Wfef8CAARkwYEATrAwAAIBlsemmm2bMmDH1bnvrrbdy4oknZsiQIenTp0+SpG/fvhk/fnxOOeWUtGvXLkkybty4tG7durRP165ds9FGG+XWW29N//79S483bty4dO/e3SfaAdBgS/MpdUvL+1wAKBrHfQBUunIe8yWO+wCofAZKA0DjNIf2GbACUGaNHfhVzpOQPt0AgKZWYQOeAaDJaR8ARaN9ABRNJbWvpqYm2223Xb3bFn6yz8Ybb5xtttkmSXLEEUfklltuyXHHHZfDDjssL774Ys4///wcdNBB6dy5c+m+w4YNy/HHH59zzjknO+64YyZMmJDx48dn9OjRy+9FAVBRKql7ife5AND0Kq19jvsAaGqV1j7HfQA0tUq6rs9gMQCaWjmO+co5XKy5tM+AFYAya1FBZyF9ugEATa2SugcAy4P2AVA02gdA0TTH9nXt2jVXX311zjrrrBx55JGpqanJwIEDM3To0Hr79e/fP7Nnz84ll1ySq6++Ol26dMnPfvaz7Lrrrito5QCsaJXWPe9zAaCpVVr7lpbjPgAaqtLa57gPgKZWSe0zWAyAplaO7pVzuFhzaZ8BKwBlVkkHYj7dAICmVkndA4DlQfsAKBrtA6BoKr19Xbp0ydNPP73I7VtuuWWuv/76z7z/gAEDMmDAgCZYGQDNUaV1z/tcAGhqlda+xXHcB0A5VVr7HPcB0NQqqX0GiwHQ1Cqpe0nzaZ8BK1Vmx6275/Yrjlvk9qcmvZJt9v/pUu+TJH+5/Lj03ab7Yp/nh7+6Oef8+q9lWjVN5S+3/jnXXvPr1E56Nm3btssXNt00I0ednU6dOn/2nSkUn25Ac7Y0XftGv14Zdki/9Nhg7XRYpV1eeeOd3HL34znrslszfeasevc7+sCdcvSBO2X9dVbPK2+8k8tvvDfnjhm/XF4LS+fll17Mtdf8Ok89+XgmTXo2nTt3zi231v9vdOnFo3P5JRcuct/9v3lQRpz6w+W1VIAmsbTHdAu1atUyD/x2RLbosV4OPeXXufEvj5S2Dd63TwYN2D4bde2Uldu1ycuvTcvvbv1Hfnn1HZk9Z16Tvg4a564778iVl1+W52onpW27dunZc4scO+yEfGHTTVf00gDKbmnat/cuX8yB/b+crTbtmjU7rpoXXnk7Y25+IBdef3fmzfuwdJ9Zjy35TVQ7HXpOHnrihbKvn2Vz51//kr/cOi7/+fdTmT59etZdd73s+Y198s1vHZLWbdqU9rvh+uty4+9+k9defSWdOq+dffb/Zg4+9PCK+2YRQEOU8/t9G3VdK8cfuku22fzz6bnxunnlzen5wh4/arrF0yTmzZuXA/ffO88+80xG/fyX6b/7Hit6SQBlU87uLeu5UyrHSy++mGuuvjJPPvFEJj37TDp3Xju3/vXOFb0sKpj3udCcOeYjSe66c3x+fcVH3+vbfPMtcuxxx2eTL/heH1B9ytm+ZXkvKJVj8KCBefgfDy1227DjT8rg73x3Oa+I5sBxH82V850k2sdHDBajCFzTTqJ9fKS5tM+AlSp11I9/k3/Xvlr6+v0P5izzPsed9fvUrLJSvdu+tce2OeqbfXPbfU+VecWU25irr8oF552bQwd9O8edeFJmvT8rjz7ycObMXvTPAuVV6ddw+HQDqtWndW311dpnwsPP5twxd+SdmR+kZ/d1c+p3+2eL7utl96MuKO034ojd8oMjd8/Pf3177nukNn2+1C0/GbpX2q/cLmde+ufl+npYstraSblvwt3ZvOcWqatLZs58Z7H7tWnTJpddVX/i4ZprdloeSyyUSu8eVLOlOe5LkmMP+q+stfqqi922ek37/N9dj+fJZ1/Je7NmZ9stN8yp3/laPr/Omjnqx79pknXTeA/87f6cMOzY7L7n1zPk2GGZNWtWrrzsknx38KCMvfkWQzWbmPbBivNp7Tt+4M558dWpOe38m/P62zPSu9dG+dGQPdOz+3r5zunXlvbb6dBzFnncs7+3bzZYb8088q+XmvYFsFR+c+2vs8466+XY476XNdZcM49PfCyXXfSr1D77TE4/46wkyVWXX/L/2Lvz+Kiqg//j30lI2JIge2VTIQFZwiaEKGgEcUUUUBERFI0giwqCSKWPCmpFEQ1IjChihAgitgUFjUtrFVHqGlllSVDZtCAgYQlMEvL8kTLDSNhmyb1zz+f9e/HqLzOXmTP1aT6ec+89o1kvvaDb7histhd00IrvvtWL06eqoKBAg4feY/EncB7aB1gnGOf7WjQ5W9dc3FLfrP5ZLlfpPBDhZ+7rc7Rn9x6rh2EM2gdYIxjdO9PjYB95eRu19NNP1CqxtUpKSrQvP9/qIRkjHLrHdS5wKuZ85vrPF59rzMh7dE2Pnho24t7Sc30zX9LdqYP01iLO9YVaOLQPcKpgtO90rwWFvYz/v0d14MB+n8eWvPO23pw/TxdfcolFozJHOLSPeR+ciPVOs9E+a4VD+/6IjcXgBNzTbjbaZ51w7J5kffvYYMWhfsj75ZTftnqqY9Zt+vW4x5598Eat2rBNqzduD3CECKXNm3/W9KlpGvvn8erb7xbP45dc2tXCUZmDb8kFrHGyrr22cLnPz599u1GHDhcq45H+avin6try6x5VqhilB+64Qi8tWKrHMt6VJH385TqdFVtZD9xxuWa8+al2/X4g1B8Dp+GSlK66tOtlkqQnH5+g5V98VuZxLpdLia3bluPIzET3AOuczryvfp2zNH7I1br/6bc06/Hbjnv+j7s4L/1mo2IqV9TIgd10z1/fUFHRkWAOGUHy3rtLdHa9evrrpMme38PNmp2vHld11xfLlun63n0sHqGz0T7AOidr3w2jXtJve7wnZ5Z+s1EulzRhRE/9Zeoi7di9T5KO+/vVYiqrTbMGevUfn6u4mO7ZwZSpGapeo4bn5ws6dlJJifRyxvMaMWqMqlaNUVbmTN3Q9xbdPeI+SVKn5Iu0b1++sjJf0U0336qzqle3aviORPsA6wTjfN+7n67Wkk9WSZKe/0s/XXER34Qdbv776696KSNdD/3lEf3f+HFWD8cItA+wRjC6d6bHwT5SLu2mrt26S5Ien/iIvli2zOIRmYPuAdZhzmeu7PdKz/U9Pulpz+/hps3OV8+rL9fyz5fpul6c6wsl2gdYJxjtO51rQWE/TeLjj3vsqSefUELTpmra7HwLRmQW2gdYg/VOs9E+a9m9fWwsBqfinnaz0T7r2L17kj3bFxHUV4OjNWlUWx1anav5731t9VBwCm//4++KiopS7xtusHooRnK5AvsDoHzsyT8oSapQIVJS6bf6xFSpqH8uX+dz3D+Xr1OlilG6/KIW5T5GlC0ign+FtZNAu0f7gNB6ZuwNevfTVVr2be5p/509+QdUITJCES5+39pVUVGhqlSp6rMYFhMbI0k6UsLmAKFG+wB7OnZzlaNyftgiSTq7drUT/r0+l7dTpYpReuNd1jzt4tjNVY46v3npnPy3nTv0Y16uCgoK1OnCzj7HdLqws9xu9wk34YT/6B4Q3kpKSqweAgI0+aknldK1m9p36GD1UIxB+wCg/HH+zzqsdwLhjTlfeCoqLFKVKlXKPtd3hH+moUb7AOf547WgsL+ff/5Ja1avUo9rr7N6KEagewBgPdpXvmgf4Bzc0x6+aF/5Yb3TPxWsHgBCY0HaENU6K0a//b5fSz5ZpYeff9uzeHgmxxzrlms6qrj4iN7M/ibUw0eAVnyfo3PPO0+L316kmS/N0M4d/1XjJvG67/4x6nLxJVYPDwBC4nS6FhHhUlSFSLWMr6fxQ65W9mer9ePW3yTJ803l7sJin79z2F0kqXQDFoSXwsJCXdG1i/bu/V1n16uvXr1v1MBBdyoykhOpAJzhVO27/KLmuiz5fLXp/biio04+/Y+MjFDFqAq6oOU5uqd/V73y98/lLiwK9UeAn3r1vkHD775LWbNf0/W9euvgwYOa+twU/elPZ+uy7ldYPTwACJkzXc/s0j5eh92F2vS/eV9ZbunRURt++q++WfNzKIaMIPn+u28UFRWlBg0aaevWzZKkClFRPsdERUdLkn7MO/2N5QDA7kJxvg/h5fPPlmr5F8v09rvvy+12Wz0cAAipYHaPPgIAwgFzPnNd3+cGjbj7Lr0+5zVdd33pub5paUfP9V1u9fAAIGSC2b6TXQsK+3t38TuKiIjQNT16Wj0UAAgZ1jtxLNoHwATc045j0T7YHRusOEz+/gJNnfMvLf1mo/YfPKykxHP0wJ1XqFPr89T51slyFxad1jFl6Xd1R3327UZt2/F7+X4onLFdu37Tjv/+Vy++MF0j739ANWvW1Px5r+v+e4dr/t8Wqkl8gtVDdDSXqVt2ARY5k65t++RpnRVbRZL00Rc/aMCDr3qey9uyU8XFR9Qx8Rx9/OU6z+MdE8+RJFWPq1JOnwjB0LBhI90zcrSand9cJUdKtPTTfysjfaq2bduivzzymNXDcxS6B5S/02lfxegKShvXV0++nK1ff8tXo7NrnPD1qsVU1q+fPeP5+fXFX2rM5LfK46PAT52SL9SzU6dr/LgHNGXyJElS/QYN9NKsTMXFxVk8OuejfUD582c98/zGf9KIWy7Vq//4QvsOHCrzdRv+qbo6t2uiJ156L9QfAQH4MS9Xb77xuq7vc5OqxsSoQcNzFBERoTWrVqpT8kWe49asWilJys/fa9VQHYv2AeUvlOf7ED4OHz6sSX99XHcPv0e1a9fRtm1brR6SMWgfUL6C2T36CJw5ugeUP+Z8SOqUrClTn9dfxo3Vs5OfklR6rm/GK68qlnN9IUf7gPIXivad7FpQ2N97Sxbrgg4dVfdPf7J6KEagfUD5Yr0TZaF95Yv2AeWLe9pRFtpXfuief2y9wcratWv173//W5s2bdLvv/8uSTrrrLPUuHFjXXrppWrZsqW1A7ShFeu3asV678V1n327UTk/bNW7M+5R36su0OuLvzytY/4oKfFcNWlUW5Nf/aBcPgcCc+TIER08eFBPTUnTxZekSJI6JCWp51VXKHPWK3pi0tMWj9DZ6BECQfvO3Jl07cq7pqlK5Wi1jK+nP991lf4+7W71GJauI0dKtP/gYWUt/o9G3XaZ1uRu12ff5KrLBfG6p39XSdKRkpJy/2zw3zXXXufz84WduygmNlavzXpZt985WA0aNLRoZM5D9xAIuuef02nfg6lXyl1UpBfe+OSUr7fv4CF1vnWyKleMUodW5+jB1Cv10oQBGvxIVgg/BQKxcsX3+r/x43R1j2t1xZVX6+DBA3pt1isaMXSw5rw+XzVr1bJ6iI5G+xAI2uefM13PrHlWVS14bojytuzU/017+4Sve/PVHRQREaE33v06ZGNHYH7fs0cPjr5XDRo20oiRoyVJVatWVY+evTRvTqbi4xPUrkNH5Xz7jd6cN0eS5HJFWDlkR6J9CATt80+ozvchvLzy8gxFRUWp/60DrR6KcWgfAkH7zlwwu0cfgTNH9xAIuucf5nxYueJ7PTz+z7rqmmt1+ZVX6eDBg5r96iu6Z+gQvfb6G5zrCzHah0DQPv+Eon0nuxYU9rZyxffasmWzUofcbfVQjEH7EAjad+ZY78Qf0b7yR/sQCNp35rinHX9E+8oX3fOPLa80Ligo0H333ac+ffpo1qxZ+vHHH3XkyBEdOXJEP/74o2bNmqUbb7xR9957rwoKCqweru19/OU67fr9gC5oeY7fx9xyTUcVHHJr4T+/D9EoEUxxcdUkSR2TOnkei4qKVpt27bUpb6NVwzKGy+UK6A/MRPuC60RdW7lhm/6z4kfN+vvn6j/2FV2a1EzXd2vjef7Pzy7U59/l6a20u/XrZ8/o1Sdu08SMJZKkX3/jG7DD3RVXXq2SkhKtW7vG6qE4SqDdo31monvBd2z7Gp1dXaNv767HMt5V1UoVVS2msuJiKkmSKleK8vz/jzpypETfrd2sz3PyNC3rY4188k0N6NlJ7Vs0suKj4DQ89dfH1bZtOz386GPqlHyhunbrrhdeekV79+5V1pzXrB6e49E++IP2Bd+J5n0xVSrq7fThio6K1PX3ZOjgIfcJX+PmqzvqPys26adtu0I9XPjhwIEDuv+eu1VYWKip6S+rcuUqnufuG/Og2rS/QA+OvleXX5KsCf83TncPv0+SVKtWbauG7Fh0D/6gfcEXjPN9CB/bt2/Ta6++ohH3jlRBQYHy8/N1YP9+SdKhQwXat2+fxSN0NtoHf9C+4Apm9+gjcHKsd8IfdC/4mPOZ5eknn1CbNu30f49O/N+5vsuUPmOm9ubv1etZs60enuPRPviD9gVfoO071bWgsK8li99RxYoVdfkVV1k9FGPQPfiD9gUX651mo33lj/bBH7QvuLin3Wy0r3yx3umfClYPoCyTJ0/Wt99+q+nTp6tbt26KjIz0ef7IkSP6+OOPNWHCBE2ePFmPPvqoRSMNMyWnsSNzGcdERkbohivb672lq7XvwKEQDAzB1qRJvFavWnn8EyUlOnz4xDeVIDgM7QkCRPtC5CTty1m3RUeOHFGTht4br/buL9CNo15SnRqxql0jVpu27lTLJvUkScu/3xTy4aKc8Is6qPivE/6geyFUUqJz6tVSpYpRemPKXcc9/dKEAXr2wZtUu/OYE77Edz9sliQ1aVhb363dHLKhwn95ebnqfPElPo/FxMSoUcNG2vzzzxaNyhy0D/6gfSF0zLwvOqqC3kobokb1auiyO9L0y84Tb5TZuml9tUqop5FPvlkeo8QZcrvdevD+e/TL9m16KfN11a5Tx+f52Ng4PTstQ7t2/aY9u3erQYOGyvvfxtKt27azYsiORvvgD9oXQn6e70N42bZ1q9xut8bcf99xz014+C96+sm/6j/f5FgwMjPQPviD9oVIMLtHH4Ey0T34g+6FEHM+I2w6wbm+hg0bafPPP1kzKIPQPviD9oVQENpX1rWgsKeioiJ9+P57Srm0q2JiYqwejjFoH/xB+0KE9U7j0D5r0D74g/aFCPe0G4f2lT+6558IqwdQluzsbD300EO6/PLLjwuRJEVERKh79+4aN26csrOzLRhheOl+YXPVPKuqvl5z4pusTnbM5Rc2V+3qsXrjva9DOUwEUUrXbpKkr/6z3POY2+1WTs63atGypVXDAnAStC+4Tqd9F7ZpooiICP249bfjntuxe5/W5G5XwaFCDb8lRRt++q8+/XpjKIeMcvBB9rtyuVxq0aKV1UMBjEf3gu/Y9q1cv1VX3DXN589tf86UJD35crZ63ZNx0te6qG0TSSqzkbCHevXqa+2a1T6P7d+/X5u3bFb9Bg0sGhWAk6F9wffHeV9EhEtZT92hC1qeo973vKiNP+846d/vd01HuQuL9LcPvyuP4eIMFBcX6+E/j9EPa1bpufQZOufc8054bM2atRSf0FSVKlfWgjdeV6NzztUFHTuV42gBnAjtC75Az/chvDQ7v7leyZzj8+epZ56TJA0ZOlwZL820eIQA/oj2BVcwu0cfASD46F7wMeczy9knONe3Zctm1a/PuT7Ajmhf8AWzfSe7FhT28sXny7Rnzx71uPY6q4cC4BRoX3Cx3mku2geED9oXXNzTbi7ah3BRweoBlOXw4cM666yzTnlctWrVdPjw4dAPKIy8+sRt+mn7LuWs3aJ9Bw+pY6tzNWbQ5fp+3Ra99f63p33MsW7p0VG/7dmvDz5fU94fB35K6dpNrdu01WOPPqx7R92vmrVqa/6817UvP1+D7jz+W+wRXC62/IIfaJ//Tqdr77wwQp98tV5r837R4cIitW3WQKNu766VG7bqnX+v9LxWv2s6qkqlaOVu3qHa1WN0S48kXZrUVD2GpquEXZ5t41BBgZYtWypJ2rZ1iw4VHNI/P/pAktSyZSudXa++br25j3r0vF7nntdYR4qLtfTTT7ToH2/phptuVr369a0cvuPQPfiD7gXmVO0rLCrWZ9/6bgzW6OwakqR1m37V5zl5nseXzX1Qcxd/6bkJPbnNebpvQDd98PkafcMJONvq1/9WPfnEY3pswiPqfvkVOnjwoLJee1WFbrduuPEmq4fneLQP/qB9gTmded/Uh27Wdd3aaMILixUZGaGkxHM9f/+HTb/6fIuBy+VS36su0Idf/KDdew+U98fBKUyZ9Lg+/fe/NGT4fTpSfESrV67wPHde4yaqGhOj7Hff0eFDh9Sw0Tnas2e3st9drG+/+lLTZ8xSRIQt95UPa7QP/qB9gQnm+b7KlaJ0VZfSzffPq19TlStFq3f3tpKkb9f8rM2/7Cn3z4dTi4uLU8ck303Dtm3bKklq3CRe7S/oYMWwjEH74A/a579gdu9Mr4eBfRQUFGjZ0k8lSVu3blXBoQJ99MH7kqSWiYmqV4/ze6FC9+APuhcY5nzo1/9WTXriMT0x8RFd1v1/5/pmZ6rQ7VYfzvWFHO2DP2hfYILZvtO9FhT29O7id3TWWWep88WXWD0Uo9A++IP2+Y/1ThyL9lmD9sEftM9/3NOOY9G+8kf3/GPLDVY6dOig9PR0tWzZUtWrVy/zmD179igjI0MdOnDx2LHWbvpVN1/VQSNuuVSVK0Zr2449mv32cv31pfdUWFR82sccVbVytHqkJOr1xV+qqOiIFR8JfoiIiNDzGTOU9sxkPffMZB0+fEgtWiXqpVmvqUl8gtXDczx6BH/QPv+dTte+WfOT+l3TUefWrylJ+nn7br284DM9//rHvu0rKdGI/pfqvPo1dchdpM9z8nTp7c9q9cbtVnw0nMDu3bv15wdG+Tx29OdHH3tSPa/vrUaNztGb817Xb7t+k0pKdM6552n02IfUt1//8h+ww9E9+IPuBeZM5nSn8v0PWzT05ktUv+5ZKiwq1o9bd+mxjCV6+a1lIRo9gqFvv/6KrlhR8+fNVfa7i1WxUiU1b95CMzPn6NzzGls9PMejffAH7QvM6bTviouaS5ImjOipCSN6+vz9K+6a5rP52CUdElS/bnWNe/Yf5fchcNqWf1H67yEvZzyvlzOe93nuhZmv6YIOSXK5XHpzXpa2b9uq6OiKatPuAs2cPU8JTZtZMWTHo33wB+0LTDDP99WuHqt5z/huvn/058GPZOn1xV+W3wcDwgTtgz9on/+C2b1grp2ifO3evUsPjB7p89jRnx97YpKu793HimEZge7BH3QvMMz5cNPNtyg6uqLefGOust9d4jnX9/KrsznXVw5oH/xB+wITzPad9rWgsJ2DBw7ok08+1nXX9VJUVJTVwzEK7YM/aJ//WO/EUbTPOrQP/qB9/uOedhxF+6xB9/zjKikpKbF6EH+0efNm3Xbbbfr999+VnJysxo0bKy4uTpKUn5+vTZs26csvv1S1atU0e/ZsnXPOOUEfQ+V29wT9NWEfu76abvUQEEJVoqwtwoVPLw3o7y8fx+5sJqJ9CLUdy58/9UEIS7GVrP129kC7J9E+E9mhexLtc7I9X6dbPQSEUCWLtwumffAH7UOobf98mtVDQAhVrxJp6fuz3gl/2KF9dM/ZmPc5W7jP+2ifmWgfQo32OVe4d0+ifSayQ/ck2ud0XOPpXOF+fadE+0xE+xBqzPmcLdznfXTPTHZoH91zNtrnbLQP4Yj2IdRon3OFe/ckM9tn8T+2sjVq1EhLlizRG2+8oaVLl2rRokXKz8+XJMXFxalJkyYaPny4+vXrp9jYWItHCwBA4GgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAJjFlhusSFJMTIwGDx6swYMHWz0UADgjLmu/YAFhjPYBCEd0D/6iewDCFe2Dv2gfgHBF++Av2gcgXNE++Iv2AQhHdA/+onsAwhXtg79oH4BwRfvgL9oHIFzRPviL9gEIR3TPP7bdYAUAwpWLIgEADEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3/MMGKwAQZPQIAGASugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucfNlgBgCBjxy8AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonn8irB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIRKBasHAABOw45fAACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3/sMEKAAQZPQIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu+YcNVgAgyNjxCwBgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnnwirBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoVLB6gEAgNOw4RcAwCR0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zz9ssAIAQeaiSAAAg9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9/7DBCgAEGT0CAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7vknwuoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECoVLB6AADgNBFs+QUAMAjdAwCYhvYBAExD+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAnd8w8brABAkNEjAIBJ6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5/2GAFAILMRZEAAAahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe/7xa4OVmTNnnvaxLpdLd911lz9vAwBhKYIeORLtA4Cy0T3non0AUDba50x0DwBOjPY5E+0DgBOjfc5E+wCgbHTPuWgfAJSN9jkT3QOAE6N9zkT7AODEaJ8z0T4AKBvd849fG6w8++yzp30sMQIAOAHtAwCYhvYBAExC9wAApqF9AADT0D4AgGloHwDAJHQPAGAa2gcAMA3tAwAEk18brKxbty7Y4wAAx3C52PLLiWgfAJSN7jkX7QOAstE+Z6J7AHBitM+ZaB8AnBjtcybaBwBlo3vORfsAoGy0z5noHgCcGO1zJtoHACdG+5yJ9gFA2eief/zaYAUAcGL0CABgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnn6BtsLJs2TKtXLlSv/zyi4YNG6Z69erp22+/VcOGDVWnTp1gvQ0A2J5LFMkUtA8A6J5paB8A0D6T0D0AKEX7zEH7AKAU7TMH7QMAumca2gcAtM8kdA8AStE+c9A+AChF+8xB+wCA7vkr4A1W9uzZo3vuuUfffvutatasqd27d6tfv36qV6+e3nzzTcXGxurhhx8OxlgBALAF2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcACFREoC8wadIk/frrr1q0aJE+/fRTlZSUeJ676KKLtHz58kDfAgDCSoQrsD+wP9oHAF6Bdo/2hQfaBwBetM/56B4A+KJ7zkf7AMAX7XM+2gcAXqx3moH2AYAX7XM+ugcAvuie89E+APBF+5yP9gGAF+ud/qkQ6At88sknevTRR3X++eeruLjY57mzzz5bv/zyS6BvAQBhxeUytCgGoX0A4EX3zED7AMCL9jkf3QMAX7TP+WgfAPiifc5H+wDAi+6ZgfYBgBftcz66BwC+aJ/z0T4A8EX7nI/2AYAX3fNPwBusuN1uxcbGlvnc/v37FRkZGehbAEBYoUfOR/sAwIvumYH2AYAX7XM+ugcAvmif89E+APBF+5yP9gGAF90zA+0DAC/a53x0DwB80T7no30A4Iv2OR/tAwAvuuefiEBfoHnz5srOzi7zuY8//lht2rQJ9C0AALAV2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcACFSFQF9g2LBhGjp0qA4ePKhrrrlGLpdL33//vRYuXKi3335bmZmZwRgnAISNCLb8cjzaBwBedM8MtA8AvGif89E9APBlt/Z9+OGHyszM1KZNm3TgwAHVrVtX3bt31/Dhw1WtWjXPcUuXLlVaWppyc3NVu3Zt3XbbbRo0aNBxr5eZmamsrCzt3LlTCQkJGj16tLp06VKOn8h6tA8AfNmtfQg+2gcAXnTPDLQPALxon/PRPQDwRfucj/YBgC/a53y0DwC86J5/At5g5ZJLLtHzzz+vp556Sh988IEk6fHHH1e9evU0bdo0dezYMeBBAkA4oUfOR/sAwIvumYH2AYAX7XM+ugcAvuzWvr179yopKUmpqamKjY3Vhg0blJ6ernXr1mn27NmSpBUrVmj48OG69tprNW7cOK1cuVKTJ09WZGSkBg4c6HmtzMxMTZkyRSNHjlTr1q21cOFCDR06VPPnz1erVq2s+ojljvYBgC+7tQ/BR/sAwIvumYH2AYAX7XM+ugcAvmif89E+APBF+5yP9gGAF93zT8AbrEhS9+7d1b17d/3888/atWuXqlWrpiZNmgTjpQEg7LgokhFoHwCUonvmoH0AUIr2mYHuAYCX3dp30003+fzcqVMnVaxYUQ8//LC2b9+uevXqKT09XU2bNtWkSZPkcrmUnJysHTt2KD09Xf369VNUVJTcbrcyMjI0YMAADRkyRJKUlJSkdevWKT09XTNmzLDi41mG9gGAl93ah9CgfQBQiu6Zg/YBQCnaZwa6BwBetM8MtA8AvGifGWgfAJSie/4JygYrR51zzjk655xzgvmSABB26JFZaB8A09mtex9++KEyMzO1adMmHThwQHXr1lX37t01fPhwVatWzXPc0qVLlZaWptzcXNWuXVu33XabBg0adNzrZWZmKisrSzt37lRCQoJGjx6tLl26lOMnsh/aB8B0dmsfQovuAUDg7VuxYsUZHd+mTZszfo+j872ioiK53W4tX75co0aN8jl52LNnT2VlZSknJ0dJSUnKyclRfn6+evTo4TkmIiJCPXr00PTp0+V2uxUdHX3GYwl3tA8AmPeZhvYBMB3dMw/tA2A62mcWugcAtM80tA8AaJ9paB8A09E9/wRlg5Uff/xRL7/8slatWqWdO3eqdu3aatOmje666y6dd955wXgLAABshfYBgD3t3btXSUlJSk1NVWxsrDZs2KD09HStW7dOs2fPllR6c9/w4cN17bXXaty4cVq5cqUmT56syMhIDRw40PNamZmZmjJlikaOHKnWrVtr4cKFGjp0qObPn69WrVpZ9REtQ/sAACahewAQPH379j2j49evX39axxUXF6uoqMgz70tJSVGjRo2Um5urwsLC476V5ujPeXl5SkpKUm5urs/jR8XHx8vtdmvLli1GfbMN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AIBABb7CybNkyDRs2THFxcUpJSVGtWrX022+/6ZNPPtE777yjGTNmqHPnzsEYKwCEhQi2/HI82gcAXnbr3k033eTzc6dOnVSxYkU9/PDD2r59u+rVq6f09HQ1bdpUkyZNksvlUnJysnbs2KH09HT169dPUVFRcrvdysjI0IABAzRkyBBJUlJSktatW6f09HTNmDHDio9nGdoHAF52ax+Cj+4BgC+7tq9Tp07at2+fJKlLly6aOnWqpNKNNyUpNjbW5/iYmBhFRkZ6ns/Pz1dkZKSqVq3qc1xcXJzP65iA9gGAL7u2D8FD+wDAi+6ZgfYBgBftcz66BwC+aJ/z0T4A8EX7nI/2AYAX3fNPwBusPP300+rQoYNeeuklRUdHex4/fPiwhgwZoqeeekqLFy8O9G0AIGyQI+ejfQDgFYzurVix4oyOb9OmzRkdX61aNUlSUVGR3G63li9frlGjRsl1zCSyZ8+eysrKUk5OjpKSkpSTk6P8/Hz16NHDc0xERIR69Oih6dOny+12+zTA6WgfAHjZbc734YcfKjMzU5s2bdKBAwdUt25dde/eXcOHD/c0UJKWLl2qtLQ05ebmqnbt2rrttts0aNCg414vMzNTWVlZ2rlzpxISEjR69Gh16dKlHD+R9egeAPgKtH0LFiwIyjj+KCsrSwUFBdqwYYNefPFFDR06VJmZmSF5L6ejfQDgy27zPgQf7QMAL7pnBtoHAF60z/noHgD4on3OR/sAwBftcz7aBwBedM8/AW+w8vPPP+uBBx447ubCihUratCgQRo5cmSgbwEAYcXFjl+OR/sAwCsY3evbt+8ZHb9+/fpTHlNcXKyioiJt2LBB6enpSklJUaNGjZSbm6vCwkI1adLE5/ijP+fl5SkpKUm5ubk+jx8VHx8vt9utLVu2HPeck9E+APCy25xv7969SkpKUmpqqmJjYz3tW7dunWbPni2pdDOz4cOH69prr9W4ceO0cuVKTZ48WZGRkRo4cKDntTIzMzVlyhSNHDlSrVu31sKFCzV06FDNnz9frVq1suojlju6BwC+Am3fmW6SebqaN28uSWrfvr2aN2+uvn376qOPPlJ8fLwkad++fT7H79+/X8XFxZ4NyOLi4lRcXKwDBw6oatWqnuPy8/MlyWejMqejfQDgy27zPgQf7QMAL7pnBtoHAF60z/noHgD4on3OR/sAwBftcz7aBwBedM8/EYG+wDnnnKPdu3eX+dzu3bt1zjnnBPoWAADYCu0DAPvr1KmTWrdurRtvvFF16tTR1KlTJZXehC5JsbGxPsfHxMQoMjLS83x+fr4iIyN9brKTSm/AO/Z1TEH7AMC+brrpJt1///3q3r27OnXqpIEDB2rMmDH6z3/+o+3bt0uS0tPT1bRpU02aNEnJyckaMmSI+vfvr/T0dBUWFkqS3G63MjIyNGDAAA0ZMkTJycmaNGmSmjRpovT0dCs/YrmjewAQflq0aCGXy6XNmzerUaNGioqKUl5ens8xR38+ulnmsRttHis3N1dRUVFq2LBhOYzcHmgfANjbhx9+qFtuuUWdOnVSq1atdNlll2nSpEnHrVEuXbpUvXv3VmJiorp166bXXnutzNfLzMxUt27dlJiYqD59+mjZsmXl8CnshfYBgL3RvuCjfQBgX3Qv+OgeAMA0tA8AYBraBwAIVIVAX2DcuHF65JFHVLt2bXXp0sXz+GeffaYXXnhBTzzxRKBvAQBhJcJmG359+OGHyszM1KZNm3TgwAHVrVtX3bt31/Dhw32+hXXp0qVKS0tTbm6uateurdtuu02DBg067vUyMzOVlZWlnTt3KiEhQaNHj/b5/W8C2gcAXsHo3oIFCwJ/kT/IyspSQUGBNmzYoBdffFFDhw5VZmZm0N/HFLQPALzsNucry9G5XlFRkdxut5YvX65Ro0b57FDds2dPZWVlKScnR0lJScrJyVF+fr569OjhOSYiIkI9evTQ9OnT5Xa7j9vt36noHgD4Cof2fffddyopKVGDBg0UHR2t5ORkZWdnKzU11dO/JUuWqFq1amrbtq0kqX379oqNjVV2drZat24tSSopKVF2drY6d+5sTPck2gcAf2S39u3du1dJSUlKTU1VbGysNmzYoPT0dK1bt06zZ8+WJK1YsULDhw/Xtddeq3HjxmnlypWaPHmyIiMjNXDgQM9rZWZmasqUKRo5cqRat26thQsXaujQoZo/f75atWpl1Ucsd7QPALzs1j2J9oUC7QMAL7u1j+4FH90DAF92ax/3NgQf7QMAX3ZrH4KP9gGAF93zj18brFx99dU+N2QcOHBAgwcPVuXKlVWjRg3t3r1bBQUFiouL0xNPPKH33nsvaAMGALs79vejHXACLjhoHwCULRjda9OmTRBG4qt58+aSSm+Ya968ufr27auPPvpI8fHxkqR9+/b5HL9//34VFxd7TtDFxcWpuLhYBw4cUNWqVT3H5efnS5LPiTynon0AULZgtG/FihVndPzptLK4uFhFRUWeOV9KSooaNWqk3NxcFRYWqkmTJj7HH/05Ly9PSUlJys3N9Xn8qPj4eLndbm3ZsuW455yE7gHAidltvTM1NVXJyclKSEhQdHS01q5dq1mzZqlZs2bq3r27JGnEiBEaMGCAxo8fr169emnlypWaN2+exo4d69k4JTo6WsOGDVNaWppq1KihxMRELVq0SBs3btTEiROt/IjlgvYBwInZrX033XSTz8+dOnVSxYoV9fDDD2v79u2qV6+e0tPT1bRpU02aNEkul0vJycnasWOH0tPT1a9fP0VFRcntdisjI0MDBgzQkCFDJElJSUlat26d0tPTNWPGDCs+XrmhfQBQNrt1T6J9wUL7AKBsdmsf3QsOugcAJ2a39nFvQ3DQPgA4Mbu1j83FgoP2AUDZ7Na9cOHXBitt2rThv3AAOAG7/XrkBFxw0D4AKFs4/Gps0aKFXC6XNm/erG7duikqKkp5eXnq2rWr55i8vDxJ3pvKj73p/Og3mUtSbm6uoqKi1LBhw3L8BNagfQBQtmD8auzbt+8ZHb9+/fpTHtOpUyfPBmJdunTR1KlTJZVemCJJsbGxPsfHxMQoMjLS83x+fr4iIyN9NhaTSjcdO/Z1nIruAcCJ2e3XY2Jiot555x1t3bpVktSgQQP1799fd9xxh2fzlHbt2ikjI0NpaWlavHix6tSpozFjxhx34Ulqaqokae7cuZo2bZri4+OVkZHhMw90KtoHACcW6K/HUGyq+UdHL7YsKiqS2+3W8uXLNWrUKJ/f7T179lRWVpZycnKUlJSknJwc5efnq0ePHp5jIiIi1KNHD02fPl1ut9vTUieifQBQtnD51Uj7zhztA4CyBeNXY6jnfXTvzNE9ADgxu/165N6G4KB9AHBidvv1yOZiwUH7AKBsdvzVGA6bi/m1wcpTTz0V0JsCgJMF+i/rXHRpT7QPAMoWDotU3333nUpKStSgQQNFR0crOTlZ2dnZSk1N9Yx/yZIlqlatmtq2bStJat++vWJjY5Wdne25sa6kpETZ2dnq3Lmzo5t3FO0DgLLZtX1ZWVkqKCjQhg0b9OKLL2ro0KHKzMy0elhhg+4BwInZrX2jRo3SqFGjTnlcSkqKUlJSTnlcamqqZ6MVk9A+ADixQNvXt+9Npz7oGKezqaYkFRcXq6ioyHPRZUpKiho1aqTc3FwVFhZ6No0+6thNpJOSkpSbm+vz+FHx8fFyu93asmXLcc85Ce0DgLIFY84XqutcaF9gaB8AlC0Y7QvFvI/uBYbuAcCJ2e1cX1m4t+HM0T4AODG7tY/NxYKD9gFA2ezWPSk8Nhfza4MVAEDohOKbzCVOwAEAzJCamqrk5GQlJCQoOjpaa9eu1axZs9SsWTN1795dkjRixAgNGDBA48ePV69evbRy5UrNmzdPY8eO9ZxQi46O1rBhw5SWlqYaNWooMTFRixYt0saNGzVx4kQrPyIAwAEWLFgQ9Nds3ry5pNJNwpo3b66+ffvqo48+Unx8vCRp3759Psfv379fxcXFnotU4uLiVFxcrAMHDqhq1aqe4/Lz8yXJZ7doAAAAAED569Spk2du16VLF02dOlVS6YUpkhQbG+tzfExMjCIjIz3P5+fnKzIy0mfOJ5XOB499HQAAzlSornOhfQAAk9A9AIBdsakmAMA0fHE6AACBCYfNxYKywcrvv/+u7Oxs/fTTTzp8+PBxz0+YMCEYbwMAYSHCfht+SeIEXLDRPgAoZbfuJSYm6p133tHWrVslSQ0aNFD//v11xx13eBYM27Vrp4yMDKWlpWnx4sWqU6eOxowZo0GDBvm81tFvMJ87d66mTZum+Ph4ZWRkqHXr1uX6meyC9gFAqWC0z58TameiRYsWcrlc2rx5s7p166aoqCjl5eWpa9eunmPy8vIkeS80OfZClGNbl5ubq6ioKDVs2DCkY7YbugcAXnab9yE0aB8AeAXavlBsqilJWVlZKigo0IYNG/Tiiy9q6NChyszMDMl7mYD2AUApO8/5aF9w0T4AKBWM9oVi3kf3govuAYBXoO1jU83wQPsAwMuu7WNzseCifQBQKhjrnSZuLhbwBis//vij+vXrp8LCQhUUFKh69erau3ev5xtwY2JiAn0LAAgrx/5C9wcXXdof7QMAr0C7F2yjRo3SqFGjTnlcSkqKUlJSTnlcamqqZ6MVk9E+APCyW/vK8t1336mkpEQNGjRQdHS0kpOTlZ2drdTUVM/4lyxZomrVqqlt27aSpPbt2ys2NlbZ2dmeDVZKSkqUnZ2tzp07G/XNBnQPAHyFQ/sQGNoHAL4CbV+bNqHZoLl58+aSSudvzZs3V9++ffXRRx8pPj5ekjw3Ixy1f/9+z+9yqfTGguLiYh04cMDnpoP8/HxJ3otZTED7AMArGHO+UF3nQvuCh/YBgFcw2heKeR/dCx66BwC+7Hquj3sbgof2AYAvu7aPzcWCh/YBgFcwute3701ndLwTNhcLeIOVp59+Wq1bt9b06dPVtm1bzZw5U82aNdPixYs1depUPf/884G+BQCElUBzFKpvMucEXPDQPgDwsufyI4KN9gGAl93al5qaquTkZCUkJCg6Olpr167VrFmz1KxZM3Xv3l2SNGLECA0YMEDjx49Xr169tHLlSs2bN09jx471bJwSHR2tYcOGKS0tTTVq1FBiYqIWLVqkjRs3auLEiVZ+xHJH9wDAl93ah+CjfQDgKxza16JFC7lcLm3evFndunVTVFSU8vLy1LVrV88xeXl5krwXmhx7IcrRjTUlKTc3V1FRUWrYsGE5fgJr0T4A8ApG90J1ncuxaF9gaB8AeDHncz66BwC+Am0fm2raH+0DAF92bR+biwUP7QMALzuvd9p5c7GAN1hZvXq1HnvsMc/NGEVFRapQoYJ69+6tPXv26Mknn9TcuXMDfRsAQBBxAi4wtA8AYBraBwD2lZiYqHfeeUdbt26VJDVo0ED9+/fXHXfc4fm93a5dO2VkZCgtLU2LFy9WnTp1NGbMGA0aNMjntVJTUyVJc+fO1bRp0xQfH6+MjAyfOaAJ6B4AwDS0DwDCz3fffaeSkhI1aNBA0dHRSk5OVnZ2tlJTUz3fTrRkyRJVq1ZNbdu2lVR6o0JsbKyys7M987ySkhJlZ2erc+fOng6YgPYBQPihfYGhfQAQXuheYOgeAAQXm2raH+0DgODii9Ptj/YBQHCZuLlYwBusHDx4ULGxsYqIiFC1atW0c+dOz3PNmzdnty8Axolw2XnPr1KcgAsM7QMAr3DoHgJH+wDAy27tGzVqlEaNGnXK41JSUpSSknLK41JTUz0brZiK7gGAL7u1D8FH+wDAl93al5qaquTkZCUkJCg6Olpr167VrFmz1KxZM3Xv3l2SNGLECA0YMEDjx49Xr169tHLlSs2bN09jx471nMOLjo7WsGHDlJaWpho1aigxMVGLFi3Sxo0bNXHiRCs/YrmjfQDgZbfuSbQvFGgfAHjZrX10L/joHgD4