From 4628aaa78b08c6291acc4161a7975853bddafc8d Mon Sep 17 00:00:00 2001 From: leondavi Date: Wed, 29 May 2024 22:02:20 +0300 Subject: [PATCH 01/30] [WEIGHTED_AVG] count implementation --- src_cpp/common/CMakeLists.txt | 3 + src_cpp/common/bridgeController.h | 2 +- src_cpp/common/common_definitions.h | 4 + src_cpp/common/nerlWorker.h | 6 + src_cpp/common/utilities.h | 30 ++ src_cpp/common/worker_definitions_ag.h | 2 +- src_cpp/opennnBridge/CMakeLists.txt | 7 +- src_cpp/opennnBridge/decode_nerltensor_nif.h | 68 ++++ src_cpp/opennnBridge/encode_nerltensor_nif.h | 103 ++++++ src_cpp/opennnBridge/nerlWorkerNIF.h | 21 +- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 35 ++ src_cpp/opennnBridge/nerlWorkerOpenNN.h | 2 + src_cpp/opennnBridge/openNNnif.h | 329 +----------------- .../opennnBridge/operations_nerltensor_nif.h | 133 +++++++ src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 20 ++ .../Bridge/neural_networks_testing_models.hrl | 13 + .../NerlnetApp/src/worker_definitions_ag.hrl | 12 + .../JsonElementWorkerDefinitions.py | 8 +- 18 files changed, 466 insertions(+), 332 deletions(-) create mode 100644 src_cpp/opennnBridge/decode_nerltensor_nif.h create mode 100644 src_cpp/opennnBridge/encode_nerltensor_nif.h create mode 100644 src_cpp/opennnBridge/operations_nerltensor_nif.h diff --git a/src_cpp/common/CMakeLists.txt b/src_cpp/common/CMakeLists.txt index 93f4e6d5..805bccdf 100644 --- a/src_cpp/common/CMakeLists.txt +++ b/src_cpp/common/CMakeLists.txt @@ -3,6 +3,8 @@ project(common) set(NIFPP_PATH "${CMAKE_CURRENT_SOURCE_DIR}/../nifpp/") set(SIMPLE_LOGGER_PATH "${CMAKE_CURRENT_SOURCE_DIR}/../simple-cpp-logger/include") +set(ERL_NIF_DEFAULT_LOCATION "/usr/local/lib/erlang/usr/include") + set(SRC_CODE "nerltensor.h" "common_definitions.h" @@ -22,4 +24,5 @@ add_library(common SHARED ${SRC_CODE}) target_include_directories(common PUBLIC . ${NIFPP_PATH} ${SIMPLE_LOGGER_PATH} + ${ERL_NIF_DEFAULT_LOCATION} ) \ No newline at end of file diff --git a/src_cpp/common/bridgeController.h b/src_cpp/common/bridgeController.h index 016bc96d..586dc823 100644 --- a/src_cpp/common/bridgeController.h +++ b/src_cpp/common/bridgeController.h @@ -3,7 +3,7 @@ #include #include #include -#include "nifpp.h" + #include "nerlWorker.h" // adding the api of opennn for creating a model diff --git a/src_cpp/common/common_definitions.h b/src_cpp/common/common_definitions.h index fe45e5fd..5e0d49ef 100644 --- a/src_cpp/common/common_definitions.h +++ b/src_cpp/common/common_definitions.h @@ -1,4 +1,8 @@ #pragma once + +#include "nifpp.h" +#include + namespace nerlnet { diff --git a/src_cpp/common/nerlWorker.h b/src_cpp/common/nerlWorker.h index bcbcee90..1f6a3779 100644 --- a/src_cpp/common/nerlWorker.h +++ b/src_cpp/common/nerlWorker.h @@ -1,5 +1,6 @@ #pragma once +#include #include "nerlWorkerFunc.h" #include "nerlLayer.h" @@ -22,6 +23,9 @@ namespace nerlnet int get_loss_method() { return _loss_method; }; int get_distributed_system_type() { return _distributed_system_type; }; + std::vector get_distributed_system_train_labels_count() {LogError<<"Distributed System Weighted Avg count label is unsupported"; + throw("Distributed System Weighted Avg count label is unsupported");} // counts the number of each label appears in the training set for weighted average + protected: std::shared_ptr _nerl_layers_linked_list; @@ -33,6 +37,8 @@ namespace nerlnet int _optimizer_type; int _loss_method; std::string _distributed_system_args_str; + std::shared_ptr> _train_labels_count; // accumulates the number of each label in the training set + private: diff --git a/src_cpp/common/utilities.h b/src_cpp/common/utilities.h index 03c9f175..fb0990a3 100644 --- a/src_cpp/common/utilities.h +++ b/src_cpp/common/utilities.h @@ -7,6 +7,7 @@ #include #include #include +#include namespace nerlnet_utilities { @@ -17,4 +18,33 @@ std::vector split_strings_by_comma(std::string &str); bool is_integer_number(const std::string &input_str); std::vector matchRegex(std::string &input, std::regex re); +inline bool is_big_endian(void) +{ + union { + uint32_t i; + char c[4]; + } bint = {0x01020304}; + + return bint.c[0] == 1; +} + +template +T swap_endian(T u) +{ + static_assert (CHAR_BIT == 8, "CHAR_BIT != 8"); + + union + { + T u; + unsigned char u8[sizeof(T)]; + } source, dest; + + source.u = u; + + for (size_t k = 0; k < sizeof(T); k++) + dest.u8[k] = source.u8[sizeof(T) - k - 1]; + + return dest.u; +} + } // namespace nerlutils \ No newline at end of file diff --git a/src_cpp/common/worker_definitions_ag.h b/src_cpp/common/worker_definitions_ag.h index 6de8c4fc..6d92d1bf 100644 --- a/src_cpp/common/worker_definitions_ag.h +++ b/src_cpp/common/worker_definitions_ag.h @@ -17,6 +17,6 @@ enum ModelTypeEnum{MODEL_TYPE_NN=0,MODEL_TYPE_APPROXIMATION=1,MODEL_TYPE_CLASSIF enum OptimizerEnum{OPTIMIZER_GD=0,OPTIMIZER_CGD=1,OPTIMIZER_SGD=2,OPTIMIZER_QUASINEUTON=3,OPTIMIZER_LVM=4,OPTIMIZER_ADAM=5}; enum LossMethodEnum{LOSS_METHOD_SSE=1,LOSS_METHOD_MSE=2,LOSS_METHOD_NSE=3,LOSS_METHOD_MINKOWSKIE=4,LOSS_METHOD_WSE=5,LOSS_METHOD_CEE=6}; enum InfraTypeEnum{INFRA_TYPE_OPENNN=0,INFRA_TYPE_WOLFENGINE=1}; -enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=2}; +enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=6}; } // namespace nerlnet diff --git a/src_cpp/opennnBridge/CMakeLists.txt b/src_cpp/opennnBridge/CMakeLists.txt index 63a77561..e13fbf54 100644 --- a/src_cpp/opennnBridge/CMakeLists.txt +++ b/src_cpp/opennnBridge/CMakeLists.txt @@ -14,7 +14,6 @@ set(COMMON_PATH "${CMAKE_CURRENT_SOURCE_DIR}/../common") set(CMAKE_VERBOSE_MAKEFILE ON) set(CMAKE_CXX_FLAGS "-fpic") -set(ERL_NIF_DEFAULT_LOCATION "/usr/local/lib/erlang/usr/include") # cpp Simple logger options add_definitions( -D LOGGER_MAX_LOG_LEVEL_PRINTED=6 ) @@ -35,6 +34,9 @@ set(SRC_CODE "nerlWorkerNIF.h" "ae_red.h" "ae_red.cpp" + "encode_nerltensor_nif.h" + "decode_nerltensor_nif.h" + "operations_nerltensor_nif.h" ) add_library(${PROJECT_NAME} SHARED ${SRC_CODE}) @@ -44,7 +46,6 @@ target_link_libraries(${PROJECT_NAME} PUBLIC opennn common) # Include NIF, OpenNN and Simple Cpp Logger target_include_directories(${PROJECT_NAME} PUBLIC ${COMMON_PATH} - ${NIFPP_PATH} ${OPENN_PATH} ${SIMPLE_LOGGER_PATH} - ${ERL_NIF_DEFAULT_LOCATION}) \ No newline at end of file + ) \ No newline at end of file diff --git a/src_cpp/opennnBridge/decode_nerltensor_nif.h b/src_cpp/opennnBridge/decode_nerltensor_nif.h new file mode 100644 index 00000000..e42b6aba --- /dev/null +++ b/src_cpp/opennnBridge/decode_nerltensor_nif.h @@ -0,0 +1,68 @@ +#pragma once + + +#include "common_definitions.h" + +// decode nerlTensor to EigenTensor --> efficient with DMA copies +// decode string to eigen - only within cpp +// get --> create std string from erlang +// from string to std::vector with vector initialization +// eigen Map from vetor to eigen Tensor + +// decode: nerltensor_str --> eigentensor +//nerltensor_str: string (list of bytes) that represents the nerlTensor given a cpp type (float32, int32, double) + +// Input: List, BinaryType (atom from the group ?BINARY_GROUP_NERLTENSOR_TYPE) +// Output: {List, ListType} (ListType is an atom from the group ?LIST_GROUP_NERLTENSOR_TYPE) +static ERL_NIF_TERM decode_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]){ + enum {ARG_BINARY, ARG_TYPE}; + + std::tuple return_val; + + nifpp::str_atom type_nerltensor; + nifpp::str_atom erl_float("erl_float"); + nifpp::str_atom erl_int("erl_int"); + + nifpp::get_throws(env, argv[ARG_TYPE], type_nerltensor); + std::vector bin_vec; + nifpp::get_binary(env, argv[ARG_BINARY], bin_vec); + + int enc_type_num = atom_str_to_enum(type_nerltensor); + + switch (enc_type_num) + { + case ATOM_FLOAT: + { + std::vector vec; + vec.resize(bin_vec.size()/sizeof(float)); + std::memcpy(vec.data(), bin_vec.data(), bin_vec.size()); + return_val = { nifpp::make(env, vec) , nifpp::make(env, erl_float) }; + break; + } + case ATOM_DOUBLE: + { + std::vector vec; + vec.resize(bin_vec.size()/sizeof(double)); + std::memcpy(vec.data(), bin_vec.data(), bin_vec.size()); + return_val = { nifpp::make(env, vec) , nifpp::make(env, erl_float) }; + break; + } + case ATOM_INT32: + { + std::vector vec; + vec.resize(bin_vec.size()/sizeof(int)); + std::memcpy(vec.data(), bin_vec.data(), bin_vec.size()); + return_val = { nifpp::make(env, vec) , nifpp::make(env, erl_int) }; + break; + } + case ATOM_INT16: + { + std::vector vec; + vec.resize(bin_vec.size()/sizeof(int16_t)); + std::memcpy(vec.data(), bin_vec.data(), bin_vec.size()); + return_val = { nifpp::make(env, vec) , nifpp::make(env, erl_int) }; + break; + } + } + return nifpp::make(env, return_val); +} diff --git a/src_cpp/opennnBridge/encode_nerltensor_nif.h b/src_cpp/opennnBridge/encode_nerltensor_nif.h new file mode 100644 index 00000000..c528dab9 --- /dev/null +++ b/src_cpp/opennnBridge/encode_nerltensor_nif.h @@ -0,0 +1,103 @@ + +#pragma once + +#include "common_definitions.h" +#include "utilities.h" +#include "nerltensor.h" + +static bool log_endian_issue_once = true; + +/** +* Input: List and the type of the encoded binary (atom from the group ?BINARY_GROUP_NERLTENSOR_TYPE) +* Output: {Binary,BinaryType} +* Warning - if _XYZ_LIST_FORM type is double it can be cast to integer if binaryType is an integer +**/ +static ERL_NIF_TERM encode_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]){ + + enum {ARG_IN_LIST, ARG_IN_TYPE}; + nifpp::str_atom enc_atom_type; + nifpp::get_throws(env, argv[ARG_IN_TYPE], enc_atom_type); + std::tuple return_val; + + + bool big_endian = nerlnet_utilities::is_big_endian(); + if (big_endian) + { + if(log_endian_issue_once) + { + LogError("big endian system! - make sure no little endian in the system!"); + log_endian_issue_once = false; + } + } + else + { + // Little Endian + } + + int enc_type_num = atom_str_to_enum(enc_atom_type); + + switch (enc_type_num) + { + case ATOM_FLOAT: + { + //ineffient implementation + std::vector in_list; + std::vector flist; + nifpp::get(env, argv[ARG_IN_LIST], in_list); + flist.resize(in_list.size()); + for (int i=0; i(in_list[i]); + } + size_t binary_size = flist.size() * sizeof(float); + nifpp::binary bin_term(binary_size); + unsigned char* in_vec_data_ptr = reinterpret_cast(flist.data()); + std::memcpy(bin_term.data, in_vec_data_ptr, binary_size); + return_val = { nifpp::make(env, bin_term) , nifpp::make(env, enc_atom_type) }; + break; + } + case ATOM_DOUBLE: + { + std::vector in_list; + unsigned len; + enif_get_list_length(env, argv[ARG_IN_LIST], &len); + nifpp::get_throws(env, argv[ARG_IN_LIST], in_list); + + size_t binary_size = in_list.size() * sizeof(double); + nifpp::binary bin_term(binary_size); + unsigned char* in_vec_data_ptr = reinterpret_cast(in_list.data()); + std::memcpy(bin_term.data, in_vec_data_ptr, binary_size); + return_val = { nifpp::make(env, bin_term), nifpp::make(env, enc_atom_type) }; + break; + } + case ATOM_INT32: + { + std::vector in_list; + nifpp::get_throws(env,argv[ARG_IN_LIST], in_list); + size_t binary_size = in_list.size() * sizeof(int); + nifpp::binary bin_term(binary_size); + unsigned char* in_vec_data_ptr = reinterpret_cast(in_list.data()); + std::memcpy(bin_term.data, in_vec_data_ptr, binary_size); + return_val = { nifpp::make(env, bin_term ) , nifpp::make(env, enc_atom_type) }; + break; + } + case ATOM_INT16: + { + std::vector in_list; + std::vector ilist; + nifpp::get_throws(env,argv[ARG_IN_LIST], in_list); + ilist.resize(in_list.size()); + for (int i=0; i(in_list[i]); + } + size_t binary_size = in_list.size() * sizeof(int16_t); + nifpp::binary bin_term(binary_size); + unsigned char* in_vec_data_ptr = reinterpret_cast(ilist.data()); + std::memcpy(bin_term.data, in_vec_data_ptr, binary_size); + return_val = { nifpp::make(env, bin_term) , nifpp::make(env, enc_atom_type) }; + break; + } + } + return nifpp::make(env, return_val); // make tuple +} \ No newline at end of file diff --git a/src_cpp/opennnBridge/nerlWorkerNIF.h b/src_cpp/opennnBridge/nerlWorkerNIF.h index e5b5584e..4b17d6e1 100644 --- a/src_cpp/opennnBridge/nerlWorkerNIF.h +++ b/src_cpp/opennnBridge/nerlWorkerNIF.h @@ -125,4 +125,23 @@ static ERL_NIF_TERM remove_nerlworker_nif(ErlNifEnv* env, int argc, const ERL_NI nifpp::str_atom ret_atom = "ok"; return nifpp::make(env, ret_atom); -} \ No newline at end of file +} + +static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) +{ + enum{ARG_MODEL_ID}; + unsigned long modelId; + + nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); + + BridgeController& bridge_controller = BridgeController::GetInstance(); + std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); + // assert: the model is a distributed system of federated weighted average classification + std::vector train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); + + nifpp::str_atom nerltensor_type = "erl_int"; + + nifpp::TERM nerltensor_tuple; // TODO + // Return tuple of {nerltensor, nerltensor_type} + return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int +} \ No newline at end of file diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 031d9307..71e1e767 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -285,6 +285,23 @@ namespace nerlnet break; } } + //------------ Distributed System Type ------------ + switch (_distributed_system_type) + { + case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification + { + // TODO Ori - Implement + // we need to update _train_labels_count + // look at number of output neurons + // if this is the first time resize the vector to the number of output neurons + // sum columns of labels (assert if num of labels not equal to num of output neurons) + break; + } + default: + { + break; + } + } } void NerlWorkerOpenNN::generate_custom_model_nn(std::shared_ptr &neural_network_ptr) @@ -762,4 +779,22 @@ namespace nerlnet return res; } + std::vector NerlWorkerOpenNN::get_distributed_system_train_labels_count() + { + switch (_distributed_system_type) + { + case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification + { + // TODO Ori - implement + // Return copy of the vector + _train_labels_count = std::make_shared>(); + break; + } + default: + { + break; + } + } + } + } // namespace nerlnet \ No newline at end of file diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.h b/src_cpp/opennnBridge/nerlWorkerOpenNN.h index 6b4dde1b..209c7727 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.h +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.h @@ -40,12 +40,14 @@ class NerlWorkerOpenNN : public NerlWorker void set_dataset(std::shared_ptr data_set,fTensor2DPtr TrainDataNNptr); std::shared_ptr get_dataset_ptr() { return _data_set; }; + std::vector get_distributed_system_train_labels_count() override; private: std::shared_ptr _neural_network_ptr; std::shared_ptr _training_strategy_ptr; std::shared_ptr _data_set; + fTensor2DPtr _aec_data_set; std::shared_ptr _ae_red_ptr; diff --git a/src_cpp/opennnBridge/openNNnif.h b/src_cpp/opennnBridge/openNNnif.h index 9cbac196..629f42a5 100644 --- a/src_cpp/opennnBridge/openNNnif.h +++ b/src_cpp/opennnBridge/openNNnif.h @@ -13,20 +13,17 @@ #include #include #include -#include #include #include "../opennn/opennn/opennn.h" #include "bridgeController.h" #include "get_set_weights.h" -#include "nifppNerltensorEigen.h" #include "nerlWorkerNIF.h" -#define DEBUG_CREATE_NIF 0 - -#define TRAINING_STRATEGY_SET_DISPLAY_ON 1 -#define TRAINING_STRATEGY_SET_DISPLAY_OFF 0 +#include "encode_nerltensor_nif.h" +#include "decode_nerltensor_nif.h" +#include "operations_nerltensor_nif.h" using namespace std; using namespace chrono; @@ -153,323 +150,6 @@ static ERL_NIF_TERM train_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[ } //end trainn_nif -inline bool is_big_endian(void) -{ - union { - uint32_t i; - char c[4]; - } bint = {0x01020304}; - - return bint.c[0] == 1; -} - -template -T swap_endian(T u) -{ - static_assert (CHAR_BIT == 8, "CHAR_BIT != 8"); - - union - { - T u; - unsigned char u8[sizeof(T)]; - } source, dest; - - source.u = u; - - for (size_t k = 0; k < sizeof(T); k++) - dest.u8[k] = source.u8[sizeof(T) - k - 1]; - - return dest.u; -} - -static bool log_once = true; -/** -* Input: List and the type of the encoded binary (atom from the group ?BINARY_GROUP_NERLTENSOR_TYPE) -* Output: {Binary,BinaryType} -* Warning - if _XYZ_LIST_FORM type is double it can be cast to integer if binaryType is an integer -**/ -static ERL_NIF_TERM encode_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]){ - - enum {ARG_IN_LIST, ARG_IN_TYPE}; - nifpp::str_atom enc_atom_type; - nifpp::get_throws(env, argv[ARG_IN_TYPE], enc_atom_type); - std::tuple return_val; - - - bool big_endian = is_big_endian(); - if (big_endian) - { - if(log_once) - { - LogError("big endian system! - make sure no little endian in the system!"); - log_once = false; - } - } - else - { - // Little Endian - } - - int enc_type_num = atom_str_to_enum(enc_atom_type); - - switch (enc_type_num) - { - case ATOM_FLOAT: - { - //ineffient implementation - std::vector in_list; - std::vector flist; - nifpp::get(env, argv[ARG_IN_LIST], in_list); - flist.resize(in_list.size()); - for (int i=0; i(in_list[i]); - } - size_t binary_size = flist.size() * sizeof(float); - nifpp::binary bin_term(binary_size); - unsigned char* in_vec_data_ptr = reinterpret_cast(flist.data()); - std::memcpy(bin_term.data, in_vec_data_ptr, binary_size); - return_val = { nifpp::make(env, bin_term) , nifpp::make(env, enc_atom_type) }; - break; - } - case ATOM_DOUBLE: - { - std::vector in_list; - unsigned len; - enif_get_list_length(env, argv[ARG_IN_LIST], &len); - nifpp::get_throws(env, argv[ARG_IN_LIST], in_list); - - size_t binary_size = in_list.size() * sizeof(double); - nifpp::binary bin_term(binary_size); - unsigned char* in_vec_data_ptr = reinterpret_cast(in_list.data()); - std::memcpy(bin_term.data, in_vec_data_ptr, binary_size); - return_val = { nifpp::make(env, bin_term), nifpp::make(env, enc_atom_type) }; - break; - } - case ATOM_INT32: - { - std::vector in_list; - nifpp::get_throws(env,argv[ARG_IN_LIST], in_list); - size_t binary_size = in_list.size() * sizeof(int); - nifpp::binary bin_term(binary_size); - unsigned char* in_vec_data_ptr = reinterpret_cast(in_list.data()); - std::memcpy(bin_term.data, in_vec_data_ptr, binary_size); - return_val = { nifpp::make(env, bin_term ) , nifpp::make(env, enc_atom_type) }; - break; - } - case ATOM_INT16: - { - std::vector in_list; - std::vector ilist; - nifpp::get_throws(env,argv[ARG_IN_LIST], in_list); - ilist.resize(in_list.size()); - for (int i=0; i(in_list[i]); - } - size_t binary_size = in_list.size() * sizeof(int16_t); - nifpp::binary bin_term(binary_size); - unsigned char* in_vec_data_ptr = reinterpret_cast(ilist.data()); - std::memcpy(bin_term.data, in_vec_data_ptr, binary_size); - return_val = { nifpp::make(env, bin_term) , nifpp::make(env, enc_atom_type) }; - break; - } - } - return nifpp::make(env, return_val); // make tuple -} - -// decode nerlTensor to EigenTensor --> efficient with DMA copies -// decode string to eigen - only within cpp -// get --> create std string from erlang -// from string to std::vector with vector initialization -// eigen Map from vetor to eigen Tensor - -// decode: nerltensor_str --> eigentensor -//nerltensor_str: string (list of bytes) that represents the nerlTensor given a cpp type (float32, int32, double) - -// Input: List, BinaryType (atom from the group ?BINARY_GROUP_NERLTENSOR_TYPE) -// Output: {List, ListType} (ListType is an atom from the group ?LIST_GROUP_NERLTENSOR_TYPE) -static ERL_NIF_TERM decode_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]){ - enum {ARG_BINARY, ARG_TYPE , ARG_LIST = 0}; - - std::tuple return_val; - - nifpp::str_atom type_nerltensor; - nifpp::str_atom erl_float("erl_float"); - nifpp::str_atom erl_int("erl_int"); - - nifpp::get_throws(env, argv[ARG_TYPE], type_nerltensor); - std::vector bin_vec; - nifpp::get_binary(env, argv[ARG_BINARY], bin_vec); - - int enc_type_num = atom_str_to_enum(type_nerltensor); - - switch (enc_type_num) - { - case ATOM_FLOAT: - { - std::vector vec; - vec.resize(bin_vec.size()/sizeof(float)); - std::memcpy(vec.data(), bin_vec.data(), bin_vec.size()); - return_val = { nifpp::make(env, vec) , nifpp::make(env, erl_float) }; - break; - } - case ATOM_DOUBLE: - { - std::vector vec; - vec.resize(bin_vec.size()/sizeof(double)); - std::memcpy(vec.data(), bin_vec.data(), bin_vec.size()); - return_val = { nifpp::make(env, vec) , nifpp::make(env, erl_float) }; - break; - } - case ATOM_INT32: - { - std::vector vec; - vec.resize(bin_vec.size()/sizeof(int)); - std::memcpy(vec.data(), bin_vec.data(), bin_vec.size()); - return_val = { nifpp::make(env, vec) , nifpp::make(env, erl_int) }; - break; - } - case ATOM_INT16: - { - std::vector vec; - vec.resize(bin_vec.size()/sizeof(int16_t)); - std::memcpy(vec.data(), bin_vec.data(), bin_vec.size()); - return_val = { nifpp::make(env, vec) , nifpp::make(env, erl_int) }; - break; - } - } - return nifpp::make(env, return_val); -} - -/** - * Multiply a tensor by scalar - * Args: nerltensor binary, type, scalar (regular erl_float) -*/ -static ERL_NIF_TERM nerltensor_scalar_multiplication_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) -{ - std::tuple return_tuple; - enum {ARG_BINARY, ARG_TYPE, ARG_SCALAR}; - double scalard; - nifpp::str_atom nerltensors_type; - - nifpp::get_throws(env, argv[ARG_TYPE], nerltensors_type); - nifpp::get_throws(env, argv[ARG_SCALAR], scalard); - int enc_type_num = atom_str_to_enum(nerltensors_type); - int dims; - nifpp::TERM nerltensor_bin; - - switch (enc_type_num) - { - case ATOM_FLOAT: - { - std::shared_ptr eigen_tensor; - dims = nifpp::get_tensor_2d(env, argv[ARG_BINARY], eigen_tensor); // TODO - upgrade to 3d - fTensor2DPtr eigen_tensor_res = make_shared(eigen_tensor->dimension(0), eigen_tensor->dimension(1)); - float scalarf = static_cast(scalard); - (*eigen_tensor_res) = (*eigen_tensor) * scalarf; - - nifpp::make_tensor_2d(env, nerltensor_bin, eigen_tensor_res); - - return_tuple = { nerltensor_bin , nifpp::make(env, nerltensors_type) }; - break; - } - case ATOM_DOUBLE: - { - std::shared_ptr eigen_tensor; - dims = nifpp::get_tensor_2d(env, argv[ARG_BINARY], eigen_tensor); // TODO - upgrade to 3d - - dTensor2DPtr eigen_tensor_res = make_shared(eigen_tensor->dimension(0), eigen_tensor->dimension(1)); - (*eigen_tensor_res) = (*eigen_tensor) * scalard; - - nifpp::make_tensor_2d(env, nerltensor_bin, eigen_tensor_res); - - return_tuple = { nerltensor_bin , nifpp::make(env, nerltensors_type) }; - break; - } - case ATOM_INT32: - { - throw("unsuported type"); - break; - } - case ATOM_INT16: - { - throw("unsuported type"); - break; - } - } - return nifpp::make(env, return_tuple); -} - - -template inline void sum_eigen(EigenTypePtr A, EigenTypePtr B, EigenTypePtr &C) -{ - (*C) = (*A) + (*B); -} - - -static ERL_NIF_TERM nerltensor_sum_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) -{ - std::tuple return_tuple; - - enum {ARG_BINARY_A, ARG_BINARY_B, ARG_TYPE}; - enum {TUPLE_NERLTENSOR_DATA, TUPLE_NERLTENSOR_ATOM_TYPE}; - - nifpp::str_atom nerltensors_type; - nifpp::get_throws(env, argv[ARG_TYPE], nerltensors_type); - - int dims; - int enc_type_num = atom_str_to_enum(nerltensors_type); - - nifpp::TERM nerltensor_bin; - - switch (enc_type_num) - { - case ATOM_FLOAT: - { - std::shared_ptr eigen_tensor_a; - - dims = nifpp::get_tensor_2d(env, argv[ARG_BINARY_A], eigen_tensor_a); // TODO - try use the 3d - fTensor2DPtr eigen_tensor_b; - nifpp::get_tensor_2d(env, argv[ARG_BINARY_B], eigen_tensor_b); - - fTensor2DPtr eigen_tensor_c = make_shared(eigen_tensor_a->dimension(0), eigen_tensor_a->dimension(1)); - sum_eigen(eigen_tensor_a, eigen_tensor_b, eigen_tensor_c); - nifpp::make_tensor_2d(env, nerltensor_bin, eigen_tensor_c); - - return_tuple = { nerltensor_bin , nifpp::make(env, nerltensors_type) }; - break; - } - case ATOM_DOUBLE: - { - dTensor2DPtr eigen_tensor_a; - dims = nifpp::get_tensor_2d(env, argv[ARG_BINARY_A], eigen_tensor_a); //TODO try use the 3d - dTensor2DPtr eigen_tensor_b; - nifpp::get_tensor_2d(env, argv[ARG_BINARY_B], eigen_tensor_b); - - dTensor2DPtr eigen_tensor_c = make_shared(eigen_tensor_a->dimension(0), eigen_tensor_a->dimension(1)); - sum_eigen(eigen_tensor_a, eigen_tensor_b, eigen_tensor_c); - - nifpp::make_tensor_2d(env, nerltensor_bin, eigen_tensor_c); - - return_tuple = { nerltensor_bin , nifpp::make(env, nerltensors_type) }; - break; - } - case ATOM_INT32: - { - throw("unsuported type"); - break; - } - case ATOM_INT16: - { - throw("unsuported type"); - break; - } - - } - - return nifpp::make(env, return_tuple); -} static ErlNifFunc nif_funcs[] = @@ -487,7 +167,8 @@ static ErlNifFunc nif_funcs[] = {"new_nerlworker_nif", 13, new_nerlworker_nif}, {"test_nerlworker_nif", 13, test_nerlworker_nif}, {"update_nerlworker_train_params_nif", 6, update_nerlworker_train_params_nif}, - {"remove_nerlworker_nif", 1, remove_nerlworker_nif} + {"remove_nerlworker_nif", 1, remove_nerlworker_nif}, + {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} }; diff --git a/src_cpp/opennnBridge/operations_nerltensor_nif.h b/src_cpp/opennnBridge/operations_nerltensor_nif.h new file mode 100644 index 00000000..4d7d2023 --- /dev/null +++ b/src_cpp/opennnBridge/operations_nerltensor_nif.h @@ -0,0 +1,133 @@ +#pragma once + +#include "nifppNerltensorEigen.h" + + +/** + * Multiply a tensor by scalar + * Args: nerltensor binary, type, scalar (regular erl_float) +*/ +static ERL_NIF_TERM nerltensor_scalar_multiplication_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) +{ + std::tuple return_tuple; + enum {ARG_BINARY, ARG_TYPE, ARG_SCALAR}; + double scalard; + nifpp::str_atom nerltensors_type; + + nifpp::get_throws(env, argv[ARG_TYPE], nerltensors_type); + nifpp::get_throws(env, argv[ARG_SCALAR], scalard); + int enc_type_num = atom_str_to_enum(nerltensors_type); + int dims; // TODO inspect this variable + nifpp::TERM nerltensor_bin; + + switch (enc_type_num) + { + case ATOM_FLOAT: + { + std::shared_ptr eigen_tensor; + dims = nifpp::get_tensor_2d(env, argv[ARG_BINARY], eigen_tensor); // TODO - upgrade to 3d + fTensor2DPtr eigen_tensor_res = make_shared(eigen_tensor->dimension(DIM_X_IDX), eigen_tensor->dimension(DIM_Y_IDX)); + float scalarf = static_cast(scalard); + (*eigen_tensor_res) = (*eigen_tensor) * scalarf; + + nifpp::make_tensor_2d(env, nerltensor_bin, eigen_tensor_res); + + return_tuple = { nerltensor_bin , nifpp::make(env, nerltensors_type) }; + break; + } + case ATOM_DOUBLE: + { + std::shared_ptr eigen_tensor; + dims = nifpp::get_tensor_2d(env, argv[ARG_BINARY], eigen_tensor); // TODO - upgrade to 3d + + dTensor2DPtr eigen_tensor_res = make_shared(eigen_tensor->dimension(0), eigen_tensor->dimension(1)); + (*eigen_tensor_res) = (*eigen_tensor) * scalard; + + nifpp::make_tensor_2d(env, nerltensor_bin, eigen_tensor_res); + + return_tuple = { nerltensor_bin , nifpp::make(env, nerltensors_type) }; + break; + } + case ATOM_INT32: + { + throw("unsuported type"); + break; + } + case ATOM_INT16: + { + throw("unsuported type"); + break; + } + } + return nifpp::make(env, return_tuple); +} + + +template inline void sum_eigen(EigenTypePtr A, EigenTypePtr B, EigenTypePtr &C) +{ + (*C) = (*A) + (*B); +} + + +static ERL_NIF_TERM nerltensor_sum_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) +{ + std::tuple return_tuple; + + enum {ARG_BINARY_A, ARG_BINARY_B, ARG_TYPE}; + enum {TUPLE_NERLTENSOR_DATA, TUPLE_NERLTENSOR_ATOM_TYPE}; + + nifpp::str_atom nerltensors_type; + nifpp::get_throws(env, argv[ARG_TYPE], nerltensors_type); + + int dims; + int enc_type_num = atom_str_to_enum(nerltensors_type); + + nifpp::TERM nerltensor_bin; + + switch (enc_type_num) + { + case ATOM_FLOAT: + { + std::shared_ptr eigen_tensor_a; + + dims = nifpp::get_tensor_2d(env, argv[ARG_BINARY_A], eigen_tensor_a); // TODO - try use the 3d + fTensor2DPtr eigen_tensor_b; + nifpp::get_tensor_2d(env, argv[ARG_BINARY_B], eigen_tensor_b); + + fTensor2DPtr eigen_tensor_c = make_shared(eigen_tensor_a->dimension(0), eigen_tensor_a->dimension(1)); + sum_eigen(eigen_tensor_a, eigen_tensor_b, eigen_tensor_c); + nifpp::make_tensor_2d(env, nerltensor_bin, eigen_tensor_c); + + return_tuple = { nerltensor_bin , nifpp::make(env, nerltensors_type) }; + break; + } + case ATOM_DOUBLE: + { + dTensor2DPtr eigen_tensor_a; + dims = nifpp::get_tensor_2d(env, argv[ARG_BINARY_A], eigen_tensor_a); //TODO try use the 3d + dTensor2DPtr eigen_tensor_b; + nifpp::get_tensor_2d(env, argv[ARG_BINARY_B], eigen_tensor_b); + + dTensor2DPtr eigen_tensor_c = make_shared(eigen_tensor_a->dimension(0), eigen_tensor_a->dimension(1)); + sum_eigen(eigen_tensor_a, eigen_tensor_b, eigen_tensor_c); + + nifpp::make_tensor_2d(env, nerltensor_bin, eigen_tensor_c); + + return_tuple = { nerltensor_bin , nifpp::make(env, nerltensors_type) }; + break; + } + case ATOM_INT32: + { + throw("unsuported type"); + break; + } + case ATOM_INT16: + { + throw("unsuported type"); + break; + } + + } + + return nifpp::make(env, return_tuple); +} diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index 2cd3b1b5..099cca7f 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -16,6 +16,8 @@ -import(nerl,[compare_floats_L/3, string_format/2, logger_settings/1]). -import(nerlTensor,[nerltensor_sum_erl/2, sum_nerltensors_lists/2]). +-export([generate_random_list_of_unique_integers/3]). % TODO remove when test is implemented + -define(NERLTEST_PRINT_STR, "[NERLTEST] "). nerltest_print(String) -> @@ -32,6 +34,12 @@ nerltest_print(String) -> -define(NERLTESNORS_SUM_LIST_ROUNDS, 30). -define(NERLWORKER_TEST_ROUNDS, 1). +-define(NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, 20). +-define(NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X, 100). +-define(NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, 5). +-define(NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y, 20). +-define(NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_TOTAL_TRUE_LABELS, 20). + test_envelope(Func, TestName, Rounds) -> nerltest_print(nerl:string_format("~p test starts for ~p rounds",[TestName, Rounds])), {TimeTookMicro, _RetVal} = timer:tc(Func, [Rounds]), @@ -90,6 +98,18 @@ random_pick_nerltensor_type()-> RandomIndex = rand:uniform(length(nerlNIF:get_all_binary_types())), lists:nth(RandomIndex, nerlNIF:get_all_binary_types()). +generate_random_list_of_unique_integers(ListSize, Min, Max) -> + generate_random_list_of_unique_integers(ListSize, Min, Max, []). + +generate_random_list_of_unique_integers(0, _Min, _Max, List) -> List; +generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List) -> + N = Max - Min, + rand:uniform(N) - 1 + Min, + IsMember = lists:is_member(N, List), % O(N) + if + IsMember -> generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List); + true -> generate_random_list_of_unique_integers(RemainedNumOfElements - 1, Min, Max, [N | List]) + end. generate_nerltensor_rand_dims(Type)-> DimX = rand:uniform(?DIMX_RAND_MAX), diff --git a/src_erl/NerlnetApp/src/Bridge/neural_networks_testing_models.hrl b/src_erl/NerlnetApp/src/Bridge/neural_networks_testing_models.hrl index 80f70dfa..2f66460a 100644 --- a/src_erl/NerlnetApp/src/Bridge/neural_networks_testing_models.hrl +++ b/src_erl/NerlnetApp/src/Bridge/neural_networks_testing_models.hrl @@ -14,6 +14,19 @@ _DistributedSystemType = "0", _DistributedSystemArg = ""} ). +-define(PERCEPTRON_TESTING_DISTRIBUTED_NN,{ _ModelId = erlang:unique_integer([positive]), + _ModelType = "0", + _ModelArgs = "", + _LayersSizes = "5,30,5,3", + _LayersTypes = "1,3,3,3", + _LayersFunctionalityCodes = "1,6,6,6", % change scaler functionality to 6 to check exception handling + _LearningRate = "0.01", + _Epochs = "50", + _OptimizerType = "2", + _OptimizerArgs = "", + _LossMethod = "2", + _DistributedSystemType = "0", % TODO Ori put the correct value + _DistributedSystemArg = ""} ). -define(CNN_TESTING_NN,{ _ModelIdCNN = erlang:unique_integer([positive]), _ModelTypeCNN = "0", diff --git a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl index 57bf2761..810b81dc 100644 --- a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl @@ -34,14 +34,26 @@ -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_KEY_ATOM,none). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_KEY_ATOM,fedClientAvg). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_KEY_ATOM,fedServerAvg). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_KEY_ATOM,fedClientWegithedAvgClassification). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_KEY_ATOM,fedServerWegithedAvgClassification). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_KEY_ATOM,fedClientAE). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_KEY_ATOM,fedServerAE). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX_STR,"0"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX_STR,"1"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX_STR,"2"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_IDX_STR,"3"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_IDX_STR,"4"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX_STR,"5"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX_STR,"6"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX,0). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX,1). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX,2). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_IDX,3). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_IDX,4). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX,5). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX,6). -define(DC_INFRA_TYPE_OPENNN_KEY_ATOM,opennn). -define(DC_INFRA_TYPE_WOLFENGINE_KEY_ATOM,wolfengine). diff --git a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py index c5fecfe0..73ced1bd 100644 --- a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py +++ b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py @@ -118,8 +118,12 @@ DistributedSystemTypeMapping = OrderedDict([ ("none" , "0"), - ("fedClientAvg" , "1"), - ("fedServerAvg" , "2") + ("FedClientAvg" , "1"), + ("FedServerAvg" , "2"), + ("FedClientWegithedAvgClassification" , "3"), + ("FedServerWegithedAvgClassification" , "4"), + ("FedClientAE" , "5"), + ("FedServerAE" , "6") ]) InfraTypeMapping = OrderedDict([ From d289c3fb1c508746b3e6a26178c1367145305653 Mon Sep 17 00:00:00 2001 From: Ubuntu Date: Sun, 9 Jun 2024 06:50:50 +0000 Subject: [PATCH 02/30] add _train_labels_count --- src_cpp/common/nerlWorker.h | 3 +-- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 12 ++++++++++++ 2 files changed, 13 insertions(+), 2 deletions(-) diff --git a/src_cpp/common/nerlWorker.h b/src_cpp/common/nerlWorker.h index 1f6a3779..c6998ca1 100644 --- a/src_cpp/common/nerlWorker.h +++ b/src_cpp/common/nerlWorker.h @@ -22,8 +22,7 @@ namespace nerlnet int get_optimizer_type() { return _optimizer_type; }; int get_loss_method() { return _loss_method; }; int get_distributed_system_type() { return _distributed_system_type; }; - - std::vector get_distributed_system_train_labels_count() {LogError<<"Distributed System Weighted Avg count label is unsupported"; + virtual std::vector get_distributed_system_train_labels_count() {LogError<<"Distributed System Weighted Avg count label is unsupported"; throw("Distributed System Weighted Avg count label is unsupported");} // counts the number of each label appears in the training set for weighted average protected: diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 71e1e767..74a164ad 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -787,6 +787,18 @@ namespace nerlnet { // TODO Ori - implement // Return copy of the vector + int col_num = _data_set->get_columns_number(); + std::shared_ptr neural_network_ptr = get_neural_network_ptr(); + int num_of_output_neurons = neural_network_ptr->get_outputs_number(); + Tensor selected_column_indices(num_of_output_neurons); + for(int i =0;iget_columns_data(selected_column_indices) << endl; + Tensor labels = _data_set->get_columns_data(selected_column_indices); + Tensor rowSum = labels.sum(Eigen::array{1}); + cout << labels << "labels" << endl; + cout << rowSum << "rowSum" << endl; _train_labels_count = std::make_shared>(); break; } From 1962924aea0c82e403e09c45de02edde316582b4 Mon Sep 17 00:00:00 2001 From: Ubuntu Date: Sat, 15 Jun 2024 21:46:11 +0000 Subject: [PATCH 03/30] add start the test --- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index 099cca7f..e51de7ac 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -302,6 +302,20 @@ nerlworker_test_generate_data(LayersSizes, LayerTypes, NumOfSamples) -> %% Ask D {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. +count_label_test(_Performance) -> _Performance; +count_label_test(Performance) -> + lenData = rand:uniform(?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X), + lenLabels = rand:uniform(?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y), + lenActualData = lenData+?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + maxNum = 255, + dataRand = generate_random_list_of_unique_integers(lenActualData, 0, maxNum), + dataRand. + %add nerlworkerNif + + + %NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_TOTAL_TRUE_LABELS + nerlworker_test([], _Performance) -> _Performance; nerlworker_test([CurrentModel | Tail], Performance) -> From 1a7662abb20c18410ccd5a7fc4723399055e3cb4 Mon Sep 17 00:00:00 2001 From: Ubuntu Date: Sun, 23 Jun 2024 19:57:41 +0000 Subject: [PATCH 04/30] the test finished, not work yet --- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 64 ++++++++++++++++----- 1 file changed, 50 insertions(+), 14 deletions(-) diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index e51de7ac..894ff0cf 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -15,7 +15,6 @@ -import(nerlNIF,[nerltensor_scalar_multiplication_nif/3, nerltensor_scalar_multiplication_erl/2]). -import(nerl,[compare_floats_L/3, string_format/2, logger_settings/1]). -import(nerlTensor,[nerltensor_sum_erl/2, sum_nerltensors_lists/2]). - -export([generate_random_list_of_unique_integers/3]). % TODO remove when test is implemented -define(NERLTEST_PRINT_STR, "[NERLTEST] "). @@ -90,7 +89,10 @@ run_tests()-> NerlworkerTestFunc = fun(_Rounds) -> Performance = 0, nerlworker_test(NeuralNetworkTestingModelList, Performance) end, NerlworkerTestName = "nerlworker_test", test_envelope_nif_performance(NerlworkerTestFunc, NerlworkerTestName, length(NeuralNetworkTestingModelList) ), - + nerltest_print("count label test"), + %CountLabelTestName = "test_count_label", + %CountLabelTestFunc = fun(_Rounds) -> Performance = 0, test_count_label_nif(Performance) end, + %test_envelope_nif_performance(CountLabelTestFunc, CountLabelTestName, 1 ), nerltest_print("Tests Completed"), ok. @@ -301,20 +303,54 @@ nerlworker_test_generate_data(LayersSizes, LayerTypes, NumOfSamples) -> %% Ask D {NerlTensor , Type} = nerlNIF:nerltensor_conversion({ErlDataTensor,erl_float} , float), {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. +%test_count_label_nif(_Performance) -> _Performance; +test_count_label_nif(_Performance) -> + ModelId = erlang:unique_integer([positive]), + ModelType = "0", + ModelArgs = "", + LayersFunctionalityCodes = "1,6", + LearningRate = "0.01", + Epochs = "50", + OptimizerType = "2", + OptimizerArgs = "", + LossMethod = "2", + DistributedSystemType = "0", + DistributedSystemArg = "", + nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), + nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), + lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), + lenData = rand:uniform(lenDataToRand), + lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + lenLabels = rand:uniform(lenLabelsToRand), + lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + maxNum = 255, + + if + (lenActualData == lenActualLabels) -> + lenActualDataIf = lenActualData+1; + true -> + lenActualDataIf = lenActualData + end, + NumOfSamples = 50, + dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), + {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), + LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], + LayersTypes = "1,3", + nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, + LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, + OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), + NerlTensorDataBinTrain = NerlTensor, + %{DataTensorErlPredictFeatures , _DataTensorErlPredictLabels} = nerlTensor:split_cols_erl_tensor(dataRand , erl_float , lenActualDataIf-lenActualLabels), + %{NerlTensorDataBinPredict , _Type1} = nerlNIF:nerltensor_conversion({DataTensorErlPredictFeatures, erl_float}, float), + nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), % ask Guy about receiver block + nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), + nerlNIF:remove_nerlworker_nif(ModelId). + %nerlNIF:predict_nif(ModelId , NerlTensorDataBinPredict , erl_float), -count_label_test(_Performance) -> _Performance; -count_label_test(Performance) -> - lenData = rand:uniform(?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X), - lenLabels = rand:uniform(?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y), - lenActualData = lenData+?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, - lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - maxNum = 255, - dataRand = generate_random_list_of_unique_integers(lenActualData, 0, maxNum), - dataRand. %add nerlworkerNif - - - %NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_TOTAL_TRUE_LABELS + %NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_TOTAL_TRUE_LABELS nerlworker_test([], _Performance) -> _Performance; From 30a32cff3edb6d967c006dc902a5fa86500aaef7 Mon Sep 17 00:00:00 2001 From: Ubuntu Date: Wed, 26 Jun 2024 19:05:25 +0000 Subject: [PATCH 05/30] all comments --- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 90 ++++++++++----------- 1 file changed, 42 insertions(+), 48 deletions(-) diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index 894ff0cf..051aca7c 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -91,8 +91,8 @@ run_tests()-> test_envelope_nif_performance(NerlworkerTestFunc, NerlworkerTestName, length(NeuralNetworkTestingModelList) ), nerltest_print("count label test"), %CountLabelTestName = "test_count_label", - %CountLabelTestFunc = fun(_Rounds) -> Performance = 0, test_count_label_nif(Performance) end, - %test_envelope_nif_performance(CountLabelTestFunc, CountLabelTestName, 1 ), + %CountLabelTestFunc = fun(_Rounds) -> test_count_label_nif() end, + %אest_envelope(CountLabelTestFunc, CountLabelTestName, 1 ), nerltest_print("Tests Completed"), ok. @@ -304,53 +304,47 @@ nerlworker_test_generate_data(LayersSizes, LayerTypes, NumOfSamples) -> %% Ask D {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. %test_count_label_nif(_Performance) -> _Performance; -test_count_label_nif(_Performance) -> - ModelId = erlang:unique_integer([positive]), - ModelType = "0", - ModelArgs = "", - LayersFunctionalityCodes = "1,6", - LearningRate = "0.01", - Epochs = "50", - OptimizerType = "2", - OptimizerArgs = "", - LossMethod = "2", - DistributedSystemType = "0", - DistributedSystemArg = "", - nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), - nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), - lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, - nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), - lenData = rand:uniform(lenDataToRand), - lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - lenLabels = rand:uniform(lenLabelsToRand), - lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, - lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - maxNum = 255, +% test_count_label_nif() -> +% ModelId = erlang:unique_integer([positive]), +% ModelType = "0", +% ModelArgs = "", +% LayersFunctionalityCodes = "1,6", +% LearningRate = "0.01", +% Epochs = "50", +% OptimizerType = "2", +% OptimizerArgs = "", +% LossMethod = "2", +% DistributedSystemType = "0", +% DistributedSystemArg = "", +% nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), +% nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), +% lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, +% nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), +% lenData = rand:uniform(lenDataToRand), +% lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, +% lenLabels = rand:uniform(lenLabelsToRand), +% lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, +% lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, +% maxNum = 255, - if - (lenActualData == lenActualLabels) -> - lenActualDataIf = lenActualData+1; - true -> - lenActualDataIf = lenActualData - end, - NumOfSamples = 50, - dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), - {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), - LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], - LayersTypes = "1,3", - nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, - LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, - OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), - NerlTensorDataBinTrain = NerlTensor, - %{DataTensorErlPredictFeatures , _DataTensorErlPredictLabels} = nerlTensor:split_cols_erl_tensor(dataRand , erl_float , lenActualDataIf-lenActualLabels), - %{NerlTensorDataBinPredict , _Type1} = nerlNIF:nerltensor_conversion({DataTensorErlPredictFeatures, erl_float}, float), - nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), % ask Guy about receiver block - nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), - nerlNIF:remove_nerlworker_nif(ModelId). - %nerlNIF:predict_nif(ModelId , NerlTensorDataBinPredict , erl_float), - - %add nerlworkerNif - %NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_TOTAL_TRUE_LABELS +% if +% (lenActualData == lenActualLabels) -> +% lenActualDataIf = lenActualData+1; +% true -> +% lenActualDataIf = lenActualData +% end, +% NumOfSamples = 50, +% dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), +% {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), +% LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], +% LayersTypes = "1,3", +% nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, +% LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, +% OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), +% NerlTensorDataBinTrain = NerlTensor, +% nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), +% nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), +% nerlNIF:remove_nerlworker_nif(ModelId). nerlworker_test([], _Performance) -> _Performance; From 0c02e6d4f6c62d3a5e2ddb76a4617340c73410b7 Mon Sep 17 00:00:00 2001 From: Ubuntu Date: Wed, 26 Jun 2024 19:56:42 +0000 Subject: [PATCH 06/30] Comment on a bad function --- src_cpp/opennnBridge/nerlWorkerNIF.h | 28 ++++++++++----------- src_cpp/opennnBridge/openNNnif.h | 4 +-- src_erl/NerlnetApp/src/Bridge/nerlNIF.erl | 3 ++- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 7 +++--- 4 files changed, 22 insertions(+), 20 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerNIF.h b/src_cpp/opennnBridge/nerlWorkerNIF.h index 4b17d6e1..190c286a 100644 --- a/src_cpp/opennnBridge/nerlWorkerNIF.h +++ b/src_cpp/opennnBridge/nerlWorkerNIF.h @@ -127,21 +127,21 @@ static ERL_NIF_TERM remove_nerlworker_nif(ErlNifEnv* env, int argc, const ERL_NI } -static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) -{ - enum{ARG_MODEL_ID}; - unsigned long modelId; +// static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) +// { +// enum{ARG_MODEL_ID}; +// unsigned long modelId; - nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); +// nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); - BridgeController& bridge_controller = BridgeController::GetInstance(); - std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); - // assert: the model is a distributed system of federated weighted average classification - std::vector train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); +// BridgeController& bridge_controller = BridgeController::GetInstance(); +// std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); +// // assert: the model is a distributed system of federated weighted average classification +// std::vector train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); - nifpp::str_atom nerltensor_type = "erl_int"; +// nifpp::str_atom nerltensor_type = "erl_int"; - nifpp::TERM nerltensor_tuple; // TODO - // Return tuple of {nerltensor, nerltensor_type} - return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int -} \ No newline at end of file +// nifpp::TERM nerltensor_tuple; // TODO +// // Return tuple of {nerltensor, nerltensor_type} +// return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int +// } \ No newline at end of file diff --git a/src_cpp/opennnBridge/openNNnif.h b/src_cpp/opennnBridge/openNNnif.h index 629f42a5..9d210120 100644 --- a/src_cpp/opennnBridge/openNNnif.h +++ b/src_cpp/opennnBridge/openNNnif.h @@ -167,8 +167,8 @@ static ErlNifFunc nif_funcs[] = {"new_nerlworker_nif", 13, new_nerlworker_nif}, {"test_nerlworker_nif", 13, test_nerlworker_nif}, {"update_nerlworker_train_params_nif", 6, update_nerlworker_train_params_nif}, - {"remove_nerlworker_nif", 1, remove_nerlworker_nif}, - {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} + {"remove_nerlworker_nif", 1, remove_nerlworker_nif} + // {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} }; diff --git a/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl b/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl index 823de1e4..51418fe0 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl @@ -161,7 +161,8 @@ nerltensor_binary_decode(Binary, Type) when erlang:is_binary(Binary) and erlang: NerlTensorListForm. % return the merged list of all supported binary types -get_all_binary_types() -> ?LIST_BINARY_FLOAT_NERLTENSOR_TYPE ++ ?LIST_BINARY_INT_NERLTENSOR_TYPE. +get_all_binary_types() -> io:format("HEREEEEE~n"), + ?LIST_BINARY_FLOAT_NERLTENSOR_TYPE ++ ?LIST_BINARY_INT_NERLTENSOR_TYPE. get_all_nerltensor_list_types() -> ?LIST_GROUP_NERLTENSOR_TYPE. % nerltensor_conversion: % Type is Binary then: Binary (Compressed Form) --> Erlang List diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index 051aca7c..a36a20a0 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -9,8 +9,8 @@ -export([run_tests/0]). -import(nerlNIF,[decode_nif/2, nerltensor_binary_decode/2]). --import(nerlNIF,[encode_nif/2, nerltensor_encode/5, nerltensor_conversion/2, get_all_binary_types/0, get_all_nerltensor_list_types/0]). --import(nerlNIF,[nerltensor_sum_nif/3]). +-import(nerlNIF,[encode_nif/2, nerltensor_encode/5, nerltensor_conversion/2, get_all_nerltensor_list_types/0]). +-import(nerlNIF,[nerltensor_sum_nif/3, get_all_binary_types/0]). -import(nerlNIF,[test_nerlworker_nif/12, remove_nerlworker_nif/1]). -import(nerlNIF,[nerltensor_scalar_multiplication_nif/3, nerltensor_scalar_multiplication_erl/2]). -import(nerl,[compare_floats_L/3, string_format/2, logger_settings/1]). @@ -106,7 +106,7 @@ generate_random_list_of_unique_integers(ListSize, Min, Max) -> generate_random_list_of_unique_integers(0, _Min, _Max, List) -> List; generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List) -> N = Max - Min, - rand:uniform(N) - 1 + Min, + rand:uniform(N) - 1 + Min, % NO ASSIGNMENT (??) IsMember = lists:is_member(N, List), % O(N) if IsMember -> generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List); @@ -210,6 +210,7 @@ sum_nerltensors_lists_test(Type, N, Performance) -> encode_decode_nifs_test(0, _Res, Performance) -> Performance ; encode_decode_nifs_test(N, Res, Performance) -> + io:format("GOT HERE~n"), EncodeType = random_pick_nerltensor_type(), NerlTensor = generate_nerltensor_rand_dims(EncodeType), Tic = nerl:tic(), From 325d20057606067b20adccfcff0811158ff50b5b Mon Sep 17 00:00:00 2001 From: Ubuntu Date: Mon, 1 Jul 2024 07:39:17 +0000 Subject: [PATCH 07/30] syn exp and fix the problem with weighted avg --- .../conn_8Routers10Clients3S.json | 13 + .../dc_10w_14d_8r_3s_10c_synt.json | 283 ++++++++++++++++++ .../Workers/worker_synt_ori_new.json | 33 ++ .../exp_dist_14d_10c_3s_8r_10w.json | 98 ++++++ src_cpp/common/nerlWorker.h | 2 +- src_cpp/common/worker_definitions_ag.h | 2 +- src_cpp/opennnBridge/nerlWorkerNIF.h | 31 +- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 37 +-- src_cpp/opennnBridge/nerlWorkerOpenNN.h | 2 +- src_cpp/opennnBridge/openNNnif.h | 4 +- src_erl/NerlnetApp/src/Bridge/nerlNIF.erl | 13 +- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 90 +++--- .../NerlnetApp/src/worker_definitions_ag.hrl | 12 +- .../JsonElementWorkerDefinitions.py | 4 +- 14 files changed, 531 insertions(+), 93 deletions(-) create mode 100644 inputJsonsFiles/ConnectionMap/conn_8Routers10Clients3S.json create mode 100644 inputJsonsFiles/DistributedConfig/dc_10w_14d_8r_3s_10c_synt.json create mode 100644 inputJsonsFiles/Workers/worker_synt_ori_new.json create mode 100644 inputJsonsFiles/experimentsFlow/exp_dist_14d_10c_3s_8r_10w.json diff --git a/inputJsonsFiles/ConnectionMap/conn_8Routers10Clients3S.json b/inputJsonsFiles/ConnectionMap/conn_8Routers10Clients3S.json new file mode 100644 index 00000000..b813a59c --- /dev/null +++ b/inputJsonsFiles/ConnectionMap/conn_8Routers10Clients3S.json @@ -0,0 +1,13 @@ +{ + "connectionsMap": + { + "r1":["mainServer", "c1", "s1", "r2","c9"], + "r2":["c2","s2", "r3","c10"], + "r3":["c3","s3", "r4"], + "r4":["c4", "r5"], + "r5":["c5", "r6"], + "r6":["c6", "r7"], + "r7":["c7", "r8"], + "r8":["c8", "r1"] + } +} \ No newline at end of file diff --git a/inputJsonsFiles/DistributedConfig/dc_10w_14d_8r_3s_10c_synt.json b/inputJsonsFiles/DistributedConfig/dc_10w_14d_8r_3s_10c_synt.json new file mode 100644 index 00000000..93234229 --- /dev/null +++ b/inputJsonsFiles/DistributedConfig/dc_10w_14d_8r_3s_10c_synt.json @@ -0,0 +1,283 @@ +{ + "nerlnetSettings": { + "frequency": "50", + "batchSize": "50" + }, + "mainServer": { + "port": "8900", + "args": "" + }, + "apiServer": { + "port": "8901", + "args": "" + }, + "devices": [ + { + "name": "vm0", + "ipv4": "10.0.0.31", + "entities": "mainServer,apiServer" + }, + { + "name": "vm1", + "ipv4": "10.0.0.18", + "entities": "c1,r1" + }, + { + "name": "vm2", + "ipv4": "10.0.0.27", + "entities": "c2,r2" + }, + { + "name": "vm3", + "ipv4": "10.0.0.28", + "entities": "c3,r3" + }, + { + "name": "vm4", + "ipv4": "10.0.0.29", + "entities": "c4,r4" + }, + { + "name": "vm5", + "ipv4": "10.0.0.19", + "entities": "c5,r5" + }, + { + "name": "vm6", + "ipv4": "10.0.0.20", + "entities": "c6,r6" + }, + { + "name": "vm7", + "ipv4": "10.0.0.21", + "entities": "c7,r7" + }, + { + "name": "vm8", + "ipv4": "10.0.0.22", + "entities": "c8,r8" + }, + { + "name": "vm9", + "ipv4": "10.0.0.23", + "entities": "c9" + }, + { + "name": "vm10", + "ipv4": "10.0.0.24", + "entities": "c10" + }, + { + "name": "vm11", + "ipv4": "10.0.0.25", + "entities": "s1" + }, + { + "name": "vm12", + "ipv4": "10.0.0.26", + "entities": "s2" + }, + { + "name": "vm13", + "ipv4": "10.0.0.17", + "entities": "s3" + } + ], + "routers": [ + { + "name": "r1", + "port": "8915", + "policy": "0" + }, + { + "name": "r2", + "port": "8916", + "policy": "0" + }, + { + "name": "r3", + "port": "8917", + "policy": "0" + }, + { + "name": "r4", + "port": "8918", + "policy": "0" + }, + { + "name": "r5", + "port": "8919", + "policy": "0" + }, + { + "name": "r6", + "port": "8920", + "policy": "0" + }, + { + "name": "r7", + "port": "8921", + "policy": "0" + }, + { + "name": "r8", + "port": "8922", + "policy": "0" + } + ], + "sources": [ + { + "name": "s1", + "port": "8902", + "frequency": "50", + "policy": "0", + "epochs": "1", + "type": "0" + }, + { + "name": "s2", + "port": "8903", + "frequency": "50", + "policy": "0", + "epochs": "1", + "type": "0" + }, + { + "name": "s3", + "port": "8904", + "frequency": "50", + "policy": "0", + "epochs": "1", + "type": "0" + } + ], + "clients": [ + { + "name": "c1", + "port": "8905", + "workers": "w1" + }, + { + "name": "c2", + "port": "8906", + "workers": "w2" + }, + { + "name": "c3", + "port": "8907", + "workers": "w3" + }, + { + "name": "c4", + "port": "8908", + "workers": "w4" + }, + { + "name": "c5", + "port": "8909", + "workers": "w5" + }, + { + "name": "c6", + "port": "8910", + "workers": "w6" + }, + { + "name": "c7", + "port": "8911", + "workers": "w7" + }, + { + "name": "c8", + "port": "8912", + "workers": "w8" + }, + { + "name": "c9", + "port": "8913", + "workers": "w9" + }, + { + "name": "c10", + "port": "8914", + "workers": "w10" + } + ], + "workers": [ + { + "name": "w1", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w2", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w3", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w4", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w5", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w6", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w7", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w8", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w9", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w10", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + } + ], + "model_sha": { + "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a": { + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "5,10,5,3", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "1,3,3,3", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "1,6,6,11", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "2", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lr": "0.001", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "0", + "_doc_distributedSystemType": " none:0 | fedClientAvg:1 | fedServerAvg:2 |", + "distributedSystemArgs": "none", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "none", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" + } + } +} \ No newline at end of file diff --git a/inputJsonsFiles/Workers/worker_synt_ori_new.json b/inputJsonsFiles/Workers/worker_synt_ori_new.json new file mode 100644 index 00000000..c723bd16 --- /dev/null +++ b/inputJsonsFiles/Workers/worker_synt_ori_new.json @@ -0,0 +1,33 @@ +{ + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "5,10,5,3", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "1,3,3,3", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "1,6,6,11", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "2", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lr": "0.001", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "0", + "_doc_distributedSystemType": " none:0 | fedClientAvg:1 | fedServerAvg:2 |", + "distributedSystemArgs": "none", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "none", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" +} \ No newline at end of file diff --git a/inputJsonsFiles/experimentsFlow/exp_dist_14d_10c_3s_8r_10w.json b/inputJsonsFiles/experimentsFlow/exp_dist_14d_10c_3s_8r_10w.json new file mode 100644 index 00000000..35a88b04 --- /dev/null +++ b/inputJsonsFiles/experimentsFlow/exp_dist_14d_10c_3s_8r_10w.json @@ -0,0 +1,98 @@ +{ + "experimentName": "synthetic_3_gausians", + "experimentType": "classification", + "batchSize": 50, + "csvFilePath": "/tmp/nerlnet/data/NerlnetData-master/nerlnet/synthetic/synthetic_full.csv", + "numOfFeatures": "5", + "numOfLabels": "3", + "headersNames": "Norm(0:1),Norm(4:1),Norm(10:3)", + "Phases": + [ + { + "phaseName": "training_phase1", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "0", + "numOfBatches": "200", + "workers": "w1,w2,w3,w4", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "0", + "numOfBatches": "200", + "workers": "w5,w6,w7,w8", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "10000", + "numOfBatches": "200", + "workers": "w9,w10", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "training_phase2", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "20000", + "numOfBatches": "200", + "workers": "w1,w2,w3,w4", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "20000", + "numOfBatches": "200", + "workers": "w5,w6,w7,w8", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "30000", + "numOfBatches": "200", + "workers": "w9,w10", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "prediction_phase", + "phaseType": "prediction", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "40000", + "numOfBatches": "200", + "workers": "w1,w4,w7,w10", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "40000", + "numOfBatches": "200", + "workers": "w2,w5,w8", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "40000", + "numOfBatches": "200", + "workers": "w3,w6,w9", + "nerltensorType": "float" + } + ] + } + ] + } + + \ No newline at end of file diff --git a/src_cpp/common/nerlWorker.h b/src_cpp/common/nerlWorker.h index c6998ca1..b6359b09 100644 --- a/src_cpp/common/nerlWorker.h +++ b/src_cpp/common/nerlWorker.h @@ -22,7 +22,7 @@ namespace nerlnet int get_optimizer_type() { return _optimizer_type; }; int get_loss_method() { return _loss_method; }; int get_distributed_system_type() { return _distributed_system_type; }; - virtual std::vector get_distributed_system_train_labels_count() {LogError<<"Distributed System Weighted Avg count label is unsupported"; + virtual std::shared_ptr> get_distributed_system_train_labels_count() {LogError<<"Distributed System Weighted Avg count label is unsupported"; throw("Distributed System Weighted Avg count label is unsupported");} // counts the number of each label appears in the training set for weighted average protected: diff --git a/src_cpp/common/worker_definitions_ag.h b/src_cpp/common/worker_definitions_ag.h index 6d92d1bf..61f44ebb 100644 --- a/src_cpp/common/worker_definitions_ag.h +++ b/src_cpp/common/worker_definitions_ag.h @@ -17,6 +17,6 @@ enum ModelTypeEnum{MODEL_TYPE_NN=0,MODEL_TYPE_APPROXIMATION=1,MODEL_TYPE_CLASSIF enum OptimizerEnum{OPTIMIZER_GD=0,OPTIMIZER_CGD=1,OPTIMIZER_SGD=2,OPTIMIZER_QUASINEUTON=3,OPTIMIZER_LVM=4,OPTIMIZER_ADAM=5}; enum LossMethodEnum{LOSS_METHOD_SSE=1,LOSS_METHOD_MSE=2,LOSS_METHOD_NSE=3,LOSS_METHOD_MINKOWSKIE=4,LOSS_METHOD_WSE=5,LOSS_METHOD_CEE=6}; enum InfraTypeEnum{INFRA_TYPE_OPENNN=0,INFRA_TYPE_WOLFENGINE=1}; -enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=6}; +enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=6}; } // namespace nerlnet diff --git a/src_cpp/opennnBridge/nerlWorkerNIF.h b/src_cpp/opennnBridge/nerlWorkerNIF.h index 190c286a..af4a4df8 100644 --- a/src_cpp/opennnBridge/nerlWorkerNIF.h +++ b/src_cpp/opennnBridge/nerlWorkerNIF.h @@ -127,21 +127,24 @@ static ERL_NIF_TERM remove_nerlworker_nif(ErlNifEnv* env, int argc, const ERL_NI } -// static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) -// { -// enum{ARG_MODEL_ID}; -// unsigned long modelId; +/** input - unsigned long modelId + * output - nerltensor that is the acc sum of each label in the last training data_set + * **/ +static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) +{ + enum{ARG_MODEL_ID}; + unsigned long modelId; -// nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); + nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); -// BridgeController& bridge_controller = BridgeController::GetInstance(); -// std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); -// // assert: the model is a distributed system of federated weighted average classification -// std::vector train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); + BridgeController& bridge_controller = BridgeController::GetInstance(); + std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); + // assert: the model is a distributed system of federated weighted average classification + std::shared_ptr> train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); -// nifpp::str_atom nerltensor_type = "erl_int"; + nifpp::str_atom nerltensor_type = "erl_int"; -// nifpp::TERM nerltensor_tuple; // TODO -// // Return tuple of {nerltensor, nerltensor_type} -// return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int -// } \ No newline at end of file + nifpp::TERM nerltensor_tuple; // TODO + // Return tuple of {nerltensor, nerltensor_type} + return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int +} \ No newline at end of file diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 74a164ad..0119f1f2 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -288,13 +288,27 @@ namespace nerlnet //------------ Distributed System Type ------------ switch (_distributed_system_type) { - case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification + case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification { // TODO Ori - Implement // we need to update _train_labels_count // look at number of output neurons // if this is the first time resize the vector to the number of output neurons // sum columns of labels (assert if num of labels not equal to num of output neurons) + int col_num = _data_set->get_columns_number(); + std::shared_ptr neural_network_ptr = get_neural_network_ptr(); + int num_of_output_neurons = neural_network_ptr->get_outputs_number(); + Tensor selected_column_indices(num_of_output_neurons); + // TODO : add explain the for loop + for(int i =0;iget_columns_data(selected_column_indices) << endl; + Tensor labels = _data_set->get_columns_data(selected_column_indices); + Tensor rowSum = labels.sum(Eigen::array{1}); + cout << labels << "labels" << endl; + cout << rowSum << "rowSum" << endl; + _train_labels_count = std::make_shared>(); break; } default: @@ -779,27 +793,16 @@ namespace nerlnet return res; } - std::vector NerlWorkerOpenNN::get_distributed_system_train_labels_count() - { + std::shared_ptr> NerlWorkerOpenNN::get_distributed_system_train_labels_count() + { switch (_distributed_system_type) { - case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification + case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification { // TODO Ori - implement // Return copy of the vector - int col_num = _data_set->get_columns_number(); - std::shared_ptr neural_network_ptr = get_neural_network_ptr(); - int num_of_output_neurons = neural_network_ptr->get_outputs_number(); - Tensor selected_column_indices(num_of_output_neurons); - for(int i =0;iget_columns_data(selected_column_indices) << endl; - Tensor labels = _data_set->get_columns_data(selected_column_indices); - Tensor rowSum = labels.sum(Eigen::array{1}); - cout << labels << "labels" << endl; - cout << rowSum << "rowSum" << endl; - _train_labels_count = std::make_shared>(); + // make sure - throw error if data_set doesn't exist + return _train_labels_count; break; } default: diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.h b/src_cpp/opennnBridge/nerlWorkerOpenNN.h index 209c7727..f67f733b 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.h +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.h @@ -40,7 +40,7 @@ class NerlWorkerOpenNN : public NerlWorker void set_dataset(std::shared_ptr data_set,fTensor2DPtr TrainDataNNptr); std::shared_ptr get_dataset_ptr() { return _data_set; }; - std::vector get_distributed_system_train_labels_count() override; + std::shared_ptr> get_distributed_system_train_labels_count() override; private: diff --git a/src_cpp/opennnBridge/openNNnif.h b/src_cpp/opennnBridge/openNNnif.h index 9d210120..629f42a5 100644 --- a/src_cpp/opennnBridge/openNNnif.h +++ b/src_cpp/opennnBridge/openNNnif.h @@ -167,8 +167,8 @@ static ErlNifFunc nif_funcs[] = {"new_nerlworker_nif", 13, new_nerlworker_nif}, {"test_nerlworker_nif", 13, test_nerlworker_nif}, {"update_nerlworker_train_params_nif", 6, update_nerlworker_train_params_nif}, - {"remove_nerlworker_nif", 1, remove_nerlworker_nif} - // {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} + {"remove_nerlworker_nif", 1, remove_nerlworker_nif}, + {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} }; diff --git a/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl b/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl index 51418fe0..c70194cd 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl @@ -20,7 +20,7 @@ -export([nerltensor_scalar_multiplication_nif/3, nerltensor_scalar_multiplication_erl/2]). % nerlworker nif methods --export([new_nerlworker_nif/13, remove_nerlworker_nif/1, test_nerlworker_nif/13]). +-export([new_nerlworker_nif/13, remove_nerlworker_nif/1, test_nerlworker_nif/13,get_distributed_system_train_labels_count_nif/1]). init() -> NELNET_LIB_PATH = ?NERLNET_PATH++?BUILD_TYPE_RELEASE++"/"++?NERLNET_LIB, @@ -161,8 +161,7 @@ nerltensor_binary_decode(Binary, Type) when erlang:is_binary(Binary) and erlang: NerlTensorListForm. % return the merged list of all supported binary types -get_all_binary_types() -> io:format("HEREEEEE~n"), - ?LIST_BINARY_FLOAT_NERLTENSOR_TYPE ++ ?LIST_BINARY_INT_NERLTENSOR_TYPE. +get_all_binary_types() -> ?LIST_BINARY_FLOAT_NERLTENSOR_TYPE ++ ?LIST_BINARY_INT_NERLTENSOR_TYPE. get_all_nerltensor_list_types() -> ?LIST_GROUP_NERLTENSOR_TYPE. % nerltensor_conversion: % Type is Binary then: Binary (Compressed Form) --> Erlang List @@ -231,4 +230,10 @@ remove_nerlworker_nif(_ModelId) -> %% All of inputs must be binary strings! except for _ModelId which is an integer test_nerlworker_nif(_ModelId,_ModelType, _ModelArgs, _LayersSizes, _LayersTypes, _LayersFunctionalityCodes, _LearningRate, _Epochs, _OptimizerType, _OptimizerArgs, _LossMethod, _DistributedSystemType, _DistributedSystemArgs) -> - exit(nif_library_not_loaded). \ No newline at end of file + exit(nif_library_not_loaded). + +% input - unsigned long modelId +% output - nerltensor that is the acc sum of each label in the last training data_set +% distributed system type should be FedClientWeightedAvgClassification +get_distributed_system_train_labels_count_nif(_ModelId) -> + exit(nif_library_not_loaded). \ No newline at end of file diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index a36a20a0..f8eb4f31 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -90,9 +90,9 @@ run_tests()-> NerlworkerTestName = "nerlworker_test", test_envelope_nif_performance(NerlworkerTestFunc, NerlworkerTestName, length(NeuralNetworkTestingModelList) ), nerltest_print("count label test"), - %CountLabelTestName = "test_count_label", - %CountLabelTestFunc = fun(_Rounds) -> test_count_label_nif() end, - %אest_envelope(CountLabelTestFunc, CountLabelTestName, 1 ), + CountLabelTestName = "test_count_label", + CountLabelTestFunc = fun(_Rounds) -> test_count_label_nif() end, + test_envelope(CountLabelTestFunc, CountLabelTestName, 1 ), nerltest_print("Tests Completed"), ok. @@ -105,8 +105,8 @@ generate_random_list_of_unique_integers(ListSize, Min, Max) -> generate_random_list_of_unique_integers(0, _Min, _Max, List) -> List; generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List) -> - N = Max - Min, - rand:uniform(N) - 1 + Min, % NO ASSIGNMENT (??) + Range = Max - Min, + N = rand:uniform(Range) - 1 + Min, IsMember = lists:is_member(N, List), % O(N) if IsMember -> generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List); @@ -305,47 +305,47 @@ nerlworker_test_generate_data(LayersSizes, LayerTypes, NumOfSamples) -> %% Ask D {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. %test_count_label_nif(_Performance) -> _Performance; -% test_count_label_nif() -> -% ModelId = erlang:unique_integer([positive]), -% ModelType = "0", -% ModelArgs = "", -% LayersFunctionalityCodes = "1,6", -% LearningRate = "0.01", -% Epochs = "50", -% OptimizerType = "2", -% OptimizerArgs = "", -% LossMethod = "2", -% DistributedSystemType = "0", -% DistributedSystemArg = "", -% nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), -% nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), -% lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, -% nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), -% lenData = rand:uniform(lenDataToRand), -% lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, -% lenLabels = rand:uniform(lenLabelsToRand), -% lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, -% lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, -% maxNum = 255, +test_count_label_nif() -> + ModelId = erlang:unique_integer([positive]), + ModelType = "0", + ModelArgs = "", + LayersFunctionalityCodes = "1,6", + LearningRate = "0.01", + Epochs = "50", + OptimizerType = "2", + OptimizerArgs = "", + LossMethod = "2", + DistributedSystemType = "0", + DistributedSystemArg = "", + nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), + nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), + lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), + lenData = rand:uniform(lenDataToRand), + lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + lenLabels = rand:uniform(lenLabelsToRand), + lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + maxNum = 255, -% if -% (lenActualData == lenActualLabels) -> -% lenActualDataIf = lenActualData+1; -% true -> -% lenActualDataIf = lenActualData -% end, -% NumOfSamples = 50, -% dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), -% {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), -% LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], -% LayersTypes = "1,3", -% nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, -% LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, -% OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), -% NerlTensorDataBinTrain = NerlTensor, -% nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), -% nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), -% nerlNIF:remove_nerlworker_nif(ModelId). + if + (lenActualData == lenActualLabels) -> + lenActualDataIf = lenActualData+1; + true -> + lenActualDataIf = lenActualData + end, + NumOfSamples = 50, + dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), + {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), + LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], + LayersTypes = "1,3", + nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, + LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, + OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), + NerlTensorDataBinTrain = NerlTensor, + nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), + nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), + nerlNIF:remove_nerlworker_nif(ModelId). nerlworker_test([], _Performance) -> _Performance; diff --git a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl index 810b81dc..46b5cb67 100644 --- a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl @@ -34,24 +34,24 @@ -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_KEY_ATOM,none). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_KEY_ATOM,fedClientAvg). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_KEY_ATOM,fedServerAvg). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_KEY_ATOM,fedClientWegithedAvgClassification). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_KEY_ATOM,fedServerWegithedAvgClassification). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_KEY_ATOM,fedClientWeightedAvgClassification). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_KEY_ATOM,fedServerWeightedAvgClassification). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_KEY_ATOM,fedClientAE). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_KEY_ATOM,fedServerAE). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX_STR,"0"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX_STR,"1"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX_STR,"2"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_IDX_STR,"3"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_IDX_STR,"4"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX_STR,"3"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX_STR,"4"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX_STR,"5"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX_STR,"6"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX,0). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX,1). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX,2). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_IDX,3). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_IDX,4). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX,3). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX,4). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX,5). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX,6). diff --git a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py index 73ced1bd..13b8c2b3 100644 --- a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py +++ b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py @@ -120,8 +120,8 @@ ("none" , "0"), ("FedClientAvg" , "1"), ("FedServerAvg" , "2"), - ("FedClientWegithedAvgClassification" , "3"), - ("FedServerWegithedAvgClassification" , "4"), + ("FedClientWeightedAvgClassification" , "3"), + ("FedServerWeightedAvgClassification" , "4"), ("FedClientAE" , "5"), ("FedServerAE" , "6") ]) From 8a2a55d838b46a17b872e3605d9f070ba2c8c5f8 Mon Sep 17 00:00:00 2001 From: Ubuntu Date: Tue, 2 Jul 2024 20:55:26 +0000 Subject: [PATCH 08/30] do right the op, test fail --- src_cpp/common/nerlWorker.cpp | 2 - src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 16 +++++-- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 49 ++++++++++++--------- 3 files changed, 41 insertions(+), 26 deletions(-) diff --git a/src_cpp/common/nerlWorker.cpp b/src_cpp/common/nerlWorker.cpp index 252e55d5..3c721fd5 100644 --- a/src_cpp/common/nerlWorker.cpp +++ b/src_cpp/common/nerlWorker.cpp @@ -43,7 +43,6 @@ std::shared_ptr NerlWorker::parse_layers_input(std::string &layer_siz layer_types_vec[i] = std::stoi(layer_types_strs_vec[i]); } std::vector layer_sizes_params; - parse_layer_sizes_str(layer_sizes_str, layer_types_vec, layer_sizes_params); std::vector> nerl_layers_vec; nerl_layers_vec.resize(layer_sizes_params.size()); @@ -52,7 +51,6 @@ std::shared_ptr NerlWorker::parse_layers_input(std::string &layer_siz int layer_type = std::stoi(layer_types_strs_vec[i]); int layer_size = layer_sizes_params[i].dimx; int layer_functionality = std::stoi(layers_functionality_strs_vec[i]); - std::vector layer_dims = {layer_sizes_params[i].dimx, layer_sizes_params[i].dimy,layer_sizes_params[i].dimz}; diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 0119f1f2..83f77210 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -305,10 +305,17 @@ namespace nerlnet } cout << _data_set->get_columns_data(selected_column_indices) << endl; Tensor labels = _data_set->get_columns_data(selected_column_indices); - Tensor rowSum = labels.sum(Eigen::array{1}); - cout << labels << "labels" << endl; - cout << rowSum << "rowSum" << endl; - _train_labels_count = std::make_shared>(); + Tensor rowSum = labels.sum(Eigen::array{0}); + cout << labels << " labels " << labels.size() << " size " << endl; + cout << rowSum << " rowSum " << rowSum.size() << " size " << endl; + cout << rowSum.data() << " rowSum data " << endl; + std::vector rowSumVec; + size_t tensorSize = rowSum.size(); + float* tensorData = rowSum.data(); + for (size_t i = 0; i < tensorSize; ++i) { + rowSumVec.push_back(tensorData[i]); + } + _train_labels_count = std::make_shared>(rowSumVec); break; } default: @@ -802,6 +809,7 @@ namespace nerlnet // TODO Ori - implement // Return copy of the vector // make sure - throw error if data_set doesn't exist + std::cout << "get_distributed_system_train_labels_count" << std::endl; return _train_labels_count; break; } diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index f8eb4f31..c1e4416c 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -210,7 +210,7 @@ sum_nerltensors_lists_test(Type, N, Performance) -> encode_decode_nifs_test(0, _Res, Performance) -> Performance ; encode_decode_nifs_test(N, Res, Performance) -> - io:format("GOT HERE~n"), + %io:format("GOT HERE~n"), EncodeType = random_pick_nerltensor_type(), NerlTensor = generate_nerltensor_rand_dims(EncodeType), Tic = nerl:tic(), @@ -315,35 +315,43 @@ test_count_label_nif() -> OptimizerType = "2", OptimizerArgs = "", LossMethod = "2", - DistributedSystemType = "0", + DistributedSystemType = "3", DistributedSystemArg = "", - nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), - nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), - lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, - nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), - lenData = rand:uniform(lenDataToRand), - lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - lenLabels = rand:uniform(lenLabelsToRand), - lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, - lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - maxNum = 255, + nerltest_print(nerl:string_format("DATA_DIM_X ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), + nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), + DimMaxDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X, + DimMinDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + LenDataToRand = DimMaxDimX - DimMinDimX, + nerltest_print(nerl:string_format("lenDataToRand ~p",[LenDataToRand])), + LenData = rand:uniform(LenDataToRand), + LenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + LenLabels = rand:uniform(LenLabelsToRand), + LenActualData = LenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + LenActualLabels = LenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + nerltest_print(nerl:string_format("LenActualData ~p",[LenActualData])), + nerltest_print(nerl:string_format("LenActualLabels ~p",[LenActualLabels])), + + MaxNum = 255, if - (lenActualData == lenActualLabels) -> - lenActualDataIf = lenActualData+1; + (LenActualData == LenActualLabels) -> + LenActualDataIf = LenActualData+1; true -> - lenActualDataIf = lenActualData + LenActualDataIf = LenActualData end, NumOfSamples = 50, - dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), - {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), - LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], + DataRand = generate_nerltensor(float,NumOfSamples,LenActualDataIf,1), + NerlTensor = DataRand, + LayersSizes = nerl:string_format("~p,~p",[LenActualDataIf-LenActualLabels,LenActualLabels]), LayersTypes = "1,3", + nerltest_print("before test_nerlworker_nif"), nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), - NerlTensorDataBinTrain = NerlTensor, - nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), + nerltest_print("before train_nif"), + {NerlTensorDataBinTrain , Type} = nerlNIF:nerltensor_conversion({NerlTensor,erl_float} , float), + nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , Type), + nerltest_print("before get_distributed_system_train_labels_count_nif"), nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), nerlNIF:remove_nerlworker_nif(ModelId). @@ -364,6 +372,7 @@ nerlworker_test([CurrentModel | Tail], Performance) -> OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), NumOfSamples = 500, {NerlTensorDataBin , NerlTensorDataBinType , NerlTensorDataErl , NerlTensorDataErlType , NumOfFeatures , _NumOfLabels} = nerlworker_test_generate_data(LayersSizes, LayersTypes, NumOfSamples), + % {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. if (ModelType == ?MODEL_TYPE_AUTOENCODER_IDX) or (ModelType == ?MODEL_TYPE_AE_CLASSIFIER_IDX) -> %% AE or AEC {DataTensorErlFeatures , _DataTensorErlLabels} = nerlTensor:split_cols_erl_tensor(NerlTensorDataErl , NerlTensorDataErlType , NumOfFeatures), From 3b0aa741a60e65bd3c52a43ab95beec2ad489181 Mon Sep 17 00:00:00 2001 From: NoaShapira8 Date: Wed, 3 Jul 2024 14:20:39 +0000 Subject: [PATCH 09/30] [fix_phase_called_twice] fix bug that ensure when activate an experiment - don't allow calling the same phase twice --- src_py/apiServer/apiServer.py | 10 +++++++--- src_py/apiServer/experiment_flow_debug.py | 5 ++--- 2 files changed, 9 insertions(+), 6 deletions(-) diff --git a/src_py/apiServer/apiServer.py b/src_py/apiServer/apiServer.py index e50d7126..5dfac542 100644 --- a/src_py/apiServer/apiServer.py +++ b/src_py/apiServer/apiServer.py @@ -28,6 +28,7 @@ def __init__(self): self.experiments_dict = {} self.current_exp = None self.apiserver_event_sync = EventSync() # pay attention! there are two kinds of syncs one for experiment phase events and one for api-server events + self.next_expertiment_phase_exist = True # flag to check if there are more phases to run # Create a new folder for the results: Path(EXPERIMENT_RESULTS_PATH).mkdir(parents=True, exist_ok=True) @@ -153,6 +154,7 @@ def send_data_to_sources(self, csv_dataset: CsvDataSet, experiment_phase: Experi LOG_INFO("Data is ready in sources") def run_current_experiment_phase(self): + assert self.next_expertiment_phase_exist, "experiment override is not supported!" # don't allow calling the same phase twice current_exp_phase = self.current_exp.get_current_experiment_phase() LOG_INFO(f"Experiment phase: {current_exp_phase.get_name()} of type {current_exp_phase.get_phase_type()} starts running...") csv_dataset_inst = self.current_exp.get_csv_dataset() @@ -179,7 +181,8 @@ def run_current_experiment_phase(self): self.communication_stats() LOG_INFO(f"Phase of {current_exp_phase.get_name()} {current_exp_phase.get_phase_type()} completed") - + + self.next_expertiment_phase_exist = False def next_experiment_phase(self): @@ -189,8 +192,9 @@ def next_experiment_phase(self): current_exp_flow.current_exp_phase_index += 1 if not self.experiment_phase_is_valid(): LOG_WARNING("No more phases to run") - return False - return True + self.next_expertiment_phase_exist = False + else: + self.next_expertiment_phase_exist = True def communication_stats(self): assert self.experiment_phase_is_valid(), "No valid experiment phase" diff --git a/src_py/apiServer/experiment_flow_debug.py b/src_py/apiServer/experiment_flow_debug.py index 7909cfe9..72ff1540 100644 --- a/src_py/apiServer/experiment_flow_debug.py +++ b/src_py/apiServer/experiment_flow_debug.py @@ -29,8 +29,7 @@ def print_test(in_str : str): experiment_name = "test_exp" api_server_instance.initialization(experiment_name, dc_json , connmap_json, exp_flow_json) # start to debug api_server_instance.send_jsons_to_devices() - -next_expertiment_phase_exist = True + api_server_instance.run_current_experiment_phase() # blocking - deppended acks from mainserver stats = api_server_instance.get_experiment_flow(experiment_name).generate_stats() stats.get_communication_stats_workers() @@ -40,7 +39,7 @@ def print_test(in_str : str): stats.get_communication_stats_main_server() stats.get_loss_ts() stats.get_min_loss() -next_expertiment_phase_exist = api_server_instance.next_experiment_phase() +api_server_instance.next_experiment_phase() api_server_instance.run_current_experiment_phase() stats = api_server_instance.get_experiment_flow(experiment_name).generate_stats() confusion_matrix_source_dict, confusion_matrix_worker_dict = stats.get_confusion_matrices() From a7f91dddeec42f012a96705c9b764a2372f553bd Mon Sep 17 00:00:00 2001 From: NoaShapira8 Date: Wed, 3 Jul 2024 15:39:28 +0000 Subject: [PATCH 10/30] [fix_phase_called_twice] Adopting the changes in flow_test file --- src_py/apiServer/experiment_flow_test.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src_py/apiServer/experiment_flow_test.py b/src_py/apiServer/experiment_flow_test.py index 20497551..5e9b4bef 100644 --- a/src_py/apiServer/experiment_flow_test.py +++ b/src_py/apiServer/experiment_flow_test.py @@ -54,8 +54,8 @@ def print_test(in_str : str , enable = True): api_server_instance.run_current_experiment_phase() # blocking until phase is completed stats_train = api_server_instance.get_experiment_flow(experiment_name).generate_stats() -next_expertiment_phase_exist = api_server_instance.next_experiment_phase() -assert next_expertiment_phase_exist, "No next experiment phase found" +api_server_instance.next_experiment_phase() +assert api_server_instance.next_expertiment_phase_exist, "No next experiment phase found" api_server_instance.run_current_experiment_phase() # blocking until phase is completed stats_predict = api_server_instance.get_experiment_flow(experiment_name).generate_stats() From b34c2b541ac9ff81d2828cf28a07799f5ecd061e Mon Sep 17 00:00:00 2001 From: leondavi Date: Sat, 6 Jul 2024 01:52:15 +0300 Subject: [PATCH 11/30] [NERLPLANNER] Upgrade pysimplegui to 5.0 --- src_erl/NerlnetApp/src/nerlnetApp_app.erl | 4 ++-- src_py/nerlPlanner/Definitions.py | 5 +++-- src_py/nerlPlanner/WinWorkerDialog.py | 6 +++--- src_py/nerlPlanner/main.py | 6 +++++- src_py/nerlPlanner/requirements.txt | 2 +- 5 files changed, 14 insertions(+), 9 deletions(-) diff --git a/src_erl/NerlnetApp/src/nerlnetApp_app.erl b/src_erl/NerlnetApp/src/nerlnetApp_app.erl index 2f228d78..acd38943 100644 --- a/src_erl/NerlnetApp/src/nerlnetApp_app.erl +++ b/src_erl/NerlnetApp/src/nerlnetApp_app.erl @@ -20,8 +20,8 @@ -behaviour(application). -include("nerl_tools.hrl"). --define(NERLNET_APP_VERSION, "1.5.0"). --define(NERLPLANNER_TESTED_VERSION,"1.0.2"). +-define(NERLNET_APP_VERSION, "1.5.1"). +-define(NERLPLANNER_TESTED_VERSION,"1.0.3"). -export([start/2, stop/1]). diff --git a/src_py/nerlPlanner/Definitions.py b/src_py/nerlPlanner/Definitions.py index d70512d3..6ca3dcd0 100644 --- a/src_py/nerlPlanner/Definitions.py +++ b/src_py/nerlPlanner/Definitions.py @@ -1,8 +1,8 @@ import subprocess from logger import * -VERSION = "1.0.2" -NERLNET_VERSION_TESTED_WITH = "1.5.0" +VERSION = "1.0.3" +NERLNET_VERSION_TESTED_WITH = "1.5.1" NERLNET_TMP_PATH = "/tmp/nerlnet" NERLNET_GRAPHVIZ_OUTPUT_DIR = f"{NERLNET_TMP_PATH}/nerlplanner" NERLNET_GLOBAL_PATH = "/usr/local/lib/nerlnet-lib/NErlNet" @@ -13,6 +13,7 @@ WINDOW_FIXED_WIDTH = 1500 WINDOW_MAX_SUPPORTED_HEIGHT = 1080 # smaller than 1080 is better WINDOW_HEIGHT_MULTIPLICATION_FACTOR = 5/6 +PYSIMPLEGUI_5_LICENSE = 'eby6JRM5a8WmNGlnbWnUN2l0VVHilawWZaSoIK6hIUkdRGpPcG3YR7ygaLWlJ015dxG7lUvfbRijI0s6IIkfxbplYD2XVhuCc220VFJIR7CUIy68MXTAcxyBMRDUIYxKONTYATwXM3S7w5iQT4GWlMjaZUWV5pzfZbUjR1lcc6GIxOvWe8Wm1elIbvn3RUWjZDXRJtzHa4Wo9PuEIVjgokiENISn47wvI0iowVieTlm5F4tDZOUFZapUcenANX0AImjSoni1RPGtFO2taaW7QGidLXCwJ7OgYuWz1zloTkG5FWzVddCWIw6UItkwxIl0bV2o4liLLfCGJvDiby2z1fwkYYWW5u5fIGjsoRiZTemkVXy1bHGS5kljdRChIRsdIqkJNL1rcG3rRHvHbcWAVgyUS5UgQkihO5i0IDy1OEDDkF4uMzCtISszIukTRhhqdCG5VSJUcz3LNN1vZTWoQYi4OrifISyoMuDAIF02LGTBA736LMTMAu2sI4icwSidRxGmFF0cZ5UMVG4ucMGclkyOZQXPMXiLOBijIJytMjDyI410L8TkAL39L8TnAL2zISiQwdimRqWS1ghFa2WJxiBtZBGkR4yzZrXmN3zWInjGofijZUGfRIsPZaWS9iuOQxGs9E16dDGbxuvybq28sKudYx2w8wula2WRwaiELTCMJTJuUKEUFqkvZHHSJclDc53CMsi1OqinI60bNLi543yKMcTTAcukMVT1IhuqMYjPQsxXIPnD02=R13b28056153da511d4134b1f82c2bcd0679524dbf9a1d1c3802e9405fe49caa270a248235f2a9d13c77dee452bd2e7f4e6928f222a9f5e659be68400f463fed960ab75142668d5be303ba1fee27349967dd7eb64890f549dd7f8a224d2f2cdcd1146da869d39ad02121707ab3cefaed98e20eb4197c2a36cf64211ea77ee2442537e0d910ae843691a0107ae7a4dc922d1e091f655675d6cabaad0096b863eec55bfb7a758b8f140b2c31595978ce000d75696b3616b76a3a6ee8daab6002029e9b9d8954a0dbcd2a5f332d84cfa370799a58a8f3e0e2cd4ba3ba5f1f76b88c97ee6d05033f40180d808eb158a5ed30695c50edc33a67895ec2755775882a0996fb59afdef8951daef8f7b9501bb9771ef326248f1ff58df2a8ecb9051d1827904d4061cd5b4de6eb0a6ff9277af1206eb8223fce66e58635927791fa96f09aee64b11ec0c88da6d303389edef162b4e13dc3ed286b2f2c28cdc315677c50e547d071245d7393a5085b9869d52858566021396e3aeb2b6de3c47631c40b3cc667845064aa70ef3a14884a802c9136d27a7f2f4c91a28edf6f6c3a7d5b611d98ea5db9036cb9d69f642ebee1c7d186d99263e81cd45c7ca2b02d74256aeb6ac7cac4483e0b39088d7be8e7531906bc4ee6919e5ae345897d6afe293c54a2bc45913158ed366df603c71deb73601bcd17626a78d08aa47f0e91f82364cc91ea424' WIN_EXPERIMENT_FLOW_DIALOG_EVENT_KEY = 'WIN_EXPERIMENT_FLOW_DIALOG' WIN_COMMUNICATION_MAP_DIALOG_EVENT_KEY = 'WIN_COMMUNICATION_MAP_DIALOG' diff --git a/src_py/nerlPlanner/WinWorkerDialog.py b/src_py/nerlPlanner/WinWorkerDialog.py index 14949219..32dae213 100644 --- a/src_py/nerlPlanner/WinWorkerDialog.py +++ b/src_py/nerlPlanner/WinWorkerDialog.py @@ -137,7 +137,7 @@ def ui_update_all_values(WorkerWindow): clear_butt_key = KEY_LAYER_TYPE_SELECTION_CLEAR LayerTypesList = combo_list_editable_handler(WorkerWindow, event, values, LayerTypeMap, LayerTypesList, selection_key, codes_key, add_butt_key, clear_butt_key) - WorkerWindow[KEY_NUM_OF_LAYERS_TYPES].update(f'({str(count_str_list_elements(LayerTypesList))})') + WorkerWindow[KEY_NUM_OF_LAYERS_TYPES].update(f'({str(count_str_list_elements(LayerTypesList))})') if LayerTypesList else None if event == KEY_LAYER_TYPE_HELP: sg.popup_ok(f"Layer type codes:\n{pretty_print_dict(LayerTypeMap)}", keep_on_top=True, title="Layer Type Codes") @@ -149,7 +149,7 @@ def ui_update_all_values(WorkerWindow): clear_butt_key = KEY_LAYER_FUNCTIONS_SELECTION_CLEAR LayersFunctionsList = combo_list_editable_handler(WorkerWindow, event, values, ActivationFunctionsMap, LayersFunctionsList, selection_key, codes_key, add_butt_key, clear_butt_key) - WorkerWindow[KEY_LAYERS_FUNCTIONS_CODES].update(f'({str(count_str_list_elements(LayersFunctionsList))})') + WorkerWindow[KEY_LAYERS_FUNCTIONS_CODES].update(f'({str(count_str_list_elements(LayersFunctionsList))})') if LayersFunctionsList else None # Activation codes combo and output list handling: if event == KEY_LAYER_METHODS_BUTTON_SELECT: @@ -157,7 +157,7 @@ def ui_update_all_values(WorkerWindow): LayersFunctionsList += ',' if not LayersFunctionsList.endswith(',') and LayersFunctionsList else '' LayersFunctionsList += global_layer_method_selection_code if global_layer_method_selection_code else '' WorkerWindow[KEY_LAYER_FUNCTIONS_CODES_INPUT].update(LayersFunctionsList) - WorkerWindow[KEY_LAYERS_FUNCTIONS_CODES].update(f'({str(count_str_list_elements(LayersFunctionsList))})') + WorkerWindow[KEY_LAYERS_FUNCTIONS_CODES].update(f'({str(count_str_list_elements(LayersFunctionsList))})') if LayersFunctionsList else None if event == KEY_ACTIVATION_LAYER_HELP: ActivationDictStr = f'Activation:\n{pretty_print_dict(ActivationFunctionsMap)}' diff --git a/src_py/nerlPlanner/main.py b/src_py/nerlPlanner/main.py index 28451ed3..babf5fe8 100644 --- a/src_py/nerlPlanner/main.py +++ b/src_py/nerlPlanner/main.py @@ -1,6 +1,10 @@ + +from Definitions import * +PySimpleGUI_License = PYSIMPLEGUI_5_LICENSE + import PySimpleGUI as sg from Handlers import * -from Definitions import * + from WinWorkerDialog import WinWorkerDialog from WinExperimentFlowDialog import WinExperimentFlowDialog from WinCommunicationMapDialog import WinCommunicationMapDialog diff --git a/src_py/nerlPlanner/requirements.txt b/src_py/nerlPlanner/requirements.txt index b27ed54a..f54a7978 100644 --- a/src_py/nerlPlanner/requirements.txt +++ b/src_py/nerlPlanner/requirements.txt @@ -1,4 +1,4 @@ graphviz==0.20.1 pydotplus==2.0.2 -PySimpleGUI==4.60.5 +PySimpleGUI==5.0.0 pydot==1.4.2 From ad0f2a6df944455697cfb0e7440a519c3a1dbda9 Mon Sep 17 00:00:00 2001 From: leondavi Date: Sat, 6 Jul 2024 02:46:42 +0300 Subject: [PATCH 12/30] Version Update of Nerlplanner + fix of worker dialog --- src_cpp/common/worker_definitions_ag.h | 2 +- src_erl/NerlnetApp/src/Bridge/layers_types_ag.hrl | 2 +- src_erl/NerlnetApp/src/Bridge/models_types_ag.hrl | 2 +- src_erl/NerlnetApp/src/dc_definitions_ag.hrl | 2 +- src_erl/NerlnetApp/src/router_definitions_ag.hrl | 2 +- src_erl/NerlnetApp/src/source_definitions_ag.hrl | 2 +- src_erl/NerlnetApp/src/worker_definitions_ag.hrl | 2 +- src_py/nerlPlanner/WinWorkerDialog.py | 7 +++++-- 8 files changed, 12 insertions(+), 9 deletions(-) diff --git a/src_cpp/common/worker_definitions_ag.h b/src_cpp/common/worker_definitions_ag.h index 6de8c4fc..2e4ea2f5 100644 --- a/src_cpp/common/worker_definitions_ag.h +++ b/src_cpp/common/worker_definitions_ag.h @@ -1,7 +1,7 @@ #pragma once // This file was auto generated -// Generated by Nerlplanner version: 1.0.2 +// Generated by Nerlplanner version: 1.0.3 namespace nerlnet { diff --git a/src_erl/NerlnetApp/src/Bridge/layers_types_ag.hrl b/src_erl/NerlnetApp/src/Bridge/layers_types_ag.hrl index 0bc61793..2f1af62c 100644 --- a/src_erl/NerlnetApp/src/Bridge/layers_types_ag.hrl +++ b/src_erl/NerlnetApp/src/Bridge/layers_types_ag.hrl @@ -1,5 +1,5 @@ % This is an auto generated .hrl file -% DC Fields Generated by Nerlplanner version: 1.0.2 +% DC Fields Generated by Nerlplanner version: 1.0.3 -define(LAYERS_TYPE_DEFAULT_IDX,"0"). -define(LAYERS_TYPE_SCALING_IDX,"1"). diff --git a/src_erl/NerlnetApp/src/Bridge/models_types_ag.hrl b/src_erl/NerlnetApp/src/Bridge/models_types_ag.hrl index 557fce50..8aa8d264 100644 --- a/src_erl/NerlnetApp/src/Bridge/models_types_ag.hrl +++ b/src_erl/NerlnetApp/src/Bridge/models_types_ag.hrl @@ -1,5 +1,5 @@ % This is an auto generated .hrl file -% DC Fields Generated by Nerlplanner version: 1.0.2 +% DC Fields Generated by Nerlplanner version: 1.0.3 -define(MODEL_TYPE_NN_IDX,"0"). -define(MODEL_TYPE_APPROXIMATION_IDX,"1"). diff --git a/src_erl/NerlnetApp/src/dc_definitions_ag.hrl b/src_erl/NerlnetApp/src/dc_definitions_ag.hrl index 73ab3cc5..ddb8eed7 100644 --- a/src_erl/NerlnetApp/src/dc_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/dc_definitions_ag.hrl @@ -1,5 +1,5 @@ % This is an auto generated .hrl file -% DC Fields Generated by Nerlplanner version: 1.0.2 +% DC Fields Generated by Nerlplanner version: 1.0.3 -define(DC_KEY_NERLNET_SETTINGS_ATOM,nerlnetSettings). -define(DC_KEY_FREQUENCY_ATOM,frequency). diff --git a/src_erl/NerlnetApp/src/router_definitions_ag.hrl b/src_erl/NerlnetApp/src/router_definitions_ag.hrl index 98dc3720..fa1d8985 100644 --- a/src_erl/NerlnetApp/src/router_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/router_definitions_ag.hrl @@ -1,5 +1,5 @@ % This is an auto generated .hrl file -% Source Fields Generated by Nerlplanner version: 1.0.2 +% Source Fields Generated by Nerlplanner version: 1.0.3 -define(ROUTER_POLICY_ROUTINGTABLE_IDX,"0"). diff --git a/src_erl/NerlnetApp/src/source_definitions_ag.hrl b/src_erl/NerlnetApp/src/source_definitions_ag.hrl index cac5e234..7005e2ec 100644 --- a/src_erl/NerlnetApp/src/source_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/source_definitions_ag.hrl @@ -1,5 +1,5 @@ % This is an auto generated .hrl file -% Source Fields Generated by Nerlplanner version: 1.0.2 +% Source Fields Generated by Nerlplanner version: 1.0.3 -define(SOURCE_POLICY_CASTING_IDX,"0"). -define(SOURCE_POLICY_ROUNDROBIN_IDX,"1"). diff --git a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl index 57bf2761..08fb097f 100644 --- a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl @@ -1,5 +1,5 @@ % This is an auto generated .hrl file -% Worker Fields Generated by Nerlplanner version: 1.0.2 +% Worker Fields Generated by Nerlplanner version: 1.0.3 -define(WORKER_FIELD_KEY_MODEL_TYPE,modelType). -define(WORKER_FIELD_KEY_MODEL_ARGS,modelArgs). diff --git a/src_py/nerlPlanner/WinWorkerDialog.py b/src_py/nerlPlanner/WinWorkerDialog.py index 32dae213..95b70f47 100644 --- a/src_py/nerlPlanner/WinWorkerDialog.py +++ b/src_py/nerlPlanner/WinWorkerDialog.py @@ -137,7 +137,8 @@ def ui_update_all_values(WorkerWindow): clear_butt_key = KEY_LAYER_TYPE_SELECTION_CLEAR LayerTypesList = combo_list_editable_handler(WorkerWindow, event, values, LayerTypeMap, LayerTypesList, selection_key, codes_key, add_butt_key, clear_butt_key) - WorkerWindow[KEY_NUM_OF_LAYERS_TYPES].update(f'({str(count_str_list_elements(LayerTypesList))})') if LayerTypesList else None + if event: # Protects from update when windows is closed + WorkerWindow[KEY_NUM_OF_LAYERS_TYPES].update(f'({str(count_str_list_elements(LayerTypesList))})') if LayerTypesList else None if event == KEY_LAYER_TYPE_HELP: sg.popup_ok(f"Layer type codes:\n{pretty_print_dict(LayerTypeMap)}", keep_on_top=True, title="Layer Type Codes") @@ -149,7 +150,9 @@ def ui_update_all_values(WorkerWindow): clear_butt_key = KEY_LAYER_FUNCTIONS_SELECTION_CLEAR LayersFunctionsList = combo_list_editable_handler(WorkerWindow, event, values, ActivationFunctionsMap, LayersFunctionsList, selection_key, codes_key, add_butt_key, clear_butt_key) - WorkerWindow[KEY_LAYERS_FUNCTIONS_CODES].update(f'({str(count_str_list_elements(LayersFunctionsList))})') if LayersFunctionsList else None + + if event: # Protects from update when windows is closed + WorkerWindow[KEY_LAYERS_FUNCTIONS_CODES].update(f'({str(count_str_list_elements(LayersFunctionsList))})') if LayersFunctionsList else None # Activation codes combo and output list handling: if event == KEY_LAYER_METHODS_BUTTON_SELECT: From f556b49f18025d368802dea481f018075fd90f21 Mon Sep 17 00:00:00 2001 From: leondavi Date: Sun, 7 Jul 2024 21:47:54 +0300 Subject: [PATCH 13/30] [TRAIN] Change train_nif code Better flow to support additional editing of loss tensor before sending back to worker statem --- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 35 +++++++++++++++++++++++ src_cpp/opennnBridge/nerlWorkerOpenNN.h | 7 +++++ src_cpp/opennnBridge/openNNnif.cpp | 13 +++++---- 3 files changed, 49 insertions(+), 6 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 031d9307..fd1def8c 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -25,6 +25,41 @@ namespace nerlnet } + void NerlWorkerOpenNN::perform_training() + { + TrainingResults res = this->_training_strategy_ptr->perform_training(); + this->_last_loss = res.get_training_error(); + + switch (_model_type) + { + default: + { + break; + } + } + } + + fTensor2DPtr NerlWorkerOpenNN::get_loss_nerltensor() + { + fTensor2DPtr loss_val_tensor; + + switch (_model_type) + { + case MODEL_TYPE_AE_CLASSIFIER: + { + break; + } + default: + { + loss_val_tensor = std::make_shared(1, 1); // allocate tensor for loss value + (*loss_val_tensor)(0, 0) = static_cast(_last_loss); // set loss value to tensor + } + } + + return loss_val_tensor; + + } + void NerlWorkerOpenNN::post_training_process(fTensor2DPtr TrainData) { switch(_model_type){ diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.h b/src_cpp/opennnBridge/nerlWorkerOpenNN.h index 6b4dde1b..9e64e0fd 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.h +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.h @@ -41,6 +41,10 @@ class NerlWorkerOpenNN : public NerlWorker std::shared_ptr get_dataset_ptr() { return _data_set; }; + void perform_training(); + fTensor2DPtr get_loss_nerltensor(); // this is the last calculated loss by perform training + + private: std::shared_ptr _neural_network_ptr; @@ -48,6 +52,9 @@ class NerlWorkerOpenNN : public NerlWorker std::shared_ptr _data_set; fTensor2DPtr _aec_data_set; std::shared_ptr _ae_red_ptr; + + // training vars + double _last_loss; // neural network generator functions void generate_opennn_project(std::shared_ptr &neural_network_ptr); diff --git a/src_cpp/opennnBridge/openNNnif.cpp b/src_cpp/opennnBridge/openNNnif.cpp index 3348ad35..f097d03a 100644 --- a/src_cpp/opennnBridge/openNNnif.cpp +++ b/src_cpp/opennnBridge/openNNnif.cpp @@ -23,11 +23,14 @@ void* trainFun(void* arg) std::shared_ptr neural_network_ptr = nerlworker_opennn->get_neural_network_ptr(); nerlworker_opennn->set_dataset(data_set_ptr, TrainNNptr->data); data_set_ptr = nerlworker_opennn->get_data_set(); + // perform training std::shared_ptr training_strategy_ptr = nerlworker_opennn->get_training_strategy_ptr(); training_strategy_ptr->set_data_set_pointer(nerlworker_opennn->get_dataset_ptr().get()); - TrainingResults res = training_strategy_ptr->perform_training(); - nerlworker_opennn->post_training_process(TrainNNptr->data); - loss_val = res.get_training_error(); // learn about "get_training_error" of opennn + nerlworker_opennn->perform_training(); + // post training + nerlworker_opennn->post_training_process(TrainNNptr->data); + // retrieve results + fTensor2DPtr loss_val_tensor = nerlworker_opennn->get_loss_nerltensor(); // Stop the timer and calculate the time took for training high_resolution_clock::time_point stop = high_resolution_clock::now(); auto duration = duration_cast(stop - TrainNNptr->start_time); @@ -35,7 +38,7 @@ void* trainFun(void* arg) ERL_NIF_TERM train_res_and_time; ERL_NIF_TERM train_time = enif_make_double(env, duration.count()); - if(isnan(loss_val)) + if(!loss_val_tensor) { ERL_NIF_TERM loss_val_term; loss_val_term = enif_make_atom(env , NERLNIF_NAN_ATOM_STR); @@ -45,8 +48,6 @@ void* trainFun(void* arg) } else { - fTensor2DPtr loss_val_tensor = std::make_shared(1, 1); // allocate tensor for loss value - (*loss_val_tensor)(0, 0) = static_cast(loss_val); // set loss value to tensor nifpp::TERM loss_val_tensor_term; // allocate erl term for loss value tensor nifpp::make_tensor_2d(env, loss_val_tensor_term, loss_val_tensor); train_res_and_time = enif_make_tuple(env, 4 , nerlnif_atom , loss_val_tensor_term , nifpp::make(env, TrainNNptr->return_tensor_type), train_time); From 4f3807986e97ff3c160dc1ba8a59f41ab1e49f21 Mon Sep 17 00:00:00 2001 From: leondavi Date: Sun, 7 Jul 2024 21:57:16 +0300 Subject: [PATCH 14/30] [train] move set data set pointer into perform training in nerlworkerOpenNN --- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 2 ++ src_cpp/opennnBridge/openNNnif.cpp | 2 -- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index fd1def8c..2159dad3 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -27,6 +27,8 @@ namespace nerlnet void NerlWorkerOpenNN::perform_training() { + this->_training_strategy_ptr->set_data_set_pointer(this->_data_set.get()); + TrainingResults res = this->_training_strategy_ptr->perform_training(); this->_last_loss = res.get_training_error(); diff --git a/src_cpp/opennnBridge/openNNnif.cpp b/src_cpp/opennnBridge/openNNnif.cpp index f097d03a..2217355e 100644 --- a/src_cpp/opennnBridge/openNNnif.cpp +++ b/src_cpp/opennnBridge/openNNnif.cpp @@ -24,8 +24,6 @@ void* trainFun(void* arg) nerlworker_opennn->set_dataset(data_set_ptr, TrainNNptr->data); data_set_ptr = nerlworker_opennn->get_data_set(); // perform training - std::shared_ptr training_strategy_ptr = nerlworker_opennn->get_training_strategy_ptr(); - training_strategy_ptr->set_data_set_pointer(nerlworker_opennn->get_dataset_ptr().get()); nerlworker_opennn->perform_training(); // post training nerlworker_opennn->post_training_process(TrainNNptr->data); From c50e67f8d66157289b31ff02a8ffee0930c8afda Mon Sep 17 00:00:00 2001 From: Ubuntu Date: Sun, 7 Jul 2024 20:49:31 +0000 Subject: [PATCH 15/30] test works --- src_cpp/opennnBridge/nerlWorkerNIF.h | 17 ++++++++++++--- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 4 ---- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 24 ++++++++++----------- 3 files changed, 26 insertions(+), 19 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerNIF.h b/src_cpp/opennnBridge/nerlWorkerNIF.h index af4a4df8..9e04fcb9 100644 --- a/src_cpp/opennnBridge/nerlWorkerNIF.h +++ b/src_cpp/opennnBridge/nerlWorkerNIF.h @@ -141,10 +141,21 @@ static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); // assert: the model is a distributed system of federated weighted average classification std::shared_ptr> train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); - nifpp::str_atom nerltensor_type = "erl_int"; - - nifpp::TERM nerltensor_tuple; // TODO + fTensor1DPtr train_labels_count_tesnsor_ptr; + nifpp::TERM term_label_count; + std::tuple nerltensor_tuple; + + train_labels_count_tesnsor_ptr = std::make_shared(train_labels_count->size()); + for(int i = 0; i < train_labels_count->size(); i++) + { + int val = (*train_labels_count)[i]; + train_labels_count_tesnsor_ptr->data()[i] = val; + std::cout << "train_labels_count->data()[i] = " << train_labels_count->data()[i] << std::endl; + } + std::cout << "train_labels_count->data = " << train_labels_count->data() << std::endl; + nifpp::make_tensor_1d(env, term_label_count, train_labels_count_tesnsor_ptr); //binary tensor + nerltensor_tuple = { term_label_count , nifpp::make(env, nerltensor_type) }; // Return tuple of {nerltensor, nerltensor_type} return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int } \ No newline at end of file diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 83f77210..89aa9c1d 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -303,12 +303,8 @@ namespace nerlnet for(int i =0;iget_columns_data(selected_column_indices) << endl; Tensor labels = _data_set->get_columns_data(selected_column_indices); Tensor rowSum = labels.sum(Eigen::array{0}); - cout << labels << " labels " << labels.size() << " size " << endl; - cout << rowSum << " rowSum " << rowSum.size() << " size " << endl; - cout << rowSum.data() << " rowSum data " << endl; std::vector rowSumVec; size_t tensorSize = rowSum.size(); float* tensorData = rowSum.data(); diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index c1e4416c..b2af14ac 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -317,22 +317,19 @@ test_count_label_nif() -> LossMethod = "2", DistributedSystemType = "3", DistributedSystemArg = "", - nerltest_print(nerl:string_format("DATA_DIM_X ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), - nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), + % nerltest_print(nerl:string_format("DATA_DIM_X ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), + %nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), DimMaxDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X, DimMinDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, LenDataToRand = DimMaxDimX - DimMinDimX, - nerltest_print(nerl:string_format("lenDataToRand ~p",[LenDataToRand])), + %nerltest_print(nerl:string_format("lenDataToRand ~p",[LenDataToRand])), LenData = rand:uniform(LenDataToRand), LenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, LenLabels = rand:uniform(LenLabelsToRand), LenActualData = LenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, LenActualLabels = LenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - nerltest_print(nerl:string_format("LenActualData ~p",[LenActualData])), - nerltest_print(nerl:string_format("LenActualLabels ~p",[LenActualLabels])), + io:format("LenActualData ~p~n LenActualLabels ~p~n",[LenActualData, LenActualLabels]), - MaxNum = 255, - if (LenActualData == LenActualLabels) -> LenActualDataIf = LenActualData+1; @@ -344,16 +341,19 @@ test_count_label_nif() -> NerlTensor = DataRand, LayersSizes = nerl:string_format("~p,~p",[LenActualDataIf-LenActualLabels,LenActualLabels]), LayersTypes = "1,3", - nerltest_print("before test_nerlworker_nif"), + io:format("before test_nerlworker_nif ~n"), nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), - nerltest_print("before train_nif"), + io:format("before train_nif ~n"), {NerlTensorDataBinTrain , Type} = nerlNIF:nerltensor_conversion({NerlTensor,erl_float} , float), nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , Type), - nerltest_print("before get_distributed_system_train_labels_count_nif"), - nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), - nerlNIF:remove_nerlworker_nif(ModelId). + io:format("before get_distributed_system_train_labels_count_nif ~n"), + LabelCount = nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), + io:format("before remove_nerlworker_nif ~n"), + nerlNIF:remove_nerlworker_nif(ModelId), + io:format("finished test ~n"). + nerlworker_test([], _Performance) -> _Performance; From 3e70bbf1fe058cb74dd98b80fe0a5bf834c885ec Mon Sep 17 00:00:00 2001 From: GuyPerets106 Date: Sun, 7 Jul 2024 19:58:26 +0000 Subject: [PATCH 16/30] [AEC_NIF] initial commit --- src_cpp/opennnBridge/ae_red.cpp | 18 ++++---- src_cpp/opennnBridge/ae_red.h | 4 +- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 53 +++++++++++++++-------- 3 files changed, 44 insertions(+), 31 deletions(-) diff --git a/src_cpp/opennnBridge/ae_red.cpp b/src_cpp/opennnBridge/ae_red.cpp index cb201096..4da14ac8 100644 --- a/src_cpp/opennnBridge/ae_red.cpp +++ b/src_cpp/opennnBridge/ae_red.cpp @@ -3,7 +3,7 @@ namespace nerlnet { -AeRed::AeRed(float k, float alpha) +AeRed::AeRed(float k, float alpha) // TODO Add ModelArgs and parse them here { _k = k; _alpha = alpha; @@ -15,18 +15,16 @@ AeRed::AeRed(float k, float alpha) _prev_emad = 0; } -AeRed::~AeRed() -{ - -} +AeRed::~AeRed(){} -fTensor1DPtr AeRed::update_batch(fTensor1D loss_values) +fTensor2DPtr AeRed::update_batch(fTensor2DPtr loss_values) { - fTensor1DPtr result = std::make_shared(loss_values.size()); - for(int i = 0; i < loss_values.size() - 1; i++) + fTensor2DPtr result = std::make_shared(loss_values->dimension(0), loss_values->dimension(1)); + for(int i = 0; i < (*loss_values).dimension(0); i++) { - float val = update_sample(loss_values(i)); - result->data()[i] = val; + float val = update_sample((*loss_values)(i, 0)); + if ((*loss_values)(i) == val) (*result)(i, 0) = 1; + else (*result)(i, 0) = 0; } return result; } diff --git a/src_cpp/opennnBridge/ae_red.h b/src_cpp/opennnBridge/ae_red.h index bcccf72c..8b2376ab 100644 --- a/src_cpp/opennnBridge/ae_red.h +++ b/src_cpp/opennnBridge/ae_red.h @@ -17,10 +17,8 @@ class AeRed AeRed(float k = PARAM_K_DEFAULT , float alpha = ALPHA_DEFAULT); ~AeRed(); - fTensor1DPtr update_batch(fTensor1D loss_values); + fTensor2DPtr update_batch(fTensor2DPtr loss_values); float update_sample(float loss_value); - - private: float _k; float _alpha; float _threshold; diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 2159dad3..54b07b94 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -84,20 +84,35 @@ namespace nerlnet { std::shared_ptr neural_network = get_neural_network_ptr(); Index num_of_samples = _aec_data_set->dimension(0); + Index num_of_labels = 1; Index inputs_number = neural_network->get_inputs_number(); Tensor inputs_dimensions(2); inputs_dimensions.setValues({num_of_samples, inputs_number}); + fTensor2DPtr results = std::make_shared(num_of_samples, num_of_labels + num_of_labels*2); // LOWER/UPPER for each label fTensor2DPtr calculate_res = std::make_shared(num_of_samples, neural_network->get_outputs_number()); *calculate_res = neural_network->calculate_outputs(TrainData->data(), inputs_dimensions); - // SAV - fTensor2D absoluteDifferences = (*calculate_res - *_aec_data_set).abs(); - fTensor1D loss_values_sav = absoluteDifferences.sum(Eigen::array({1})); - // MSE - fTensor1D loss_values_mse = (float)1/_aec_data_set->dimension(0) * (*calculate_res - *_aec_data_set).pow(2).sum(Eigen::array({1})); - //cout << "Loss Values (MSE):" << endl << loss_values_mse << endl; - fTensor1DPtr res_sav = _ae_red_ptr->update_batch(loss_values_sav); - fTensor1DPtr res_mse = _ae_red_ptr->update_batch(loss_values_mse); - //cout << "AE_RED RESULT VECTOR:" << endl << *res_mse << endl; + fTensor2DPtr loss_values_mse = std::make_shared(num_of_samples, 1); + fTensor2D diff = (*calculate_res - *_aec_data_set); + fTensor2D squared_diff = diff.pow(2); + fTensor1D sum_squared_diff = squared_diff.sum(Eigen::array({1})); + fTensor1D mse1D = (1.0 / static_cast(_aec_data_set->dimension(0))) * sum_squared_diff; + fTensor2D mse2D = mse1D.reshape(Eigen::array({num_of_samples, 1})); + *loss_values_mse = mse2D; + // cout << "MSE Loss: " << mse_loss << endl; + fTensor2DPtr res = _ae_red_ptr->update_batch(loss_values_mse); + // cout << "AE_RED RESULT VECTOR:" << endl << *res << endl; + float lower_boundary = _ae_red_ptr->_ema_event; + float upper_boundary = _ae_red_ptr->_ema_normal; + + // concat res_ptr with lower and upper boundaries + for (Index i = 0; i < num_of_samples; i++) + { + (*results)(i, 0) = (*loss_values_mse)(i, 0); + (*results)(i, 1) = lower_boundary; + (*results)(i, 2) = upper_boundary; + } + + break; } @@ -129,15 +144,17 @@ namespace nerlnet std::shared_ptr neural_network = get_neural_network_ptr(); Index num_of_samples = _aec_data_set->dimension(0); Index inputs_number = neural_network->get_inputs_number(); - // SAV - fTensor2D absoluteDifferences = (*result_ptr - *_aec_data_set).abs(); - fTensor1D loss_values_sav = absoluteDifferences.sum(Eigen::array({1})); - // MSE - fTensor1D loss_values_mse = (float)1/_aec_data_set->dimension(0) * (*result_ptr - *_aec_data_set).pow(2).sum(Eigen::array({1})); - //cout << "Loss Values (MSE):" << endl << loss_values_mse << endl; - fTensor1DPtr res_sav = _ae_red_ptr->update_batch(loss_values_sav); - fTensor1DPtr res_mse = _ae_red_ptr->update_batch(loss_values_mse); - //cout << "AE_RED RESULT VECTOR:" << endl << *res_mse << endl; + Index num_of_labels = 3; // TODO need to add bounderies + // fTensor2DPtr results = std::make_shared(num_of_samples, num_of_labels + num_of_labels*2); // LOWER/UPPER for each label + fTensor2DPtr loss_values_mse = std::make_shared(num_of_samples , 1); + fTensor2D diff = (*result_ptr - *_aec_data_set); + fTensor2D squared_diff = diff.pow(2); + fTensor1D sum_squared_diff = squared_diff.sum(Eigen::array({1})); + fTensor1D mse1D = (1.0 / static_cast(_aec_data_set->dimension(0))) * sum_squared_diff; + fTensor2D mse2D = mse1D.reshape(Eigen::array({num_of_samples, 1})); + *loss_values_mse = mse2D; + result_ptr = _ae_red_ptr->update_batch(loss_values_mse); + break; } // case MODEL_TYPE_LSTM: // { From 44bb85a20e9129831c1aa6eb1a924ef057674324 Mon Sep 17 00:00:00 2001 From: GuyPerets106 Date: Sun, 7 Jul 2024 22:22:41 +0000 Subject: [PATCH 17/30] [AEC_NIF] WIP --- examples/AEC/AEC_Exp.ipynb | 629 ++++++++++++++++++ .../dc_AEC_1d_2c_1s_4r_4w.json | 8 +- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 115 ++-- src_cpp/opennnBridge/openNNnif.cpp | 1 - src_py/apiServer/experiment_flow.py | 6 + src_py/apiServer/stats.py | 127 ++-- src_py/apiServer/stats_aec.py | 90 +++ 7 files changed, 849 insertions(+), 127 deletions(-) create mode 100644 examples/AEC/AEC_Exp.ipynb create mode 100644 src_py/apiServer/stats_aec.py diff --git a/examples/AEC/AEC_Exp.ipynb b/examples/AEC/AEC_Exp.ipynb new file mode 100644 index 00000000..f981c43f --- /dev/null +++ b/examples/AEC/AEC_Exp.ipynb @@ -0,0 +1,629 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "bfca9189-3d1e-43d6-8ddf-07c5d8f96c9b", + "metadata": {}, + "outputs": [], + "source": [ + "import set_jupyter_env\n", + "from apiServer import *\n", + "from stats import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "dbb0aff3-aeeb-4948-9593-7161d1385ea2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "__________NERLNET CHECKLIST__________\n", + "Nerlnet configuration files are located at config directory.\n", + "Make sure data and jsons in correct folder, and jsons include the correct paths\n", + "* Data includes: a single csv that includes all the data for the experiment (training and prediction phases)\n", + "* Jsons include: - distributed configuration (dc_.json)\n", + " - connection map (conn_.json)\n", + " - experiment flow (exp_.json)\n", + "* Jsons directory: can be defined by changing the config file: config/jsonsDir.nerlconfig\n", + "\n", + "____________API COMMANDS_____________\n", + "==========Setting experiment========\n", + "\n", + "-showJsons(): lists available json files in jsons directory (dc, conn, exp) to be used with setJsons and getUserJsons\n", + "-list_datasets(): reads `hf_repo_ids.json` and list of datasets and files of Nerlnet organizaion on https://huggingface.co/Nerlnet\n", + "-download_dataset(idx, dir): downloads dataset files from Huggingface to the specified directory (default is /tmp/nerlnet/data/NerlnetData-master/nerlnet)\n", + "-add_repo_to_datasets_list(repo, name , description): adds a repository to the datasets list in `hf_repo_ids.json`\n", + "-printArchParams(Num) print description of selected arch file\n", + "\n", + "-selectJsons(): get input from user for arch / conn / exp selection\n", + "-setJsons(arch, conn, exp): set selected jsons to get their path by getUserJsons\n", + "-getUserJsons(): return a tuple of 3 paths to dc, conn, exp jsons that is used for initialization\n", + "\n", + "-initialization(experiment_name, dc, conn, exp_flow, custom_csv_path): \n", + " setting up the api-server to communicate with main-server of Nerlnet cluster\n", + " dc - path to distributed configuration file (can be generated by Nerlplanner)\n", + " conn - path to connection map file, graph of connections between entities\n", + " exp - path to experiment flow file, defines the flow of the experiment demonstrated as experiment phases of training and prediction\n", + " custom_csv_path - optional, path to custom csv file for the experiment, overrides the one in experiment flow file\n", + " \n", + "-send_jsons_to_devices(): send each NerlNet device the dc and conn jsons to init entities on it\n", + "-sendDataToSources(phase(,split)): phase := \"training\" | \"prediction\". split := 1 default (split) | 2 (whole file). send the experiment data to sources (currently happens in beggining of train/predict)\n", + "\n", + "======== Running experiment ==========\n", + "-experiment_phase_is_valid() returns True if there are more experiment phases to run\n", + "-run_current_experiment_phase() runs the current experiment phase\n", + "-next_experiment_phase() moves to the next experiment phase\n", + "\n", + "======== Retrieving statistics ======\n", + "-get_experiment_flow(experiment_name).generate_stats() returns statistics object (E.g., assigned to StatsInst) class for the current experiment phase\n", + "-StatsInst.get_communication_stats_workers() returns communication statistics for workers\n", + "-StatsInst.get_communication_stats_sources() returns communication statistics for sources\n", + "-StatsInst.get_communication_stats_clients() returns communication statistics for clients\n", + "-StatsInst.get_communication_stats_routers() returns communication statistics for routers\n", + "-StatsInst.get_communication_stats_main_server() returns communication statistics for main server\n", + "-StatsInst.get_loss_ts() returns the loss over time\n", + "-StatsInst.get_min_loss() returns the minimum loss\n", + "-StatsInst.get_missed_batches() returns the missed batches\n", + "\n", + "======== Workers Model Metrics and Performance ========\n", + "-StatsInst.get_confusion_matrices() returns tuple of two types of confusion matrices ordered by sources and ordered by workers\n", + "-StatsInst.get_model_performence_stats(confusion_matrix_worker_dict, saveToFile) returns the model performance statistics for the workers\n", + "\n" + ] + } + ], + "source": [ + "API = ApiServer()\n", + "API.help()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e7241206-2162-4e6f-9a95-dc001b0d080f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Distributed Configuration Files\n", + "--------------------\n", + "\n", + "0.\tdc_AEC_1d_2c_1s_4r_4w.json\n", + "1.\tdc_dist_14d.json\n", + "2.\tdc_dist_2d_3c_2s_3r_6w.json\n", + "3.\tdc_fed_dist_14d.json\n", + "4.\tdc_fed_dist_2d_3c_2s_3r_6w.json\n", + "5.\tdc_fed_synt_1d_2c_2r_1s_4w_1ws.json\n", + "6.\tdc_synt_8d_8w_2c_4s_4r.json\n", + "7.\tdc_synt_8d_8w_4c_6r_4s.json\n", + "8.\tdc_synt_distributed_w5_c3_6r_3s_3d.json\n", + "9.\tdc_test_synt_1d_2c_1s_4r_4w.json\n", + "10.\tdc_test_synt_1d_2c_2s_4r_4w.json\n", + "\n", + "Connection Map Files\n", + "--------------------\n", + "\n", + "0.\tconn_1Router1Client1S.json\n", + "1.\tconn_1Router1Client2S.json\n", + "2.\tconn_1Router2Clients1S.json\n", + "3.\tconn_1Router3Clients1S.json\n", + "4.\tconn_1Router4Clients1S.json\n", + "5.\tconn_1Router4Clients1fed.json\n", + "6.\tconn_1Router4Clients2Sources.json\n", + "7.\tconn_1Router4Clients2Sources1fed.json\n", + "8.\tconn_2R4C1S_health_david.json\n", + "9.\tconn_2Router2Clients1Source.json\n", + "10.\tconn_2Router2Clients1Source_david.json\n", + "11.\tconn_2Router2Clients2Source.json\n", + "12.\tconn_2Router2ClientsGUI.json\n", + "13.\tconn_2Router3Clients.json\n", + "14.\tconn_3Router3Clients.json\n", + "15.\tconn_6RouterCycle6Clients1Source.json\n", + "16.\tconn_6RouterCycle8Clients1Source.json\n", + "17.\tconn_6RouterLine6Clients1Source.json\n", + "18.\tconn_8RouterCycle8Clients1Source.json\n", + "19.\tconn_fed_dist_14d.json\n", + "20.\tconn_fed_dist_2d_3c_2s_3r_6w.json\n", + "21.\tconn_fed_synt_1d_2c_2r_1s_4w_1ws.json\n", + "22.\tconn_synt_8d_8w_4c_6r_4s.json\n", + "23.\tconn_synt_dc_8d_8w_2c_4s_4r.json\n", + "24.\tconn_synt_distributed_w5_c3_6r_3s_3d.json\n", + "25.\tconn_test_synt_1d_2c_1s_4r_4w.json\n", + "26.\tconn_test_synt_1d_2c_2s_4r_4w.json\n", + "\n", + "Experiments Flow Files\n", + "--------------------\n", + "\n", + "0.\texp_AEC_1d_2c_1s_4r_4w.json\n", + "1.\texp_dist_14d.json\n", + "2.\texp_dist_2d_3c_2s_3r_6w.json\n", + "3.\texp_fed_dist_14d.json\n", + "4.\texp_fed_dist_2d_3c_2s_3r_6w.json\n", + "5.\texp_fed_synt_1d_2c_2r_1s_4w_1ws.json\n", + "6.\texp_new_arc.json\n", + "7.\texp_synt_8d_8w_2c_4s_4r.json\n", + "8.\texp_synt_8d_8w_4c_6r_4s.json\n", + "9.\texp_synt_distributed_w5_c3_6r_3s_3d.json\n", + "10.