slv7ysK9DYGhfQDgKxzax+ZigaF9AOAVjO6ZuLlYwBusNGrUSDt27JAkJSQkaOHChZ4F3XfffVc1atQI9C0AIKzYbR7GCbjgo30A4GW37iE0aB8AeNE+56N7AOCL9jkf7QMAX3ZrX2Jiot555x1t3bpVktSgQQP1799fd9xxh+c8Xrt27ZSRkaG0tDQtXrxYderU0ZgxYzRo0CCf1zq6oebcuXM1bdo0xcfHKyMjw+ciTBPQPgDwslv3JNoXCrQPALzs1j66F3x0DwB82a193NsQfLQPAHzZrX1lYXOxwNA+APAKh+5J9ttcLOANVlJSUrR8+XL16NFDd999t4YNG6akpCRFRkZqz549euihhwJ9CwAIKy6bFYkTcMFH+wDAy27dQ2jQPgDwon3OR/cAwBftcz7aBwC+7Na+UaNGadSoUac8LiUlRSkpKac8LjU11XPOz1S0DwC87NY9ifaFAu0DAC+7tY/uBR/dAwBfdmsf9zYEH+0DAF92ax+biwUf7QMAL7t170TstrmYq6SkpCTgT3WM1atX66OPPtKhQ4fUuXNnXXLJJcF8+XJTud09Vg8BIbTrq+lWDwEhVCXK2iAMeWtNQH//5ZtaBmkkKC+0D+Fgx/LnrR4CQiS2UoSl7x9o9yTaF45oH+xuz9fpVg8BIVQp4O2CA0P7zOOU7km0z8m2fz7N6iEghKpXibT0/VnvNI9T2kf3nI15n7OF+7yP9oUf2odwQPucK9y7J9G+cET7EA64xtO5wv36Ton2hRundE+ifU7GnM/Zwn3eR/fCj1PaR/ecjfY5G+3zNXXqVP3rX//y2Vzsiiuu0B133KGYmBjPcZ9++qnS0tKUm5urOnXqaMCAAbrzzjuPe71Zs2Zp7ty52rFjh+Lj4zV69Oiw/V0fLLQP4YD2OVe4d08KfvtOtLlY7dq19be//U3R0dHKycnRgAEDdN1113k2F5s6darGjh3rs7nmrFmzlJaWppEjR3o2F1uyZInmzZsX0OaaQf/H1qpVK7Vq1UqS9OOPP2rmzJkaPHhwsN8GAGwrTDb8QhDRPgAmo3tmon0ATEb7zEP3AJiO9pmH9gEwHe0zD+0DYDK6ZybaB8BktM88dA+A6WifeWgfANPZrX2jRo3SqFGjTnlcSkqKUlJSTnlcamqqUlNTgzAy56B9AExmt+5JUmJiot555x2fzcX69++vO+64Q9HR0ZKkdu3aKSMjQ2lpaVq8eLHq1KmjMWPG+GyuIsnTvLlz52ratGmKj49XRkZGQJurSFJIv+5+w4YNeu6550L5FgBgOxEuV0B/EN5oHwDTBNo92hf+aB8A09A+s9E9ACaie2ajfQBMRPvMRvsAmIb1TtA+AKahfWajewBMRPfMRvsAmIj2mY32ATCNHdc7R40apcWLFysnJ0c5OTlavHix7r33XsXExPgcl5KSokWLFmn16tX6+OOPdeedd5b5eqmpqfr444+1evVqLVq0SJdccknAY6wQ8CsAAHwwlwIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu+YcNVgAgyFwUCQBgELoHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnnwirBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoVLB6gHY1Z6v060eAkLot31uq4eAEKpSPdrS92fnKoQr2udsv/5+yOohIERiK1Wy9P3pHsLZri+nWz0EhMjvBwqtHgJC6E/Voix9f9qHcMa8z7lY73S26lUiLX1/2odwRfec7bd9h60eAkKoQfWKlr4/7UO4+vWL560eAkJo70HWPJ2qUhzrnYC/mPc5G2uezsX1nYD/uM7FufYVFFk9BIRQpVhrb9uifQhXu79izudkrHc6G2uegH+Y8znb/kPM+5yqUgxzvnDk1z+11q1by+VynfK44uJif14eAMLa6fx+RPihfQBQNrrnXLQPAMpG+5yJ7gHAidE+Z6J9AHBitM+ZaB8AlI3uORftA4Cy0T5nonsAcGK0z5loHwCcGO1zJtoHAGWje/7xa4OVwYMH8184AJxABL8eHYn2AUDZ6J5z0T4AKBvtcya6BwAnRvucifYBwInRPmeifQBQNrrnXLQPAMpG+5yJ7gHAidE+Z6J9AHBitM+ZaB8AlI3u+cevDVbuvffeYI8DAABbo30AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7gEATEP7AACmoX0AgGDya4MVAMCJseMXAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3AACmoX0AANPQPgCAaWgfAMAkdM8/bLACAEHmclEkAIA56B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5/2GAFAIKMHb8AACahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahe/5hgxUACDI2/AIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu+SfC6gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKhUCOaL/frrr9q+fbvOP/98ValSJZgvDQBhI4Itv4xC+wCYju6Zh/YBMB3tMwvdAwDaZxraBwC0zzS0D4Dp6J55aB8A09E+s9A9AKB9pqF9AED7TEP7AJiO7vknIhgv8tZbbyklJUVdu3bVrbfeqh9//FGSdO+99+r1118PxlsAQNiICPAPwgPtA4BSgXaP9oUP2gcApWifGegeAHjRPTPQPgDwon1moH0AUIr1TnPQPgAoRfvMQPcAwIvumYH2AYAX7TMD7QOAUqx3+ifgzz137lxNmDBBV155pTIyMlRSUuJ57oILLtB7770X6FsAQFhxuQL7A/ujfQDgFWj3aF94oH0A4EX7nI/uAYAvuud8tA8AfNE+56N9AODFeqcZaB8AeNE+56N7AOCL7jkf7QMAX7TP+WgfAHix3umfCoG+wOzZs3X33XfrvvvuU3Fxsc9z5513nmfnLwAAnIL2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgEroHADAN7QMAmIb2AQACFfAGK9u3b1fHjh3LfC46OloHDhwI9C0AIKxEmLpll0FoHwB40T0z0D4A8KJ9zkf3AMAX7XM+2gcAvmif89E+APCie2agfQDgRfucj+4BgC/a53y0DwB80T7no30A4EX3/BMR6Av86U9/0oYNG8p87ocfflDDhg0DfQsACCsuV2B/YH+0DwC8Au0e7QsPtA8AvGif89E9APBF95yP9gGAL9rnfLQPALxY7zQD7QMAL9rnfHQPAHzRPeejfQDgi/Y5H+0DAC/WO/0T8AYrPXv21AsvvKBPP/1UJSUlkiSXy6W1a9dq1qxZ6tWrV6BvAQBhJcIV2B/YH+0DAK9Au0f7wgPtAwAv2ud8dA8AfNE956N9AOCL9jkf7QMAL9Y7zUD7AMCL9jkf3QMAX3TP+WgfAPiifc5H+wDAi/VO/1QI9AWGDx+ujRs36u6771ZsbKwk6Y477lB+fr4uv/xypaamBjxIAADshPYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASugcAMA3tAwCYhvYBAAIV8AYrUVFRSk9P11dffaXPP/9cu3fvVrVq1dS5c2ddeOGFwRgjAISVCJehW3YZhPYBgBfdMwPtAwAv2ud8dA8AfNE+56N9AOCL9jkf7QMAL7pnBtoHAF60z/noHgD4on3OR/sAwBftcz7aBwBedM8/AW+wclRSUpKSkpKC9XIAELbokTloHwDQPdPQPgCgfSahewBQivaZg/YBQCnaZw7aBwB0zzS0DwBon0noHgCUon3moH0AUIr2mYP2AQDd81fAG6xs3779lMfUq1cv0LcBgLARQZAcj/YBgBfdMwPtAwAv2ud8dA8AfNE+56N9AOCL9jkf7QMAL7pnBtoHAF60z/noHgD4on3OR/sAwBftcz7aBwBedM8/AW+w0q1bN7lOsb3NDz/8EOjbAEDYcIkiOR3tAwAvumcG2gcAXrTP+egeAPiifc5H+wDAF+1zPtoHAF50zwy0DwC8aJ/z0T0A8EX7nI/2AYAv2ud8tA8AvOiefwLeYOW555477rHff/9dn332mdavX6/77rsv0LcAAMBWaB8AwDS0DwBgEroHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AIFABb7ByzTXXlPl4//79NWHCBK1du1a9evUK9G0AIGxEsOGX49E+APCie2agfQDgRfucj+4BgC/a53y0DwB80T7no30A4EX3zED7AMCL9jkf3QMAX7TP+WgfAPiifc5H+wDAi+75JyKUL37FFVfo7bffDuVbAIDtRLgC+4PwRvsAmCbQ7tG+8Ef7AJiG9pmN7gEwEd0zG+0DYCLaZzbaB8A0rHeC9gEwDe0zG90DYCK6ZzbaB8BEtM9stA+AaVjv9E+FUL74hg0bFBkZGcq3AADbcbkMLQok0T4A5qF7oH0ATEP7zEb3AJiI9pmN9gEwEe0zG+0DYBq6B9oHwDS0z2x0D4CJaJ/ZaB8AE9E+s9E+AKahe/4JeIOVmTNnHvdYYWGh8vLy9OGHH6p3796BvgUAALZC+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAAgQp4g5Vnn332uMeio6N19tln684779SwYcMCfQsACCsRbPjleLQPALzonhloHwB40T7no3sA4Iv2OR/tAwBftM/5aB8AeNE9M9A+APCifc5H9wDAF+1zPtoHAL5on/PRPgDwonv+CXiDlXXr1gVjHADgGC6C5Hi0DwC86J4ZaB8AeNE+56N7AOCL9jkf7QMAX7TP+WgfAHjRPTPQPgDwon3OR/cAwBftcz7aBwC+aJ/z0T4A8KJ7/okI5C+73W6NGTNG3377bbDGAwBhL8LlCugP7I32AYCvQLtH++yP9gGAL9rnbHQPAI5H95yN9gHA8Wifs9E+APDFeqfz0T4A8EX7nI3uAcDx6J6z0T4AOB7tczbaBwC+WO/0T0AbrERHR+vjjz9WUVFRsMYDAICt0T4AgGloHwDAJHQPAGAa2gcAMA3tAwCYhvYBAExC9wAApqF9AADT0D4AQDAEtMGKJCUlJbHbFwAcI8IV2B/YH+0DAK9Au0f7wgPtAwAv2ud8dA8AfNE956N9AOCL9jkf7QMAL9Y7zUD7AMCL9jkf3QMAX3TP+WgfAPiifc5H+wDAi/VO/1QI9AWGDRumMWPGyOVyqWvXrqpVq5ZcLt//NmvWrBno2wBA2HAZGhST0D4A8KJ7ZqB9AOBF+5yP7gGAL9rnfLQPAHzRPuejfQDgRffMQPsAwIv2OR/dAwBftM/5aB8A+KJ9zkf7AMCL7vnHVVJSUnKmfyk9PV033XST6tatq/PPP9/7Yif4p/DDDz/4P0KLHCqyegQIpd/2ua0eAkKoQfVoS9//hc9/Cujvj+h8blDGgeCifQh3v/5+yOohIETOrVXJ0vcPtHsS7bMrE9p30H3G02GEifwC/sXGyf5ULcrS96d9zmRC9yTmfU7Geqezsd6JUDChfXTP2X7bd9jqISCEGlSvaOn70z5nMqF9ewuOWD0EhNChwmKrh4AQqRvHeidCw4T2Me9zNtY8nSvc1zsl2mdHJnRP4joXJztwmDmfk9WODfh7sQPCeqczmdC+gkKrR4BQyucfsKOF+5on7bMnE9rHnM/ZDrqZ9zlVrZjwnvNJZrbPr39qL7zwgi655BLVrVtXTz755AkjBAAm4leiM9E+ACgbvw6di/YBQNn4dehMdA8AToxfic5E+wDgxPiV6Ey0DwDKxq9D56J9AFA2fh06E90DgBPjV6Iz0T4AODF+JToT7QOAsvHr0D9+bbBSUuLdCatPnz5BGwwAAHZF+wAApqF9AACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAAweTXBisAgBOLYMcvAIBB6B4AwDS0DwBgGtoHADAN7QMAmITuAQBMQ/sAAKahfQAA09A+AIBJ6J5//N5g5a233tLSpUtPeZzL5dKIESP8fRsACDsRLorkVLQPAI5H95yN9gHA8Wifc9E9ACgb7XMu2gcAZaN9zkX7AOB4dM/ZaB8AHI/2ORfdA4Cy0T7non0AUDba51y0DwCOR/f84/cGK4sWLZLrNP5LJ0YATEOPnIv2AcDx7Na9999/X4sXL9aaNWu0Z88eNWjQQDfccIMGDhyoqKgoz3FLly5VWlqacnNzVbt2bd12220aNGjQca+XmZmprKws7dy5UwkJCRo9erS6dOlSjp/IWrQPAI5nt/YheOgeAJTNbu1j3hc8tA8Ayma39iF4aB8AHI/uORvtA4Dj0T7nonsAUDba51y0DwDKRvuci/YBwPHonn/83mBl7ty5at26dTDHAgCArdE+ALC/V199VfXr19fYsWNVs2ZN5eTkaOrUqVq/fr2efvppSdKKFSs0fPhwXXvttRo3bpxWrlypyZMnKzIyUgMHDvS8VmZmpqZMmaKRI0eqdevWWrhwoYYOHar58+erVatWVn3EckX7AAAmoXsAEB6Y9wUP7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AIFj83mAFAFC2CLb8AgAYxG7dmzFjhmrUqOH5OTk5WSUlJZo2bZrGjh2rWrVqKT09XU2bNtWkSZPkcrmUnJysHTt2KD09Xf369VNUVJTcbrcyMjI0YMAADRkyRJKUlJSkdevWKT09XTNmzLDqIwIALGa39gEAEGp2ax/zPgBAqNmtfQAAhBLdAwCYhvYBAExD+wAApqF9AACT0D3/sMEKAAQZPQIAmCQY3VuxYsUZHd+mTZsTPnfsTXZHtWzZUpK0Y8cOxcXFafny5Ro1apRcxwy+Z8+eysrKUk5OjpKSkpSTk6P8/Hz16NHDc0xERIR69Oih6dOny+12Kzo6+ozGDQBwBuZ8AADTBNq+YM75JOZ9AIDQY94HADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9/7DBCgAEWYTVAwAAoBwFo3t9+/Y9o+PXr19/Rsd/8803ioqKUqNGjbR582YVFhaqSZMmPscc/TkvL09JSUnKzc31efyo+Ph4ud1ubdmy5bjnAABmsNuc7/3339fixYu1Zs0a7dmzRw0aNNANN9yggQMHKioqynPc0qVLlZaWptzcXNWuXVu33XabBg0adNzrZWZmKisrSzt37lRCQoJGjx6tLl26lOMnAgDYTaDtC/WcT2LeBwAILrvN+wAACCU7do81TwBAKNmtfXQPABBqdmsfAAChRvsAACahe/7xa4OVdevWBXscAOAYLptt+cUJuOCgfQBQNrt1749yc3M1Z84c3XzzzYqJidHevXslSbGxsT7HxcTEKDIy0vN8fn6+IiMjVbVqVZ/j4uLiJMlznJPRPgAom93a9+qrr6p+/foaO3asatasqZycHE2dOlXr16/X008/LUlasWKFhg8frmuvvVbjxo3TypUrNXnyZEVGRmrgwIGe18rMzNSUKVM0cuRItW7dWgsXLtTQoUM1f/58tWrVyqqPWC7oHgCcmN3a90fM+/xD+wDgxOzWPs71BQftA4Cy2a17EmuewUL7AKBsdmsf3QsOugcAJ2a39iE4aB8AnBjtcybaBwBlo3v+8WuDFQBA+OAEHADA7hYsWBCS1929e7dGjBihRo0aacyYMSF5DwAArDZjxgzVqFHD83NycrJKSko0bdo0jR07VrVq1VJ6erqaNm2qSZMmyeVyKTk5WTt27FB6err69eunqKgoud1uZWRkaMCAARoyZIgkKSkpSevWrVN6erpmzJhh1UcEAIS5UM35JOZ9AAAzcK4PAGAa1jwBACahewAA07ChNAAAAADAamywAgBBZrf9vjgBBwAIpWB0r02bNkF4FV/79+/X4MGDVVhYqDlz5qhKlSqSpGrVqkmS9u3bd9zxxcXFnufj4uJUXFysAwcO+HybeX5+vs/rAADMY7c537HzvaNatmwpSdqxY4fi4uK0fPlyjRo1ymeH6p49eyorK0s5OTlKSkpSTk6O8vPz1aNHD88xERER6tGjh6ZPny63263o6OjQfyAAgO0E2r5QzPkk5n0AgNCx27yPc30AgFAKRvdWrFhxRsefap7ImicAIJTs1j66BwAINbutd7KhNAAg1OzWPjYXAwCEkt26J4VH+9hgBQCCLMIVWJK48AQAEE4C7V4ouN1uDR8+XNu2bdO8efNUt25dz3ONGjVSVFSU8vLy1LVrV8/jeXl5kqQmTZr4/GdeXp5at27tOS43N1dRUVFq2LBheXwUAIANBaN9wZ73/dE333yjqKgoNWrUSJs3b1ZhYaGnbUcd27qkpCTl5ub6PH5UfHy83G63tmzZctxzAAAzMO8DAJiGc30AAJMEY87Xt2/fMzp+/fr1Z/werHkCAIIlHNpH9wAAwWS3c31sKA0ACDW7tY/NxQAAoWS37knh0T42WAGAIAs0R1x4AgAIJ3abhhUXF+v+++/XqlWrNHv2bDVu3Njn+ejoaCUnJys7O1upqameGw6WLFmiatWqqW3btpKk9u3bKzY2VtnZ2Z4b7UpKSpSdna3OnTtzowEAGCwY7QvlvC83N1dz5szRzTffrJiYGO3du1eSFBsb63NcTEyMIiMjPc/n5+crMjJSVatW9TkuLi5OkjzHAQDMw7wPAGAazvUBAExitzlfWVjzBAAEk93bR/cAAMEWaPvYUBoAEG7sNu9jczEAQCjZrXtSeLSPDVYAwDCcgAMAONnEiRP1z3/+UyNHjtSRI0f0/fffe56Lj49XTEyMRowYoQEDBmj8+PHq1auXVq5cqXnz5mns2LGeE2rR0dEaNmyY0tLSVKNGDSUmJmrRokXauHGjJk6caNGnAwDg5Hbv3q0RI0aoUaNGGjNmjNXDAQAgJJj3AQBMx7k+AIDdLFiwIGSvzZonAMCOQtU+ugcAsCM2lAYAmIbNxQAApjGxfWywAgBB5gpwyy8uPAEAhJNAuxdsy5YtkyRNmzZN06ZN83luzpw56tSpk9q1a6eMjAylpaVp8eLFqlOnjsaMGaNBgwb5HJ+amipJmjt3rqZNm6b4+HhlZGR4vtkcAGCmYLQvFPO+/fv3a/DgwSosLNScOXNUpUoVSVK1atUkSfv27Tvu+OLiYs/zcXFxKi4u1oEDB3xutsvPz/d5HQCAeZj3AQBMw7k+AIBJgjHnO9VFlP5izRMAEAp2bR/dAwCEit3O9f0RG0oDAIIt0PaxuRgAIJwEY85nYvvYYAUAgswVYJG48AQAEE4C7V6wffzxx6d1XEpKilJSUk55XGpqqueGOwAApOC0L9jzPrfbreHDh2vbtm2aN2+e6tat63muUaNGioqKUl5enrp27ep5PC8vT5J3wfHYBcljbyrPzc1VVFSUGjZsGNQxAwDCB/M+AIBpONcHADCJ3eZ8R7HmCQAIFTu2j+4BAEIp0PaxoTQAINzYcd53LDYXAwAEk927J9mzfWywAgBBFmH1AMrACTgAQKjYsXsAAISS3dpXXFys+++/X6tWrdLs2bPVuHFjn+ejo6OVnJys7OxspaamehZRlyxZomrVqqlt27aSpPbt2ys2NlbZ2dmeOV9JSYmys7PVuXNnRUdHl+vnAgDYh93aBwBAqNmxfZzrAwCEih27x5onACCU7NY+ugcACLVA28eG0gCAcBNo+9hcDAAQToKx3mli+9hgBQAcjhNwAAAAAOBcEydO1D//+U+NHDlSR44c0ffff+95Lj4+XjExMRoxYoQGDBig8ePHq1evXlq5cqXmzZunsWPHeuZy0dHRGjZsmNLS0lSjRg0lJiZq0aJF2rhxoyZOnGjRpwMAAAAAcK4PAGAa1jwBACahewAAE7GhNADAzthcDABgGhPbxwYrABBkRy9atAtOwAEAQslu3QMAINTs1r5ly5ZJkqZNm6Zp06b5PDdnzhx16tRJ7dq1U0ZGhtLS0rR48WLVqVNHY8aM0aBBg3yOT01NlSTNnTtX06ZNU3x8vDIyMnwuRAEAmMdu7QMAINTs1j7O9QEAQslu3ZNY8wQAhJbd2kf3AAChZrf2saE0ACDU7NY+ic3FAAChY8fuSfZvHxusGGzzzz9r9muztHrVKuVu3KA6deoq+6OPrR4WztD3336tMSPuPO7xcxvHa9a8hT6P/fuj9/XWG7P1U16uoitGK75pcz00YZJq1qpdXsM1gt1yxAk4wGvzzz/r6UlP6NtvvlHFitG64sqrdf8DD3p2v0N4+eSf7+vv8+fo5015ioqOVnzT8/XgI096ulZSUqIlCxdoycIF2rZ1s6pUqapmzVvpkUlpioqKsnj0zmG37gGm2rz5Z8157VWtWV06v6tdp47e++D4+V1hoVuvvTpLi99ZpF9/2a5qZ52l5Asv0uN/fdqCUeN05Xz7lUYNO37ed17jeL02f5Ekaem/P9KCeXO0+acfdfDgAdWqXVddUrrp9tS7FRvHrvTBZLf2ffzx6a3lpKSkKCUl5ZTHpaameuZ+QLh6P/s9zXntVeXlblR0dEWd37y5nnz6GdWuXcfqoeE0nO565+dLP9Ybs2fp5x/zFF2xopo1b6k7h96n+Kbnl+dwjWC39gEo9fVXX+quO2477vEm8Qn6x9tLLBgRAlV6Hm/OMefxzvc5j7f+hzXKmDpZG9f9oJjYWF11bS/dftcwRVbglH+w2a19nOuDif710Qd6/73FWvfDWv3++x7Vq1df1/W6QTffMkAV/neO58vln2vJO4u0ZvVKbd2yWT169tKjj0+yeOTwR1FRke4aeJM25W7Uo3+drMuuuEaS9PY/Fujdt/+hbVs36/Dhw6pb92xdflUP3XLbnapYsaLFo3YOu3VPYs0TOOqfH32orNmZ+unHTTpw4IDq1K2rrt266+6hwxXHNxKHFdY87cVu7aN7MNXpXOcyI2O6XnrxheP+7s39+uvPf3mkvIaKABUVFSl1wE3Ky92gCX99Rt2vLJ3zvbd4oZ6c+H/HHX9RlxRNnppR3sN0NLu1jw2lYarNm3/WnMxZWu1pX11lf3j8vwt+vmyppk9L06a8XNWqXVu33HqbBt42qPwHDL+daL1Tkpa8/Xf94815pfc2VI1Rm3YXaMjwkarXgI0xgslu7WNzMZiKeZ85ioqKdOetpfO+iU96530/rF2thW/N15rVK/Xzj5vUtn0Hpb/8mrWDdSC7dU8Kj/ZxtZXB8vI2aumnn6hVYmuVlJRoX36+1UNCAMaMn6hzGzfx/FyxYiWf5xfMna1ZL07VTbcO0uAR9+tQQYFW5nwrt/tweQ/V8ey24xcn4IBS+/bt0+A7b1ftOnU0JW2q9u7dqymTn9KuXbv03LTpVg8PZ+hvb8xW5ozndcMttyt12CgdOlSg1d9/p8JjuvbCc5P0r/eXqN9tqWreqo3278vXt18t15EjxZLYYCVY7NY9wFR5ubn67Jj5XX7+3uOOKSkp0QOjR2rNqlUafPcwNYlP0O5du/T9999ZMGL448G/TNS5jeM9P1eq5J335e/dq7btO6rfgDtUNSZGm3I3avYrLypv43qlZcyyYriORfsAe5v92qt6Pu053X7HnRo1+gEVFBTou2++1uHDrIGFm5Otd37z5Rd6dNwoXXZlDw0aMkKHCgo0b/ZMPXDPXZo1byEbSgcZ7QPs7dHHnlB8fILn52PnCQgfpefxpummW2/X4BGjjjuP9+v2bRp7z2C1atNOjz/zvLZv3awZ05/V4cOHNWzkAxaP3nns1j7O9cFEc+e8qrPr1de9o8aoRs1aWvl9jma8ME0bN6zXhCeekiR98fln2rD+B7Vp21779nG9Szj72/zX9fuePcc9vi8/Xxdf2k1N4puqUuUqWrtqhV6bNUO//rJNf37kCQtG6kx26x4Ar/y9e9WxY5IG3ZmqmJhYbdy4QS9lpGvD+nWa+epsq4cHP7DmaQ+0D7CH07nORZKioqL0SmaWz2O1atUqjyEiSN6a/7p+37P7hM8/M/VFxR6zeVxcbFx5DMsodmsfG0rDVHm5G7V06Sdq1epo+45f01y1coVG3jNcV/e4VmPGjtOqlSs19dnJqhAZqVtuHWjBqOGPE613Lln0N03+6wT17X+bRowaqz17dmvWS+kac+8QZb7xD1WqVNmC0TqT3drH5mIwFfM+c7z1RtnzvlXf5yjn22/UolUruQ+7LRiZGezWPSk82scGKwZLubSbunbrLkl6fOIj+uJ/CxUIT+c2bqIWrdqU+dy2LZs168WpGnH/n3XdDTd7Hr+wy6kvsMOZi7B6AADK9LcF87Vnz27NW/B31axZU1LphQpjRt2rtWtWq0XLVhaPEKdr29bNypzxvIaOGqeevft6Hk/u7O3aypxvtPgfb+qJKS+o44VdPI9fdEm3ch2rCegeYA8pl3ZV126XSZKeeOxRffH5Z8cds/idRfpi2Wea9+bfldC0mefxK666utzGicCc2zheLRPLnvdd2+tGn5/bXZCk6IoVNeXJCfrvr7+o7p/OLo8hGoH2Afa1+eef9Xzacxr30Hj17dff83jKpV0tHBX8dbL1zo8/fE91/1RPf370Sc/JocYJTTXwhmv09X8+11XX9irHkTof7QPsLT4+Qa3btLV6GAhA6Xm8aRpx/7gTnsd78/VMVapSRRMmPafoihV1QVKyDh06pFcypurmAYNUoyYXFwUT7QOs9+y0F1W9Rg3Pzx06dlKJSvTSC8/r3vsfUM2atTRy9IO6/4E/S5Ju6nXNiV4KNrfjv7/qtVde1Kix4/XkhL/4PDdg0F0+P7fvkKSCgoN6c+5sPTD+UVWowBcqBAPdA+yrz403+fzcMamTKkZX1GMTHtYv27fr7Hr1LBoZ/MWapz3QPsAeTuc6F6n0JiHWP8PXjv/+qsyZGbp/7F/01wnjyzym6fnN2UgsxOzWPjaUhqmOvYfviYmP6PPPj7+Hb8aL6WratKkee2KSXC6XOiYla+eOHZqRka4b+/ZTVBTrYXZ3svXOj95/V23bd9A99z/oeax6jZq6f3iqflizSu0uSCrv4TqW3drH5mIwFfM+M+z47696dWaGRj/4Fz3xqO+878Z+t6pv/9JN4kbfM0RuN5ushILduieFR/vYYMVgERF2/J8NQiF7yUJViIrS1df1sXooAGCZZZ8tVVKnZM/mKpJ0adduqlKlipZ++gkbrISRD5YsUoWoKF11be8THvPu239T/YaNfDZXAQAnO5353d/felMXdEjy2VwFzhYXV/oNP0VFhRaPBADKx6KFf1dUVJR697nx1AcjrBUVFalylco+O+9XjYmVJJWUlFg1LAAA/HI65/G+/GKZOl/SVdEVK3oeu+zKazTj+Sn6+j+f68oe15fHUAGg3By7ucpRzZu3lCT9tnOHatasxTUvDjH9uafV+eJL1aZdh9M6PjaumoqLi3XkCHM/AGaqVu3ouZ8ii0eCYGPNE4BpmNOZ4flnn1KXS7qqbfvTm/MBgJOdqn1ut1tf/We5Rtw7ymdecM21PfXGvCyt+D5HHTqyAYfdnWy9s6ioSLGxcT6PxcTESBLrnQ7H5mIwFfM+M0w7ybyP/xswVzi0j//rBBzi4bH36fKL2uiGq1P03KQJyt+71/Pc2pXfq9E55+nDd9/WLb2u0OWd22rwgBv05Rdl7/qGwLhcroD+AAiNvLxcnde4ic9jFSpU0DnnnqdNm/IsGhX88cPqFWrY6Dx9lP2OBva5Sldf0l5Db79JXy/37uT9w6oVOrdxgua99rJuvrareqRcoPuH3q51a1ZaOHJnCrR7tA8oH4WFhVq7Zo3OPe88PfP0k7r4oo7qdEFrjRh6l37+6Uerh4fT9Jex96prcmv1uuoSPfOk77zvqOLiYh0+fFjr1q7Wa69kKLnzxarfoJEFo3Uu2gfY14rvc3Re4/P0ztuLdFX3rmrfuoVu6n2dln32qdVDgx9Ott55dc/e2vzTT/rbG3O0L3+vdvz3V6U/+6Tq1P2TLr70MgtH7Ux0D7C3kfcOV7vE5up6yUV67NGHtff3360eEs7Q2pUrjjmPd6Uu79xOgwfc6DmPd+hQgf7763adc25jn79Xo2YtxcZV02bm9UFH+wB7yvnuG0VFRbHW5SBffrFMX3/5hYaNfOCkxxUVFamg4KByvv1Kb72RpZ69b1J0dHQ5jdL5WO8E7O/ouZ81q1dpxovpuviSFDVsRA/DEWue9kD7gPBSWFioy1I6q0Pblrrumiv06isvq7i42Oph4TT854vP9NWXX2j4KeZ8d9x6gy5JSlSfHpcpY9oUHT50qJxGaA66B4SHLVs2q7CwUI3/cL9D4yalP//I/Q62d6r1zp69b9RX//lc//zgPR3Yv19bNv+sF59/TgnNmqtNuwvKebTORvuA8MK8L3z954vP9NV/vtCIU8z7EFqsd/qngtUDCMT27dv11VdfqVevXlYPBbBM1ZgY3dT/drVp31GVK1fRD2tW6o05s7R29QplZL6p6Oho7d79m37buUOzX8nQ4BH3q3qNmlq4YJ4eHnufXs56S+c2jrf6YziKmTlBeaF9/tuXn6/Y2NjjHo+Li9PeMm5Ohn3t3vWbdu3coaxXXlTq8JGqXr2m3v77G3p03EhlvPamzm0cr927f9N3Xy3Xz5tydc+Yvyi6YrTeeG2mHrp/mDLffEdnVa9p9cdwDLqHUKN9wbF37+8qKirU4rcXqkl8gp586hkdPnxYLzw/VcOH3qV/vP2eKh7zLdiwl6oxsbr51tvVtn1HVa5SRT+sXqW5s1/RmlUr9PLsN31uJrju8i7av3+fJKljp4s04clnrRq2Y9E+hBrt899vv+3Ujv/+Vy++8LxGjn5ANWvW0htzX9fIe4brzb8vUnx8gtVDxGk4nfXOdh06acJTaZr06J/14rRnJEln16uvydNnKuYP3/aDwNE+hBrt809MbKxuG3SnOnRMUpUqVbRq5Qq9+srLWrHie72x4O/cdBxGvOfxXtTgEaOOOY83Ui9nLfB8Y/nR/zxWbFyc9uWzvh1stA+hRPf8sykvV/PnZanXDX093+iJ8Hb48GFNfeavGnTXMNWqVVu/bN9W5nH79uWrR7eLPD9f2eM6jXzgofIaphHoHkKN9gUupXMn7dtXeu7nwou6aPKzU60dEM4Ya572QvsQarQveBo2PEf3jRqj889vriMlR7T0k3/rhelTtW3rFj084XGrh4eTOHz4sNIm/1V3DB5+wjlfzVq1dcfg4WrRqrWioqL03Tdfav7c2dq4Yb3SXphpwaidi/Yh1GhfcBzdgDE2zvd8UNWqMYqMjOR+B5s7nfXOq3pcr0J3oZ6cMF5FRUWSpKbnt9CU52eoQoWwvsXXdmgfQonuBRfzvvB1+PBhPff0X3Xn4OGqVfvE5/oQenTPP2H9b1+rVq3SQw89RIxgtIRmzZXQrLnn57YXdFRCs+YaN/Juffzhe7rq2l46cqREBQcP6uEnnlGniy6RJLVp31EDb7ha87Ne1Z8ffdKq4TuSoRt2oZzQPkAqKTmigoKDGv/YZCVddLEkqXX7jhrUt4cWzM3Ugw//VSVHjqjAfVAPP/mcZyOxZs1b6bYbr9bbf5uv2wePsPIjOArdQ6jRvuA4cuRI6X+WlGha+gxVr15dknTeeY11Y++eyn5viXr1vsHKIeIkmjZrrqbHzPvaXZCkhPOb64F7h+hfH76nq6/t5Xlu6oxMHT5UoE25GzXn1Zf00Oh79Gz6TEVGRlowcmeifQg12ue/I0dKdPDgQU1+dqouviRFktSxY5J6XH25MmfN1F8nTbZ4hDgdp7PeuXb1Cj392Hh1u/IapXS7QgUFB/VmVqYeun+Ynn85SzVq1rLwEzgP7UOo0T7/NG/eQs2bt/D83DGpk5q3aKmhg+9U9rtLdH3vPhaODmfC9zxe6Xpn6Xm8azQ/61WlDhtp8QjNQ/sQSnTvzP2+Z4/G3n+PGjZspHtGjrZ6OAiS1zNnqkJUlG7sd+tJj6tSpapenj1fhw8f1g9rVikr82U99fjD+ssErnMJFrqHUKN9gXslM0uHDhVo48YNmvnSi7pvxFC99Eom537CCGue9kL7EGq0L3h69LzO5+eLOl+smNhYvfrKy7ojdYgaNGxo0chwKlmZLysqKko3nWTO1+nCLup0YRfPzx2SkvWns+tp8l8n6LtvvlL7DknlMVQj0D6EGu0DTm+987NPP9b0555WvwGD1DH5Iu3etUuzX5mhcaOGa/rLs1WxUqVyHLGz0T6EEt0LLuZ94WvOq6ee96F80D3/RFg9AADB16HTRYqNq6b1P6yWJMX+7xsM2rb3LjRGRUWpZet2+mlTriVjBIDyFhsX5/lGn2Pl5+erWrVqFowI/jr6zTxtLujoeSwqKkotE9vq5x/zPMdUr1HTs7mKJJ1VvYbOa5zgOQYATBIbGyeXy6WEhKaezVUkqUl8gmrWrKW83I0Wjg7+6NjpIsXFVdO6tat9Hk9oer5atW6n6/r01WNPpSnn26/02Sf/smiUAFC+4uJK5wodkzp5HouKjlbbdu2Vl8saWDj743pn+rOT1DKxre4f94jad0xW50u6adLUF7Uvf6/+Pj/L4tECgHUuvKizqlU7S2tWr7J6KDgDsbGl30TYtv0f1jtbt9NPm/IU87/nD+w/fn17X36+YuNY3wbgXAcOHNDIEUNUVFioaS/MVOXKVaweEoLg11+2642sV5U69F4VFBRo3758HTywX5J06NAh7T+meZGRkTq/RSu1aXeB+g0YpNHjHtYH775z3LooADjZ+c2bq2279rqpbz9NSXteX3/1pT7+50dWDwsBYs0TAPxzxZXXqKSkRD+sXWP1UHACv/6yXfPmvKq7jpnzHTjBnO+PLrv8aklizgfASHH/u59hX77v78kDB/aruLiY+x1s7HTWO0tKSjTlyQm66trrNWTEKLW7IEmXXXG1Jk97UevXrdX7775t8acAAPtg3md/nnnfsHtVcKiMeV8Z928CdlPB6gGU5bLLLjut4w4dOhTikQDhzfW/rafObdxE69aWcTFtSYncbnc5j8r5IsSWXzhztC/0Gjduoh83+W6sUVxcrJ9/+lGXdu1m0ajgj3POa6L1ZZxAKykpkfvwYc8xm3/adPwxKlEh7Qsqugd/0b7yVblyZdWrV7/M50p/f/K7MVy5TrLlcNPzm8vlcmnb1s3lOCLno33wF+0LvSbx8Vq9auVxj5eUlOjw/+YKCG9Hu/fTpjzddGsXn+eqVo1R/QaNtG0L3Qs22gd/0T4L8dUkYeXcxvFl3zDwv/N4lStXUZ0/na2f/7DeuXvXLu3L36tG555XTiM1B+2DP+he8Lndbj0waoR++WWbZmbOVe06daweEoLkl+1b5Xa79ci4+4977unHH9HzUybpg6Vfl/l3mzVvKUnatnWzzm/RKqTjNAXdg79onzWaN28hl8ulzZtZA3MK1jzLH+2Dv2ifzfA/Zdvavq10zvd/Zcz5nnr8YU2b8qQ++uybk78Ia9xBRfvgL9pXvho2bKSoqCht2pSnSy7t6nl8U17p/Q/nNW5i1dBwCqez3jl/0fvas3u3mjVv4fP8n86up7hqZ2kL8/ygon3wB92zIf6nbFueed+Dx7dv0mMPa+ozT+qfy04x70PQ0D3/2HKDlf/+979q2rSpEhMTT3rc1q1b9cUXX5TTqIDw8fV/Pte+/L06v0Xp/4YuvPhSvb9kkb775ktd2CVFUunFSKtW5qh9x2Qrh+pIrOnCH7Qv9LpcfIleevEF7d69WzVq1JAkffrJv3Xw4EFdfEmKxaPDmbiwy6X68N23lfPNl0ru7O3ampU5atehtGvJXS7Viu++1k+bNurcxgmSpN/37NJPebm6sf/tlo3diege/EX7yl9K1276x98W+LRw44b12r17l1q0bGnx6HCmvlr+ufLz9570JoJVK3JUUlKis+s1KMeROR/tg79oX+hd2vUyvb3wH/ryP8uV8r+LTdxut3K++1bJyRdZPDoE4o/rnXXPrqcNP/h+Q8WBA/u1betmtW7XwYohOhrtg79oX/n7fNln2rv3dyUmtrZ6KDgDJz+P10mS1OnCLvpi6b817L4HFF2xoiTp3x+9p8jICurQiX/PCTbaB3/QveAqLi7WX8aN1g9rVinj5dd0DptJOUp80/M1bcarPo/t3vWbJv7lQd2eOlQdOl14wr+76vvvJEln128Y0jGahO7BX7TPGt/nfKeSkhI1aMi5n3DHmqd1aB/8Rfvs4f3sJXK5XGrZkg0X7Sqh2fl6fkamz2O7d/2mCX8Zq0F3DVXHk6xnfvTBe5KkFi1P/r8znBnaB3/RvvIVHR2tpE7J+vCDbN1+R6pnM8bs95YoLq6a2rRta+0AcUKns955VvUaqly5stavXaMe1/XxHPfL9m3K3/u7zq5f9hcowj+0D/6ge/bBvM/+Epqdr+kvHT/ve3T8/+Z9XK9bruief2y5wUrTpk3VoEEDTZw48aTHffDBB8QoAAUFBVq29FNJpWEvOFSgjz54X5LUMjHxhN9uDnt58tE/6+x69ZVwfgtVqVJVP6xZpTezXlV80/PV9fKrJUkXXdxVLRLb6NknH9Vdw0eqeo1aWvTWPO3Pz1e/AXdY/Amcx8WOX/AD7Qu9G/v20xvzXteoe4dryNBhyt+brymTn1LXbpepZStOxoST5C6XqnmrNpr61ETdMfQ+1ahRS2//7Q3t37dPN906SJJ0zXV99M7f52viQ6N1++ARqlixkt6YM1OVKldWzz43W/sBHIbuwV+0L7gKCgq07LPS+d22rVt06NAhffTh/+Z3rUrnd7cPStV7S97RfSPuVurgoSp0u/VC+lSde+55uvLqHlYOH6fwxCPjdHa9Bmr6v3nf2jUr9cac0nnfZVdcI0l64N4hat8xWec1bqKo6GhtXP+D5r/+mprEN9XFl57eruo4PbQP/qJ9oXdp125q07adJj7yf7rv/tGqVauW3pj7uvbl52tQ6l1WDw+n6XTWO3vdeIuen/JXPffURF3S9XIVHDyot+bNVqG7UD2uv8HiT+A8tA/+on2h9dC4B1S/fgO1aNlKVatW1aqVK5Q5a6aand9cV119jdXDwxm46OJL/3ceb8L/zuPV1KK33vA5j9d3wB361wfvaeL4Mbqh3wBt27pFmS+/oOtvvFk1a9W2+BM4D+2DP+hecE2e9Lg+/fe/dPeI+1R8pFirVn7vee68xvGKiYnRL9u3ae2a1ZKkgwcO6NdftutfH30gSerc5RJVqlzZiqHjNMTGxqndBUk+j/2yfZsk6dzGjdWm3QWSpMG39dVVPa5Xw0bnSpJWr8zRm/PmqNOFXbjZLojoHvxF+0Jv6OBUdUpOVpP4BEVHR2vdD2v1WuYsNW3aTN26dbd6eDgDrHnaC+2Dv2hfcJ3OdS639O2ja3ter3PPa6wjR4r16Sf/1sK/v6Ub+/ZTvfpsNmZXsbFxat/hBHO+85p45nz3jxis9h2S1Dg+QVFRUfr26y/11htZurDzJWrbns3Fgon2wV+0L7iObd/WrVt16FDBce0bMnSEUgcN0ISHx+va63pp9eqVWjB/nkaNGauoqGgrh4+TON31zl439tOCeXNUNSZGHZIu1O7duzTn1Zd0VvXquuyKq8t93E5G++APuhd8zPuc62TzvvMaN1Hb/7Vvz57d+v7bryVJu3fvUmFhof79z9LzuW0v6Kjq1WuU46idi+75x5YbrLRq1UpLly49rWNLSkpCPBrn2r17lx4YPdLnsaM/P/bEJF3fu09Zfw02c27jeH384bv6x5tzdfjwYdWuU1dX9eyt2+4apqioKElSRESE/jrlBb00fYpmPD9Fhw8fVrPmLTXlhVd0buN4iz+B87DjF/xB+0IvLi5OM1+draeffEJj7h+pitEVdfmVV2rMA+OsHhrOUEREhB57Zrpmpj+rl6c/K/fhw2ravKWefn6mp2uVKlfR5Odnasbzz2ja04/pSMkRJba5QA/83xOqXqOmxZ/AWege/EX7gmvP7l16cMwon8eO/jzx8Sd1Xa8+qlO3rl6eNVvPPvO0xv/5AVWoUEEXdb5YY8aOU6VKlcp/0Dht5zaO1z8/eE9/e/N1HT5UOu+75ro+GjTYO+9r3jJRH72/2LM4+aez66vXDTerb//bPccgOGgf/EX7Qi8iIkLTX5ihZ6c8rWcnP63Dhw+pZatEzXx1tuLjE6weHk7T6ax3XnfDzYquWFGL3npDH3/4nipWrKSEZs317Auz1PAcvtk+2Ggf/EX7Qis+PkHvvbtE816fo8OHD6tO3brq1edGDR1+j6KiucAynJSex0vXS9Of/cN5PO96Z736DfTM9Jf14rQp+ssD9yomJla9brpFgwYPt3j0zkT74A+6F1z/+fwzSdJLLzyvl1543ue5F2fO1gUdk/Tt11/psUfHex7fuXOHvv3mK0nSonf/qXp842fYa9qshf6x4A3t3PFfVahQQWfXb6DUu+9Vrxv5MoVgonvwF+0LvVaJiXp3yTvatnWrpNJ5wc39+mvg7Xcw7wszrHnaC+2Dv2hfcJ3OdS6NGp2jN+Zmadeu31RSUqJzzj1PDzz4kG6+5dbyHzCC7tzGjfXe4kX6bed/VVRUpLPrNdCAQYM1YBBfnBFstA/+on3BtXv3Lo39wz18R3+e+MQkXd+rj9q0baep0zM0fVqa3nt3sWrVrqP7Ro3RgIGDLBgxgm3w8Pt0VvUayl68SH9/c55iYmPVolXr0sfPqm718ByF9sEfdC/4mPfhx7xc/d+40T6PHf15+kuZqv6HTVrgH7rnH1eJDX+bb968WRs3btRll538G5YPHTqkXbt2qX4ILoo4VBT0l4SN/LbPbfUQEEINqlt7Avm9NTsC+vvXtKwTpJEgnNA+hNqvvx+yeggIkXNrWbspQqDdk2ifqezQvoNu202HEST5BfyLjZP9qZq1G8bQPvjLDu1j3udcrHc6G+udCFdWt4/uOdtv+w5bPQSEUIPqFS19f9oHf1jdPUnaW3Ak6K8J+zhUWGz1EBAideNY70R4skP7mPc5G2uezhXu650S7TOVHdrHdS7OdeAwcz4nqx1r7fdis94Jf1ndvoLCoL4cbCaff8COFu5rnrTPTFZ3T2LO53QH3cz7nKpWTHjP+SQz22ftP7UTaNSokRo1anTK4ypVqhSSEAFAICLEll84c7QPQLiie/AX7QMQrmgf/EX7AIQr2gd/0T4A4Yr2wR90D0C4onvwF+0DEK5oH/xF+wCEK9oHf9E+AOGK9sEfdA9AuKJ7/rHlBisAEM5c9AgAYBC6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65x82WAGAICNIAACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3/RFg9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlQpWDwAAnMYltvwCAJiD7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7vmHDVYAIMgi6BEAwCB0DwBgGtoHADAN7QMAmIb2AQBMQvcAAKahfQAA09A+AIBpaB8AwCR0zz9ssAIAQcaOXwAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9/0RYPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJUKVg8AAJzGxYZfAACD0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3/sMEKAASZSxQJAGAOugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucfNlgBgCCLoEcAAIPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPf+wwQoABBk7fgEATEL3AACmoX0AANPQPgCAaWgfAMAkdA8AYBraBwAwDe0DAJiG9gEATEL3/BNh9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFQqWD0AAHAaFxt+AQAMQvcAAKahfQAA09A+AIBpaB8AwCR0DwBgGtoHADAN7QMAmIb2AQBMQvf8wwYrABBk9AgAYBK6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65x82WAGAIItgyy8AgEHoHgDANLQPAGAa2gcAMA3tAwCYhO4BAExD+wAApqF9AADT0D4AgEnonn8irB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIRKBasHAABOw35fAACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3/sMEKAAQbRQIAmITuAQBMQ/sAAKahfQAA09A+AIBJ6B4AwDS0DwBgGtoHADAN7QMAmITu+YUNVgAgyFwUCQBgELoHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnnwirBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoVLB6gEAgNO42PALAGAQugcAMA3tAwCYhvYBAExD+wAAJqF7AADT0D4AgGloHwDANLQPAGASuucfNlgBgCCjRwAAk9A9AIBpaB8AwDS0DwBgGtoHADAJ3QMAmIb2AQBMQ/sAAKahfQAAk9A9/7DBCgAEG0UCAJiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7vmFDVYAIMhcFAkAYBC6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK6558IqwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFSweoBAIDTuNjwCwBgELoHADAN7QMAmIb2AQBMQ/sAACahewAA09A+AIBpaB8AwDS0DwBgErrnHzZYAYAgo0cAAJPQPQCAaWgfAMA0tA8AYBraBwAwCd0DAJiG9gEATEP7AACmoX0AAJPQPf+wwQoABBtFAgCYhO4BAExD+wAApqF9AADT0D4AgEnoHgDANLQPAGAa2gcAMA3tAwCYhO75JcLqAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqFSwegAA4DQutvwCABiE7gEATEP7AACmoX0AANPQPgCASegeAMA0tA8AYBraBwAwDe0DAJiE7vmHDVYAIMhc9AgAYBC6BwAwDe0DAJiG9gEATEP7AAAmoXsAANPQPgCAaWgfAMA0tA8AYBK65x82WAGAIKNHAACT0D0AgGloHwDANLQPAGAa2gcAMAndAwCYhvYBAExD+wAApqF9AACT0D3/RFg9AABwHFeAfwAACCeBdi8E7fv555/1yCOPqHfv3mrZsqW6detW5nFLly5V7969lZiYqG7duum1114r87jMzEx169ZNiYmJ6tOnj5YtWxb8QQMAwocN2wcAQEjRPQCAaWgfAMAkrHcCAExD+wAApqF7AADT0D4AgElY7/QLG6wAAAAAcJSNGzfqk08+Uf369ZWQkFDmMStWrNDw4cPVrFkzzZw5U/369dPkyZOVlZXlc1xmZqamTJmifv36aebMmUpISNDQoUO1evXq8vgoAAAAAAAAAAAAAAAAAAAAAAAAAAAgCNhgBQCCzBXg/wu2n3/+WY888oh69+6tli1bqlu3bmUet3TpUvXu3VuJiYnq1q2bXnvttTKPy8zMVLdu3ZSYmKg+ffpo2bJlQR8zACB8BNq9ULSvW7duWrp0qdLT09W6desyj0lPT1fTpk01adIkJScna8iQIerfv7/S09NVWFgoSXK73crIyNCAAQM0ZMgQJScna9KkSWrSpInS09ODPm4AQHiwY/sAAAglO3aPNU8AQCjZsX0AAISKHdc7mfMBAELJju0DACCU6B4AwDS0DwBgEtY7/cMGKwAQZC5XYH+CbePGjfrkk09Uv359JSQklHnMihUrNHz4cDVr1kwzZ85Uv379NHnyZGVlZfkcl5mZqSlTpqhfv36aOXOmEhISNHToUK1evTr4AwcAhIVAu+dylXboTP6cSkTEyac5brdby5cv1zXXXCPXMfHt2bOnfv/9d+Xk5EiScnJylJ+frx49evi8do8ePfT555/L7Xb7+d8aACCcBaN9AACEEzt2jzVPAEAo2a193GQOAAglO653MucDAISSHdvHvA8AEEp26x4AAKFG+wAAJrHjemc4qGD1AADAaezWk27duql79+6SpEceeaTMk2Xp6elq2rSpJk2aJJfLpeTkZO3YsUPp6enq16+foqKi5Ha7lZGRoQEDBmjIkCGSpKSkJK1bt07p6emaMWNGuX4uAIA9BKN7ffv2PaPj169fH9D7bd68WYWFhWrSpInP40d/zsvLU1JSknJzc30ePyo+Pl5ut1tbtmw57jkAgPPZbc4nlV50OWvWLK1atUobNmxQ3bp19fHHHx933NKlS5WWlqbc3FzVrl1bt912mwYNGnTccZmZmcrKytLOnTuVkJCg0aNHq0uXLuXwSQAAdmTH9rHmCQAIJbu17+hN5q1bt1ZJSYny8/OPO+boTebXXnutxo0bp5UrV2ry5MmKjIzUwIEDPccdvcl85MiRat26tRYuXKihQ4dq/vz5atWqVXl+LACATditexJzPgBAaNmxfcz7AAChZMf2AQAQSrQPAGASuucfNlgBAJtZsWLFGR3fpk2bkz4fERFx0ufdbreWL1+uUaNGyXXMdmM9e/ZUVlaWcnJylJSUpJycHOXn56tHjx4+r92jRw9Nnz5dbrdb0dHRZzR2AACssHfvXklSbGysz+MxMTGKjIz0PJ+fn6/IyEhVrVrV57i4uDif1wEAwGpcdAkAsLNgr3dKrHkCAMzCTeYAALvjOhcAAALDvA8AYBq+SAgAYBK6BwAwTTi0jw1WACDYAtzyq2/fvmd0/Pr16wN6v82bN6uwsFBNmjTxefzoz3l5eUpKSlJubq7P40fFx8fL7XZry5Ytxz0HADBAELa6XLBgQeAvAgBAebHhNs9cdAkACKkwW++UWPMEAAQowPZxkzkAIKwEYb2T61wAAGElCO1j3gcACCs2vM6FLxICAISUzdpH9wAAIWWz7knh0T42WAGAIHPZsUgnsXfvXklSbGysz+MxMTGKjIz0PJ+fn6/IyEhVrVrV57i4uDif1wEAmCUY3TudbycPpmrVqkmS9u3b5/P4/v37VVxc7Hk+Li5OxcXFOnDggE//jk7sjh4HADCLHed8XHQJAAglO7bvVFjzBAAEItD2cZM5ACCcMOcDAJgmGO1j3gcACCd2nPfxRUIAgFCyW/voHgAglOzWPSk82scGKwAQZK4Ae7RgwYLgDAQAgHIQaPes0KhRI0VFRSkvL09du3b1PJ6XlyfJe6HJsReitG7d2nNcbm6uoqKi1LBhw3IcNQDALoLRvmB/q92pcNElACAQrHcCAEwTbmue3GQOAAhEMLrHvA8AEE7Cbc4nMe8DAAQm0PaF4hoXvkgIABBKdmsf3QMAhJId720Ih/axwQoA2EygN86dqWrVqkmS9u3b5/P4/v37VVxc7Hk+Li5OxcXFOnDggM8JuPz8fJ/XAQDA7qKjo5WcnKzs7GylpqZ6JmNLlixRtWrV1LZtW0lS+/btFRsbq+zsbM8GKyUlJcrOzlbnzp1ZgAQA+K28v9WOiy4BAFYq7/VOiTVPAIC1uMkcAGAarnMBAJiGeR8AwCTlfY2LxBcJAQCsVd7to3sAAKuZ2D42WAGAIAu3Lzho1KiRoqKilJeXp65du3oez8vLk+SNz7FxOnqTuSTl5uYqKipKDRs2LMdRAwDswo7dKygo0KeffipJ2rp1qwoKCvT+++9LkhITE1W/fn2NGDFCAwYM0Pjx49WrVy+tXLlS8+bN09ixYz0bp0RHR2vYsGFKS0tTjRo1lJiYqEWLFmnjxo2aOHGiZZ8PAGAtO7YPAIBQCsf2seYJAAhEoO3jJnMAQDhhzgcAME0w2se8DwAQTsJx3scXCQEAAhFu7aN7AIBAhFv3JHu0jw1WACDYwqxI0dHRSk5OVnZ2tlJTU+VylX6AJUuWqFq1amrbtq0kqX379oqNjVV2drbnwpOSkhJlZ2erc+fOnpvRAQCGsWH3du3apZEjR/o8dvTnSZMmqU+fPmrXrp0yMjKUlpamxYsXq06dOhozZowGDRrk8/dSU1MlSXPnztW0adMUHx+vjIwMn4swAQCGCUL7yvtb7bjoEgAQEBvO+06FNU8AQEDCrH3cZA4ACEiYdU9izgcACFAYto95HwAgIAG2r7yvcQEAIGC0DwBgkjC8t8EO2GAFAILMZbMzcAUFBfr0008lSVu3blVBQYHef/99SVJiYqLq16+vESNGaMCAARo/frx69eqllStXat68eRo7dqzngpLo6GgNGzZMaWlpqlGjhhITE7Vo0SJt3LhREydOtOzzAQCsZbfuSVKDBg20fv36Ux6XkpKilJSUUx6Xmprq2WgFAIBgtK+8v9WOiy4BAIGw47yPNU8AQCjZsX0nw03mAIBA2LF7zPkAAKFkx/adCvM+AEAgAm1feV/jIvFFQgCAwIRb++geACAQ4Xhvgx3axwYrABBkLpudf9u1a5dGjhzp89jRnydNmqQ+ffqoXbt2ysjIUFpamhYvXqw6depozJgxGjRokM/fO3pz+dy5czVt2jTFx8crIyPD58Y7AIBZ7NY9AABCLRzbx0WXAIBA2LF9rHkCAELJbu3jJnMAQCjZrXsScz4AQGjZsX3M+wAAoWTH9p0KXyQEAAhEuLWP7gEAAhFu3ZPs0T42WAEAh2vQoIHWr19/yuNSUlKUkpJyyuNSU1M9F6AAAAAAAKzHRZcAANOw5gkAMAk3mQMATMOcDwBgGuZ9AAD44ouEAAAmoXsAANPYoX1ssAIAQRaGG34BAOA3ugcAMI0d28dFlwCAULJj+wAACCW7tY+bzAEAoWS37gEAEGp2bB/zPgBAKNmxfXyREAAglOzWProHAAglu3VPCo/2uUpKSkoC+5jOdKjI6hEglH7b57Z6CAihBtWt3XFxw38PBvT3m9atEqSRAGeG9jnbr78fsnoICJFza1Wy9P0D7Z5E+2Cdg//P3t3HSV3X+/9/LpeKXAmKqXhBBKSAiB4Rs+QI50SaFZIZlaJiaaKm5QWl5umcQ8nRc9QSqSTNC7zsix2T0jylqJVhmoJkqSCKWF7ENaGAuL8/+LG6Agqzu+zMfO73bnuznfnMfN6z7O5j5zMzr1nt7nC1WvaaP2yq2fs6tW7W/Wsflcz9vurleGd1c7wTSqN71e3vy1c19xJoQt23b9us+9c+KtXS195s7iXQhF5fs7a5l0AT2amj451QKvf7qptjntWr0o93JtpH8/E8l+r1j1Xu81WzHTs07/til+PxzgULFmTYsGEbPW/9Gwklyf3335/LLrssc+bMSbdu3XLMMcdkzJgxG1zm6quvzo033phXXnklH/jAB/K1r30thxxySKOvm63rtTXNvQKa0jL/wFWt0o95Nnb7dI/N5T5fdVu52v2+arVD+8q+z5cUs30GrGyCB9+qmwffqltzPwD3zMuvNejyvXbatpFWAltG+6qbASvVq7kHrDS0e4n20XwchKxeBqxUt+YesKJ9VDL3+6qX453VzfFOKI3uVTcDVqpbcw9Y0T4qlQEr1c2AlerV3C82cLyTSuZ+X3VzzLN6VfrxzkT7aD6e51K9DFipbs09YMXxTiqV+RvVzYCV6lbpxzy1j+biPl91M2ClejX3gBXHO0vTorkXAAAAAAAAAAAAAAAAAAAAAADQVJp3LA5AFaqpae4VAMDWo3sAFI32AVA02gdA0WgfAEWiewAUjfYBUDTaB0DRaB8ARaJ7pTFgZRO28ZWpat23b9PcS6CK6RGVSvuq2547bNPcS6BK6R6VrF0b38HVql2b1s29BKqY3xxUMvf7qpfjnTQl7aNS6V5167592+ZeAlVM+6hUnbZt0dxLoAn596Wp6B6VzP2+6uaYJ01F+6hknudSvdq18YcNTcdvDirVtp4CWNW2be0fmKajfVQq9/mqm/t9NBW/OUrjJxKgsSkSAEWiewAUjfYBUDTaB0DRaB8ARaJ7ABSN9gFQNNoHQNFoHwBFonsl8fYmAAAAAAAAAAAAAAAAAAAAAEDVatXcCwCoNjVGfgFQILoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS6VxoDVgAaWY0eAVAgugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXGgNWABqZHgFQJLoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS6VxoDVgAamyIBUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkuleSFs29AAAAAAAAAAAAAAAAAAAAAACAptKquRcAUG1qjPwCoEB0D4Ci0T4Aikb7ACga7QOgSHQPgKLRPgCKRvsAKBrtA6BIdK80BqwANLIaPQKgQHQPgKLRPgCKRvsAKBrtA6BIdA+AotE+AIpG+wAoGu0DoEh0rzQGrAA0Mj0CoEh0D4Ci0T4Aikb7ACga7QOgSHQPgKLRPgCKRvsAKBrtA6BIdK80LZp7AQAAAAAAAAAAAAAAAAAAAAAATaVVcy8AoNrUGPkFQIHoHgBFo30AFI32AVA02gdAkegeAEWjfQAUjfYBUDTaB0CR6F5pDFgBaHSKBECR6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkeheKQxYAWhkJn4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcaA1YAGpkeAVAkugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXmhbNvQAAAAAAAAAAAAAAAAAAAAAAgKbSqrkXAFBtaoz8AqBAdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvNAasADSymigSAMWhewAUjfYBUDTaB0DRaB8ARaJ7ABSN9gFQNNoHQNFoHwBFonulMWAFoLHpEQBFonsAFI32AVA02gdA0WgfAEWiewAUjfYBUDTaB0DRaB8ARaJ7JTFgpcCef/75jB8/Po888kjatGmTww47LOeee27atWvX3EujETz//PO5+uqr88QTT+Tpp5/OTjvtlHvvvbe5lwXQrLSveukewMZpX/XSPoCN077qpX0AG9K96qZ9ABvSvuqlewAbp33VS/sANk77qpf2AWxI96qb9gFsSPuql+5RaQxYKajly5fnuOOOS7du3XL55Zdn6dKlmTBhQhYuXJgrrriiuZdHI3jmmWcyffr07LPPPqmtrc2yZcuae0mFYeAXlCftq26613x0D8qX9lU37Ws+2gflS/uqm/Y1H+2D8qR71U/7mo/2QXnSvuqme81H96B8aV91077mo31QvrSvumlf89E+KE+6V/20r/loH5Qn7atuutd8dK80BqwU1C233JJFixZl6tSp6dq1a5Jkm222yemnn57Zs2enX79+zbxCGmro0KH5l3/5lyTJhRdemN/85jfNvKLiqFEkKEvaV910r/noHpQv7atu2td8tA/Kl/ZVN+1rPtoH5Un3qp/2NR/tg/KkfdVN95qP7kH50r7qpn3NR/ugfGlfddO+5qN9UJ50r/ppX/PRPihP2lfddK/56F5pWjT3AmgeDzzwQAYPHlwXomTdL7B27dpl+vTpzbcwGk2LFn68m0tNA/8HNA3tq26613wa2j3tg6ajfdVN+5qP9kH50r7qpn3NR/egPOle9dO+5qN9UJ60r7rpXvNxvBPKl/ZVN+1rPtoH5Uv7qpv2NR/dg/Kke9VP+5qP9kF50r7qpnvNx/HO0viOLag5c+akZ8+e9U5r1apVevTokblz5zbTqgCg6WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoH1BOWjX3Amgey5YtS4cOHTY4vWPHjlm6dGkzrAiqSDEHdkHZ0z5oIroHZUv7oIloH5Qt7YMmon1QlnQPmpD2QVnSPmgiugdlS/ugiWgflC3tgyaifVCWdA+akPZBWdI+aCK6VxIDVgAamR4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkuleaFs29AJpHx44ds3z58g1OX7ZsWTp16tQMK4LqUVPTsA+gaWgfNI2Gdk/7oOloHzQN7YPypX3QNHQPypPuQdPRPihP2gdNw/FOKF/aB01D+6B8aR80Dd2D8qR70HS0D8qT9kHTcLyzNAasFFTPnj0zd+7ceqetXbs28+bNS8+ePZtpVVAdahr4P6BpaB80jYZ2T/ug6WgfNA3tg/KlfdA0dA/Kk+5B09E+KE/aB03D8U4oX9oHTUP7oHxpHzQN3YPypHvQdLQPypP2QdNwvLM0BqwU1CGHHJIZM2Zk0aJFdafdd999WblyZYYMGdKMKwOApqF9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkegeAEWjfUA5adXcC6B5jBo1KlOmTMnYsWNzyimnZNmyZZkwYUKGDRuW/v37N/fyaASvvfZa7r///iTJggUL8tprr+Xuu+9OkvTv3z+77rprcy6vqtUUc2AXlD3tq26613x0D8qX9lU37Ws+2gflS/uqm/Y1H+2D8qR71U/7mo/2QXnSvuqme81H96B8aV91077mo31QvrSvumlf89E+KE+6V/20r/loH5Qn7atuutd8dK80NbW1tbXNvQiax7x58zJ+/Pg8+uijadu2bYYPH55x48Zlu+22a+6l0QgWLFiQYcOGbfS8iy66KCNHjtzKKyqOxSvXNujy27dr2UgrAd5J+6qX7jWfhnYv0T5oStpXvbSv+WgflDftq17a13wc74TypXvVTfuaj/ZB+dK+6qV7zcfxTihv2le9tK/5aB+UN+2rXtrXfBzvhPKle9VN+5qP9kH50r7qpXvNx/HO0hiwAtDIlrzWsCB13rZ4MQKgcjW0e4n2AVBZtA+AonG8E4Ci0T4AisTxTgCKRvsAKBrHOwEoGu0DoEgc7yxNi+ZeAAAAAAAAAAAAAAAAAAAAAABAU2nV3AsAqDY1qWnuJQDAVqN7ABSN9gFQNNoHQNFoHwBFonsAFI32AVA02gdA0WgfAEWie6UxYAWgkdXoEQAFonsAFI32AVA02gdA0WgfAEWiewAUjfYBUDTaB0DRaB8ARaJ7pTFgBaCR6REARaJ7ABSN9gFQNNoHQNFoHwBFonsAFI32AVA02gdA0WgfAEWie6UxYAWgsSkSAEWiewAUjfYBUDTaB0DRaB8ARaJ7ABSN9gFQNNoHQNFoHwBFonsladHcCwAAAAAAAAAAAAAAAAAAAAAAaCqtmnsBANWmxsgvAApE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPdKY8AKQCOr0SMACkT3ACga7QOgaLQPgKLRPgCKRPcAKBrtA6BotA+AotE+AIpE90pjwApAI9MjAIqkHLv3/PPPZ/z48XnkkUfSpk2bHHbYYTn33HPTrl275l4aAFWgHNsHAE1J+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvNAasAAAAVWP58uU57rjj0q1bt1x++eVZunRpJkyYkIULF+aKK65o7uUBAAAAAAAAAAAAAAAAAM2gRXMvgPJxxRVXpE+fPnUfgwcPzujRo/PII4806X5//vOfp0+fPlmwYEHdaX369MlVV1212dexYMGCXHHFFXnppZcadW39+/d/zxfiHnvssTnxxBMbvK+hQ4fmwgsvbPD1JMmMGTPSp0+fPP74441yfWyhmgZ+AFuN9m1I+9hiDe1eI7fvlltuyaJFi/L9738/Q4YMySc/+cl861vfyj333JPZs2c37s6gAmnfhrSPLVZm7QM2Tfc2pHuURPegYmjfhrSPkmgfVAzt25D2scUc74SKon0b0j62mPZBxdC9DekeJdE9qBjatyHtoyTaBxVD+zakfWwxxztL0qq5F0B5ad26daZMmZIkefnllzNp0qQcf/zxuf3229O7d++tto5bb701O++882Zv/+KLL2bixIn5yEc+kve9731NuDJ4bzVFLQpUKO2Dhim37j3wwAMZPHhwunbtWnfa0KFD065du0yfPj39+vVrxtVBedA+aJhyax/w7nQPGk77oLJoHzSc9kFl0T5oGN2DyqN90DDaB5VF96DhtA8qi/ZBw2kfVBbtg4bRvdIYsEI9NTU12Xfffes+79+/f4YOHZpbbrllk5OoVq9enTZt2jTqOt6+Bqg0NXoEFUX7oGEao3szZ87cou0HDBiwyfPmzJmTESNG1DutVatW6dGjR+bOnVvK8qDqaB80jPt8UFl0DxpO+6CyaB80nPZBZdE+aBjdg8qjfdAw2geVRfeg4bQPKov2QcNpH1QW7YOG0b3StGjuBVDedtlll3Tp0iULFixIknz961/Pxz72sfzud7/LyJEj069fv0ydOjVJMmvWrIwZMyYDBw7MwIEDc8opp+SFF16od30rVqzIN77xjey///454IAD8s1vfjOvvfbaBvvt06dPrrrqqnqn3X///fn85z+ffffdN/vvv38+97nP5dFHH82MGTMyevToJMlnP/vZ9OnTJ3369Km3z/Hjx+eQQw5Jv379csQRR+QXv/jFBvv8f//v/2XYsGHp379/jj766PzpT39q2Bfv//f3v/89559/fv71X/81++yzT4YOHZp/+7d/y7Jlyza6/TXXXJMhQ4Zkn332yQknnJDnn3++3vm1tbW59tprc9hhh6Vfv34ZMmRIvve972Xt2rWNsl6AotO+htM+ttTRRx+9RR/vZtmyZenQocMGp3fs2DFLly5tqpsAFU37Gk77ACqH7jWc7gFUFu1rOO0DqCza13DaB1BZtK/htA+gcuhew+keQGXRvobTPoDKon0Np33w3lo19wIobytWrMiSJUvSrVu3utMWLlyYb37zm/nyl7+c3XbbLV27ds2sWbPyhS98IYMHD84ll1yS2traTJw4Mccff3zuuuuuumlg559/fu6///6ceeaZef/735877rgj3/ve995zHb/4xS/yta99LUOGDMnFF1+cbbbZJjNnzsxLL72UIUOG5MILL8x//Md/ZPz48enVq1fd5dasWZMxY8bkb3/7W0499dTstttu+dWvfpWvfe1r6dixYz784Q8nSaZPn57zzz8/RxxxRD71qU/l2WefzVe+8pW8+eabDf4aLlmyJO3bt8+5556bzp0758UXX8z3v//9nHLKKbnxxhvrbTt9+vTssMMOueCCC/L666/n0ksvzRe/+MX84he/SOvWrZMkEyZMyE033ZSTTjop+++/f/7yl7/UxeirX/1qg9dLw23jNytUNO3TPraM7kHl0z7tY8toH1Q23dM9tpz2QWXTPu1jy2kfVDbt0z62jO5B5dM+7WPLaB9UNt3TPbac9kFl0z7tY8tpH1Q27dM+tozulagW/n/f+973avv161e7Zs2a2jVr1tQuWLCg9vTTT6/t3bt37QMPPFBbW1tbO27cuNrevXvXPvzww/Uue8wxx9SOHDmydu3atXWnvfzyy7X9+/evvemmm2pra2tr58yZU9unT5/aG2+8sd5ljzrqqNrevXvXvvDCC3Wn9e7du/aHP/xhbW1tbe3atWtrDznkkNpjjjlmk2v//e9/X9u7d+/axx57rN7pt99+e+0HP/jB2ieffLLe6aecckrtZz7zmbrPP/OZz9QeddRR9baZMmVKbe/evWu/973vbXK/62/7mDFj3nWbt1uzZk3tH/7wh9revXvXPvPMM3WnH3roobUDBgyoXbhwYd1ps2fPru3du3ft1KlTa2tra2vnz59f+8EPfrD2+uuvr3edP/7xj2sHDBhQu3jx4tra2k1/PQCoT/u0j/Lw+OOPb9HHuxk8eHDthAkTNjj9yCOPrD3zzDOb6iZAxdA+7QMoEt3TPYCi0T7tAyga7dM+gKLRPu0DKBLd0z2AotE+7QMoGu3TPmguLZp7wAvlZfXq1enbt2/69u2boUOH5qGHHsqFF16Yj3zkI3XbdOjQIQcccEDd56+//noeffTRHHbYYXnzzTfzxhtv5I033kiXLl3Su3fvzJo1K0kya9as1NbW5mMf+1i9fX70ox991zXNmzcvL730Uj7zmc9s8e35zW9+kw984APp1atX3breeOONHHzwwXnyySezdu3arF27Nn/6058yfPjwepd95zpLVVtbmxtuuCFHHHFE9t133/Tt2zdf+MIXkiTPPfdcvW0HDRqULl261H3et2/fdO/eve5r+NBDD+XNN9/MYYcdVu/2fOhDH8prr72WZ555plHWDFAk2vcW7aO5DBgwYIs+3k3Pnj0zd+7ceqetXbs28+bNS8+ePZvyZkDF0L63aB9A9dO9t+geQDFo31u0D6AYtO8t2gdQDNr3Fu0DqH669xbdAygG7XuL9gEUg/a9Rftg62nV3AugvLRu3To333xzampqsv3222fnnXdOixb15/B07dq13udLly7N2rVrc8kll+SSSy7Z4Drbt2+fJHn11VfTokWLbL/99vXO32GHHd51TUuWLEmS7LTTTlt6c7Jo0aI8/fTT6du370bPf/XVV9OyZcu88cYbG9yuLl26bHDbS3H99dfnoosuyvHHH58PfehD6dy5c15++eWcdtppWbVqVb1t37mGZN3X59VXX02SLFy4MEly8MEHb3Rff/3rXxu8XoCi0b63aB/V4JBDDsmVV16ZRYsW1d3Jv++++7Jy5coMGTKkmVcH5UH73qJ9ANVP996iewDFoH1v0T6AYtC+t2gfQDFo31u0D6D66d5bdA+gGLTvLdoHUAza9xbtg63HgBXqqampSf/+/d9zm7fr0KFDWrRokRNPPHGDiVlJst122yVJdtxxx7z55ptZvHhxvYlWf//73991f+vj9fLLL2/WbXi7Tp06pVevXrnooos2en6XLl3SsmXLtGrVqu4X/XqLFi3Km2++ucX7fKe77rorQ4YMyde//vW6037/+99vdNt3riFZ9/XZa6+9kqy7PUly4403pm3bthts27179wavF6BotO8t2kc1GDVqVKZMmZKxY8fmlFNOybJlyzJhwoQMGzbsPX/WoSi07y3aB1D9dO8tugdQDNr3Fu0DKAbte4v2ARSD9r1F+wCqn+69RfcAikH73qJ9AMWgfW/RPth6DFihwdq1a5eBAwdmzpw5Ofvssze53T777JOamprcfffd+fznP193+j333POu19+jR4/ssssumTp1aj75yU9udJvWrVsnyQbTsw4++OBMnz49O+ywQ3beeedN7qNv37755S9/mS9+8Yt1p919993vuq7N9frrr28w0eyOO+7Y6LYPP/xwFi9eXBfgP/3pT1mwYEEGDBiQJPnQhz6UmpqaLFy4cKPhB2Dr0L53p300p44dO+a6667L+PHjc8YZZ6Rt27YZPnx4xo0b19xLg4qmfe9O+wCqi+69O90DqD7a9+60D6D6aN+70z6A6qN97077AKqL7r073QOoPtr37rQPoPpo37vTPnhvBqzQKL7+9a/n2GOPzamnnppPfvKT2X777fPqq69mxowZGTx4cA4//PD07Nkzw4cPz8UXX5w1a9akR48eueOOO95zildNTU3GjRuXM888M1/+8pfz6U9/Ottuu21mzZqVPffcM4cffnj23HPPtGzZMrfffnvatGmTVq1apX///vnUpz6VqVOn5thjj80JJ5yQnj175h//+EeeeeaZvPjii/nP//zPJMnYsWNz8skn56yzzsqnPvWpzJs3L9dff31atdq8H5GFCxduNF6DBw/Ohz/84VxzzTW55ppr0qdPn/z617/OH/7wh41eT8eOHXPiiSdm7Nixee2113LZZZdlt912yxFHHJEk2XPPPXPCCSfkG9/4Rp5++ukMHDgwtbW1mT9/fu699958//vfT5s2bTZrzQA0jPZpH+WrR48eufrqq5t7GVB1tE/7AIpE93QPoGi0T/sAikb7tA+gaLRP+wCKRPd0D6BotE/7AIpG+7QPGsKAFRrFPvvsk1tvvTXf+9738s1vfjOvvfZadtpppxxwwAHp06dP3Xbf/va38+1vfzvf/e5307Jly3zsYx/LGWeckfPOO+9dr/9jH/tYfvjDH2bSpEk566yz0qZNm/Tp0ycHHXRQkqRLly658MIL86Mf/SjTpk3LG2+8kaeeeipt2rTJNddck0mTJuWaa67Jyy+/nI4dO6Z3794ZOXJk3fX/8z//c7797W9n0qRJueeee7LXXnvliiuuyGc/+9nNuv1//vOfc8YZZ2xw+q233ppTTz01S5YsyQ9/+MO88cYb+chHPpJLL700n/nMZzbY/p//+Z+z55575j/+4z+yePHi7L///vn3f//3umlmSTJu3Ljsueeeufnmm3PVVVelbdu22X333XPooYdudjwBaDjt0z6AotE+7QMoEt3TPYCi0T7tAyga7dM+gKLRPu0DKBLd0z2AotE+7QMoGu3TPmiImtra2trmXgQAAAAAAAAAAAAAAAAAAAAAQFNo0dwLAAAAAAAAAAAAAAAAAAAAAABoKgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAAAEaO7VAAEAAElEQVSoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqGbACAAAAAAAAAAAAAAAAAAAAAFQtA1YAAAAAAAAAAAAAAAAAAAAAgKplwAoAAAAAAAAAAAAAAAAAAAAAULUMWAEAAAAAAAAAAAAAAAAAAAAAqpYBKwAAAAAAAAAAAAAAAAAAAABA1TJgBQAAAAAAAAAAAAAAAAAAAACoWgasAAAAAAAAAAAAAAAAAAAAAABVy4AVAAAAAAAAAAAAAAAAAAAAAKBqtWruBQBUm20Hntagy7/22MRGWgkANL2Gdi/RPgAqi/YBUDSOdwJQNNoHQJE43glA0WgfAEXjeCcARaN9ABSJ452ladHcCwAAAAAAAAAAAAAAAAAAAAAAaCqtmnsBAFWnxuwqAApE9wAoGu0DoGi0D4Ci0T4AikT3ACga7QOgaLQPgKLRPgCKRPdKYsAKQGOrqWnuFQDA1qN7ABSN9gFQNNoHQNFoHwBFonsAFI32AVA02gdA0WgfAEWieyUxYAWgsZn4BUCR6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkeheSQxYAWhsJn4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcSY2kAAAAAAAAAAAAAAAAAAAAAgKrVqrkXAFB1asyuAqBAdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvJAasADS2mprmXgEAbD26B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcSA1YAGpuJXwAUie4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInulcRXDQAAAAAAAAAAAAAAAAAAAACoWq2aewEAVaemprlXAABbj+4BUDTaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInulcSAFYDGVtOiuVdQz4wZMzJ69OgNTu/Vq1emTZtW9/nzzz+f8ePH55FHHkmbNm1y2GGH5dxzz027du3qXe6BBx7IZZddljlz5mTHHXfM6NGjc/zxxzf1zQCgXJVZ9wCgyWkfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXEgNWABpbmU78Gj9+fHr16lX3+TbbbFP3/5cvX57jjjsu3bp1y+WXX56lS5dmwoQJWbhwYa644oq67WbOnJmxY8fmiCOOyLhx4zJr1qxcfPHFadmyZY499titensAKBNl2j0AaDLaB0DRaB8ARaN9ABSJ7gFQNNoHQNFoHwBFo30AFInulcSAFYDGVqYTv3r16pV99913o+fdcsstWbRoUaZOnZquXbsmWTeA5fTTT8/s2bPTr1+/JMnEiRPTu3fvXHTRRampqcngwYPzyiuvZOLEiRk1alRat269tW4OAOWiTLsHAE1G+wAoGu0DoGi0D4Ai0T0Aikb7ACga7QOgaLQPgCLRvZIYsAJQZmbOnLlF2w8YMKDB+3zggQcyePDguuEqSTJ06NC0a9cu06dPT79+/bJ69eo89NBDOfPMM1Pztqlmn/jEJ3LDDTfksccey6BBgxq8FgAAAAAAAAAAAAAAAAAAAGhMBqwANLa3DR8pxdFHH71F2z/11FObtd3YsWOzePHibL/99hk2bFjOOuusdO7cOUkyZ86cjBgxot72rVq1So8ePTJ37twkyfz587NmzZr07Nmz3nbrP587d64BKwBF1MDuAUDF0