\texp_test_synt_1d_2c_1s_4r_4w new.json\n" + ] + } + ], + "source": [ + "API.showJsons()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0590e523-f75c-4f50-8033-5adfc0d693b1", + "metadata": {}, + "outputs": [], + "source": [ + "dc = 0\n", + "conn_map = 25\n", + "exp_flow = 0" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6df5d5ab-ca93-4785-b8de-d42082f2ee8c", + "metadata": {}, + "outputs": [], + "source": [ + "API.setJsons(dc , conn_map , exp_flow)\n", + "dc_path , conn_map_path , exp_flow_path = API.getUserJsons() # Returns Paths" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b5aebe50-c44c-4b35-ba59-fd1937943a76", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/usr/local/lib/nerlnet-lib/NErlNet/inputJsonsFiles/DistributedConfig/dc_AEC_1d_2c_1s_4r_4w.json'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dc_path" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "0d355a9b-d044-4a6a-a539-1238ce4d021a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0. Nerlnet/skab: ['skab_full.csv', 'skab_full_bins.csv', 'skab_full_poly.csv']\n", + "1. Nerlnet/MNist: []\n", + "2. Nerlnet/synthetic_norm: ['synthetic_full.csv']\n" + ] + } + ], + "source": [ + "API.list_datasets()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ad1e3b36-cd96-403a-a9d5-7eb883b5a501", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fc819b136e31479cbcb18541c3d0eff6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Fetching 5 files: 0%| | 0/5 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "loss_dict = train_stats_aec.get_aec_loss(plot=True)\n", + "# train_stats_aec.get_boundaries(plot=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "d5cbe22b-0ea2-43f0-9f07-d784f11298cd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/wAAALGCAYAAAD4N5qEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wcdf0/8NdnZtv1FELoJUjTQEIIJRACUhSkqIg0QTpBAf2CqIiKIIIIfKMSOiK9ql9+SBHBAiiKikgTUYFQA2mXK9tm5lN+f8zO3O7t7m25tnf7ej4ePvT2tszuTmLe827CGGNARERERERERJOKNd4HQEREREREREQjjwE/ERERERER0STEgJ+IiIiIiIhoEmLAT0RERERERDQJMeAnIiIiIiIimoQY8BMRERERERFNQgz4iYiIiIiIiCYhBvxEREREREREkxADfiIiIiIiIqJJiAE/ERHRKDv33HOx99571/XYpUuXYuuttx7hI2oOf/nLX7D11lvjL3/5y4g+73C+TyIiorEUGe8DICIiGi/VBtK33XYbdtlll1E+msZz7rnn4v777w9/tm0bM2bMwLx583D66afjQx/60DgeHVXjrrvuwjPPPIMXX3wR77//Pj796U/j0ksvHe/DIiKiMcKAn4iImtZll11W8PMDDzyAp59+uuj2LbbYYlivc9FFF8EYU9djv/CFL+DUU08d1usPRywWw/e+9z0AgFIKb7/9Nu655x784Q9/wMMPP4yZM2eO27GNl+F8n2PtJz/5CVKpFLbbbjusWrVqvA+HiIjGGAN+IiJqWp/85CcLfn7hhRfw9NNPF90+WCaTQUtLS9WvE41G6zo+AIhEIohExu//riORSNHnMXfuXCxevBhPPvkkDj/88HE6srGXTqfR2to6rO9zrN1+++3YYIMNIITADjvsMN6HQ0REY4w9/EREREM49thjcdBBB+Hll1/G5z73OcyZMwdLliwBAPzmN7/BqaeeioULF2L27NnYd999cfXVV0MpVfAcg3u+3333XWy99da46aabcO+992LffffF7Nmz8ZnPfAYvvvhiwWNL9fBvvfXW+O53v4vf/OY3OOiggzB79mwceOCBeOqpp4qO/y9/+QsOPfRQbLfddth3331xzz33DHsuwDrrrAPAL/HP98477+BLX/oSdt55Z8yZMweHH344nnjiiYL7/N///R+23nprvPvuu0XHObjfPvjsX3vtNRx77LGYM2cO9thjD9x4441Fx/TBBx/gi1/8IubOnYsFCxbgkksugeu6Rfd79tln8aUvfQl77bUXZs+ejT333BOXXHIJstlswf3OPfdc7LDDDnj77bdxyimnYIcddsA555wT/m5wD7/WGrfccgsOPPBAbLfddthtt91w/vnno7e3t+B+L730Ek466STssssu2H777bH33nvjG9/4RqmPOfT9738fu+yyS0FVwUUXXYStt94at912W3jb6tWrsfXWW+Ouu+4Kb9twww0hhBjy+YmIaPJihp+IiKiCnp4enHLKKTjwwANxyCGHYPr06QCA+++/H62trTjhhBPQ2tqKZ555BldeeSWSySS+/vWvV3zehx56CKlUCkcccQSEEPjJT36CM888E7/5zW8qZpH//ve/47HHHsPRRx+NtrY23H777fjSl76E3//+95g6dSoA4JVXXsHJJ5+MGTNm4Mwzz4TWGldffTWmTZtW0/vv7u4G4Ae177zzDq644gpMmTIFH/3oR8P7rF69GkceeSQymQyOPfZYTJ06Fffffz++8IUv4Morr8R+++1X02sGent7cfLJJ2O//fbDAQccgF//+te44oorsNVWW2HPPfcEAGSzWRx33HF4//33ceyxx2LdddfFAw88gGeeeabo+R599FFks1kcddRRmDJlCl588UXccccd+OCDD3DllVcW3FdKiZNOOgk77rgjvv71ryORSJQ9zvPPPx/3338/Dj30UBx77LF49913ceedd+KVV17B3XffjWg0ijVr1uCkk07C1KlTceqpp6KzsxPvvvsuHn/88SE/g/nz5+OWW27Bf//7X2y11VYA/AsXlmXh2Wefxec///nwNgDYaaedqv+AiYhoUmPAT0REVMGqVatw4YUX4sgjjyy4/X//938LgsCjjjoK559/Pu6++26cddZZiMViQz7v8uXL8dhjj6GrqwsAsPnmm+OLX/wi/vjHPxYE06W8/vrreOSRR7DJJpsAAHbZZRd88pOfxMMPP4xjjjkGAHDllVfCtm3cfffdYa/9AQccgE984hNVv/d0Oo0FCxYU3DZz5kz89Kc/LbhwcMMNN2D16tW48847MX/+fADAZz/7WRxyyCH4/ve/j3322QeWVXth4cqVK/GDH/wAn/rUpwAAhx12GPbee2/84he/CAP+e++9F2+++SZ+9KMf4YADDgAAHH744SVbM84555yC7+yII47ApptuiiVLlmD58uXYYIMNwt+5rov9998fX/nKV4Y8xmeffRY/+9nPcMUVV+Dggw8Ob99ll11w8skn49FHH8XBBx+Mf/zjH+jt7cVNN92E7bbbLrzfWWedNeTz77jjjuHrbLXVVujv78d//vMffOxjHwuD/OD3U6ZM4TBFIiIKsaSfiIioglgshkMPPbTo9vzAMZlMoru7G/Pnz0cmk8Ebb7xR8Xk/8YlPhME+gDBQfueddyo+drfddguDfQDYZptt0N7eHj5WKYU///nP2GeffQoG62266abYY489Kj5/IB6P4+abb8bNN9+Mm266Cd/97nfR2tqKU089FcuWLQvv9+STT2L77bcP3wMAtLW14YgjjsB7772H1157rerXzNfa2loQuMdiMWy33XYFn9FTTz2FGTNmYP/99w9va2lpKTlfIP87S6fT6O7uxg477ABjDF555ZWi+x911FEVj/HRRx9FR0cHdt99d3R3d4f/+chHPoLW1tawTaGjowMA8MQTT8DzvCrevW/atGmYNWtWGNw/99xzsG0bJ510ElavXo0333wTgF/1MW/ePJbwExFRiBl+IiKiCmbOnFkyW//f//4XP/rRj/DMM88gmUwW/K6/v7/i866//voFPwfBf19fX82PDR4fPHbNmjXIZrPYdNNNi+5X6rZybNvGbrvtVnDbnnvuiY997GNYsmQJli5dCsCvVpgzZ07R42fNmhX+PihHr8V6661XFMB2dXXh3//+d/jze++9h0033bTofptvvnnR8y1fvhxXXnklfve73xX11w/+DiORCNZbb72Kx/jWW2+hv7+/qBIisGbNGgDAzjvvjI9//OO46qqrcMstt2DnnXfGvvvui4MPPrhiNcj8+fPx5JNPAvAz+bNnz8Z2222HKVOm4Nlnn8U666yDV199FQcddFDF4yUioubBgJ+IiKiCUr3bfX19OOaYY9De3o4vfelL2GSTTRCPx/HPf/4TV1xxBbTWFZ938NC7QDUr34bz2OFab731sPnmm+Nvf/tbzY8tl30u93mVe5/1UErhhBNOCOcCzJo1C62trVixYgXOPffcomOIxWJVtSForTF9+nRcccUVJX8ftD4IIXDllVfi+eefx+9//3v84Q9/wHnnnYebb74Z9957L9ra2sq+xo477oj77rsP77zzDp599lnsuOOOEEJg3rx5+Pvf/451110XWuuCCgsiIiIG/ERERHX461//ip6eHlx11VUFQ9IGT58fL9OnT0c8Hsdbb71V9LtSt9VKKYV0Oh3+vMEGGxSU+AeC1oagN76zsxNAcQXEe++9V/exbLjhhvjPf/4DY0zBBYXBx/Of//wHb775ZsFMAAB4+umn635tANhkk03w5z//GfPmzRtysF9g7ty5mDt3Ls466yw8+OCDOOecc/DII4/gs5/9bNnHBH38Tz/9NF566SWceuqpAPwBfXfffTfWXXddtLa24iMf+ciw3gsREU0u7OEnIiKqQ5D5zc+ou65bsBJtPAWl+L/97W+xYsWK8Pa33noLf/jDH4b13MuWLcOyZcuwzTbbhLftueeeePHFF/GPf/wjvC2dTuO+++7DhhtuGA6SC+YO5FcHKKVw33331X08ixYtwsqVK/Hoo4+Gt2UymaLnLPWdGWMKVtvV44ADDoBSCtdcc03R76SUYZtFb29vUQXGtttuCwAlVwjm23jjjTFz5kzccsstkFJi3rx5APxS/7fffhuPPvoo5syZg0iEuRwiIhrA/1cgIiKqww477ICuri6ce+65OPbYYyGEwAMPPDAmJfXVOuOMM/DHP/4RRx11FI466ihorXHHHXdgyy23xL/+9a+qnkNKiQceeACAHxy/++67uOeee6C1xumnnx7e79RTT8XDDz+MU045Bcceeyy6urrw//7f/8O7776LpUuXhsH2lltuiblz52LJkiXo7e1FV1cXHnnkEUgp636fhx9+OO688058/etfxz//+U/MmDEDDzzwQFG2fdasWdhkk03wgx/8ACtWrEB7ezt+/etfVzUzYSg777wzjjjiCFx//fX417/+hd133x3RaBRvvvkmHn30UXzzm9/E/vvvj/vvvx9333039t13X2yyySZIpVK477770N7ejkWLFlV8nfnz5+Phhx/GVlttFc57+PCHP4zW1la8+eabBRsCAr/73e/w6quvAgA8z8O///3v8MLE3nvvXXDRhoiIJh8G/ERERHWYOnUqrrvuOvzgBz/Aj370I3R2duKQQw7BggULcNJJJ4334QEAZs+ejRtvvBGXXXYZfvzjH2P99dfHl770JbzxxhtVbREA/Mzz1772tfDn9vZ2bLfddrj88ssLhtSts846uOeee3D55ZfjjjvugOM42HrrrXHddddhr732KnjOK664Aueffz5uuOEGdHZ24rDDDsMuu+yCE044oa732dLSgltuuQUXXXQR7rjjDiQSCRx88MFYtGgRTj755PB+0WgU1113Hb73ve/h+uuvRzwex3777YfPfe5zJVf41eK73/0uZs+ejXvuuQc//OEPYds2NtxwQxxyyCFhNn7nnXfGSy+9hEceeQSrV69GR0cHtt9+e1xxxRXYeOONK77GjjvuiIcffjgs7wf8wYJz587Fn/70p4LbA4899hjuv//+8OdXXnkl3Eaw3nrrMeAnIprkhGmkVAQRERGNui9+8Yt47bXX8Nhjj433oRAREdEoYg8/ERHRJJbNZgt+fvPNN/HUU09h5513HqcjIiIiorHCkn4iIqJJbN9998WnP/1pbLzxxnjvvfdwzz33IBqNFpS6ExER0eTEgJ+IiGgS22OPPfDwww9j1apViMVimDt3Ls4++2xsttlm431oRERENMrYw09EREREREQ0CbGHn4iIiIiIiGgSYsBPRERERERENAkx4CciIiIiIiKahDi0bwQYY6B1449CsCwxIY6TGgvPG6oHzxuqB88bqgfPG6oHzxuqRyOdN5YlIISoeD8G/CNAa4Pu7tR4H8aQIhELU6e2oa8vDSn1eB8OTRA8b6gePG+oHjxvqB48b6gePG+oHo123kyb1gbbrhzwN1xJ/+uvv44TTjgBc+fOxe67747LLrsMrutWfJwxBjfccAP22msvbL/99jjiiCPw/PPPl72/1hqHHnoott56azz66KMj+A6IiIiIiIiIxl9DBfy9vb047rjj4Hkeli5dirPOOgv33XcfLr300oqPvfHGG3HllVfi+OOPx/XXX48ZM2bgxBNPxDvvvFPy/vfccw9WrFgx0m+BiIiIiIiIqCE0VMB/zz33IJVK4aqrrsIee+yBww47DF/96lcrBueO4+D666/HiSeeiOOPPx4LFizAkiVLMGXKFNx0001F9+/u7saPf/xjnH322aP5doiIiIiIiIjGTUMF/E899RQWLFiAKVOmhLcdcMAB0Frj6aefLvu45557DslkEgcccEB4WywWw3777Yennnqq6P5LlizBLrvsgl122WVEj5+IiIiIiIioUTRUwP/GG29g1qxZBbd1dnZixowZeOONN4Z8HICix26xxRZYvnw5stlseNuLL76Ihx56CF/72tdG8MiJiIiIiIiIGktDTenv6+tDZ2dn0e1dXV3o7e0d8nGxWAzxeLzg9s7OThhj0Nvbi0QiAa01LrzwQpxwwgnYaKON8O67747YsUciDXXtpIhtWwX/TVQNnjdUD543VA+eN1QPnjdUjtYKUioAxSvUlLKQzWahlAetx3/aOk0MY3feCEQiNizLHpFna6iAf7T97Gc/w+rVq3HqqaeO6PNalsDUqW0j+pyjpbOzZbwPgSYgnjdUD543VA+eN1QPnjcUMMbg/fffR09PD8wQ69I5u5vqMVbnjRDAlClTsP7660OIyqv3htJQAX9nZyf6+/uLbu/t7UVXV9eQj3NdF47jFGT5+/r6IIRAV1cXUqkUlixZgrPOOgue58HzPCSTSQBANptFMplEe3t7XcettUFfX7qux44V27bQ2dmCvr4MlOKVTKoOzxuqB88bqgfPG6oHzxsabO3a1Uilkmhvn4JYLF4yWBLCT9hpbYa8KECUb6zOG2MMXNfBmjVrkc16mDp1nZL36+xsqaq6qaEC/lmzZhX16vf392PVqlVF/fmDHwcAy5YtwzbbbBPe/sYbb2CDDTZAIpHAu+++i56eHnznO9/Bd77znYLHf/3rX8c666wz5GDASqScGP8no5SeMMdKjYPnDdWD5w3Vg+cN1YPnDQF+GX8q1Y/29qloby9uE84XiVg8Z6hmY3XexGJ+EjuZXIu2timwrPrblhoq4F+0aBGuu+66gl7+Rx99FJZlYffddy/7uHnz5qG9vR2/+tWvwoDf8zw89thjWLRoEQBgxowZuO222woet3r1apx99tk488wzsdtuu43SuyIiIiIiotGmlAIwECwRTWTBeayUhGXF6n6ehgr4jzzySNx+++04/fTTsXjxYqxYsQKXXXYZjjzySMycOTO833HHHYfly5fj8ccfBwDE43EsXrwYS5cuxbRp07DVVlvh7rvvRk9PD0466aTwPoPX8AVD+z70oQ9h3rx5Y/QuiYiIiIhotAy355moEYzUedxQAX9XVxduvfVWXHTRRTj99NPR1taGww47DGeddVbB/bTW4RW8wCmnnAJjDH7605+iu7sb2267LW666SZsvPHGY/kWiIiIiIiIiBqCMIajKoZLKY3u7tR4H8aQIhELU6e2Ye3aFPuVqGo8b6gePG+oHjxvqB48byif57lYs+Z9TJ++PqLRoUugG72H/+KLL8Crr76C22+/r+h3P/7x/+IPf3gCP//5g2N+XPVauHB+wc9Tp07Dttt+BIsXn44ttvjQOB1VeffddxeuvHIJ/vjHZwtuH8vzptL5PG1a28Qb2kdERERERESTz2GHHYF9990fgMHKlStx++0/xdlnn4477vg5Ojo6xvvwJi0G/ERERERERDQsjpNFPJ4o+/t1110Ps2dvF/688cab4IQTjsbLL7+ABQsWjsUhjjnXdRGJRIY1ZX+4xu+ViYiIiIiIaFgeeeRBLFw4Hy+//BK+9KXTsM8+u+Owww7GQw89UHC/iy++AMceezj+/Oenceyxh2PvvXfDiSceg5dffqnkcx533JHYe+/d8KlPHYDrr7+6YIbawGu+iP/5ny9i330X4uqrf1zTcbe2tgIApJQFtz/55O9w/PFHY++9d8MnP7k/li5dAsdxil67p6en4HHHH380Lr74gqL3+9xzz+KEE47GvvsuxCmnfB6vvvqvgselUklcdNH52G+/RTjooH1xzTU/hpSF8+IymQyWLPkBDj/80+Hne/nllyCZTBbc77DDDsaSJT/AnXfeis985iDss8/ueOmlF7Bw4Xz87W/PFNxXKYVPfeoAXHNNbZ9brZjhJyIiIiIimuAuuOA8fPKTh+JznzsOv/3tY7j00ouwzjozsOuuA+vH16xZgyVLfoATTzwVHR0duOOOW/GVr5yBe+65H1OnTgMA3HPPHbj22qU4/PCjccYZ/4M333wTN9xwDbTW+MIXzix4zQsv/BYOOeTT+PznTxwyuw8AxugwuF+1aiWuvfZKTJkyBTvsMNDf/8c/Polvfevr2Gefj+G0087A22+/ieuvvxorVnyA733vspo/k+7uNfjxj6/A5z53PNrb23H99VfhvPPOwX33PYBIxA+Fv//97+Ivf3kGp512BjbYYAPcf//P8d///rrgebLZLLTWOO2009HR0YWVK1fgttt+im984ytYuvT6gvs++eTvsNFGm+DLXz4HlmVhm222xYc/PBsPPfRL7LTTruH9/vKXP2P16lU48MBP1vy+asGAn4iIiIiIJi1jDFyvcNCa0mbMhq/FotaYrArcf/8DceyxJwAAdtllAZYvfw8333xjQcDf19eLiy66FDvuuBMAYO7cHXHooQfi3nvvwmmnnYF0OoWbbroBRx/9eSxefDoAYKeddkU0GsHSpT/E0Ucfi66uKeHzffKTh+KYY46v6viuvXYprr12afhzZ2cXLrnkcrS3t4e3/fSnN+AjH9kOF1xwMQBg1113QzyewOWXX4LXX3+t5gF/fX19WLr0BsyatQUAIJFI4EtfOg3//OfLmDNnLpYtewNPPvl7fP3r38JBB/mB9847L8CRRx5a8DxTp07FOed8IxzaJ6XE+utvgC9+8WS8/fZb2GSTTcP7SilxxRVXoqWlJbztkEM+hSVLLkdfXx86OzsBAA8//AC22257bLrpZjW9p1ox4CciIiIioknJGIPv3/EcXnuvd9yO4UMbdeEbn5s36kH/okV7Ffy855574+qrfwSlFGzbBgC0t7eHwX7w8/z5O+OVV14GALz00ovIZNL46Ef3KSi1nz9/FziOgzfeeB077LBjePtuu1Xfe//Zzx6Fj3/8AADA2rXduP/+n+Pcc7+Cq666AR/60JZIp9P473//g9NP/3LB4/bZ52O4/PJL8OKLz9cc8K+zzoww2AeAzTefBQBYtWoFAODVV1+BMQaLFn00vI9t21i0aE/ce+9dBc/16KMP47777sI777yNTCYT3v7OO28XBPw77LBjQbDvv4eP48orf4jHH38Un/nM4ejp6cHTT/8B55zzjZreTz0Y8BMRERER0eQ1+sn1EWfbNrQuXYGgtQrL0fMFJfmBadOmQUqJ3t4eTJs2HQAwZcrUosdNmzYNb721DADQ29sDADjxxGNKvvbKlSsGveb0od9Inhkz1sU223w4/HnHHXfGoYd+ArfcciO+973LkEz2wxgTHmugvb0dsVgMfX21X7TJrx4AgEgkCsAfpgcAq1evRiQSCbPugcGf5ZNP/h7f+9538KlPHYpTTvkCOjunYM2a1TjvvHPgus6gxxZ/Ji0tLdh334/h4YcfwGc+czgee+wRRKMx7L33fjW/p1ox4CciIiIioklJCIFvfG5eUUn/WO5Tr6ekf8qUqVizZk3J361evQpTpxYH7mvXdmPGjHXDn7u7uxGJRApK8Ht61hY9rru7G9OnrwMA6OjwA9+LL74cM2fOLLrv+utvUPDzcKoWYrEY1l9/Qyxb9gYAoL29A0IIrF3bXXC/ZDIJ13XR2dkVPg4ApPQK7tff31fzMayzzjqQUhaU2gMoOobf//432HLLrXDuud8Kz5t//OPvJZ+z3EdyyCGfxi9/eT/++9//4OGHH8Tee+8bDi4cTZzST0REREREk5YQAvGYPW7/qSconjt3HpLJfjz//HMFt6dSSTz33N8xZ868osc89dQTBT8/+eTvsPXW24bl/IAfPP/9738r+PnZZ/+KD394NgBg9uztkUgksGrVCmyzzYeL/pN/8WC4HMfB8uXvhs/Z2tqKLbfcCk888duC+/3ud48DALbffi4AYMYM/0LEm28uC+/z5pvLiqoPqhFUHDz11O/D25RSeOqpJ4uONagOCDz22KM1v9aWW26FH//4Crz++n9x4IGH1Hy89WCGn4iIiIiIqIHsvPOumDNnB3zzm1/F8cefglmztsDq1atw1123wbYtHHbYkUWPefTRhxGPx7HVVtvgt799DM8//xwuv/xHBffp7OzCpZdeVDCl3xiDww8/CgDQ0dGBk046DddcsxQrV67EDjvsCNu2sXz5u/jDH57CxRdfhkRi6Gn85axc+UG4ArCnZy3+7/9+ht7eXnzqU58J73PiiafiG984B9/97rfxsY8dgLfffgs33HA19tpr77B//yMfmY11152JpUuXYPHiM5BKJXHHHbeiq6ur5mPafPNZWLToo7jyyiVwXRfrr78+7r//50XVAzvttAuWLPkBfvrTG7HttrPxzDNP4+9//2vNr3fwwZ/GkiU/wCabbBpewBhtDPiJiIiIiIgaiGVZuPzyH+EnP7kO99xzB1avXoX29nbMm7cTvve9y7DOOusUPeaCCy7GddddhZtv/gmmTp2Kr33tm1iwoHCo3vTp0/GFL3wJ11zzY7z33rvYfPNZWLJkaUHf/FFHHYMZM2bg3nvvxC9+cS8ikQg23HAj7LbbHiVnB1Tr5z+/Fz//+b0A/PL9zTbbHJdcckXBsMGFC/fERRddiptv/gm+8Y2voLOzE4cc8mksXnxGeJ9IJIJLLrkC//u/38e3v/11bLTRxjjzzLNx1VU/quu4vvGN8/HDH16Ga6+9ErFYDPvvfxDmzt0R11zz4/A+n/zkoVi+/D387Gf3wHFc7LzzrvjOdy7G4sXH1/RaixZ9FEuW/GDMsvsAIIwxZsxebZJSSqO7OzXehzGkSMTC1KltWLs2NWb9SjTx8byhevC8oXrwvKF68LyhfJ7nYs2a9zF9+vqIRmND3ncse/hH2yOPPIhLLrkQDz30G0yZMqXs/S6++AK8+uoruP32+8bu4CaZ4Z43Dz30AC6//BL83/89HM5NKKfS+TxtWhtsu3KHPjP8RERERERERKPk/feX491338att96Effb5WMVgfyQx4CdqAhlHojflYr1poz8JlIiIiIiIBvz0pzfg8ccfxezZ2+OMM/5nTF+bJf0jgCX91Oh6kw7W9GUxa4PahpnwvKF68LyhevC8oXrwvKF8zVrST2NnLM+bkSrp51o+oiagDaC0geb1PSIiIiKipsGAn6gJaG2gtQELeoiIiIiImgcDfqImoI2B0gaM94mIiIiImgcDfqImoI2BNmCGn4iIiIioiTDgJ2oCSvrl/JrxPhERERFR02DAT9QEpNYwzPATERERETUVBvxETUApDRj28BMRERERNRMG/ERNQGoDDU7pJyIiIpoIbrrpeuy33x7jfRgj4uKLL8DChfPD/+y770Icd9xReOih/zfeh1ZSf38/Fi6cj0ceeXC8D2VERMb7AIho9CnlZ/fZw09EREREY22DDTbE+ed/DwCQyaTw5JNP4NJLv4dEogX77vvxcT66yY0BP9Ekp7WBNn52nxl+IiIiIhppjpNFPJ4o+/t4PI7Zs7cLf95pp13xz3++iCef/P2kDvgrfS5jgSX9RJOcNgYGAAzYw09EREQ0Sbz++ms4++wzsO++C/Hxj++Jb33ra/jggw/C33//+9/FF794cvhzT08P9thjJ5x88ufD29LpNPbccxf87ne/CW97881lOPfcs/Hxj++JffddiK9+9ct47713C1574cL5uP32W3DNNVfikEM+joMO+ljNx9/a2gYpZcFtH3zwPr71ra+Fr3322Wfg9ddfK3rtu+66veC2++67CwsXzg9/fu65Z7Fw4Xz87W/P4IILvon99luEz3zmINx5561Fx/HLX96Pww47GPvsszu+/OUv4L333im6z69+9RC+8IWT8LGP7YX99/8ozjjjVLzyyssF9wnaMF555WUsXnwC9t57N/ziFz/DiScegwsv/FbRc15zzZX45Cf3h1Kq8oc1DMzwE01yWhsY7a/kY4afiIiImo0xBpDuoNssGKnH5gAiMQghRvQpV6z4AKeffgo23HAjfPvbF8F1Hdxww7U488xTceutd6O1tQ1z587D448/CsdxEI/H8cILzyEajeG///030ukUWlvb8PLLL0IphblzdwAAvPfeuzjttBMxa9YWOO+8C2BZArfd9lN8+ctfwF13/QKxWCw8hp///G58+MPb4dxzvw2lZLlDDQXBfSaTwZNP/g4vvfQCvvWtC8Pfp9MpnHnmYgghcM4530AsFsdtt/0Up59+Cm699W7MnLlezZ/T5Zd/Hx//+CdwySWX4w9/eALXXrsUW2yxJXbddTcAwNNP/wGXXXYxPvGJg7HPPh/Dv//9L3z72+cWPc8HH7yP/fc/EJtssjGyWRe/+c2vccYZp+KWW+7GJptsGt7P8zxceOG3cPjhR2Px4tPR2dmF1tYWLF36QySTSbS3twMAlFL49a8fwQEHHATbtmt+X7VgwE80yWmTC/bh/4eIiIioWRhjkP7lxdArXqt851Fiz9wSLYecN6JB/3333QWlJH74w6vQ2dkFANhqq21wzDGfxSOPPIjDDjsSc+bsANd18corL2OHHXbE88//A4sW7YW//e0ZvPjiC9h1193w/PPPYeONN8G0adMBADfffCM6Ozvxwx9ejXg8DgCYPXsODj/8k3jooQdw6KGfDY+ho6MLl1xyeVXva9myN7DXXrsW3HbkkcfgYx87IPz54YcfxAcfvI/bb78Pm222OQBghx3m4TOfOQj33Xc3zjzzrJo/p7322hsnnbQYADB//s7485+fxhNP/DYM+G+99SbMmbMDzjvvOwCAXXZZANd1ccstPyl4nhNOOAUAEIlYcF2JnXbaBf/61z/xq189hMWLTw/vJ6XEqad+EfvsM1DxsP766+Oqq36Exx9/FJ/+9GEAgD//+WmsWbMaBx54SM3vqVYs6Sea5LQGtOFaPiIiImpOAiObXW8EL7zwPObNmx8G+wCw6aab4UMf2hIvvvgCAH9Q3rrrzsQLL/wj95jnsMMOO2L77XfA888/l7vtH5g7d174HH/72zNYuHARbNuGlBJSSnR0dGCrrbbGq6++UnAMu+66W9UXMTbccCP85Ce34Sc/uQ1XXXUDTjnlC/jFL+7FzTffmPee/oFZs7YIg30A6Ozswvz5u+DFF5+v7QPK2WmngYsMQghsuulmWLlyJQA/y/7vf/8LixbtVfCYvfbap+h53nxzGb7xjXNwwAH7YtGinbHXXrvi7bffwjvvvFV03wULFhb83NbWjr333g8PP/zL8LZHHnkQc+bsgI033qSu91ULZviJJrkgw29ZgiX9RERE1FSEEGg55Lyikv5IxIKcwCX9/f192HLLrYpunzp1Ovr6esOf586dh+effw6pVBKvvfZfzJ07D9lsBk888Vu4rot//eufOPjgT4X37+npwX333Y377ru7+G1EogU/T5s2rerjjcVi2GabDxcc19q13bjttp/iM585HJ2dXejv78fUqcXPOW3aNCxb9nrVr5Wvo6Oj4OdoNIr+/n4AQE/PWiilil5z8PtKp1M4++wzMGXKFHz5y2djxoz1EI/HcOml34PrFp5XiUQCra2tRcdxyCGfxmmnnYjXXvsvpk9fB3/60x/wta99s673VCsG/ESTnDYmrOXXDPiJiIioyQghgGi88LaIBSHGKOAfBZ2dnVi7trvo9rVr12DjjQd6yufM2QFXXfVD/OMff0dX1xRsuulmyGQyuPbapXjuuWfhui7mzNkh73m7sGDB7gWl+4HiQHZ4FzE23XRzeJ6Hd955Bx/5SBc6Ozvx9tvFGfPu7m50dHSGP8diMUjpFdwnCOJrMWXKVNi2XfQ5dncX/vzyyy9h5coV+MEPfohtt90mvFCUSiUBrFtw33IXdmbP3h6bbz4LDz/8S8ycOROxWBwf/ei+NR9zPVjSTzTJGe137wsIlvQTERERTQLbbz8Xf//739DX1xfe9vbbb+L111/D9tvPCW+bO3ceMpkM7rnnzjCw33LLrRCPx3HHHbdg3XVnYv31NwjvP3/+zli27HVsueXW2GabDxf8Z5NNNhvR9/DGG37WfsqUKeF7euON1/D222+G9+nr68Ozz/4V228/N7xtxox18dZbywqe629/+0vNr2/bNrbaahs89dQTBbc/8cRvC352nCwAvzog8NJLL+D995fX9HoHH/xpPP74r/DQQ7/EPvvsh5aWlpqPuR7M8BNNcjqY1icMS/qJiIiIJgilNH7/+98U3b7ttrNx+OFH4+GHH8TZZ5+Bz3/+RLiugxtvvBYzZ66HT3zi4PC+m266GaZOnYbnn38O//M/5wDwA93ttpuDZ575U8HQPAA46aTFOPnkz+Pss8/EIYd8GtOmTUN39xr84x/PYc6cudhvv/3rei+O4+Dll18CALiugxde+AcefPB+7LTTLthww40AAAceeDDuu+8ufPWr/4NTTvlCOKXftm0cfvhR4XPttdc++NnP7sY223wEm2yyKR577BGsWrWyruM67rgTce65X8Ell1wYTun/9a8fKbjPRz6yHVpaWrFkyQ9w3HEn4IMPVuCmm67HjBnrlnnW0vbf/xO47rql6Onpwbnnfruu460HA36iSU5rAwgBIXL/m4iIiIganus6JVfEffvb38XHP/4JXHXVDbj66h/hu9/9FizLxk477Ywzzzwbra1tBfefM2cHPPHEbzFnzsBwvrlz5+GZZ/5UUM4PABtttDFuvPFW3HjjtViy5FJkMhlMn74O5szZAVtssWXd72X58vdw2mknAPAz5TNnro+jjjoWxx57fHif1tY2LF16PZYuXYLLLrsEWitst90cXH31jQUr+Y4//mSsXduNm2++EZYlcMghh+Kzn90aV131o5qPa+HCPXHOOd/Abbf9FL/5zWP48Ic/ggsvvASnnjpwXNOmTcdFF12Kq6/+Eb72tbOx0Uab4KtfPQ933nlrTa/V2dmFuXPnYeXKlZg9e7uaj7VewjDlN2xKaXR3p8b7MIYUiViYOrUNa9emxm5ACTWEVT0ZvLMiCcsC1p3Sig1mtFV+UA7PG6oHzxuqB88bqgfPG8rneS7WrHkf06evj2g0NuR9x3RoH00awzlvUqkkPvWpT+DEE0/FUUcdU/H+lc7nadPaYNuVO/SZ4Sea5JTWgDAQQkAZ/h8bEREREdFYSadTWLZsGe6//2cQQuDAAw+u/KARxICfaJJTysASAkIIaMb7RERERERj5tVX/4Uvfek0rLvuTHzzmxegs7NrTF+fAT/RJCeVgbCCHn5G/EREREREY2XevPn44x+fHbfX51o+oklOaQ1LAAICnNlHRERERNQ8mOEnmuSk8vv3BQDFiJ+IiIiIqGkww080iRljoHMZfnAtHxERERFRU2HATzSJGQNog1yGX8DAgJs4iYiIiIiaAwN+oklMGwNjkJvS718AYLxPRERERNQcGPATTWJKG2hjIAT8gB/+RQAiIiIiIpr8OLSPaBLT2sBoA0sIGPg9/Yz3iYiIiBrfY4/9Cj/72d14++23YAwwY8YMbLfdHCxefDqmTp023odXl//+99946qkn8LnPHYdEIjHeh9MUGPATTWLGGGgYCAsQKgj4GfETERERNbI777wV1113FQ4//GicdNJpMMZg2bLX8dhjj2L16lUTOOD/D26++UZ85jNHMOAfIwz4iSYxnRvaZwkBzR5+IiIiognh5z+/FwcccBDOPPOs8LYFC3bH0Ud/HlrrcTyyYo6TRTw+PsH7eL72RMGAn2gS09oAwZR+4Uf77OEnIiIiamz9/X2YPn2dkr+zrMIxbI888iDuvfdOvPPO2+js7MIBBxyEk08+DbZth7+/5JILcd11N+OGG67GP//5EqZOnYbjjz8ZBx30yYLnevnlF3HDDdfglVdehm3bWLBgIb785a+EFQXvv78cn/3sITjvvO/gpZdewJNP/h7rrLMObrvtXvzpT3/Efffdhdde+y9c18Wmm26Gk05ajF133a3gOADgoIP2BQCst976+PnPHwQAvP76a7j66h/hxRefh23b2GmnXXDGGWdjvfXWC49v4cL5WLz4DPT39+HRRx9GJpPB448/NdyPe1JjwE80ifnBvR/gCwFosIefiIiIqNFtvfW2eOCB/8MGG2yI3XZbWDb4v+eeO3DttUtx+OFH44wz/gdvvvkmbrjhGmit8YUvnFlw3wsuOA+f/OSh+NznjsNvf/sYLr30IqyzzowwIH/55Rdx5pmLseuuu+PCC7+PbDaDG2+8Fuee+xVcf/3NBc91/fVXYcGChbjggovDioP3338Pu+++CEcddSwsS+CZZ/6Er371y/jxj6/FvHnzsWDBQhx33Em49dab8L//uxRtbe2IxaIAgBUrPsDpp5+CDTfcCN/+9kVwXQc33HAtzjzzVNx6691obW0LX/vnP78bH/7wdjj33G9DKTlin/lkxYCfaBILMvwAICD8kn4w4iciIqLmYYyBq72C2xQEpBqbfxPFrCiEEDU95itf+TrOO++r+MEPvgcAWH/9DbH77nvgiCOOxvrrbwAASKdTuOmmG3D00Z/H4sWnAwB22mlXRKMRLF36Qxx99LHo6poSPuf++x+IY489AQCwyy4LsHz5e7j55hvDgP+6667CNttsi0suuTw83lmzPoTPf/4I/PnPf8SCBQvD5/rQh7bGued+u+CYP/OZI8L/rbXGDjvMx7Jlb+CXv7wf8+bNx9SpU7HhhhsB8C9oTJkycGz33XcXlJL44Q+vQmdnFwBgq622wTHHfBaPPPIgDjvsyPC+HR1dBcdIQ2PATzSJaWP81D4G1vIxw09ERETNwhiDJc9dgzd63xq3Y5jVtRnOnveFmgLUWbM+hNtvvw/PPvsX/PWvf8Hzz/8dP//5PXjkkQdx9dU3YMstt8ZLL72ITCaNj350H0g5kOmeP38XOI6DN954HTvssGN4+6JFexW8xp577o2rr/4RlFLwPA8vvfQCTj/9y1BKhffZeONNsO66M/Gvf71SEPDvttvuRce8cuUK3HDDNXj22b9izZrV4aDorbfetuL7feGF5zFv3vww2AeATTfdDB/60JZ48cUXCgL+XXfdjcF+DRjwE01ieqCi3/+L0YA9/ERERNRkJmZwGI1GsWDBwjDQ/stf/oyvfe1/cPPNP8Ell1yO3t4eAMCJJx5T8vErV64o+HnwZP9p06ZBSone3h4opaCUwpVXLsGVVy6p4rmmF/ystca5556NZDKJk09ejA033BgtLS34yU+uw4oVH1R8r/39fdhyy62Kbp86dTr6+nqLjpuqx4CfaBLTSkMUznVhhp+IiIiahhACZ8/7QlFJf8Ru7JL+UnbZZQG22GJLvPXWMgBAR0cnAODiiy/HzJkzi+4flP4H1q7txowZ64Y/d3d3IxKJoKtrClzXhRACxx57QlElAICC1gAgLCANvfvuO/jPf/6N73//Cuyxx8DjHcep6r11dnZi7druotvXrl2DjTfedNCtE/MCznhhwE80iUmtC/5CFkBYXkVERETUDIQQiNuxgtsiEQs2Gmu9Xb7u7jWYNq0wi+44WaxcuQKbbz4LADB79vZIJBJYtWoF9tzzoxWf86mnnsBWW20T/vzkk7/D1ltvC9u20dLSgtmzt8Nbby3DNtt8sebjDQL7SCQa3vbBB+/jpZdewMYbbxLeFvzedQsvBGy//Vz88pf3o6+vD52d/oWMt99+E6+//hoOPPCQmo+HBjDgJ5rElAKsvIhfgxl+IiIiokb3+c8fid133wM777wA66yzDlatWolf/OI+9Pb24LOfPQoA0NHRgZNOOg3XXLMUK1euxA477AjbtrF8+bv4wx+ewsUXX4ZEYmBH/aOPPox4PI6tttoGv/3tY3j++edw+eU/Cn//xS9+GV/+8hdw/vnfwD77fAwdHR1YtWol/va3v+ATnzgY8+bNL3u8m266GdZddyauu+4qaK2RyaRx003XF1QUAMBmm20GAPi///sZ9thjLyQSCWyxxYdw+OFH4+GHH8TZZ5+Bz3/+RLiugxtvvBYzZ66HT3zi4JH7YJsQA34CAKSyHtoS0cp3HGdaGyhtEI1Yle9MJTL8hhl+IiIiogZ34omn4umn/4CrrvohenrWoqtrCrbYYstwxV3gqKOOwYwZM3DvvXfiF7+4F5FIBBtuuBF2220PRCKFod4FF1yM6667Cjff/BNMnToVX/vaNwsG8W233Rxcc81PcNNN1+P7378QnudhxoyZmD9/J2y00cZDHm8sFsPFF1+GJUt+gG9/+1ysu+5MHHfciXjuuWfx6quvhPfbaqttcOKJp+Khhx7AXXfdhnXXnYmf//xBzJy5Hq666gZcffWP8N3vfguWZWOnnXbGmWeeXbCSj2onDP/1P2xKaXR3p8b7MIYUiViYOrUNa9emIGVh+ZLjKry3JoUNp7chHrPH6Qir092XxereDDac0T4hLlCMt/+80wNPKrS1+J9Vd5+DTWa2Y52ulqoeP9R5Q1QOzxuqB88bqgfPG8rneS7WrHkf06evj2g0NuR9IxGrac6ZRx55EJdcciEeeug3BavwqHZjed5UOp+nTWuDbVdOgjJNSlBaQ0oNpRv/2o8rFbr7HLz1QT/60u54H05DM8ZAaz1oSIxhST8RERERUZNgwE+Q2kAqPSHWtbmeRkvchqc03v6gHz3J6iZ/NiNtDLQBrIJBpgKN/y0TEREREdFIYMBP0NpMmAy/JzVsy0JXm1/W8vYH/ejuy47zUTUmrQFtAGEVZvi1bo7yNSIiIiICPvGJg/HHPz7Lcv4mxYCfoFQuw9/gAb82Bq5UsHIBbHtrFJGIwNsr+rFybZrD6AbRxkBrU5DhF0KA8T4RERERUXPglH6C0hqeMlANHgkqpaE0EI0MRLCtiSiEkHh3VQpKG8yc1lqwhq6ZaW0AYwp6+IVAw3/PREREREQ0MhjwE6T0M8GNnuGXykArDTtWeNq2xCOwLIHlq1MwGthgBld3ALmhfcYUXABhhp+IiIgmO1Z90mQwUucxS/oJrlQwMPAafDWJ0gbSGNhWcQY/HrXR3hrF6t4MkhlvHI6u8Wjjl/XnFzwI8P8EiYiIaHKybX+9tOtyqDNNfMF5bNvDy9Ezw09wpYYQgFSNHfBLpYtK1PPFozbSGYnVPRm0JSJl7zeY4yl092b9doASFxMmKr9iQxSX9DPgJyIioknIsmy0tLQjmVwLAIjF4mX/Pai1gFL8NxHVZizOG2MMXNdBMrkWLS3tsKzh5egZ8Dc5bfze/YhtwZsIAT+GDsg7WqNYm3QwLZ1AZ26S/1CMMVjVk0Zv0sO0zgTiMXuEjnb8aWMweAefX9LP/3MjIiKiyamzcxoAhEF/OZZlcXMR1Wwsz5uWlvbwfB4OBvxNTikDrYGIbUFKDTNEBn28+QH/0MFqJGJBCGBVTwbtLdGKGfu+tIfVPVkgHGY3iQJ+bQBR+HkJAQb8RERENGkJIdDVNR0dHVOhlCx5H9sW6OpqRW9vmll+qtpYnje2HRl2Zj/AgL/JaW2gtEHEFmHPt92gAb/r6ZL9+4N1tEbRl3TRm3IxtSNe9n5SaazoTkNYfmmOnGSBsDYGg6v3BQSMMQ19YYeIiIhouCzLgmWVrvaMRCwkEglkMgqywWdYUeOYqOcNh/Y1OaU1tNGI2lbDT+p3PAW7iitdtmXBtgVW9WSGnEuwqjeD/rSLjpYoDDDprvBqg6KgXgj/drbxExERERFNfgz4m5zUAyX9Qba/EWnjbxGw7eqy0u0tUfSnXfQm3ZK/T2U9rFqbRVvCX+kHY6AafIZBrZTSGJzED37WjPiJiIiIiCY9BvxNTmt/sJtlCWjTuBl+pTS0Lr2SrxTLEojHbKzsycCTquB3WhusWJOG1hqJuN/VMhG2FNRKlgz4BQwz/ERERERETYEBf5NTyt/THgT8jZrhl8q/GFHL2ry2RATprIe1/YW7WLv7s1ibctDRFg1vs20L7gTqxamGUgbW4JJ+IOzhJyIiIiKiyY0Bf5NTWhfMvW/cgF9D6uqG9gWEEGiJR7CqJwvH9bP8GUdixdoMEjG7YB6ALQTcQZUAE53SpmRJvy7e1kdERERERJMQA/4m50mN/Bi6YUv6tQGMqHmyfEvcRsaVWNOXhTYGq3oycFyJtkS04H6WJeBJPal626XSJTL8/rwCZviJiIiIiCY/ruVrcp7UBWXyjZzhN3XkpYUQaG+JYHVvFpYlsKY3i47W4hUttiUglfHL4CMTf12dNga6xOo9IfzsPuN9IiIiIqLJjxn+JucODvgbdHCdlMUD6KqViEUgpUZ3XxaRiEA0UnzaW5aA0gZKN+b7r5XWBsYAgzsg/KF9zPATERERETUDBvxNTBsDqQb64i1LwGvQgN/xNGy7/tO1oy0KTyq0t0RL/t62BJTWDVvhUCtjDLQBhFWc4dfw+/gnIqn0pNumQEREREQ0WhjwNzGlclngIOAXArJBJ9U7nqppYN9g0YiFrvZ42RkAluWvq1NqgkbCg2jtZ/lLZfgncg9/d7+D1b2Z8T4MIiIiIqIJgQF/Ewsy2sFgNz/D33iBoNaFlQijJlfxMBloY4ASPfw+MWF7+KWnkXUm1zYFIiIiIqLRwoC/iWltoPNW3VnCL2tvtEn1UmlobUY/4BeNO7SwVsHQvsFT+n0TN8PvKQ3HY8BPRERERFQNBvxNTGq/zzss6bf83u5GW80nlYEag4BfiMadYVArrYMp/cW/MxATt4c/V5UyWSoxiIiIiIhGEwP+JqaUQf6mO0sIaG0aLsvttx4UbhMYDbYl4HmTI5D0v0JRsqRfTOAMv5Q6XJ9IRERERERDY8DfxLQ2QF48aFkCRpuGzPDDlA5eR5JliUlTLq514cWcfGKC9vAHbQpKa8hJsj6RiIiIiGg0MeBvYoN3ztuWgDINmOFXGqZc9DqCbEuE8wImOmMKL+YU/G6CZvh1rgVFKdOw2ySIiIiIiBoJA/4m5kpVsLZNCD/z22gBr6tGv5wf8DP82hRfCJmI/O+w3PcoMBHfodYmrECRLOknIiIiIqqIAX8Tk9IUB9Km8SbVe94YrOSDn+HXSk+KYFIbA1EuxT9RM/zGD/b94YqTo/WCiIiIiGg0MeBvYq4snTlvtAy/46kxyfDbloBswJaGekhdvqRfCDEh36PWBhoGkYiA407EGgUiIiIiorHFgL9JaeOvNiuVOVcNlP1VWpc9zpHmtzRMjoBfKY1yH5kAoCdg20KwMjJqW5NmuCIRERER0WhiwN+klDIwBkWZc2GhoXacK+UH4GMR8AN+MKwa6P3XSylTdquBEMAEjPdzF2IEbNsfrjgZZi0QEREREY0mBvxNyt9tb2ANCgotgYaagC6V37dt22MT8MMIvxx+giv13QaEEA3XtlENrf1dDbbltyRMhlkLRERERESjiQF/k9LaQOviUnnLEvAaKMMty1yYGC3CAqTXOO+/XlJpiDJ/uoXwWzomGq0NhAEitgWl9KSoxCAiIiIiGk0M+JuUzO00H1zSb1mioTL8SvlZ3XLl6SPNtgRcObH7w3VuDkHZDD/ExAz4c8ccrE/0mOEnIiIiIhoSA/4mpZQpuabdyk1wb5SSb6U0RNl98iPPD/gb54JHPYLS93LXSCZsD7/SgAjOBcMMPxERERFRBQz4m5Qus7bNsgSMQcNMqneVHrPsPpCrcFC6YS541MMYAzNkD//EnNIvdf4aSdFQwyWJiIiIiBoRA/4mpbQuuaa90TL8rqvGbEI/4Gf4tTYTOpjU2l9hV35Kv18SP9HK+qUcuIhhW+BqPiIiIiKiChjwNylXqpIl35aFhtpF73jjE/A3yvuvhzYGxhjkf2zaaLjaBTBQ2GEmWMCfP5fAtixkXQb8RERERERDYcDfpDxpigb2AbkMvzENkf0NVgeOZcBvWSLcDDBR6dz3l5/hz6oMurOrAfgZfgOgAb7imnhyYPOAbQt4cmK3XhARERERjTYG/E3Kk8Ur+YBcGXiD9PBLlZs2P4YBfxAkT+SBcFrnMvx5n5s2GgoaxhgI4Qf7EynDr7V/EWMgwz/xWy+IiIiIiEYbA/4mFARKQwXSjZA5VUpDaQ3bHruAHwBgBOQEXvmmSyxgMDDQRkFD5wJ+fy3jROG3KWAg4Lf9WRMT+XsiIiIiIhptDPibkNJ+sDdUwK8aYIq71AZa+/3aY0o0xvuvl3+xpvC71UZDm1yGH2LCZfhVkOEPSvotKxfwT9zviYiIiIhotDHgb0JK+73Pdrkp7miUDL8pylSPBcvyhxpOVMaYgXX1wW0w0NAw8Ev6kcuYTxRa+6sGCzYPGAb8RERERERDYcDfhPy1e+VL+oXwV6CNN6k0xDiE/LYl4HoTN5BU2mBwxK+0gjEGxmh/LR/MhMrwB4MIrYKLVAKyAS5MERERERE1Kgb8TahSSb9lCXgNkDn1PF12l/xosix/AvxENXjDgjEGr77Zh7W9HnTuAooxmFg9/GFJ/8D5YNmA68lxPCoiIiIiosbGgL8JKVViqlseS4iGKJV2pRzTlXwBW/gD4SZqH7+ShaXvy1en8NtnuvGX5zJhSf9Eyu4DpVtMbEvAcSfmd0RERERENBYY8DchpfXgmW4FLMtf2zfeQaHjlV4dONosa2JPgJdaI/9j60t7AICsM1DSD4iiSoBGpg2KLlLZlgVXqgn1PoiIiIiIxhID/iaktRkq3oclRNgzPV6k0lDajE+G3/Z3vKsJGvArVdgK4bj+AEKpMFDSj4k1tM+/SFV4Lvir+fz3S0RERERExRjwNyFXqsGxUwHLEtBmfCf1K+Vn2G17HDL8QkBpPWFL+qUuHG6Xcfw+d7+Vw/9OhRHjXsFRi1KnYsQS0EpP2EoMIiIiIqLRxoC/CXle+Qn9QC7Dr40/7X2cKO3vjbetsT9FhRCAEeP6/odDKQOR97FlvSDgBzSCixgTK8MvlS66SGVZAlLrhpg3QURERETUiBjwNyFPDV0qb1kCWutxzfBLZaB1+U0Co05gQgaS4TT7vOg4myvp1wXl7xMrw69U4VwCwL8wYyCY4SciIiIiKoMBf5PR2kCqoTP8Qvir3cYzwy2VxvimoM3EDPiNgUFhu3vWHVhdF6xbNBjfGQ21krL0ikYxQb8nIiIiIqKxwIC/yShtoE1x5lzqgaAwCKzGNcOvDYZcJTDKbEvAkxMvkNTawAzq4Q+G9gH+/AYAEBATqqTfU6bkRSohBDxv4n1PRERERERjgQF/k1G5Un07LyD0tIdV2ZXwtDfovuMY8Hsa49C+H7IsAXcCBpL+dgUUlvR7AwG/k+vnFwLjWtKvdPVrH40x0Lq4pB8AIrZAxpPFvyAiIiIiIgb8zUapXPCUFz1J7UFCQpvCAHc8M/yOJ8evfx9Bhl9NqD53wO/TN6ZwaF9hhj8XHIvqvl9Parz2bs+Il82/vzqNvpRb1X1LXcQI2JaA502874mIiIiIaCww4G8ypUr6lVGQ2oNBYVAnx2ktnTEGrtTjspIvYFkCyoxvlUM9/OB4UEl/XoY/aFMQ8C8OVCKVhuOpgucYCRlXhvMEKtG5c1aUuABkWxaUBgf3ERERERGVwIC/yShtgEGxkTQSUhdm+K1x7GFX2kDqoTcJjDbbElDK+LvrJxBt/HV7oqCHf+B79FSuh18AylT+fqXS8DwFOYLngtIanqx+nZ7WftBfLsOvFFfzERERERGVwoC/ySili2bhudqFhi4M+MX4rTsLAm17HJv4bcuCNhpqnKoc6mW0Qf4VHWPMoAx/7n8LUVWGX2sDx9PwRvBc8NtKTNUzEpQ2MMaU7OG3bQGp9YSrxCAiIiIiGgsNF/C//vrrOOGEEzB37lzsvvvuuOyyy+C6lXt9jTG44YYbsNdee2H77bfHEUccgeeff77gPi+++CJOOOEE7L777pg9ezb22msvnHfeeVixYsUovZvGo7Qpmn3vKgfaaJi8QHE8M/xSa2itxzXDb1l+QCwnWCDpH27efAZlCgJ7V/nBs1/SX/n7VdpASjVwoWAEKO0H/NWeX9oYKFN+Sj/MxNyoQEREREQ02iLjfQD5ent7cdxxx2GzzTbD0qVLsWLFClx66aXIZrM4//zzh3zsjTfeiCuvvBLnnHMOtt56a9x555048cQT8cADD2DjjTcGAPT19WHWrFn47Gc/i+nTp+Odd97BNddcg5deegm/+MUvEIvFxuJtjitPqoId7cooSKMAmKIMfzBJvdT+89EkVenVgWPNABOvpH/QBYr8gX0AIKWBhoYQwcWBys8ntUHWHblJ+EobSGPCoYiVzi+da0Mpdz8D41euEBERERFRgYYK+O+55x6kUilcddVVmDJlCgBAKYULL7wQixcvxsyZM0s+znEcXH/99TjxxBNx/PHHAwB23HFH7L///rjppptwwQUXAAAWLlyIhQsXho/bZZddsP766+PEE0/Eyy+/jHnz5o3m22sIriyc0K+0hDYKgIBGfg8/oLQfnEXGeHieH7w1QKBthhdIam0gRPlAdTRoUzijITto2J5UAxdxqimDD7LxjjtyF3+UNjDaVH1+DX5Pg1mWgMuAn4iIiIioSEOV9D/11FNYsGBBGOwDwAEHHACtNZ5++umyj3vuueeQTCZxwAEHhLfFYjHst99+eOqpp4Z8zeC1PM8b8n6ThScLS+WlUVBGISIiUHogOLSE8Kejj0NJu1QaMOOb3Qf8wXbDGQb39op+vLWiH31p1w9ax4DSGhADrzU4My+lgYF/IaKa71YqnZvnMHJ98ir3XEqbqj5frU3BexrMtgRcd2S3CBARERERTQYNFfC/8cYbmDVrVsFtnZ2dmDFjBt54440hHweg6LFbbLEFli9fjmw2W3C7Ugqu6+L111/H5Zdfjo985CPYcccdR+hdNK4gyCpcyecHhJawoExewG+JXBZ27AP+rKtg22P+skVs24JbZ2+4VBopR2JNTxavv9eLN5f3oTfpjPoFFK0K99UPLulXysAYDQEBA1Nxf70nNWJRG6qGnvuKx5ibuK+rHLZX6TOzbQHHUxXfCxERERFRs2mokv6+vj50dnYW3d7V1YXe3t4hHxeLxRCPxwtu7+zshDEGvb29SCQS4e3HHHMMnnvuOQDA7NmzccMNNyASGd5HEYk01LWTIrZtheXp0YgN2/aPV3sKliUQsSzAMuHtQghA5H43xHsb6R5/YwxcqRGPRcJjGS/RiAVlTF3frac0jAGmTfHPu2TGQ/+KfnS2RjG9qwWdbTFE6nh/Pf0OHE9h5rTWkr83wj8Xg89u8HR9pQ2ELRAxFozxv++hZiVoYxCL2shkAIiROc+NAKLRgfOs0nMKS8CyrbLnQyxqQykDYYm6PlMaecF3Nd5/hmli4XlD9eB5Q/XgeUP1mKjnTUMF/GPl4osvRn9/P9566y3ceOONOOGEE3D33Xejvb29ruezLIGpU9tG+ChHXsaRiCdiaEtEEc0FWUkh0G63wLZsRISNzo6W8P7SAB2dLehqj5d8Pq0N3ljeixlTyt+nVq6nEG9JoSNiIxEb39PTjkQgBNDV1Vr7AMH+LBItMUztSkAIgWlT/FL2/oyHlX0OMtJg0/U70dFa26DIlf0uUq5GJB4t+diV/Q4UBDqD76PoYoyF9rY4hI5BaY2uKa1lg2RjDGJrMlDaoKUlirb2BKZ2tZS8by3WpiW6OjSk1mjvqPyc/Y5GV0ahsyNR8vcJqZDJSrR3tKAl3jh/pWlderNAM+nsHP75Qs2H5w3Vg+cN1YPnDdVjop03jfOvY/gZ+f7+/qLbe3t70dXVNeTjXNeF4zgFWf6+vj4IIYoeG5T+z5kzB7vtths++tGP4t5778VJJ51U13FrbdDXl67rsWPFti1YERvJZBZGKdiWgDEG3ak+aCgACgIeekU6zNj3pxx0d6egvdIT2jOOxLvv96K/P4PN1iuuzKhHKuNhbU8GnW0xuM74zlXIugpKaaxekwwvkFRrdU8GyWQW8UGtCRaAqAA+WNkPLSU2Xrej6ud0XIUPVvQh60oYpbD5+p1FAWXP2jQcqSFyGxfW9mUKfp9xJPqSadhaw5MK3d2psu9NaY3+ZBYdbQlk0i5Wr0nCqmKVXyVrulNIOx5cT2PNmlTF51zTnUQq7SBilS7Z18agt98/vvaW6LCPbyRobfDWin6sN621oS5CjBXbttDZ2YK+vgw3KFDVeN5QPXjeUD143lA9Gu286exsqaraoKH+JTpr1qyiXv3+/n6sWrWqqD9/8OMAYNmyZdhmm23C29944w1ssMEGBeX8g62zzjpYb7318NZbbw3r2OUE2AOuhQVP6dz0eQOpJVwlYQs/KlVGwcv7WUsD11Nl31tf0kU660FJjWntcbQmhh9sZRwJKVV4jOPKGLiehuNKiBr/qKQyHswQU/7jUQvdfQ7W6Wyp+mJCb9JBxpGY0h7D6t4M2hNRTO8aOLeN8b+v/NdNZwsvmkhp4CkFYTSkMvA8hXI5aE8qeFKFFxVSGQ+yY3jnuTEGWccDjD8/IOPKin92nEHvqRSpFLKORCLaAMMf4J/HqbSLdEsU0QlW9jWSlNIT4u9Gaiw8b6gePG+oHjxvqB4T7bxpqH+JLlq0CH/605/Q19cX3vboo4/CsizsvvvuZR83b948tLe341e/+lV4m+d5eOyxx7Bo0aIhX/P999/H8uXLsfHGGw//DTQ4pXXBsHNl/JV8trDDIW7a6EGPKR9096cdxKI2PKXRk3JH5BhHajDcSLCt6gfLDZZ25JCBXjxmw3EVUtnqqxj6Ui5sW8C2LSSiNlasTRcM5TMG0IP21Qdr+SIR/zal/DsKIWCM/5hypDIwxm9ZsW2B7AhMwlfaQAfPaQl4XuXvW0pdMIiwNDGsjQojzZMaWVf5F9iIiIiIiMZJQ2X4jzzySNx+++04/fTTsXjxYqxYsQKXXXYZjjzySMycOTO833HHHYfly5fj8ccfBwDE43EsXrwYS5cuxbRp07DVVlvh7rvvRk9PT0GZ/vnnn4+pU6diu+22Q3t7O5YtW4abb74Z06dPx2GHHTbm73esKWUK1plLo6CN9jP6uYxr/j2EVX4tnespJLMKiagNHbGwts/B9M4E4sPMsGYcWbA2sBbaaCijELVGpqzbsgS0Qc2VBlJpeFIPuV9eCAEh/CB+ShXzD/zPW6IlN9egNRFBd5+DlT1pbDSjHUIIaOMH6Pmfn5Nby9easNCXVFDSQEP7rf3GDLkuUJuBrQ4R24In9bD70oNNEZHcsEDHG/oigs4dY+XXNA11pdX1FLKuqnvLAxERERHRSGiogL+rqwu33norLrroIpx++uloa2vDYYcdhrPOOqvgflprKFUYKJxyyikwxuCnP/0puru7se222+Kmm24qyNxvv/32uO+++3DXXXfBdV2sv/76WLRoEU477TRMnTp1TN7jeJJaF8xwC1byAYAQFrTRBRl+S5TPuGccCddTaEv4g+O6+xz0p1zEp9Q/xMIYg4wj65603u/1ISWT2KB1o7qPocRB1Zzh96Rf5tPaMvQfr5aYjf60B08qRCNDXyhJZSUcT6It4V8cEEKgsy2KNb1ZdLbF0dUWg9Z+cFyQ4c9l5VtbbPQlFaQONisABkNn+JX2LwLZQYbfMfCURtyq/6KO1gZa557T8rPyQ11E0LmKgEqnRMS24FRRLTBW0o6ENgbuCFRFEBERERHVq6ECfgDYYostcMsttwx5n9tvv73oNiEEFi9ejMWLF5d93GGHHdYUmfxyPE8VlEZLnRfwQ8BAw+QH/JYoW5KcykgIDJSPx2M21vRlMaUjXnfALpWBVKauxyuj0Of1QhoFqSUi1gid2qJ8lUM5ntSQuaB2KPGYje5+B6msxJT2oYPo/rQLW4iCYD4asSEshRXdabQlIn6GP7fjPhCU/Lcm/M80zPBDFFV0DKa1CS8IRCwLWmtIpYdVxaG0gcpl7C1LwJMGSmtYZS4iaJ17TxXOCbuKaoGxEly4ikascP7ASK6uJCIiIiKqVkP18NPocqQuyKQ6ygkH9AkhYABo5Gf4RckyaaU1elIO4rGBIK01HkEqK9Gfrn+yvicVPKXCfvNaZGQaGZWB0rKgcmG4hCh/0aMcV6rwsZWe2xYCfRXmH3hSoT/jIRErDoo7WqLoT7tY05uF1oCGgcj7Ux308Le2+I/15yH6GX6NoTP8WptwoJ9lCSgz/LJ5pXQYANuWgFb+8MCyx2D8ioBKPfxBtUAj9PG7UsOVGomYHV7EIiIiIiIaDwz4m4jrDkxcN8bAM24Y8AdMXgRoWSI3ZK0wYMk4Co6nEI9ZBfe1bYG1fdkh+8KH4kl/QJ5t1XZaGmPQ5/XBFjYMDLwRDPirHSyXz3ULWyeGkoj7Zf3uENnpdFbCcVXBBZaAZQm0JiJY2ZNBMuv5A/HyXtzNHXtrIreJQfnVEEKIij38Shvkj/AXqP3iR6nnDJ7StgRkhZYJrQ00Kvfw27aAVA2w2QH+eewpjUQs4k9xbYCLEERERETUnBjwNwmdG5YWlJlLI6GMgpUX8AuIogy/Mf5j86WzXq4Pu/D0aUtE0Jd2kcrUl+V3pcYQFeZlZVQGKZlEwm6BgYHU9VcZDFbNYLnBUo5X9Sq2eNRG1pNIZctfpOjPuLBE+YqBlngEntToS7rAoCn9AyX9QcBvoEzwfsTQPfyDAlUhMOwhdEobwIjc84mK6/Z07vyrdAHFDloO9PgH167nr5WM2AJSM+AnIiIiovHDgL9JSK39Xulc5KSMhNKqKMNfMLTPGpiqHjDGoDflIhYtPnUitgVjgLX9Tl3HmHUl7CEm25fTL/sgANjChgULrh6ZFYEACgbLVaOaCf35grL+/nTpY5ZKoy/llczu5+tsi+aeo/C7CgbZtbbkevhVfhWHKajoGMxThS0gtiXgOMOrnvCULmg5EBh69aP/O1GxPSJsOWiADH/WUbktDAIGoiGOiYiIiIiaEwP+JuFPR0cYwEmjYGBgicJToHBKf5CBHQhYsq5CxlEl+8kBoLUlgp6ki0wdgWHGUTUP7HNUFikvibjtbwewrQgc5QwZyNYiXM1XZeY4mNAfiVT/PlriEfSlvZKVBOmsRNZVFQflRWwLsZhVUM7vSR1m8IMMv1QGGv7rmAoZfk/qgueL2CIcQlcvz9ODyvMFZIWS/mpfTZjSMyfGWn6FhzAYdhsEEREREVG9GPA3Ca2RW3/m/6x0cUAuIPLKvQeypvl93hlHDrlGLh614UqF3lRtWX5P+pnxakvhA0kvCWkkolYUgJ/lD9oVRkIwWM6T1YWdA3MIqq9UiEUtOK5EukRZfzLjQQBV7KEH2hJRTOmIhz8HK/mEABLxgQx/8N2LShn+QUMebduC1LVvLcgnlYaddxHBEv72iHK0NhBVRvxCAJ4a30n9ntRwPY1o7oKPZQOOO3IzJYiIiIiIasGAv0l52kPBRDYAQlgFgbLILWvPL7nuS7kVy9Vb4xF09znwZPXBlyf9XudqS+EB/z30yT7ErUR4W0REoLSEHKHBfRHbgqdM1X38rlQwqDyhP58Q/sDD3mThRRKpNHpTTsFwxFoExxyNioLNB54OyvrLZ/h1bphefsAfsQRUDRc/BjPGwJMK+aMfLEsMObCwlgGQli3CIYXjxZUKnhzYNBGxrHE/JiIiIiJqXgz4m5SjnaL+fWtQhh/wO8KD/nVPKqSysmI/eUvcRtqR6EtVPzzPk8rP/taQ4U96SXjaRcyKDbwHYUFDj1jAD/izDFLZ6uYC1DKhP19LLIJkprCsP+NIZFyFRCxS+xNiIMMfi4qCCymep3PDGctn+JUyMIMm/gdbG+odjKe0gTIomgsw1CBApTSqTfFHLFFXK8lIcj0NrREOtLRzbRDVzoAgIiIiIhpJDPibkDZ+QDw44BdCQA8KlP2han5AlnYUXK9yP7kQAvGohTV92Zp632uhjEK/7EXUipXMpo/kpP541EJ/2qsqaKtlQn++WNSC46mCDQepjAfo6sr5S8kP+C1LhJl1qXSY4S/3qQdbHfKz8cFU/Xr75JX250HYgwJ+fzBk6eccPDhwKLbtzwMYz6n4jicLCmeC98c+fiIiIiIaDwz4m5A0ElqXCPhhQRtTMLgPGMjwB8FoNeXqbYkokhkPyUx1GdesJ2vqe0/LFLIqi7gVL/rdSE/qj0VtuJ4OA+hyap3Qn08IPwvfl/KPW2t/G0K95fzAwEq+aDRXXp47LiU1/FF4BrpMoK20n/23xOC2D1F3QO1XDRS2CQRVA6rMJHulio+hnIhtQeVmQYyXdFYWfP8R24JSXM1HREREROODAX8TUkZBGlU0od8SAhqFAb8QgJQGWhv0pV3EqgxALUtAAEilq8u0p7Oq6sn22mj0eb2wRaToPQAjP6k/YluQSiNbYfhaPRP68yXiEfRnPDiuQtqRyDiy7DaEamRc/7MPVigGKw9dZWCM9is6ysSh2hioQcE5ANgWKl74KEcNWg3pP5+A1uXX6clB9x+KbfkZ/vHKpivtXxSK5n3/jbQukIiIiIiaDwP+JhRMaR8cLAtYgAmyvz7LEvCURtqRyDoSiQrl/PniMQu9aadiWb9UGl4NA/syKoOMzCBhJ0r+PiJsSOON2KR+wA8mU9mhL154UkPWOKE/XyziD3hLZT2kMp4/7b+O9oBAMA8gNijDL6WGhoEQKKrmCChtgEE9/IA/qb/egD+oFBFFcwF02XNESoMS13RK8odM1t9yMFyu51/wiQ664NMo6wKJiIiIqPkw4G9C5QbaiRIZfkv4AXnGkTUHoPGYDcdVyDhDB4ie1FBSI1LFcxtj0O/2wgBFLQkBW0SgtBrRwX2xqI3+tDfkxQtXKhhT24T+fH5ZP9Cbcvxy/hourpQSVCQEGf5gcrxUBgZm6Ax/mXkFEcsv6a+nRN3f9lDcIiAgCjZB5B+DLtFWMBQhBNwatkOMJDd3wafoPBampo0VREREREQjhQF/E3K1C4HiIEpAQBsNkzfKzbIEPKnRm3TDwLFatmVBaVNxcnrZQKkER2eRUim02C1l7xNO6h/hwX2uVGFffCmuqwuG3NWjJR5BMpMr548PN+D3jzUeBPxBD7+CX9KP8oG90rpkS4RtW5CqvsF4Mlc1MJgBSvbw+3MEiqsMhmLZAo47Xhl+hVJvMDKMqggiIiIiouFgwN+EXOXAtopXvQUl/oUZfgFtDNKOrCvjHIta6E26Q/bT15L9zKoslFGIlDj+wUYyw2/bFpQyQwZuKcera2BfPn9AoIJU1V0AGUqY4Y8VBvxSmbCkX5X5XrQunVmP2AJS67p60qWnS5bnC6Dkqj9/gKSp6SJKxBbIunLE5jfUIp0tPXgyWM03Hsc0XI6n8O7KJIcOEhEREU1QDPibTDCwzy7z1Rv4wWDAsgS08cvuY3UE/PGojbQjC/bLD+a4qurd9VmVhS0qB/u2sEd0Uj/gB27JTOmqgWBCfz0r+QZra4mgvbXye6zEGZzhzy/pD4f2lQ5CPalLfidCCEDXvkYR8FfslQqIhRVkxwtpbWC0qalFImIFFQhjG1xrY5BxvKL+/fCYcmsOJxpPanT3O1jVkxnvQyEiIiKiOjDgbzJKS2ijwv53YwwefmI1Hn5iNYwxEBAwgzL8nlSw66wuj0VteHLoPv60I6sKlFf3ZnD/b1bgtdcrl+pbwoajsiOaVY1HbSQzXslsZzihfwQC/kQsMuz+fWBgaF88N+k/yPBriVwPf/mSfk/qogn9IVFfSb8rVcmqAdsScEtcQAgz/LUE/LYIL76MJc/TcKUpGfDblhj3dYH1UtrA9RRWrc2gPz2yF9CIiIiIaPQx4G8y0igoI2HlAv6Mo/HeCgfvrXDC3uf8kn7bEnBchZZY/Rln2xJlg4Vadte/8tZqrFoj8ZfnU/jLC71DBvP+pH45opP6Y1ELrqdKViuEE/qHWdI/krK57zOY0m+HJf3IXdzx/7vU5+ip8uvwLCHgebUFr9r4FwlKXUSwLQGvRMm7Cob21bD1wJ/6X98FieFwpIJUpS/42GEbxMQL+LU2EJbf1vNBd3pCvgciIiKiZsaAv8koIwGIsEw6kx34B3zGyQX8g4b2rTu1JcwS1yMeqyIzXsXu+p6UE/7vF15N4qm/9ZTNUA9M6h+5wX22ZUFrg2yJagVP6mFN6B8NQUl/rGhon4FGrqTfAIPjfWMMlCo/gNC2BTJebfMRtDbQGiVL+v1d9SgqeTd1lMD7n//YB/yep4Ey378QAgZizNsMRoLW/oWhzrYY+lIuS/uJiIiIJhgG/E1Gaon8SeKZ7EDwmnU0AAGlCwPaWjKspcSj/nq+dIlp/bXsru9L+VUCG6wbgxDAv5el8Zs/dZcMpAYm9Y/c4D7AD3ZLVSs4rhr2hP6R5niFGf6BHv6BDD/gl/fn8zPr5afj25Zf6aBraJdQyu9hL5fhV8oUTepXZab6VyIgSs4EGE0Z1xvy+xfAhMyOB0MdLUugrSUy7qX9E3HwIREREdF4arAQhUabo52wnB8A0nkZ/qzjl3HnZ/hHgmUJGAOks8XZdk+Wz4wOFgT8s7dqx367TYNtAW++l8WvnlwNt8QqNgExopP6AX8mQdqRRcFb2pHDntA/kowxcIOAP1a8lk8Z5WeeS2T4/Wx8+VL6iO0H6LKGnnSlNbQpXTVgWxa00VCDJvVrv2Si6tcIn88WY7oGzxiDdFYNWaViCcCpsSqiEUg1MLwxEYtAG4MV3Zlxu3ixojuNtf1O5TsSEREREQAG/E3FGANPu+HAPqA4wy9KZPhHQizmr+cbnBV2XFVyVdtgUksk0/5xtbfa2GyjFhyw5zqIRgTeX+Xiwd+vRjo7qDJBWCM+qT8eteF4qiCglErDlWpEJvSPFDevx75USb8f8Jfu4VcVAv56etLD5ywRwFuWgNaAHFTCX65do5KxXs3nf/+65MC+gG2LcEbGRKKURv5p0NkWQ29q/Kb2Z11Z0xpPIiIiombXOBEKjbpgJZ9VEPAXZviFsHJ9/iMrkSvrH9z/nnGry4xnvCyyjh/AtbX4x7/BunEcvPc6aIlbWNPj4Ze/XYW+5MCx26MwqT8ITrN57QkjOaF/pGRd//gsayDQD0r6VVDSLwBt/P/kqzQd359lAHg19KQr7W+AKFfJYYCikn6pTVGCv9yQwYLjsy1IPXYl9I6n4VW44BOxLTieqvsixniRg7Y15Jf2l1tROZpcaeAy4CciIiKqWuNEKDTqlJHQWhVk+NODMvwW/JL+kc6ORiIWPKWRyQuUpdJwvOoy4z2pLADAtoFEfOD+60yN4ZB9ZqCjzUZfUuHxp7vDY7dHYVK//14EkpmByoGGnNCf62GPRgeOKbggoRSgoSAggHIZflNhdoNBbSX9yhS1DhQ+nz8oMJ+UhdllAOh1e9Dj9gz5Wn7LgYYnxya49ucZDP152eO0PWC4PFV84Sco7f9gTfHUfr+VRCGZ8dDdl0XGGblKC537/GrdEEFERETUzOrftUYTjjQK2uhBJf35GX4FIfx+ag0NG8PfBZ8vErHQn3YwvSsBYCAz3pqofBquSaYA+Nn9wVniro4IDtlnBn72qxVY0+Phtbcy2HKzVtgiAkc5kMZDZIhT/d1VScQiNtad2lLV+4hHLKQcBS9Xxl3LHIKxEk7oj+QH/P5/KwXooKQfpXv4Kw7LE6am0mplDDDEx2NZoih4VCXW+LmmcouGbVlQ2sAbswy/qnjlNGJb4eyHWHRk/1yNFmMMlNYlz+vOthjW9jtY2RNBazwCV2pkHYmMI+FJDW2AltYYXMdDImqjqz2G1ngULfHiP7/VUtq/aOTWcKGJiIiIqNkx4G8iSsuioKugh9/1e/hNkOEf4fg1EbWRzEi4nkIsasNT1WXGjTFYm/Qz/O2tpYOlthYbc7ftwF9f7MPfXurDrI1bYNt5k/rLxFjvrEzi5kdeRWsigq8cMaeqYCQWtdGTcpF1JaKRWNVzCMZSMGMgFssL+CNBht+EYxlLlchXU3Yesa2aBuNJrzhbn8+yRLhVIOApU/R9uKpw6GRZNVYgDEc6K8N2iXKCVpBa2iDGW1DpUaoAJyjtX74qBWH5f1XYlkAkYiEWtRCPRTClqxWr1yaRSnvoSTqI2hZaEhFMbY+jNRFBSzxSU/Cvtb/pQQh/CKTdaGsxiIiIiBoQ/8XURKQu7rkd3MNvQcAYM+KT+gF/eJzjDaznG2p3eT7PeOhP+cfeVibgB4DZW7ahtcVCMq3wymt+RcBQk/qV0njoT28C8IO2TIm1gaVYloDRJgx4q51DMJaCHv5gYB8w0Mvvr+XTMML/lgfH96qKgN+2BRxPVV2u7Uo1dMm7EAW92cYYaK0Lysm10VBGVTVjQliAU2UFglQavcn6Jr/X0pYylhchRoLWBqbMoEXAL+2f1hnH9M4EpnUm0NUeR1siiljUDr/rWMRGZ1sM07sSaElEkHUl3lqRxBvv9yOVrW1WSLDpQeviFY5EREREVBoD/ibiaKegnF9rg6xbPLRPGw1jRj4wEULAEgKp3LAvR1aXGfe0i2TGD96CgX2lRCIW5n+kEwDw3Cv9cF0NS1jIqmzJ+//pnyuwqmfgd/3p6oeQRSMW+tNubQHfGAoz/Hk9/HbelH4T1OyXyPB7Slf8XiKWBZnLuFbDlcXl+fmCkv5gi4M/OBAFVQHSSGijoIwf+A3FtgScKi/gJDMeVqzNwPVqn/Xgejps7ahIGHhq4gyc06b8ZoXAkHMeBolGLHS0xjC9Kw7Xk0UzGyoJNj3oGs47IiIiombXWFEKjRptNDztFZRDZ11d0L8drOUzqBxQ1Sses9CbcqG0RiZbXWbcVS4yaf942luH7kLZavNWTOmIwHE1Xvh3Eraw4Wm3KKhd05fFU88vB+AHh0BtAX8saiHj+NUKjTahH6iQ4ZfGD/ThT84fnKQvNSxvMNsSUNIPdivRxh+2Zg+V4bf9kvcgc6tLDA4MtkwY6IqDGMOp+FVUIKQdiWTGRaaGFoWAKxWk1rCr+P4jtjWhVvP530H59YzDYkTNQbvW/mUqaRjwExEREVWrsaIUGjVSK2hTOKE/k/GDDzt3kycNtF9lD11xalt94jF/j30yI+F4qqpAOauySOfWfpfr4Q9YlsDO2/tZ/hf/nYST9Uv688v6jTF4+E9vQWmDWRt0YvP1OwAA/enKA+ECsYgN11PoT3sNN6EfKBPwB2v5tP/9GqNhUDrDXynIs20BqXVVU+eDCf2VSvqV0lDafz6t/QAvv91DaQmduxhVqQIlYgtIZSqW0Gtj0J9y4bga6Wzta+ZcqSFMdd+9bYnwe5kIVC7gH61ZlLLGoN1f7ZgbJjjBth0QERERjRcG/E3C731WsPJqtTOOn9HsbI+E/6jPOv4/pEejpB8Idrj7QZZUpmLAr4yCox2kcxcnhurhD2y6YQIzp8eglMELr2QgtSzo+37htTV484N+RGwLBy7YFB2tMQBAfw17xS1LQJvcpPoGm9AP5A/tK53h9+c0GACiqIffz/AP/X6EEDDwg+pKlNZQVZSGK2PC5/Mnshvkz2ULsvraaKgKMyaqvSDhuAqOp9ESt9Gf9qqqCMiXzngVB/YVHtPEWc0XLGsYjXNbWP4gx1oobQAjIFDdnAkiIiIiYsDfVIIS7kA6N7CvNWGHu+2Dsv7RGNoXiEUtpB0PUumKJf2e9pD1XDiu/w/8oXr4A0II7DzHz/L/e1kaff25Sf0AUhkPjz/7DgBgz7nrY2pHHB2tUQC1lfQDfk9yI07oB4Cs57/feMmhfX45v4Ep6uEP+qOrKeMWBlWtvvP7rocu6bcsv7UgCOS0MVCm8CKB1BIWLBgY6Aol/eFqvgoZ/qyrIJVCW0sUWUeG6wyrobXJDWys7gSIWBaUrK4qohFobSBGKa62LVHzPINwtoQRNVcHEBERETWrBgxVaKwEK/laEgKJqP8P6CAzPFo9/ACQiNm5YYHFa9cG87SLVG5gX8QWiMeqyzauPyOOTTZIwBjgxX868HIbCh772zvIOAozp7Zg14/MBICBDH+NAX88aiPlNN6EfgBhr3i8REm/Mbl+aKOBQT38wa7zagJ+ywacKkrUZYl+/NIGSrV1Lr2cf3642oUtbP+CVBXnp4CoeEEik5UQEIhGLHhKV72pAfC3M7ieLmibGMpA1cHECFaV1hiten7LEnBr3Fggc4Mf66kOICIiImpWDPibWLCSrzWq0RLx/3dQ0j+aAX80Yvul8FVwlIN0Opfdb7VrKi/eebtOCAG8s1zi7ZX9eO29Xrz0RjcA4KDdNwv3eLfnMvzJGnr4Ab9SQUmDeLSKvfBjzPHKl/QD/mo+HeT5S2X4q/icI5YVXiAailK52vBK8ga5aVP4GGMMPOPCEnYuw19FwC8Ad4ghedoY9GfcMGC3bYFkDW0dqUxQpVLdX6NCCMCIqgYdNoLRTKJbonArQzW83DBJ2ypc4UhERERE5Q098pwmtXQuw98a8ZCIagB2WNJfaQr6cLW3RAv6s0sxxiCrMnCyQWBeW2A9bUoUW27aiv+8mcafn18L1+kFAOyy7brYcJ228H4dLbmS/hqCPcAP4GZMTdT0mLHihGv5Bj7k/M9bSn/wnd++McAf1KZhWZU/a9v2g1ddoQVAawNUcZ1GWIDn5WX48+rJVW4dXySX4a/m/IzYAhmvfMbecRUcV6El4f81GI/aSFYZxGtt0JN0a7/YIyZOD7+UetQG9tmWP/9BawOrygoZL5fhNwY1VwcQERERNStm+JtYkOFvs120RAcy/EJYox7wx2M2opGhgyVpJDzjIZv1f66mf3+w+bM7YFvAyjUSPUkXnW0x7DVvw4L7BD38yYznB5qTQFDSH4sOBFNCiIFJ/Ur4PfxiUIa/it3rgYjtZ+Qrlc0rrauJ9wsyt4O/B2X8LROWsGEJq2DrQvnns+B6qux3mnUVPKURjfh/DcajNrKeqqqsP+1IpLMeWuK1nZOWEHCGuAhRSW/SQV+NlSj1klVsa6iXZfnnjqqyvUFpvxrAFiJ3sUBPmj+rRERERKOJAX8TC3v4Iyrs4c84GtYYZPir4WkPUsuwpL/WDD8AtLdF8OEtB7L5B+y6SVFWti0RhRB+b3uqjtVsjSgs6R/UXz4wuE/DGH+GQv7Ec5XbdV5N64RtWZBSh69VjitVVZliO6+vW5nBAb/0Kw9gQcAKZzIMJVjNV+6CRCYrCwYJWpaA0aaqgD+Zcf0AtMpy/oBti/BiTK2MMVjdm8WK7vSYBLue8kvoR4Nt+XMYgjWMlfiDH/1KEn9DBqp+LBEREVEzY8DfxIIMf0urjYSf5M5l+AV0FRnU0eZpFwYmHNpXzUq+UuZ9uBPrzrCx47ZTsfXGU4p+b1kC7S31TepvRFobeNIPCPMz/MBAwK8VoOFn3o0u7OGvdjK7ZQkYoOL+es+rLlNs5WVulSysMlBGYc1ahQd/txpruhW0kQWVCaVEbAtKlZ6KH/TvB9n9QCxqoS/lDfncSmv0Jl3EY7WfjxHbgitVzev/AL+MPe1I9KfcMcnyK1VdpUc9hBiYF1GNsPzfErCFgFYTZ/ghERER0XhiwN+ktDbI5Ab0tbZG0ZLL8DuuhoDll3aP4uC+ajjagS1spNJ+wF9Phh8A4jEL++zRgt3mTi17n3pX8zWi/Ix7+Qw/chl+FASfSumq5uvlP39fauj99Z4yQ67kC9iWyAWBOreCrTDgf+sdDx+sdvH6mw6UMRVXR/qZ4NKr+YL+/digao941EbakUNWLaSyEmlHoiVW+wgU2xJQykDW0YOedaTfx24LdPdm67poUC1t/O9htEr6gwGG1Qb8+WsaLUtAmeovFhARERE1Mwb8TSqYxi9gkIhZA2v5ggx/sKd9nGijkVUZREQEyVzAX08Pf8ASNhztlP19R0uwmm9s+qNHUzA537b9EvJ8QQ+/Vn4QLYQoKA9XuYsA1YpH7SH312ttqu4Ft3IBv1QGUheWk7vahZf7apJpA2NUVRekjEHJ4Hpw/37AX8+nkHHKB/zJjFf16sLBBlbz1R7wpxwJAX/gZV/aRXIUL07p3CrF0RraF6i6h18NrIsMBvcx4CciIiKqjAF/k8qk/Ul4iZg/SCwRCwJ+BQsWYPS4Zvhlrn/fKAuuV38PfyAiInBUFq4uHdCHGf4aJ/WPBqnlsGYoBMF3NFocrQUZfqVFLuAvDJw8qWoq4660v17lAsdqgmPbEpC5zK2UuuA4PO3CzX01qbSCrnI1n2WJktn6TFaWPCYh/JLxVLb0eSKVRk+/g0Qd5fyAP/dAa9Rcjq6NQX/KXyHobxAQ6O7LVmxrqFfYMz+aEb+ovg+/KLg3BmqCbDsgIiIiGk8M+JtUNukH/K1x/x/0uQR3mPmvNqAaLa7xoIxCNusfXzQiCnbK1ypmxeFqFyszH8BVxZn+9mBSfwOU9K91u9Hn9tb9+Gw4sK84WAsy/krmSvohCkrDpRx6xV4pEVugL1U6QFZaQysNu4rAUeQmJ3rSn8geHIc2GlLL8MJPMq2gtD+1v5pjyw6qPgj69we3OwRiUQv9aa9kMJrKSmRdVXfA76t9NV/W8VsQgoGTbS0R9KZcpLKjM2tDaQNTYd3icFkCJdstSikaUiiY4SciIiKqBgP+ZmQUMsk0AKAl7t8UzwX8SgNS+kGWqdAjPZo85QeQyWH27weEEGiPdCCjMliRXQFnUNDf0doYJf3KKKRlasj2g0qCDH+pgDZcy6cBbWRueNrA7706VrHFYzZSWQlPFgfgfoa/hsDRCHhSFZSTByv5gpJ+pYCsY6CqOD8jtgVn0Gq+oH8/XmYtZDxqw/FU0YUCAOhPOxCor5w/IDCwfrBaWVfCUxqRXAtCNGJBa4PuvmzdxzEUY3Lf2yhm+C1LVB3wD774IoSouA6SiIiIiBjwNyUhs8jkMoOtsYEMetDO7LoAxjnDn1EZ2MIe6N8fZsAPDAT9WZXByuwHcNRAsNTRIFP6HeX4/erarbtcO5OrfQ8y/Moo/HnVH/BWatlASX8wpV8MZE9Nrky61iAvCJDTJfrelaq+pB8AIPxp9CavnFwZCWU0HG/gfEylNUwV52e4mi8vsAz69yOR0n/92bYFpRD+GQl4UqMv5SERH965aNWxmi+Z8YoGH7a1RNCTdJEehSx/cKFmNCv6rbw1jJVIaQpmOliWgOcx4CciIiKqhAF/E7KcFNJurpQ/HtwqkMgr6zfwy/rHgzIKrnYQsaIDK/mGMbAvXxD0OyqLFdkVyOaC/kbp4XdUFp7xII2qu48/OyjDvzL7AV5L/gcvrn1uIOCXCPPjBiY3lT0Izmt7PZGLCkut51O6ttGPlgW4uYx8EPBLo2Bg4LgDz5RK6ao+H9uywqn/gXTWq3gBIhoRRavvUllvBMr5gUiZuQLlSKWRzHhFawBjURtSKaztH/ksf3ARSIxixG8HaxiruLDlKVXwndmi9ioJIiIiombEgL/ZKBfwUkh7fvDQGgT8QgxM6nc1BERVGdTR4GkXUktERGTYK/lKEUKgLdIBV2WxMvsBsiobBvzprBy3YWDGGKRkEnErDm0UlKkvc5t1/ccFGf6gfcFV2byhfYDJtW0Ykyvhzu1Fr6eMOx610Jdyi3qtldao5dlsS0BqA438Hn4FqXTBRPd0BlC6csAXTP4PMvzaGCQzXtn+/YH3YyPtKLh5gXlfyoUQ1QXBxhiszKwoOSTStv1At9o+/qyr4HgD/fv5WhMRrO13wu98pChtMNrX+8Jp+1UMMHQHDXG0arhYQERERNTMGPA3GcvLQEgXadf/6gcy/FbepP4gOBqvgN+DhoYlrBEt6c83EPS7WJH9ACIyUDI9Xll+V7twtYu4lYAyCrLuDH8Q8Fvh8wKAZySCtnWlBtYuGiBcc1bvoLZ4zEbWVUWBpx/UVh+UWZaAVv7FhyC+k1qG/fuBdNpAVnlBRAiEwXWl/v1ALGrB8xQyuWoJ11PoT3toqbKcXxoJxzjwSgX8luWvHqwy4M840q94KPG9JGIRZD2Ftcn6Zz6Uos3oL+W0hYDSpuKkfmOKVzvaloDW1a/1IyIiImpWDPibiTEQ2X4YO4pMLj4IevghBHJt7LmA30CP09C+rMpC5E7N0cjwB/ygvx2ucrHKWRlO6h+vPn5HZyGNRMSKQEAMI8Pvf2bx3FaDIOiURsK2/QBJSfhRvjADGX5joOoc1BaxLSilkXaK+95ruYBgi2BrgAgz6a524cnCv6pSNQT8lhBwPP++fv++Kdu/HxBCwGCgTSGVlch6smSWvRRlJKRyS7YdRGwBqXXVq/n60y6iQxxvWyKC7j6noBphuEZ9JR+C6gtdcdp+qVYTy6ruYgERERFRs2PA30SEdCBkFojEEbQnF5T0hxl+BcCqqmR6pBljkFUZRK0IACCZGZ0Mf8Dv6W9HVmXRmvADnPFazZeWadhi4H16qr7jGDylP8jwGwC25Qe+Uvll835Jvx9QKe0H//VOoI9ErKL1fFLqomFzQ7FtUdD3b4zxWzwGfRSptIYysqrBhhHbQiY3UDCVdaueURC2KRiD3qQD2xJV97RLo+AZWfLPkBACRpuqNkK4uWGIQ11oSMRsZB2JnhHM8ktpUFMvRh0sS4Tn3VCU9is+7KIMf+WLBURERETNjgF/E7G8FPzp+xayuVgjf2hfS3SgpN8SoqoMf6/bA0+PXIDsaRee9hARUbiehpfbvd4+QkP7ShFCIGbFEYv7r9WfGfvVfFJLZFQGUcufnGgLu2T/dzWyuUxvECTmP4+w/e9KKT+YDsr5/Qn9w+vbjseK+94H915X4mdudfgXk4Y/nM/z/OcI5hKk0hpKq6rOUdv21795UiOVkRX798P3E7XhuAq9SRf9GQ8t8UjV70NpCWUkPFP6z0ZrIoI1fZV77zOuguepIY9ZCIFE3Mbq3mzVa+4qqWc9Y70qleXrXMA/uIdfV9n/T0RERNTMGPA3CSNdCC8DE4khiGcFEE7mLxja5/hD+ypl+JVR6JN9yKrMiB2nazwoowpW8sWiAtEqg7R6xa044olcwD8OGX5HZyG1h6jw2wpsYcMz9a3mCzP8uXaNgj5yy39vMujhFxowfmZ/8MC9WsUiFlxPIZMr6w+HANYQOFrCH7IXvG2lJbTRkLm3MH2K//l40sBxVVVzJiK23zOfzHhV9e+Hj4tY8JRGX8qF62nEKrQB5PO0B52rTiilJR5B1pXo7h86K5/OejCoPCiwNR5B2pFFFRb1klpjjOL9imX5SudaTQYdkEHl6gAiIiKiZseAv1loCWgFWJEw4E/EMJA1EwKJiP8P76yrIYRVsYfc0x5c5Yxoht9VDgADIcSo9u8PJoRAe26IQV9qZAegVSMrswjeNwBYwobSsuo+9Xxubj/54JJ+ABC2/3wDmdFcab8B1DAnngshIACkMrnX0LqoFLua5zBGQOT+ZpK5bQVu0ILSYqMl7v+yP62hqxhsGPTMJzNeVf37+WxbIONIRCLVl/MD/mduCQsyd8GilPZEBN292fACyWDaGPSnK28UAPzPLR61sLbfqesi0WCyxsqMeglUvtDkt5qY4s/fmHHbqEFEREQ0UTDgb0LpYGBfPP9Wq7CkH35J/1DBg6ddeMYL176NhIxKw85luVOjNKG/nM5Wv9yhJzXye82Hoo1GWqUQsWLhbbawoYyua3BfsOM9KH93S2X4Zd6UfgMY+JPQxTD/RojHLPSmHajcULpy0+WHIoDwIoEyEgaAm2vtiMcstLf550MyJaGqyPD7PfOAJ1XV/fuBRNRGX8pFS6z6c9AYA2k8xKxYbr1i6YsSiXgEzhAT9h1XIesO3b9f8HwxG2lHhkMb66VN7ZUZ9RIW4Mqhj1drA1Hir6H87QtEREREVBoD/iaUdvx/PRcG/EAilsvw50r6tRl6Ur+nPWit4Bp3RFb4edqDq93igX2j2L+fL7iw0JdxIfXI7jUfSrCOL5YX8FvCgoau6zgctzDDn19WbkRuYr8KVvL5F3WMyWV1hxnkxWN+33vGUQOl2DVmiqd0xNCR25igjIKAQDb3nuIxCx1tufMjraveJCGA3C772v7KS8QjmNIRQ6zKoBvwtyEooxAV0dxFm/IBbdsQWf6sq+BJNeSE/nzRiA1PqrIVA9XSuaGJY5Hht4SA51Uo6Ve65GgJ2xJwR2hmAREREdFkxYC/CQUr+Vrihf+gD9by+QGjCIPBss+TGzJXb+n5YJ72A+1ILsOfHMOSfsAvFweAdEah3+sfk9cEAEdlw7kFgw0VLJai8ta9lSrpN2Kgh19A5Cax+xd3PDX8vm3bsqDNwO74eqb+W3nT8D3tQUDADQN+EZ4PqbSpqqQfACzbP6ZaAvdArY9RRkFphYgVDYcOlhNm+fuKs/z+RoHaPjt/U8LwKm6CqfhjEO9XFbRLrUsei2WJERtSSERERDRZMeBvQqVL+oF4LuA3BvDc3G72MhlUZRQ87SJmxaGMghyBPv4gMA2CvbHs4QcGKgk8D1iTWTtmWf6UTMEWxRPgLVg1T+p38sq5g5L+ggw/BjL8BiY3qX/kMvyA3zPfl3IL1uvVy++Ft8OqhfyS/nTaVF1ZEo/aMNof4DfapJEwMLBy/RGV2jLaWiJY01+Y5Vdaoy/lVV3OH0jEbCQzMmzrqIfWBmaMSvr9rQxmyD5+r8x5aVsCnlQjMrOAJr7VPZkRG1pJREQ0mTDgb0LB0L6WWOHttgXEcnGn4/q95aZMQOVpD1JLRK2o3/89Ahn+rMzAystyJ8Me/urXoQ1HNCIQifiBRU8qMyZZfk97cHQWMSta9Lt6VvMF/duRSLC6TBeshgsy/EoZf2AaNIQRUMrfaT4SZdxBL3k66wHDCMa00ZBGwh4U8HfkAv5UqvqWh5Z4BNOnJOo+llooLcP5CAKVqzQSsQjcQVn+TG69YTxW21/RsYgFVyqks/X/edTGQNfRilEPO1ivN8Skfil1ycGPliWgDCf1ky+Z8SquuSQiImpGDPibULkefgBI5Fa5Oa6GQfkMqtRemMUUEHDV8DIryihktYNoLtNtjEEq6OFvrfI01RLCS9V9DEIItCX815JuBH2yd9Sz/I7KFrQx5LOEDam9muYjBAH/QHa/sPJCYWBoHyBy2VEDqQ10HeX3pUQjFjyp4MrSpdjVUkZBGwVLWHDyhvZ15C4ApTIjc6FppEkt/XYJ+N9hNVssBmf5s67MbTio7a9oIQQsIdCfrv/Po9K5gH8sMvxCQKuBNpRSPFX64oNtCShl8jZOUDNT2gyrsoWIiGiyYsDfhAZK+v1/RL+WfRf/zb7jr+bLZf0d1y/1Lj0uq7Av3BYROHp4k+39/n0PkVym2/VMLigF2qsc2md5aVjZ3mEdR9DHL50IHJlFcpSz/BmVAVB6z7o/qV/VFNQG/+CNlujfBwAtgpV5yK3iUwD8DL8eoQy/EH4PvqdKZ2arFfTCF2T4owMl/a5rkHEbr4TX1W44j8GCVdBSUU6Q5e/u8/8cJdMu7BrWBxY+l43+jAevwvT7cswYZsz9LL1/gaEUbfztEaUuPgQVLENVB1DzkEqHK0mJiIhoAAP+JpRf0u9oD08nX8Cfki/CNSos8w8m9Zcr6c+qbBjURKwIPO3VPGAun6tdaOiw7zko54/HrOr3pisPkB4wjOMIB/dlFaJ2DL2jmOX31/GlC6bz5wsCflXD62dzGeJYJMjwFw5wUxh4LqOF/50Jv6dfG13z2rpyEjEb2awcVpZYGem3HEAMBPxxC7GohXiuEqUv5TVUD7cxBp7JC/iFDWlUVVUa7S1RrOlz0JdykcrWvlEgEI/ZcN36y/rHskTesgRgUDZLr1T5wY+WENDar06pJJX1sLZ/5NaHUmMJ2lA404GIiKgYA/4mozSQDQL+ONCnUvCLugEHComo/4+lrOMHKKWG9imj4GoHkVz5fZiJHsbgvqzKwso7HesZ2CdkFoAGhrEisC2c1K+RsBKjmuV3VBauchAtE/ALIWqej5DxcgF/LMjwDy7pzxsMpxAGokqPXIYf8IfkpR057Ay/gIAnTTgKIAiC23Nl/X0pWfVqvrEQrOSzwoDfgjaqqoth8ZgNqRTW9GZzKwTrG1YZVIskM/X9eQy2K4wVjfIXGbQ2ZWdLCCEAI6oq6e9NuVi5Ns1qgEkqOGeVxpDtIURERM2IAX+TCYJ9IYBEDOhTyfB3jpEFAX+5Hv5gYJ9tDQT8/nC4+jKK2mhkVSYs5wfyB/ZVGfQYBSgPwmiIYfyjvrXF/yORyigIIRC1Y+iTvcOqXignq7IF09xLERA1vfbgHn53UIbfMxLBoHqlBIxRCEIpg9KtBfWwLIHpXXG0xOsfuCi19C9E5bL7to1wqGJ7OLivumB6rOS3IQC5i2G6+mNsS0TRn/EAM7zvIh6z0ZtyIVXtfxbGamBfyBioMseptIY2Q7SGiKEH/gVSGS83SLLxZj7Q8BnjzyBRStd1zhMREU1mDPibTCYX/7XE/JLYPjUw5M41Ei1R/x9LQUl/qYBfag8aumBvvIGpO8PvaQ+e9sKBfQDCgX3V9u8LJSG0AvTwMvxhSX/u9RNWAlmVDXvtR4oxBmmVCqsk8gmZhZD+F2WJ2lbzBVOqY7lM+OD+cc8oRGw/eFLKr+AI1vKJGhNj2misya4u2/IQjdjDClr9XniroH8/0JG7ENSfqq5cfqwEbQjBRRxLWDAwVQf88Zh/8awlMbxVlImYDcdVSDu1B7hSmmENW6yVEIAsE7QHK/vKHY9A5RYETyo4nobr6rqrHqixae1n+aUx3NpAREQ0CAP+JpMetJKvNy/g9zP8/v/OOqpsdtnVLgb/+7uenfEBT7tQRoUVAwCQTPuBStUZfu0BOneswynpzwVawQUHIQQsCGRkuu7nLMUzHpwy5fzCSUJ4/utZwoajqu89HhzwB99JS24LgAuJSO4j1UqExfDGH9pfk7RMoU/2IjvMgY3leNrz3787MKE/0N6Wm9Sf1g0W8JcO7HUNVQhT2odXGQH4FRbG+JntWnlKQ4zBhP6AZQl4svR3qHPBW7kLR8IC3AqT2R1Pw5UKbS0R9KZclvVPQtoYwBhoZZjhJyIiGoQBf5PJhBP6/f8uyPBDIREbKOkXwioZwPgD+woDEtuKwFHZugYmOcqBNSjarLWHXygZBqxiJIb2ZXT4XqJWHGmZGtHScUdlIY1E1Cpexye0F1608OcjyKpf28mV9McHBfytwv/C/Qy/f19/Ur8GhK75ezPGoM/rQ0Zm4NZwQaJayigoIwsn9OcF/B1BSX9a1xRMjzZPeeFKvgHjsz4wHrPQl3LDoLlaUmmMYbwP2xJwywT8lbK1Qz024LgK0AatiQgyjkSKZf2TTjC0zx9AyoCfiIgoHwP+JhOW9Mf9Hex9BRl+Dy0xnbufhlUiw+8P7HOLStEjwoY0subAxhiDjErDHhT4pmrs4RcyCxO0GAwjg9eW6+GXysDzgoA/Cle7yKqRyWQbY5DykgVDCgsE7QnIH4hY3eea9Qa2GwADJf2tKBHwS3/1ohF+YFXLRP20SiMlk4hZMWTUyFY/AP55po2GDat0wN8aBPymoYb25a/kCwhY8IYx0LJeiZiNjCNrLusvtwZvtFiWgBwq4Dflj2WoxwYyrgfLEmHVA8v6Jx+tTW72BCqeD0RERM2GAX+TSbv+P55b40BGO5AYCOgdI9ESyWX4XQ0hRFH2VGrPz7xagzL8IgKpaw/4pZHwBl1AMMYgmakhw280IB3AivgNwcNYoxeJWOHAu1TWPwa/H9uMWFl/UvajX/ajxW4p/qVR/vvJfe4WLH/XeJWfqxMO7SuT4YeCbeUm8yv4tfy5XebVDmozxqDf7QUgELfjcLU74gGt0gPT7ksF/MHQvqxj4MrGyNgGK/msQQG/JexxCfht24LSBuls9a891FT80WILAaVNyVJ7v72gvscCfuY3lZGI5v48JGIWevodZoEnGb8QRMC2LTgev1siIqJ8DPibTFjSHyvs3wf8oX2J3NA+zzPQWkAPmtTvac/vty8Kaqy6Bve52oU0qiDgd1ztB6MYWJM3JC39Mn7LhhHCL4kfhrZBg/uAXFm/Sg27X9zTHrrdbkREpOiiCYBcdYIKS/prXc0XBvyxYEp/0MMfD+8Tifj3URrQ8Kf1KV1613kpWZ1FSqXQYrcgIqKQWhYNBxyuoLJECBEG/MF7AvzgP5jY39Mg+9VVbv3e4D8bdq76ZTxmDcSiFnqSrl/uXAVtcnvvxzDgtyzhX2gosU5NyqGrDSwrF/CXWcXmev7AvlgkCPgj/jBDlvVPKkHbit/i0TgtPkRERI2AAX+TCYf2xYE+XRjwO8ZD3DZhB7Lr+sG+wcA/pksN7AsIoOZMpqscGJiCoVzBSr6WuAXbrhx4iGBgn2X7U7zU8P4xH/TxpzIDAVrMisFRzrDK+o0x6HHXwlFZJEpl94HcWkEzMIAQ/mq+akv6g+zW4Cn9CTEwHNCK+M+lJMLefaWqz/AnvT5ooxGxIuH3Vu/AxnKUUeF5FwT8ibwMvxAiLOvvSTVGwC+NLFjJF7CEBW3GZ31gIhZB1pHIOtW9tgpKo8fw/xnCgL9Ev74nh54nYA/xWMD/86CURiS3izK4eJBMs6x/Mgn+HrNzAyBrnVtBREQ0mTHgbzIDQ/sGVvIFwaBjPAgBxOO5IM4FYAqnoJca2BewRKSmifIAkFGZonkANffv+5Er/EsOVq4kfjir+fw/FvkZfktYMMYgO4z1fCmVQo+7Fq12W/l1dWFJvwnfgyXsqgPqIOAfPLQviiii8D9n2/aDHaX8dYp+hl9XFeQ5ykHS60fCToS3WcJGVtb2uazKrkSv21P29572IHJ/PQ1k+AsPMCjr702O7MWGeg1eyRewhb9qbzyGC0YjFjylkXaqC3C1NjDaDGudYq1sS0CVWafmVZXhL7973fVU0QXFeMxGT4pl/aNJa4M1vdmqK0tG4vUAE14A4ndLREQ0gAF/kxkY2jcwoX9GdAoAwM1l5xO50mnHNf6W9lzgGQzsKxfwR4QN17hVly5LLeFoB5FBA/uSNQb8UC7CaNWyAAz0wNejVEk/AETtGFIyWVdpttQSa501sISNSKlS/oDREEYDMLn/+AGjq52qJum7QXCcm0MQZPijIopo7nsTEf97lnll0FJXV8ad9PrhGq9gnWBERJDVTtUZbE97SMp+rMquRL/XV/p9aBe2CAJ+/zgTgwL+jlb//fSlZV3bIUaaMqrEhP4gw6/HJcMP+EF/b9Kt6jPSxkCZse3hF8Ifpjc44FdaQxsDe4hjCQL5chn+VMYLs/uBRMxG1lWc1j+Ksq7E2n4H3hj102tjICD8i0faFPzdRkRE1OwY8DcRrYGslxvaFwP6VBIAMCMyFYCf4QcMWoKA3zEwZmAKejCwr1zAaosIVA2D+zztQmqvOMMfDOyrpn/fGAjpwFi5+worVxY/jAx/IijpLwzQgrJ+R9deQt7jrkVGZdBqtw55P6GD/v2BDL+dW49YKWCUUoeBz+ChfRFEwoDfsv3vR6rclH5oaKVhV+jhd7WLPtmLhFXYjhC1opDaq7qP31FZeNqDbUWwKrsSSZks+L0xBtJ4YWl8pQx/MjU+5fKDVWq7GK9jTMRspLISToV99YAfOBtT/TyHEWMM1KCsrNYGuprtEUaU7OFXWiPtSEQjheeNZfmXZZLpxqgMmYw8ZeBKBTmMv4drIbW/ki+Y6TBWr0tERDQRMOBvIkGwLwQQi2r059aprROZAgBwjQdAIJFL3jpOLhjMZQbLDewLDKyQq6582NUuDExRCXRNGX6jAO0BwUUDYflXNoZV0h9k+AufwxY2NHTN5etpmUKv14MWu6VyqbRR/uBBY3JtCsGFFFXxQko2L6CLRv21i0HAH7OiiOS+N5EX8ANAxBZIxO2SgdU//rMKf/vXCgBAykvC0x5iedl9IJfBhq667eDVd7rxp79mYak4AIFV2RVIy4F5EsHFDWtQwF+U4c8L+BthNZ+jnLJ/NoDxC/hjURue1FUNqgtKo8ecQFHftVRVBvwCJaf0O66GJ3VRwA8AibiN3pTL0u9RIqWG66kxy7T7M0iCIacoO8SRiIioGTHgbyIZx/+Hc0sMSJksNAxsWJgW6QAAeLlJ4kFJf9bVAEQYTA01sA+ofaJ8VmdLBkhBD381K/mE8iCUAuzgvgL52fF6tOV6+Adn+AG/ND4lk1WXkCujsNbthjGmoAy+HKGUf9HCGD/ox8AGhEqr+YIJ/dGo/11II8PBd1HEwgw/gh5+6ZfBWjYwpT1edDHCcRUe+OMy3PPYq0g5Dvq8XsSs4vsB/vrAagYaKqPw91fW4u13Jd56L4vWSCu00ViZXYlMbj6Cyp2HwYWgcBBhrPB123Ml/am0HpcJ+PnKreQLCIhxWc0XsO3q9s+P57CzwcF3te0FlkDJyeyOpyDzBvbli0dtOCzrHzWeVHClLqraGC1KDcxpEGAPPxERUT4G/E0k6/pfd2te/36H3YZY3gR3x0gkov4/+rOO/4+moId/qIF9AQEBV1XO9GqjkVVZRES06He1ZPiFlgA0PKPx1+QrWO6u9m8fiR7+rCoK7GNWDI6uvqy/1+1BykuhNdJW3Ytrz29PGDR40F95WF2Gf/CEfgF/sF4Y8Fv+/cKS/jIXL5JZD8b4O66Xr10LRzuIW/GS941YUWRVpmLg7SgnvJAS/HdbpB1Se1iVXQFHZSGNgjbar6jQBp5Xpoc/l+HPZAy8YW5mGK6BlXyl/0qtZfDiaIhFLKSyXsUhauMV8Pvr1ArPnWrbCyxLlOwVd1xZ9mKBZQkIAfSnG2PDw2STdRWUGrvAW+mBC0NCCHgM+ImIiEIM+JtI1h3I8AcBf5fdBkuIMBh0oNGSi8GDgD8YODbUwL6ALSJwdOVMb9i/P2gegDFmoIe/mpJ+5QIQeCWzDK9kl+FvqX8hVx9c+bFltOR6+LUeKCcP2FYE0kg4VWSzsyqDXnctEnaiqG2hJGNy7Qk2/LLqgdcWsCpmiLOOH/QGA/vCcn4RgbBEXsA/UNIvgLLl8Pkl4O/39CAqomVbEqIiAk97FY/RUVlkHT+ozK+gaIu0w1UOVmZXwlHZsDLBzQvkggsZgZaEBdvyP6m+Yazmc7WLtU73sAb/BVUJ5f58+HMYxm+4YDRiwZOm4hA1NU7HZ+XWqRUcS5Vl2aUuFgBAMiMRiZS/WBCP2ehNeUWvOxmN5eR6Y4w/L0KYquZGjASpNIK/Ym1LwHXHf6YHERFRo2DA30QyYYb//7P338G6ZPddN/pZa3X3E3Y8edKZGc0o27LkjCywQVcWTiDjMq/Ee/F1wlaBMJSrzC2qyP8QTEGBzUuBwSThQpj3cvHr10kI28CVhC1bliyP8owmnDn5nB2e0GmF+8fq7if1k3Y4Z8bT3yrZZ/Z+Qnc/vfde3/X9/r7fUSXftvLKc6tQ2lNy2lGh6Kc+PM6ry4sD+0oEQlWz/ouQ2aw2DyBObcXVN1YI7RM6RQvBZ+PnADgwfU9fVxwrqINSgnartPXPLpJDEdLXvYXkTVvN3fQuxhkiVa+Kz6Ko4xMSEBOj1ErIpQpxkvlzDoMpwk+AELKq5XNqpPCDwM7ZHBkn/HcPU1pjVXzTUDLAOLMwuM85x37SQxcvO96CIIRgI9giMTEDM6jS7suE/jAUM0qvEKLaFNofHF09z0xK3/SPlQOgq9yB+Qr/KsGLp4VASbQxtdb3cWht72lCf4myP338Z2pVt0EZ1Db++Fxb0twQBfN/h7Qjb+sfJvdv1OJe4e5hwjNXDzkYrNbWcBxo41PyQyVrN2JOGtY57Njoh5Linm00NGjQoEGDBi8HNIT/FYS4VPhbcDCH8GcYOhOWfomxZmlgX4mS+C0L7ktMXFthVs7vd9tyhXRuAybnmfwWsfMKr8Vy6BLEMS3e86r5ACLZIjXpXAKurS7S53t0g83V39QawBYz/BT1fB5KBOQuX2iZjwvCX6bZjyr5FBJZKfyutPQXM/xzFf50dA0Hg9lwxWlIBKmZr7RnNuUwHjkjpjMSPOnfJM6HVXND6bBohfXvvbnhH3fQPzrhN86gTbZ0ZGLxa+ja+7nEqJrv/owelM6MZWq2NiuE5J0CpBB+Zn+MtNcF8dWh7F4ff3ya+82NusC+EkIIpBAcHGOz6Kjox8vHK04ScabZ6yd86eoBV28PyE6REGvjZ/ejUJHns2NRJw1bjH6U+1Sjar7f/86NBg0aNGjQYBU0hP8VhNLS3x2z9JeEv0xeT52mHYwUfikEBk/4FxGaEmVSf76A2MR6yGF+SFt1Zr43WGd+32iwOU9lz098fd8O4RjkDaC7ILgvKG39NaMLxhluJzc51AdsBlurWfkL+DpBB1IyHTzo59n1QoW4VLVaU5V83tIPoSwJ/5ilv6j8q8O48jkYLj9+JUNiM5y7wE9tyiAefS7TLQjgifF2tEMn8PWFFeGP6q9jOce/fwzCn9kM7fSxyPiyzQKJrEZj7heEEBNNDnXQxnIfBP5alV5rxyp7D7Ig/OOJ8FluVkr4b0eSXpyTL3E+nCS0sdzcG67UmnBSSDLDRjuk2w64fnfIl64dst9PT4WM58airSMKJcZy6kn9zjmsY6TwK4E2rknqb9CgQYMGDQo0hP8VhNLSH7UMA+sT0XemLf1O0w4Lwp8ZcGCsKQL7VpipLzBP4XfOsZ/t45wllMcL7MNqruZ32Dd9AqG4HF0CSsJvjpXU323PV/jBK+79fLI/3jjD7fQWh/qQw7sRH/34ITdurzFb7spjlkXZwGjBKoVEu8XVfHE1wz9J+EMCEFQKvxHjCj9zXQPjCea9/nJCFIiA3Gbkrv6z7+d9snREwOpCEaexjPCXlv7DYxH+FHNMMp7Z+Qn9MFLY7yfhD5QgXkIytbH3ReEfqfRjtnxjVjoWJQV6yh0wTPOVntuKFEmm72laf15U1t2rBHttfD1hIAVRqDi73SLNDV+6dsiVW/0Tt79r7UeTAikxxq7s1DgqrPUqv6gs/RJrLfqU37dBgwYNGjR4uaAh/K8glAq/aHmyH4mAVpHQHxXkO3O6svQbA8b6sLHMpksD+0pI5s+bD3Sfvu7RmZNa3xusU8mn+b3sCgCvaV3mUnAGgD07xM/DH6eaz79/3Qw/FGn9Jq7O0zrL3fQ2B+k+G8Emv/E7PZ764oCf+2+3+flfvcXz15Llapob70AXfgOgQOkUMAuU5LRK6Z+e4VcIAa3iM7YF4TfGIoTEzVX4xwj/wCydqQ5EgJ4zx5/bnNQm5NnoV45zECdLUv0rwl9P3rYKS//h4GiEzTqLthrrzJEt/c654udj+T17Pwl/qGRVVVeHknDfjxl+KQVmirRnerXNByEEbuy5PvhTEy2w848/VwnB4T209RvryHJ7zzrqtfHvpYp6QiEE2xsRm52AG3sxz1z1av9Jvh9CoJT/TE/7PK3zTSPlrSKlwLrTdxY0aNCgQYMGLxc0hP8VhJLw66C0829Wqsi4wh8oR1ldnacOi0WvENhXQsnAJ61PEVzfSb+HEmouOdo/9Orwme1Z9X/mselNrpp9BPDGzqvYDbb8103fz78fg1x1F8zwA4QyJC/S+q2z3Elvs5ftsRFsIJxkv+fJoxBw7VbGL/+PO/x/fuUmX3xuOJc4C2ugHJsQYmbDQmvLJ75wd64VuAztm67lCwmQjDZ1jBhP6Z8/wz9IRiTIuZH7Yh7Ke6muljE1iSf9U1MQ865v9bxlCn9h6e8PzdJKwDp4K7+pMhKOgmWVfCUEYmmLwWkiCCRa27lz/KvW4J0GKtJuyipQP4O96uaDgOq5WW5Jc7twfn8c3XbAfj+7Zxb7XFsybcnNvUqwd2hrCdTktQwDxbntFtoYnr/eY693MqQ/yQxK+s/Ujn2mp4UytG+yQeT037dBgwYNGjR4uaAh/K8QGONI88LqrSbn92GS8EtclVKfZn5BVRfYd/Vmyu98ujdDYAOhKiI1jsPskNgMa2f3S+wd+kX3me0lmwvO8tTgiwA8Fj3Iluqyo3xA3qEZYI1GHMPSWc7wLyKkSigGeZ+76R32srt01QZKBhz0Ndb6tPw/9R2XeNNrNwkCwd0Dza/+rz3+4y/e4DNPD2YV/zGF2SFmjv+zX9D86m/e4md/7Yu1boFqhj/yn1Nl6Rc+pb8l/dcN06F99bb+wVR6+WF/OSFSQhGbeObrsYkRSOJ08rgHyfEI/1bhBBkOLfoIBMpYP7vvHRtHIzxlJd8iSz/4pP77SviVRFs3Nzm9DM27D3wfKEh78bvE2GIue9W/UE5Uzy1dDKsS/ihUaGPYPyHCuwxecZ+/8XLS8O0H1FZqCiHY6kZIKbhyq38iTockMyM3gROnr/DbQuGfuHEFesWWhwYNGjRo0OD3OxrC/wpBLy4VZ8cQT/h3xgj/yNKfg3O0o1EtmsPOBPY55/jV/3WXj33qkM8/O5nopkSAtho9pphmNuMg3yOSrblBdlluKxV5dwnhj/M+z2TXAK/uA2zKDgEKi+PQxidj6V9ASEMZEZshd7M7dFS3ckDsHejqHDa7AW/9yh3+9+94gK/58i3aLUlvYPifv7XPF6aum7AaV14bIWYcCi+86F/3+Rt9PvnFOxPfc86NFP7is5tQ+KUgUv4z1oyH9gmcs1Xv/ThKwl9u/hyuMscvQ1KbTtjjjTMM9YBIRsRT13MwXGbp98c1j/B3O35cwTo4jNcnbNppHGW7xOJQxPmv4d0F4xtiTz8/5Dd/92BiY0YJiXb5qaeWL4JzjnzOzLa1Dtz9sfR7iEnCbx1qxd0HIUcNBGmRDF9HcOeh2w6420uqn6HTRJprrPO2/nuB3FjEkltusxvinOOFW3368dE3pcrNjKD43IRYvW3hqLCOmd9eUkKW359GjAYNGjRo0OClhobwv0JQLuI6Ywn9WxMKf5nSn4OztFsF4U8d2uYz6uXtvbxKWf/U5/oTJEYKicNNqJmH2QGZzWjJ+Z30+4W632lL2q3FaunnDj+NxXExOMPF0M/uCyHYLWrw9u0AcQxLf0n448TOteCHIsQ4S0d1JgII92rGEtotyVd92Tb/+3dc4g1P+us+vVGC1SNJc8rSv9/L2T8cnc9//a0rVYq+tprb6a3Kgj8d2hcQIIWoZvgrhd/gywBwMyRUW02S+sc9eKEN1MzJO4sa3IaxzzkQAdrmE3P8qUnIbEYow2pmv9MuHBTHVPilFFXA41HmkLXVCECVKfpHmOOfTvd3zvE/f2ufT3ymz+290bWRRSPC/ZzjV0pM1C2Ow1iHmVFK7x2E8OQU/OaDXSNPQElRJe0P4pxgRXW/RDsKSHN7Yrb2RUgzS6AkmTb3pJovzTRyhQzU7Y2IXBuev9GbaOhYB9N5AVJy4qGA0/C/nyfvEyUF6T3aUGnQoEGDBg1e6mgI/ysEh0O/yO+2RoR/QuEXYwo/I4U/yyC3uupFL/Hc1dEw9t6h5sUbkwtlARXhT0zMYX5AW3UWqm6j+f3F6n5ucz7f/wIAX1ao+yV2lZ/j37NDH998RLRb0nNu5+sJ6yCEYDPcIiwqDUuUCv+ZndnzCALJW97gNyWu3cpGIwPOgdGMfiRl0TTgCcGzV/z1vnQh4MKZNnGq+dBvXSExMTeSa+xld9EFjxuF9vnPJBQBUvqQRoAcTamJWetPcnqOf5DHlALZgxc94e9NW/qdAZ0g9Ijcl5s946GNiUmq75UE//wZf78NluQCLCP8MLL1H4Xwl+n6UiiM0+ijKPxTmwS9gSHL/fU9GLtmUqj7Xs0XKkmc6lqXgQ8/q7d+3wtIKcgLkrbu5oMsCJ6xlmG6WmDfNLptxd1eeqoE1TpHpg1R4Cvr7kV1XJIZghVnI3Y2IrLc8MLNftX6sQ6m8wKkFKfuZHDOzTgYlBTk+fIWkAYNGjRo0OCVgIbwv0LQLwh/q52TOE/GtuWYwl+ov6nNATFh6d8Od2ipSWX++YLwl2n6n/r8ZEWdFAGZ8T3P++kexhmiKWI8jXJ+f3dJYN8z/S+Suowt0eZy9MDE93ZVqfAP4Ri96lKKSoUeLAmWm0adwj+OrY2AC2dDnIMvXSnn3S3gqErQK57jF8vl4x59WPHNX+fP+RNfvMMnnn+OWA/ZDLbIClFuFNrnvxARoqQgGg9dlP6crAWLm6gABDgYeveBFHDpnP/sZyz9zoLNEGbyOo/P8TvnGOgBgfSW4WGh8J8/4++F1RX++cSvDO47WLOaz6fre8IvhMAxq9avgulKvnFVf7zOUJYugmPcl8dFGEjyOcF9ts4bfQ+hhKgaBEwxl73q5oOS/rlpZtB69fn9cbQjRZJqDk4wsX4aWluMcUShwhb299OEsUUln1pxNEIIdjYjhonmhZt90my93325tmBHm0ZKnr6TwVrHNONX0m+oNEn9DRo0aNCgQUP4XzEoZ/iDrlf3O7JFOEYAR6F9Oc46OgU3T1Izk84/iE1Fat7+Vm+nf+FaWin04IP7MpcVNXx9uqq79BhXCexzzvGZg98D4I3tyzOW3yqp3w5niOi62GiX1XyrL3qtdRz05iv8JZ581AcXPvNCQfit8c0CYkzhx/dZ9weaW3f9tX34oYBz52Q1FvAbH4/pyC0EIyWtVVn6PXFRIkAIQSCDKotBBv71jPbX1I4xPessd4d+A6fdktUGzGF/UhkW1iGMRejJ6P1AhFV7QWpTMpsSyYhcu0rRLBX+4ZzawxIrKfxFNd/BmoFjxhm009XsvUCsrb4758htNpHQf2d/bJRlTOH3mwruvir8gZLkxtYG99URp3sJKSHXXpW1dla1XfxcX8U2TDS59Zb5dSGEoN1S3D5ITi1QTxvfDx+FEj1VQ3gayPWkxX4VCCHY3Yroxxkv3OyTreF48JV8Y7kVSpy6k8E6N5Mxo6TA3IMNlQYNGjRo0ODlgIbwv0JQWvplxyu34+o+jEL7HA6NoV2I03V29hcKdf/i2ZAHzrd47GFv+f69zw+qx5TBfXv5nu+6XqHSb++gUMZ35iv8V4bP09OHRCLg1a1HZr5fWvoPbIypqYdbB6NqvtUXjYdFQn8QiMr9UIcnLnvCf+1WxiA2PpHf2ckZ/kJ5f/ZFf70fuBDRaQv6eY83vAHaLcFBz/C7n+ujjatE+pGlv1D4RYQUfiEf4I8pCPwi3phyhn90jpnN6BcBeO2WZHurGAXQriLgHsYfs04m8gYCGZDbnMxmpCapGh7K+f0wEOxs+tdctplSzuEuIvzldT7srzd3bJzBjrVPCMTEKMKqrzG+aQBwZ2/0Gr2Z3APuK+EvifFchf8+QkqBcYWd39i1zAZKCKyxDJJ8hvytg24rIE4NB4PTUfm1cf73g5JwDyrr5lXyLYMQgt3NFgeDlKu3B8ufUCDN9cQmrJLi1J0M2rjpEX6UEvdkQ6VBgwYNGjR4OaAh/K8Q9IeeDLlodn4fIEAhi9shJa8s/XWEv5zff/QhT/Tf9Fpvo//8s8Pq8UoojDPEekhnBXVfa0tv4InQIoX/0wefAuB14UOEajYAcEO2CUWAw3Goe8dK6h8R/tUJ2rhLYZEdebMbcOmct1F86YUYT54d1Y+kEAjnAFvZ+V/1cIeWbJPbnHPdHd76ll0APv7pQ+4Ujgsh/GaDD4fzxxKKwL+eEFUWgwr998omu/GU/tQkxEVgX7utCANZhRhO2PqdQ2B9OOLYHLsSCosltxkDPUAV71km9Hfasqo9TFI7V/3T2lXHt1jhL45tsB7h12WdXnHNlQwmwgZXQV0l3+0JhX/y3pFC3tdqPvB3WFqTYK5POU19Gbwq60matpZ1ogT8ZoEjzS1hcHTCL4SgFUruHCSnQlL9axb3+z2orJu22K8DKQWbnZBBold2PKSZRalJwn/axNtYO1MlKYoAltPeUGnQoEGDBg1eDmgI/ysEpaVfB4XCP0X4hRBVcF/qDJ3IL5SmCb/WrgroKwn/gxcizu2GaOP47DOD6vVA0FpQwzeO/cIG34pkVQM3jTvpLW6mN5BI3hg+ADW950IIdso5fnM8wr/RWX+Gv3IpLMkhAHiisPU//XxcKPxj3ywWrElsuH7bk9DHH2kTqRbdYAMhBK9+rMPDl1oYA//jY/uAV/eFEBPEVQmf0i+BsLhmMhxV8/nixdGbD/SALPPn3ik+i+3NkvCPWdStwSHBasQUiRVIBnpAauIqu2FYJfQrWpGkdBnPm+Mv1X0hWEjiSkt/b7heSFe5IVLNGyPJrSfwq2K6ki9OzIQjZBCbiQ2NlwLhV0oQJzWE39j7WMnnCaZzfuwj13attgD/XJ/yf5T5/XF02wH9JD+RTvppZNpUDgTfSnC6bo9pi/26CAM/g79KkKG1jjQ3E+MUJfE+bYW/fkPj9DdUGjRo0KBBg5cDGsL/CkGvsPRnyhPy7YIUj6MK7kPTDv1CaZrwX72Voo1jo6M4t+sfL4SoVP6nvtCvrMFb4RYt1V7p+MaT7eepUVeGLwDwaPtBunL+654pzu3A9Ge67NdBpfAvCZYbx90FCf3TeOIRT/hv3MnoD/TUwtwvlJ+9muKcn3kviW31CCF421fvIOVow2RUyedJZYhCygDpX5GAQuEPRoQfqCz93oYfozP/GZSbL6Wtf5zw42wxeiBm8hJCGZDblNyNGh5Khb/blgghqus7b0MlTUd2/kUKZek+MMYxrCGy8zCdru9T9L1Ff1UYpyfcEeX8/vamonBt0x9rIlBCoV1+X9PDw0ASZ2bGwm/M/avkA5BCYKxP2tfaotY9FufIc0MUrNBBt+g4pCBUktsHyYl3yKeZRVYJ9px6gn2S6WN9puUmzCpz/LmxGOtqPjdxqoTfK/x15+hOfUOlQYMGDRo0eDmgIfyvEHjC7xhSr/DDWHAfhk5QEP7MTpCT518c2fnHSdiTj3botCWD2I6C6NbA3gqVfLfTmwA8oHZxC2qmyuC+PTPwyvkRsXGEGf79JQn9E6/fVTxwwavfT7+YMTmI6v/9pateZXxVsTkwjd2tkLe8Yav671FCf1nJpzwplwJEYe8HZDHDr7VGICrSmhlP0rNC3CwJfzlzP2FRtwaEwAk5J7gvQzAi6+MKPyzPSKjm98PFhEWpUaPC3V6y8LETr2/Sidn7cgzF2HU3DUbHV4ZZnt8N2S4mWcbn+KWQxbjF/Q3u08bXw41Dm9V7708D5X1irCM/yrEIrzKfxKbFZidkEOf0hifrxkhzQyBHCfanFQ5YYp1KvnmQQjBMl18HbSzG1AUmnq7Cb4yjzkSm7kElYIMGDRo0aPByQEP4XwHQxjJMDYQpBoMAtmrm6ktLf+Y07YIQOkfVKe6c47lrnlA99tCkwq6U4Mte7TcRPvX5/toK5n41+15PlJ1z3E5vAXBBbICYvzFQBvft28GJzPCvaum31lVK+yoKP8CTRXjf01f1zCZGmsOLN/3rveqR+Y6Gt7xhi53Ccj8b2OeT+aUAhKgUflko/Ea7IrTPf16xiRHIytnRafnX3SoI/zh5FVbjhACpQKcT17qc42+P5SyMK/wwvqEyR+GfTuh3BpkeIvLZDaVyjn9/xUo15xy5yyYIf0U41yDjmZ18jVLhP7er2G774x/fJPEuAnufCb9XXKeT+r2N/j4dVAWB1j7kbV3iHgWKMDyZE5BSIJXgzkFyYpVyugivKxVwKcWpVtaVlXxqzcC+aYShZBDrpceptcW42Q2X0yTetsgHqNscUlKuNIrQoEGDBg0a/H7HfV/eNTh9lCqV7Hg7/6bsTtSIlags/U6jxCj8qiR/dw80g6FBKcFDF2cD897w5AZKwq27OTfurDf/WoXdzSHKh/lBRa7OyrYnmXOwW1j6D22MXTOEbRwbKwTLTRxjmdCvFif0j+NVj3QQAm7uw2Ey+Zk8d0dinXc97C5wDARK8I1fe4YoFDzygN8YKCv5IgIkohL5S4VfqFLht4DA4knoUA+IZDQi/O1S4Z+d4ccZXyMoA3B6IrhPCMF2uENYzO9DncK/OCNhRPgFMjlA7b+IOryGyIczj92sCP9qCr92GuPMRNgeFC0VK1r6F1Xynd+WbHcKwj+u8COx91nh93PVkI+RMGudrze7jwo/AA4ybXGOtQn/Zjdkqxstf+Cqr9cOOBxmVeDpceEJ/6gi77Qr67R2aOOOVFE4jlBJ0txO3C91yI2tbUg4TeJtrfcm1d22Sglybe97+0SDBg0aNGhwv9EQ/lcAtrohl860OH/hEKi38wO0hF8sp06Ds5Wdu0xsf75I53/4UougJkSt01a8+jHvHPjU5/orH58xriKS8xT+Ut0/G55BOreQ8HerpH44zHorH8c0WpGsNj1KB8IirJrQP3GsHcWDpa3/+uQ5PXPTk/PH59j5x/HgxRb/r+98kK98o3c3lPVyoVAI6SvnxDjhL2f4tUUA1lpSk5LZjFCGFeGvZvirGj1PWnAOjAYkSIUwZia4bxrjKf0wUvjnz/D7Y2yTIHs3AIOVClFjud8qNlj2VwxaM05jrJlQ58ET8lVD9Xwl32jTQGvLQeHwOL8j2G778+r1JzdCHGDvI+EHv0+TZKPjMtZhj0CyTxpCQpabuartvYRSEgHcPYxPJHNhuiLvtCvrcmOPVMk3jTCQaGOXkvZM1zcrnCbxds7h5ir8AmtPd5ygQYMGDRo0eDmgIfyvAARK8v9+z2t58IHFhD+SI0s/jMheSf6eu+qt1NN2/nGU4X3PvpjMdpDPwUFP45y3o5dkcALOcCe+CsBF0amC4uZBCFGp/Pv67krHMO91HjjvyfjVm8ut4mVC/+6Kdv4STzzi3RJP3xide64dz9/xRHKRnX8c42StTOmPCED47wkgLCz9lAq/8anhFktqEhwOKcYt/f6Y2q3R5of/XIt6sfKzcG4muG8acaHwd0uFvz1nht9qZLxH3vP3ayt0uPYWBB3PCO0s8dje9Pfufm81S792BoudaZCQQlWbJcuQuxxt8yqU8O6Bv487bclGy7HT8cc5Xc3n33/1nIDTQKgkg7GAQ2udn3+/3yRb+mR1644Q2ncK6LQD+rGeGX84CrSZrMg77cq641TyjUMIH9y3jPCnqa79zErifdIBiADWgnX156ik8BWPTVJ/gwYNGjR4haMh/K8QCCHoOa/Qz1f4R5Z+sLSjkaU/Tgw373hC++iD8wno2d2Qhy+1cA6e+sJgpWPbGwu6qxZuziLyGDm8g9q/wu34OgDngzO4aGveS1Wo5vizg5WOYR4euuTJ+IurEP4lOQTz8KqHQwSOW4eCg4FfnL5wG7QVbHVE1YawDiqFnwAhRjWJQaloy9EMvxASYzUD3ScUIc45kqxU+P3jhRCVyn/Y136ljaVMy3JSIvR8ouycq9oOKoW/W6/wy3gP2b9JmRPWagVUGzxC1BL+MlRwr7eiwm91vf1YKLTNV6rmy21WbZDAKLDv3G4I1rDd8tf4cKAnFGKBnGkIuNcIAx8YV4bGWedzHKb5mnOO1Ky2iXISkEJgnVeD7/d0AUAUSDJtSbPjOzK0thONDqddWXfcSr5xBIFkEM93vpQbAnVugpHSfvLEe959C36Ts2x9uNdIc8PzN3qNu6BBgwYNGrwk0BD+VxD61hP+nXkKfxXalwOOdmtE+F8owvrO7YYVUZuHUuX/zDODlcKapuf3RT5E9a6hDl9EDu+ineGu9ZsHF6LzS18PRkn9+/pwpcfPQ5lVcP1WutSSWir8Z3fWI+jdEB4+66/T09f8ezxz3f//Jx4QR1LoKoVfqKqSTwiIZKHwy0lLv8aQ2YxIRqSZo+SnpcsDYKuY4+/1DcJZhHWj4VkZgE5gjvU5yx3lunt6hn86tE+YDBdEJNo/rjVxOaUPB5wi5GVt4EE/X2mBn9lsLuFfdcY+MQmS8fl9f83PnwkRRrPV8dcizx1pNrouSqw+NnBaCAJBbgx5kdRvrKsNXEtswp301pE2KAb5gFgPyWyGcWYlW7wsVFk4vjJ9EiiPIU6Pv0GT5XVBhOLUZvjTXJ+YYyMKJMNUz/3Z8uMKVPkE45BSoO3pjC5YNz97wo/PiPui8Ofa0o/ztWpCGzRo0KBBg9NCQ/hfITDOVoR/rsI/FtonnKNTKvyZ5blifv+xh5fbyy8/2GJnKyDP3UoVfZUVfjsEZ5HxPiIb4sIOrrXFHbzVvCNabMjV7O1nSku/6R8rqf/cbkgUCrLcVYFsdRhP6N9dUC1YC2d59UX/3Keve4vvczf9IvVVl462WC0V/oAQ4Yf4EUJU9nNXEn7jFX7nLNpplAxIisyGMBQTCd8TCn9JuktLvFTg8ongvnGU8/tRKCoVcKMg/rl2o40hZ6psgFT7cy8Jf2ozPpNeIbEpMHldNjoSpfx+w35/ucqf2WwmsA98bZ52BrPEcm+dJTExoRztRtyZUPgzwjCkG/njnKzmU+QuO5G58KNCSYm1rrKqW+uKCY1J4qRtTmISUrueyp/ZjKuDq1wZvsCVwfO8MHiOK8PnuR5f4256h8P8oHZTxavBsGhk514jDAT9Ber2qohzXaOAn15XfJyaYwf2lQgDida2CtKcRq6LSr4aqd07GU6HeFtbKPzzxj+cw9wHld1aR5JpesOjh8Y2aNCgQYMGJ4WG8L9CcJAdevsxkg05GQKn8gSp0zFLfw7O0Y5GCuyV637BP2Pnd2ZG1RVC8OpH/XuUQX+LMBF2p1NEHuOiLhSE7LbeB+B8uLuy6lda+nt2iDmGmiql4MELha3/xnzSM57QX1bErQrhDE9c1EgBtw/hqecdmYZu5Hhg93iEPxRBNVc7rvC7CYVfeLJfXO/p+f0S2xsF4R+YYhPFUREzGSwM7ptO6Adf9xUWNYKVym8NYEAq0mKt3Coe8+n4WX4j/iyfTp+HKaVRCMHWhj/eu4eL7znrLNrmM4F94Am/wy1VtHObk4/N71vruHPgn3NuJwSrcSoYJfX3xwm/xNznaj4AnBgRfuem91AAf56JTUjNau0HJVKTkuqUjWCDlmwhhcI4w0APuJPe5kZ8naTmNSuF/yU0dh2FijgzZMdImrfOkeUGNdV7eFqVdSdVyVciUBJt5wf3aWN90OIc4u04pRn+JbeKlILsPhB+Y73j4WCQVWMzDRo0aNCgwf3CkQl/v9/np37qp/jBH/xBvvM7v5Pf/d3fBWB/f59//a//Nc8999yJHWSD4+N24sPrtlV3gjRLnfH47/4XXvW7P0dUkJfM5WAd7aLh6vmrCbl2dNqSC2fH/NXOofq3EHp24f5oEex35Ua60LJqjKuSzc/sBL5yzZmK7APcyvcBuBDsrny+HdkiKpL6D7K9lZ9Xh9LWf23BHH+5abG7RkJ/BWtph/BwMa3wG58r1P2LFnFEd0I+McNfHo8gwF9XK8Zm+BFFOr//wKuE/miK8I9V8wlnwI2fpwAcwtQT/lLh706FMm5MBfcJaxHGgpSjGf7ilts3vnGhb+Pa61La+m8dLHaVlJV8dYTfn4lYSsbzwqauZDlKoDHGEQSC7U38JphQbHdKhX/0euXYwP1O6leBIC4sx/PGVTKbgXMM9WAtR0KiY6SQSCFRMiCSEW3VYSPYYCvc9u9Zc/5SerJa0xp63xAFkiw3JMeY4zfGYiwzBFxJSaZP/j4YVfKdnFNCIEiz+o0wb9efX+sopTgV4uvv2/nnqKQgO4H8hXVhrUMJSDLDMLm/4zsNGjRo0KDBkZZV169f5zu/8zv5iZ/4Ca5fv87nPvc5BgM/Y727u8sHPvAB3v/+95/ogTY4Hm4nnvRuq+7E17fvPEOYx4TZgG6xIMudxmIqwp/lfqH/6IPtyQWdM2Cy2pq082dCum2J1o5rtxYr48552+xGyyHSHk61Jh5zq1D41yH8Pqnfq/wnRvhvZ3OJUTmWcGbNhH7Ad9gjePWD/tqW6/8nLlE7r74KMjOy9JeuXiGgVSrSBeHPjSOQAQpFWDg84pLwtycJcWnp7/U1ztqadbYAU29hrVP4wdcSwlhwnzP4BoAR4W8XhL9vhv74bFZ7Tc5s+QfeOlgcFmnsYsIPYumMfWpS5NgFqOz8OyES6zdEpKpX+JHYotLvfiJUgjjNsWVSfE1gX2ZTWqpNZrNqE2kZrLMM9ICWihY+rm5TRQpBbhZYtO8D/O88N1FjuC5y7Wot71Vl3QmPd+TGh9VNOwqOgyAQ9OP6a5BpU5uJUUKekpPBObcwl1BJsbRd4DRgilwBKbzK36BBgwYNGtxPHGk18OM//uMMBgP+y3/5L7z//e+fUX7e8Y538NGPfvREDrDByaBU+LfkJOHfufmF6t/tMTKbOV2l9JeYruMT1niyX0O+hBBcLuz/i2z948q40jHCZBCMiMLQJgysV2zPr0H4YRTcd5Dtr/W8aZzdDWhFfvPi5t36xdtRE/oBhNE4KXnVJVGlTbdCePAseMPq+mQgcwXhF8EEeSpJfaXwG4tCshluVZs5lcI/Zenf7CqEAGNnk/UBnAoQeX1wXzyV0F9iowjuK1/P309l6rd/TKnw92xB+F2G3xSYxE5B+O8cLLafa6dxC9RIJeTCaj7nHLEZosRoc+f2/mh+X1jrRw6ErFX4fZgYKxPo00KgJLlx1fz19H2mneZLLww52Jdop1ee409NQu4ywgWEX8zZVBFCIJyrnQW/nwgDSW94dKV2nuXdjzBw4nPm2lic5UQ3TqJAkeamVqnPcotc4CY4LeJtrVvYRDCq5ru3tnqdW4SAdqToDfMqHLNBgwYNGjS4HzgS4f/whz/M93zP9/DqV7+6dtF8+fJlrl27duyDa3ByuJOWCv8osK81uENncLv679DmhAWJSTF0wtFCSkp4+NKk8o7VPmBtzrxzuUHw3NVkrh14VMkXINI+TirGpcbbhZ1/V20RyvXU890yuK9wCBwVQggeuujJy9Wbcwj/cRR+k4OQtELB5Qv+S49fLAPz3Nzk+0WoUvoJJ5K6Q+VJscEArnATTC6Gy9C+acIvpWCzaGjo9TRu+mdfBN6tUBN4Vyr83TkK/2iGX4MQZHpEP1shpDYnK143Lmzm09gpLP37vWxhrZ5xi9VIJQK0y+fes9ppcpsR1AX2nQnHNsAEW0VcxrjCX77HQK9WW3laCANJbvyst7azCfJ3ekP++/8a8ku/vke/D7FZHsAJkNoU6+wCB4XPMZjnoji306bbPsLP0SkiCo43xz/P8q6kwBp74oF2uT65Sr4SYeDHD+qIe5KZhZs0Sgq0sUubTtbFMmeEUj4s8LSaEOYhN/7nqRUpklzPdUY0aNCgQYMG9wJHIvxJknD27Nm53y/t/Q1eOhif4S+xe/PzE4+ROpsI7muHowXcQxdbhOHk7SKsn+WeN7f98KUWUnp1s5zTn8ZeEXR2ZhNEHkMw6SI4ip2/RGnp38+PV80HI1v/1ZrgPmvHcgjWVfgry76/tn/gdZLXPCT4mtcIwKud61r6vRW7mOFX4QTJKJsYEIA0nvDbacJfH9oHY0n9QzOq5CuhFMJohJn9rOcr/JOWfmEy3Nj8vpI+CLFfqPsAKRpbs8m0UxzbYGjpZ8OZ75fwCf3zf/VJITFWo+ck9Wc2QzszajxwowYHr/CPnrdd/Lj1h2aC7EQyJLXJfa3nE0LgrA+T09rNVLjt97xTwhj4zY8nDPVw4UYK+Gsx0IOlm3NSqLmbKlIerYryNBGFxRz/sQh/fUe9LkcqThAnWclXQkrhf7dMXQNtLLlZHBB4Wkq7bxlZ9L4Sa+2pBAYugjYWWTSjKCGatP4GDRo0aHBfcSTC/+STT/Kxj31s7vc/9KEP8cY3vvHIB9XgZJGZnIPMk96S8Auj2b79DAC2WJwrkxEVhD9zmlY0WiRN2/n9Ews7/xyFPwxlRZTn2fr3C4X/bFfPhPXBGOEPd5ed5gx2A6/w90z/SD3i43iocDfcuDMbQng40FUg17oJ/dXMejFre3ZL8I63SLa7whNq5zzpXwO5G5HIwAWICUu/HKnbSqMNMwF480L7YDy4b6ySr4L0x1tDYuOlCr/1qr3RINTM/H7PTBL4RM+qzZ22JAy8Xf7mQW/m+yVSk9ZW8pVQQi1M0c9tNjESMIwtSeotvGd3wuIz9dhoS5R0OOdJf4lAhOQ2X7vu7qQhBCS58YrkFHHqpyOScvO25qnP95ceb+5yMpNUAZDz8JJpKlgRQniye9TgviQz1DXkieJn/KSJcJqdXEL/OKQQDNPJn29tLEZbggV5Ab5u0Z24k8FYy6KpBSkF1nEqlYCLoM3IMdNpBRwO8/uSJdCgQYMGDRrAEQn/937v9/KLv/iL/NRP/RT9fh/wys5zzz3HX/pLf4lPfOITfN/3fd9JHmeDY0DbHAe0RUhb+IX41t1nUSYja20y2H4AKBT+QgFOMUgs53ZDwkDw2MOzhF/o1FvwrZkgOeMoa/yeuzZL+Me7689Gw5mwPuvcqJKvUPi1sSSZWWmqvSNaVUjdYTEacFTsbgV02hJj4MadSbVmv3QpHCGhX9giib9OcRaeQK+r8Jd2folAqWDih1xKWSX1C6XRlpnXrwh/e5HC76j99SHqg/uGS2b4h0lxDzkDYqTwR/MIv51V8IUQla3/+n6/Vj02zkxUENahquabo/AP9eT8fqnu724FBIFAmBxXfJ5CysrW3xuMXk8IgUTUblwswn66x0F2sNZzFiEMJHGiMcYyzdf6iSf3ZdL7J55Kubk/fyMFIDMpudOV+2EeFBLnLLYmi+GlCj/HfzSlNskMqo7xAyBOlPBb60hzQzD3/Y6OMJQMYj1hpdfGoe3iDYayblGfsNK+TOEHvza5lzP8xhZ5DcVxRaEkzTSDuEnrb9CgQYMG9wdHWhG8613v4i/8hb/AP/7H/5g/+kf/KAB/5s/8Gb7lW76FX/zFX+RHf/RHecc73nGiB9rg6OiGXb7/tf8bf7DzhmpxVNr5Dy6+Fl2Ea4k8rRT+1GmENXzbN53ju7/lIpvdqQW8s2BynAwBM5eUlvV8129lpNnkYw4HZXc9bEeTYX0AB6bvrdOoyp6f5r6ya5jopaRfCMGu9JkF+8ck/H6Ov7D1T9Xz3T0cEf614UYBbzXvip9kX2+xWtr5fc2inHDeC0GV04AqLP1Tn12V0h/NkuKtjaKGLqb2mJ0KEHry+jjnKoV/OqV/3NLvihERZI3CP0Xw4zlEudyQ2OulpHZ2k0lbjV2Y0F8cMw5T4woxzpDZdHQNgdt7/nqfO1McrNWVY2MyqX9yUyyQIUMzWGqTL2Gd5VAfsJ/dPbZjpUSoJGlusI4Jhd85x7BQ+B9/pM1DF1sYA7/y0esL6/liEyNYbsmXQmGcuWcKv3Nu5es8D61QkaRm7QA2Yy26JqF/7OhOlJDm2p54JV+JKJCkuSUfS9zPtcUt+czLoMqTnqX3Cv/i8xQI9AmPTCyCtc7/PBWftxCCQAkOB/fXzdOgQYMGDV65OHIy0p/9s3+Wd73rXXzwgx/kueeew1rLo48+yjvf+U4uX758ksfY4ATw6u3H6akXAIjifbq9GzgEBxdeze6VTwJ+frolPalNnbfrTxO0CtYABlTg57atxdVw1u3NgN2tgP2e5sr1hCcfHWUIlMr47gagJsP6AG5pHzR4PtypFnXOQTcKSIVlkORstMKZUfJx7KpNbhhPko6Lhy62ePr5eIbw71eBfesn9I8HvM1/zHovWRF+CsfB2AWSUnj11RUKfyIQbtIxUc3w1yr8haV/KOoPWSgfQmg1FKMiaWarjL3pXIDy/rIW0kQTGguhJC2qIFtTlXwlYlM/o18q/Ic9TWIS2qoz8X3tNNZZ5JK9Tk8SZkm1r6fL2SjGRWCk8J/fLQL7jKbaSxWSnXYOqAmFHyCUEbEektl05jjrkJiY1PhAvF5+yJnW/ByVVREEkmGskUpOKLTa6bGNH8nXfPk2/+cv3+D67Yz/9elrvPXLHpp5LessQzMkWmLnh5IAurUI/829mE988TZ/8E0P0G2v97PW04ekJuVC++JazxtHGEiGSUacGcJg9dEdrb2VvS4TA4qu+BOsrBtV8o3+vA+131jaDLeO9dqBkmijSXNDq9gQzI1dKR9Q4E68jcAYV79XOgYpIcvvXWiesQ5rHWrswDqtgF6sSTJNO3ppBVI2aNCgQYPf/zjWX56HHnqose6/DLFTqPv9M4+gow10sUD3oX2eyJSEfx6ENQhjca026KxIZm/VPvbRh9rsf67P89cmCX9ZZXe2a2bC+gBuFar8+eDM2FcdYajY6kbc6aX0k5yNdjBX5SmdAQfZ3txzWRWlwn/zTobWliCQE+dxFIVfLCM8zs/Yr8P5Rwq/QiAmZlyFEJWlH1la+sfsuXqUGF4/w+/PMcl9kn40ze1UgMiG3tZeEI4yob8ViRnbr1KCdkuSpJZ4qNmUDhAkFeH3jy8t/VuyS88OSUx9JkQZ3NcfwED32Ql3J5RHs6SSrzouoWqr+cr5/fHQvyqwr0rot9VmB4iqmm9a4VdCYbGkZjXCX6b6t1Sbg/yAzXCLUB5hk2kMgZJo6wjE5DkZpyfaGrY3A77+zTt8+OMH/NrHr/G6y2c5uz35M5uahMykE5shy2DXIPwf/tQ1PvXMXba7EX/gyy6t/DyAzGTEZuh7248YZufnwR1pZqC7/PEl6gj4OJSUJzrfrY3FuckKwMQkxGbIRrB5rEDEMstg/HizXCNX2P8QQpCd5OhCEXa4TOFXSpCe4IbKMniF3yLHPu8o9PV8w6Qh/A0aNGjQ4N7j5If8GrykIaxh59YXAW/nBzAF4Vd6MrTPh/LNoZpO46VnybLquNLW/8K1dCKpvKzkO7sxG9YHVPP74wn9QggCIQgCybmtFpudkGGiMXPefzcsk/r35x7fqtjeVGx0FdbC9dueDFrrquDBIyn8dtlC/+gz/F7hZ5LwM7L0C6WxTmDGUvVLdV9KCMPZhXQUStqR//phUrfQluDsRHBfmdA/HdhXorL1D0fHUVr6W6Ff2Pett/BfCP3mT2yThdV8vb4n0tOkXVu9sJKvOguhyF02Y19PTDLhDsgyWxF5n9BvZjIZttu2OKZZlXHVej5tNQM9IJItWrJFZlP6+eJ5+lXhnCsI4uT7ZVmx6VJs/Lzx1RtcvKDQxvF/ffjZmWuT2nRmM2QR5rko5uFwmBf/f/05+tSmaKsnAi2PgqPM8dcR8HH46ji7tGJu5ffTduZHI7NZka9w/DnyIJAT8+hJujiwr4SSguyIoYd1sNbhmC0LqXvfPDdzR1H8uMfJWf5LhX/6uMJAst9PF47ENGjQoEGDBqeBI201v/71r19JJfjMZz5zlJdvcIrY2rtCoFPysEt/9xEA8qKbXZl8FNrnyiJ0r7hOQxjDyGsuEHZ+kN4D5yOiUJCkllt3cy6d9xsMZXf97tYsEcydZt94QlMS/nKdJAuVOAgk57bbSCHoDXPaLTmz8NwNPOHva5/UHyypC1sEP8cf8YVnva3/kQfa9Abm6An9UPXOz39TjmzpD0VQvPSYpR8Iyh975cmWzQzKRx2MAvtacu7P+PaGJMkMh0PB+e05B23GCX/9/H6JbkdyZx+GQ43b8p/fOOEf2tgTSSTngm2eSV8kthk+22DyNXe2Rqn/SZ6T2oTWWBhkatKl8/vg1XftcsxY/Z51lsTEBGOq+p3iHt7oKtotBXk6k8mw3S0U/sEsuR2v51uk1icmJrMpW8E2Qghass1+vs9GuLmShX7huSpBridnoXObk5aEv7CiCyH4hq/Z5P/+4AHP3+jzsc/e4uve4C3yZR1fda0K0rMIUsi5wYh1GCb+WveH65FW6yza5minyW12rOsVhZI4NeTaEgarbWx4wj//+1IKcu3t7nKNUYF5SHKNmtpc0DYnczmZSY99v0SBZJhqjLUIBJk2KzUCKCnI9Mkp7c45nHXIJeGESkofLGgcYTB5nEmmuXF3SBQoHjy/cSLHVd73078/25GiH2uSzNBpNSp/gwYNGjS4dzjSX533ve99M3/MjDG8+OKLfOhDH+JVr3oVf+SP/JETOcAGJ4vdm6W6/5qKlJgitE+ajFal8OdU6nKdYmezya8vUOqkFDzyQJtnXoh5/lrCpfNRoYwXlv6d2dvwdn6AAzZkm67yDgHjPCmRUzPpZ7dbCOGVv3bIRDp1R3ZoiZDU5Rzk+5xrnV9+kcbhDKp/G9M9AyrioYutivDDaNPiKAn9AMLqKtF9ziOA9VSxzPhjC1EgQemEMx/5z6QPvJr+I189ofADaK0r2hwvqOQrsb0huLkHB8P6zSAnFUKPLPfzEvpLjAf3ld7gcoa/HY7s/JuqQ1f6eyG2qd8Bmnr7dkvRigRp5hgOBYP2gO1wxx+Xc+QuW1jJV0IJRWoSjNPVBkluc3Kb05YjK/udvcLOv1uQ9ZpMhq2O/3eaOdLMVoo5+Hq+xCSkJllI+AdmgGC0CRPJiEN9QD/vcbZ1bun5LEIUKLIsn7h/U5uSlZ/B2PGe22zzlW9K+dgnEv7bb1/h1Q9vo5Tk6t1Dnr6xz8GhY/9wwP5hjpSCRx9q8/jDbR59sE0YTn7+UqjKjbIKBrG/X3trpp1rp6uAwLymMnIdRIFiP81IMk0YrEacM23nqvvgiXBqTEFIj3V4wGwlny3qD401xCY+9hx/GPik/vJ9jHULf1+UUNI7Gfx4w/HNhdaCdSNifZgfEIiQbjA5b6GkIM0MxlrCwp1jneOgn3HtzoDeMOP87vKRmlVh5mx0lbb+QZI3hL9BgwYNGtxTHOmvzo/8yI/M/d7Nmzd597vfzeOPP37UY2pwSojSAZuH1wA4uPCa6utlSr8y2URKP9i5Vn1hMl/JBzgpEWaxUvfoQwXhv5rwtW/apj/IvTIuHVvd2cVfFdg3Zuf3ag4zi2chBGe22kgp2O+nbMjJZPozost1d8B+trc24RcmBz1AZhG2E1Vz/Lfu5mS5reb3d4+S0A9F7/yCxa8QfmW7BkrbbigCBBAd3kQND2ld+yJc/mqCgvDKwBNxnZsqfWEU2DefFG93iwX2PCe6DLzC7/yoRjnD351D+Lsl4U8s5ZTReC1fmdC/Jbu0hT/S2KVzRx22NwNu3c2JB5JkN67U85L4BWL56IUUEotFu9G1yW2GcWZiFvv2eGAffmRmGmEk6USOOBP0BprWWPCBEH7AIDHJXCKW25yhHkw4FYQQtGWHg3yfzXDrWKpttx3QaY0+b+ccuc1mLP0ASgY88SrF9WsdXrgR83/8f39vrnptrOPp52Oefj5GKbj8QJtXPdLhsYfaRJFEItHO+HnnJWMA1jqGqf9ZW1fh19Y7NSIZzc1+WBVSCpx1JJlha8U5/jSdVdzHoaRAF1Vux0VdJZ9xBusMLdViaIYrXe9F8MF9ljQ3RPh/z8snGIdSgjzzGSEn0Rhoy1GU4tLGOqalLN2pgAWlBNq5KpskzQ037g65c5AQBpLNblhZ/o+Tb1Ad14LPMQwk+72Mc9vtE3mvBg0aNGjQYBWc+Az/xYsXec973sM//af/9KRfusExcf7O8wAMdh4ib4/IhZGlpT+jVRCH1OUIN6cSzplJoiokLFHOLj/gycqd/Zz+0LC/52eydzdEbehS3fy+ARSiVi0TAnY2IjpRSDw1J7qr/ALwIJ8f3Dc3PdoahM4RSQ+cYWsjYGtD4ZyvGiwV/rNHSugv6gwXLPxcMS6xDiqFXwRIBFJ7FVVmwyK0zy/OZVAo/MZW5Lkk/K1FCn8ZQhfPWdhKVYQ6+msTVwr/khn+1FV1dlUtXyToG3+vbKkunaJFIrGZn5WvQTnH3+87cpuTFM8vVc5pS3+ubW1dmEBgxiznmc1m5v8rhX+8km8Gku1CQJwO7gMIZLSwni8xxabF1EZFS7XIbc5hdlD7vHUwGWxo0E6PLP1T94ISij/4tTu0Qv9zIIXgzE7Io48EfM2btnnnHzzL//OPP8CfftcjfOUbt9jeVBgDz76Y8Gu/sce/+7lrfOgjd3FWYFes5ivJPkD/CAq/wxGIkNQkx67nCwNJf8U5/jLgblFFXnntT6KazwcETlbyeXeDpSXb5CYjtcevh5NCkGQarX32wCIHQ/UcKXxH/QkF99li9r66fk7XZkKUQYPaWPb7KV+6dsjN/ZjNbshmNySQEuPmK/PrQi/YoO20AoZJTpzemzrKBg0aNGjQAI6Z0j8PnU6HK1eunMZLNzgqrOH8XU/494uwvhKmsKYGJh8L7ctx1iGcmx0ht8ZXuVWqovThc/Ps/3iyd+lcxI07GS9cS8gGXmk7s1ljCXeOWyXhD0cJ/c6AWkBEhRBsd0Nu7vsQP1UsBHeln83cz/ZrnxenPpF8ZzNETllNS+eCMAkyG2JbWzx0scXnvjTk6s30eAq/tYCBRYqzEP7E10Cl8BMgpEDkaXUuyuSEpcJfWvrNaHSjXIjOqxAD2CkJf30zng9gdLYiv/FShd9/fZiIMUu//15rTOHflJ2K8GcYjNW1O5Yl4T/oGyQBQzNkK9yuiN+4utkfGv7PX77BAxdafMsfmrXGlwTCOcdwbEYdfCVYGTxZWvqFqRnRkJLtjuXGwWw1H0AoQ2I9JLUpnam0fucc/byPEqpWEWyrDr38gK1we8IBcBxol5PmGlPcdtN27VBGuHbOe7/zDaSZ5exWxNX0CjhHqxi/UUqw0W2ztQFf8+Vb3N3XfOlKzDMvxOz3NM+8EPP6J9ucOWeLpP7FG2bDZDzQ0ZDlhihcbd69DGoMZFBtnhznWkWhZJitNsevjUNbVpj3FydD+LWdUdyNM37DQwZYY8nM7H22LoJAMIg1oZIrZ4woKbGWSmk/Lqx1E2GI1mlyW3+dhRPsHabsD1ICJTi33ap+nqQUmNxv+p1AhILPw5izARIGkkPjK2W77cbW36BBgwYN7g1OXOH//Oc/z/vf//4jW/qffvppvv/7v5+3vOUtvO1tb+PHf/zHybLlaopzjp/6qZ/iD//hP8xXfMVX8O53v5tPfOITE4/5yEc+wo/+6I/y9re/nTe/+c1827d9G//yX/5L8vz4ycUveVz7LFGeoIMWvTOPVl92Dmxp6bc5rYIMWpwP1Krx6wqrPcEvu5ikxNv/FxPTy0Va/3NXk9H8fo2LeWgTYpsiEJwLdqqvW+f8AnMB2q2AbjuolGqAM0VN2PXkGjeTGxOPt9aS5YZ2K6hVeIRJcDLACYVIe+AsD1/yZOHFGyn7vaMr/MJZhHUTmySHZsBH+p9iWFqPhVg7pX+k8IcoIRB6pOipLKks7aJQ+E1J+JkM7ZuH7Y7/nHvxYvuqMP7ndllo30jhh/JXUjJO+MtKPtUlEkGVkh/r+h2HsprvsKeJiq57bTWmRv17/mpCljuev5pUWQMl5Fg1n3Y+4X08sG//UGMtROFYYKPNYXo+Wci51XwwqucrP7dx5NbXyUWynqBGMiJ3msP8+Cp/CW19sBj422+6rSGUoQ+/a1kunemihQ+DC+eMFQghOHcm5GvetM3/9m2XeOCCf1ySjObLl2GQTP6OXkflL4MalVDFHP/6Kf/jiAJFmpuVqvS0sVhjF1r6PdyJEP66RoDx6sNVWyGWobwGg1SvpO5XKKr0TgLWjfYarPNOg3khkEoJ7vYSNtoBW91oYvNMSYG1dqEyvw60WVwVGIWSvV56os0ADRo0aNCgwSIcaYv57W9/e63a1Ov16PV6tNvtI1n6Dw4O+N7v/V4ef/xxfvInf5IbN27wd//u3yVJEv76X//rC5/7L/7Fv+AnfuIn+LEf+zFe97rX8TM/8zP8wA/8AD/3cz/H5cuXAfjABz5AkiT8hb/wF3jwwQf55Cc/yU/+5E/y9NNP83f+zt9Z+3hfTpBP/wYAB+efYLw02TiHU6OFemgsEoHFkbqcTo2lX1hTbAQU94CQCGsR1uIW8PHHHmzzW5865MUbSaESi1qFv1T3z6itat4cwOGWpkELAVtFVZ+2vi7qQnCGB4OzXNN3+W/Xf5m3X3onlzoPAj4IbHsjIs0tM+tQ50Bn/nqpEJEPETqp5vjL/nWlYLN7BGnImZlE998efJbnsutEIuBrNt4AFAq/c8v7pwpUKf0uQEqByEcER+rYh/kBqGKGXzuEszhWI/wboScwxgr6CWzXzDI7qRB5Ap3loX3lDP8wE1XVVl6s21sh9JMytK+LEIKObDGwMYkZUperPVL4NaGM6OtelYQ/nfJXhi8CvHg95TWPj05GCUlufTVfZjO01bSDkTJ6Z99f13O7of996GxRs1hD+NsGCGoVfoCgIGI70e7E12MTo52mK+cniLdVh35+yHa4XSnsx4F2mvKWaUWzbQ1SSByO1CR0gy6pSdaq4yvrGePE4nCrEf548rr14pyz28vPtQxqLMc4BMxUNa4LKQU4SFLNZmfxRl9uLNq6pYRfKUl2Al3xdZV849c3XLEVYhnCQDJMM7JcLhxXmIbjZEYXoNxsLNV9i8Xh5mRC7GzOz7iQUmAdtWM9R8EihR+gHQXEqXeptKNG5W/QoEGDBqePI/21+bqv+7pawr+zs8Ply5f59m//dnZ3d9d+3Q984AMMBgP+yT/5J9XzjTH8rb/1t3jve9/LpUuXap+Xpin//J//c37gB36A7/u+7wPgq7/6q/mWb/kWfvqnf5q/+Tf/JgB/82/+Tc6ePVs97+u//uux1vKP/tE/4i/9pb808b3fT3B5Ctd8ReLexVdPfdNBoLBSIa1BaR/cl7iMzGk6dSrEdJWckJ64Llm4n90N2OgoBrHhbt8//8zm7OPKwL4L4e7UsbK0ggn8gmqzE9KLczbbEikU/4+NN/Oh9HNcT67y3278Cn/k0js5F1xCSsnZ7Ta39mPy6coop/3/ZFDY1B0y7dPd7LKzFXDQK+z8W+F6Klf1+rZYr44WrVfz2wAcmEKFE6KQsWYr6OahVDADEaCEQI4r/HlS2dLLlP5cU312SbaE8DuDwLLdUewN4GBQT/iRCkyONbraROjOUfg7LYkUYJ1gmDIR6CWVJnH+fLakf6OOjBjYmLiYzZ9GqfDHiSXXDgEM9ZDMZhPz+845rt0aXZsXridThF+hq3T3DMdkqNftmYR+A1h/v0xAsN3x1+CwX0/4QxmRmniCiDnn6OvexBhBHXxif8xhfsiFEyD8mc3Ic3+e89LXA+FHJXbdmYk6vlVQjnaUG0FHUvhXDO7Tzjs7gsJ9oERw7OA+8IpxP16e7q61Dz5dFtCmhFjJMbAMWT5LNnObV9kToQirisfjEH4p/Vy8Mesl7kspyE9gYwM84RfFnydXNMo4/P20fijhyTgsnHMYaxcq/KrIMjip0YYGDRo0aNBgGY5E+P/u3/27J30cAPyP//E/eOtb3zqxWfCt3/qt/I2/8Tf48Ic/zHd913fVPu/jH/84/X6fb/3Wb62+FkUR3/zN38x//a//tfpaHaF/wxve4GfGb936fUv4UQoe+jKu5wlZZ2dCf/ShR+CCFmRDhM5oyZDEZEVwn50Z0RQ6m5pTFkVf/OIFkxCCRx9q8ZmnvWIrRT1ZvJXvA5MJ/cULrEZ5BWx1C5VfWwIhCbC8/eLb+fVbv87V+Aq/duODfO32N/Hll15NJwoIlapszNXLGI2wxl8bimuU98Hs8vDFVkX4z9TUCq50mJVTwuNGfpe8sKQemn7xVQmUCv9qr5tVhD9EqEmFX+UxUTHigCws/Y7qOJLSft+ac6WLIMftrif8Priv5sBkgMgT0jivTnHeJoIQgm4L+om39ZeNVVEAA+dJfUuERAVBqYL75hD+KJK0W5IktRz2NFs7EUMzBOcmCP9+T1fjBuAV/vGkbikUtkjmj3WMmiK1pcOjDOyrXC41m1Klpb83MFg7G3IWiIDExRP1fKlNSUwyUQM4D52gSy8/ZCvcon2M+WznvHJfEv554Y2hjMhMwtAMyUwy185fe6xjCr8gqA1am8YgmXzMqpZ+7bRvWig+90AEZDb1bQsr1DPOQyuQDFKDNnYiEX/m/e1qzhylBHkZgHeM9PY40zOKe27zqorSt0IIUpOyEdTstq4BKQRZbmnP+11RAyUFab78814F1jlKxl8q/P7fyzMhZuCE/6yOCWMd1rGwhcBvlpxcSGCDBg0aNGiwDCc+w38cPPPMMzzxxBMTX9ve3ubChQs888wzC58HzDz3ySef5OrVqyTJfEXn4x//OFEU8cgjjxzjyF/aEDLA/qHv48rDXzbzPeu8ddmFhQKWj1fzTRJSwP+3yWbnlKmvJJvGow+OyMvOBjNWV+ssd7SfRx5P6LfOK7VyRftoFCo2OwFJbkBKhLMoBH/40jt4pPsoxhl+8+DXuWOuAj6Eys2ca3n+xbmqCKFzZDbgoUujmeoz20dUypyZIANX8pvVv3tFfZb//vx6xDqUhD8SvnV6coY/Jiz2+ZwsQ/uoEu9XUvidHVXzLQzuM8RD/96dlpzvgnCObsuf3zCZnN/vj83vl+iU1XxzCD+MbP37ha0/Nxl2iuRdveGP7YFzilA54tRWJB5AIrHOktmU1KaEY4TfWlc99vxuQXadrsIP+2bIzbFWiI2W/5FxDgbx7M9Juckwfk6xHs7UAM5DKEOMM/Ty3tLHLkKZ0K9LS/+c+yAQAdoZBrpP7vSRFP44McXYxHLyPpxS+HurKvw2nxg3CGSItnql91yEKFRkuZnZJJxGmum6X5UzUJWt/Ogqc10ln3MO7XLU2AZtIEMGuj/7+25NhKEkyczSMatxKCXItD32ewMTM/AOW8zx+0aCdSEl6BNwHljr/Ibe0k0bd2JtBQ0aNGjQoMEyrLRK+yf/5J+s/cJCCN73vvet9ZzDw0O2t7dnvr6zs8PBwfxQqsPDQ6IootWaDLba3t7GOcfBwQHt9qxK9uyzz/Lv/t2/4z3veQ8bG/NnZFdBsDSF+f6iXJRJpoiX8CFChP7aSZfRLtS6XGikADG+oDMGKSzIEMZeRxTBfWLJ4u/yQ22UBGPh7NZsxd5e3sdgiUTAmXCrIkLWelIeBmqFACyPna0WcabRFloClHCoIOBtF/4I//P6r3E1fZ6fe+YX+a7XfDsXwoe9g2Ds+IXzgVRu/DzDNiLv8cjFkTp27ky41qK3ei0sUsnq9a9kt6rvWRxDl7At297NL4EV3kNbjS1yFyIVoZSsavkAlE6IgknCb5xACocToxn+ja5CKVERJSkkKOsd6wJ2NgTg6A2ZS+SFUiQD/96djpp/jaxls+24eSAYZlAcnif8blTJV75Pp7CtJzaZ+5q72wE3bmf0+oYwUGAdFksUBNU9df22P7ZHLyraMufZW4IXb6RcOl/+HhFIK8hcihWGTtCtFvLXbqVkuaMVCc6dDf09mRfqnZR8aO9j7Js+f/Lc29lSXUQQsN2B/YEn/Ls1m0RtWiQ2riIdhrZPO4hWvrc6tIntACvMke3aORYnHFoX17ol57y/QDqJQRMoOfP7b+a+GcNGEXAYp5YwUFj8z9ki23uZ0r+7GbHfzxgkOWqF8R6bG5QcnYNCgQUr9ErPnwel/F5cbuzC3/3aWKJQLX2vEMi0H5U66t+SciRg/P201SAgVKPfm20RkZgELXLaxxgB2exEBIEiClff7IlC5a34UtQ6I8rjXvWzCQJ/rsIVP3sIkG7tzzYMFdot/ixXQW4sQgjCJZ+5VN4V91JfN7xcsO5906ABNPdNg6Ph5XrfvKQI/71Ev9/nR37kR3jkkUf40R/90WO9lpSCM2eOt2Fw2si0t4iHrZAoHJEB4wSbGxGy7W3ALQzdsA0ZGGX93HV3bFGYJzCUEHUmVX4ZQSQmHzsHj14K+NI1zaWzAZ2p0Kt97RXKS62zdLujDZwss4ShYmurtZbl1QrB7f2EllCIdoCLWqQavuuN38F/f/FX+dTNz/Kfv/AL/PHXfBvdzgNsTJyrg04bWmN25XYISY/OJjz5aJerNxKeeHR77nz6QqQC8K9/kA84MH0Egk3VoWeGJEHKpdYOZBo6EYTLr+0gHyVwb7Q7bG62UGZE+COTstXqQA+cNIADoehGiuFYeOPZM92JjZVOp/heZiAOuHAmAlJ6ydj3pqE6mDue7G1tBJPXdhw6YadwDKRaYpFARrctiUVR39jaqt5nR3dhCBnp3Ne8cLbN554ZMogdG902KoLEJGy2/H3unOPqTX9dnnggZEvFPHsLXryR8Ye+dvSauUpoRwGpVGy1Ry6DZ188BOC1r9pie7O00CeQheQtyX4xkjGUMRc7u6AMu5uwP3Ckmaw97rYLGeQDoo7wqrR2bIc7K1vPu67FfraPalu2W0e09Wc5bRNUAZabG+Hcayy1DzPclVu0g/rH1N0b53b9/49Ty2a3i3HG36dy/nkmhfr6yMUt9vt3iDPL9tbyc+wL//O0EY2OT6uUsC3Y7h6vms4gkKGa+7vfGEurM6TdgW578QaMcw5LwuZWh+2N1ccjxtEfZrS7LXY3W9XPbmpS2iagE3Qmrq9LNVFHHP0+OSLauSFONVtbHdqt+uXH4SBjY6O1dDG1N9Rs547trTYi03Ssv27dbsh2e73zkkoRBPLYf8eDYUa3O2R3q70w1yW30Om2X/Lrhpcbtrfv7f3c4PcHmvumwVHwcrtvViL8n/3sZ0/7OACvyPd6s5bUg4MDdnZ2ap4xel6WZaRpOqHyHx4eIoSYeW6WZbzvfe/j4OCA//gf/yPdbl3q2Oqw1nE419v80sBg4JXSPM0xemSFjGNNJ5JoERABOolRZahWnjEcJjg5NhKRDVFJirPRxOi2yC1OD7Dh8kCsP/Aaw2ZgeMPDijieTMy+MvQq9zm5M/G9JPNW1Xi4XsK2coAxHCYpQSthMIBACjpK8e2veifWOJ668zn+7y/8Mu84/51Eatc/0Tlkv1/0Fk6+p8gs7u4t3vHWB3FC4GzOYEWLcQUHcjj0M98244vDKwBcCs/Qli16Zsit4T4X3VlElmEGMazAAw4y//MTEZCllmGcsZsl1Udlh31MPmanlYYkg+FgwF3nSVEUCpLE292lkHQ6EXGc+RGDJEYlOe2i0m+v7xgO03p11jr2D1MgoBUKBsM590YW01IaCDnoG6JCEQ6VYy/1xLnjWtX9EGj/a6ufx3Nfs+Sod/bS6jEh7erfd/dz4sQQKMFOOybczoAOV28k7B0MvesFyHLNQTYgsZqB9c81xvH5L/nr/PjDUfWaYjBAppq7RcsEwJ24xyVxDoxls+XHQ27djRkM6z/MfhZz2+1jrGGQJgRRC/D3ljaOG7dTHrrYmquG59pyTd9EdKKlQXF12M/6xHFWtQko6eZeY+scQ50igxCTTT5m5r4Zg8Ar0cPYEA8zMpexJ/pEC3IADvv+fjy343+/7/cSDnvzRzrAk+i7g0MshoEeHV+mDbfzfdqmphN0DWSp5ur1lLYSbNQQ+jQ37O8PabUUeoW59d4g4c6dPiarr2Bchv1eyuFhTCjGfr/rIf04hkBN3A9pnnNL7yG7R3uvo8JYx+Eg4/adPhs1DQe9OGd/qDmzEbC5ZJNkb3/AYJijhKOXDxnGGULAgR2g8vWcC3GqfZbP7d7CTIZlOBxkHPYTwiUvEccZt+702FrQhtJgdSgl2d7ucHgYN6MSDVZGc980OApeavfN9nZnJbfBS6oT5oknnpiZ1e/1ety6dWtmPn/6eQBf+tKXeP3rX199/ZlnnuGhhx6asPNba/mxH/sxnnrqKX7mZ36GBx988ESOXU8nvL/EUFYOWSzj/XMWX2ZsAr/YlnlKJPxCOHY5TuuJuiKZZ746zbmiQs35+VAHaI3RZqJmbgbOstvO+YNvAILZHvcb2V0ALgRnJr5njCMKlgQd1VTXCQGb7ZC7fQNZSkbI+fMbSATOwLc9/s3cTfa5NrjBFwZPcX7jrX5hbDIwuXcuTL+nihDpENoxhN2j1Tk5A6a4VtbxQurn9x8JL5I5T/AO9MBnF1iHtQa3wvvEuSdGkVD+szV2spYvi5FOIvAqMkqTmRBnNIOyPq8lR+dUkG/rLMY4pNHYwoIPPuF/kDjqeYNkmPrHtcdfcwrCaLqRf59+4iiF21YAd4u2gg3Rre6HlvD3amzTuffbVreY4e/p2ve9ct0TwEvnI6SN2W5rtjcEhwPHC9cSHn+4dALIKrCvfJ3nrsakmaPTllw6F1VfV3mGAfbHXBZ9M/TH7WCr5WczDuYcE4B0isO0h3aagGjicR/73QM+8Zk+X/1lW3z1l8+OPgGELmKQDRkGwyOF98V5grOj8MYoFAvub8GG3MJZMNPRnlP3zTii0P+MOgdx7HCBIdc5Ss3/c9QvZvgvFqn4vWG+9A+ttprM5AQimDg+4RSJTknzjGCFfIR5CJVgGBuevXrI5YtbdNuTr5WkuqheUystCqxxJJlG66ONY8Spxhg78V6ZztHGYCUwdg2UC+nnfc7o/FjhhUeB1pYkM7TCyfcdJpoXbvVwQtENBO1g8XGlmcFZPwufa42zDiEkqcnWXoQJHElmSTOzdt7f9DFZvcJ8vnPERahsg5ODMba5pg3WRnPfNDgKXm73zUtqe/kbv/Eb+chHPsLh4WH1tV/+5V9GSsnb3va2uc/7qq/6KjY3N/mlX/ql6mt5nvPBD36Qb/zGb5x47N/6W3+LX/u1X+Of/tN/yute97qTP4mXGxwIKaokemVyWkVoX+bMbNXeWKL2h/uf5AN3/ysDExf2/uXVfL6n3NSG/g1NQt/GCCYD+8CriYvmHeXwgLO/+q/ofu6jM9/rdkJaoaLXT9jZiNjsjlZ0Ukj+4ENfD8Czw8/Tz71TQ1iNMMbXy01DKMBX9B0ZtqhwE5Lcaa7ldwB4OLrItvL5AAdm7PVXDLkqK/lCESAQiCJkr4TMYoQUVQCdUBptAKtJUv/ZLUzdLjZVAiXYLdyo1+7Oe7BgmHlyVwa11T7KGDZa/hgHCaSFWSIKHX0zmuEvUab0xzaDmQ4Jj+0tfw5pZqtcgnFcvek3Rh68EPqgPWe4fMFfkyvXRyGHgVAzgX1PP+eP6cnLnUnbrslBSHpmnPAXKrSUbLf99Z1XzQej9PvMpDOK95eu+E2KT32+P7ezXckA4wxDvb7jyCf0pygZkBbhjfNS+o8DKUUVCpmmfhNyUTVfrm11vrs7ReBfQW4XwVfymZl2hUAEaJuTu+MF9wkh2NmMPFG92SNOJz9XrS3GzTYyzIdbefFgrGWYaPZ6KdfvDnj6xQNu7sUz+SbzrmsgQ3Kbk5q09vuni1lCnOWGF2/3STNDEAhyvTwA1mcBlK/oAIdgtRDIaUgpis2p4y3epjew58FX8/kKvwYNGjRo0OC0cWR547Of/Sz//t//ez796U/T6/WwU3+4hBB86EMfWus13/Oe9/D+97+f973vfbz3ve/lxo0b/PiP/zjvec97uHTpUvW47/3e7+Xq1atV5V6r1eK9730vP/mTP8nZs2d57Wtfy3/4D/+B/f19fvAHf7B63j/7Z/+MD3zgA/zgD/4gURTxiU98ovreq1/9ajY3j1dT9LKE8FlwrlD4lR5P6dc+LW/84SbDSZ9e/mx6DYPvjn9N66FRLdkCjuCJtMXVqDc3tU81P6O2qwq2Et5JMH/hHN163rsTbj3L8HVvnfielIKNbhtrBGe328ipGrlXbT/GA91LXB/e4LMHn+JrL/wBhNUFl6x/Txe0i4q+HVDr22KFswjrcIHkenoLi2VDdthVm2PVfCVxdLX1iHWoEvpRCASBmRxHkHmCcI4ARUYOSqOtAGeJK8K/yKExIjWPXhDsDxzP33I8+WD9dRpm/rU6izIObMZGyz9/MJbSr6IUg0Ug2BirpitT+jWGXKeE4exIThhIuh3JMLYc9jXtsRwG5xzXbvnr8tD5ADA4Ibl8AZ56dqT+gyfg28FOlZSvteXZq/77Tz469r7OVAn9h3ZEtvvVvyU7Hf+z1BvMJzOBCBjaAUrIiS7x/kBXNZBZ7vjM0wPe/Pp6S3okW/R0j51ody311if0576r/hQJP0Cn7WsTh4lhe2M+MYVRQr+SAhf2kdL/WurHOTub83/2tPMBltOd7FJIHI7cZnSOUWEI/u/c7lbEfi/jhZt9Ll/cpFPMpufG37urQilJtoTw7/VSDvoJw9SQa4ux/j18oKmk257cJDLO1B5DeQ1Sk9ANjjfStjamKvCMtVy7M+BgkHHhTAcnZBVAOA/WOcxYGr6xBpAoITFOT9RrrgIlJdZy7Go+s+LGrJSCPLdo4xZW+N0L7PVSrLWc23l5zaM2aNCgQYPVcaQ/Nb/xG7/Bn/yTf5Jf//Vf5+LFi7zwwgtcvnyZixcvcvXqVbrdLl/7tV+79uvu7Ozwb//tv0Upxfve9z7+wT/4B3z3d383f/kv/+WJx1lrMWZyQfBDP/RD/Pk//+f5V//qX/HDP/zDXL9+nZ/+6Z/m8uXL1WM+/OEPA/DTP/3TvPvd757431NPPXWEK/HyRlntLqXAFSn9yma0CmUxc3mhfhaLUGdBZyACDswAU6TB7+uet1W7FRR+VwTF1dx6N3IvFV8Mz9Q8USAXrIyC3m0AZFKvbG60Iy5sBjM2UvCL9rc99HUAfGHwOV+NZvLFvfcqRGiNzI6Y3VC5JyQvFHV8l6OLCCHYVl46H9gE7QwgVlb4R5V8AUL4DRwAo4queOcITDqm8Bu0lQhrSIsk9EWEXxiDK9wZj130F+j5W25uzVap8Hda849fmIxu2z8uK0YEAFzkr+2GbFekLdcGayCgUPDN/Ou/s+nPsSTKJfYONElqCZTg4hmFsA5EwMNnLELAYd9MPGfc9v3c1QStHVsbiovnxjalrAUMCDW2UTOm8ANbHX9eSWrnKvRCCLrBBp1gMszrSlEhWP4I/O7n+ug5VvtIRqQmIV5T5S8V8UCMFP72KRH+MuQyTiyCxYR/UNyX3XZA5jI6xf3ZixcruXqB0iuQJ6Zul6S/H+e8cLNPkvnjzbWdnjBaCCXEQqKbZoartwfs9/2s+kYn4Ox2mzPbLba6Ee0omCG5mc1mNjxKBCJkaAYnUpG3DqT02RjgN99u7MXcOkg4sxkhhU/vX1Z36MfJRhNcBoMUAiEkxi12jMyDj3s53rXQxi6caCuhpMBad+z3Owns9ZLqZ6xBgwYNGvz+xJEU/p/4iZ/g8uXL/OzP/ixZlvEN3/ANvPe97+Wtb30rn/zkJ/mhH/ohfuzHfuxIB/Tkk0/yb/7Nv1n4mPe///0zXxNC8N73vpf3vve9az3vlQzjvEIixxV+k48p/DkUVkmgIKgWZMCdbFSTuGd6VOx4SQeysPMXYqXCfzE8O/H1ckm0qJ1MHRaEX6dgNEzNAwslCbA4ZxE1K7Indx7nbHSeu9ltPnPwKb42eAS3IDUc/DUTySG0tmDdWeBike2c40pWzO9HFwFoy4iWCEldzqEZcA6x9LqWqCz9eMIvC1JjojYil0idEuXpqDdd+dpCnCFegfDjdDUz/+AZCBQMU7h9CBdqcjXj0tIfzvncnQWjiUJFoEAb2CsmGUwwa+dPtQPn6MiIno2Jdcw8X87OVsC1WxkHUxb60s5/6XyEEl6Zd1IRKcMDFyKu3cy4cj1hZ2v2lZ9+vrDzP9qZIFfCmcqxMW7pT1yGdoZAKFoBtCNIMuj1DefO1F/nukq9cszgTa/b5AvPxgxiwxeeHfKGJ2dTvqWQSCQDPWAzXD2YTjuNwyEQpMUYROuUQsU6ZTBoYpbasAeFwt9pK7TNabcFgxj6S4IyM5sh5+xpBzIgMcnaSvA8CCE4sxWxd+iV/kcvbpFmprZC1DnHreQmu9Eu0Zg7SClBrq3vca953t1eQpJpzm7PD22chrY5co7LI5QhmUnJXU4kjtYMcBQoJUiLDa+9XsqNu0O2umEVOhQoycBYtLFzA/SsdTjrqk1gY72TQSHRLq+qSdeBqBk1WBda25VGOKQUGGvvu6U/yw3D1NAK7//GQ4lcW8KmrrBBgwYNThRH+q366U9/mu/+7u9mc3MTpfxiorT0v/nNb+bd7343//gf/+OTO8oGpwPnZyCFkNhS4TdZNcOfOg24imwKYzxhl4o7eozw61GzwiJCD/gwvJrFam41d4vXvBRMKvzOucqJUAtrCfqjQXKZDmYfo3wwHbpe1RNC8JYzXwXA5w4/Q5IPiln9BQhaCJMh5rzmIvjrJNgzPYY2QSF5IDznv+lspfJXavGKhD+rZvgVSJDakyIbRJiimkzpMYVfFjP8jILaOvNInnNFhkPRaa4El8/7bz13c3bBaKwjKSYKNoI5x19sIgkl2Si4z7C4nHngFeotOW6dd4CgXc3x13zWBXa26hX+q7f8Gzx0sVW8nq8mxGguX/Kv+8L12c80zSzPX6ux85fn4QzauSrNvxwd6RcuBCck2x3/tcPB6oqac44XC4X/0QfbfMXr/UbEJz/bmzsz3FJthrpPtoaKrW2Ow6uOJe85LUv/uMIvhVpM+GN/rToticVSZrD2lyj8WZFHUIdABGiXo93JKZtCCM5sRxwOMp6/2SPNDapml1I7zdAMGEw5MCrVt4YEJpnmzmFKtz2r4s+DLZTuuZseIiB3eq175CSgpCDPDYfDjBdvD4hCOeG8CpREG4deQL6tc1hHdS2s0wghC4XfYI+g8AshyI5J+HNjWSWyQQjhRxvus8IfZ4Ys036j6R47PeqQa8vzN3rVJl+DBg0aNDgZHGk1p5RiY8MTku3tbYIg4M6dO9X3L1++zNNPP30yR9jg1GCd8yqwFJXCH5jRDH/uNM7akZ3cmcK6LCcIf+xSElssGu3iBbQwGa5GYb+l93HAhuywMTVXa61DSVHNa05DDfcnNhpkWmNllgqsweXzawNftfUoO8FZtNM8lT474xKoOZvinI6wYC6uU6nuPxieJxCK7dtP89qP/QxnTUEMzQAnBGJFJSivZvhDv0lSWPptEGIjf10jkxAWlniK0D4nJOnSGf7iXhj7/B69MLL1T6Mk+0I4OrLeXi6s8ecmJBtTTVqZ8Gr6ppoi18KNgvv0/Gq2Oku/c45rN0vCH1UbL34TyvHIA/7n4NrNdMZu++yVGGvhzHbA2Z0pB4k14AS9gtyHImCnCF/s27Hgvq5/zd6C4L5p3N7LSTNLGAgunot4/RNdWpHgsG/40pX68w9lSO60H09ZEaUiXs7vSwlhcHz1uw7jCv/43HUdysV/u+XbJcrnLrL0+zwCPTfDoAruO0LA2yJ4pb/F4SAjTjVBTTipdprc5vR1b+KcS8JfRwLv9lKSTFf5AKugJL7zLP1CCARyrXvkJKCkxDi4equPtXam0lAp4dOPF5Bh/2fJeXeac1XWR5lNcBRLf7kRcRysqvADILjvCn+c5OTab568FOqlMm3oxzl7veX1vg0aNGjQYHUcifA/+uijPPvss4BfNDzxxBMTAX2//uu/zvnz50/kABucHqwDJSRCMJHSH4ylWmc2RxSLUmE1CIF1jrvaNymo4hba0z2ckAizgMgU9u065fym9gr9pZr5fVs4EerUMoCgsPOXqCX8AFLh5n0PCALF67pvAuAz6YskK6h/TgWILF55xr6EMBon5Iydf2P/RaTVXEw9Wz4wA09GV1zAlgp/IAMUwo844BV+VxD+II+rz7hK6ZeKuLBxz03pdxbfLDD6HB4t5vhv7EOcTl6DUqnvRH6jp/YcqrA7Rbc1+fkmolD4xwm/8PdcuwjuS838heF2qfD3R2Ty7oEmzRxBILhwNhptUAnfMnFuW9BpSXLtuHFnMvDwi3Ps/IBnIMJVdv5ttcFmsXE1muOXbLX9NT5cENw3jVLdf/BiCyl9ONuXv8ZvJnziM/25RDkUIYf5IXYFd8hEQn/xObYieSJ29zp0JhR+r8rOI2nlfHEYWZQI2Oj4z7U3zGofD76Szzgzl/ALIXCMNshOElJ60h8GkqimkN1YHyaYmoTEJhPP09bOKNtxqrl7kLDZXm9syF9TuzC4MZIhQzNc6R45KUgpSDNdBDbOjhJIIbB4tXcevMLvis/R/3s8jPUo5yPlaNTgKPDuDDd3Y3oWq7cynAaccxwOc1otiV2ywXKvkOWWTFv2e1mVhfFyhHNu4f3boEGDBvcaRyL83/RN38Qv/MIvoLX/hfz93//9fPCDH+Sd73wn73znO/nVX/1V3v3ud5/ogTY4eTgLQUGiXVjO8GcIS2X5Tl02spMXdvxD00djCFA8FPmNnT3T85LgIpJsNb6Sb3YBeiMv5veDszPfG21MzFH4e3cm/lsm9TZvEbRwWYwz9aqelIJLrcucDXbRGD4df2n+uVRPCsCmsI5S6AzohBTHrSK34JHoAgBBEQJ4TvvF16HpF4GI6xH+iAChRDVuYMNWpfAHOiVgbIbfACKo0vHnKfzCWr/5M6YYbrYF54ox8Rdu1xP+bksgjEboWXLlFXb/vGmFf+hqLP34/aJ2MXMc2/nq5Hah8Oe5q6r5yvn9B85HSCmqjReEQFiHxPHwA34zYTytP05M9dwZOz/4e1tIDs3omDeL464UfiHZLpP611D4y/n9Ry6N5r2/7DUbBIHgzn4+USM4jki1SExMsmBTpMS4Ip6ccmAfjGoa48Qghars53UYFoQ/ajkCGbDZ8YrwQsLvNNbZuXZ2AIkktadjZ5dSsNEJa39n5TZH4scTxoMVS5u3mRrT2DtMSXNDew11H/xn6nBzFX7wLRS5yU7tOtS+ZyCJQsXuVjT3d7qApZZ+V1QeWmdx2Oq1BOLICr82duVqvWkY65XyVRV+JcXSVobTRJIZkszQbQXoovXgfiM3tgqvPByc/GbcvUJvmHPlVu+eB2I2aNCgwTysvKL7/Oc/X/37z/25P8fP/dzPIQu74p/4E3+Cv/f3/h6vec1reP3rX8/f/tt/mx/+4R8++aNtcKKwzlWhUrZQ+AUOMRbcl7kcKGf4vR2/tPOfDbY5o7aBco5fegV/jroirEEY6zcGJo7DVsS3LqF/fGOiDqXCb4sk+toZfgAVgsnn2vrLsYE3b7wWgM8kz5EuUwBl4LMN5mwi1EHoDGEyXnR+jGFXbVa29ZLwny+UJj/DL2bqEeehVCwDQp9anfv/dkGEaxXvoeMq5d6n9IOTkrg41bmWfmcLJXvy+6XK/9zNyYeXin+nBWC9yj+NsUyAccIvpCF2noSU18a3SgiUgFZJ+BeQ2UAJNrv+PEtb/8jOX5Bnp/39KIquN2e5/IA/kBeujUjQMy/EOAcXzoZVNsA4hM1xQnJo6xT+gtTJUTXfqgq/1pbrtwvC/8CI8Ldbijc84a/LJz7bq31uqewOdH/p+xinsYUinp5yJR+MFP5h4km5XTB3XVr6w8gRiIDNbqHwx/N/Nk2x8bjIoTAe3HcvUSbnhzKir/uTarSYJLpxqrnTSypXwzpYZY5dCr/xcK/n+Dc74UJiLIUgzedvirkipR/AYoucl/J+Feglo2V1GI1UHI2EW+t84OKKCr+S8r6qwElmyLUhChW44wcWngTiRKMCQbuluH2QnMr1cc5/xnGq6Q0z9nopcXqyboJ+kjNMzJHvpQYNGjQ4aay8ivjjf/yP8/rXv54/9sf+GN/+7d/OAw88MPH9d73rXbzrXe868QNscHpwUCUjowI/K+4cmJyWCBkQ++A+h1eYCzv+7YLwnwt2OBN4ebdS+K2u+shn37BI+Z/aZ9ozPbQzhCJgV82milvnCBak9paVfPn5R2jd+NJ8S7/w/3N5Au3Z91FSICQ8Is5wRm6yZ/s8FX+Jr9p43dz3rub4dYKLZhPTa59RqO5XslvAyM4PEOSFwp95kpO6nMTmtKWYf13HkBVKXUjgNzCK93JBC1obxXsklYOjVPi1kdU86ULCP3bOJR67IPidpx0v3HYTCeOVwh8JP+6hE2Ayyl/ovMp02BjxWVobXhUPRVCFSFq8bVdISYtihn+Jer2zFdAfGg76mkvnI65NBPYVIyZIf07Cn+MjD3iifmffL9q6bTVh55+9Lq742ZATlv6wJNzjCn/Lk7DeQM9NYx/HtVsZ1sJGV81sNLzpdVs89cUB125m3Lidcen8rD06ki0Gus8Ze3aiXnAauRtZ4O8F4S8V/iS1xTTMfFV2WLVH+BntMvBvUUp/Vre5NIVAhOT23qbUO+cKwq9oyRZDPSAxMd2qhnHS5n33MCHLDVvddv0LLsCqKrcSAQM9YCfaXfs9TgtKieo+rIMt7hnw19QxaltQQpK79bMZlPTuiqMq3V7ht8gl7S4lpBRk2vhxhFManVmEQZJVv3/cSyBA0DpHnOaEStBpBdw9TOkNM85ur3/vT6M3zBjEOUlmSHODNn6DQ1uLsfDwhY218jEWwVpHb5CRG1M0Dqx2PzRo0KDBaWLlFd173/te+v0+f//v/33e/va38z3f8z38p//0n+j16tWlBi8PlAsNjR3N8euMVlENllqNcBasQbjJhP7zwQ5nCoK+r3u+0MvZuUn9wtR//Ubu5/cvBmdqFz7OOYJ51s90iMxiHIL83GV/TvMUfkCoFqR9XI0LQUqJdA5Mxls6TwDwmeRZ0iV2facCRL7iHL9ziHyAEZIXpwi/MDmqcAq0dc6G9AudQxczUY+4AFlxrIHwClqp8NuwhSwIv9IJQUFGy5T+UixVC4LahLO1x3BpF1ohpLmf5S9ROq67LUCGkCezowkmqxwfG+3R+4bdkTW+XMg7L/ETSEFEaelfQvjHgvvu7OekmSMMBOfPhGOZBKNfg8IaOm3lv4+30/cHmhu3/ck8ebnGzo/15zVu6VddNgpnwmiGX7DZ8kFj1vrAumUYt/NPq9WbXcVrHlus8kcyIrMZsZmfXQF+rlwUBCo55Uo+KPMBmHi/uTP8RThfq8h46HZG8//5nMyQ1KYosXgBr4RCO3PiwX2LMD46UQbMDcds/UrJao58mPhk/nKEYV3kNq8+00WIZERq4moc6CSgrWYvvXvkbIBASdLczLXXW+sQxbcsdmJ8Qwh5JIW/rMo7ssLv1lX4BdYyEw56L2Cs5XCQV+0IUkA+5+/zvUKuLblxBMqP70Wh5M5hcuQRi3HcuBvzwq0+h8MMbS2BEnTbAWe2WrRCSXqCCn+caeJMo40jfwnkIjRo0KABrEH4f/RHf5QPfehD/If/8B/4U3/qT/HMM8/w1/7aX+Ntb3sbP/IjP8IHP/hBsuzlO3P1ikQxb5hbw520hy2S+mU+SupPXQ4libcGK2QV2Hcu2GFbbSCRaAw9lxS26DkLB5vVKtQ38/l2fg+BmNPHXNr5zcYOpuvV47kKP/h6Pp3X1vMpCQqNs4ZHWw9yRm2RO718ll+G/txWIQ42B5Ny2w1JXU4kAi4WNYSlnR9AmnxUzWeH+HrE5YuHvKrlKyz95XkGEaJdEP48Jhyb4Td2RPjb0QIbtLNMq/vg76HL5wtb/1haf1yG9rUAFSCsnhx9GAvsg0lLv+p4kjwR2Fdw8yCQleqf2HShJXt7rJrv2k1/kuX8Ps74TYzxEZOCoDwyNsdfqvsPXojY6NaoNda/jsZVav622mBTejdA7FJ08TMhJWx2/bXaO1i+yHzxht/QeHjMzj+ONxcVfc+9mLB3MHv/CSFQQtHLF8+TZjaryGF6D2b4pRSVk6Tc+Kgj/M65KrSvJL5lbaQD9oezP+vWWbTNF4bVweg+P43gvnkYH50AT7YHul+duypUX4C7vRhtDK3oaAphbvPR/L5zzBu1Oo16vn7e4yDfP/JmilJebc/nkG/rHCXjLzdvy89zNCKyHnE/blWeKcYMVg26VNK3EdyPpP44NWS5qVw8Ui4OSbwXyLXfbAmKv/XddkB/mC9s41jtdQ1J7gMitzciNtohrUgRBH5jIVCSJDcnVksYJxpjvJiS6/u7idKgQYMGJdZe0X3lV34lf+2v/TX+5//8n/yLf/Ev+NZv/VY+8pGP8Bf/4l/kbW97G3/lr/wVPvrRj57GsTY4aQi/s6+dIZSqIvzCZBWhytDFYtGHqx2aQRXYt602kUKyW9SP7ZWzwvNm+E2Gm7I7OufGEvpnA/u8c9Mxb4S/tPObrfPYYkZ9kcKPUmA1Lp9d3EopUE6DMQgZ8ObuawD4dPIl8kVhhFIhtK6fUZ+CMBlCa65oHzT4UHihWpSHY4RfmWxE+E3sRy2WLGCts5WVNRCBN6oX5+nCFjLy07COfQABAABJREFUn5PKkkr9FMovSPqFCN0JF7zPlMKf2ZykIEuPFVMJz98cfX9YzPB3W3hS78zkNSpdI8X5d8c4rWz5azFeyWfxNZKBlLSE3x0w2IWEbWfL32+H/VHo3oPF/L6wU5kEQkDhTnmkmOO/cj3l6crOX6fuj16nX2QOhCKgLSJaIqycFIOx6rOHzvn3+9TnF8/WD2PD3WJTYDywbxy72yGPP+KPdZ7K35JtYjNcGMyWmqTqrE/ugaUfqKz5Pqlf1SrMaW4qi/VGu9iQlKNqvv3BLOHXbnFC/zikkCuFGp4Upo8tLBwYSXF/KCnItaUf59w9zNg4orrvnEO7HFm8j0wPkcl+7WPLer7hEhfIqtBWc6APyG1WZSmsi0DKoppvAeGv/m1xY7+XpPCE/yjBfQ53ZAI+7jpYBVIKjKuvYTxtJKnf6FWyJPyC7BgNBSeBXNuJ0EMlvQto7/B4ORtJZshyTThPNFB+k+ckGhOccxwMMsJAIARkC8ZSGjRo0OBe4sgrOiklf+gP/SH+3t/7e3z0ox/lH/7Df8jXf/3X8/M///P8wA/8AN/0Td90ksfZ4IRRuKOLRYchlAG2SupPiaT/t5/hN1Xd3nhgX2ldnJjjd67e0l9mAEzdcn0bM7QpAsH5YLfmOB0SOXfWuVT49fZ5bGFZl3lavNccyABXsykgEATSUf6Jfix6gE3ZIXe6st/Xw/e4ixrXwMwj8xiErOb3L9fM7wNInbFdbKQc2IG/rksWPeNqWigikAJZJOOLsINoFYTfZESuzG7w16kf+9duR25UVTcNq6t5e+ssv3DwEf7z3q+T2KxS+O/0oJ/41xpP6S/OHsaS+kvXSNnaEChBq+A3LioUfjmamffpD4JACQKhCIvgwcTM3+DZGVf4b00H9k1mEjghEMU1vHQuIgwESWq5s58jBDxxec4sabEZ1jPlMfsxBCHETFK/k5KvfsJvXFy5nnLj9vx7pqzjO38mnF+VCLzl9f7n74vPxfQGs59dIAOMM/TzHkM9JLf5xAJ6urP+XszwAxVpHya+K17XqMGluh8E0A5G5LfcLLjbryH8VmPGzmcRAhGQ2vSe1dJNW82l8GVypa2/DI67fRCjta0s1+uirOSrFH6rEXPCSsE7DYZ6eCSSPI1+3iPVCY7VcwSmUZHhOSTM6NHMvpsaM/JBhG6l0MJpCMGRiZ+xdoWhqxGkFD7+4z6k4/fjbGJ0S0lZ5QncL6S5nlmQbnQCDgcZw2NY7tPcAGL+GkL5zaV5bpJ1kOWWYappR4pACeKXcbVggwYNfn/hRFZ0URTxzne+k+/6ru/i677u67xqe/Pm8ic2uG8wRVCQFKIIzBsp/GpG4bcIk+KE4s6Ynb9EOce/pw/nd8ZbQ10l381ifv9csFOpoRNPsw4pmTsXWVby6a3zuLBVOQgW2fpFEOGypLaeL3Q51hVBfELwWOtBAJ7Prs99PSjm+LPhYhXeGUQ2pC80d42/jg8XdXwwZel3hh3hye6hGRYui8WLsaxK6JdIoTzpLJ0MYRsRtnHFdWwV85qiIPy9ggt0AouYQ/iF1ZSD18+kVzkwfTKXcyO/Q6cluLTrH1eq/PH4DD/gVFhkHdjqehSvXL1HGdxnA0+QN6cs/VIJlBJIBG1ZBPfp+Z/19kbgF/HGkeVj8/vl+UycoKwUfqXEaGMAb/GfR7pF6X4ZS+gvUdr6J6r5WprXPu7P67d+b34GSlkL+PAcdb/ExXMRD19q4Rw89YX6zY+26nA3u8OLw+e5MniOK8PnuZnc4CDbp5/3JlTnytJ/ijP8MKnwKySmxoZdzu+3W2LCKt3t+GM7iJMZEu1VZbGStToQAcbq2s2G04Cfq5+8rmERrKitrgj/YT+r2giOAusMzvnrCvgNW5PP/f0UypDcZqTHdDuU6n6oIgTiWPkIAjGXhGlrKfmbdXYiq6C09JsjbOIoJY9clWfWmN8f4d6n4+faMEjMxGaSUvcvT6BEnGjUlJUvDBTaOPZ7Rx83GcSaOeI+QFHteDIK/zDVZLkhDOTSHIoGDRo0uJc49oruYx/7GH/9r/913va2t/G+972P3/7t3+Y7vuM7+Gf/7J+dxPE1OC1Yh68f9yqDErKqtVMmH4X2Oe0ty9qHq90ZS+gvcSYoqvlMz6ex1xBpX8k3S/hvFHV8l+bM71vnj1PV/cU2GjXYB0BvnQMhxmz9i+f4sdmMrd/hCGyGG9t4eCzybRQvZDcXq1UyRCyZ4xc6R9icF40/5gvBbkVaAYJsslP+DP4zODQDnLXAYsUqtyNLOUIgnUMUirqMOggpMaFXqTu6OM5phT90cwk/1tvvnXP8Xvx09eUbRQbDoxf8Yu35Ww5jHGnxFp0yAF0GXkEvrlGdE8TP8TvyYBR+V8Lfp36TSirolNV8Cwi/lIKtjdHn+cCFaKT0zBCCgvBPzfHDfDs/UGwSiKJCEbbHjnmmmk9IcJavemMXIbyKf/3W7GLWOVcp/I/Mmd8fxxtf7TcZvnQlrrW/RjJiO9xhM9gmkBHGGQ6zA24mN7iRXPdksyT86f1Q+FWtDXuU0D95LOVmwWCoq2aKEuuQTFW4H7IjpLofBT5McPJ3YCQjcpuTmLhIbrdo63xd2hFhimtZWvpxGjDVhtY0SifAcccbSnW/LdtIIY8VBCgEc8m3Mbba0LFMKuv+6+JICn/ZAX8U5NqwPt8X6HtMCOPUJ9VH4ehnSon7lycAfmM/yU01vz+Obkex189Is/U/F2MtgyRf+rPk3MlkGPSGvvnAZwP4UYH7nY3QoEGDBrBGLd84PvOZz/DzP//z/NIv/RLXr19HSsk3fMM38Mf+2B/jHe94B93ugsVxg5cEynloKQXCeDXFhCXhHw/t00XVnsEhuWNqCH+h8PfMAC0cQR1hrFFzYSywL5id3wdfvxRIWbuQCvp3EDhs1Kk65m2ri4p7i+f4iwWh0wmwOfq60SgMdmxBfiHYpSNbxDblWn5nokJvAjKAfIgwOU7VEzRhUqwxfC69AjDzWuOWfoBtq5AIDJYBKZ0l68IyoT9CAQ7pioYFQIYdJIIsahNkMR1jQJUz/I5+7C9wJ/K1jDNwriALkiv5TfbNaP68zGB47KLgY19wXLkN/YI3SEFl00cqyPXoGtUQs7Nbghf2M5zw98vmuKXf+Ro7KaV/XeGvc2LimdcZx85mwGHfv964ai+MrhwP/gvSE6Oi/vDyg22EOEApweMPz6+GKl+nVyX0L1L4FbiMrY7kda/q8tlnhvzW7/X4jj8yec/sHWiGiUUpwaXzywn/5QdaKCXoDQx39zXnztTPfgshCEVISAglF5zaIBjN8J9uVVhnYoZfYpz140WMjr1fKPzl5kCJ8aT+1KRjtXZUtXfrIDfZEf8aro55YYJ+hl4wMAM2wy06bXVkK38J48yoqq6onxTGu3ecqr83Ahky0H12ozOjUYA1MKHuF2GRuc1wzq3ktpiGkmJueroeU9ONNTNtBA53pHECpUQxS76+Wq/18prNaUgJ+h7Pzg/THNxkuKBSAn2f8gSgSOjXrgrkHEc7CrhzkHAwSLkYrbe2TDNLri0bnSWNHVKQ5Mez32vjszfaUTmi5tsicmNpcbyf5wYNGjQ4LlZe4rzwwgv8/M//PL/wC7/AM888g3OON73pTfzAD/wA3/7t387Zs/WErcFLEyWRtvjFthQSM6bwl4Q/cxqwCGc4EBrtDArJzhip6cgWLRGSupwDE3NOhDOd8b6Sb3IxkdqcfeMtzfMS+q2FIKxffKrD0s5/rrKaV3P8ixR+QKgQkj5u8+zIYms10tkJhV8IwWPRA3w2eY7n0uvzCb9/V4ROcNFm7XdFPuApc407+oBQBLymdXni++OWfoDQ5mypLgdmwKEd0nWLZ0RLpTMSAQKBLIi7EwIVtJBCYKIOsEfXpBXhQxp6if9V0I4EQteofGVgn5B8aujV/cejB3k2u8YdfUjuNOe3Fd2Wn91/+po/0k5rfGHpN1qETnHRJkLPhjh+7WsEuxcSfhPYkO0JcuRwKOnDkAKlaK9I+Le3Arg+Nb8PfsNhnNhIidC2Uvi3NwO+7ZvOEQZyQg2bQdE+MVL4xwh/ofZXoX3Fewhn+Mo3bvH5Z4dcvZly7WZahQkCXCnU/QcvRATzEivHEASSyw+0ePbFhC+9GM8l/HUYX/g75+6hpd+/flzM8NeRtF7ir8N0R3b53DQVDM2AXXemcCs5MpvWjgfNgxKK2MTsHpGYrooysC+Ssxs4kWox1ANym7PRnv/ZxSYmFCGBXPyne+I6FvWTwpn5DSp4p0Gsh2Q2pa06cx83D6W6vxV6x5csag+NMwRLKhLrECivtteRb2Nc9aPrnQzTn5s4EuGXUpBrb7OXa/an58auvUkgpSA9JtFcB845Dgf5zO+z8mfnXo8XlMi0QRtDoOrvk3ZLcfsg4ex2u9YFMA9pbjBF1d8iKCWq33tHxTDVpJlhZ7MIPxYC7P1vP2jQoEEDWMPS/83f/M38xE/8BFpr3ve+9/Erv/Ir/Kf/9J/4nu/5nobsvwzhrF9Q+dldSSgUppjhD8Zm+FOXe9ZtLXe0J+c+sG+MzAvBbjnHbwf4XvLJP3LCZFXgW4lSGd5WG3RqFsHgVbF5vfBlQr/ePj96fEX4Fyj8UNTzZRMhcs7kSBxIMUGsHy1s/c9nNxaGGi2c47c5vXSf30l8xd/XbryBrppUjacJv6/mK4P7kqUp/aWVORKBD7crarZsECGl9C6OyC/kW3pUw4bSJGUtX0v6wMPpxbL1pOGmPuCm3kMi+bqNN7Ih2zgct/N9hBCVrf+zV8YS+qevUV6ci8mrSr4SYSBobxUJ/XJKzXGiWlAHStAqLf3LFP4iuC8MBed2y1RAN0v4hShCJ0fX+eFLbS6ei5gL50MODaKq5BsfQxgp/OVnK6vWi62NgNe9yt+vv/XU4cTLvljM789L569D6UJ47sWj27K1dpSnf/qWfv/ZD5PR9Z62YfeKIIjSwl+iVPiTxJGZtGqn0E5jrF5L4Y9ka2mLwUlgUZhgKMLK1l8H5xx76R7Xhy/Sy+fnPpQwbkz1LuonHbYKX62DEgqLd0ysi2l1v3q9I6blgx/j0pYZEmqtm9gEMM4wHDp+7/P9ilwpIdFHaAhQUmCNXVvpLsmyXPNHRhUjHPcKSWZIMlP7sy2cuC8BgjAixfM23LqtgDjTHA7WGxGJM73SmEU5b3+ckYZhkuOYdXmcRBhggwYNGhwXK/95+tN/+k/zsz/7s/zKr/wKf/7P/3kee+yx0zyuBqcM6xyBlGhnUULRUuEY4c8JGFn6veXX1Qb2laiS+u0A4ezsfLbNagL7Sjt/vboPgPOLojqUCf1ma5zwrzDDD6ACsGZyjt9ohJBI5ITN+YHwbOFgyKpNivrXDBE2r80wIE/56PAzaCwPhGdn1H2cqwh/HvpzUHqsms8Opw0SMygV/hDlKxeLzQwTREg8WbYF4Y/yxM/6MwruA+i0FMLpGmJgEdbxqeRZAJ5sPUxXtblYVCne1JNz/AfF5e9Oc2UZEOs+V/tfwjlD3Qp5ZI2ftW+KivBLWqym8D98qYWU8JrHumOLMVtUVYy/vyw2VdYgKM6Ac/SdTyUPhKIjRiS9nOEf2nREfNwov+Ar37iJlHDtZsbVQtU3xnH1lv/sHn5g/ijBNB59qI0QcGc/57B/NNWwtPMryUrOguNgXOEvMU0OBwXh70wT/mocwPkO+WJWXLvChbQG4R9vMThNLAoTLC3w/Xy2qtE4w+30FrfSG+ROE69Qn+fHGorAPmu9pUsEiCVkPhABAz1YuwZtfHa/hA/Ps0ci3gBB0VOf68ljsa7suy//2/C7n0n4yO8c8IVn/e8CgTxSYKCS3tq+LvE11k1Uyq3zfsYevQpwXSSZIdeGsM69IJhbg1gH59yJBdIluVnorhFCECrJncNk5fd0ztEf5oSL3FkFRtV8RzsfWzknJq+rUr4CsUGDBg3uN1Ym/H/1r/5VvuIrvuI0j6XBPYTDJ54bZ2jLEIXEFbVXymZEBRm0WAx+oXq7JrCvxNkquK/v1eBxNbqs5JtW+PMysG+RQ0Qg6mQT5yYS+ktUCn+yROEHkGqins/lCTKQSMnEokIKyeXoEgDPpQvS+oXy3fJmVoV4uv95rpp9FJJv2PyKmcWNNBmyIDtZZ6f6Wjk6cWBjlhHRkvSEIkDIEeG3QVTUf0ls5BfkoU4rws8Y4W+3ROHomFqkWMu+7vFC7ts3vrzzBACXis2aG0XbwiPnYXzN22lNLeJkwP9v8BT/7fav8xvDz+GYXeT15xF+AaJ4cSnHFH67WNE+sx3yfX/iIb7hK8fuW2sAO3NPAhMK/1I4g3CGQ+ePYVtuTHy2LRERFLMTg/I4haOU0Te7Aa9/YqTyO+e4cTvDGEenLTm7s7oVut1SPHjBX5Nnj6jyj1fynaa9HUYkPs18yGNdqns/KWb4p0P7OqPAPxykxRiKKe7bdWfQW7JNX/eOlSq/DMteO5ItEjMkGyPlmc24Gd9gL7tLV23QUR1Smyx9LW3zscA+P47jVDDhaKpDKCNSE1eOiVVQp+5DYRPHFRsd60MpibFuhoRa63DFDL9zDoslLkJHy40uJSSm2qxeHaJw+axrbbfWk9+jWPr9Od4bZX2QZHM3JaRkrcDCXpzz3I3DE9msiFO9dINxoxPQj/Pqd8IyZNr6cMJgFcIv0fbo1XxJakhSTXuG8EuSI4QNNmjQoMFJ43Q9mw1eunC+6s44S1t6Qjiq5ctRTlaW0EwnWCGqKrnzNYS/svQXtv8JS7j1pGjcvm2c4bbeB+bP7zsA4ahbB8j4EGlynFSYjd3RW1UK/3LC7+v5YpzVOCzoFBWEPrttaqFYpvU/l11fsogUMDUDH+d9fqv3KQDe0n3txIx3iVLdNypCFyr8pMIfVyRxHvKC8Eci9IGMZkT4BQIpqBT+QCeExecxrvC3o9LWPrVId5bfy3zY4KPRJXYCP2owrvBbZ2mFggfGPs5pS39qNVeLloLP5lf5nbG0/xK9who/Y+ln9AsrEGO1fCskiwfBZA+zsNYT+5nNJLF0dGLi0cW4y2GNnR88gdiokvpH1XzjgYVf+YYtlITrtzKu3ky5cmNUx7cu6X78Yf9ez7642PUwDxXhP+X5ffChgOXlj1M/xz9OZK2zntBTE9pXbBb4vamAoRninDuymhzJiMxkDPUKG4VHxLIwwVCGhYLvP7vYxNyIr9HTh2wGWwQyICis/4vGD2wRfijLSj7nN0V8YOTiOf7yGNap56tT90sIxExt4nqoIfyuUNOFwOID9vLc/07uD4u60SIE0nIEAufE2gTclIR/XYVf+RrGe1GHZ6ylN8xpzcvEWXO8IMsNe72Ug/7RmxjK40qz+oT+yeOTODcK8lyGNDfk2hKuQPiPO28fpz6cL5h6r0D5asl1nBMNGjRocBpoCP8rGFL6Sr5QKk/+K8Kf4YSo5vgzm3LoMnKni8C+2VC6Mqk/dimJzSYs/cIWdVBjlv47+hCDpS0ituUsAQZPuhVyppsXRnZ+vXl2grTZ9mqhff5EQ9C5t/UbjTMGqUIUYkZLfzA6T4BiaJOqmrD2mFU4M8f/sTsfJXOac2qbL+u8qvZ5JeHXURer/OcgzYjw912CrRsVGEOl8BMgmFT4VaHwuyLlONQJYfH5okZn2w4pguUmF3GDvM/TulT3n6y+vqu2CEWAdoa9IoDxsYtjfelThP/F/BYO58cOgN+Nv8hT8TMTj6mz9Lvi/1YKvxJVLV9ik7WVPCjr9+rcI+tY+u3EMddt5kzP8U9XV250Fa9/slD5f6/HlSJg8JFLq9v5S5Rz/DduZxNW+VWRFJV87VOe3we/yO60xpP6Fdrl1WepbU5SzPeXjyuhlKhaBPLUp8Fnxf+m1X3nHNdvpQtJnBCCQIYc5ofYI/S3L0MZJrhs1CAQAX3dp5cfcj2+SmpStsYyU8pE/7QuWLOAcQbrzOg6WOddJVIhnFk4xw/eij9cYWwA5qv71WsJdbxqPgSZnryPrfXXs9yYdViyivDr6hxcsfGx9nsK1lat/SbEERR+ITD23tThJZmv45vXAKGkIM/Nyr9Ls8yS5pab+/Gxgumy3KK1JVwhjK8dSfZ76UoEOs3M2g0RR1X4e8N0huyDdw4YbZvgvgYNGtx3NIT/FQivnEMZTRfIwM9bjtXyOQuRLOb4heOO88rXmanAvhKhDCpis2cHE6TJq8WO8Uq+m4UF/GJ4Zu4fZGv9oq5uEVUG9pmxwD4YU/jzZG7n9OjABOBweeJHDqwGpVBKMi0MBUJVCf3PZQts/SpEWF0RuucHz/Jc/DwC+Iatr5hrNS4r+XTUxYwR/o5oEQiFA3pmdr53HKU6GhahfVIXoX2hX4xLIXBjCn8wpfC3wmITSCowqZ9xL/Dp/mexOC4FZyccGVKIKoOh/EzLOX6A7pSl/0p2A4DXtR7hq6PHAfjY4DN8IXkBAOMswzq13FG5FMr3LUMPLW5tUiGsBTd7XzkhikaJVV/HX7u6hP4Sm/MU/rHr+5Y3bKGUJ+q39/zn+PADqwf2Ve+1EXD+TIhz8NzV9W39aeaP6bQD+0qUyv2wSOofV2UTk1XH027PHk+p8qepn93PbEpq0hkV/YvPxfxfv3qbj3x8f+GxtFWbxMQrk911UCb0LyP83tYfcyO+Dgg2w62Z34+BDBma+XP2PijPjt6ryA7w950p/nvRMfi0/lWU+UXqPvjgvsymR9iQ85A16enj5NpicTUKv7+XzEwI5CoQa1rb4egz/H6EYH1HwVEQpxprnP/7VgMlJcaycn5BnGk22gGDOGevd/Sg0FxbtHW1G/vTaEcBaWYYrjAXP4izldT9ElJBmq3vRslyQz8xM3Z+KDIhrGsIf4MGDe47GsL/SoTz1NtJRyAkgfAKP4FftElrcMZUCn+iAu4U6m2dnb/EmWKO/66NJ4Praoj3DV0G9s2f37eFiiNrZvgnKvnGTy1sV20Aq6j8QkWQDHCmIGBCoFR9WvFjrcLWny6w9Vdz/CmZSfnNOx8F4MujR2uzD0oEmSeDOuyORit0hhCiclQcLiH8ZWhfQIBUEpGPzfAXmy2uyDgIdEJYtnJKv8jplAF7QvnNj2KxnOiEzw18u8CbuiN1v0S5AXCjyGQ4swk7BVffHuPs1lmuZLcAeFTu8OWtx/iyIgvgI/3f5bn0OgMb+/A7FG0RjT3XFcGD/r+VkgRKEhXnsEqQ2QSs9arnNKbs9ktRXKNFQYPlaELfjhH+Iqm/xEZH8YYnR5sFZ7YDNjpH624uVf6jzPEnYzP89wJVcF9sfY7ImCrbi0fHX+c4KJP6h7FFIBnoAdrN9tyXIxJPPx8vJFY+50LQzw6PTFDnwTiNscsJfyB9pWakWnTmVOOVif7zNrmMMz4tvHQFGI2TkqoWc4nCH8qoGBtYfP8sU/ehnKU/elJ/IAVJNjmLb50rflULnLNYZ8mKsLVhbItZ+vqax1WgpCDL15/hXxaqOg+OexPa1x9mqAUEeJQnsPxYjPXz8WEg6bQCbh0kpEecVc+1rT7PZSg3VPqDJRkWxjJMzVqEP1CSOF3/HOJUk+WmtrpVFKJCY+lv0KDB/caRVnWf/OQnT/o4GtxDmEIdcTiUUIRC+XnPcESwpE5Hln6XVzb2RaS1tPXvucFE6Jsw+UQln3NulNA/Z34fPCdTUtbW6lSVfFuTCj9CrDXHTxDidIJLh5UBIVCydu32SHgRieTQDthfRL6lROQJv733MWIzZFt2eXP31QsPIywT+