T4Aikb7ACga7QOgSHQPgKLRPgCKRvsAKBrtA6BIdK8kBqwANLaaFs29gno6dOiQMWPGZNCgQWnXrl1mzpyZq666Ko8//nimTp2aNm3aZNmyZenQocMGl+3YsWOWLl2aJHX/fed27du3T8uWLevOB6Bgyqx7ANDktA+AotE+AIpG+wAoEt0DoGi0D4Ci0T4Aikb7ACgS3SuJrxqbZcGCBenTp0/69OnT3EvZKm6//fb06dMnxx57bHMvhUpU06JBH7fddtsWfbyXvffeO+PGjcuhhx6aAw88MCeddFK++93v5umnn860adO2whcEKpP2wWZqYPea4o7cjBkz6n5+3/5xxBFH1Nvu+eefz5e+9KUMHDgwBx54YL71rW9l5cqVG1zfAw88kCOPPDL9+/fP0KFDc+211zb6mqG56R5sgTJsH7DltA+2gO5BVdA+2ALaB1VB+2AzOd4JVUP7YDNpH1QF3YMtoHtQFbQPtoD2QVXQPthMjneWpFVzL4D3du2112b58uU58sgj07179+Zezgb+8pe/5Oc//3lmz56d+fPnZ9GiRVmzZk122GGHDBgwIKNGjcpBBx3UbOt79dVXc9ttt+Whhx7Kc889lyVLlqR169bZeeeds88+++Swww7LRz7ykbRoUd2/BL7+9a/npz/9aS666KKMHDlyg/PXrl2bm2++OT/96U/z7LPPpqamJj169MjIkSPzuc99bqNfn9tvvz3f+MY3cuSRR2bChAlb42YUwoABA5p8HwcffHA6d+6cJ554IiNHjkzHjh2zfPnyDbZbtmxZ9thjjyRJp06dkmSD7VasWJG1a9fWnQ+NQfsaRvvWebf2PfHEE3n00Ucze/bszJ49O88991xqa2tz2mmn5fTTT9/kdc6YMSOjR4/OoEGDcsMNNzT1TaCBxo8fn169etV9vs0229T9/+XLl+e4445Lt27dcvnll2fp0qWZMGFCFi5cmCuuuKJuu5kzZ2bs2LE54ogjMm7cuMyaNSsXX3xxWrZs6cAFjUb3Gkb31tlU91avXp3f/OY3efDBBzNz5sw8//zzWbVqVTp16pR+/fpl5MiRGT58+Eavc8GCBRk2bFh23XXX3HvvvVvrpgAFoH0No33rbKp9r7/+em666aY88cQTefrpp7Nw4cIsX7482223XXr27Jnhw4fnc5/7XNq2bbvBdTreCTQV7WsY7VvnvR7re6drr702F110UZJs8nim+31AU9G+htG+dd6tfUOHDs2LL774rpf/xS9+kZ49e9Y7zf0+oKloX8No3zqbc79v9erVufnmm3P33Xfn2WefzcqVK9OlS5d84AMfyNChQ/OFL3yh3vae5wI0Bd1rGN1bZ1Pdu+KKKzJx4sTNuo7TTz89p512Wt3nugc0Fe1rGO1b573u882bNy/XXnttfv/73+dvf/tbamtrs+OOO2a//fbL6NGjs88++2xwGe0Dmor2NYz2rfNe7Zs/f35+9KMf5Xe/+11efvnlbLvttundu3eOOuqojBgxYqPXqX00FgNWKsD111+fF198MYMGDSrLGN1777256qqrUlNTky5dumSPPfbImjVr8uKLL+buu+/O3XffnWOPPTYXXHDBVl/b1Vdfne9973t5/fXXkyTve9/70qdPn6xatSovvvhi5s6dm5/+9Kf54Ac/mBtuuCEdO3bc6mssB6tXr86Xv/zl/Pa3v02S9OjRI61bt86f/vSnzJ49O/fee29+8IMfpHXr1s280grRoqa5V7DZamrWrbVnz56ZO3duvfPWrl2befPmZejQoUmS3XffPa1bt87cuXNz6KGH1m23/nLvfGISNIT2lU77Ns8FF1yQv/zlL829jOpQxt3r1atX9t13342ed8stt2TRokWZOnVqunbtmmTdAJbTTz89s2fPTr9+/ZIkEydOTO/evXPRRRelpqYmgwcPziuvvJKJEydm1KhR/j6iUehe6XTvvU2aNCnf//73kyStWrXK7rvvnm222SbPP/98pk+fnunTp+ejH/1o/ud//idt2rRp5tVWiDJuH1QK7Sud9r23JUuW5L/+67+SJO3atUu3bt2yyy675OWXX84f//jH/PGPf8xtt92WH//4x9lpp52aebUVQvugwbSvdNpXmvnz5+fyyy9v7mVULu2DBtO+0mnflundu3fat2+/0fO23XbbrbyaCqV70Ci0r3Tat/leeOGFfPGLX8xzzz2XFi1apEePHunevXteffXV/O53v8v8+fM3GLDCRmgfNJjulU733tvOO++c/fbbb5PnL1myJM8++2ySZP/9999ay6ps2gcNpn2l077Nc++99+aMM87I6tWr07p16+y2225p1apVXnjhhdx5552ZNm1aLrjgghxzzDHNvdTKoH3QYNpXOu3bPPfdd1+++tWv5rXXXkvbtm3Tq1evrFy5Mn/4wx/yhz/8IdOnT8+ll15a9UNoGoXulcSAFRpsv/32y2WXXZbBgwenS5cudae/9tprufrqq3PFFVfkhhtuyAEHHLDJd8VuCt/5zndy3XXXpaamJl/4whdywgknZLfddqs7f82aNZkxY0YmT56c3//+91m2bFlhY/Td7343v/3tb9OxY8dMmjQpBxxwQJLk6aefzkknnZTf/OY3mThxYr761a8280orRE35R/vBBx/MkiVL6iaYHnLIIbnyyiuzaNGiup/j++67LytXrsyQIUOSJG3atMngwYNz11135cQTT6wbzjJt2rR06tRpky9gh2qkfZVvt912y/vf//707ds3/fr1y5VXXpmHH364uZdVmRqhezNnztyi7QcMGNDgfT7wwAMZPHhw3XCVZN27HbZr1y7Tp09Pv379snr16jz00EM588wz67qXJJ/4xCdyww035LHHHsugQYMavBYod7pX2WprazNw4MB84QtfyNChQ7PddtslWff1+fGPf5z/+Z//yT333JMrr7zSfb7NVQH3+YCG0b7K1q5du5x33nk56KCD0rt373rn/f73v89ZZ52VuXPn5t/+7d/ygx/8oJlWWWG0D6qe9lWX2tranH/++Vm9enUOPfTQ3Hfffc29pMqjfVD1tK96XHDBBTnwwAObexmVTfegELSv8i1dujTHHnts/va3v+ULX/hCTjvttHr/losWLcqsWbOacYUVRPug6uleZTvqqKNy1FFHbfL88ePH59lnn82uu+6awYMHb8WVVTDtg6qnfZXtH//4R77+9a9n9erVOeSQQ/Kd73wnO+64Y5JkxYoVmTBhQn7yk5/koosuyiGHHJLdd9+9mVdcAbQPqp72VbYXX3yxbrjKsGHDctFFF6VTp05JkieffDKnnHJK7rrrrvTp0yennHJKM6+2AuheSQxYocE2dWBq2223zWmnnZbHH388Dz74YO6+++6tFqO777471113XZJkwoQJGTFixAbbtG7dOh/+8Ifz4Q9/OD/5yU/SunXrrbK2crNo0aLccMMNSZJzzjmnbrhKsu6dfsaPH58TTzwx1157bU444YR07ty5mVZaQWrKa+LX2Wefne7du6dfv37ZbrvtMnPmzEyePDl77bVXDj/88CTJqFGjMmXKlIwdOzannHJKli1blgkTJmTYsGHp379/3XWdeuqpOeaYY3LeeedlxIgRmTVrVm666aacc8453u2eQtG+yjdx4sR6n0+ePLmZVlIFGqF7Rx999BZt/9RTT23WdmPHjs3ixYuz/fbbZ9iwYTnrrLPq/paZM2fOBj8nrVq1So8ePTJ37twk697pd82aNenZs2e97dZ/PnfuXANWKATdq2zHHXfcRgentG7dOieddFLmz5+fn/zkJ7nllltyxhlnmPK8OcrsPh/Q+LSvsnXs2DHHHXfcRs8bPHhwzj///Hz1q1/N/fffn5UrV6Zdu3ZbeYUVSPug6mlfdbn55pvz8MMP58QTT8y2225rwEoptA+qnvbB2+geFIL2Vb7/+q//yt/+9rccc8wx+eY3v7nB+V26dMk///M/b/2FVSLtg6qne9Vr9erVufPOO5MkI0eOrPemabyLMvs6zZgxI6NHj97g9F69emXatGl1nz///PMZP358HnnkkbRp0yaHHXZYzj333A0e333ggQdy2WWXZc6cOdlxxx0zevToHH/88U19M6CsaF9le+SRR7J06dLU1NTkkksuqfe6vfbt2+ff//3fM3369Lz66qt54IEHcswxxzTfYitFmbUPaHzaV9mmTJmS1157Ldtvv30mTJhQb8jM3nvvnQsvvDBjx47NVVddlWOPPTbt27dvxtVWAN0riQErZez222/PN77xjbrP33kQ4cgjj8yECRNKvv7XX389t912W+65554888wz+cc//pEddtgh73//+/Ov//qv+fSnP90oAxM+8IEP5MEHH8xrr73W4OvaHLW1tfne976XJPnEJz6x0RC902c+85nNvv558+bl//7v//Lggw9mwYIF+fvf/562bdvmAx/4QA4//PCMGjVqo1+3N998M1OnTs0dd9yRp59+Ov/4xz/Svn37dO3aNQMGDMinPvWpDcL+0EMPZcqUKZk5c2YWL16cbbbZJttvv3369OmTQw899F2nM2+ue++9N6tWrUq7du3yqU99aoPzP/zhD2e33XbLCy+8kHvvvTcjR45s8D7ZutYfbLz++uuzatWq7LTTTjnqqKNy2mmn1X2vduzYMdddd13Gjx+fM844I23bts3w4cMzbty4etc1cODATJo0KZdddlnuvPPOdOvWLWeddZaDkDQa7SuN9kF9HTp0yJgxYzJo0KC0a9cuM2fOzFVXXZXHH388U6dOTZs2bbJs2bJ06NBhg8t27NgxS5cuTZK6/75zu/bt26dly5Z150OpdK80urdl3j6Ve2OGDBmSn/zkJ1myZEkWLVqUHXbYocH7BNgU7SuN9jWu9QMT33zzzbrjolQWT7qkkmhfabSvdH/961/z3//939l9993zla98xWBpYKvTvtJoH0Dl0r7SaN+W+fvf/56f/exnad26dU499dQGXx9AqXSvNLrXeH79619nyZIladGihdc0VIHx48enV69edZ9vs802df9/+fLlOe6449KtW7dcfvnlWbp0aSZMmJCFCxfmiiuuqNtu5syZGTt2bI444oiMGzcus2bNysUXX5yWLVvm2GOP3aq3h+qkfaXRvi2z/t+lU6dOG31T9JYtW6Z79+559dVX88YbbzR4fwDvRvtKo31b5tFHH02y7rXrbx+ust7QoUPTrl27rFy5Mr/+9a83+rp3aCgDVspY165ds99++2X27NlZvXp1evfuXW/S0p577lnydb/wwgs56aST8uyzzyZJdtlll+y22255+eWX87vf/S6//e1v85GPfCTdu3dv0G14880388c//jFJ0q9fvwZd1+Z64oknMnfu3CTZ5DuVNsRll12WX/7yl2nXrl123HHH9OnTJ4sWLcpjjz2Wxx57LP/3f/+Xq6++eoMgjRs3Lj/72c+SJN26dctuu+2WFStW5G9/+1vmzp2bNWvW1IvRT37yk1xwwQVJ1r3Q9wMf+EBqa2vz0ksv5Ve/+lWeeOKJRonRY489liTp379/2rZtu9FtDjjggLzwwgt57LHHHIzcHDXl9Y7vJ598ck4++eT33K5Hjx65+uqr33O7IUOGZMiQIY2xNNiA9pVG+2hWjdC92267rREW8pa99947e++9d93nBx54YPr27ZsxY8Zk2rRp/p6hbOheaXSvcb3++ut1///tT1TgXZTZfT6oJNpXGu1rXI888kiSpHv37tl+++2bfH9VoUzb50mXVALtK432le6b3/xm/vGPf+TKK690H68hyrR9UAm0rzTaV7pbb701P/7xj/Paa6+la9euGThwYD75yU+mU6dOjbqfqqZ70CDaVxrt2zL3339/1qxZk/79+6dLly751a9+lV/+8pd55ZVX0qlTp+y333759Kc/vdE3mWEjtA9Kpnul0b3GM3Xq1CTJhz70oeyyyy5Nuq+qUqbt69WrV/bdd9+NnnfLLbdk0aJFmTp1arp27Zpk3WOBp59+embPnl338ztx4sT07t07F110UWpqajJ48OC88sormThxYkaNGpXWrVtvrZtDldK+0mjfltlrr71SU1OTJUuWZO7cuXVvHLTekiVL8swzzyRJ9tlnnwbvrxDKrH3eSIhKon2l0b4ts2TJkiTJTjvttNHza2pq0q1btzz33HN59NFHDVh5L2XWvUphwEoZWz/EYOjQoXnxxRdzwQUX5MADD2zw9b7++us5+eST8+yzz9YdTHh7KBYuXJjbb7+9Qe/cuWLFisybNy8/+tGPMnPmzLz//e/fan+orY9fhw4dmiSAn/zkJ/PFL34x/fv3T01NTd3pc+fOzXnnnZeHH3441157bU466aS68/785z/nZz/7Wdq3b59JkybV+3esra3NI488kldffbXutLVr1+a///u/kyQXXHBBPve5z6VVq1b19vXb3/52i9Y9YcKEjU6He+6555Ike+yxxyYvu9tuuyVZN+ns7UaOHOkFyhvztu8LYMtoX2m0b+M21b6GOPDAA/PUU0816nVWvEbo3oABAxphIe/u4IMPTufOnfPEE09k5MiR6dixY5YvX77BdsuWLav7u2j9k2/fud2KFSuydu1aT86lwXSvNLq3caV2b/2DM3379q13ADxZ98Jz3dsI9/mgZNpXGu3buC1p35o1a/LKK6/k//7v/3L55ZendevWdQ8Evp3jnZtQpu3zpEsqgfaVRvs27r3aN3Xq1PzmN7/JyJEjc9BBB23Wdbrftwll2j6oBNpXGu3buM253/fzn/98g88vv/zyjB8/PocddtgG27vftxG6Bw2ifaXRvo3bVPtmzZqVJHnf+96Xr3zlK/nlL39Z7/xf/vKX+eEPf5hJkyZl4MCB9c7zPJeN0D4ome6VRvc2bkuf5/LSSy/V7ePTn/70RrfRvU1oYPtmzpy5Rds3xvNBH3jggQwePLjucb7krXexnz59evr165fVq1fnoYceyplnnlnve/8Tn/hEbrjhhjz22GMZNGhQg9dCsWlfabRv4zbVvj322COf+9znctNNN2Xs2LEZN25c9ttvv7Rq1SpPPvlk/vu//zsrVqzIyJEjs99++9W7rPZtQpne7/NGQlQC7SuN9m3cptq3flD0yy+/vNHL1dbW5pVXXkmSuoE862nfRpRp98qdASsF9JOf/CRz587N9ttvn2uvvbbeQYdk3ZSxL33pS1t8vcuWLcsBBxxQ77R27drly1/+cr70pS9t8EKtpvLSSy8lSXbdddd6sWgs//Iv/7LR03v27JmLL744H/3oR/PTn/60XozW/xIfPHjwBn9Q1NTUbPB1W7RoUZYsWZKOHTtu9I/bnj17bjCRslRLly5Nknd9gfD689Zvy3sw8QvKjvY1TLW1j0ZWYd1b/zPSs2fPugmx661duzbz5s3L0KFDkyS77757Wrdunblz5+bQQw+t22795XxPUq50r2GK1L177rkn06dPT5J8+ctfbvL9VY0Kax8UgfY1TDW3b+zYsfn1r39d77RDDz00p556avr379/o+6taDWyfJ11C49O+hqnG9r3yyiuZMGFCunbtmnHjxjXa9RaW+31QdrSvYaqxfQcccEC+8pWvpH///tl5553z5ptv5oknnsikSZPy8MMP52tf+1rat2+fj3zkI422z6qle1CWtK9hqq1961/oMH369KxZsybHHXdcTjjhhHTt2jWzZs3Kv//7v+fpp5/OKaeckjvvvDM77rhjo+y3amkflB3da5hq696m3H777XnzzTfTuXPnTd5mNqGB7Tv66KO3aPvNfbHj2LFjs3jx4my//fYZNmxYzjrrrHTu3DlJMmfOnIwYMaLe9q1atUqPHj3qnr85f/78rFmzZoPvvfWfz50712N9lC3ta5hqbN+FF16YHj16ZMqUKTnllFPqnbfrrrvmO9/5jsHRW6JM7/d5IyGKTPsaptraN2DAgMyePTu//e1vs3z58rqBK+tNnz49K1euTOI17ZulTLtX7gxYKaB77rknyboDHe8MUUO0bNmybhLi4sWL89e//jUrV67ML3/5y/Tv33+rHchasWJFkjRoWtl7WbhwYX7+859n1qxZWbhwYVatWpXa2tq68+fNm5fXX3+9bpLgLrvskmTdE8lfeOGF7Lbbbu96/V27ds0222yT5cuX5/7778+QIUOa7La8/vrrSfKuf0C3bdu23ra8BxO/oOxoX8NVU/toZBXSvQcffDBLlizJPvvskyQ55JBDcuWVV2bRokXp0qVLkuS+++7LypUr677/2rRpk8GDB+euu+7KiSeeWHegY9q0aenUqdMmD3BCc9O9hitC95555pl84xvfSLLuRcQf/ehHt/oaKlaFtA+KRPsarlrb94EPfCCLFy/OqlWr8te//jWLFy/OH/7wh9x5553p06dP2rRps1XWUfEa2D5PuoTGp30NV23t+9a3vpVly5bl0ksvrftdSAO43wdlR/sartra91//9V8bnHbQQQdl0KBBOeWUU3L//ffn29/+du6+++4mXUdV0D0oS9rXcNXUvvUvJlizZk0OP/zwnHfeeXXn/dM//VMmT56cj370o1m8eHGuu+66nH322U22lqqgfVB2dK/hqql7G1NbW5uf/vSnSdY9x8VjfFuozNrXoUOHjBkzJoMGDUq7du0yc+bMXHXVVXn88cczderUtGnTJsuWLdvgRZZJ0rFjx7oXWK7/7zu3a9++fVq2bOmFmJQ17Wu4amvf66+/nhdffDFLly5Ny5Yts+uuu2abbbbJ/Pnz8+KLL2bq1KnZd999vTno5mpg+7yREDQ+7Wu4amrf5z73udx6661ZtGhRzjrrrEyYMKHudV1//OMf861vfatuW69p3wxldp+vUhiwUkBPP/10kmTgwIGNer3bbbddbr755rrPX3/99dx000259NJLc9ppp+V73/veVnnB1vqpYusfVGpsd999d77xjW+86/XX1tZm6dKldTHad999M2jQoDz88MMZPnx49t9//xxwwAHZd999s//++2e77bard/kWLVpkzJgxmTRpUk466aT07t07Bx10UPbdd98ccMABjfoOA+vXuGbNmk1us2rVqnrbAlQa7WuYamsf1e/ss89O9+7d069fv2y33XaZOXNmJk+enL322iuHH354kmTUqFGZMmVKxo4dm1NOOSXLli3LhAkTMmzYsHrvZH/qqafmmGOOyXnnnZcRI0Zk1qxZuemmm3LOOed4oJaypXsNU4TuzZ8/P2PGjMmKFSsyaNCgjB8/vkn3B9DUtK9hqrl9X/va1+p9/tBDD2X8+PG57rrrsmDBgkyaNKlJ9kvT8qRL0L6Gqrb2TZs2Lb/+9a/zz//8z/n4xz/eaNcLUE60r2GqrX3vpmXLlhk3blzuv//+zJs3L0899VT69OmzVfYN0Ji0r2GqrX1vf97mCSecsMH573vf+/Lxj388t99+e+6//34DVoCKo3sNU23d25iHH3448+fPT5IcddRRTbovNnTbbbc16vXtvffe2Xvvves+P/DAA9O3b9+MGTMm06ZNy8iRIxt1f1COtK9hqq19a9asyTHHHJPZs2fnwx/+cMaPH5+dd945ybqv4Xe/+91ce+21GTVqVH72s5/VnUfT8UZC0Pi0r2GqrX29evXKv/3bv+Vb3/pW7r///hxyyCHZc889s2LFivztb39Lly5d8tGPfjT33HNP3deWyjJjxoyMHj16g9N79eqVadOm1X3+/PPPZ/z48XnkkUfSpk2bHHbYYTn33HM3GFb0wAMP5LLLLsucOXOy4447ZvTo0Tn++OMbtEYDVgpo/TSsjT25uDFts802GTNmTNasWZNLL700//M//7NVYvS+970vSfLiiy+mtra23kS+hlqwYEHOOeecrF69OocddliOPfbYvP/970+HDh3SqlWrvPnmm9lrr72S1B9YUlNTkx/84Ae56qqr8r//+795+OGH8/DDDydZ93X6+Mc/nrPPPrtuylaSfOUrX8kuu+ySKVOm5C9/+UuefvrpXHfddampqclBBx2UcePG5YMf/GCDb1PHjh2TJEuWLNnkNuufSN6pU6cG768Qalo09wqAd9C+0lVj+2hkZdi99Xe4rr/++qxatSo77bRTjjrqqJx22ml1Q1E6duyY6667LuPHj88ZZ5yRtm3bZvjw4Rk3bly96xo4cGAmTZqUyy67LHfeeWe6deuWs846q8F3xKAp6V7pitC9BQsW5Ljjjssrr7ySgQMH5gc/+IFhmluqDNsHRad9pStC+97uoIMOyuTJk/Ov//qv+fWvf50//vGPde9gwbtoYPs86RIan/aVrtrat3Tp0owfPz7t2rWr9w4+NJD7fVB2tK901da+zdGzZ8906tQpS5cuzfPPP2/AynvRPShL2le6amzf25+3ual3K19/+oIFCxq8v6qnfVB2dK901di9jZk6dWqSpG/fvp5DWooGtm/AgAGNtJBNO/jgg9O5c+c88cQTGTlyZDp27Jjly5dvsN2yZcuyxx57JHnrb6R3brdixYqsXbvWa18oa9pXumps32233ZbZs2enc+fOueyyy+pe55ck7dq1yze+8Y38+c9/zowZM/KDH/wg//7v/97gfVa9Mrvf542EQPsaohrbl6wbZvXBD34w11xzTR555JE899xz2X777fPZz342p512WiZOnJgk3rB9c5RZ995u/Pjx6dWrV93nb3/dyvLly3PcccelW7duufzyy7N06dJMmDAhCxcuzBVXXFG33cyZMzN27NgcccQRGTduXGbNmpWLL744LVu2zLHHHlvy2gxYKaD27dtnyZIlGz3g0BQOPfTQXHrppXnuueeyYsWKJp8Ytf4J8cuXL8/s2bPTv3//RrvuX/ziF1m9enX22WefXHrppWnRov4vnncbUrLddtvlq1/9ar761a/m+eefzx//+Mf87ne/y//93/9l6tSpefbZZ3PjjTemZcuWSdYF7DOf+Uw+85nPZNGiRfnjH/+Yhx9+OL/4xS/yu9/9Lscdd1x+9rOfZaeddmrQberRo0ceffTRPP/885vc5oUXXqjbls3QiH8AAY1D+0pXje2jkZVh904++eScfPLJ77ldjx49cvXVV7/ndkOGDMmQIUMaY2mwVehe6aq9e3/7299y3HHH5a9//WsGDBiQH/3oRxtMn2YzlGH7oOi0r3TV3r6N2WWXXdKnT5/86U9/yuzZsw1Y2RwNbJ8nXULj077SVVv7/vrXv2bx4sVp3br1Rt+5df27Fz322GM5+OCDkyRXXHGF/r0X9/ug7Ghf6aqtfZurdevWSZI33nijyfdV8XQPypL2la4a2/f+97+/bn/rG/dO699sZu3atQ3aVyFoH5Qd3StdNXbvnVasWJF77rknSTZ6DJTNUEHtW/9C1J49e2bu3Ln1zlu7dm3mzZuXoUOHJkl23333tG7dOnPnzs2hhx5at936y21qMB2UA+0rXTW27w9/+EOSdc+tePtwlbf7yEc+khkzZuSJJ55o0L4Ko4Ht80ZC0Pi0r3TV2L719tlnn1x++eUbPe+ZZ55Jkkb9WlatMr7P16tXr+y7774bPe+WW27JokWLMnXq1HTt2jXJugEsp59+embPnp1+/folSSZOnJjevXvnoosuSk1NTQYPHpxXXnklEydOzKhRozZ5zPy9lO9YGppM7969k6x7It3W8PYHbLbGgzf9+vWre0Dpuuuua9TrXj/df//9998gREny+OOPb9b17LHHHjnyyCNzySWX5NZbb01NTU0ee+yx/PnPf97o9l26dMm//Mu/5Lzzzsvdd9+d7t27Z8mSJfn5z39e8m1Zb/0vp9mzZ2fVqlUb3Wb9nbVN/SLjHWpaNOwDaHTaV7pqbB+NrKHd0z5odLpXumru3ssvv5zRo0dnwYIF6d+/f66++uomP1hctcqsfTNmzEifPn02+DjiiCPqbff888/nS1/6UgYOHJgDDzww3/rWt+pebPl2DzzwQI488sj0798/Q4cOzbXXXtuo64WmoH2lq+b2vZv1/25vvvnmVtlfxSuj7r3nUjfjSZfrn0z59iddvp0nXVIJtK901dq+NWvW5O9///sGH+v/5n/7+W9/xyI2oYLaB0WhfaWr1va9m4ULF2bhwoVJ3nrHQN5FmR3vBNbRvtJVY/vWv0Cjtra27va90/z585No32Yps/Z5rA90ryGqsXvvNG3atLz22mtp27btBr8b2Uxl1L1NefDBB7NkyZLss88+SZJDDjkkM2bMyKJFi+q2ue+++7Jy5cq6N8tr06ZNBg8enLvuuiu1tbV1202bNi2dOnXy2hfKmvaVrhrbt2LFis3edvXq1Q3eXyE0sH0DBgzYoo9SvP2NhJK86xsJrX+DIG8kRCXTvtJVY/vey6uvvpqZM2cmSf7lX/6lyfdX8RrheOfMmTO36KMxPPDAAxk8eHDdcJUkGTp0aNq1a5fp06cnWfe3z0MPPZTDDz+87rmhSfKJT3wiS5YsadDvFI9wVoBtt902SfL66683yvV97GMfS5L85Cc/qXfAoancfffdSZJdd911q/yh1qJFi5x++ulJkjvvvDP/+7//+56X+X//7//llVdeec/tttlmmyTrfkG/U21tba655potW2ySPn36pEOHDknWveDtvbRv3z59+vTZ7O3fy7Bhw9KmTZusXLkyd9xxxwbn/+Y3v8kLL7yQtm3bZtiwYQ3eH8Dm0L4to30AlU33tozubblXX301o0ePzvz589OvX79cc801dWuieowfPz633npr3cd///d/1523fPnyHHfccVm6dGkuv/zynH/++bnnnnsybty4etcxc+bMjB07Nn369MnkyZMzatSoXHzxxbnhhhu29s2hymnfltG+xjVv3rw8/fTTSZK99tqryffH1uFJl5Q77dsy2rf59tprrzz11FOb/DjttNOSJIMGDao77cADD2zQPtn6vNiOSqR9W0b7GtfkyZNTW1ubTp06eVc7YKvRvi2jfVtm//33z84775wkmTp16gbnr1y5Mr/4xS+SJB/60IcavD+ah8f6qCS6t2V0r2HWt++jH/1oOnbs2OjXz9Z39tln5/LLL8+vfvWrPPTQQ/nBD36QM888M3vttVcOP/zwJMmoUaPSqVOnjB07Nvfff3/uvPPO/Nu//VuGDRtW777+qaeemr/85S8577zzMmPGjEyePDk33XRTxo4dmzZt2jTXTaQKad+W0b4t06NHjyTr/p5ftmzZRrd58MEHk6TuxftUD28kRLnSvi2jfY3r0ksvzdq1azN48GDP8dxKjj766C362Fxjx47NXnvtlQ996EP55je/mSVLltSdN2fOnA3a1apVq/To0aOubfPnz8+aNWs22G795+9s4pYwYKUC7L777kmShx56qFGu76ijjsoHPvCBLFq0KCeccEKefPLJeucvXLgwP/rRjzY7VOeee24effTRDd7tc8WKFfnhD3+YyZMnJ0lOOOGELV7r0KFD06dPn1xxxRVbdLnDDz88xxxzTJLk61//ev7zP/8zL7zwQr1t3njjjTz00EMZM2ZMzj///M2a4jho0KAk6wK7fgJSsu62nn/++Zk1a9ZGL3fHHXfku9/97gY/rGvWrMmPfvSjLFu2LC1btszee++dZN0vhvPOOy+PPPLIBl/X3/72t3XfC43xRJAuXbrUfa0uueSS/OEPf6g77+mnn84FF1yQJBk9enQ6d+7c4P0VQk1Nwz4A7dO+epdp7PbRyBraPe0D3dO9epdp7O4tWrQoxx9/fJ577rn07ds311xzjSecNFSZtq9Xr17Zd9996z4++MEP1p13yy23ZNGiRfn+97+fIUOG5JOf/GS+9a1v5Z577sns2bPrtps4cWJ69+6diy66KIMHD85JJ52Uz3/+85k4caJ3uadRaZ/2vV1jt++aa67JHXfcscG7tdTW1ua3v/1tvvSlL+XNN99Mv379csABBzR4f4VQZt3zpEsqkfZp39s53lkByqx963mxHZVE+7Tv7Rq7fVdffXWuv/76Df69V6xYkUsvvTQ//vGPk6x7wl7r1q0bvL+qV6bHO6HSaJ/2vV1jt69FixY588wzkyQ33HBD7rnnnrrz/vGPf+T888/PwoULs80225T0b1g4Zdo+j/VRSXRP996uKY93PvPMM3W34dOf/nSjXnehlFn3evXqlV//+tc599xz88UvfjG33XZbjjrqqNxwww11j8917Ngx1113XbbbbrucccYZGT9+fIYNG5ZLLrmk3nUNHDgwkyZNyp///OeceOKJufnmm3PWWWfl+OOPb/R1U2zap31v19jtGzFiRGpqarJkyZJ89atfzUsvvVR33sqVK3PRRRdlxowZSZIjjzyywfsrhDJr38Z4IyHKnfZp39s1xf2+//3f/80zzzxT77RFixblwgsvzO2335727dvnP/7jPxplX1WvDI93dujQIWPGjMm3v/3tXHvttTn++ONz11135dhjj637vl+2bNlG3zS4Y8eOWbp0aZLU/fed27Vv3z4tW7asO78UrUq+JFvNiBEjcu+99+bHP/5xfvWrX2WnnXZKixYt8pGPfCQnnXTSFl9f27Zt84Mf/CBf+tKX8pe//CVHHnlkdt1113Tp0iWvvPJKXnnlldTW1uZjH/tYunTp8p7Xd8cdd+SOO+7Itttum9122y3t2rXLihUr8vzzz2fNmjWpqanJCSecUBeHreWb3/xmdtppp0ycODFTpkzJlClTsssuu6Rr165ZtWpVFixYUPeOXX379t2sF5gNHTo0gwYNysMPP5yTTz453bt3T6dOnfLss89m1apVueiiizZ4klqSLF68OJMmTcqkSZPSuXPn7Lrrrqmtrc2CBQvqpkueffbZde8ysGbNmkydOjVTp07Ntttum9133z1t2rTJyy+/XDeVbNiwYXVPFm+or371q3nyySfz+9//Psccc0x69OiR1q1bZ86cOXnzzTfzoQ99KF/5ylcaZV+FUGN2FTSU9pVG+zbf5MmT86Mf/aju83/84x9Jkh/96EeZMmVK3ekXXnhhPv7xjzfKPquW7kGD6V5pdG/zXH755ZkzZ07dfr/85S9vcttvfvObdQdJeReN0L6ZM2du0fYDBgxo0P4eeOCBDB48OF27dq07bejQoWnXrl2mT5+efv36ZfXq1XnooYdy5plnpuZtB0o/8YlP5IYbbshjjz1Wd5AeGkr7SqN9m+fpp5/OT3/607Ro0SK77rprtt9++6xduzYLFiyoezClT58+mTRpUlq0cH9ms5TZ/b5evXpl2rRpuf7667Nq1arstNNOOeqoo3Laaadt8KTL8ePH54wzzkjbtm0zfPjwDb6f1z/p8rLLLsudd96Zbt26edIlTUL7SqN9NJsya996619stzHrX2w3derUuvt+22yzTU4//fTMnj07/fr1S1L/xXY1NTUZPHhwXnnllUycODGjRo0yiIBGo32l0b7N89JLL+X666/Pd77znbqvz+rVqzN37ty6Fw4ff/zx/q7fXGXYvRkzZmT06NEbnL7+/uB6zz//fMaPH59HHnkkbdq0yWGHHZZzzz037dq1q3e5Bx54IJdddlnmzJmTHXfcMaNHj/b9QaPTvtJo3+YbMWJEnnzyyVx33XU5/fTT674f5s6dm5UrV6ZNmza55JJLssceezTK/qqax/qgwXSvNLq35aZOnZok6d69ewYPHtyo110oZXa/7+STT87JJ5/8ntv16NEjV1999XtuN2TIkLoXnkNT0b7SaN/m6du3b84555xccskl+c1vfpOhQ4eme/fuadu2bebPn5/XX389ybohAYceemiD91cIZda+s88+O927d0+/fv2y3XbbZebMmZk8efIGbyQ0ZcqUjB07NqecckqWLVuWCRMmbPSNhI455picd955GTFiRGbNmpWbbrop55xzjjcSolFpX2m0b/NNnTo148aNq1vb6tWr8+yzz2bt2rXZYYcd8v3vf9+xzs3VCN277bbbGmEhb9l7773rvS7lwAMPTN++fTNmzJhMmzYtI0eObNT9lcKAlQowfPjwfOc738mtt96aOXPmZMGCBamtrc2uu+5a8nXutttu+elPf5qbb74599xzT+bMmZNXX301O+ywQw4++OAMHz483bp126zruvjii/Pwww/niSeeyKuvvpply5alTZs26dGjRwYOHJjPfOYzJU2leuONN7J48eIkKfkFXieddFJGjBiR2267Lb/73e/y3HPP5S9/+Utat26dnXfeOQMGDMjhhx+eD3/4w/UeUNiUFi1aZPLkybnyyivzi1/8Ii+//HJWrlyZAw88MCeeeGIGDRq00RgNHz48b775ZmbMmJE5c+Zk3rx5WbNmTXbYYYd8+MMfzhe+8IX80z/9U932e+65Z7797W/noYceypNPPpmXXnop//jHP9KhQ4d86EMfyqc+9al88pOfbLQXALRp0ybXXHNNbrzxxvzv//5v5s2blyTZa6+9cuSRR+bzn/98WrZs2Sj7KoQyuyMGlUj7tK+p2/f6669nyZIlGz19/UHIJFm1alWj7K+q6R40mO7pXlN27+2TrZ9++ul33Xb58uUN3l8hNEL7jj766C3a/qmnnnrPbcaOHZvFixdn++23z7Bhw3LWWWelc+fOSdZNFR8xYkS97Vu1apUePXrUTSafP39+1qxZk549e9bbbv3nc+fO9aRLGo32aV9Ttu/YY4/NTjvtlEcffTQLFizIU089ldra2nTt2jX77bdfhg8fnk984hNp1crDI5utzO73edIllUj7tK+pj3fSyBrYvq39QrvEi+0oP9qnfU3ZvvVvjvDEE0/kr3/9a5566qnU1NRk5513zn777ZfPfvaz2W+//Rq8n8Ios/t8bzd+/Pj06tWr7vNtttmm7v8vX748xx13XLp165bLL788S5cuzYQJE7Jw4cJ67yo5c+bMjB07NkcccUTGjRuXWbNm5eKLL07Lli1z7LHHbtXbQ3XTPu3bGvf7zjvvvAwePDg33nhjZs+enVdeeSVdu3bN8OHD86UvfWmDx3jYBI/1QYPpnu5tje6tWbMmP/vZz5IkI0eO3KyvB5tQxvf7oFJon/Y1dftOPPHE/NM//VNuvPHGPProo/nb3/5W91yXAQMG5LOf/WwOPvjgRtlXIZRZ+7yREJVI+7Svqdt39NFHp3379vnLX/6SOXPmpHXr1vngBz+YYcOGZfTo0enQoUOj7KcQGqF7jfG8lfdy8MEHp3PnznniiScycuTIdOzYcaOvX1m2bFndcJ1OnTol2fB1LitWrMjatWvrzi9FTW1tbW3Jl4YmNHPmzBx99NHp1atX7rzzTgfFqBjbfmJSgy7/2p1jG2klQKXRPipRQ7uXaB8Ule5RqRqjfbs//d0t2v7dnnT55JNP5s4778ygQYPSrl27zJw5M1dddVV23nnnTJ06NW3atEnfvn1z6qmnZuzY+s09/vjj06JFi1xzzTV59NFH8/nPfz433nhjvQPmyboHCb7yla/ky1/+8hatG6hP+6hUjncCpdI+KlVD29eY9/mSZMaMGRk9enS6du26yRfbHXTQQRkxYsQGT5waOXJk9thjj1x22WWZM2dOPv7xj+cHP/hBvXc4XLFiRfbff/9861vfyuc+97ktWjtQn/ZRicrxsb717bv11luz7777bnSbyZMn54orrsh9991XN2Dsnnvuyemnn56pU6emX79+SZIvfelLWbhwYaZOnVr3Mzl+/Pjceeed+c1vfpPWrVs36tqhaLSPSuSxPqBUukel8lgfUCrto1JpH1Aq7aMSleNjfZty4IEH5uMf/3guvPDCHHPMMWnXrl2uuuqquvPXrl2bf/qnf8qJJ56Y0047LatXr85+++2XM888M1/84hfrtlv/s3rDDTeUPFTaWzRSth555JEk6x7oFiIqiu9XoETaR0XyvQqUSPeoWI3w/Xrbbbc1wkLW2XvvvetNST/wwAPTt2/fjBkzJtOmTcvIkSMbbV9Aw2gfFcv3K1Ai7aNildn3a4cOHTJmzJgNXmz3+OOP173YbtmyZRt9B6eOHTtm6dKlSVL333du1759+7Rs2bLufKB02kdFaoTv1ZkzZ27R9o3xLngPPPBABg8eXDdcJUmGDh2adu3aZfr06enXr19Wr16dhx56KGeeeWa9n8lPfOITueGGG/LYY4+V/KRLYB3toyJ5rA8oke5RsXy/AiXSPiqW71egRNpHRaqQ79UHH3wwS5YsyT777JMkOeSQQ3LllVdm0aJF6dKlS5Lkvvvuy8qVKzNkyJAkSZs2bTJ48ODcddddOfHEE+t+LqdNm5ZOnTpt8o0aNocBK5StRx55JLvuums+/vGPN/dSYMvUtGjuFQAVSvuoSLoHlEj3qFiN0L7GeAHBuzn44IPTuXPnPPHEExk5cmQ6duyY5cuXb7DdsmXLssceeyRJOnXqlCQbbLdixYqsXbu27nygdNpHxXK/DyiR9lGxGti+xnyhXeLFdlBJtI+K1Aj3+Y4++ugt2v6pp57arO3Gjh2bxYsXZ/vtt8+wYcNy1llnpXPnzkmSOXPmZMSIEfW2b9WqVXr06JG5c+cmSebPn581a9akZ8+e9bZb//ncuXMNWIEG0j4qksf6gBLpHhXLY31AibSPiqV9QIm0j4pUht07++yz07179/Tr1y/bbbddZs6cmcmTJ2evvfbK4YcfniQZNWpUpkyZkrFjx+aUU07JsmXLMmHChAwbNiz9+/evu65TTz01xxxzTM4777yMGDEis2bNyk033ZRzzjknbdq0KXmNBqxUsFdffTVf+cpXtugyN998cxOtpvF9//vfb+4lQGkqZOIXVCLtgzKke9BkdA/KVAW1b/2U5p49e9a9qGC9tWvXZt68eRk6dGiSZPfdd0/r1q0zd+7cHHrooXXbrb/cO1+EAE1B+6BMVVD7oNJoH5SpBravqV9ol3ixHZVL+6AMleF9vg4dOmTMmDEZNGhQ2rVrl5kzZ+aqq67K448/nqlTp6ZNmzZZtmxZOnTosMFlO3bsmKVLlyZJ3X/fuV379u3TsmXLuvOhKWkflKEybN+meKyPSqN7UKYqqH1QabQPypT2QZPRPihDZdi9Xr16Zdq0abn++uuzatWq7LTTTjnqqKNy2mmn1Q1F6dixY6677rqMHz8+Z5xxRtq2bZvhw4dn3Lhx9a5r4MCBmTRpUi677LLceeed6datW84666wcf/zxDVqjASsVbNWqVfnjH//Y3MsA3qkMJ35BtdA+KEO6B01G96BMVUD7HnzwwSxZsiT77LNPkuSQQw7JlVdemUWLFqVLly5Jkvvuuy8rV67MkCFDkiRt2rTJ4MGDc9ddd+XEE0+se8LmtGnT0qlTp+y7777NclsoFu2DMlUB7YNKpX1QpiqofV5sR6XRPihDjdC92267rREW8pa99947e++9d93nBx54YPr27ZsxY8Zk2rRpGTlyZKPuD5qS9kEZqoD7fB7ro1LpHpSpCmgfVCrtgzKlfdBktA/KUBl27+STT87JJ5/8ntv16NEjV1999XtuN2TIkLrjoI3FgJUK1r179zz11FPNvQwA2Gq0D4Ai0T1gc5x99tnp3r17+vXrl+222y4zZ87M5MmTs9dee+Xwww9PkowaNSpTpkzJ2LFjc8opp2TZsmWZMGFChg0blv79+9dd16mnnppjjjkm5513XkaMGJFZs2blpptuyjnnnFM3LRqakvYBUDTaB5TKi+2oVNoH1WnAgAFNvo+DDz44nTt3zhNPPJGRI0emY8eOWb58+QbbLVu2LHvssUeSpFOnTkmywXYrVqzI2rVr686HpqR9wHvxWB/VRPcAKBrtA6BotA+oFgasADS2///JiABQCLoHQNGUWft69eqVadOm5frrr8+qVauy00475aijjsppp51W90TJjh075rrrrsv48eNzxhlnpG3bthk+fHjGjRtX77oGDhyYSZMm5bLLLsudd96Zbt265ayzzsrxxx/fDLcMgLJRZu0DgCZXZu3zYjsAmlSZde+9rB8Q1rNnz8ydO7feeWvXrs28efMydOjQJMnuu++e1q1bZ+7cuTn00EPrtlt/uZ49e26lVQNQVsqsfR7rA6DJlVn7AKDJaR8ARaJ7JTFgBaCR1QgSAAWiewAUTbm17+STT87JJ5/8ntv16NEjV1999XtuN2TIkLp3NweApPzaBwBNrdza58V2ADSlcuvepjz44INZsmRJ9tlnnyTJIYcckiuvvDKLFi1Kly5dkiT33XdfVq5cWXd8s02bNhk8eHDuuuuunHjiiXW3ddq0aenUqVP23XffZrktADSvcmufx/oAaGrl1j4AaGraB0CR6F5pDFgBaGSCBECR6B4ARaN9ABSN9gFQNOXWPi+2A6AplVv3kuTss89O9+7d069fv2y33XaZOXNmJk+enL322iuHH354kmTUqFGZMmVKxo4dm1NOOSXLli3LhAkTMmzYsPTv37/uuk499dQcc8wxOe+88zJixIjMmjUrN910U84555y6QWUAFEs5tg8AmpL2AVA02gdAkeheaQxYAQAAAAAAAAAAAJpdr169Mm3atFx//fVZtWpVdtpppxx11FE57bTT6oaidOzYMdddd13Gjx+fM844I23bts3w4cMzbty4etc1cODATJo0KZdddlnuvPPOdOvWLWeddVaOP/74ZrhlAAAAAAAAQHMzYGUTth14WnMvgSb0199+t7mXQBPavl3L5l2AgV9UKO2rbosentjcS6CJbNu6mRege1Qw7atei/+ge9Vsm+Y+mqV9VDDtq17u81U39/ugNLpX3dzvq27u90FptK+6aV/10r0NnXzyyTn55JPfc7sePXrk6quvfs/thgwZkiFDhjTG0igz2lfdtK96aR+UTvuql+5VN+2D0uheddO+6qZ9UBrtq24LZ1zR3EugibRr08zh0b2SNPefKwBVp6ZGkQAoDt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdK40BKwCNTJAAKBLdA6BotA+AotE+AIpG+wAoEt0DoGi0D4Ci0T4Aikb7ACgS3SuNASsAjUyQACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt0rTYvmXgAAAAAAAAAAAAAAAAAAAAAAQFNp1dwLAKg2Jn4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcaA1YAGpseAVAkugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXEgNWABqZiV8AFInuAVA02gdA0WgfAEWjfQAUie4BUDTaB0DRaB8ARaN9ABSJ7pWmRXMvAAAAAAAAAAAAAAAAAAAAAACgqbRq7gUAVBsTvwAoEt0DoGi0D4Ci0T4Aikb7ACgS3QOgaLQPgKLRPgCKRvsAKBLdK40BKwCNTJAAKBLdA6BotA+AotE+AIpG+wAoEt0DoGi0D4Ci0T4Aikb7ACgS3SuNASsAjUyQACgS3QOgaLQPgKLRPgCKRvsAKBLdA6BotA+AotE+AIpG+wAoEt0rTYvmXgAAAAAAAAAAAAAAAAAAAAAAQFNp1dwLAKg6Bn4BUCS6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcSA1YAGllNjSIBUBy6B0DRaB8ARaN9ABSN9gFQJLoHQNFoHwBFo30AFI32AVAkulcaA1YAGpkgAVAkugdA0WgfAEWjfQAUjfYBUCS6B0DRaB8ARaN9ABSN9gFQJLpXGgNWABqZIAFQJLoHQNFoHwBFo30AFI32AVAkugdA0WgfAEWjfQAUjfYBUCS6V5oWzb0AAAAAAAAAAAAAAAAAAAAAAICm0qq5FwBQdQz8AqBIdA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvJAasADSymhpFAqA4dA+AotE+AIpG+wAoGu0DoEh0D4Ci0T4Aikb7ACga7QOgSHSvNAasADQyQQKgSHQPgKLRPgCKRvsAKBrtA6BIdA+AotE+AIpG+wAoGu0DoEh0rzQtmnsBAAAAAAAAAAAAAAAAAAAAAABNpVVzLwCg2pj4BUCR6B4ARaN9ABSN9gFQNNoHQJHoHgBFo30AFI32AVA02gdAkeheaQxYAWhkggRAkegewP/H3r3HRVUnfBz/AoKlXEwTS8VKULO8VYZsmqTp7praam3muloWaooXUFPbemqzi6ZZSBLSaqG4Wuvu5rUwyy5kuV1JzbxBpqK5aiqgISPI84cx4wSuOhfmzDmf9+vly2XOj5nf2efZPp3bb2A1tA8AYDW0DwBgNbQPAGAldA8AYDW0DwBgNbQPAGA1tA8AYCV0zzUssAIAnkaPAABWQvcAAFZD+wAAVkP7AABWQ/sAAFZC9wAAVkP7AABWQ/sAAFZD+wAAVkL3XMICKwDgYaz4BQCwEroHALAa2gcAsBraBwCwGtoHALASugcAsBraBwCwGtoHALAa2gcAsBK655pAX08AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALyllq8nAABmw4pfAAAroXsAAKuhfQAAq6F9AACroX0AACuhewAAq6F9AACroX0AAKuhfQAAK6F7rmGBFQDwMIIEALASugcAsBraBwCwGtoHALAa2gcAsBK6BwCwGtoHALAa2gcAsBraBwCwErrnmkBfTwAATCfAzT9eVFZWpr59+6pVq1Z66623nLZt3rxZgwYNUvv27dWlSxelpKSorKysynusWLFCd9xxh9q2bas77rhDK1eu9O6kAQDG5m73OI4DAPgb2gcAsBq6BwCwGtoHALASzncCAKyG9gEArIbuAQCshvYBAKyE850uYYEVALCQrKwsHT16tMrrBQUFGjp0qEJDQzV37lyNHj1aWVlZmjVrltO4tWvXavLkybrttts0b948xcfHa9KkSVq3bl1N7QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABellq8nAABmExBgzCW7Dhw4oLS0ND3xxBOaMmWK07b58+erTp06mjNnjmrXrq1bbrlFJ0+e1AsvvKCEhAQ1bNhQkjR79mz17NlTkydPliTFxcVp165dmj17tm6//fYa3ycAgO8ZtXsAAHgL7QMAWA3tAwBYDe0DAFgJ3QMAWA3tAwBYDe0DAFgN7QMAWAndcw0LrACAh7kbpI0bN17U+Pbt21/QuGnTpql79+7q2LFjlW05OTnq0aOHateubX+tT58+eu6557R+/Xr1799fBQUFys/P19ixY51+984779T48eO1b98+NWnS5KLmDgDwfxyIAQCshvYBAKyG9gEArIb2AQCshO4BAKyG9gEArIb2AQCshvYBAKyE7rmGBVYAwMPcDdKAAQMuavz27dvPOyYnJ0fr16/XmjVrZLPZnLaVlJRo3759io6Odnq9YcOGqlevnvLz8yXJ/vevx1X+nJ+fzwIrAGBBHIgBAKyG9gEArIb2AQCshvYBAKyE7gEArIb2AQCshvYBAKyG9gEArITuuSbQ1xMAAHhXaWmpnn76aY0ZM0aRkZFVthcVFUmSwsLCqmwLDw9XYWGhJNn/Dg8PdxoTERHhtB0AACMpKytT37591apVK7311ltO2zZv3qxBgwapffv26tKli1JSUlRWVlblPVasWKE77rhDbdu21R133KGVK1fW1PQBAAAAAAAAAAAAAAAAAAAAAAAAAIAH1PL1BADAbNxd8Wvp0qUemskZGRkZCg4O1pAhQzz6vgAASMZf6TIrK0tHjx6t8npBQYGGDh2qm266SXPnztXu3bs1c+ZMlZaW6pFHHrGPW7t2rSZPnqyEhAR17dpVH330kSZNmqS6devq9ttvr8ldAQAYhNHbBwCAp9E+AIDV0D4AgJXQPQCA1dA+AIDV0D4AgNXQPgCAldA917DACgB4mps9at++vWfmIWnfvn2aP3++Zs2apZKSEpWUlOj48eOSpJKSEhUXFyssLEySVFxcXOX3i4qKFBERIUn2v4uKinTFFVfYxxQWFjptBwBYjIGPww4cOKC0tDQ98cQTmjJlitO2+fPnq06dOpozZ45q166tW265RSdPntQLL7yghIQENWzYUJI0e/Zs9ezZU5MnT5YkxcXFadeuXZo9ezYLrACAVRm4fQAAeAXtAwBYDe0DAFgJ3QMAWA3tAwBYDe0DAFgN7QMAWAndcwkLrACAhxlpxa+CggLZbDaNGzeuyrbHHntMzz77rHJzc9W4cWPl5+c7bT98+LCOHTum6OhoSVLz5s0lSfn5+WrZsqV9XOXvVY4DAFiLJ7q3cePGixp/oYuRTZs2Td27d1fHjh2rbMvJyVGPHj1Uu3Zt+2t9+vTRc889p/Xr16t///4qKChQfn6+xo4d6/S7d955p8aPH699+/apSZMmFzV3AID/M9IxHwAANYH2AQCshvYBAKyE7gEArIb2AQCshvYBAKyG9gEArITuuYYFVgDAw4wUpNatWysrK8vptcOHD2vChAlKTExU586dJUldu3bVunXr9Mgjj9gfNF+9erVq1aplHxMVFaXmzZsrOztbvXr1sr/f6tWr1aJFCx4wBwCL8kT3BgwYcFHjt2/fft4xOTk5Wr9+vdasWSObzea0raSkRPv27auyOFjDhg1Vr149++Jh51pErPLn/Px8+gcAFmSkYz4AAGoC7QMAWA3tAwBYCd0DAFgN7QMAWI3R21dWVqb+/ftrx44devHFF9W7d2/7ts2bN2v69OnasmWLwsLCdPfdd2vs2LGqVcv5UbgVK1bolVde0d69exUVFaWRI0fqzjvvrOldAQAYhNHbBwCAJ9E91wT6egIAAO8JDw9Xp06dnP60b99ekhQTE6OOHTtKkoYNG6bjx48rKSlJGzZs0BtvvKHU1FQNGjRIkZGR9vcbN26c3nnnHc2aNUufffaZnn/+ea1bt05JSUk+2T8AAKpTWlqqp59+WmPGjHHqWKWioiJJUlhYWJVt4eHhKiwslCT73+Hh4U5jIiIinLYDAAAAAHynrKxMffv2VatWrfTWW285bdu8ebMGDRqk9u3bq0uXLkpJSVFZWVmV91ixYoXuuOMOtW3bVnfccYdWrlxZU9MHAAAAAAAAAAAALCsrK0tHjx6t8npBQYGGDh2q0NBQzZ07V6NHj1ZWVpZmzZrlNG7t2rWaPHmybrvtNs2bN0/x8fGaNGmS1q1bV1O7AADABeMeFwAAjKHW+YcAAC6GPy74FRUVpQULFmj69Ol66KGHFB4eriFDhmjs2LFO43r16qXS0lJlZGRowYIFatq0qWbMmKGePXv6aOYAAF/zRPeWLl3q/pucJSMjQ8HBwRoyZIhH3xcAAMk/j/kAAHCH0dt3vpsub7rpJs2dO1e7d+/WzJkzVVpaqkceecQ+rvKmy4SEBHXt2lUfffSRJk2apLp16+r222+vyV0BABiE0dsHAIAn0T0AgNXQPgCA1Ri5fQcOHFBaWpqeeOIJTZkyxWnb/PnzVadOHc2ZM0e1a9fWLbfcopMnT+qFF15QQkKCGjZsKEmaPXu2evbsqcmTJ0uS4uLitGvXLs2ePZtrfQBgUUZuH/e4AAA8zcjdMzIWWAEADwsweJGaNm2q7du3V3m9Xbt2ev3118/7+/369VO/fv28MDMAgD/yRPfat2/vgZmcsW/fPs2fP1+zZs1SSUmJSkpKdPz4cUlSSUmJiouLFRYWJkkqLi6u8vtFRUWKiIiQJPvfRUVFuuKKK+xjCgsLnbYDAKzF6Md8AAB4mpHbx02XAABvMHL7AADwNLoHALAa2gcAsBp327dx48aLGn8x94NOmzZN3bt3V8eOHatsy8nJUY8ePVS7dm37a3369NFzzz2n9evXq3///iooKFB+fn6VL5W98847NX78eO3bt09NmjS5qPkDAPyfUY/7uMcFAOANRu2e0bHACgB4GD0CAFiJ0bpXUFAgm82mcePGVdn22GOP6dlnn1Vubq4aN26s/Px8p+2HDx/WsWPHFB0dLUlq3ry5JCk/P18tW7a0j6v8vcpxAABrMVr7AADwNnfbx02XAAB/w3EfAMBK6B4AwGpoHwDAatxt34ABAy5qfHVfBFudnJwcrV+/XmvWrJHNZnPaVlJSon379lW5R7Nhw4aqV6+e/R7Oc93LWflzfn4+1/oAwIKMep8L97gAALyB852uYYEVAAAAAKbRunVrZWVlOb12+PBhTZgwQYmJiercubMkqWvXrlq3bp0eeeQR+4nI1atXq1atWvYxUVFRat68ubKzs9WrVy/7+61evVotWrTgBCQAAAAAXABuugQAAAAAAAAAAABQqbS0VE8//bTGjBmjyMhIFRQUOG0vKiqSJIWFhVX53fDwcBUWFkqS/e/w8HCnMREREU7bAQC4GN64z4V7XAAAVlVWVqb+/ftrx44devHFF9W7d2/7ts2bN2v69OnasmWLwsLCdPfdd2vs2LGqVct5+ZMVK1bolVde0d69exUVFaWRI0fqzjvvdGteLLACAB4WwJJfAAALMVr3wsPD1alTJ6fXKi++xcTE2Fd8HjZsmFatWqWkpCTdf//92r17t1JTUzVo0CBFRkbaf3fcuHFKTk7WrFmzdOuttyonJ0fr1q1TWlpaze0UAMBQjNa+XzPqSUgAgP8yYvu46RIA4E1GbB8AAN5C9wAAVmP09nGtDwDgae62b+nSpR6aiUNGRoaCg4M1ZMgQj783AABGO+7jHhcAgDcZrXu/lpWVpaNHj1Z5vaCgQEOHDtVNN92kuXPnavfu3Zo5c6ZKS0v1yCOP2MetXbtWkydPVkJCgrp27aqPPvpIkyZNUt26dXX77be7PC8WWAEADzN4jwAA8Ch/7V5UVJQWLFig6dOn66GHHlJ4eLiGDBmisWPHOo3r1auXSktLlZGRoQULFqhp06aaMWOGevbs6aOZAwB8zejtM+pJSACA/3K3ff/gpksAgJ8x8nEfD9oBADzNyN0DAMAbjN4+rvUBADzN3fa1b9/eMxP5xb59+zR//nzNmjVLJSUlKikp0fHjxyVJJSUlKi4utj9gXlxcXOX3i4qK7A+SV/5dVFSkK664wj6m8gHzyu0AAGsx2n0u3OMCAPAmI5/vPHDggNLS0vTEE09oypQpTtvmz5+vOnXqaM6cOapdu7ZuueUWnTx5Ui+88IISEhLUsGFDSdLs2bPVs2dPTZ48WZIUFxenXbt2afbs2SywAgBGEhho4CIBAOBh/tC9pk2bavv27VVeb9eunV5//fXz/n6/fv3Ur18/L8wMAOCPjNw+I5+EBAD4L3fbx02XAAB/Y+TjPh60AwB4mpG7BwCANxi5fVzrAwB4g9HaV1BQIJvNpnHjxlXZ9thjj+nZZ59Vbm6uGjdurPz8fKfthw8f1rFjxxQdHS1Jat68uSQpPz9fLVu2tI+r/L3KcQAAazHSfS7c4wIA8DZPHPNt3LjxosZfaCunTZum7t27q2PHjlW25eTkqEePHqpdu7b9tT59+ui5557T+vXr1b9/fxUUFCg/P7/Kl6nfeeedGj9+vPbt26cmTZpc1NwrscAKAAAAAAAAYAJGPgkJAICncNMlAMCqeNAOAGBFZWVl6t+/v3bs2KEXX3xRvXv3tm/bvHmzpk+fri1btigsLEx33323xo4dq1q1nG+JXLFihV555RXt3btXUVFRGjlypO68886a3hUAgIlY8YEDAAA8pXXr1srKynJ67fDhw5owYYISExPVuXNnSVLXrl21bt06PfLII/b+rV69WrVq1bKPiYqKUvPmzZWdna1evXrZ32/16tVq0aIF3QMA+Bz3uAAA/MGAAQMuanx1X4L+azk5OVq/fr3WrFkjm83mtK2kpET79u2r0q6GDRuqXr169radq3GVP+fn57PACgAYRYCxFnkGAMCr6B4AwGo80T5v3HRp9JOQAAD/ZbTjPm66BAB4m7vt40E7AIA/Mdox369lZWXp6NGjVV4vKCjQ0KFDddNNN2nu3LnavXu3Zs6cqdLSUj3yyCP2cWvXrtXkyZOVkJCgrl276qOPPtKkSZNUt25dFhcDAIvyRPus+MABAMB/Ge24Lzw8XJ06dXJ6raCgQJIUExNjP/85bNgwrVq1SklJSbr//vu1e/dupaamatCgQYqMjLT/7rhx45ScnKxZs2bp1ltvVU5OjtatW6e0tLSa2ykAgKEYqX3c4wIA8DYjda9SaWmpnn76aY0ZM0aRkZH2Y75KRUVFkqSwsLAqvxseHq7CwkJJsv8dHh7uNCYiIsJpuytYYAUAPCzAiEUCAMBL6B4AwGo80T5P33TpDychAQD+y2jHfdx0CQDwNnfbx4N2AAB/YrRjvrMdOHBAaWlpeuKJJzRlyhSnbfPnz1edOnU0Z84c1a5dW7fccotOnjypF154QQkJCWrYsKEkafbs2erZs6cmT54sSYqLi9OuXbs0e/ZsFlgBAIsyYvu41gcA8CYjtu9CREVFacGCBZo+fboeeughhYeHa8iQIVUWkO7Vq5dKS0uVkZGhBQsWqGnTppoxY4Z69uzpo5kDAHzNSO3jHhcAgLd5ontLly71wEwcMjIyFBwcrCFDhnj0fT2JBVYAwMMMdBwGAIDX0T0AgNUYsX3+cBISAOC/jNi+C8FNlwAAVxmtfTxoBwDwJk90b+PGjRc1vn379hc0btq0aerevbv9IYOz5eTkqEePHvZvc5WkPn366LnnntP69evVv39/FRQUKD8/v8px4J133qnx48dr3759LC4GABbkifZZ8YEDAID/Mtr5zuo0bdq02oWo27Vrp9dff/28v9+vXz/169fPCzMDAPgjf2jfr3GPCwDAVZ7o3oVeu7sQ+/bt0/z58zVr1iyVlJSopKREx48fl3TmC4SKi4vt97cUFxdX+f2ioiL7fSyVfxcVFemKK66wj6m8v6VyuytYYAUAPMxIK10CAOBtdA8AYDVGW+XZX05CAgD8lz8c93HTJQDAk9xtHw/aAQD8iSeO+QYMGHBR46s7fvu1nJwcrV+/XmvWrJHNZnPaVlJSon379ik6Otrp9YYNG6pevXrKz8+XJPvfvx5X+XN+fj4LrACABXmifVZ84AAA4L/84VofAACeZPT2cY8LAMCTjNa9goIC2Ww2jRs3rsq2xx57TM8++6xyc3PVuHFj+7W8SocPH9axY8fs1/KaN28u6cw1vZYtW9rHnesa4MVggRUAAAAAAACgBnnypkt/OQkJAAAAAFbBg3YAALintLRUTz/9tMaMGaPIyEgVFBQ4bS8qKpIkewPPFh4ebm9b5d/h4eFOYyqbV7kdAABf4lofAAAAAAAAALNo3bq1srKynF47fPiwJkyYoMTERHXu3FmS1LVrV61bt06PPPKIateuLUlavXq1atWqZR8TFRWl5s2bKzs7W7169bK/3+rVq9WiRQu3vkiBBVYAwMOMtuIXAADeRPcAAFZjtPb5y0lIAID/Mlr7AADwNiO1jwftAADe5onuLV261AMzccjIyFBwcLCGDBni0fcFAEAy1jGfxLU+AID3Ga19AAB4G+0DAFiJ0boXHh6uTp06Ob1W+WUKMTEx6tixoyRp2LBhWrVqlZKSknT//fdr9+7dSk1N1aBBgxQZGWn/3XHjxik5OVmzZs3SrbfeqpycHK1bt05paWluzZMFVkzo1ptaaO38pCqvb8nbr473TJMk9e/RQQN73awbWkepQb1Q/bD/J2Wt2KCXX/9QZWWn7b9Tknvu/weLv2+WPt/8g8fnj4vz/rvv6J3s1dq2dYuOHTumxo2bqM8f7tK9fxqsWsHB9nGnTtm0aMFrenvVcv33wI+KiKin2Lhb9MTT0304e3MyWI8A07uQ7v2he3uNG9xdLa9upLC6tbX/YKFWfbhJ0/+WrWPFJfbfoXv+753st5W18DXl5+1USEhtXdu6tZ597nk1bBh5/l+GS+geUPMupH2V/vjbG5U0pLuui26sk7ZT2ritQA/+30IdOHzm2x1vvK6ZRtxzq25ue7WuvaaR1n+dr98NT62R/YB79uzerYULXtW3mzcrb+cORUY2Uva77/t6WpZgtPb5y0lIwB0X0z5JCgoK1IYlU9S2ZRPd90im/vnOV1XGjLjnVg2/51bFNGuo4p9P6stvd+veCfN0qqzcK/uAi7Nnz25lZb6qb78907mGkY2UvbZq5z5Zn6M5qSn6Pj9PlzdsqD/9+T4NuW9ozU/Y5IzWPsAKPHnc9+BdnXVn93Zq17Kpwupeop27Dyr99Q/191Wf1ci+wDXvvbtWixZm6odd3+vEiROKbNRI3br30EMjExUeEeHr6ZmekdrHg3awAk92b3DfTpr3VNUFGd7O+VZ3J2V4ZwfgUWuy31bWAudrfdNmcK3PmzzRvfbt27v/Jr/Yt2+f5s+fr1mzZqmkpEQlJSU6fvy4JKmkpETFxcUKCwuTJBUXF1f5/aKiIkX88u9LlX8XFRXpiiuusI8pLCx02g7UNE+2TzpzvW/mxLt0Q+tmKjxeooXLN+iZV95WefnpX38EDOTdd9borbdWaeuWLTp27KgaN2mqfnfdrUF/HqLgs+77hOcZ6ZhP4lofrMGT1/oS7u6sof1+o+ZRDXVp7WDtPXBUb2R/oRcXvKdSW5lX9wPu+c+GT5X20mxt37ZVdUNDdXuPnkqeMMn+7/fwHqO1D7ACT9/ncn+/32jUwHhFRzVU8YmTWv91np6Ys1I/7PvJa/sA93GPp+/QPqBmXUj3LrSNF9tQ+M6ePbuVteA1bbHf4xmpt99xdK68vFx/z1qgj3M+1Pff5+uUzaZrmkfrwWEP6bZu3X04c/Px1+5FRUVpwYIFmj59uh566CGFh4dryJAhGjt2rNO4Xr16qbS0VBkZGVqwYIGaNm2qGTNmqGfPnm59PgusmNjIqYu1Nf9H+88/n7TZ/3PykNu1+8cjeix1hf77U5Hi2jfXXxP7qE2LJhr+xCL7uPj7ZlV535kP362rmzTQV9/t8e4O4IIsXpSpK69sojFJD6t+gwbatDFXf0t/Sfk7d9gXT6moqNBfHh6v77Zs0oPDR6l5dAsdOXJYm77J9fHszcloK34BVvG/undZRB3lfLlTKVnvqbD4pNq0aKxHR/RS2xZNdMfIOfZxdM+/ZS14TS/NflH3DX1QyRMeVsnPJfrqqy9kKy319dRMje4BvvO/2idJSUO666mxd2p21jo9lrpCdS+trS43Rqt2iOOGvN+0b65bb4rRl1t265IQThH4k/z8ncr56EO1adtOFRUVKi4qOv8vwSP8tX2+PgkJeML52ldpzKDbdPlloed8n5Qp92hQn1g9/9pa/WfTLl0WVke3/+ZaBQUFssCKQeTn7VROzodq0+ZM54qq6dzmTRuVNCZRvXr30cRJU7R50ybNfmGmagUF6U9/5huuPclf2weYgSeO+x4Z9ju9u2GrMt/8VIXHS9TzN631ypN/1tVNGuiZjLdrbF9wcYoKC3XzzbEa+mCCQkPDtHPnDr2SnqYd27dp3msLfT090zNS+3jQDlbiie5V6jc2XUcLf7b/fLTo5ypjYDwLF7yml1Je1P0P/HKtr6REX3/5hUq51udVRuqedKZzNptN48aNq7Ltscce07PPPqvc3Fw1btxY+fn5TtsPHz6sY8eOKTo6WpLUvHlzSVJ+fr5atmxpH1f5e5XjAF/xRPuaXVlfb2eM1aff5OuP419RdFRDTR/fX5deEqxHXlxWY/uCi7dwwWtq3KSJkidOUoMGDbTxm1y9/NJs7dy+Xc9Mn+Hr6Zma0dp3objWBzPwxLW+y8LraOUHm/Ttzv06UVKq2HbX6NHhv9dVVzbQyKmLvTJvuO/LLz5X4kPDdHvP32pU4hgdOHBAL81+QT/s2qX5mVl++89mf8F/v4DveKJ9Q/v/RnOf+LNe+vv7euTFNxVZP0yPj+qt1eljdPO901Ry8pRX5g73cY+n79A+wDcupHsX2sYLHQffyc/L08dnda6oqNBpe2npSb067xX1/UM/3Tf0QQUHB+udNdkaPy5RTz71rP7Q/24fzdx8/KF7TZs21fbt26u83q5dO73++uvn/f1+/fqpX79+Hp0TT0+Z2Nb8H/X55h+q3XZ38is6fPS4/eecL3cqIEB6cnRfPTZ7uQ4eOfMNH7/+/YjQS9W+VVO99uYnfMOBQcyana7L6te3/3zTzZ1UUSH9Lf0ljU6eqAYNLtfbq1Zow6cfa+GSfymmheOGgR6/7VXdWwKAX/pf3VuwbIPTzx9/tVMnS08p/YlBirriMu09cFQS3fNne/bs1kuzX9TkRx7VgIGD7K93va2bD2cFAN71v9rXPOpyPTX2Tj38/L8075/r7a9nf/yt07j0Nz7Sy69/KElakZaoS2rzbWj+Iv627urWvYck6empT+jT9evP8xuwEiOehAQ84X+1r1KTyHp6dEQvjZ/xT7369H1Vtne5KUYjB8brD2PStfaT7+yvr/pwk6enCzec3blnpj6hTz6p2rmMuWlq2bKlnnpmugICAnRzbJwOHTyojPQ0/XHAQL7lFYApeOK475Y/z3S6Jvjh5zt0WURdjRvcXdP+lq3Tpyu8Mne4564/3uP0882xnVQ7pLaeevJx/bh/v65s3NhHM4NR8aAdzMAT3av0zda9+u9Pxd6YJrxkz+7deinlRU35i/O1vniu9VlO69atlZWV5fTa4cOHNWHCBCUmJqpz586SpK5du2rdunV65JFHVLt2bUnS6tWrVatWLfuYqKgoNW/eXNnZ2erVy3GP1OrVq9WiRQs1adKkhvYKqJ4n2jdhaA+dKCnVnx6er1JbmT74bLvqXBKip8fdqZSF79FDA3vp5QzVP+u+z9hOcaqoqNDLc1I1fuIkNbj8ch/ODr7GtT6YlSeu9c3KfNfp55wvdyr00tpKGtJdY559XWVl3OdpRK/MfVkxMS00c1aK/cGviHr1NDF5rHI++pBjPwCm5Yn2Dex1s3K+3KkpL7xpf+2/PxVrzd/GqeP1V+vjr3Z6etrwEO7xBGA1F9K9CxlzMePgO/G3dVO37rdLkp556q/69JOPnbbXrn2JVme/q/CICPtrv7mli37cv18LF7zGAivwORZYsaizb6SslLt1ryTpyoYR9gVWfu2unjfoktrBev2tL7w6P1y4sxdXqXRt6+skSYcPHVSDBpdr+b+X6sabbnZaXAXe4wcLfgGQ45vqatUKOucYuuc/lr/5bwUHB6v/3X/09VQsh+4BxnT/H34j26nyKouM/VpFBQ/S+avAwEBfT8GyaB9gbM9PultvfbRZ67/Kq3b7sLu7aOfug06Lq8B4ztc5m82mz/+zQaPHJjutvn9Hn756fckibfwmVx1vjvX2NC2D9gHGdKHHfdVfE9yjB/rfovC6l+hYcYm3pggPi/jlppOysjIfz8T8jN4+HrSDFV1o9+C/li/75VrfXVzrq2lG6154eLg6derk9FpBQYEkKSYmRh07dpQkDRs2TKtWrVJSUpLuv/9+7d69W6mpqRo0aJAiIyPtvztu3DglJydr1qxZuvXWW5WTk6N169YpLS2t5nYKcMGFtu/3Xa7Xyg82qdTmOE74R/YXmjHxLvW45TotXvWZt6cKF9Wv5r7P666/XpJ08NBBFljxIqO1D4Cz813rq87RohOqFRSowIBASSywYkSbN23SgIEDna7r3XLLmYURP3j/PRZY8TLaBxjb+doXXCvI/txDpaLjZ67vBQbyP3Aj4x5P36F9AOB95+tcUFCQ0+Iqla677nr965+bvTUtS6J7rmGBFRNbmjJCl9cL1eFjx7X6w816/KUVVQ6qztblxhiV2k7p+4LD5xzzp943a8cP/9WXW3Z7Y8rwkG++/lLBwcFq2rSZyk6d0tbvvlW/uwco5fnpemvlctlspbqxY6wmTH5Uza662tfTNZ0AigT4xIV0LzAwQMG1gnR9TGM9OqKXsj/+Vrvonils/CZX11xzjVauWK75r8zVwYP/VXR0jMaNn6gut8b7enqmRvcA3/lf7Ytr31zbf/ivBvftpEeG/16NG0bou+9/1OMvreSBcsBNtA/wnfMd9/W8pbVuj7tW7fs/rZDg6k99x7W/Rrlb92rKsN9p1MB4XRZeR19t2a0pL7ypL77l2M9f7N27R6dOnVLz5tFOrzePPvPzru/zWWDFg2gf4DveOu7rcmOMfjxUyOIqfqC8vFxlZWXK27lDGXPTdGvXeEU1a+braZke7QN8w5Pd+88bf1HDy0L146FCLV3zpZ7OeFsnS0/V9C7hImz8JlfXND9zrW/eWdf6kiZwrc/b/LV7UVFRWrBggaZPn66HHnpI4eHhGjJkiMaOHes0rlevXiotLVVGRoYWLFigpk2basaMGerZs6ePZg44uNu+Sy8J1lWNG2j7rgNO7/vfn4r107ETuvaaRjW+T3DPV1+eue8zKorjPm/y1/YBZuCJa32VgoICVTu4lm66/iqNGdRN8//9iWynWJjYqIKCAhUcHOL0Wq3gYAUEBCg/78IX04FraB/gO55o36tvfqK5TwzSgN/fpOyPtyiyQZieTeqn3K17tf5r/hkKVIf2Ab5xIc/1Xegz7xf7bDz8x1dffaFrfnXfJ9xD91xj6AVWvvvuO33wwQf6/vvvdezYMUlSvXr11Lx5c9122226/pfV2uGs6HiJZmetU86XO3X851LFtr1KDz/4W3Vqd406/3lmtScPr21+hUb/6Ta99uanKj5xstr3jbriMnW+IVrPvPK2t3cBbtiVn6d/vP53/eGue1Q3NFQ/HT6ksrIyvb1quZpHt9DUaTNVWlqqV15OVVLicL3x5mrVrl3b19M2FXoEd9C+i3cx3dv34QzVC6sjSXr3060aPPm1c74v3fMvP/10SAf/+19lvPySksY/rPoNLtcbS/6u5LGJeuNfyxUT08LXUzQtugd30D3XXEj7GjUIU+PIenp8VG89lrpcB38q1qiB8fpXykPqNHC6tn5/4PwfBKBatA/uoH2uuZD21Q6ppZQpAzTtb9k6cLhIza6s+u2fktSoQbhuj7tW10VfqeTpS3Wy9JQeGf57rUofo7Z/mKpDR4/X8N7BFUWFhZKksPAwp9fr1g1VUFCQCn/ZDs+gfXAH7XONN4/74m9uqT/+9kY9Ont5ze4UXBLfuZOKi4slSb+5pYtmvjDbtxOyCNoHd9C+i+fJ7h04XKRnMt7WF9/+INupMsV3bKmkId3VrlVT9U182cd7iv/l8OEz1/rmvvySkiY8rAYNLtfri/+upDGJ+se/udbnTf7QvaZNm2r79u1VXm/Xrp1ef/318/5+v3791K9fPy/MDHTPNZ5q32W/3P9S3eKZx4p+1mXhdWt61+CG/Lw8Lfl7lu6+516Fhob6ejqm5g/tg3HRPtd48lqfJEWEXqoDHz9v//nvqz7TxJn/rIldgYuuuupqbd600em1bzdvUkVFhQoLj/lmUhZC++AO2ucaT7ZvyerPVTu4luY9NcS+CMvX3+3RH0a/rPLy0zW5W4DfoH1wB+27eBfSvQt99s+VZ+PhP1Yuf1ObN23U8y+m+noqpkL3XGPIBVZKSko0ZcoUrV27VnXq1NHVV1+tiIgISdKuXbv0wQcfKC0tTT169NDMmTN16aWX+njGxrJxe4E2bi+w//zxVzuVu7VAb2WM0YDf36S/r/rMaXyDenW19MURyt97SP+XuuKc73tvr44KDAzU62994bW5wz3Hjh7V5Alj1TSqmUYnTZAknT5dYf97Vmq66l12mSTp6muu0aA//kFrs1erb7+7fTZnM2LFL7iC9rnuYrr3u2GpqnNpiK6PaaxHhv1e/059SL1Hpdn/WXk2uudfTp+u0M8//6wZs2br1q5nvsXu5thY9fl9Ty14dZ6emT7TxzM0L7oHV9A991xI+wIDAxVW9xINeeQ1vbP+zLfY5Xy5U9+telITH+ipYY8v8tX0Ab9H++AK2ueeC2nf5ITfyVZWppdf//B/vldgYIDC6l6i+Ptm2R/A+3LLbm17a6pGDozX03Pf8uauAH6J9sEVtM893jruax51ubKee0AffL5DcxZ/UGP7A9fNz1ykkydLtHPnDs17Za7GjR6pV+ZnKigoyNdTMzXaB1fQPtd5snvvbdiq9zZstb/Xh5/v0J4fjyj9iUG69aYW+virnTW7c7hgldf6Zr5w1rW+m2PVu1dPZb46T89yrc9r6B5cQffcw7U+/NrRo0eUPG60opo1U9L4ib6ejunRPriC9rnHk9f6JKn455Pq/OeZurR2sDq2uUqTE36nV54crOFP0Eej+tPgIfq/v0xR5qvz1O+uu3XgwAE9+/RUBQUFKTAw0NfTMz3aB1fQPvd4sn19bmur5yfdrdlZ6/Tehm1q1CBMfxnRS8vmjFKPhNk6WXrKy3sD+B/aB1fQPtddSPcu9Nm/i302Hv5j4ze5mv7sU/pDv7vUo+fvfD0dU6F7rjHkAiszZ87UV199pTlz5qh79+5VbhA7ffq03n//fT355JOaOXOm/vrXv/popv7j/c+26adjJ3TT9Vc5RSS0Tm2tSEtUSHCQfjc8VT+ftJ3zPe7tdbP+s/F7/bDvp5qYMi7SiRMnNH7MQzp16pTS5y3UpZee+YaKsLAwBQQEKLpFC/viKpLUPLqF6jdooO/z83w1ZQBnoX2eda7ubdqxT5L0n427tGl7gXIWTdIfurfXsve+qfIedM+/hIeHS5Juju1kfy04OEQdbrhR+bQOMBy653m/bt+xop8lSR994Xhg4FRZuTZs/F6tm1/pq2kCgGXRPs87u305X+7QhPt76IHHFqruJbUlSeGhl0iSLr0kWOGhl6jo+ElJ0tGin1VRIfviKpJ0+Ohxbdm5X9dF00h/Ef7LxeviomKn10+cOK7y8nL7xW0AvkP7PM/d474rG0ZodfoYFRw4qoET51W76DSM59rWrSVJHW64Ua2uba0hfxqg9997Vz1/93sfzwzAr9E+z/Lk+c5/rf1a6U8MUsfrm7HAioFVe60v5JdrfXlc6wOMhu55nivtO1ZcIkmqF1b1YY564XV0tOhEDcwc7jpx4rhGPzRcZadO6dUFWapTp46vpwSgGrTP81y91iedWaDx6+/2SJI+yc3Xvv8e06IZD2ruGx/ZX4ex9On7B+Xn5enlOama/eIsBQUF6d4/DVJISLDq1g319fQAVIP2eZ6r7Uv7vz9p0crP9Ne0Vfb3+nzzLm1dPVWD+3bS/H+tr/mdAQATon2eda7n+i52zMWMg3Hl5+1U0piRuqljrP7vr0/5ejqAJMmQy71mZ2frL3/5i3r27Fntt28FBgaqR48emjJlirKzs30wQz9W4bhZMiS4lv6ZMkLNGtdX38SX9eOhwnP+WruWTdSmRWO9/tYXNTFLXCSbzabJ48fox/37lJo+Tw0jI+3bLrn0Ul3ZuEm1v1dRceZ34VkBAe79gTXRPi+pOPdDArnb9ur06dOKjmpYZRvd8z/R0THVvl5RUaHS0tIano21uNs92mdNdM+Lfmnfd/k/Vrs5QNIltYNrcEKA+dA+uIL2eVFFha5qfLkuqR2s12cN04GPn9eBj5/XF0sflSS98uRg5b/zrH341nM1MiBAtUMMuR45qhEV1UzBwcH6/vt8p9e/zz/z8zXNo30xLdOie3AF7fMiF477Lguvo1Xpo1V++rT6jUnX8Z85X+aPWre+TgEBAdqzh4dEvI32wRW0z0s8eL7zf1w2hAFEx3Ctz1c43wlX0D0vuoj2/XzSpj0/HlGra65wGhNZP0wN6tXVtl3/9epU4T6bzaakMYnav3+f5v5tviIjG/l6SpZA++AK2udFF3mtrzpfbz1zvqy6e0FhDAEBAUqe8LA++uQ/+uebK/R+zieaOOkR7dm9Wx1uuNHX0zM9ugdX0D4vuoj2NbwsVI0ahCt3q/O1oT0/HtVPhScU04z2AdWhfXAF7fOSC7lAd6EX8bjY55f27yvQqIcS1Oyqq/X8i6mqVYv7dD2N852uMeQCK6WlpapXr955x0VERHAR/QL1+E1rNahXV19s2S1JCgwM0KLnHtBN11+l/mPmaufug//z9wfecbNsp8r0r7Vf18R0cRHKy8v1+CMTtXXLZr2YlqGrrr6myphb47spb+cOHT1yxP7amZ9/Uuvrrq/J6VpCQECAW39gTbTPs37dver8pn20AgMDtavgcJVtdM//xHe7XZL0+X822F+z2WzKzf1K113fxlfTsgR3u0f7rInued6v2/fWR5slSd1iW9nHhATX0i03RPNtPYCbaB9cQfs87+z2bdpeoN8OS3X6c98jmZKkaX/LVr8x6fbfe+ujzbri8nBdF+34hvOGl4Xq+pjGNNKPhISEKLZTnNa+k62Ksy6cZr+9WuHhEWrfoYPvJmdCdA+uoH2e5+pxX51LQrR8zijVj6irvokv69DR4zU7cXjMN7lfq6KiQk2jmvp6KqZH++AK2udZnjzfOeD3N0mSvtjyg3cmC4+47ZdrfZ/9+lrf11/peq71eRXnO+EKuud5rrZvzfot6ntbW6fFowf8/iadOlWudRu21tDs4Yry8nJNfni8tny7WWlz/6arr2nu6ylZBu2DK2if57l6ra86t3Q4s/B+dfeCwljq1g1Vy1bXql69y7Ri2ZsqLS1Vv/53+3papkf34Ara53mutO/Q0eM6/nOpbryumdN7NbuyvhpE1NUP+36q8f0A/AHtgyton2ddyHN9FzLmYsbBeH46fFgjRyQoLCxcL72coUsvvdTXUzIlzne6xpBL/XTs2FFpaWm6/vrrddlll1U75ujRo0pPT1fHjh1reHbG99oz9+mH/T8p97u9Kv75pG5uc7UmDu2pb7bt1T/XfCVJmv2Xe3Vn9/Z68uVVCgoKVGzbq+2/v/X7Ayo+cdL+c0BAgAb8/iat/XSrjhSeqOndwXnMmv60PvpgnUYkjtPp8tP6dtNG+7Zrmkerbmio/nz/g1rz9ipNHDdKQxNGyHbKpldefklXXX2NevzuDh/O3pws2hO4ifa57kK6t/Ll0frw8+36Lv9HlZ4qU4dWTZV8fw9t2lGglR9scno/uuefbuvWXe3a36Cpf/0/jU2eoMsvv1yvL/m7iouKNPTBYb6enqnRPbiC7rnnQtq3+qPN+s/G75X+xCA9MWel/vtTkUYNjFe9sDp6ccG79ve6/LJQ3XrTmW8GjWwQppDgWurfo4Mk6eOv8nSYB+8Mq6SkROtzPpIkFRQUqORkid59Z40k6fq2bdW4cRNfTs/UaB9cQfvcc772nSor18df7XT6nWZX1pckbfv+gD7JzXe815ufauS98frHi8M19eXVKik9pSkJv9PxklL9benHNbpfOLeSkhKt/9jRuZMnS/Tu2l861+ZM50aMHK2EoYP15OOPqs+d/fTtt5u09I0lSp44ScHBIb6cvunQPriC9rnHk8d9r88appuuv0rjpv1DkfXDFFk/zL7tm20Fsp0qq/H9w/mNHJ6gTnFxio5poZCQEG3b+p0WZL6qli1bqXv3Hr6enunRPriC9rnOk91blT5aH325U1t27pftVJlui22pMYO6Kfvjb/XJ1/nnmgIM4LZu3dW+ww2a+sT/adz4X671Lf7lWl8C1/q8ie7BFXTPPZ5sX8rC9zSwV0ctnpmgtCUfKDqqoZ5I7KNXlubowOEiX+0iLsC0Z6bqg3XvafTYJJ0+fVqbNn5j39Y8OkahoaG+m5zJ0T64gva5x5PX+tYvnqzFqz6zf7lsXPtrNG5wd73zyRZ9ycN2hrV50yZ98fl/1Ora1iovL9dnGz7VksWL9PCUv6hpVJSvp2d6tA+uoH3u8WT7/rY0R+MGd1fR8ZN6/7NtalQ/XFOG/06Hjh7XP9/5qkb3CxeHezx9h/bBFbTPdRdyvvNCxlzMOPje2fd47ivYq5MnTzrd41m/fgONHjVchw7+V089+5z27N6tPbsdx+3t2nfwxbRNie65JqDi7K93NIg9e/bovvvu07FjxxQXF6fmzZsrPDxcklRUVKTvv/9en332mSIiIrRw4UJdddVVHp/DpTeM8fh71pSHH/yt7v19RzW78jJdWjtE+w4e1coPNunZV95W0fEzC6dse2uqrmrcoNrf/+2wVKcDtfibW2rN38Zp8ORX9e93c2tkH7xt/yepvp6Cx/S7o4cO/Li/2m0vz1ugmzrGSpLydu5Q6gsztHnjN6pVq5bibumipIlT1DAysianWyMuqxPk08+Pe+4jt37/P4/Ee2gm8Ce0z3UX0r0nEnurT3w7Xd3kTPt27z+i5eu+0Ut/f99pUTHJnN2TpCOfp/l6Cl5XWHhMLz4/Qx+8v06lpSd1fZu2Sp4wyfQHXZcG+/bz3e2eRPusyAjdk8zdPkm6LLyOpo/vr77d2unS2sH66rs9emz2cn2++Qf7mFtvaqG185Oq/ZxfHxv6k6NfmL97+/YV6I7f3l7ttqeema4/9L+rhmdUcy7x8XLBtA+uoH3uudD2na3ZlfW1/e2ndN8jmVVuKIm64jLNfPhude/USoGBgVr/dZ6mvPCmdvzw35rYHa8w2zHfvn0F6v276js39Znp+kO/M51b//FHmpOaou/z83R5w0j9adBg3Tf0wZqcao3w9+M+umdNRmifv3ZP8uxxX0nuuRvR6o4ntOfHI97cFa8x+3Ff2kuz9eEH67SvoECS1LhJU/Xo+VsNuf8BSzxk5+/HfbTPmmif6zzZvecfvlu/7XydGkfWU3CtQP2w7yctXfOVZmW+6/eLipm9fZJUeOyYXpg1Qx+sc1zrGz/R/Nf6/L17Eu2zIiN0T6J9lTpef5VmTLxLN7SO0rHiEi1a+R89nfGWyspO1/CeeZbZ29erZ3ft37+v2m3zM7N0c2ynGp5RzaF98Ee0zz2evNaX9n9/0q03xahJo3o6VVauXQU/acnqz/S3f6736+M+s3dv29atmvbMVOXt3KHy8nK1aNlKQx8cph49f+vrqdUIf28f3bMmI7TPX7snebZ9tWoFasyfumnIH+J0VeP6Kiwu0eebf9Bf01b59X0uZm+fxD2evkT74Ara57oL6d6FttGVhvqLnz6b4+speNT+fQXq/fvqvyBo6tPT1PHm2HNul6Tczdu8NbUaVyfEtyuccL7TNYZcYEWSjh8/rtdff105OTnKz89XUdGZ1fTDw8MVHR2trl27auDAgQoLCzvPO7nGX2OEC2OmBVZQla8XWPnNjBy3fn/DlK4emgn8De2DN5ntYTs4+PpBO3e7J9E+q/J19yTaZ2ZWuPhmZb6++Eb74CraB2/imM/c/P24j+5Zl6/bR/fMjeM+c/P34z7aZ120D95E+8zL37sn0T6r8nX3JNpndrTPvGgf/BXtgzfRPXPz9/bRPevydfvonrnRPnOjffBXtA/eZLYFVuDg6wVWON/pGh//68q5hYaGavjw4Ro+fLivpwIAFyXAtz2EH6N9APwR3YOr6B4Af0X74CraB8Bf0T64ivYB8Fe0D66ifQD8Ed2Dq+geAH9F++Aq2gfAX9E+uIr2AfBXtA+uon0A/BHdc41hF1gBAH8VQJEAABZC9wAAVkP7AABWQ/sAAFZD+wAAVkL3AABWQ/sAAFZD+wAAVkP7AABWQvdcE+jrCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAt9Ty9QQAwGxY8AsAYCV0DwBgNbQPAGA1tA8AYDW0DwBgJXQPAGA1tA8AYDW0DwBgNbQPAGAldM81LLACAB4WQJEAABZC9wAAVkP7AABWQ/sAAFZD+wAAVkL3AABWQ/sAAFZD+wAAVkP7AABWQvdcwwIrAOBhBAkAYCV0DwBgNbQPAGA1tA8AYDW0DwBgJXQPAGA1tA8AYDW0DwBgNbQPAGAldM81LLACAB5GjwAAVkL3AABWQ/sAAFZD+wAAVkP7AABWQvcAAFZD+wAAVkP7AABWQ/sAAFZC91wT6OsJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC31PL1BADAbAJY8gsAYCF0DwBgNbQPAGA1tA8AYDW0DwBgJXQPAGA1tA8AYDW0DwBgNbQPAGAldM81LLACAB5GjwAAVkL3AABWQ/sAAFZD+wAAVkP7AABWQvcAAFZD+wAAVkP7AABWQ/sAAFZC91zDAisA4GGs+AUAsBK6BwCwGtoHALAa2gcAsBraBwCwEroHALAa2gcAsBraBwCwGtoHALASuueaQF9PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8pZavJwAAZsOCXwAAK6F7AACroX0AAKuhfQAAq6F9AAAroXsAAKuhfQAAq6F9AACroX0AACuhe65hgRUA8LBAigQAsBC6BwCwGtoHALAa2gcAsBraBwCwEroHALAa2gcAsBraBwCwGtoHALASuucaFlgBAA+jRwAAK6F7AACroX0AAKuhfQAAq6F9AAAroXsAAKuhfQAAq6F9AACroX0AACuhe64J9PUEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBbarnyS/PmzbvgsQEBARo2bJgrHwMAfimAJb9MifYBQPXonnnRPgCoHu0zJ7oHAOdG+8yJ9gHAudE+c6J9AFA9umdetA8Aqkf7zInuAcC50T5zon0AcG60z5xoHwBUj+65xqUFVl544YULHkuMAFhNID0yJdoHANWje+ZF+wCgerTPnOgeAJwb7TMn2gcA50b7zIn2AUD16J550T4AqB7tMye6BwDnRvvMifYBwLnRPnOifQBQPbrnGpcWWNm2bZun5wEApsGKX+ZE+wCgenTPvGgfAFSP9pkT3QOAc6N95kT7AODcaJ850T4AqB7dMy/aBwDVo33mRPcA4NxonznRPgA4N9pnTrQPAKpH91zj0gIrAIBzo0cAACuhewAAq6F9AACroX0AAKuhfQAAK6F7AACroX0AAKuhfQAAq6F9AAAroXuu8dgCK+vXr9emTZv0448/atSoUWrcuLG++uorRUVFKTIy0lMfAwCAYdA+AIDV0D4AgJXQPQCA1dA+AIDV0D4AgNXQPgCAldA9AIDV0D4AgNXQPgCAq9xeYOXo0aMaM2aMvvrqKzVo0EBHjhzRwIED1bhxY/3jH/9QWFiYHn/8cU/MFQD8QoBY8svsaB8AONA9a6B9AOBA+8yP7gGAM9pnfrQPAJzRPvOjfQDgQPesgfYBgAPtMz+6BwDOaJ/50T4AcEb7zI/2AYAD3XNNoLtvMH36dB04cEDLly/XRx99pIqKCvu2W265RRs2bHD3IwDArwQGuPcHxkf7AMDB3e7RPv9A+wDAgfaZH90DAGd0z/xoHwA4o33mR/sAwIHzndZA+wDAgfaZH90DAGd0z/xoHwA4o33mR/sAwIHzna6p5e4bfPjhh/rrX/+qa6+9VuXl5U7brrzySv3444/ufgQA+JWAAIsWxUJoHwA40D1roH0A4ED7zI/uAYAz2md+tA8AnNE+86N9AOBA96yB9gGAA+0zP7oHAM5on/nRPgBwRvvMj/YBgAPdc02gu29gs9kUFhZW7bbjx48rKCjI3Y8AAMBQaB8AwGpoHwDASugeAMBqaB8AwGpoHwDAamgfAMBK6B4AwGpoHwDAamgfAMBdbi+w0rp1a2VnZ1e77f3331f79u3d/QgA8CsBAe798bS1a9fqT3/6kzp16qQ2bdro9ttv1/Tp01VYWOg0LicnR/3791fbtm3VvXt3LViwoNr3y8zMVPfu3dW2bVvdddddWr9+vecnbXC0DwAc3O0eC2X6B9oHAA60z/zoHgA4o3vmR/sAwBntMz/aBwAOnO+0BtoHAA60z/zoHgA4o3vmR/sAwBntMz/aBwAOnO90TS1332DUqFEaOXKkfv75Z91xxx0KCAjQN998o2XLlmnFihXKzMz0xDwBwG8EGqwohYWFio2NVUJCgsLCwrRjxw6lpaVp27ZtWrhwoSRp48aNSkxMVJ8+fTRlyhRt2rRJM2fOVFBQkIYMGWJ/r8zMTM2aNUtJSUlq166dli1bppEjR+qNN95QmzZtfLWLNY72AYCD0boH76B9AOBA+8yP7gGAM9pnfrQPAJzRPvOjfQDgQPesgfYBgAPtMz+6BwDOaJ/50T4AcEb7zI/2AYAD3XON2wusdO3aVS+99JKee+45vfPOO5Kkp59+Wo0bN1ZqaqpuvvlmtycJAP7EaD265557nH7u1KmTateurccff1z79+9X48aNlZaWppYtW2r69OkKCAhQXFycDh48qLS0NA0cOFDBwcGy2WxKT0/X4MGDNWLECElSbGystm3bprS0NGVkZPhi93yC9gGAg9G6B++gfQDgQPvMj+4BgDPaZ360DwCc0T7zo30A4ED3rIH2AYAD7TM/ugcAzmif+dE+AHBG+8yP9gGAA91zjdsLrEhSjx491KNHD+3evVs//fSTIiIiFB0d7Ym3BgC/E+BmkTZu3HhR49u3b3/RnxERESFJKisrk81m04YNG5ScnOw09759+2rRokXKzc1VbGyscnNzVVRUpN69e9vHBAYGqnfv3pozZ45sNptCQkIuei7+ivYBwBnudg/+g/YBwBm0zxroHgA40D5roH0A4ED7rIH2AcAZdM86aB8AnEH7rIHuAYAD7bMG2gcADrTPGmgfAJxB91zjkQVWKl111VW66qqrPPmWAGA5AwYMuKjx27dvv6Bx5eXlKisr044dO5SWlqb4+Hg1a9ZMeXl5OnXqVJWDiMqf8/PzFRsbq7y8PKfXK8XExMhms2nv3r2WPBChfQBgLGvXrlVmZqa+//57nThxQo0aNVKPHj2UmJhoX2BMknJycpSSkqK8vDw1bNhQ9913n4YOHVrl/TIzM7Vo0SIdOnRILVq00IQJE9SlS5ca3CPjoX0AACuhewAAq6F9AACroX0AAKuhfQAAK6F7AACroX0AAKuhfQAAV3hkgZVdu3bpb3/7mzZv3qxDhw6pYcOGat++vYYNG6ZrrrnGEx8BAH7DqAt+derUScXFxZKkLl26aPbs2ZKkwsJCSVJYWJjT+NDQUAUFBdm3FxUVKSgoSHXr1nUaFx4e7vQ+VkH7AOAMo3WvsLBQsbGxSkhIUFhYmH1hsW3btmnhwoWSpI0bNyoxMVF9+vTRlClTtGnTJs2cOVNBQUEaMmSI/b0yMzM1a9YsJSUlqV27dlq2bJlGjhypN954Q23atPHVLvoM7QOAM4zWPngH3QMAB9pnDbQPABxonzXQPgA4g+5ZB+0DgDNonzXQPQBwoH3WQPsAwIH2WQPtA4Az6J5r3F5gZf369Ro1apTCw8MVHx+vyy+/XIcPH9aHH36olStXKiMjQ507d/bEXAHALwS6WaSlS5d6aCbOFi1apJKSEu3YsUNz587VyJEjlZmZ6ZXPMjvaBwAO7nbP0+655x6nnzt16qTatWvr8ccf1/79+9W4cWOlpaWpZcuWmj59ugICAhQXF6eDBw8qLS1NAwcOVHBwsGw2m9LT0zV48GCNGDFCkhQbG6tt27YpLS1NGRkZvtg9n6F9AOBgtPbB8+geADijfeZH+wDAGe0zP9oHAA50zxpoHwA40D7zo3sA4Iz2mR/tAwBntM/8aB8AONA917i9wMqMGTPUsWNHvfLKKwoJCbG/XlpaqhEjRui5557TqlWr3P0YAPAb7uaoffv2HpnHr7Vu3VqSdOONN6p169YaMGCA3n33XcXExEiSiouLncYfP35c5eXlioiIkCSFh4ervLxcJ06cUN26de3jioqKJMk+zgpoHwA4eOIwbOPGjRc1/mJbWdmosrIy2Ww2bdiwQcnJyQo46yCyb9++WrRokXJzcxUbG6vc3FwVFRWpd+/e9jGBgYHq3bu35syZI5vN5tQAs6N9AODAKUjzo3sA4Iz2mR/tAwBntM/8aB8AONA9a6B9AOBA+8yP7gGAM9pnfrQPAJwZrX1r165VZmamvv/+e504cUKNGjVSjx49lJiY6PQsXk5OjlJSUpSXl6eGDRvqvvvu09ChQ6u8X2ZmphYtWqRDhw6pRYsWmjBhgrp06VKDe+R7tA8AHIzWPX8R6O4b7N69W0OHDq3ycGHt2rU1dOhQ7d69292PAAB42HXXXaeAgADt2bNHzZo1U3BwsPLz853GVP4cHR3t9Pevx+Xl5Sk4OFhRUVE1MHNjoH0A4FkDBgy4qD8Xory8XKWlpdq8ebPS0tIUHx+vZs2aac+ePTp16pS9a5V+3bm8vDyn1yvFxMTIZrNp79697u62X6F9AAAroXsAYGxr167Vn/70J3Xq1Elt2rTR7bffrunTp6uwsNBpXE5Ojvr376+2bduqe/fuWrBgQbXvl5mZqe7du6tt27a66667tH79+hrYC2OhfQAAq6F9AACroX0AACuhewBgbFzr8zzaBwDGVlhYqNjYWD377LN69dVXNXToUC1fvlzjxo2zj9m4caMSExPVqlUrzZs3TwMHDtTMmTO1aNEip/fKzMzUrFmzNHDgQM2bN08tWrTQyJEj9e2339b0bvkU7QMAuKuWu29w1VVX6ciRI9VuO3LkiK666ip3PwIA/EpAgPHX/Pr6669VUVGhpk2bKiQkRHFxccrOzlZCQoJ9/qtXr1ZERIQ6dOggSbrxxhsVFham7OxstWvXTpJUUVGh7Oxsde7cucpBiZnRPgBwMGr3OnXqpOLiYklSly5dNHv2bEmyX4QLCwtzGh8aGqqgoCD79qKiIgUFBalu3bpO48LDw53exypoHwA4GLV98By6BwDOjNa+yhtPEhISFBYWph07digtLU3btm3TwoULJTluPOnTp4+mTJmiTZs2aebMmQoKCtKQIUPs71V540lSUpLatWunZcuWaeTIkXrjjTfUpk0bX+1ijaN9AODMaO2D59E+AHCge9ZA+wDAgfaZH90DAGdGax/X+jyP9gGAM6O175577nH6uVOnTqpdu7Yef/xx7d+/X40bN1ZaWppatmyp6dOnKyAgQHFxcTp48KDS0tI0cOBABQcHy2azKT09XYMHD9aIESMkSbGxsdq2bZvS0tKUkZHhi93zCdoHAA5G656/cHuBlSlTpuiJJ55Qw4YN1aVLF/vrH3/8sV5++WU988wz7n4EAPiVQIP1KCEhQXFxcWrRooVCQkL03Xff6dVXX1WrVq3Uo0cPSdLo0aM1ePBgPfroo+rXr582bdqkJUuWaNKkSfaFU0JCQjRq1CilpKSofv36atu2rZYvX66dO3dq6tSpvtzFGkf7AMDBE91bunSp+2/yK4sWLVJJSYl27NihuXPnauTIkcrMzPT451gF7QMAB6Md88Hz6B4AODNa+7jxxPNoHwA4M1r74Hm0DwAc6J410D4AcKB95kf3AMCZ0drHtT7Po30A4Mxo7atORESEJKmsrEw2m00bNmxQcnKy00Pyffv21aJFi5Sbm6vY2Fjl5uaqqKhIvXv3to8JDAxU7969NWfOHNlsNst8eTrtAwAHf+ieEbm0wEqvXr2cYn3ixAkNHz5cl156qerXr68jR46opKRE4eHheuaZZ/T22297bMIAYHRGW/Grbdu2WrlypQoKCiRJTZs21aBBg/TAAw/YD5xuuOEGpaenKyUlRatWrVJkZKQmTpyooUOHOr1XQkKCJGnx4sVKTU1VTEyM0tPT1a5duxrdJ1+gfQBQPU90r3379h6YibPWrVtLkm688Ua1bt1aAwYM0LvvvquYmBhJUnFxsdP448ePq7y83H6yMjw8XOXl5Tpx4oTq1q1rH1dUVCTJcVLTzGgfAFTPaMd88Ay6BwDn5m77Nm7ceFHjXTlG5MaTi0f7AODcOO4zJ9oHANWje+ZF+wCgerTPnOgeAJwb1/rMifYBwLkZtX3l5eUqKyvTjh07lJaWpvj4eDVr1kx5eXk6deqUoqOjncZX/pyfn6/Y2Fjl5eU5vV4pJiZGNptNe/furbLNTGgfAFTPiOc7165dq8zMTH3//fc6ceKEGjVqpB49eigxMdHpebycnBylpKQoLy9PDRs21H333VflmXZJyszM1KJFi3To0CG1aNFCEyZMcFpgyxUuLbDSvn17Q/4XDgCoKjk5WcnJyecdFx8fr/j4+POOS0hIsC+0YiW0DwD813XXXaeAgADt2bNH3bt3V3BwsPLz89WtWzf7mPz8fEmOE45nn5A8eyGxvLw8BQcHKyoqqgb3wDdoHwD4B384AekP6B4AeM+AAQMuavz27dsvaBw3nriH9gEArIb2AQCshvYBgH/gWp9n0D0A8B6u9RkT7QMA7/FW+zp16mT/ktguXbpo9uzZkqTCwkJJUlhYmNP40NBQBQUF2bcXFRUpKCjI6ctjpTNfLHv2+5gV7QMA/1FYWKjY2FglJCQoLCzMfty3bds2LVy4UNKZBc0SExPVp08fTZkyRZs2bdLMmTMVFBSkIUOG2N8rMzNTs2bNUlJSktq1a6dly5Zp5MiReuONN9SmTRuX5+jSAivPPfecyx8IAGbHv6ubE+0DgOr5Q/e+/vprVVRUqGnTpgoJCVFcXJyys7OVkJBgP8m2evVqRUREqEOHDpKkG2+8UWFhYcrOzrYvsFJRUaHs7Gx17tzZ1N9sUIn2AUD1jNY+fzgB6Q/oHgCcm9HaV4kbT9xD+wDg3IzWPh628wzaBwDVM1r34Dm0DwCqZ7T2ca3PM+geAJyb0dpXiWt97qF9AHBuRm3fokWLVFJSoh07dmju3LkaOXKkMjMzfT0tv0H7AKB6RuzePffc4/Rzp06dVLt2bT3++OPav3+/GjdurLS0NLVs2VLTp09XQECA4uLidPDgQaWlpWngwIEKDg6WzWZTenq6Bg8erBEjRkiSYmNjtW3bNqWlpSkjI8PlObq0wAoA4NxYDREAYCVG615CQoLi4uLUokULhYSE6LvvvtOrr76qVq1aqUePHpKk0aNHa/DgwXr00UfVr18/bdq0SUuWLNGkSZPsC6eEhIRo1KhRSklJUf369dW2bVstX75cO3fu1NSpU325iwAAHzNa+/zhBCQAwL+5276lS5d6aCbOuPEEAOAtRjvu42E7AIA3Ga17EouLAQC8y2jt41ofAMDbuNYHALAao7avdevWks58EWzr1q01YMAAvfvuu4qJiZEk+8JjlY4fP67y8nL7OdHw8HCVl5frxIkTTguMFRUVSZLTuVMAgHV44nznxo0bL2p8+/btL/ozKjtVVlYmm82mDRs2KDk52Wn+ffv21aJFi5Sbm6vY2Fjl5uaqqKhIvXv3to8JDAxU7969NWfOHNlsNpe/QN0jC6wcO3ZM2dnZ+uGHH1RaWlpl+5NPPumJjwEAvxBorOtv8BLaBwBnGK17bdu21cqVK1VQUCBJatq0qQYNGqQHHnjAftB0ww03KD09XSkpKVq1apUiIyM1ceLEKjdcJiQkSJIWL16s1NRUxcTEKD09Xe3atavRfTIK2gcAZ3iifd4+CWm0E5D+iO4BgIO77XPlYtqF4MYTz6J9AOBgtHOePGznHbQPAM4wWvckFhfzFtoHAGdwrc8a6B4AOHCtzxpoHwA4GLV9Z7vuuusUEBCgPXv2qHv37goODlZ+fr66detmH5Ofny9Jio6Odvo7Pz/f6XmGvLw8BQcHKyoqyuvzNhLaBwBneOJ854ABAy5q/Pbt2y9oXHl5ucrKyuzX+uLj49WsWTPl5eXp1KlT9rZVOrt1sbGxysvLc3q9UkxMjGw2m/bu3Vtl24Vye4GVXbt2aeDAgTp16pRKSkp02WWXqbCw0H7gGhoa6u5HAIBfMdo3HMDzaB8AOBite8nJyUpOTj7vuPj4eMXHx593XEJCgn2hFSujfQDg4In2DRhwz/kHneVCTkIa+QSkv6F7AODMaMd91eHGE/fQPgBw5m77rPjNPv6G9gGAgxGP+VhczPNoHwA4cK3P/OgeADgz4nHfr3Gtzz20DwCc+UP7vv76a1VUVKhp06YKCQlRXFycsrOzlZCQYJ//6tWrFRERoQ4dOkg6syhZWFiYsrOz7e2rqKhQdna2OnfubJnrfBLtA4CzGbl7nTp1si+e2aVLF82ePVvSmS9bkKSwsDCn8aGhoQoKCrJvLyoqUlBQkNOimtKZBTfPfh9XuL3AyowZM9SuXTvNmTNHHTp00Lx589SqVSutWrVKs2fP1ksvveTuRwAAYCi0DwBgNbQPAIzPyCcg/Q3dAwD/w40n7qF9AOBZVvxmH39D+wDAs1hczPhoHwAYH9f6PIfuAYD/4Vqfe2gfABhbQkKC4uLi1KJFC4WEhOi7777Tq6++qlatWqlHjx6SpNGjR2vw4MF69NFH1a9fP23atElLlizRpEmT7E0LCQnRqFGjlJKSovr166tt27Zavny5du7cqalTp/pyF2sc7QMAz1q6dKlX3nfRokUqKSnRjh07NHfuXI0cOVKZmZle+ayL5fYCK99++62eeuope6jLyspUq1Yt9e/fX0ePHtW0adO0ePFitycKAP7CuOt9wVNoHwA40D1roH0A4OCJ9nnjJKSRT0D6G7oHAM6MdtzHjSeeR/sAwJnR2leJh+08h/YBgIMnusfiYsZH+wDAgWt95kf3AMCZ0c53cq3P82gfADgzWvvatm2rlStXqqCgQJLUtGlTDRo0SA888ID9n9033HCD0tPTlZKSolWrVikyMlITJ07U0KFDnd4rISFBkrR48WKlpqYqJiZG6enp9sXGrIL2AYCDJ7rnypcjXIjWrVtLOrNAZuvWrTVgwAC9++67iomJkST7PTCVjh8/rvLycvsXL4SHh6u8vFwnTpxwutelqKhIkuMLGlzh9gIrP//8s8LCwhQYGKiIiAgdOnTIvq1169as9gXAcgIDjHYoBk+jfQDgQPesgfYBgIMn2ueNk5BGPgHpb+geADgz2nEfN554Hu0DAGfuts+K3+zjb2gfADgY7ZjvbCwu5jm0DwAcuNZnfnQPAJwZ7biPa32eR/sAwJnR2pecnKzk5OTzjouPj1d8fPx5xyUkJNgbaFW0DwAcjNa9c7nuuusUEBCgPXv2qHv37goODlZ+fr66detmH5Ofny/J8eUJZ3+5wtnHeXl5eQoODlZUVJTL83F7gZVmzZrp4MGDkqQWLVpo2bJl9lVD33rrLdWvX9/djwAAv+InPYIbaB8AONA9a6B9AODgD+0z2glIf0P3AMCZ0drHjSeeR/sAwJm77bPiN/v4G9oHAA6eOOZjcTHjo30A4GC0853V4Vqfe+geADgzWvu41ud5tA8AnBmtffA82gcADv7Sva+//loVFRVq2rSpQkJCFBcXp+zsbCUkJCjgl51YvXq1IiIi1KFDB0ln7o8JCwtTdna2/ZxnRUWFsrOz1blzZ/sina5we4GV+Ph4bdiwQb1799ZDDz2kUaNGKTY2VkFBQTp69Kj+8pe/uPsRAAAYCu0DAFgN7QMA/2K0E5D+hu4BAKyG9gGA/+FhO/fQPgDwLBYXMz7aBwD+hWt97qF7AACroX0AAKuhfQBgbAkJCYqLi1OLFi0UEhKi7777Tq+++qpatWplXxBr9OjRGjx4sB599FH169dPmzZt0pIlSzRp0iT7ucyQkBCNGjVKKSkpql+/vtq2bavly5dr586dmjp1qltzdHuBlfHjx9v/86233qo33nhD7777rk6ePKnOnTura9eu7n4EAPiVAH9Z8gsuo30A4ED3rIH2AYCD0drnDycg/Q3dAwBnRmsfPI/2AYAzf2gfD9u5h/YBgIM/dE9icTF30T4AcDBa+7jW53l0DwCcGa198DzaBwDOaJ/50T4AcDBi99q2bauVK1eqoKBAktS0aVMNGjRIDzzwgP185g033KD09HSlpKRo1apVioyM1MSJEzV06FCn90pISJAkLV68WKmpqYqJiVF6errTtT9XuL3Ayq+1adNGbdq0kSTt2rVL8+bN0/Dhwz39MQBgWAbsEbyM9gGwMrpnTbQPgJUZrX3+cALS39E9AFZntPbB+2gfAKszWvt42M77aB8AKzNa986FxcU8i/YBsDKjtY9rfd5H9wBYndHaB++jfQCsjvZZD+0DYGVG7F5ycrKSk5PPOy4+Pl7x8fHnHZeQkGA/9+kpHl9g5Ww7duzQiy++SIwAWEqgEYuEGkP7AFgN3QPtA2A1RmufP5yANBO6B8CKjNY+1CzaB8CKjNY+HrarWbQPgNUYrXsSi4vVNNoHwGqM1j6u9dUsugfAiozWPtQs2gfAimiftdE+AFZD91zj1QVWAMCK6BEAwEroHgDAamgfAMBqaB8AwGqM1j4etgMAeJPRuiexuBgAwLuM2D4AALyJ9gEArIb2AQCshO65hgVWAAAAAAAAAAAAAAAAAACAz7G4GAAAAAAAAAAAAABvYYEVAPCwAJb8AgBYCN0DAFgN7QMAWA3tAwBYDe0DAFgJ3QMAWA3tAwBYDe0DAFgN7QMAWAndcw0LrJzD0S/SfD0FeNGBYyd9PQV40WV1gnz6+YE+/XTAdbTP3PYdLfH1FOAl0Q0v9enn0z34s0P/mePrKcBLCn8+5espwIsuCQ/26efTPvgzjvvM66fjNl9PAV7UpF6ITz+f9sFf/fQZx3xmVlTCcZ+ZXRLGcR/gCo75zK34ZJmvpwAvuSTUt7fv0T34M9pnbkc452lajTnfCbiM9pkX3TM32ge45uB/XvL1FOBFh4tLfT0FeFHTy2r79PNpH/wVx3zmdoznG0yrTgj3uPgjl67QtmvX7oJWtCkvL3fl7QHAr7HilznRPgCoHt0zL9oHANWjfeZE9wDg3GifOdE+ADg32mdOtA8Aqkf3zIv2AUD1aJ850T0AODfaZ060DwDOjfaZE+0DgOrRPde4tMDK8OHD+S8cAGAptA8AYDW0DwBgJXQPAGA1tA8AYDW0DwBgNbQPAGAldA8AYDW0DwBgNbQPAOBJLi2wMnbsWE/PAwBMI5B/Vzcl2gcA1aN75kX7AKB6tM+c6B4AnBvtMyfaBwDnRvvMifYBQPXonnnRPgCoHu0zJ7oHAOdG+8yJ9gHAudE+c6J9AFA9uucalxZYAQCcG0ECAFgJ3QMAWA3tAwBYDe0DAFgN7QMAWAndAwBYDe0DAFgN7QMAWA3tAwBYCd1zDQusAICHBQRQJACAddA9AIDV0D4AgNXQPgCA1dA+AICV0D0AgNXQPgCA1dA+AIDV0D4AgJXQPdcE+noCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAttXw9AQAwm0AW/AIAWAjdAwBYDe0DAFgN7QMAWA3tAwBYCd0DAFgN7QMAWA3tAwBYDe0DAFgJ3XMNC6wAgIcFECQAgIXQPQCA1dA+AIDV0D4AgNXQPgCAldA9AIDV0D4AgNXQPgCA1dA+AICV0D3XeHSBlQMHDmj//v269tprVadOHU++NQD4jUCKZCm0D4DV0T3roX0ArI72WQvdAwDaZzW0DwBon9XQPgBWR/esh/YBsDraZy10DwBon9XQPgCgfVZD+wBYHd1zTaAn3uSf//yn4uPj1a1bN/35z3/Wrl27JEljx47V3//+d098BAD4jUA3/8A/0D4AOMPd7tE+/0H7AOAM2mcNdA8AHOieNdA+AHCgfdZA+wDgDM53WgftA4AzaJ810D0AcKB71kD7AMCB9lkD7QOAMzjf6Rq393vx4sV68skn9bvf/U7p6emqqKiwb7vpppv09ttvu/sRAAAYCu0DAFgN7QMAWAndAwBYDe0DAFgN7QMAWA3tAwBYCd0DAFgN7QMAWA3tAwC4q5a7b7Bw4UI99NBDGjdunMrLy522XXPNNfaVvwDAKgICfD0DeBvtAwAHumcNtA8AHGif+dE9AHBG+8yP9gGAM9pnfrQPABzonjXQPgBwoH3mR/cAwBntMz/aBwDOaJ/50T4AcKB7rnF7gZX9+/fr5ptvrnZbSEiITpw44e5HAIBfCaRIpkf7AMCB7lkD7QMAB9pnfnQPAJzRPvOjfQDgjPaZH+0DAAe6Zw20DwAcaJ/50T0AcEb7zI/2AYAz2md+tA8AHOieawLdfYMrrrhCO3bsqHbb1q1bFRUV5e5HAIBfCQhw7w+Mj/YBgIO73aN9/oH2AYAD7TM/ugcAzuie+dE+AHBG+8yP9gGAA+c7rYH2AYAD7TM/ugcAzuie+dE+AHBG+8yP9gGAA+c7XeP2Ait9+/bVyy+/rI8++kgVFRWSpICAAH333Xd69dVX1a9fP3c/AgAAQ6F9AACroX0AACuhewAAq6F9AACroX0AAKuhfQAAK6F7AACroX0AAKuhfQAAd9Vy9w0SExO1c+dOPfTQQwoLC5MkPfDAAyoqKlLPnj2VkJDg9iQBwJ8EWnTFLiuhfQDgQPesgfYBgAPtMz+6BwDOaJ/50T4AcEb7zI/2AYAD3bMG2gcADrTP/OgeADijfeZH+wDAGe0zP9oHAA50zzVuL7ASHBystLQ0ff755/rkk0905MgRRUREqHPnzvrNb37jiTkCgF8JDKBIZkf7AMCB7lkD7QMAB9pnfnQPAJzRPvOjfQDgjPaZH+0DAAe6Zw20DwAcaJ/50T0AcEb7zI/2AYAz2md+tA8AHOiea9xeYKVSbGysYmNjPfV2AOC36JF10D4AoHtWQ/sAgPZZCd0DgDNon3XQPgA4g/ZZB+0DALpnNbQPAGifldA9ADiD9lkH7QOAM2ifddA+AKB7rnJ7gZX9+/efd0zjxo3d/RgAAAyD9gEArIb2AQCshO4BAKyG9gEArIb2AQCshvYBAKyE7gEArIb2AQCshvYBANzl9gIr3bt3V8B5lrfZunWrux8DAH4jkBW/TI/2AYAD3bMG2gcADrTP/OgeADijfeZH+wDAGe0zP9oHAA50zxpoHwA40D7zo3sA4Iz2mR/tAwBntM/8aB8AONA917i9wMqLL75Y5bVjx47p448/1vbt2zVu3Dh3PwIA/EqAKJLZ0T4AcKB71kD7AMCB9pkf3QMAZ7TP/GgfADijfeZH+wDAge5ZA+0DAAfaZ350DwCc0T7zo30A4Iz2mR/tAwAHuucatxdYueOOO6p9fdCgQXryySf13XffqV+/fu5+DAD4DVb8Mj/aBwAOdM8aaB8AONA+86N7AOCM9pkf7QMAZ7TP/GgfADjQPWugfQDgQPvMj+4BgDPaZ360DwCc0T7zo30A4ED3XBPozTf/7W9/qxUrVnjzIwDAcAID3PsD/0b7AFiNu92jff6P9gGwGtpnbXQPgBXRPWujfQCsiPZZG+0DYDWc7wTtA2A1tM/a6B4AK6J71kb7AFgR7bM22gfAajjf6RqvLrCyY8cOBQUFefMjAAAwFNoHALAa2gcAsBK6BwCwGtoHALAa2gcAsBraBwCwEroHALAa2gcAsBraBwC4ELXcfYN58+ZVee3UqVPKz8/X2rVr1b9/f3c/AgD8SkCARZfsshDaBwAOdM8aaB8AONA+86N7AOCM9pkf7QMAZ7TP/GgfADjQPWugfQDgQPvMj+4BgDPaZ360DwCc0T7zo30A4ED3XOP2AisvvPBClddCQkJ05ZVX6sEHH9SoUaPc/QgA8CuB9Mj0aB8AONA9a6B9AOBA+8yP7gGAM9pnfrQPAJzRPvOjfQDgQPesgfYBgAPtMz+6BwDOaJ/50T4AcEb7zI/2AYAD3XON2wusbNu2zRPzAADTYMEv86N9AOBA96yB9gGAA+0zP7oHAM5on/nRPgBwRvvMj/YBgAPdswbaBwAOtM/86B4AOKN95kf7AMAZ7TM/2gcADnTPNYHu/LLNZtPEiRP11VdfeWo+AAAYGu0DAFgN7QMAWAndAwBYDe0DAFgN7QMAWA3tAwBYCd0DAFgN7QMAWA3tAwB4glsLrISEhOj9999XWVmZp+YDAH4vMCDArT8wNtoHAM7c7R7tMz7aBwDOaJ+50T0AqIrumRvtA4CqaJ+50T4AcMb5TvOjfQDgjPaZG90DgKronrnRPgCoivaZG+0DAGec73SNWwusSFJsbCyrfQHAWQID3PsD46N9AODgbvdon3+gfQDgQPvMj+4BgDO6Z360DwCc0T7zo30A4MD5TmugfQDgQPvMj+4BgDO6Z360DwCc0T7zo30A4MD5TtfUcvcNRo0apYkTJyogIEDdunXT5ZdfroBfrVbToEEDdz8GAPyGRRfsshTaBwAOdM8aaB8AONA+86N7AOCM9pkf7QMAZ7TP/GgfADjQPWugfQDgQPvMj+4BgDPaZ360DwCc0T7zo30A4ED3XBNQUVFRcbG/lJaWpnvuuUeNGjXStdde63izc/xfYevWra7P0EdOlvl6BvCmA8dO+noK8KKrL7/Ep5//8ic/uPX7oztf7ZF5wLNoH/zdvqMlvp4CvCS64aU+/Xx3uyfRPqOyQvuOl1704TD8xIlS/sXGzBqFB/v082mfOVmhexLHfWb203Gbr6cAL2pSL8Snn8/5TnOyQvt+tnHMZ2bHOe4ztcgw/z7uo33GZIX2ccxnbsX8H9i0Goa6/f1obuF8p3nRPvi7I5zzNK3Gfn6+U6J9RmSF7km0z8zonrn5e/vonjFZoX3Fpad9PQV4UeHPp3w9BXhR08tq+/TzaZ85WaF9HPOZ2zHaZ1pX8GyDX3LpCu3LL7+srl27qlGjRpo2bdo5IwQAgFnQPgCA1dA+AICV0D0AgNXQPgCA1dA+AIDV0D4AgJXQPQCA1dA+AIDV0D4AgCe5tMBKRYXjG9/uuusuj00GAMyAfz83J9oHANWje+ZF+wCgerTPnOgeAJwb7TMn2gcA50b7zIn2AUD16J550T4AqB7tMye6BwDnRvvMifYBwLnRPnOifQBQPbrnGpcWWAEAnFugwYK0Zs0arVq1Slu2bNHRo0fVtGlT3X333RoyZIiCg4Pt43JycpSSkqK8vDw1bNhQ9913n4YOHVrl/TIzM7Vo0SIdOnRILVq00IQJE9SlS5ca3CMAgJEYrXsAAHgb7QMAWA3tAwBYDe0DAFgJ3QMAWA3tAwBYDe0DAFgN7QMAWAndc43LC6z885//VE5OznnHBQQEaPTo0a5+DAD4nUCDLfn12muvqUmTJpo0aZIaNGig3NxczZ49W9u3b9eMGTMkSRs3blRiYqL69OmjKVOmaNOmTZo5c6aCgoI0ZMgQ+3tlZmZq1qxZSkpKUrt27bRs2TKNHDlSb7zxhtq0aeOrXawxtA8AqjJa9+BZtA8AqqJ95kX3AKB6tM+8aB8AVI/2mRftA4Cq6J650T4AqIr2mRfdA4Dq0T7zon0AUD3aZ160DwCqonuucXmBleXLlyvgAv5LJ0YA4FsZGRmqX7++/ee4uDhVVFQoNTVVkyZN0uWXX660tDS1bNlS06dPV0BAgOLi4nTw4EGlpaVp4MCBCg4Ols1mU3p6ugYPHqwRI0ZIkmJjY7Vt2zalpaUpIyPDV7tYY2gfAMBqaB8AwEroHgDAamgfAMBqaB8AwGpoHwDASugeAMBqaB8AwGpoHwDAU1xeYGXx4sVq166dJ+cCAKbg7oJfGzduvKjx7du3/5/bz15cpdL1118vSTp48KDCw8O1YcMGJScnOx1k9O3bV4sWLVJubq5iY2OVm5uroqIi9e7d2z4mMDBQvXv31pw5c2Sz2RQSEnJRc/c3tA8AqjLaQpdr1qzRqlWrtGXLFh09elRNmzbV3XffrSFDhig4ONg+LicnRykpKcrLy1PDhg113333aejQoVXeLzMzU4sWLdKhQ4fUokULTZgwQV26dKnBPfIt2gcAVRmtffAcugcA1aN95kX7AKB6tM+8aB8AVEX3zI32AUBVtM+86B4AVI/2mRftA4Dq0T7zon0AUBXdc43LC6wAAKoX6GaRBgwYcFHjt2/fftGf8eWXXyo4OFjNmjXTnj17dOrUKUVHRzuNqfw5Pz9fsbGxysvLc3q9UkxMjGw2m/bu3VtlGwDA/Nztnqe99tpratKkiSZNmqQGDRooNzdXs2fP1vbt2zVjxgxJZxYzS0xMVJ8+fTRlyhRt2rRJM2fOVFBQkIYMGWJ/r8zMTM2aNUtJSUlq166dli1bppEjR+qNN95QmzZtfLWLAAAfM1r7AADwNtoHALAa2gcAsBK6BwCwGtoHALAa2gcAsBraBwCwErrnGhZYAQAPM3qP8vLylJWVpXvvvVehoaEqLCyUJIWFhTmNCw0NVVBQkH17UVGRgoKCVLduXadx4eHhkmQfBwCwFqN1LyMjQ/Xr17f/HBcXp4qKCqWmpmrSpEm6/PLLlZaWppYtW2r69OkKCAhQXFycDh48qLS0NA0cOFDBwcGy2WxKT0/X4MGDNWLECElSbGystm3bprS0NGVkZPhqFwEAPma09gEA4G20DwBgNbQPAGAldA8AYDW0DwBgNbQPAGA1RmvfmjVrtGrVKm3ZskVHjx5V06ZNdffdd2vIkCEKDg62j8vJyVFKSory8vLUsGFD3XfffRo6dGiV98vMzNSiRYt06NAhtWjRQhMmTFCXLl1qcI8AAEZitO75CxZYAQCDWbp0qdfe+8iRIxo9erSaNWumiRMneu1zAADwlbMXV6l0/fXXS5IOHjyo8PBwbdiwQcnJyQo46yiyb9++WrRokXJzcxUbG6vc3FwVFRWpd+/e9jGBgYHq3bu35syZI5vNppCQEO/vEAAAAAAAAAAAAAAAAAAAAAAA8DuvvfaamjRpokmTJqlBgwbKzc3V7NmztX37ds2YMUOStHHjRiUmJqpPnz6aMmWKNm3apJkzZyooKEhDhgyxv1dmZqZmzZqlpKQktWvXTsuWLdPIkSP1xhtvqE2bNr7aRQAA/I5LC6xs27bN0/MAANMIdPP327dv75F5/Nrx48c1fPhwnTp1SllZWapTp44kKSIiQpJUXFxcZXx5ebl9e3h4uMrLy3XixAnVrVvXPq6oqMjpfcyK9gFA9dztnnTmhODFuNhWfvnllwoODlazZs20Z88enTp1StHR0U5jKn/Oz89XbGys8vLynF6vFBMTI5vNpr1791bZZja0DwCq54n2wXjoHgCcm9Haxzf7eAbtA4BzM1r74Bm0DwCqR/fMi/YBQPVonznRPQA4N6O1j2t9nkH7AODcjNa+jIwMpy+RjYuLU0VFhVJTUzVp0iRdfvnlSktLU8uWLTV9+nQFBAQoLi5OBw8eVFpamgYOHKjg4GDZbDalp6dr8ODBGjFihCQpNjZW27ZtU1pamjIyMny1izWC9gFA9YzWPX/h0gIrAIBzCwgI8PUUqrDZbEpMTNS+ffu0ZMkSNWrUyL6tWbNmCg4OVn5+vrp162Z/PT8/X5LjwfKzHzxv166dfVxeXp6Cg4MVFRVVE7sCADAYT3RvwIABFzV++/btFzw2Ly9PWVlZuvfeexUaGqrCwkJJUlhYmNO40NBQBQUF2bcXFRUpKCjIaVEx6cyCY5Ls4wAA1mO0Yz5uPAEAeJvR2sc3+wAAvM1o7QMAwJvoHgDAaozWPq71AQC8zWjt41ofAMDb3G2fp7889uzFVSpdf/31kqSDBw8qPDxcGzZsUHJystPc+/btq0WLFik3N1exsbHKzc1VUVGRevfubR8TGBio3r17a86cObLZbAoJCbmouQMA/J/Rjvkk/zjnyQIrAOBhRstReXm5xo8fr82bN2vhwoVq3ry50/aQkBDFxcUpOztbCQkJ9qCuXr1aERER6tChgyTpxhtvVFhYmLKzs+0LrFRUVCg7O1udO3fmIAwALMpo3TvbkSNHNHr0aDVr1kwTJ0709XQAACZhtPZx4wkAwNuM1j6+2QcA4G1Ga58/3HgCAPBfRuseAADeZrT2ca0PAOBtRmsf1/oAAN7mbvu8+eWxlb788ksFBwerWbNm2rNnj06dOmX/YvRKZ39RemxsrPLy8pxerxQTEyObzaa9e/dW2QYAMD+jHfNJ/nHOkwVWAMDDAg224tfUqVP13nvvKSkpSadPn9Y333xj3xYTE6PQ0FCNHj1agwcP1qOPPqp+/fpp06ZNWrJkiSZNmmRfOCUkJESjRo1SSkqK6tevr7Zt22r58uXauXOnpk6d6qO9AwD4mie6t3TpUg/MxNnx48c1fPhwnTp1SllZWapTp44kKSIiQpJUXFxcZXx5ebl9e3h4uMrLy3XixAnVrVvXPq6oqMjpfQAA1mO0Yz5uPAEAeJu77eObfQAA/sZox33+cOMJAMB/Ga17AAB4m9Hax7U+AIC3ca0PAGA1Rjvu+7W8vDxlZWXp3nvvVWhoqAoLCyVJYWFhTuNCQ0MVFBRk315UVKSgoCCnZxukM889SLKPAwBYixG75w/nPFlgBQBMbv369ZKk1NRUpaamOm3LyspSp06ddMMNNyg9PV0pKSlatWqVIiMjNXHixCrfapeQkCBJWrx4sVJTUxUTE6P09HS1a9euRvYFAGBO57ugdrFsNpsSExO1b98+LVmyRI0aNbJva9asmYKDg5Wfn69u3brZX8/Pz5fkWNH57BWfz+5cXl6egoODFRUV5dE5AwCsxZM3n3DjCQDA6PhmHwAA3OMPN54AAOBJa9as0apVq7RlyxYdPXpUTZs21d13360hQ4YoODjYPi4nJ0cpKSnKy8tTw4YNdd9991W5z0U6s8DYokWLdOjQIbVo0UITJkxQly5danCPAABmw7U+AICVcK0PAGA13vjy2EpHjhzR6NGj1axZM02cONFrnwMAwMWw4sKaLLACAB5mtPW+3n///QsaFx8fr/j4+POOS0hIsC+0AgCA0bpXXl6u8ePHa/PmzVq4cKGaN2/utD0kJERxcXHKzs5WQkKC/UBs9erVioiIUIcOHSRJN954o8LCwpSdnW1fYKWiokLZ2dnq3LkzN50AgIV5on3evvmEG08AAJ5ktOO+X+ObfQAAnuZu+6x44wkAwH8Z8ZjvtddeU5MmTTRp0iQ1aNBAubm5mj17trZv364ZM2ZIOtPbxMRE9enTR1OmTNGmTZs0c+ZMBQUFaciQIfb3yszM1KxZs5SUlKR27dpp2bJlGjlypN544w21adPGV7sIAPAhrvUBAKzGiMd9Z+NaHwDA09xtn6e/PLbS8ePHNXz4cJ06dUpZWVmqU6eOJCkiIkKSVFxcXGV8eXm5fXt4eLjKy8t14sQJp/4VFRU5vQ8AwFr84XynZLxzniywAgAeFmD0s5AAAHiQ0bo3depUvffee0pKStLp06f1zTff2LfFxMQoNDRUo0eP1uDBg/Xoo4+qX79+2rRpk5YsWaJJkybZHyAICQnRqFGjlJKSovr166tt27Zavny5du7cqalTp/po7wAARmC09v0aN54AADzN3fbxzT4AAH/jbvuseOMJAMB/GfF8Z0ZGhtMCY3FxcaqoqFBqaqomTZqkyy+/XGlpaWrZsqWmT5+ugIAAxcXF6eDBg0pLS9PAgQMVHBwsm82m9PR0DR48WCNGjJAkxcbGatu2bUpLS1NGRoavdhEA4ENGbN/ZuNYHAPA0rvUBAKzGiMd9NptNiYmJ2rdvn5YsWaJGjRrZtzVr1kzBwcHKz89Xt27d7K/n5+dLclzbO/vaX+UXyEpnjiODg4MVFRVVE7sCADAYI3bv14x4zpMFVgDAwwL8oUgAAHiI0bq3fv16SVJqaqpSU1OdtmVlZalTp0664YYblJ6erpSUFK1atUqRkZGaOHGihg4d6jQ+ISFBkrR48WKlpqYqJiZG6enpTickAQDW44n2eevmE248AQB4g7vt45t9AAD+xmjnPH/NiDeeAAD8lye6t3Hjxosaf77jxLMXV6l0/fXXS5IOHjyo8PBwbdiwQcnJyU7z79u3rxYtWqTc3FzFxsYqNzdXRUVF6t27t31MYGCgevfurTlz5shms9m/fAEAYB1c6wMAWA3X+gAAVmO0a33l5eUaP368Nm/erIULF6p58+ZO20NCQhQXF6fs7GwlJCTY57969WpFRESoQ4cOkqQbb7xRYWFhys7Otj/PUFFRoezsbHXu3JlznQBgUUY+3ykZ95wnC6wAAAAAMI3333//gsbFx8crPj7+vOMSEhLsC60AAOAp3rj5hBtPAABWwjf7AACMzIo3ngAArG3AgAEXNX779u0X/RlffvmlgoOD1axZM+3Zs0enTp2yH9dVOvs4LzY2Vnl5eU6vV4qJiZHNZtPevXurbAMA4EJwrQ8AAPdwrQ8AYCVTp07Ve++9p6SkJJ0+fVrffPONfVtMTIxCQ0M1evRoDR48WI8++qj69eunTZs2acmSJZo0aZJ94ZSQkBCNGjVKKSkpql+/vtq2bavly5dr586dmjp1qo/2DgBgBlZcWJMFVgDAwwJ9PQEAAGoQ3QMAWI0R28eNJwAAbzJa+/hmHwCAt7nbPiveeAIA8F9GO+arTl5enrKysnTvvfcqNDRUhYWFkqSwsDCncaGhoQoKCrJvLyoqUlBQkFP3pDNNlGQfBwCwFiO2j2t9AABvMlr7uNYHAPA2o7Vv/fr1kqTU1FSlpqY6bcvKylKnTp10ww03KD09XSkpKVq1apUiIyM1ceJEDR061Gl85RfHLl68WKmpqYqJiVF6errTcSAAwFqM1r1KRj/nyQIrAOBhlSfxAACwAroHALAao7WPG08AAN5mtPbxzT4AAG8zWvsk4994AgDwX57o3tKlSz0wk+odOXJEo0ePVrNmzTRx4kSvfQ4AwDqMdszHtT4AgLcZrX1c6wMAeJvR2vf+++9f0Lj4+HjFx8efd1xCQoJ9oRUAAIzWPck/znmywIqF7dm9WwsXvKpvN29W3s4dioxspOx3L+xf2GA8H763Rv9+I0u7v89XcEiIYlpeq8lPTFODyxtKOvMPjdXLlmr1sqXaV7BHderUVavWbfTE9BQFBwf7ePbmYrwcAZCk995dq0ULM/XDru914sQJRTZqpG7de+ihkYkK51sZ/cqUMQna/M1X1W4b+tA4DRjyoNNrJ44Xa8Sf++voT4f1YkaWrm3D6ryeRPcAY9i7Z7cWLXztzPFd3g5FRkZq9ZpzH9/t31ege/r31cmTJXrn/Y91+S/HDTC+srIyDRtyj77P26m/PjtTt//2jipjjh8v1uA/9tWRnw5r7muLdX1b73xztlUZrX3ceAJUtSb7bWUteE35eTsVElJb17ZurWkznlfDhpG+nhouwDdffaEJiQ9Wef3q5jF67fVl9p8/+eh9LVn4qnbvyldI7dpq1fp6JYwap5iW19bkdC3BaO3jm31gVXv27FbWgte05dsz1/UaRkbq7Xecj/v+8+knWrlimb7dvEl79+5R3zv76alnn/PRjOGqsrIyJQx2HPf1+F31x31/vvvMcV9GJsd9nma09vnDjSdATUgYOkRffvF5tdvGJU9UwvARNTwjeEpZWZkS/nyP8vN26Mlpz9vbt+LNpcr5YJ3ydmzXzyeOK6rZ1frjwD+rV99+hrxR0F954r/J9u298+8ix48f1/Dhw3Xq1CllZWWpTp06kqSIX67vFxcXVxlfXl5u3x4eHq7y8nKdOHFCdevWtY8rKipyeh/AH5SVlWngPf21c8cOPff8i+p1R29fTwkX4ZuvvtD4c5zzzDzrnGel8rIyjbh/gL7P26nHn56p7r/tVRPTtAyj/VsE1/pgVRfyHMOGTz/RyuVvavOmM+c77/xDfz09jfOdRnch3Use9YA2fv1ltb8/PDFJg+4f5tU5Wo3R2se1PljVmXs8M7Vl8ybl5e1UZGSkVq1Zd87x+/ft04Bf7vFc834O93ga2DdffaGJo6sudnF182i9uuRM+yaMelAbc6tv37DEJP3pPhbL8CSjtQ/AGV98/pmGPXBfldejY1rozRWrfTAjeEpZWZmG//J8wxO/er7hrRX/1pv/WHLmmfa6oWp/w00anpikxk35AhhPMWL3/OGcJwusWFh+/k7lfPSh2rRtp4qKChX/cvEY/udfry9UZsZLuvtP9ythVLJOnizRt998rVO2UvuYl1+crnVrVmvgfQlq3aa9jhcX6avPN+j06XJJLLDiSdzIAxhTUWGhbr45VkMfTFBoaJh27tyhV9LTtGP7Ns17baGvp4eLMHrio/r5xAmn19a9s1pvLVuqm3/Tpcr4rHkv19TULInuAcaQn5+njz/6UNe3bSepQkVFhf9z/Mzpz6huaKhOniypmQnCY/71xt917OjR/zlm/tw5NTQbazJa+7jxBHC2cMFreinlRd3/wINKnvCwSkpK9PWXX6i0tPT8vwxDefixqbr6mmj7z7UvucT+n7/87FM9MSVZt/+ut4aOGK2TJ0u0ZME8PTx6mF59fZl90Wl4htHaxzf7wKry884c91Ve16vuuG/9+hxt27ZVHW64UcXFXPfzVxdy3DcvneM+bzJa+/zhxhOgJjz6f3/ViRPHnV5bvXKF/vHGEt3atauPZgVP+Ofrf9exo0eqvL5w/ivq9JvOurP/H1U3NEyfb1iv6U89rh/371PCyDE+mKk5Ga17lWw2mxITE7Vv3z4tWbJEjRo1sm9r1qyZgoODlZ+fr27dutlfz8/PlyRFR0c7/Z2fn+90jjMvL0/BwcGKiuLmXfiPxX/P0tEj//s4Acb38GNTdc05znme7d//WHze40K4zmjt41ofrOpCnmNY/3GOtm3dqhtuvInznX7of3UvedL/6edfHeOvzV6lFf/+hzrdcmuNzdEqjNY+rvXBqvLz87T+ow91fdu2qpBUfJ57PJ+f/ozqhtblHk8/MvHRJ3V187PaV/tS+38eN/mxKu17N3u1Vv77H4r9De3zNKO1D4Czvz71jGJiWth/vuQc58jgP/59jvtcVi//l55/9kndM+g+JSZP0tGjR/TaK2l6eOwIvfb6m7rkkkureTdcLCN2zx/OebLAioXF39Zd3br3kCQ9PfUJffrL/8PCv+wr2KPMjJc0MnmK+vYfYH89rrPjZNKm3C+16s1/6JlZLzs9eH5L1+41OlcA8KW7/niP0883x3ZS7ZDaeurJx/Xj/v26snFjH80MF6vZWRfdKmWkztDV0S10TUxLp9fztm/V2reW66GkyXppxlM1NUUAqHFd47vptm63S5KmPf1XffrJx+cc+8H772nz5o16cNhDevF5vtnHnxz87wEtmD9XyZMe1bQnH6t2zPZt3+ntlcs0buIUzXz2yZqdIHyCG08Ahz27d+ullBc15S+PasDAQfbX42/r9j9+C0Z19TXRuq5t9d+Ave6dt9Xoisb6y5PT7BeHolu01OC77tAX//lEv+/TrwZnCgA1I/62burW/cxx3zNPVX/cN+HhKXp48l8kSf378u3W/ujgfw8oc95cjZ/0qJ4933Hfw1M085kna3aC8Al/uPEEqAnRMTFVXntu2jNq0bKlWra61gczgiecaV+6xk9+TM/+9VGnba8u/qcuu6y+/eeOsXEqKizSG4sXaujwUQoKCqrp6aKGlJeXa/z48dq8ebMWLlyo5s2bO20PCQlRXFycsrOzlZCQYD83sHr1akVERKhDhw6SpBtvvFFhYWHKzs62t66iokLZ2dnq3LmzfREywOj+e+CAXklP018ee0L/9+gUX08Hbrjmf5zzrHTovwe0cP5cjZv0qJ6bWv1xIcyFa32wqgt5jmHipCmaNOXM+c4/9Pl9jc4P7vtf3Tv74fNKc158Ts1jWii6RStvTw0AfML5Hs8nteF/3OP54S/3eD4wbIRSnp9RU1OEm65uHq3r2pyjfdU8/5D24gxdE91C0S1aVvMbAGBeMTEt1K59B19PAx5S+XxD0qRHNf1X97m8u+Ytdbixo8aMn2x/rX79BhqfmKCtWzbrhptia3q6qCH+cM6TBVYsLDAw0NdTgAe8s3q5agUH6/d9+p9zzFsr/qUmUc2cFleB9/C/LMB/RERESJLKysp8PBO4Y9/e3dqxdYseGJXk9Prp06eVNusZ9RswWI2b8O1j3kL3AGO40OO7kp9/1qwZ0zRm3AQF1eLmc38z58UZ6nzrbWp/Q8dqt58+fVovTH9K9wwaoiZRzWp4dtZB+wDjWr7s3woODlb/u/7o66nAy8rLy3RpnUudVt6vGxomSao4XeGraZkW7QOM4UKO+7j25/9eemGGOne9Te1v/B/HfdOe0oBBQ9S0Kcd93mK0/yX5w40ngC/s3v2Dtny7WckTHvb1VOCGl154Tl26dlOHatp39uIqlVq1vk6rV/xbJ04cV3h4RE1M0fSM1j1Jmjp1qt577z0lJSXp9OnT+uabb+zbYmJiFBoaqtGjR2vw4MF69NFH1a9fP23atElLlizRpEmT7AunhISEaNSoUUpJSVH9+vXVtm1bLV++XDt37tTUqVN9tHfAxZv53DTFd+uuGztWf5wAc0lLmalbut6m9h1u8vVUTMuI7QOsiPOdOFvBnt3a9t23GjFmvK+nYkr8Lwkwhou/x3O8gmrx2KdZFezZre3ffavho5N9PRVTon0AUHPS/sfzDeVlZQoNC3d6rW5oqCTu8/Qkuuca/k0b8HNbv92oqGbX6N3slXp9wTwdPnxQV10TrYSRSfYFVbZu3qiYVq21ZMHftOJfr+t4cZFatm6jh8ZO1LXX821knnb2gx0AjKe8vFxlZWXK27lDGXPTdGvXeEU140Z0f/bB2rcUGBiobj3vcHo9e8W/dPTIEd17X4J2fPetj2ZnfnQP8C/zXklXgwYN1O+uP2rVymW+ng4uwmefrtcXn32qv/9rtU7ZbNWOWfnmUh098pOGPDBcW7dsruEZWgftA4xr4ze5uqb5NVq5YrnmvTJXBw/+V9HRMUqaMFFdbj3/g6YwlscnjVNh4TFFRNTTLV27afjo8Qr/ZaHU3/ftrynjRuqfr2fp973/oJKSEv0t7UVFNrpCt/7yjU/wHNoHADWj8rhv8b/Pfdy34s2lOnLkJw15cLi2fstxn7fQPsA/vLVqpQIDA3VH776+ngpc9J9PP9bn//lUS/79lk6dqr59v/ZN7pdq0OByhf3qZky4zojdW79+vSQpNTVVqampTtuysrLUqVMn3XDDDUpPT1dKSopWrVqlyMhITZw4UUOHDnUaX7mo2OLFi5WamqqYmBilp6erXTvul4J/+OTjHG34dL1WvLVGtnMcJ8B//N+vznmOOOucpyR9vmG9vvzsU2X9c9U5jwvhPiO2DwDM6HzdO9u7a1YrMDBQPX57R7Xb4R7aB/iXea+kq36Dy/WHu/6o1SuX+3o6uAiPT0pSUeExhUfUU+eu3TQsMfmc7XvvnTPtu/13tM8baB9gbEljE3Xs6FHVu+wydet2u5LGT1REvXq+nhZccPbzDdWdv+7T/496/pm/6r133tZvOnfV0SM/KeOlF9WiVWu1u4EFpj2F7rmGBVYAP3fkp8P66dBBLZo/VwmJSbrssgZa8e/X9dcpSUpf8A9d3TxGR44c1tefb/j/9u49Tsq6bvj4dzksioCKqCnorQGLBIsiSeRpFTtomgfK8jYPKGaopaZ5Tro1DVMTBR48kGDisSe7807FvM2QLNP0MfEskKmAmgLKaTk6zx/K4rqIMDuz18z83u9e/LEz1+5+B3M/XtfMfDde/eeM+P6ZF0R1u+q4/abxcd4PT4qJd/5PbLb5Flk/jIoiR1Da6vb4QixcuDAiIr64+55x+S+uznYgmu1PD0yOvrsMiC5bbd1w27vz58Wvbhgbp54zIjbaaOMMp6t8ugfl458zZ8Ttt94cv7zpVhdRysyyZcvi6isujaEnnBRdumwZb8yZ3eSY+fPmxvhrR8dZF1ykfUXm3x4oXe+883b8+6234tr/MzpOO+NHscUWXeL2W2+J075/ctx51++iR4+eWY/IetikQ4c4/MhjY5cBu8XGG7ePF56bFrf96sZ4/tmn49qb7ozq6urY9fNfiIt+Pip+NuLcuPbqKyIiYpttu8YVY8c3+Y0HNJ/2ARTfsmXLYtTll8Zx3/2U875xo+Ns531Fp31QHu675/cx4PO7xdaf+UzWo5CHZcuWxaifXxrHfffk6LLl2tv3cU8+/rd46IH74+TTfuQadwGV4t/kQw89tF7H1dXVRV3dpy/VHTZsWMOiFSgny5Yti5GX/jS+d/L3Y8stt4rZs2dlPRJ52qRDh/jWx6553vrhNc/rPrzmuXzZsrjmyp/FsSecFFt02TLeXI82kp9SbB9AJVmf7n3cg3+4N3bu//nYcmvn+MWgfVA+/jlzRtxx66QYf9Mtrn+VkQ9e53JM7Lzr6vY9E7ff/EH7xk28Y63t++Mf7ot+/QfElltpXzH4twdKU4eOHeOYocfH53cbGO3bt49npj0dE355Qzz99D/i9l/ftdafl5SuZcuWxTUfvr9hi094ncv+Bx4SK5aviJH/dX6sXLkyIiJqdvpcXDH6umjTxnqLQtG9/JT1/wPnzJkTjz/+eBx66KFZjwKZyeXej/r6JXH+xZfHwN33ioiIfrvuFkO/dWD8+taJcfaFl0bu/fejfvmSuPBnV8UOn+0RERG9eveNY755QNz9mzvi2O+ekuVDADaA9jXfLydOiqVL62P69Jdj/PXXxqmnDI/rfzkxWrdunfVo5OHFZ6fFG7Nfj28f3fgFcb8ce1X03Olzsec+X8poMqBQtK9wRl7yX/G1gw6JPn1rsx6FDXTLxPHRpm3b+OYR3/nEY8Zdc2X06t0n9hn85RacDCgG7cvf++/nYsmSJXH5L66Ovfb+4M01u+02MA484Msx8cbxcenIyzOekPXRs1fv6Nmrd8PHuwzYLXr26h1nn/q9eOiB+2L/gw6N5595Oi676PzY76tfi7r9vhL1S5bEHbdMjHNPPynGjJ8UnbfokuEjADaU9kHEpPU47/s/V18ZO/XuE/vs57wPypnuFca0p/8Rr7/+Wgw78XtZj0KeJk24Idq2bRuHr6N9HzXr9VfjJ+efFQMGDopvHXl0kacDCkn78vfLG66Ltm3bxpHf8XOv3H3SNc+zPnLN85abxkfbNm1jyLePzHBSoBC0j9StT/c+6vlnno45s16P7xz73RaeFCgU7Sucyy65KL520MFe41lmPql955z2vXjogcmx/0GHNDr++Wc/aN+Rx57Q0qMCBaB7+evd+3PRu/fnGj7ebeAXovfn+sTw7x4fk++9Jw45bEiG07GhVr+/4RvreK7vkYcfirFX/Ty+fdTQ2G3Q7jF/7tz41S+vi3NOPznG3PCraLfRRi04MTTWKusBmuOZZ56J8847L+sxIFOrfyPrzgN2a7itbdu20ad2l3j1lZkNx2zeeYuG5SoREZtt3jl2/GzPhmMonKqq5v2BddG+5tupd+/Ypf+ucfi3jogrR42Ovz/+WDz04P9mPRZ5euiBe6O6ul3sue+aRSovPjstHn7w/jh62MmxaOGCWLRwQdTX10dERH39kliyZHFW41ak5nZP+/g02lcYD9x/X7z04gsx9PgTYuGCBbFwwYJYWr80IiIWL1oU9UuWZDwhn+TNN+bE7ZMmxLDhP4j6+vpYuHBBLFm8KCIili5dGosWLYznnnk6HvzD5Bj2ve/HwoULYuHCBQ3/TOuXLIkli7WvkLSPYtO+/HXq9MF1st0GfqHhtrbV1bFL/11j5owZWY1FAXz+C7tHp06bxkvPPxsREWN+MTL61O4SPzx3ROy626DYo25wXDbq2li44L34zR2TMp628ugexaZ9pO7NN+bE7TdPiBM+ct63+MPzvmUfP+8bvua8b0m9875i0T6KSfcK457f/0+0a9cuvvyV/bMehTy8+cacuO3mCXHCST+I+qWN27d06dJYtHBho+Pfefvf8cNTToyttv5M/OyKa/zijAJzvZNi0778zJkzO26a8Ms45QenRX19fSxYsCAWL1r9s7I+Fn7sZyXlZ/U1zxeffzbefGNO3HHLxDjue9+PpfX1sejjbVzkn3chaR/Fpn3Q1Ee793H/e/89Ud2uXdT5hUJFo3sUm/YVxurXeB7b6DWeH7z+3Ws8y8/nv/DF6Nhp03jphabte/D+e6O6XbvYW/uKRvsoJt0rrC/uvkdsuulm8dyzz2Q9ChvgzTfmxB2f8v6GXC4XV/7sv2L/gw6JE085PfoPGBiDv3JA/Pyaa+PlF5+P+++9O+NHUTlc78xPm6wHAJrnP3bs3vDGgo/K5XKxfNmyhmNe+9c/mx4TuVixfHnRZ0xNq0i0KFCGevf+XFRVVcVrr72W9SjkYdXKlTH1oQdi4B57R/tNOjTc/vprr8SqVSvjjOHHNPmcC344PP5jx+5x7aS7WnLUiqZ7UB5e+efMWLx4cRx60Feb3Dfk4ANiz73r4pqx12cwGZ/mjTmzYvny5THinB82ue/nPx0Ro68cGaefdUGsWrUyTjq+6QboM77/3djxsz3iV3f+rgWmTYP2Qenq3qNHPPvMtCa353K5WPbhdTLK3IfP5PzrnzPjW9/Zs9Fdm3ToEF27bR+zneMXnPYBFNcbsz8477twLed9l/10RFxz5cg4/ewPzvuGH9f0vO+Hp3xw3nfzr3/XAtOmQfugtK1cuTIeuP++qNtn3+jQocOnfwIlZ86H7fvx2Wtp38UXxjVX/Cz+95EnIiJiwXvvxg9P+W60btUqfjHmumi/ySYtPW7F0z0oTbNnffCz8swfntrkvv+68IL4+c8ujb898VQGk1FoVVVV8eac2bFi+fL4r/POaHL/FZeOiDFXjYzJUx7PYLrKpH0A2an62Lu2Vq1cGX968A/xxT3rYhPn+EWjfVAeXvnnP2Px4sVx2EFNl0p/4+CvxZ5718XVY6/LYDKaY23tm7K6fZtoX7FoH5ShVDc8lKl1vb/h8p+OiDFXjozbf3d/zJ83L2p6f67R/Z/ZZtvotOlmMcvrPAtG9/JTkgtW9ttvv/U6bunSpUWeBErfF/fcJx649+546onHYtAedRERsXz58nhu2lPR//ODIiJi0J77xNP/7+/xr39Ojx0+2zMiIt6dPzf+NXNGfPPIYzObvVL57znyoX3Z+MdT/y9yuVx0265b1qOQhycf/2sseHd+DP7qgY1uH/CFPeKy0eMb3fbPGS/FDaOvjJPPOC9qevdpyTErnu6RL+1rWV8/5LAYsNvARrf99S+PxK8mjI8rrhod223/HxlNxqfpUbNTXHPdhEa3zZv7Tlx0wdlx7LDh8fkvfDG6bfcfTY6Z/tJLMXbUz+OHZ/84dvqc9hWS9pEv7Su+ffbdL+7+79/GY397NOr22TciPrhO9tT/ezIGDdo94+lojr//7S+xYMF70btPbUR88CTbSy881+iYxYsWxexZr0W//p/PYsSKpn3kS/tg/fTotVOM/tg53dzV530nDI/dPjzv+/gx019+KcZc9fM44xznfYWmfeRD91rOX//ySMyfPz8OPOjgrEchTz177RSjr5/Y6LZ5c9+J/zr/rBh6wvDY7cNz+Pr6JfGjU0+KBe+9F+NunBSbd94ii3Ernu6RL+0rrl479Y5fTry50W3vvPNOnHvWGXHi8JPji7vvkdFkFMrjH17z3KlPbfSo6RWjxjV9PvCnF54dRx//vfj8wC9mNGVl0j7ypX2Qv492r/Htf4333p0fX97/oIwmS4P2kS/ta1lre43no3/5c/xqwi/j8quuie233yGbwcjL3//2l1i44L3Y6XN9G9/+2Aft+9LH3v9AYWkf+dC9bPzlkT/He++9G7W1/bIehQ3Qo2anuHot72+4+IKz45gP39+w2eadY+ONN46Xnn8uDjx4SMNxb8yZHQveeze26dq1pceuWLqXn5JcsPLWW29FTU1N1NbWrvO4WbNmxV//+tcWmqry1NfXxyNTH46ID/4u65fWx//+4f6IiOhTWxvbbusHVDkYtOc+0bvvznH1ZRfFccNPjc6du8Tdv7k9Fi1cGId/Z2hERHzt4CHxP3fdERedd0Yc+91Tol27jeL2m8fHRhtvHF8f8u1sHwAQEdrXEoZ/d1h8YdCg6N6jZ1RXV8eLLzwfN028MWpqesXgwV/Kejzy8Kc/3BedNt0sPj+o8QuHOm/RJTpv0WWtn9OjpnfU9O671vuAlqV9hVVfXx9/+fPq87vXY2n90njwgQ/P7/rWxrZdu8W2XRsvFJszZ3ZERPTbpX906bJlyw7MeuvYsVP0H9D4idM3Pvxnt8NnPxs79x8QERFbdFl7+2p26t3wZnQgW9pXfPvsOzh23qV/XDTix3HqD8+ILl26xO233hILFyyIocNOyHo81tPPfnJufGabrlHT+3PRvv0m8cJzz8QdN0+IHjU7xb5fPiAiIg49/D/jmisujatGXhR77fvlqK9fEv/3tl/FiuUr4sBDv5HxIwBW077Cqq+vj0c+PO+bPev1WLp0afzvR8/7tu0ac+bMjueefSYiIhYvWRxvvDGn4Zg996qLjTfeOJvhWaeOHTtF/89/wnnfjs77oFzoXsu59/f/E5tttlnssdfeWY9Cnjp27BS7flL7Ptu9oX0XnHV6vPj8s3HmeRfG/PnzYv78eQ3H1/TqHdXV1S03NNCE9hVXp06dYreBX2h02+zZsyIi4rPde8SuAywZLieX/uTc2ObDa54bf+ya5+AvHxBt27aNXQbs1uhz3mw4L+we/T5sI5At7Sus9Xkfw5w5s+O5Zz683rl4ccyZM7vhmD33dr2zVH1a9z7qwfvviU6bbhZf2H3PjKYF1kX7CmtpfX088uepEfHhc331S+PBB/4QERF9+vaNbbt2jW0/9kbjN7zGsyz87CfnxTbbdo2eO30u2rdvHy8890zcOWlio9e5rLa6fQO1D0qO7hXfeef8KLp27Raf69M3Ntlkk3hm2tMx8cbx0Wun3rH/AV/Lejw2wPq+v+GQbx4R//e2m6NDhw4xYOAXY968uTFpwvWx2eabx+CvHNDk60JLKskFKzU1NdGtW7e46KKL1nncH/7wBzFqhnnz5saPzjit0W2rP774kpFxyGFD1vZplJhWrVrFxVeMifFjfxE3jPlFLF+2LGp694mfjx4fO3y2R0REbLRx+7h89Pi4bvQVcc3PL473c+9H7c4D4kc/vsRv+CmCqrDyiw2nfcXXt7Y27r3nf2L2rA9ecLJt127x7SOOjKOPPS7aevFd2alfsiT+9pcp8aX9vx5t2rTNepyk6R750r7Cmj9vbpzzo9Mb3bb645/89Gdx8CHO76BQtI98aV/xtWrVKsb8n+viF1f+PH5x+c9j2bKl0advbYyf8Kvo0aNn1uOxnnbYsUf88YF747d33hrLli2LLbfaOg44+LA45oSTom3bD87/Dv7Gt6O6ul38929ujz8+cF+0a7dR9OzVO64ad2Ns/x87ZvwIKo/2kS/tK6z58+bG2Wee3ui21R9f9NOfxcGHDoknHn8sfnLh+Q33v/3vf8cTf388IiLuvf/B2PhjizeBtdM+8qF7LWPJ4sUxZcpDcfDBhzacH1C5Hn/0LxERccWlTf+9+r+/fyC28YujCkL3yJf2wfpbfc3zro9d8zz2I9c8aTnaR760r7DW530Mf3/ssRjx4/Ma7v/o9c77HvhjdHW9syStb/fqlyyJv/55SnzlwIO9BrTItI98aV9hzZs3L8792Gs8z/3Iazy/fshhLT8UBbHDZ7vHQw/c95HXuWwV+3/9sDjmhOFN2vfon6fEV76mfcWmfeRD94qvR4+ecd+998Rtt9wcy5Yti6223joOHfLNGH7y972vr0J99+RTY/PNO8fk3/8u7rrztujQsWN8rm+/OOHkU2OzzTbPeryKoXv5KckFK3379o2pU6eu17G5XK7I01Surl27xdPPvZT1GBRAp06bxpnnXxxnnv/Jx2z1mW1ixM+uarmhElalR+RB+4rv+6eeHt8/9fSsx6BANm7fPv77wb+t9/H9dt0t7nvkH8UbKGG6R760r7C27dotnpz24gZ9zsGHDLF4pUxts23XmPr3Z9d5TP8BAz/1GPKjfeRL+1rGppttFhdfMjLikqwnIV9HDj0hjhx6wjqPqaqqigMOPiwOONgLjFqC9pEv7Susbbt2i6eeWfd538GHDomDD3WeVwm22bZr/PmJTznv+/zATz2G/Ggf+dC9ltF+k03isSf+kfUYFME223aNR558rtFtH/+Y4tA98qV9Lc/rPcvXd4aeEN/5lGueH/eZbbvGnx57pkgTpU37yJf2Fdb6dO2Qw4b4hbFlaH27t3H79jH54cdbYCK0j3xpX2Ft27VrPDHthQ36nK8fcpjFK2XgyGNPiCOPXb/23TtF+1qC9pEP3Su+Yd/9Xgz77veyHoMi2WbbrvHwx9670KZN2zji6OPiiKOPy2iqNOhefkpywcoJJ5wQdXV1n3pcXV1d/PGPf2yBiQDWXysbv8iD9gHlSvfIl/YB5Ur7yJf2AeVK+8iX9gHlSvvIh+4B5Ur3yJf2AeVK+8iX9gHlSvvIl/YB5Ur7yIfuAeVK9/JTkgtWtt9++9h+++0/9biNNtoounbt2gITAaw/G7/Ih/YB5Ur3yJf2AeVK+8iX9gHlSvvIl/YB5Ur7yIfuAeVK98iX9gHlSvvIl/YB5Ur7yJf2AeVK+8iH7gHlSvfy0yrrAQAAAAAAAAAAAAAAAAAAAAAAiqVN1gMAVBobvwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie7lx4IVgAKrCkUCIB26B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6lx8LVgAKrJUeAZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3ctPq6wHAAAAAAAAAAAAAAAAAAAAAAAoljZZDwBQaarCyi8A0qF7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7+bFgBaDAqvQIgIToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXn4sWAEoMBu/AEiJ7gGQGu0DIDXaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7uWnVdYDAAAAAAAAAAAAAAAAAAAAAAAUS5usBwCoNK0s/AIgIboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXHwtWAAqsKhQJgHToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXn4sWAEosCo9AiAhugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAlupcfC1YACkyPAEiJ7gGQGu0DIDXaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7uWnVdYDAAAAAAAAAAAAAAAAAAAAAAAUS5usBwCoNK2q7PwCIB26B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6lx8LVgAKTI4ASInuAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInu5ceCFYBCUyQAUqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7eWmV9QAAAAAAAAAAAAAAAAAAAAAAAMXSJusBACpNlZVfACRE9wBIjfYBkBrtAyA12gdASnQPgNRoHwCp0T4AUqN9AKRE9/JjwQpAgVXpEQAJ0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b38WLACUGB6BEBKdA+A1GgfAKnRPgBSo30ApET3AEiN9gGQGu0DIDXaB0BKdC8/FqwAFJoiAZAS3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3ctLq6wHAAAAAAAAAAAAAAAAAAAAAAAoljZZDwBQaaqs/AIgIboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXHwtWAAqsSo8ASIjuAZAa7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInu5ceCFYAC0yMAUqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7+WmV9QAAAAAAAAAAAAAAAAAAAAAAAMXSJusBACqOlV8ApET3AEiN9gGQGu0DIDXaB0BKdA+A1GgfAKnRPgBSo30ApET38mLBCkCBVSkSAAnRPQBSo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+A1GgfACnRvfxYsAJQYFV6BEBCdA+A1GgfAKnRPgBSo30ApET3AEiN9gGQGu0DIDXaB0BKdC8/rbIeAIDievXVV2PEiBFx2GGHRZ8+fWLw4MFrPW7q1Klx2GGHRW1tbQwePDhuuummtR43ceLEGDx4cNTW1saQIUPikUceKeL0AAAAAAAAAAAAAAAAAAAA0DwWrAAUWFUz/xTa9OnTY8qUKdG1a9fo2bPnWo95+umn4+STT45evXrF+PHj44gjjojLL788Jk2a1Oi4iRMnxpVXXhlHHHFEjB8/Pnr27BnDhw+PZ599tgiTA1AOmts9izIBKDfaB0BqdA+A1GgfAClxvROA1GgfAKnRPQBSo30ApMT1zvy0yXoAgIpTYkUZPHhwfOlLX4qIiBEjRsQjjzzS5JixY8dGTU1NjBw5MqqqqmLQoEHx73//O8aOHRtHHHFEtG3bNpYvXx7jxo2Lo446Kk488cSIiBg4cGC8+OKLMXbs2Ljuuuta9HEBUCJKrHsAUHTaB0BqtA+A1GgfACnRPQBSo30ApEb7AEiN9gGQEt3LiwUrAAVW1cwiPf300xt0/M4777zO+1u1arXO+5cvXx6PPvponH766VFVtWb2r3/96zFp0qR46qmnYuDAgfHUU0/FggUL4sADD2z0tQ888MAYM2ZMLF++PKqrqzdodgDKX3O7Vwyvvvpq3HjjjfHMM8/Eyy+/HFtvvXU89NBDTY6bOnVqjBo1KmbMmBFbbrllHHPMMTF06NAmx02cODEmTZoUb7/9dvTs2TPOOOOM2HPPPVvgkQBQikqxfQBQTNoHQGq0D4CU6B4AqdE+AFKjfQCkptTa570NABRTqXWvXFiwAlBgVc3s0eHf+tYGHf/SSy816/u99tprsWLFiujevXuj21d/PHPmzBg4cGDMmDGj0e2r9ejRI5YvXx6vv/56k/sAqHzN7V4xTJ8+PaZMmRL9+vWLXC4XCxYsaHLM008/HSeffHIcdNBBcc4558S0adPi8ssvj9atW8fRRx/dcNzEiRPjyiuvjNNOOy369esX//3f/x3Dhw+PO+64I/r27duSDwuAElGK7fMEHADFVIrtA4Bi0j4AUqJ7AKRG+wBIjfYBkJpSa5/3NgBQTKXWvXLRKusBAMjWe++9FxERHTt2bHR7hw4donXr1g33L1iwIFq3bh2bbLJJo+M6derU6OsAQNYGDx4cU6dOjbFjx0a/fv3WeszYsWOjpqYmRo4cGYMGDYoTTzwxjjzyyBg7dmysWLEiIiKWL18e48aNi6OOOipOPPHEGDRoUIwcOTK6d+8eY8eObcmHBADrtPoJuK5du0bPnj3XeszqJ+B69eoV48ePjyOOOCIuv/zymDRpUqPjVj8Bd8QRR8T48eOjZ8+eMXz48Hj22Wdb4qEAwHp59dVXY8SIEXHYYYdFnz59YvDgwWs9burUqXHYYYdFbW1tDB48OG666aa1Hjdx4sQYPHhw1NbWxpAhQ+KRRx4p4vQAsGF0DwAAoLI57wMAAKhc3tsAAKWnTdYDAFSa5i78+vWvf12QOQCgJRRi0eXTTz+9QcfvvPPO67y/Vat175Fcvnx5PProo3H66adH1UdWdX7961+PSZMmxVNPPRUDBw6Mp556KhYsWBAHHnhgo6994IEHxpgxY2L58uVRXV29QbMDUP5Kccnz4MGD40tf+lJERIwYMWKtL5L86BNwVVVVMWjQoPj3v/8dY8eOjSOOOCLatm3b5Am4iIiBAwfGiy++GGPHjo3rrruuRR8XAKWhFNvnt/sAUEyl1j7dA6CYSq17AFBspdg+530AFFMptu/VV1+NG2+8MZ555pl4+eWXY+utt46HHnqoyXFTp06NUaNGxYwZM2LLLbeMY445JoYOHdrkuIkTJ8akSZPi7bffjp49e8YZZ5wRe+65Zws8EgBKUXPb570NAJQT53z5sWAFoNCaWaRPO7EqtE033TQiIhYuXNjo9kWLFsWqVasa7u/UqVOsWrUqFi9eHJtssknDcaufzFt9HACJKcCZ2Le+9a0NOv6ll15q1vd77bXXYsWKFdG9e/dGt6/+eObMmTFw4MCYMWNGo9tX69GjRyxfvjxef/31JvcBkIACtM8TcACUlRJ8Bs5yMQCKqsTap3sAFFWJdS+iPF50CUAZK8H2Oe8DoKhKsH2WiwFQVM1sn/c2AFBWnPPlxYIVgAKrKsUircP2228fbdu2jZkzZ8a+++7bcPvMmTMjYs2J10dPzPr169dw3IwZM6Jt27ax3XbbteDUAJSKcuteRMR7770XEREdO3ZsdHuHDh2idevWDfcvWLAgWrdu3WixWMQHS8c++nUASEsh2ucJOADKSXPbV+jFYhGWiwFQXKXWPt0DoJhK8bm+cnjRJQDlqxDtc94HQDkpxfM+y8UAKKZSbN+6eG8DAM1Rit0rh3M+C1YAElddXR2DBg2KyZMnx7BhwxqegLvnnnti0003jV122SUiInbdddfo2LFjTJ48uWHBSi6Xi8mTJ8cee+zhiTcA8vbrX/866xEAoKJ5Ag6ALLX0YrEIy8UAyJalmgDQPOXwoksA0ua8D4CU+GUKAKTGexsASE2KC6UtWAEosKoSW/hVX18fDz/8cEREzJo1K+rr6+P++++PiIja2tro2rVrnHLKKXHUUUfF+eefH4ceemhMmzYtbrvttjjrrLMaAlNdXR0nnXRSjBo1Kjp37hy1tbXxu9/9LqZPnx4XXXRRZo8PgGwVonvr84RaIW266aYREbFw4cJGty9atChWrVrVcH+nTp1i1apVsXjx4kZvNF/9W/JWHwdAWgrRPk/AAVBOSu165/qwXAyA5ii39ukeAM1RiO6l+KJLAMpXuZ3zRTjvA6B5mts+v0wBgHLT3PZ5bwMA5aQQ1ztTXChtwQpAgZXa829z586N0047rdFtqz8eOXJkDBkyJPr37x/jxo2LUaNGxe9///vYaqut4swzz4yhQ4c2+rxhw4ZFRMStt94a11xzTfTo0SPGjRsX/fr1a5HHAkDpKbXurY/tt98+2rZtGzNnzox999234faZM2dGxJoTr4+emH20dTNmzIi2bdvGdttt14JTA1AqCtE+T8ABUE6a2z6LxQAoN9oHQEoKcb0zxRddAlC+CtE+530AlJNyfI2n5WIANEe5tc97GwBojnLrXkRpnPNZsAJQaCVWpG7duq3Xi1Pq6uqirq7uU48bNmxYw6IVACi17q2P6urqGDRoUEyePDmGDRvW8Jvt7rnnnth0001jl112iYiIXXfdNTp27BiTJ09uuAiZy+Vi8uTJsccee/iNdgCpKsP2eQIOgGYps9/sE2G5GADNVGbt0z0AmqUMr3eWwosuAShjBWif8z4Aykoz22exGABlp8yueXpvAwDNUoDupXjeZ8EKAABQUerr6+Phhx+OiIhZs2ZFfX193H///RERUVtbG127do1TTjkljjrqqDj//PPj0EMPjWnTpsVtt90WZ511VsPFxerq6jjppJNi1KhR0blz56itrY3f/e53MX369Ljooosye3wAsKE8AQdAaiwXAyAlugdA1lJ80SUAtCTnfQBkyS9TAIDm8d4GAEpdigulLVgBKLCqclt1CQDNUIrdmzt3bpx22mmNblv98ciRI2PIkCHRv3//GDduXIwaNSp+//vfx1ZbbRVnnnlmDB06tNHnDRs2LCIibr311rjmmmuiR48eMW7cuEYvRAEgLaXYPk/AAVBMpdi+T2O5GADNUW7t0z0AmqMQ3UvxRZcAlK9yO+eLcN4HQPOUY/ssFwOgOUqtfd7bAEAxlVr31kcpnPNZsAJQYFXl1yMAyFspdq9bt27x0ksvfepxdXV1UVdX96nHDRs2rOFiJACUYvs8AQdAMZVi+ywXA6CYSq19ugdAMZVa99ZHKbzoEoDyVYrtc94HQDGVYvs+jeViADRHqbXPexsAKKZS6976KIVzPgtWAAqsDHsEAHnTPQBSU4rt8wQcAMVUiu2zXAyAYiq19ukeAMVUat1bH6XwoksAylcpts95HwDFVIrts1wMgGIqxfYBQLGUYvfK4ZyvKpfL5Zr3MCvT0pVZT0Axvfnu0qxHoIh26LJRpt//5beWNOvza7ZuX6BJYMNoX2WbPb8+6xEoku5bbpzp929u9yK0j+wsWuZ0uFItXuY/bCrZ1p3aZvr9tY9y5ryvcs1dtDzrESiirptl+4Yv1zspV0uWO+erZIuc91W0rTqW93mf9pEV53yVbaF/wBVryw7Z/n60Urze+dEXXf7617+OF154IX7yk59ExJoXXT711FNx1FFHxcEHH9zwosurr746zjrrrEZvNL/xxhtj1KhRcdpppzW86PKee+6J2267zRvNK4AfjZVtnmueFWvbMr/eGeG8j+xoX+XSvcpW7u0rRvdmzZoV++2331rvW71cLCLi4YcfjlGjRsWMGTNiq622iqOOOiqOP/74Jp9z4403xq233hr//ve/o0ePHnHGGWfE3nvvXfC5aVkLl72f9QgU0XtLVmQ9AkXUbfN2mX7/UmwfrA/nfJXtXe2rWJ/x3oYmyuGcz4KVTyBGlc2ClcpmwQrkR/sqmwUrlcuCFcifBSuVy4KVymbBCuTPeV/lsmClslmwAvmxYKWyWbBS2SxYgfw456tsFqxULgtWmiqHF11SGvxorGzeaF65yv1N5hHO+8iO9lUu3ats5d4+3SMrFqxUNgtWKpsFK5Af53yVzYKVymXBSnnK9hlagApUFVVZjwAALUb3AEiN9gGQGu0DIDXaB0BKSrF73bp1i5deeulTj6urq4u6urpPPW7YsGExbNiwQowGQAUoxfYBQDFpHwCp0T4AUqJ7+bFgBaDAqvQIgIToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXn4sWAEoMD0CICW6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gGQGu0DICW6lx8LVj7BRv5mKtoOXTbKegSAkqN9la37lhtnPQJAyenQzqWEStWhXdusRwAoSc77KlfXzaqzHgGg5LSvds5XydpXO+8D+DjnfJVtow7+AQN8nPZVtm1d8wRoQvsql+4BNNWxXausR6CIOrZrl/UIACXHOV9l+0wnr3OBUuJHLkChec02ACnRPQBSo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+A1GgfACnRvbxYsAJQYFWKBEBCdA+A1GgfAKnRPgBSo30ApET3AEiN9gGQGu0DIDXaB0BKdC8/FqwAFFiVHgGQEN0DIDXaB0BqtA+A1GgfACnRPQBSo30ApEb7AEiN9gGQEt3LjwUrAAWmRwCkRPcASI32AZAa7QMgNdoHQEp0D4DUaB8AqdE+AFKjfQCkRPfy0yrrAQAAAAAAAAAAAAAAAAAAAAAAiqVN1gMAVBwrvwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie7lxYIVgAKrUiQAEqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7+bFgBaDAqvQIgIToHgCp0T4AUqN9AKRG+wBIie4BkBrtAyA12gdAarQPgJToXn5aZT0AAAAAAAAAAAAAAAAAAAAAAECxtMl6AIBKY+EXACnRPQBSo30ApEb7AEiN9gGQEt0DIDXaB0BqtA+A1GgfACnRvfxYsAJQYFWKBEBCdA+A1GgfAKnRPgBSo30ApET3AEiN9gGQGu0DIDXaB0BKdC8/FqwAFJwiAZAS3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3ctHq6wHAAAAAAAAAAAAAAAAAAAAAAAoljZZDwBQaaos/AIgIboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXHwtWAApMjwBIie4BkBrtAyA12gdAarQPgJToHgCp0T4AUqN9AKRG+wBIie7lx4IVgAKz8QuAlOgeAKnRPgBSo30ApEb7AEiJ7gGQGu0DIDXaB0BqtA+AlOhefixYASiwKju/AEiI7gGQGu0DIDXaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7uWnVdYDAAAAAAAAAAAAAAAAAAAAAAAUS5usByA7r776alxyySXxxBNPRHV1dRxwwAFx9tlnR/v27bMejQJ49dVX48Ybb4xnnnkmXn755dh6663joYceynqsNFj4BSVL+yqX7mVI96CkaV/l0r4MaR+UNO2rXNqXIe2DkqV7lU37MqR9ULK0r3LpXoZ0D0qa9lUu7cuQ9kFJ077KpX0Z0j4oWbpX2bQvQ9oHJUv7KpfuZUj38mLBSqIWLlwYxx57bGy11VZx9dVXx3vvvReXXXZZzJ07N8aMGZP1eBTA9OnTY8qUKdGvX7/I5XKxYMGCrEdKhh5BadK+yqZ72dE9KF3aV9m0LzvaB6VL+yqb9mVH+6A06V7l077saB+UJu2rbLqXHd2D0qV9lU37sqN9ULq0r7JpX3a0D0qT7lU+7cuO9kFp0r7KpnvZ0b38WLCSqDvuuCPmzZsXd911V2yxxRYREbHRRhvFD37wg3j22Wejb9++GU9Icw0ePDi+9KUvRUTEiBEj4pFHHsl4onRUKRKUJO2rbLqXHd2D0qV9lU37sqN9ULq0r7JpX3a0D0qT7lU+7cuO9kFp0r7KpnvZ0T0oXdpX2bQvO9oHpUv7Kpv2ZUf7oDTpXuXTvuxoH5Qm7atsupcd3ctPq6wHIBtTp06NQYMGNYQo4oMfYO3bt48pU6ZkNxgF06qVf70BPkr7KpvuATSlfZVN+wCa0r7Kpn0Ajele5dM+gMa0r7LpHkBT2lfZtA+gKe2rbNoH0JjuVT7tA2hM+yqb7lFu/D82UTNmzIju3bs3uq1Nmzax4447xsyZMzOaCipDVTP/BxSH9kFxNLd72gfFo31QHNoHpUv7oDh0D0qT7kHxaB+UJu2D4nC9E0qX9kFxaB+ULu2D4tA9KE26B8WjfVCatA+Kw/XO/LTJegCysWDBgujYsWOT2zt16hTvvfdeBhNBBUmzJ1DytA+KRPegZGkfFIn2QcnSPigS7YOSpHtQRNoHJUn7oEh0D0qW9kGRaB+ULO2DItE+KEm6B0WkfVCStA+KRPfyYsEKQIHpEQAp0T0AUqN9AKRG+wBIjfYBkBLdAyA12gdAarQPgNRoHwAp0b38tMp6ALLRqVOnWLhwYZPbFyxYEJtuumkGE0HlqKpq3h+gOLQPiqO53dM+KB7tg+LQPihd2gfFoXtQmnQPikf7oDRpHxSH651QurQPikP7oHRpHxSH7kFp0j0oHu2D0qR9UByud+bHgpVEde/ePWbOnNnotlWrVsUrr7wS3bt3z2gqACge7QMgNdoHQGq0D4CU6B4AqdE+AFKjfQCkRvsASInuAZAa7QNKiQUridp7773jsccei3nz5jXc9qc//SmWLFkSdXV1GU4G5a+qmf8DikP7oDia2z3tg+LRPigO7YPSpX1QHLoHpUn3oHi0D0qT9kFxuN4JpUv7oDi0D0qX9kFx6B6UJt2D4tE+KE3aB8Xhemd+2mQ9ANk44ogj4pZbbomTTz45TjrppFiwYEFcdtllsd9++0VtbW3W41EA9fX18fDDD0dExKxZs6K+vj7uv//+iIiora2Nrl27ZjleRatKsydQ8rSvsulednQPSpf2VTbty472QenSvsqmfdnRPihNulf5tC872gelSfsqm+5lR/egdGlfZdO+7GgflC7tq2zalx3tg9Kke5VP+7KjfVCatK+y6V52dC8/VblcLpf1EGTjlVdeiUsuuSSefPLJaNeuXXz1q1+Nc845JzbZZJOsR6MAZs2aFfvtt99a7xs5cmQMGTKkhSdKx/wlq5r1+Zu3b12gSYCP077KpXvZaW73IrQPikn7Kpf2ZUf7oLRpX+XSvuy43gmlS/cqm/ZlR/ugdGlf5dK97LjeCaVN+yqX9mVH+6C0aV/l0r7suN4JpUv3Kpv2ZUf7oHRpX+XSvey43pkfC1YACsyJGAApcSIGQGq0D4DUuN4JQGq0D4CUuN4JQGq0D4DUuN4JQGq0D4CUuN6ZnzZZDwBQaaqqsp4AAFqO7gGQGu0DIDXaB0BqtA+AlOgeAKnRPgBSo30ApEb7AEiJ7uXHghWAAqsKRQIgHboHQGq0D4DUaB8AqdE+AFKiewCkRvsASI32AZAa7QMgJbqXHwtWAArMxi8AUqJ7AKRG+wBIjfYBkBrtAyAlugdAarQPgNRoHwCp0T4AUqJ7+WmV9QAAAAAAAAAAAAAAAAAAAAAAAMXSJusBACqNhV8ApET3AEiN9gGQGu0DIDXaB0BKdA+A1GgfAKnRPgBSo30ApET38mPBCkChKRIAKdE9AFKjfQCkRvsASI32bCpwXwAADw1JREFUAZAS3QMgNdoHQGq0D4DUaB8AKdG9vFiwAlBgVYoEQEJ0D4DUaB8AqdE+AFKjfQCkRPcASI32AZAa7QMgNdoHQEp0Lz8WrAAUWJUeAZAQ3QMgNdoHQGq0D4DUaB8AKdE9AFKjfQCkRvsASI32AZAS3ctPq6wHAAAAAAAAAAAAAAAAAAAAAAAoljZZDwBQaSz8AiAlugdAarQPgNRoHwCp0T4AUqJ7AKRG+wBIjfYBkBrtAyAlupefVlkPQOkYM2ZM9OrVq+HPoEGD4phjjoknnniiqN/33nvvjV69esWsWbMabuvVq1fccMMN6/01Zs2aFWPGjIk333yzoLPV1tbGmDFj1nnM0UcfHcOGDWv29xo8eHCMGDGi2V8nIuKxxx6LXr16xT/+8Y+CfD02UFUz/wAtRvua0j42WHO7p33QorSvKe1jg2kflA3da0r3yIvuQdnQvqa0j7xoH5QN7WtK+9hgrndCWdG+prSPDaZ9UDZ0ryndIy+6B2VD+5rSPvKifVA2tK8p7WODud6ZlzZZD0Bpadu2bdxyyy0REfHWW2/FuHHjYujQofHb3/42ampqWmyOO++8M7bZZpv1Pn727NkxduzY2GuvveIzn/lMESeDT1eValGgTGkfNI/uQfnRPmge7YPyonvQfNoH5UX7oPm0D8qL9kHz6B6UH+2D5tE+KC+6B82nfVBetA+aT/ugvGgfNI/u5ceCFRqpqqqKXXbZpeHj2traGDx4cNxxxx2fuIlq+fLlUV1dXdA5PjoDABST9gGQGu0DICW6B0BqtA+A1GgfAKnRPgBSonsApEb7AEiN9gFZaJX1AJS2bbfdNjp37hyzZs2KiIhzzz039t9///jrX/8aQ4YMib59+8Zdd90VERHTpk2L448/Pvr37x/9+/ePk046KV5//fVGX2/RokVx3nnnxYABA2K33XaLCy+8MOrr65t83169esUNN9zQ6LaHH344jjzyyNhll11iwIAB8Z//+Z/x5JNPxmOPPRbHHHNMRER8+9vfjl69ekWvXr0afc9LLrkk9t577+jbt28cdNBBcd999zX5nr/5zW9iv/32i9ra2vjWt74Vzz33XPP+8j70zjvvxAUXXBBf/vKXo1+/fjF48OD4yU9+EgsWLFjr8RMmTIi6urro169fHHfccfHqq682uj+Xy8VNN90UBxxwQPTt2zfq6upi9OjRsWrVqoLMS/NVVTXvD5At7Ws+7UtLc7unfZA97Ws+7UuL9kF5073m07306B6UN+1rPu1Lj/ZBedO+5tO+tLjeCeVP+5pP+9KifVDedK/5dC89ugflTfuaT/vSo31Q3rSv+bQvLa535qdN1gNQ2hYtWhTvvvtubLXVVg23zZ07Ny688MIYPnx4bLfddrHFFlvEtGnT4jvf+U4MGjQorrjiisjlcjF27NgYOnRoTJ48uWEb2AUXXBAPP/xwnH766fHZz3427r777hg9evSnznHffffFGWecEXV1dXH55ZfHRhttFE8//XS8+eabUVdXFyNGjIiLL744LrnkkujZs2fD561YsSKOP/74eOONN+KUU06J7bbbLh588ME444wzolOnTrHnnntGRMSUKVPiggsuiIMOOigOOeSQ+Oc//xmnnnpqvP/++83+O3z33XejQ4cOcfbZZ8dmm20Ws2fPjmuvvTZOOumkuPXWWxsdO2XKlOjSpUv8+Mc/jqVLl8ZVV10VJ5xwQtx3333Rtm3biIi47LLL4rbbbosTTzwxBgwYEC+++GJDjH74wx82e16abyM/WaGsaZ/2sWF0D8qf9mkfG0b7oLzpnu6x4bQPypv2aR8bTvugvGmf9rFhdA/Kn/ZpHxtG+6C86Z7useG0D8qb9mkfG077oLxpn/axYXQvTzn40OjRo3N9+/bNrVixIrdixYrcrFmzcj/4wQ9yNTU1ualTp+ZyuVzunHPOydXU1OQef/zxRp971FFH5YYMGZJbtWpVw21vvfVWrra2NnfbbbflcrlcbsaMGblevXrlbr311kaf+81vfjNXU1OTe/311xtuq6mpyV1//fW5XC6XW7VqVW7vvffOHXXUUZ84+9/+9rdcTU1N7qmnnmp0+29/+9vcTjvtlHv++ecb3X7SSSflDj/88IaPDz/88Nw3v/nNRsfccsstuZqamtzo0aM/8fuufuzHH3/8Oo/5qBUrVuT+/ve/52pqanLTp09vuH3ffffN7bzzzrm5c+c23Pbss8/mampqcnfddVcul8vlXnvttdxOO+2Uu/nmmxt9zYkTJ+Z23nnn3Pz583O53Cf/fQDQmPZpH0BqtE/7AFKie7oHkBrt0z6A1Gif9gGkRvu0DyAluqd7AKnRPu0DSI32aR9kpVXWC14oLcuXL48+ffpEnz59YvDgwfHoo4/GiBEjYq+99mo4pmPHjrHbbrs1fLx06dJ48skn44ADDoj3338/Vq5cGStXrozOnTtHTU1NTJs2LSIipk2bFrlcLvbff/9G3/MrX/nKOmd65ZVX4s0334zDDz98gx/PI488Ej169IiePXs2zLVy5crYY4894vnnn49Vq1bFqlWr4rnnnouvfvWrjT7343PmK5fLxaRJk+Kggw6KXXbZJfr06RPf+c53IiLiX//6V6NjBw4cGJ07d274uE+fPtGtW7eGv8NHH3003n///TjggAMaPZ7dd9896uvrY/r06QWZGSAl2reG9gGkQfvW0D6Ayqd7a+geQBq0bw3tA0iD9q2hfQBp0L41tA+g8uneGroHkAbtW0P7ANKgfWtoH7ScNlkPQGlp27Zt3H777VFVVRWbb755bLPNNtGqVeM9PFtssUWjj997771YtWpVXHHFFXHFFVc0+ZodOnSIiIi33347WrVqFZtvvnmj+7t06bLOmd59992IiNh666039OHEvHnz4uWXX44+ffqs9f633347WrduHStXrmzyuDp37tzksefj5ptvjpEjR8bQoUNj9913j8022yzeeuut+P73vx/Lli1rdOzHZ4j44O/n7bffjoiIuXPnRkTEHnvssdbvNWfOnGbPC5Aa7VtD+wDSoH1raB9A5dO9NXQPIA3at4b2AaRB+9bQPoA0aN8a2gdQ+XRvDd0DSIP2raF9AGnQvjW0D1qOBSs0UlVVFbW1tZ96zEd17NgxWrVqFcOGDWuyMSsiYpNNNomIiC233DLef//9mD9/fqONVu+88846v9/qeL311lvr9Rg+atNNN42ePXvGyJEj13p/586do3Xr1tGmTZuGH/SrzZs3L95///0N/p4fN3ny5Kirq4tzzz234ba//e1vaz324zNEfPD307t374j44PFERNx6663Rrl27Jsd269at2fMCpEb71tA+gDRo3xraB1D5dG8N3QNIg/atoX0AadC+NbQPIA3at4b2AVQ+3VtD9wDSoH1raB9AGrRvDe2DlmPBCs3Wvn376N+/f8yYMSN+9KMffeJx/fr1i6qqqrj//vvjyCOPbLj9gQceWOfX33HHHWPbbbeNu+66Kw4++OC1HtO2bduIiCbbs/bYY4+YMmVKdOnSJbbZZptP/B59+vSJP/zhD3HCCSc03Hb//fevc671tXTp0iYbze6+++61Hvv444/H/PnzGwL83HPPxaxZs2LnnXeOiIjdd989qqqqYu7cuWsNPwAtQ/vWTfsAKo/2rZv2AVQW3Vs33QOoPNq3btoHUHm0b920D6DyaN+6aR9AZdG9ddM9gMqjfeumfQCVR/vWTfvg01mwQkGce+65cfTRR8cpp5wSBx98cGy++ebx9ttvx2OPPRaDBg2Kr33ta9G9e/f46le/GpdffnmsWLEidtxxx7j77rs/dYtXVVVVnHPOOXH66afH8OHD4xvf+EZsvPHGMW3atNhhhx3ia1/7Wuywww7RunXr+O1vfxvV1dXRpk2bqK2tjUMOOSTuuuuuOProo+O4446L7t27x+LFi2P69Okxe/bs+OlPfxoRESeffHJ873vfizPPPDMOOeSQeOWVV+Lmm2+ONm3W71+RuXPnrjVegwYNij333DMmTJgQEyZMiF69esUf//jH+Pvf/77Wr9OpU6cYNmxYnHzyyVFfXx+jRo2K7bbbLg466KCIiNhhhx3iuOOOi/POOy9efvnl6N+/f+RyuXjttdfioYceimuvvTaqq6vXa2YAmkf7tA8gNdqnfQAp0T3dA0iN9mkfQGq0T/sAUqN92geQEt3TPYDUaJ/2AaRG+7QPmsOCFQqiX79+ceedd8bo0aPjwgsvjPr6+th6661jt912i169ejUcd+mll8all14a11xzTbRu3Tr233//OO200+L8889f59fff//94/rrr49x48bFmWeeGdXV1dGrV6/44he/GBERnTt3jhEjRsQvf/nLuOeee2LlypXx0ksvRXV1dUyYMCHGjRsXEyZMiLfeeis6deoUNTU1MWTIkIavv88++8Sll14a48aNiwceeCB69+4dY8aMiW9/+9vr9fhfeOGFOO2005rcfuedd8Ypp5wS7777blx//fWxcuXK2GuvveKqq66Kww8/vMnx++yzT+ywww5x8cUXx/z582PAgAFx0UUXNWwzi4g455xzYocddojbb789brjhhmjXrl1sv/32se+++653PAFoPu3TPoDUaJ/2AaRE93QPIDXap30AqdE+7QNIjfZpH0BKdE/3AFKjfdoHkBrt0z5ojqpcLpfLeggAAAAAAAAAAAAAAAAAAAAAgGJolfUAAAAAAAAAAAAAAAAAAAAAAADFYsEKAAAAAAAAAAAAAAAAAAAAAFCxLFgBAAAAAAAAAAAAAAAAAAAAACqWBSsAAAAAAAAAAAAAAAAAAAAAQMWyYAUAAAAAAAAAAAAAAAAAAAAAqFgWrAAAAAAAAAAAAAAAAAAAAAAAFcuCFQAAAAAAAAAAAAAAAAAAAACgYlmwAgAAAAAAAAAAAAAAAAAAAABULAtWAAAAAAAAAAAAAAAAAAAAAICKZcEKAAAAAAAAAAAAAAAAAAAAAFCxLFgBAAAAAAAAAAAAAAAAAAAAACqWBSsAAAAAAAAAAAAAAAAAAAAAQMWyYAUAAAAAAAAAAAAAAAAAAAAAqFgWrAAAAAAAAAAAAAAAAAAAAAAAFcuCFQAAAAAAAAAAAAAAAAAAAACgYv1/1Z87f0Ar7NwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "confusion_matrix_source_dict_new , confusion_matrix_dist_dict_new = stats_predict.get_confusion_matrices_tiles_new(plot=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c8d70230-662c-49dc-94bb-49beceb50c01", + "metadata": {}, + "outputs": [], + "source": [ + "model_performance_dict_new = stats_predict.get_model_performence_stats_tiles(confusion_matrix_dist_dict_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "1b66febd-8525-49de-83a0-7438299bf10f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Cluster Class TN FP FN TP Accuracy Balanced Accuracy Precision \\\n", + "0 t_cl2 0 557 6 1 56 0.988710 0.985899 0.903226 \n", + "1 t_cl2 1 539 15 0 66 0.975806 0.986462 0.814815 \n", + "2 t_cl2 2 543 8 16 53 0.961290 0.876798 0.868852 \n", + "3 t_cl2 3 527 29 6 58 0.943548 0.927046 0.666667 \n", + "4 t_cl2 4 551 4 5 60 0.985484 0.957935 0.937500 \n", + "5 t_cl2 5 555 1 21 43 0.964516 0.835038 0.977273 \n", + "6 t_cl2 6 551 8 3 58 0.982258 0.968254 0.878788 \n", + "7 t_cl2 7 553 7 15 45 0.964516 0.868750 0.865385 \n", + "8 t_cl2 8 555 7 10 48 0.972581 0.907565 0.872727 \n", + "9 t_cl2 9 557 7 15 41 0.964516 0.859866 0.854167 \n", + "10 t_cl0 0 564 13 4 59 0.973437 0.956989 0.819444 \n", + "11 t_cl0 1 545 8 7 80 0.976562 0.952537 0.909091 \n", + "12 t_cl0 2 572 5 10 53 0.976562 0.916302 0.913793 \n", + "13 t_cl0 3 564 11 14 51 0.960938 0.882742 0.822581 \n", + "14 t_cl0 4 564 25 4 47 0.954688 0.939562 0.652778 \n", + "15 t_cl0 5 583 3 21 33 0.962500 0.802996 0.916667 \n", + "16 t_cl0 6 573 3 8 56 0.982812 0.934896 0.949153 \n", + "17 t_cl0 7 572 9 10 49 0.970313 0.907509 0.844828 \n", + "18 t_cl0 8 579 4 13 44 0.973437 0.882534 0.916667 \n", + "19 t_cl0 9 540 23 13 64 0.943750 0.895158 0.735632 \n", + "20 t_cl3 0 527 26 1 66 0.956452 0.969029 0.717391 \n", + "21 t_cl3 1 537 6 3 74 0.985484 0.974995 0.925000 \n", + "22 t_cl3 2 561 1 14 44 0.975806 0.878421 0.977778 \n", + "23 t_cl3 3 546 10 6 58 0.974194 0.944132 0.852941 \n", + "24 t_cl3 4 562 3 11 44 0.977419 0.897345 0.936170 \n", + "25 t_cl3 5 565 6 7 42 0.979032 0.923317 0.875000 \n", + "26 t_cl3 6 560 2 4 54 0.990323 0.963738 0.964286 \n", + "27 t_cl3 7 543 9 11 57 0.967742 0.910965 0.863636 \n", + "28 t_cl3 8 548 1 14 57 0.975806 0.900498 0.982759 \n", + "29 t_cl3 9 555 12 5 48 0.972581 0.942248 0.800000 \n", + "30 t_cl1 0 565 3 7 45 0.983871 0.930051 0.937500 \n", + "31 t_cl1 1 545 16 2 57 0.970968 0.968791 0.780822 \n", + "32 t_cl1 2 565 3 18 34 0.966129 0.824282 0.918919 \n", + "33 t_cl1 3 556 3 13 48 0.974194 0.890759 0.941176 \n", + "34 t_cl1 4 514 24 3 79 0.956452 0.959402 0.766990 \n", + "35 t_cl1 5 553 4 13 50 0.972581 0.893235 0.925926 \n", + "36 t_cl1 6 546 11 4 59 0.975806 0.958380 0.842857 \n", + "37 t_cl1 7 546 10 11 53 0.966129 0.905070 0.841270 \n", + "38 t_cl1 8 554 6 14 46 0.967742 0.877976 0.884615 \n", + "39 t_cl1 9 536 20 15 49 0.943548 0.864827 0.710145 \n", + "\n", + " Recall True Negative Rate Informedness F1 \n", + "0 0.982456 0.989343 0.971799 0.941176 \n", + "1 1.000000 0.972924 0.972924 0.897959 \n", + "2 0.768116 0.985481 0.753597 0.815385 \n", + "3 0.906250 0.947842 0.854092 0.768212 \n", + "4 0.923077 0.992793 0.915870 0.930233 \n", + "5 0.671875 0.998201 0.670076 0.796296 \n", + "6 0.950820 0.985689 0.936508 0.913386 \n", + "7 0.750000 0.987500 0.737500 0.803571 \n", + "8 0.827586 0.987544 0.815131 0.849558 \n", + "9 0.732143 0.987589 0.719732 0.788462 \n", + "10 0.936508 0.977470 0.913978 0.874074 \n", + "11 0.919540 0.985533 0.905074 0.914286 \n", + "12 0.841270 0.991334 0.832604 0.876033 \n", + "13 0.784615 0.980870 0.765485 0.803150 \n", + "14 0.921569 0.957555 0.879124 0.764228 \n", + "15 0.611111 0.994881 0.605992 0.733333 \n", + "16 0.875000 0.994792 0.869792 0.910569 \n", + "17 0.830508 0.984509 0.815018 0.837607 \n", + "18 0.771930 0.993139 0.765069 0.838095 \n", + "19 0.831169 0.959147 0.790316 0.780488 \n", + "20 0.985075 0.952984 0.938058 0.830189 \n", + "21 0.961039 0.988950 0.949989 0.942675 \n", + "22 0.758621 0.998221 0.756841 0.854369 \n", + "23 0.906250 0.982014 0.888264 0.878788 \n", + "24 0.800000 0.994690 0.794690 0.862745 \n", + "25 0.857143 0.989492 0.846635 0.865979 \n", + "26 0.931034 0.996441 0.927476 0.947368 \n", + "27 0.838235 0.983696 0.821931 0.850746 \n", + "28 0.802817 0.998179 0.800995 0.883721 \n", + "29 0.905660 0.978836 0.884496 0.849558 \n", + "30 0.865385 0.994718 0.860103 0.900000 \n", + "31 0.966102 0.971480 0.937581 0.863636 \n", + "32 0.653846 0.994718 0.648564 0.764045 \n", + "33 0.786885 0.994633 0.781519 0.857143 \n", + "34 0.963415 0.955390 0.918805 0.854054 \n", + "35 0.793651 0.992819 0.786469 0.854701 \n", + "36 0.936508 0.980251 0.916759 0.887218 \n", + "37 0.828125 0.982014 0.810139 0.834646 \n", + "38 0.766667 0.989286 0.755952 0.821429 \n", + "39 0.765625 0.964029 0.729654 0.736842 \n" + ] + } + ], + "source": [ + "import pprint;\n", + "pprint.pprint(model_performance_dict_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "74d5999a-5a33-459f-bb39-6868d2d3aa09", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "from collections import OrderedDict\n", + "communication_stats_workers_all = [stats_train3.get_communication_stats_workers()]\n", + "with open('mnist_tiles_3_communication_stats.json', 'w') as json_file:\n", + " json.dump(communication_stats_workers_all, json_file, indent=4)\n", + " \n", + "#with open('mnist_tiles_3_loss.json', 'w') as json_file:\n", + " # json.dump(stats_train3.get_loss_ts(), json_file, indent=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "90acd9de-3d91-47f7-b6ae-9aa392e2974c", + "metadata": {}, + "outputs": [], + "source": [ + "import csv\n", + "with open('mnist_tiles_3_confusion_matrices.csv', 'w', newline='') as csv_file:\n", + " writer = csv.DictWriter(csv_file, fieldnames=model_performance_dict.keys())\n", + " \n", + " # Writing the header (column names)\n", + " writer.writeheader()\n", + " \n", + " # Writing the rows of data\n", + " for i in range(len(list(model_performance_dict.values))): # Assume all lists have the same length\n", + " row = {key: model_performance_dict[key][i] for key in model_performance_dict}\n", + " writer.writerow(row)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "2d29b605-af41-4d45-b1ac-bfee0783f054", + "metadata": {}, + "outputs": [], + "source": [ + "import csv\n", + "with open('mnist_tiles_3_confusion_matrices_new.csv', 'w', newline='') as csv_file:\n", + " writer = csv.DictWriter(csv_file, fieldnames=model_performance_dict_new.keys())\n", + " \n", + " # Writing the header (column names)\n", + " writer.writeheader()\n", + " \n", + " # Writing the rows of data\n", + " for i in range(len(list(model_performance_dict_new.values))): # Assume all lists have the same length\n", + " row = {key: model_performance_dict_new[key][i] for key in model_performance_dict_new}\n", + " writer.writerow(row)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "b3515dc7-ec90-4dc1-a18e-778e242a7a9d", + "metadata": {}, + "outputs": [], + "source": [ + "import csv\n", + "with open('mnist_tiles_3_loss.csv', 'w', newline='') as csv_file:\n", + " writer = csv.DictWriter(csv_file, fieldnames=stats_train3.get_loss_ts().keys())\n", + " \n", + " # Writing the header (column names)\n", + " writer.writeheader()\n", + " \n", + " # Writing the rows of data\n", + " for i in range(len(list(stats_train3.get_loss_ts().values))): # Assume all lists have the same length\n", + " row = {key: stats_train3.get_loss_ts()[key][i] for key in stats_train3.get_loss_ts()}\n", + " writer.writerow(row)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d9d974f9-7135-47a1-9166-367e50c176ad", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}