qcUfhipxoe6N6EKT2MU2hciBZXC78JW5ZIQZaihs0TFCZcKf7v8+KVCWFOp17939/fQTnNGbvBweGHmfS9Vc/x3Kwvlt36N5I9+leTCzpirQ++RuZyWiDgfnkEELb6m+3pe07qMA/5773f4fPI84FXx6X54fwsVxyz8vdFesZpvBqXqCQxMjC6JQamCrghhcjQju37deMpI4S82JQpr9fTowFtev1WpXI8cQd0v8fgj/v1evJ6sTVzS9N7N8MNYNV/qLf3j5HB/6K9XuyVrldPumDsgkiGZTTF2tvP95h1PDnLteOHa/5+9P4+1Lr3vOtHP8zxr2NMZ3rneemuwqzyUHdskJAGnQ2hIwAkhaZRLfOkWBHGlVotL6JYiRWrRLaROmm4QkEZqgZBASBeJ6ZLmthtaaRwSJYF0yOBgkzi2Y1d5qKp3fs+0xzU8w/3jedbaa0/n7LPPOW9V2ecrlV11ztl7rbXXsJ/v7/f9fb/Hk9iWajMyo3OP6NNWY7FrmQl2oi6JXB0FGcmoVjQswwLJdXOGqSd07qv7bqJX31PGGfbyJ2RmsrK7D6BEhLHmDMZ9vkPaLMA663DhCW2dl8M33dVHkzDHj9hoPENJSanXl7YDZ3KrFwL0BXeAS20YZWbl/D5UiQF2rQ5/qX10YaQk7VQxyTV7R5sahZpTxRmmieJwdLysvygNhV5Owldh03n70UT7UtoxBYvilIqRS1ziEpc4b2y0qvtTf+pP8b3f+738nb/zd3jjjTfOe58ucdEIUnmLJRKKKMzwC6GwypN8act60Znb4thIvgp1NJ8ZhSz38MVp8pn5/b4ZkbsChTz2/axj6VyfKDJU5gm3aXT4nXOUVk+d+tea44/AmJAJ74mClGJptyaWEc/GvsDw+jGyfidj7o/v8urgdwH4zvQ9RNHx89hNSf+0w++JSkUij8yI49pIlWlfRIyUou7wuyhBhFtdqqQ+x2m1rlFLOvzOO/Vrq/mtJ77A96H0hZlFTTw5ojV4xPVoF4lgbPO6i32lJ3jpmdkF0Bu5l/M/l9xAJj0//iAE39H7MC8mz2CxfDbM8893yp1zIGcls7GaEv5Mn67DL0yJk5KhGfO/HfwC/+bo18Mvgmnfup1BqxlS1KqEtlwk6tMZ/qak3y6kAXTaim//8BbtluT9717ua7EOrmxHbPcUxlL7AayLSj79NGb4YSrpn0ymsVwV6e9P/L7PO/RXmHb4DZGMKUwx09kGfzxHgynZfO314wtDFxXRdyozQVueeP1J5Moi1wzhd9Y/i8P976RcmiIyj1jGjM14KWG2zrKf73FUHNKLFkcOZvZTSCxnieZbnIG21UwaYZxnLkqtkvXDkuLHGvDEd31pO5zub5dt7zRmeZtgcsL8Pkw9fdYZL9DGoY0hUj5mcqsd86SfMV7TQb+JUV6uNb9foZUossIwzlZfU1lhMMahTlFJWHatnQRjLUfj/FhFlFcOXEbzXeISl3hrsdGq7m/8jb/Biy++yN/9u3+Xj33sY/zn//l/zj/9p/+Uw8PDc969S1wELM47tuNoBVIvhUAisPHUuK/q8D/RR5ROI5HsLjHsq1B1+A/NyGesV8TJmpkO08OQZX892kUd0/Gyzi6N6olCHJ9pb+PiKcEa6Al9Pca2Qod/nWg+AKVwukAovxhSQiyXezMr61+FPjn/duxd+d/XfjfPRDs0/QuWYZVpH1BH8/XNmOMIfzOWT0qBqDr8Uavu8Csp0CGaLwmLVBFM+1pJcx8dwmheHXyJiZ7QlS3eHZIKKrzw+Z/lxc/9DK0yqws31Rz/MrxReNO/KuKwghSCP7j1zdyOp2qNeYd+h39YzRQcIjmN5ju1pN93PZ/oIxyOx/rQFxWEBOZiJVchkKlBkD5vqc5S8tMLxYuJzTDOUl8LS8jIR96/xY/8idtc3Y1PdzwNCCGmbv1vnk758PQl/cG0L28SOoO2ZU0els3vN187zvy8+jJH9sf7/p4Itzav38tOXNBfRERfYYvaNf9YOIsaPEQdvokaPkYUw6UjJnGYs19GaLXVdcKKv44b8ZMiRPOdcH3HMqEw+YLSwTnHQb7vYwKj7okjChU2lfT7Dv9s19VaVz+enbPouY9nOKq2tVlCgDqFtL2CNnZZwuea25MLxoTnAWMt40xzMMg5HPjzeLJsfr1IwnkZfpootLE8OTqdgao2lkJbomh97wMp/dU9HK++Pye53igxQZ/yvE9yQ14Y0mT1fRApQV4a7DmPCV3iEpe4xGmw0VfUD/7gD/L3/t7f49/+23/Lf//f//cA/MRP/ATf9V3fxV/4C3+Bf/2v/zVFcbaolktcHHykkcRhSauOPj53u+ouR6YgCYT/funl81dXGPZV2FZdJBKN8fLlQPbnI/kqsnzrGDm/h0At+dJWlZx/e9rdt2GWMxEROqkk/euRQKFiKCcgfYffO8GLpdT6+eQWAh9ROFhCModmzCf7v8HElVyJdvi21ks4dTJ5qwl/fIyk345XRvN5F/BGh18IRNmQ9AcCoJCYQPjT6r3mJf2AEwrKjN859IWLD7VemDFDE9YQF0OEc7SGj+t4vsqbYR5HekjfjpCIWiXRhBKK797+Vq5Hu8CiksQ6kIiZ8Q4pBS18wSc7DeGvilBIjsJohsUythkIiXCL3ffl7+PJVN95Ur3MsA+gJRI/nw5+GwFVQeYi8K7n/Dl+/X52qsivusP/lCT9dZc+JAo4PGEtbVmnDMw79E9fGyT9QcKdyhbJnMLi0Z6/J979TMRWx3cmXz/BzPAiIvoKk6NkdOLfCV2E68IhsiNU/x7q6E3U4CEy70N4JsRy9Rx/acvpc9oZhGvET0oJmBPHVqoCStZIA3DOcVgcsF/s0VYdojWOB7y0vjwhYWTla4XAMWtqZ52rC7K24dBfoZL0SyE3UhbIIG0/jZGeNpZT8suZ7ZXanpkQamMZjAueHE342oMBv/v6IV9685Cv3Ouzd5Sx1VnnfHnSexKK0iwUD7Y6EfuDbO3YPAijAWs69DdxnKzfOsdwUpKcYn4fKgPF0xnsTXKNsccrCSIlvSLi0rjvEpe4xFuIM63qrl69yp/5M3+Gf/bP/hk/+7M/y5//83+eL3/5y/zYj/0Yf+AP/AH+8l/+y3zqU586r329xDnBWV91dvhIPvBfdgo5lZObkrRy6Xf+C/xaMOVbBSmmCoADPQhZ53omku9e8Zi75WMEgpdbz520p0sN++pIvsb8/tjkdFQLJVSdY7/WDD9AnCJa217eDygJCrF0AdaSCc8Ecjvf5R/bjE8e/Rojm7EjO3xs+1tJrQF5AuF3riHpb2OjkJagZwn/xBUUK4y0tNP1XGssYiTTWD7iaZ67khITezLYCm70Yl7SDyAVe8UjBmWfWMa8L7kzo9JQZcNQbbTHrTmn/nm8Edz5n4mv1ekP84hFxPftfJTv2/koL6V3Zn/pQM4tCpUQpIHgnWqGv+p6Slm760Nw2g9y+3U6/MJohDX06w7/csIvhKA7N8fvpEIcE612Vty6ltBuSYrScf/x+oWFeob/aUn606mkH7zJm59PL8jz2b+Zx7TDHwi/SknVHOHf98+um7vwnlv+/njtjeOvlfOO6DPOoJ1eqxsudO6fl1ELl/Zw6ZYvlhYD5OA+qn8XUYxqqXxhFjvwpSvq4pywNsTyVfEWCmFs7c9xHCIRMTbDumM70H2e5I9JZUp80jOtAXXWaD43G5fWfC475xZ8KqoOvxRyI5VGJW0/jUy/1PbUHeUKSgms5VSFuWW4+3jIl9485PWHQw6HGUJAtx1xdSflynZKHJ18/UkBRXnytZEVZsFVP44UOMHjw8naxYtCe8+AVckBq1DJ+kdLZP1FachLe6r5/QpCLMZAroJzjqNhceJ2POG3G0f+XeISl7jEeeDcVnVpmtJut0nTtDbu+vmf/3l+5Ed+hD/5J/8kr7766nlt6hJnhHUOJbwsLm4YXEVSNQj/tMNf4bh5+wr1HL8dgbMIa6gi+axz/Pro8wC80nqxdp9fhmq5sGwRVUfyBcLvu9uaq8kWiYwp05A2sGaH37/p9FgFwhupr1jwvRCk7c05/swW/OzRrzGwY3qyzcd6v5e2DQZwJ3TClM4QVfb4TIffJwckMq5n1Ydlf+l7VPP7AuGJhZx2+EUy9Q8QiLrD36oWNnKxw49UvFE56nefI0bQdFZSDUOv1mivNl88NEPyJYv7VXL+eURC8Ux8bSGK0atSZn8mlahn5rNjDMbmIar5eSGDL4LHwI4J+RVrSvo1OFcrPbaXOPRXWHDql8r7RmwodT4JQghefNaf56+8uX5hIX/Kkv521aUPhQaJpLQFEzOZEv5Vkv6GS/8yGbFzjsehw39r2/DyLX+dv3H/ZDPDKqLv1KMiS6DtepF8OIcohzjVfF4IUAkkPVy6jTBlnYCiRMRoToVgsRjXMAd0lulADOH/1/OoSGRKbnJKWzAsBzzOHhHLhESdzlBSCUXpijNE883GpRk9zbs3zixK+qsOPxLrzIZFm/Wk7RW0cQvPp3WhhMAYeyan/lJbhhNNpxVxdTtlp5fSTiOiUxJppU5OKHDOkRV66bjdVificFjQH61X4CnL05kjVpjK+he3k5d+BOS0xw7LYyBXIS99POBxvgjVvhp32eG/xCUu8dbiTKu64XDIv/gX/4I/9+f+HN/93d/N//K//C/cuXOH//V//V/55V/+Zf7dv/t3/K2/9bfY39/nL/2lv3Re+3yJM8IBTjkiqeosdgCFwgTiG5lyM8KvpoS/7u4HfCl/g0MzIBEx39x577HvY51DIVn4zrYGNfSy8SqSb2ILOjJlK+rQUjFFUhH+zSS5Sknf6F2xEKkI/yN9wNhmFLbk3xz9GodmSEe2+N6dj9KNe75bt8Zg51TO3wI5VVkInCf9NOb4VxD+qoOWCIUQyrsGhw6/jKbxXpLpDH8rrJSnHf6mXj7izTDK8a7e8wgsTT19NNfhb4mkViI8mpP1Z7bgUfBteD65eeLnsQzOOaK54o8SgnZwCJ/Y03T4vb+EQ8xEHdbdfif8GMoJ8MTL1a/bWuLQX2Hq1F8R/sgnIWwodV4HlVv/1+5O1lpU+4X80zXt6wS5fln6BbEUCu2M7/CHtXxrlaQ/FAK0cZR68fiGY8MktwgB17uaG13DTk9iDHzthMjCKqJvcA4RfdpprLMnzvALE+T8apVDv/BpJ6FrHcuY3GYzc+rGGZzzEYdASINYtq2Tr+9IRmir6Zd9HuePkEha6njz0WWo0hfOYtyXNSLftLVh7MqPcpXhFqoeT8ORDtv1hH8z/4D1pO1+H/zc96Yd/poQnqHDnxUhGm6NLv5J++Ln81fvi+9Wu6WE2selCh4dTNaahZ8UekEpsC5aqeJoVCxsJ8u1jx7eoAATqcUYyFWY5IZSG5ITCD8AjlONClziEpe4xHljvSG8Ofzcz/0c/+pf/St+8Rd/kTzP+fCHP8x/99/9d3z/938/V67MzmV/3/d9H/1+n5/8yZ88lx2+xDnA+exfhXforxDJJuEvpjntEAz7tk58692ZDr8JkXyKwpZ8euRd67+5817SY2KnwHfXfaN6juQNDxDOYqME2/bbynTBndY1YqloyYSjeIMOfwNCBGnxio5LV7W4Ee3yWB/y5ewurxcP2TN9WiLhY9u/v3aYdyo6ZvE+RXN+H/z8vAuz5NIU2ChhW/V4qA/o6xMIPxEIiKz2s7uATKadZymmkv5O1RqrTPsa9Z2Rydmzngy/0H0Wxg9o1gebkv6ozIjKCbeiq/TNiIflwUwn/27xCIcvBvWO6YIfB4dDzC0MlRK0VTXDfwp5fPhccldSNEhI7ckgXGUFfiyELjCIumu/aoYfmk791TZ8EoIwJe6EBIdNcedmShwJxpnl0V7JrevHX4uldnXq49Pq8MexQCkflDHOLO2ORLsSYw157ndmVYc/jiVxJCi1YzxZjOCq5vev7UZEskRow8t3Yv7D7+a89saE977r+GuxGdG3CdGtUEXSnURAhMm9o358zH6Jqct+LGJyk5HbvJ6nrxIOar8NO513r+DEek79AEoqBuURFkc3Wq3Imsc4M0jhSZkSitxkGGeIOb0ZpVKehBpr/UhSY15eO43W/j92tyIO+npmht/iNurwryttB28i6BxL/WbW2pYU2LnowdMiK7wp3KZFhwpKTmMQl3XwoYrkM7TT5eey1445GOYcDQuu7ay+b5xzTHJz6vn9CmmsOBoWjDJNK52uVYZZeSoTwCYiGebtjSM+4T1GWbH2562kIFvzerrEJS5xiYvARk/av/gX/yK/9Vu/xZ/7c3+On/mZn+Gnf/qn+dN/+k8vkP0Kr7zyCj/4gz94ph29xPnCCUss4xmXfCVk7RCvbEHSWJxdibaOddSv/075Of++nWB07mXLUvJbk9fIXMG26vJK68UT38c4nyQwP8M/I+cXgtyUpCpmO/ZkKxIKkwbTvmJyqkz1me0ocayq+8XQ5f/U+As80gckIuJjO7+f3eaiOO6cKOcHiEpPGCuzQYSoZf1q3qn/BEl/IiLAIUIX0AmBahQdmpL+dlAA1B3+hlL3bukl+DfiK3RkCnMdj2aHHyBtyPrn5/incv7NuvsV5vsofjbeH0tm87UX9sIacG5Gzg9VCgKA8HL94+AsmIwhZSieSf851b+fHQtY6PBXWJN4bQKlBM/f9p/PV++erICopKxKiY0XzKeFEGLq1J/Z0JW13jAuyPxXzfDDtMs/zhbP/aO9ML9/NUI4g8Dxnmf937/5IDtRultF9I3K4bF/dxLWNawTxRgnT+gWClVHnlYFhLxR7DLO+OJYVVxwmoWEEKl8VOoaaKk2CHkqsq+146f/r0f8i08+xjkXDGLd5h1+JYLpWRh7stPjM85QBtO+KzvBc6ZwlKWtJf0bRfMpQXmCtL2CCQT5NFny8xCCU40QzGMwLohPaVK3DL6g4o71EyjD71cZ1UkpSGPFo8PJsfnzXpmzmfS+2g7AYDy9lkttyYrF4t+68NfaydF82lj6o5LWMe78TSgl6ufZJS5xiUu8FdjoqfgP/+E/5Bd+4Rf4sR/7MV566aUT//4jH/kIf/Wv/tVNNnWJi4BwWAytOfd4JeTUMM6URI35/nXk/AAdmZKIGAccFQdgNQNb8LnJVwD49s4HjnX6r+CNpSXzTbGo7yP5Kof+scnZibt12kAsI0TS9tJXNu/yR1Ieazz0QjqNqIuE4o9u/z6unmBquHJbjUi+CtV5kKELXzv168V8cG01Xx58CYBExggEUXCAN1GCUtNFiRACG0wNu0VYKFUu/Y3LoSLpz8U3/MmYOw+qnCWQrdEet4KZ4RN9hA6LbOMsd0vvBfDcCfP7J2JJN6UXuuMOtxAhthLOgBC1FL8buu8DM8I5FzqgJ5ATa8AZ+m5q2Nfs4D776i/x8qd/ujZOXJjh5+KN+wDe/VxF+E+Oy6oWpLPxjBeP2rgvM0gkxhkEgkkg8ati+aA5x79ILKpIvlu73ojRCcHVnuPKdoS1ftThJKSyRV8fncl0Lrf5yfP7pgQ9gZMSPSqX/XB/RSJirEf1ubVz5FYYjZsnZkL5WMo1iLASirZqn/h3TRwNNHlhGU1MfQ4dDrNBRB4EEmqnpmfGuPpRYJ2lapz2Oook9r8YTkxw+F/8TNaBlILiBGl7Bd/h33yGHwC3/gjBPEptmOTmxFnydaCkwFq7Ut1Wbe8kdFsR46xkr7/6+VZqQ2nMmYqLrVTRH5U1Qc9Lc6bRBqUkdo1ovqww5OX6n3mkfPTiWXwaLnGJS1ziLDg14Z9MJvw3/81/wz/4B//gIvbnEhcMz90ECGoX/grzsXxRo8N/fU3CL4SYzvHrI4Qz/Gb2KhbL7fgaz63Z5bXWLZX61ZF8W9cprUYJyW48lVInUqFkhEkrp/7NCL9UYr6pPYNt1eWZ+BqRUPyR7W/nxokRg6sRFZ546oaU1wSp+kI0nx7MLEIPiwP+r3v/kq+OfUHlpfR5JKJ+nY2SaSY3foa/6vB3QpdeKEMkpxJG7Qz3C/85vxBdWZoDrgJR1bH/nFujPbZkh5ZIsVj29BEAD8t9SqdpiYQbIXJvIziBBMTc+UxjRRpGT7I1nfr9mMnUsO9OfB0BaAwTl3tSdUI3UliNMIZBIPwzhn3O0dt/nbgYk4692qHq8I9tNlUiyOhCjfsAnr/dQkpPwg4Hxx/T0zbsq9Cuo/mmXWvpknouf1UsHyzG+lWw1vH4wF+3N67443FSIUzBSy/4c3GSWz945//SlgzLxULbOrDOUroSJY5X+giTez+HEwm/QlgXzFAhlgmFLWqFj7Z65n7H6UUfEan8bP+GBPwk9EfT9x2OQxIImznmQ+Wa70mYtQ4bTIGdc1hs3eFPYkG346+Hyqkf2KzD35C2nwRjnVeknUFOLyXoNRUF85gUnuSeR4dfSoF1xycGFMXJfgVCCLrtiMeHGeNs+XkvtD+fx0XanYRWosgLwyhsIyu8CeBZzoVbY95+kmusXX87VTTfO22OPy8NeXFx30+XuMQlnh5O/aRtt9sopWi1Lmbu9BIXCxPcziVixrAPQkZ7XEn6SxQySMTX7/BDw6nfDHlYHPDV4Gb/7d0Prm2k42BxhtC5WtKvt64zNjnbUad2agffkUpkjDltNN8cpBQLs6/z+Nj27+dPXfkjPBNf22gbFeLCE4+y2eFXldLCL+S3VAcBlE6TGW/C9qXB7/Iz9/4PDssDWjLlY+0P8+70jjf21lPC3+w8SSGwYTvdRg78K++afqk/KPfQGDoy5apogy6Yb/FXkv7hro/Pa432EEJwq5b1e+O+Ko7v+eTmRiZKADjH7tHrPPOb/zvXfuH/Q+v136l/paSkhb9m147mszpE8nmp9m601ejyB6d+qxfGGJoQ4fd9szi/r3SODCQjzv022iJF4qXNoypaUaoLN+5LYsmdW/7++OoJbv2VYV96jIT+ItDs8ANsxzu40j93pKTu2i5DLemfzC6k949KjHEkseBK2+FdvCLQBS8H1cObD3Ky/OTFbEu2OCoPFyLw1oFxBmtPjuSTxQR/j510j0hftQ2EP5JRHWMIfqZ9xqHfaBa+5kP05DrRfJugP1wk/ErIM6kknAMdsuod4TmGxTVM+5JY0guEfzSuzqvYmPCfJG2vYKzb2CSugpSCfMMZ7/Oa36/hju9wT1Y49M+jlURoY1fG9BXacvL1fjyEEAjhRxoAxll5NqUFgHAnRvP1R6cbofCjAuYdR/j3+hmPj86eVHKJS1zircdGK7uPfexjfPKTnzyze/El3gI4hxM+93ae8Ash6hn+yBRY6/j93Q/xzZ33cVWtL1e/EqTtB2bAr+dfBuC96fOnkrx7E6TZy1NmQ2SZ44Sk6O7gHOzGvYWFVlsllGfs8Ks1Fg1SCOI1ZvRPQlQuSvpNUFpUknAlFD3hicpe8YRffvyL/OqTX8Y4w+3Ws/yJ3u/j2fSWX3jK6etsnMy4gwsELmnhEESOuhv4e987XYi8Wcn5k5tIHHleMD9bUZn2jXY84Y+LEarM6jn+h+U+zrma8M/L+XNtTu6eOcv2k9d41299gvd89ZdIhr7YE/UfTfdDijqyMNNrnOsGCaok/duqy1aloDAj/wE6BxyzOLPlzFjAVoPwR/l05jsO6g0hxNS4rypMNIz7LhIvPuu3e/fh8YQ/z9+aDn+n0eGvMGnM7x9HpFZ1+Kv5/RtXEwRhjj3I4Xe3BNd2Y5w7uQgCkIQu/yr/jOOgnUY7c/wYkzNQjnFrGHxWaKZICERd7CptMTXscxawS5JCfPSk2NDf5CQ0CX9loKdEROnKDSPygsS+9B1hZx1CePWEc5ai0eGvCH+z0LCJd4CSEmvXi8qz1i0LQjjl9kQgwKfHec3vTyFWPpuNteSlWXvufrsTsz/IGSyJ6ctyvZjCswHSxJv3ZYVmOCk3nt+vECnpnf5XIC8Nk1yTrjm/D4TxEnGmJIa3AqNJyWSNouglLnGJtz82Yit//I//cX7iJ36CP/tn/ywf//jHuXPnztKO/zd90zedeQcvcb6wDhCGSKbEcwZRSghcXGXAFzjg5dadU2+jkvTfC/FskVB8S/d9p3sT4WZcj+VkQPsrnwHAdHcZY+hF7XqGu4lUxmRn7PALKTw55qw9iJMxneGfzsraOdM+gG3ZZmAyfunhz2OxCATffOVb+VDnZaL+fVwU47RfDMvQvbcqmSFMUgiEkJg4JSozEhQ5mjIsij1Jr0z2bmGMoZgUxG5GKFwbDZatLfLWNmnW93P8XT/H/0gfcGiGDO0EieTZ5PrMMWe5IYmWy7WFNWw/fpVr936bJPdSaiNj9NY10qMHiIZhoKgIv4OJXWMePuSSW0Rt0rejemyrDvfL0OFPgqTfWlDLF3VC5zgpa2f/bTkt1lQkH2bJf0+16dsRo/kIwQs07gO4cdWrRfYOfdzUPIEWZYbM++S5VwI8rUi+ClWXftIg7fX8/jFyfv/aaoZ/lixV8/s3ryUIPfRmeFIhdI4whpeeb7N3WPLaGxNeeXl1ukKFlmozKI/YirdJT5FDb6zG4Y4l/EJnCFPg0pP3o0ajOx/LhIkZo20oLjDt8AtncUtZlfDjJBeA/nB6HqtOuxQSbYuQIHD66ytSgkmpsc5hXdXh90S7lvQnkl7HL2nOOkpQSdvXIWjG2jN/RygpgvmfPZXE/Tzn9ysIyUrDQu/Q744ds2kiiiRSCh4eTOi247pQ4B36NdE5FCpaieJoVLJ/lFFqe+ZowkhJsjKoJpYUG7NcU2hLt3265bNgPf+DtwtKbchLH2uqzebmipe4xCXeHtiI8P/Ij/xI/e+f+tSnFn5fLSo///nPb75nl7gQWOdwAmKhFjv8SFzsF7NKF8fOsB+HK3PxfR9pv4eOXH8ExFV74zTp3ddI7/0u8d6b9aKqvHIbbQ1XWr2li8dYKkahW75xh1/6eXc/Y3iBlN/Z2gCvOcNv5zr84OfE75oDLJZu1OO7bvwhbrRuIcdPwl9ILAbBfId/uv8i/JeJ24HwC3KoCf+hGTCyExSS2/F1TD4mEhZjGw8L5+oOv4la5N1rpFmfdLTH1Z3bRCgKV/Lbk9cAuB1fI27MMDuCOdSSC6zdf8Czr/4ScVUEiVL2nvkmHlx9Hy/aJ6RHD5DFVFodSUFLJmDX7/ALZxgJ7wQvkXRlmy3pydbAjEEIPyft7PLOnbOgCyySQYjZa0r6m4S/+e8L0Xw8HeO+K9sxQvgZ/Ulm6654BWFyRN4nz7wC56nP8Ddc+itUXaVVkXwVOu3KpX++w++v/xtXoqDGkHg5vAOnefmFNr/x233uPcqZZKbeh1VIZELfTOiXR9xQ66dNaDc3U78E0wLWep+7ExKhpyQ2ljETPSYzE6wzRMIXeIQ1YB37Q/iVLxhefkbwynPCdxvl+tF8p8VySb8icwbj9GbRfFJSlF4V5JzzUwnOYp2lCOQ0ieV0hr9RaDBueaHrRLj1ZvitdWcm/FL6VABt3Km63pPCUJaGbmt9dchJUMeMF1SRfJFaf+m41fZd/oNBxo3dTv0+pbZn7saD754rKRiMC7SxdFtnU91FyqtJtLYkSwopo1z74ZtTXk9KiXdUtzwvLaU2KCHOlKZwiUtc4u2BjZ6Ml47771w46xARJCpaIMtKiDoTXJjy2Bnm4xDLiJ5sM7QTurLFB9vvPtXrW0cPuPnwi1w5eh3Z6EIVV++Q33k/+zeep6Nitla4R0ciwrYC4c82nOEXwiuu3cX2+KNyUglsMfH0eKpYPtlYlN+JrvGF4h7Pd17ko9f/gO80OoPIR7gw81+NQoiqwx8lM+dZCl/I0HGLFEicBAFlkAhX3f3b8XUiodBIYgwTJ+qHhbS6nlHXcYuse43tva/QGu0hheRGvMv9co8v53cBrxRooorqWkb4rzz4PHExpozb7D/7YQ5vvo8ShbMO58K12ejwSynqYtLEnEz4KxLUFxVR7yCFYCuY7vVtJem3q830rEY4wxDdiOSbFrSihqokbvx7d1k0X9O47yQn9w0RRYLtXsTRQLN/VC4QfkyBMDn5JAckrac9w99aJO3rRPJBs8M/fW1RWg76nrDcvKogt35+H6ik7Nu9iBtXYh4flHzlzQkffM/JsXMt1WZY9tmOt0nVegXMwhZLi5I1AXUWUUzv37Ug5YwqRAmFxTIxE6yzKNmU9Dt+967gjceONx47Xr3n+E8/LNlOlH8Pt0zyvzmsdTXZhtkOv8OhrV7M11wDFQkrSlt3Xp21uIZpXyo1tKvt6nq7xhksFnXaDYfO5knQQVV1FiglsHnwDDjFpVDN75/FP2DZvqwaLyi1PbVfgZSCTqp4dJix3UlJE0WhfepC54zkvEKaKMaZ5syzFfgO/zjTaLNI+K1zDEbFRoWKSAqyYsPi01uAojR+XEX4895eX9h0iWPgQiHxsoByiaeNjZ62P/RDP3Te+3GJpwTrIJL4rugcJBJCHJzAG/edavXRwLPxdb6Yv8G3dz+4oCQ4DjuPvsjtL//f9X+b9jbZnVfIn30ftrONc46iHHIj3iJakVmdSAWpX8Bv7NIfIgGPi+Y7D8zI+RuLgKmkf1rweC65zp9Ovhtx5V31z7wcuMSlQR3g/AKr6vC7OJ2RJQr8TLQOTv1JqGeUzm+nOb8PhGVyiWN6vVTdfSsjnIrJut60sDXykYk3o6vcL/fqv39+LpnBhsxqu0Qum2R+TvrBS9/J6Mrz/hi08R9N2Gc5R/gr08a1TPvCXPORme3Mbzdm+J0LJZ4V88bCarCGgagi+TozC7gFSb9zIMTSaD6kQpQlQpe4c5TlzuPabszRQLN3WPLcMw2y6hyizLBxJ8zwy6c/w9/o8FeL4arbf1LnvSpeFKXPaY8iwZN9fy33OopuAiJryNrFlCy/9EKbxwclr72+HuFPZMLAZPTLPjfWIPzOOXKTT2fqA37uV/Z5vF/ww997k4Tcy/njU0TfBe+HZpFICUVhC6yztaJAOAMOjkbT++zNPfj//jvLR9+n+NBzIZrvHAn/YGRm6sRN8g/rOeZrqxf8gZQS6NxSlCbcTsG0D+oZ/pYdkgZl1HAS3NqRaFdinDk5GnEOQoiV0vYmSnOya/1JkEJg1vQMaGJwSvO4daCEHy9YJuMutV3wc1kH7TRiv5/z5GjCnRs9Sm2xlnMzGkwTxXBSEJ+DYkBKgXHLHfWz3LvWd04p54epU78200SctzOy3ISEDE40MbzE+hhOSh7sj7l9rUuvvdn6+hKX2ASXJaZvMDgcSJ/XPg8pBFIlft6V2fnx0+L3976JH77yh3lXevsUO+e4du+3ATi88gIHv++HOPiDf5rJe74N2/Fy49yWJDJmuyF/n4cSCtHyf7/xDL8Ixk0X7LFTE/654zGh8NKU9IMkQswQUd/t9kQNPLeUQiDKRoe/GcsXEhpM7AlLKyysS2fIbMHj4LtQkXSrYlTaxjS6Y9MRBP8eFeFP8gFS57VTP8BVtV13titUktyFhaNzxGFmv0ynYyHV0VWkSBTZjPqk8nFYJ5avMjubGvZ5old1+EunyUPxQxxH+HG1B0DTsA+mMYsAyupapdGrO/yNIpRQXqWxYWTZuri64xeo+4dz23Ha/yMjMu3PcRqd0+LOatCln5svJ4hyhCiGyLyPzI7qOfSqw+9jq/x5raSvJ6kNkljUEuhKIfCoMb9fezGI2Wg+gJef9+fj/uOiNpc7CX6Wv7/WtWacQbtZh35rHV95c8JgZNg7LBG6CPt3CjIqZIjVm+5zLGJKW+BodA+tA+E4CpfjH/ig4PZV0AZ++fOS/+M3FEeH5yvrr+T81XkbZ75LCL6gfJJTv7GG+6P7ZGZ2zMWb6HnDtKqN65wLmelhhl9quon/TIzxKhGvJLLYDZ361yE62tgzO8N7tcfpTN1KbZgU5zu/D6G4YpaPM2SFQa3h0D8PIQRbnZi9o4zhpKQozZlVEU1IIbi52zk/ArUimi8rNOWG8+zeqd++I5z6nXMMs5I48o2Ponj77/M7BaW2HAxyXn84YDi52O/9S1yiiY31VHme88lPfpLPfe5zDAYD7FxlWgjB//w//89n3sFLnD8ELO26SyG9GVKUoIoJkS2q5uRSdA7v0hk84Mlz37LQJVJC0VOrSfnS9+s/IMn6GBlz/+U/yI2ri67+mS25Hm8vLVg0kXR2ARDFxC+MV6gBjkMk5VodnrNg2uGf/ayWmfYhRCC6YSHmTJADT7vvPp4JTyQAF6ULi1EpVE34U+NA+Q7/3eIRDrjSIOnOAWkHxlOCEzXm9wFslFKkPZJ8SGu0z42tG2FMYVHOD1MCL2Dm+pKmqBUNZTrtuDoHQkpsEtQnwdnehW5eL3x265AwrI+Cqgj/TiDrkVB0ZIuxzRiYEW2i8LdLYMqZ99ieu87juSJTnI/Io7Tu8I9shnW2IfUWF27cd3XXf3b7R7OzucJohNG4KCULZLvjxuC2Nurk1bAWDu8hh0OEtbW8vDke47afxSURcSSJI0GpHZPMz/VmdYf/+IW1EIJOWzEYGcaZl+pX8/s3r8Z+2zPblT6lwRl63Yhb1xIe7hV85Y0JH3rfyV3+WMZkZsJReUQqW8dKc43TWGdIGmqq0WTaAR+ODSId4k4xD+0PQUFpENbgwmMtkjEjPZyVNDuNc4J+qC+9cEPwoRcFv/O641e/4Lh/qPjffv6Qb/2Q5SPv751Lt7Ui/DevJbxxP8M5T/p7nQgZVAjHYWzGjMwISUIi5jTELiiuwjFaLLpsKGukQQlDuyWZZJbR2NBuJVgsZoN0AD/Lfjzhd6ETfIYo+el74U7V4Z8UhuKc5/ehMiy0GGOhUUxwzpGtGcm3DEnsZfePD/0Fuen7rIJSVaLH2av0VSrEPPqjYuP9VkrWyom3O7SxFNp69YiDUf7WE1PnHP1xyVYnPnv04luIojTEynuSvP5wwAu3ti47/Zd4KtiI8N+9e5c/+2f/LHfv3mV7e5vBYMDOzg6DwQBjDFeuXKHTOR3Zu8TTgcURKbVSDq+kqgl/bEoKHGrFDPszX/1VkqzPePs2451nz7xvu49+F4D9K+9GJSsWMc7RXiO+Kmlt44RAOIcsJtjWyYv5eUSRwGabLx4KbZCIY52Il0XywZTwz3T4hfAS3KA5F7pA6AKXzHbQlZx2+IlTBPPFGIlOgiN76BKWzvCwnO3ug+dpSvh3qGiTCiZzTc+BrHstEP49xju3uR3f4EG5x7uXKDycBaEkUvh53CoCMcl8d1/H7RkS5CyoSICKfIfWGkSR1YR/K/L7kdl8jkgvQYjTO2pE8lXYkp1A+MfclDu+O7wEQmc4qRoO/Y0Ov7MN1UaLqMyIihF59yodmXojSBxjm9cd/6dh3Hd1xy8oDvplGKkIsm9bhvWxrMlNizFCT3DHqGhOhNWgc1AxTolQEGyMluQDhNX10rzdkpRDwyQz7GxFjVi+kwt1nVYg/MGpv+rw37iWwHwiQtXhtwaU4qUX2jzcK/jdr4z5pvd215qt9bP8A7bjHdorfETAG/bNS8kHDQf78ShHbGW4U7j+e4R9bHStq2teNZ7rwmiGpURb792x1fYFkg+9KHjxpuOX/mPBG/sRv/5bfR48KfjYd149M+mvCP9OL2K/rRiODcOxJ/xKKLQtV96jzjmvnhAZHbWEaAvniyXhHFlna0VIpARKOLCaXidmklmGY8P1qz62cNMO/0nO+T41YLmb+2khBOhTdH+zwqsdznsevFJT6LkOvzaW0rgzjRBsdWIOBwWtVL2tZ5gjJZgUs8//UltGuT6bomKFcuDthry0FNrQSROcdcGs8a017pvkhkcHY2LVpdN65xLkSiWz1Yk5GhaXpP8STw0b3b1//a//dYbDIf/8n/9z/vW//tc45/hbf+tv8elPf5of//Efp9Vq8Q/+wT847329xLnAkUhF3FiEOqOx/Yc4a1DIWk6ubIFboWkX1hAHgjbf0dwEqszY2v8aAI+uvXfpF4t1FiHEid19gFhFdczdprJ+JQSbJiw7oNCO0jgvYdRm6TtFRZDHJ/OS/kXTPvAFjErSL/QEn7PdOJf4RX0Vy0fcWuzwI9EhjSENktXcFdwtHwPT+f3q/ZSSCEUt8YzmJP0AeZD1p2GO/w9v/V7+5JU/xG40m9gA1MkH3htv+qlUcv4inX2Nc87LSIXAxovGfe24XVPJeSnwPITVlNg6Gm+nQfi3a+O+sS8WmSWE3xnfIRbKG/wxK+n3JowOhyDr3gjH5f9OCEE3OPXPRPM1jfsuCFtdRRwJ33gfNI7LlCDCvHm41FqRRWaHKz0M1kLwOUDG4fqcIyViVtVQzeqPQ2d/smaHH6DdcOofjj3xFwKuX4kbDv0BUoE1dQb9e19sEynB3mHJ3Yf5srdfQCxjrLP0i6OFWfMmtF28fvqjhoP9qPTac7mZ0E7Y2eulF23RaY6XOM3RxH+uW+3ZeemttuAHvqXkD/0ehVKC1+9l/MKvHdTy+01RRfJt9xS94Jg/ajj12zDmsAy5zRjrEZGMKJYoXiIlfde56vA7W8/vJ7EAbCD8s079zrm1vAPmIWU1y776M7HWzRTQzgI/QrD+PTcYFRdKwMzccU8d+jc/VqUkUSQYTfTbeo49Ur4A2rwfJoWmKMxS5/51ISTk74B5+KL0jQUpfcNC67d+FGGcl4wm5Vu+H2eBc4689IRfCMHuVlp3+i/l/Ze4aGz0bfGrv/qr/Bf/xX/BRz7yEWSj8p0kCf/lf/lf8tGPfvRSzv82hcMSy2hG0u+KEagEjCYKHX7wpn2rFrRxPggp9bMzy5ti5/GXEM4y6V5n0r6KWrKQKa0hFtF6hF9E2PRs0XxSyY3Vgcb6zvX1nRa7WynWwWhSks8R/1Uz/Ksk/dZarPES6aY7/8x+CxBleF2yaC6mpKiLIe1Aau8WjymdJhUJ16Pd6SaBJJJEwRUbpqZ9pkH45437YhktzO5XcEAcSaSA5qdRFZDK1tbC31cL6io2smncFylJGswls5Oc+o1m4Pxnk4iIVEzVIhVxH5jKqX/JwsxqhNMYKetZ/Kakv3Lo10mHIqhK4mJY/37pHH+lWtAX94UvhKi7/PtH0+0IneFURNEwuE47bUQ+Qp7lvq7I6Io1fXOWHqATiP0kMyGje70Zfv/aqVP/49Ddv7oT+/lTU+BmuskhE8NWs+aKV17y5+/Tnx+se3S0VefEWf7SlgvqmmZk3WhU1n4pG2HO90EIMe32OgtGczT229/pzr8YUIoPPGv4o995FSHgtdcn/N//4fgixkmojm+7Fy2NyNPOrCTfw3KIdZZUpUul/9VsOcLvn3GG6pZJYuE9Nxz0OnJmu0LIpcWXk6CUj2WdJ75NmIrwn0OXXUm5tjlaUV7M/P4Ui9LzUlv/vXbG+YVeO6bbjoijizMpPSuicK01yeUk86ksZynuREowyU9/LT5tTHJdP0uUFGi73MTwaaI/KsgK85bvx1mgjW8CNQt1l6T/Ek8LGz25syzjzp07APR6PYQQDAbTxdK3fMu38Ju/+Zvns4eXOFdY6WipuH6YO+d8xzJOwNmZDn9kClY9WpPJUf3v0Vk7/M6x++iLABzefH8wzFv8Ui2dpqVi4jUWybFU2ORs0XwKNp5jttYilScUu72UZ650uLLlCfJoUpKVnupWkv5yVYffNsy5hCDPNcNRjiszT5gWxhv84rSK5ZPREsLf6PC3Q2Hg0HhS+lxyY2bxWnX4pZRU696K8Dc7/FknGPdlRz7S8Rg4fIdfKTnTRF5m2FftQ7VPNqk6/NNubCShFYj7sU79zoCzHNmKqPdm5LBNp/7prPecN0noXO+bIRZHKuK6aw9Th/4y7aKT4A/QuD+WOvU/LeO+3TnjPqtDh19RjWhGClSkPCGfHNbGeqfFUnXEzB9MZ+lhtsNflq62Tzgplg+mTv3jia3n929cjWvSu2iIJ2aO6yOv9JAS7j8qePhkPS+FSEaA46g4ZKSH5CZbcJfPbb7gDD8YNSLrJnbJ/bse/BjIMddLlUZREf7OkudYOAcvPBPz3R/1Rpuff23Eb/x2f7N9co7+qOrwRwsd/krGb5ZcU9pqhnpAqhKUnEr/m4ik9I744Z41zlA2CL/X+xu6rVnC7wsNp7+OZeVWf8xcvbVB0n8OHX4pfd75OskwWenn988jx34ZhBCUSwj/ecTeCSFop+cTx3dRUFJirK0/Az8/fvZEBCX97PZFp/+cBc45Rpmuj9UbSr61owh5YRhlGikFWfn2L5isQqm9N0Y097zY3Uop9CXpv8TFYqOn1+3bt3n48CEAURRx69YtPvOZz9S/f/XVV0nTy9DOtyMclk7UODflxM95CwnOzXT4I1Oy6nupik8DkNlw+R+tidqsT8UcXHkRJcXCAxFAWzOTd34clFC49tmi+YQStbHcaWEtxErVhDKKJDu9hGeudLi+00IJwSTTx5j2TTv3lZGdc/4cdVqKbDT0hYA5QiEQKGu89B+QS+K+lJTo1P+8NScLbprseaLt/4ljWcfoVZJ+E03f2yRtyqSDAFqj/eM/HAdCCqK5FIQk99dRscRvobocXCgyyKIZzSdpB8J/rHGftYChb/1rd+bc9Sun/oEZBxm4WyT8xrfCH4U0g5vxldlIvrrD32USPp9mTN/SDr9/57WM+2TWR2zYea87/IHwC6u9LFwqskrOX112cRuKMZ9+8u95bfDF02/M5BzrZCYjhNM18W52+Kv5/Tg63v+iQvXacWbmHPoNYBf2wwk5oy7odSLe86I/9585TZc/6jLQA+6O3+SN0eu8Mf4ab45f58HkPvv5HtqWi4S/0eEfZsBpDfsqCAW2WD124SzCWY4m/trcXtbhb5yDl1/o8F3ftgvAZz4/PNXnUGGcWYzxmfRbXbXQ4Qdf7FtGvsdmRGELEpmihMKwKP1XSlBqg5BTwq/DnyQRYB3COrZCcaNZaCiPKaY555aqGqr7+sQOv3NLAkfciQaF8/CKguO3VyHLfVLIReW5Kykoitnvhrw05xaj93aHlAJnpyQ3Lw2T/OyKimXKgXXhnONoVJx57OYklNrHXyaNZ6+QnnS/VRjnmlIb2qmq1V/vRGgTVDJLFKy7PU/633w0eEerGC7x9sVGq42PfvSj/PzP/zx/8S/+RQB+6Id+iL/39/4e/X4fay3/8l/+S/7En/gT57qjlzgfCCFIGmTSFRPkzjO4fAQU3lSsIvyuXLmebBL+uBwf6+Z/Eiqzvv61lyhlhIKlD0QHpEsk7KsgQ6d48xn+0OVxjuiUB2esW9p9UUrS6yQIKXmyNyAKnfh5wo+QGBnVsW4mblEaQ6QkvU7M/mBEKdTCDeygfk8nBDJaLLxJJEIqjIxIG4sHgeDZ+Pr0vUJ8npKCWMla7VGZ9jU7/OBl/XExpjXaY7K96M4/3ZBACUGkROji+UVULemf6/DjHCKQtmUz/FII2sJfF8d1+IUzCOs4souGfeBN+wAyV1BgSJ1dJFTGm/49KgLhj67O/LoabymSLiMC4Z/p8AfCP2cmt5ZxnykRkwMEYKL01LPfC079VlcOimRhFjqtby/BY5Hz2eEXkaNXebH7UuhqrwHn+Mzw8zwo92nLNj3Zoaf8/2+pDl3Z8t1ea71xn0pnOvyTbH05P0w7/KNgEAdw82qCsBZhLW7+WSIl6GImIuKbX+nxxa+M+dq9jP2jsi6OHAclFFuxTxKxzmKCSV+hRwxcH4ejN+dh0W90+MeFwFjYaAxbSG8q6aaRgzO/thas4yjUlVZ2+Bvn4AMvd8kLy6//Vp9f/60+aSL5wMvLKgUBpkBNDjHd6yBkLefvdRRSioUOPyyP5qvM+iIRIYQIs/7WKwEaCQdKCrR2xOEytPMd/lCg64XHUt3hR2KdWWoWqK1mr3iCQnG9dWPhEJ1z3jdgBSryNU+8C5vzJH/C9fQG6ZqmjEoIcmMw1hKf0IsZjMszd5uP3ZclfgKT/Gzz++84iOlYwyQ3aGOIo7MpEyIlGWWaUttTFw/y0pvWKXmx+e2FthTG0m1Pj3WZieHTxGBcIIVfh/jRktVGmm9n+OtpdcFmp5uwP8gZTkqubF02TS9xvtjo6fVf/Vf/Fb/9279NURQkScKf//N/nkePHvHJT34SKSU/8AM/wF/6S3/pvPf1EucAJQVJ6Co5o0FKZGcHU2agHVLKRoe/WCk9a0r6k3JMXhpayemr302zvsNb78caSFO1UDzQ1hBJtdb8fv3ebb8Y33iGX0q/lrZu2mJeEw53rKFSGknazhNzK1Q9s9+ET0vQtVN/qR07qaSnNGVsOcwVPaZj0tWZqqThNkqI1OI5EfhigI5atBqL72fiqzOfb925EkFx4aoO/+IMP0DeucbWwRv1HP8y1PsoPemvf+AscejwLxB+MZUiuSDpb87wI6AjUzDrSfr7obu+o2aVBImMaYmEzBUM3ITUxQhnZ76ehcmxUtWJBjfjKzPvUXXzi6iNbfnrLypGNTGroiqH8/tZGfdZvZLIy2IwHdXIj7Dta6uPdQkqEjscG/LC0m50ubPCH2Uz4euQcH1ieZjd507n+bW2M9FDPj1+LfzXwcLvBXAt2uH7Wh9EWT/a0l7S4V/HsA+mHf6Dvl+QxpFgdzsCM/bnfF7SH0Yo/O/8Z727HfPu51p85c2M//j5AX/4o7OFnJPgI00Tjns6FaUlC8cmhMM5wSiD7U3CEKRElNZH8y27XpwJEnv/n0tn+PH3n7BTJ41v/sAWRWn5zOeH/LtPHRLHgve8sHwHhSmhnPikkLg1M78P0AuFmOFkSviVUJRzhH9iJoz1mE7kd1IIgV1itCeEoJUq0tgXBCyuJvxpRP0g7AXh0TgzYb5eol2JcWaG8BfGk/J+eUQn6mDdtYWCgJTi2Bi1ZVn14BMaxnpIXybcUDeX/s08pPTF5eNMAmE6v38W87iToMJxV8TKWO/a/nZ21j9vSCnIAskdZcWsR8YZ3tO5zaL5xpl+KqZ1eWG8WqapXAsmhm8F0S61ZTApSROf7DAOBROVvPOuxUIbxCpjG/wzLlKSg37Gbi+5MAXPJb4xsdEd8+yzz/K93/u9JCE6LU1T/qf/6X/iN37jN/i1X/s1/tpf+2v0eqePQbvExSNVqjbsc8UYkfZ8zrpSOOfnI2uXflOudKlvdvgjU2CLYqPxvqZZX969hnHLY39Kp4mFIj1FV1O2dwAQG87wSyEWjOXWQej5LB1LqBBFkq4LnfKkvVQe0TTuc+F90zgCp+mliiSNZ3OifVofkfFEzUQJcskt7skJ6KhF0liwNt35/Q6ARKCkQAaXfOdcw7RvdlygMu5Lx6sJv3U+5lFJH81XHXecjxA4rJCLagemH48NigVRzHbDe8GrYKhXS5GrTPb+kki+ClNZf+ZJepN0OAOmZOAKMpcjEVyLdmZeX83r53EX2m0cAoGr0xh6DZf+GRmxVF5iv2r23RSIrI+LUlycIrKjmvyvizSRddd1/6gM8YL++qhm+NMGY618HQDujd9Yezv3x28CsBv1+PbuB3h/6wXuxDfYUV0UEgc80Uc8NANf5GBqvDfJ7NShf41IPph2+CtcvxojpfDjCm7JPShVUHvMEspv/oAvNL36+oTB6Py7WdX8fisRbLX8uR9tmsboIy5WR0c6wzgXaOvvna1V6YGCBZ+Gb//wNh8Mnf1f+NUD3ri/fCeF1Ug9qa/DqUO/f0ZXkv5JkPpDRfj1zHz+SA/r302xXPq/3U1IYoXDzcTyJY3rthNbpJ9+YjzxJN86O7PNsR7zILvPSA/pRj1KWy6V/XvSt1pCvEpebZzBOMug7B9fhJzblnVuZRGhQlaYBcn1eaNKKKjOm3foP76I/fWGSEkmuSe5/VF5rgaJm5D2yrRuk2LBaTApyoXRjUh5p/6ifPpS80muyQvfUFLq7WEguCmy3Dv0H4duGjGYlIzfAeaOl3hn4Rvn6X0JwMfVxUJ5sqFLZO8qQkiEjHwMCxIbL3GIb0Dqop7jrlym20woTxs30zTru/X++sfREvfe0hqfY35cxvocojN2+BEQKXXqdLLKof8k+WMnuMUvI7gwG82ntZdTxpEEXRInKTvdFG1crcKwOCSiVgTYaHmFWOA7FTpu0WosLpvz+9X7Cen/Vgrp37vM6nQGPTcukPUqwn9Yu6DPw1k/JiAQND+eGcO+pmmgC/sbFiDj8CJZzpLdO6nvyN6f3FvtyO0smdPkzi/st9Ti5z5r3MeMgYMwfub9kfXFrmvRzkzaBUw7/FnUQcURRUhfqKT+bdnyueA4xrZxDEL5uesVs8YyD939KAGVIowO0XmnK0Zd3amM+wrQZd3hrgh/K55+9oeN4sn9yd21t3F34gn/y507fLj7Mt/R+zB/dOf38UNX/hB/5tr3cSf20ukRRT1L327M4Vczmut2+NupnKmX3bwaZArWLE8JENL/bo5Q3riacOdWinPwH79wNl+SZajm97c6kl7qz9sw23Qed9qdXwrrOAw8c6u93AQVwEmJ0LPPeSEE3/mtO7z8Qhvn4Nf+49HS12JLH3FYDsG5Roff3xOtVNbjCqNJNU8/G81X2CKY9c2qhZRYlP7PHp4ft6kl/ZGjOtkCR7dSF4xNLek3leqhPOLh5B6lLelFW8Qy9qMYdrGAlsaS/rikP1q+L6vIl7baexE4c2J8YxMCjh0hAILL+8XN78M0oUDPEP5vLEl/FFQOo4mmKA3pOXWUm8qBdVGUhmGm/Sz9BZrWOedCZOLssdZE+4KLDcswzEq80LBSWLwzCX8zku84RJFX1ByteOZc4hKbYq126d/+23/71G8shOBHf/RHT/26S1wcBJCoCCUklBkkKaKKQJOecEghcIHISb38gVN193XchqRFNDpgm4L7pSU5RdRO06yvf+3dNXdZtjg1ztJeMo9+HOL2LgUgi7E3bNtAiqak4LQeOZVD/zIfgiZS7QsRRbS8/VZ3+HVBoR29doySBqdzRNyiKyMmuWacabqtqJ65l/mU8MdLGE+1UNRxi+t9Tc8ptpMrCx1v6yAKKgelBFKBzINhn0r8NdOAjjvouEVUZqTjA7Le8plYIcOC0nlxm3VuKuefM+yrixjhMKoiQ3OGH+BGskublInLuZ/d4/nOC0s+UE0/zM53ZYtYLD7+ZqL55Kzc2c+8Gx5pT4Dm5fxYgwqFsDzu0EJQJF3SckScD8m2biKFoCtbDO2EoR3TnSE6K4z7TIHI+7ioRUVqXNxB5ANE2sPFx8xZz+Hqbszr93P2DwrENR3eE7Kqw9+U9Dc6/Ee6X3dDj4N1lvvZAwBeaN9aGFcUQnjjwhKGtgyz9Lae4bcWjgZVZN5696sQgnZLMp74ReDNa/4ghNG4paRIAGL23AZ8ywe2uPsw53e/MuL3ftNWrTw4D/SDamC7Ayo8VIbrNX+XQzBN8JiH0xxNKof+495DeYPFORMWIQTf8c07vPb6hP0jTVHaBU8SoQucin0hyhYLkn4hBN2Ooj80jMaG7V4USLCu5/PH5YjSlrTnYknlEun/zOHVkv7Q4VcOJ4JY1mp6HcVg5D0dnhG+RGmc5qDYZz/fI5qLDRUIcpOzNTeT0Uoi8rLg3t6IJJa0ktlnRmnsUiO7whZIoUhlyqDssxVv1SMLx8J5YnUchpOLnd+HxYSCyqH/G0liXMnH++MieG2cz2ceSXmsamQZxrkvOnTS6EJN6wptKbQlnb/XK6f+p9zhN9YyGBUkjWKLQKwdX/l2gjZubZVMO404HOTc2Gm9reMrnyacc2SFedsnfLydsTHhn4l1m/u5c+6S8L8NIQS0VepnJMsxcusmInSRhVR1h5/4JMLvCY/u7CCjCEYHdOwEFUu0sWvL/ppmfU7FGGN9Z3xuAeWcF0afZn4fQLV6fhHoHLKYYFvrE6MK88Zy68BaSGJ14uKoUknkKwi/UVWH349WtNIICM7mKkLgJa5Zbrx7NcLPuzc6/MvyoT2BFugoJXHw/x7t8PD6ty/ugKOuRivpTQxF2Ge9xP0fIcg61+gd3aU12ltK+A0QUakG/D/WuZWGfVWBoJp7M0F9Iuck/ZFS3FHXeNXc443R15YSfmE0h4HwL5PzA2wH476+GUMiZkz7vGpB8Kia358z7IuLsedgQmGiFkksKZIujGad+q9EWwyLCQ/LfW7F0/dYZdwn8z5Cl7jgCeB/GPkUhcmRT0tYU/lSO/UflTMpD/mcS3/pNKPqsxJt+m7Cvcld3rv1/oX3bGIvf0zuChIinkmvkmeL3agqxnDkcsDHTkYqJokFRenqFIH2Kch2p6WmhL/u8BcLRakZLImPvH0z4ebVmEf7JZ/94pDf95GdJS/cDLXkvWWpHDA3lvRTpQ2skPQbzdHEH/tO95jnkFShkKVBzD5fO21Fr6MYjg2P90vu3GoUXJ0FU+JUitA5UucLhB+oCX9loCcC+dbOy/oHuk8sFp/rSii00UuN9sD7SjjnaolxqvzsgsPfp72O39dmQsCg7DPUQ9qqTSxnPVMiGTMx43rt0sR2J+agX3B/b8TzN7dmvt+0tgvPWOccpS1QQnmjSwOHxSFt1TnxO0FKKMvVZKYoDZNcX+j8PkzPUyXpL7T5hiL7UHW1LZNcE0fnd+xRJChKS6nN2mRuOCmQwhchLtK0rigNWlt67UVqICTkT5loT3J/vW91G6lFyiccvdOgjY/kmy8aLkMrUez3cwbjkqvbl4Qf/CjT/b0xz9/sXXjBs4J1rlaXfD1grU/tC1/4wsw/v/RLv8T73vc+/vgf/+P89E//NJ/61Kf41Kc+xT//5/+c7//+7+eVV17hF3/xFy941y9xWkgpaKsYZzUgEd3d6S/Domqmwx+6jfP9hmjsCb/t7mJDRzYpx3RaEfmaFeB5sz4A4xxqSWe8dIZYnm5+H0AIiQtyebGhU397tEd3+PhUr1nl0D+PKj2giNtLXQIq80RR5ERSkkYSkXQQDVKcxoqtbkxeWgzeZK8axTBxvGKGXyDwpn0AcZkvXVQb62q1hUAQKYXKlxv2Vajm+Fca91mQ4fxKKYKS3ZEESX/R2lr4e0Q132pxiSeL8x1+qSTPS58w8Ob49YUMbwCcph98E1YR/rrDb8e+O9wYDxC6IMNwaPy+znf4K9l+mXRQkSSJFWXi36/p1F9J2u8Wc9dV07iv3mbuu/vLPu+4jSiGyGJ9+Xnt1N83M9MAlUt/RfiPwlx1S6S8O/beDuvI+is5/5346srxm9rHwGUIY+vxj4rgH4YOf3vNDj9M5/i7belnx50F459zy+DkbDRfBSFEPcv/O6+OKIrz62hVvgDbLU2v5e+rzSX9eHa4qgvuNEfjdTr8MqQZLF/IV2qJx/tz27EGMCAlTiqK0Yg8GD9ud6cL1Mq4b9Qw7hMIjDNMzJjMZAtyfiA49S9G89Wbdw6Hpag7/CGtQEgweiESUCIZ6AHdqLdA9gFiEYc5/uXXxM5WzH4/5+H+eKbJURq30OE3Yb9VuP7bUYeRHtZeBcdBSkFxDOHPCkOh7YXO79doJBSsM3v89Yaqq52Xp3fUPw5prMgKzWC8Xt66NsFDIFF1rJ/WFxPNl5cGu0LJEb0FRHuclWEdMr3eIyXJSrPSUPrtilJbtF18XiyDEH5882CQv+OO86KgjS+SXbSHRRMP9kYrx7neidjoW+MnfuInePHFF/mbf/Nv8uEPf5her0ev1+MjH/kIP/VTP8ULL7zAT/7kT573vl7ijIhQpCqCYoJIu4ikQXqEhND5pSHpF5VbXANxcOh3vSs14ZfZiG7LE3KzxgNq3qwP/BrSZ9fP/m1pNYmIlkqwT0TYP7XJHL813Prtn+GVV3+2PuZ1cJJDfwUZzARt0kUvqZzbKoKwzGklymeSSwlzzvtb7YRWEpHlGgm1iZaL0pUz/FLKOlavkqEvO47meEUcy4Zh33LCX53LdAXht9bVc6BSCBQCy+pIPhuKGEIItLMQCL/UhZdSBEgVcUvtkIiE3GY8zh7OHYwngJWkf96hv0I11z+2GRo39SJwDnTGY+sX7VuyQ1vOjpjEjUi+SEqSSKJTf49FjQ7/nWCO+EgfkDdn9pcY94l84P97SYoDQnlJ9fhwwXhtFXa3It9F1NDPp/fTVNLvz00l59+Nejyb+ELK/cm95YWUBu4Fw77nGvGO86ik1COT4aPU/LVfue1Xp3XdGf7ma2805/cDIV0KEfnxiSXH8+KdFle2I8rS8bnXNisULsMgdPh3WoZux+/X8AwdfvDkljk3++paP5r4c3lsh79KLFhF+K/6Z9Cjvbk5f2u8CaZUoGL6A//MabckcaPYOU+8wZuGFrZgUA78s2hJYUgJhQ5z98tgQyWwIvypMvjljDcz7FWfb9huN+qxE+/OGQPOb0+v9A1QUrLViXl0MGG/H9IrnAud1kXC75UJqn5vKRSH5eGJ949Si3F4TTyN+f0KUgpKY9eePf66hPAFmHUK+Ou/5enI3DiY1qWxQkmJtvbCZuknuZ5fXtSIGk79TwPOOY5GxcJnPy16vLPm+KtIvnXv3U4rYjApGL8D1QwXAWMdpTnZ1PQ8kRfmqW7vorHRU+xXf/VX+ehHP7ry9x/96Ef59//+32+8U5e4GERKEasIp3Nv1tdcDEsJwkv6XZBNC2eJ7GIltZrhN71dTEWosyFpEtFOo5O7YivM+qxb3hkvnaYTtTZa5FQeBZs49avREUoXCBxXHn5+rdes49Bfoerwi84WxZKK/VTSXwQ5/4r9VIKdboJSCiHkVNIfp8hq5tuU2Ik/b1WHvwyy/KhczTpks7IuBVGQnFfqgHlMnfoPlpII2ywiCK/mcHbOtG/m70EhEML7OMjG+EOzy6+UJJJwO30WgDfGX5vdsLOA5cj6ws+qDn8qYpJQWBq4PHSJCTFumkfGf4Y3G1L8CpVDfxF1SGPpI71Sf39UHgXgiwo7qovDcb98Mn2DOeM+oXNE0a/n7I2zPCz3Z8eoohZCT5D5NDXjOEgpuLLtj29vNL2m5iX9lYphV/W4EV8hRlHYnP1idQLDxEzYK/zx3ElXR5F1pT+ekc1wztYFjnkJ/7ou/QDPPdNCKcHLLwQFiDMI61aPOsjK5X7xGhVC8Hte8dfhb39xeC7dNOfcbIe/HQjpWWb4pcKPRMw9b50naUehxnly7J9YabJZdfgf7RWz153TwTBSesI/9Puw3Z19TvU6/r9nCb8iNxljPVra3Ydph9GsMv8MxLmS9CdR8CCQErD15ztqjBIcBxGeiccZBSaxIk0k9/ZGDMYF1rqQ2DpP+MMoQmN51VZtxnp0bIoIgAqz801SpY1lOCl5fDjhcJg/NTmrkl56ro2l/AZz6K/QSiSROnsc3zw66fpkbjQpcc4/u6UUYDdz+T8J1jnG2aJhX4VISbR5eoZ5WWGYZHpBAu/34+KKHheFkyL55hEpiTXQH379dJjPAmMcpX56BNw6R/l1RPZhQ8Kfpimf+cxnVv7+05/+NGl6OoO1S1w8YiFpYSFqmPVVELI25ZEqxYUHk3LlzELPWksrkAvT2a3n4mU2RAjotmOMs8eah8+b9VVwzi01unMOWss6nGtAVseZnd51Ww2n5Gbn0ZdWeho0Ydd06IdpekDU22KJkKKW9Ee2pHVCh6GdRmy1Y5QSiLLq8CfT7lmZQxFmVEMZwCRVh/8Ywt/4dyVlTfjnI/kqlGkPoxKks6STw8U/cH5RWyFSAlfmREGVUKZznffGCIB1FqWi+nORjf0W0hP+Z+PbALw+/trMdSus72L2zfGEXwhRy/r7ZlKTQmGDQ79ZYdjHtMOfx516NtO1/fXX7PADPBdk8m8Wj+b3oDbuk1l/prv/6fHv8n8d/Xs+M/7SzN+7qHWqmL5qJnB/ND27dYe/IvxBfryrtpAq5nbkj7fq4C9D9burskdnSQJChY5sea8DLBMsIsRIduY6+q1TdPhfer7N/+v/cZuXq8x4a/y5W9HR9WoKgzDLO8jvebFNr6OYZJYvfvXsXf7xxGJCRF4vcbWkf1KsznI/EXKFHN9ZJrlBG7+8PJHwixVmkcD1KzFCwDizs7L8mW2KWk1QOfRXqGIgRw3CX3XvtdPEx/iyuBXRfOCfBQ43lfRHU0m/cJZeeDwNx+t3xyIRMdajYx31O60YYy33noyY5Bpr3YKIxDiDm+vkSSGJRcxhcbg6RYRpHN5ootnvZ7z+cMAX3zjkS28e8vrDAXlp6LZWf2bnCSkFeWm+IR36K3RaMdvdzdYexyGK1iNz1jr6o2I2IUC4C5E1l6UlLy3xisKO76zbYxUo54lxpimNXShASOkTJN5pTv15YX288SnQbikORvmxYz7fKNDWev+Kp1ToMcZhzSXh5wd/8Af5V//qX/FX/spf4atf/SrWWqy1fPWrX+V//B//R/7P//P/5Ad/8AfPe18vcQZIIYmlItYFsrODiGcLMkL4THTnLJGK6mi+yM12dlw2QlmNQ2A62zOSfoB2okgjday5y9bel4GpWR8EshtMaZowzqKEPPX8fn3cIZpvkxn+aLBf/7uymp3HXzrmrz3Mmg796LIuIETdHlEkFmT9VYc/tuXSqMIZCNjtJex0kzpmy0WNDr8L8ltnvFkeona8VzpbKm0G6jg8AKkEcdXhXyHpR4gT5/hF47OJlCQNM+g6SmsyX8E5pg79zpCqGBu2Leai+SIluKluoIRipIccFPuNN7KMzASLRSLoydUsaFuGOX6XAdbvhNVYa3hcHgJwM1ok/FEt6e/Ui2PRDYRf5zNS/UrWf7d4PHt/BeM+UWa+ux8KK9ZZvpR5Qv07ky+TNSPEohRhSmR2tFZM37Vtv297g6nxah3LFz7+o4akHyR31C5w/Bz/vTC//1x05dhEDCkk7arLT+Gd+lns8LdOGYPVnI0UzlCV0LQzfHb8GsOZPPTVHf7qvT7yin+2/c6Xzk74K4f+rTaISNJKmEbWbSzrX34MwlqOhv6z6LX9/ZPZfCWRdVIt9TMAT0wqo8dHe43xE1PMuPofZf75PE/4l0n6lVBkZkIij28KSCTliphKh8M1cuLTqsMvJFhLLzye8mJ9YhDJmNIWlO742eqdbsJwUvLoYIKzbqHDr61e2slrqTaZnjAoV3f5lRKUpeGr9/t85f6A/X6GEH6b13ZabHeTtWaAzwMqxNLlpV2Yo77E2dFuKQ6Gx5O5ca6ZFJpWMr2vpBAXEs2Xh/noVR3+KhLvaUnpB+PcjzEu3ZeLUTlcFLzDvD510ayVKLLcMJys5/fw9YyiNBjjTkwxOS8Ya7/u/BM2eoL/+I//OD/wAz/AP/pH/4g/9sf+GB/+8If58Ic/zB/7Y3+Mf/yP/zHf//3fz4//+I+f975e4gzYabf50PVnSKIY0dld/AMZ5sOdQ6Hq+fHYFDQfq9HYd/dtZwukmnb4ywyMRkpBtx2jtV1qRAeQhnn48fYz9c+M9cR+XgpfWk0sFMkSJ+d1oEKHX25A+NXQE8ZJexeAKw8+fyKhsrbyITjBjTnsj1UxMm3RSaIFWX8VyxedsACt91d5o7iaCMfpdDHqHKgIrPW59kJgkhBxB6i57nC1J826hRJTwr9qhh9OMO4TYibvQApBUkXyzcn5wcuqqgWudY6WSrBVisScMiFSEonkdvsOEGT9ziLKETI75Ch097dUd2l6QYVqjn9gJ4iqw280e3aIwZKIiN0lHgCVMZ9Je9PCVZxiQhez6dR/K75ChGLicvZNQ44fjPtkdhSiJP1r75VPyJ0nZRrDb09em9m2i9t+3l+f7FVxLXzMe4F35I3LK409QR6E0YfqOO+EAsfj/NFS2bN1lnuhGPCcWiyGzKOS9Q9dEWbI9czMfprIsxGbkKgA8MXsdT41/gKfGs2P5ayWsgO890V/HRz0NePJ2Tosg8rBvu1ARj6eMNxCZ5rjdyw5BsNRqG3sdOH14gH/bP/n+Hz21eXvIdSCWWQTTVl//RJT4BrjEv0qArA9uwivOvx5YWuioISiF/VITyL8Qq2U2FtnKRvXbSKq8Q1/ztMI4tj/e1NdcBwiEVE6fWwcIHjis9tLOBjmaLsYy5fbnK+9oXnzQbbwukQlHJWHKwsZSkq67Zh2K+LaTsruVko7jS6U5Je2XPo5q9BJzQq9KD+7xJnRShRZYY417xvnGmNmlY9KCfJzNBOtUBUejlu7CCHInkK3OS8Nw8lsoaMJKYW/Lt8hqCP5Tlk0834Pgr1+9nVHPk+LQntVl35K0ZB+tOrr6zPfiPAnScLf+Bt/g0984hP82I/9GD/8wz/MD//wD/NjP/ZjfOITn+CnfuqnSJLzl0FdYnNIIWi3Ym/Wly6RM4up4VEkZR1/FjldN38dkIZIPhOKBi5Kccp3d2SQzXfSiCiSS43oYOoBUDZixqx1SzvjpTOkKiE6Ll7rGIia8J/etC8Kkv79F78NLWOSfED3cLWkGdZ36FeVYV8omLSTaEHWXwRVg1rRfVsFGci7jdNpp8lZTyadrTv8Tgq0Cl3+eVm/oy4M1PusJJGpOvzLJf2wmvA7F5bjTdWAFKRFmN+fHzNh0TgwEqo27hPF/ILaF6xe6LwIwBujr6CGD1FH9xHFiCMZYtHm5PzJ+GDm+CvC37djsM7LpnXOo9D1vhldWbooqgi9TXv1dRxJSRGSIqLGHL8SitvBDG9G1q8iPz5QDmec+b+cezJ9Vfl75guTrzE2jeOXsT+3WX+lWqPCtY7/HI5GfiFSEf448ov8qrufioRWIGW9qMu27OBwPJjcW3jPvfwxhc1JRMwNdXKU3TSarwgGcGYm8/40hn3LIExZE9J97Z83j/TB3B+tlrKDLzpcC6kG9x+vNy6xCv2R/8y3WraOCuxWhH9yhkXFXJIEeLn91KFfcL/092GlEFlANd6wivBXxn2VU3+VgNAYl6j8AnZas8/8JBZEIdJs2CiaxDI5sSiqhELbcqnRnXYarf3rIwVShjgP8M8uZ+qEgOGahL+e41/jeauUZLsTo+TifPfBMONXfmPCJ395b8HPJpUtcpsxKFd7bqSJempz+s459rLHHBWHC79TYbxgkusFY8K3Aj7usDx25OKdhIrM7Q+WkznnHEfDfIlp3cWY540zfZwwK2xbBOPIi8U40+TarEyjiJRkkr9zZO5VJN8mxpedVsRoUjL6Bu7yO+coS792LZ5SNKQxDvt1Rvg300kHvPLKK7zyyivntS+XuGAIGSG3ruCWkecg6cc5H4lUdZdNWTe1jbZ0ghzRVJF+QmBaPaLRISobYbu7RJGkl8YcjvOFnFmpizp/vmgQfmN8xXt+DaitoRtv7gdREf7otIRfl8igZjBXnuHJtffyzOPPceXB5xhdeX7ly5xbr4pbd/hD8SWJFXEkKLUhCZ9ZgV9or+Md0IQowwx43DA6dBYROvzgu2cCKKMWkcmJygkF086sdQ6JmJVJi6nB3zod/nS8H+aowww+/j2bNR0pIAmS/mJJhx/nkyNcyEONhEJXTv1zRQolBRLDc9F1BHBQHjLMntBLr4JQ9Atv5LfTIPxxNuDdv/UJJr0bvP6hHwCmBYGBGeNd5C2YnEd2tWGfMHqqkuhu1dexVIIi7tHOjmY6/ADPxTd4o3jI3eIxv6fz3uoT8fPnQkLsz3/pNK/nPnXgo70P8anR53mkD/ityat8tPeh6UeVdBD5CNGa4OLlHgU4R0fltGJBVgoOhlB9p9WGfXpq2Dc9wIhno6v0izH3J3d5ofuumbet4vieja/56+wE9Cqnfpv7z9dqOo3Z5NNE8i2FKeuxgqqAMbYZY5vRCeoCn2N//L11+2bC3mHJ/UfF1B9gA1QZ9TstA2H7vbaXyG4u6a/iBecWgtY1HPrhSUimODD9meOvEcwiT+rwP9kvfWHWaXwCgv+5NtNj2IknM/e8EIJeW3E40IzGht2t9ZVaSihKm6OdJhGzDQTjTN3hT2IBTQm9cGAdvY7ioK/XJvzVNsdmxBUW7/F5JLEimYtrM84wHIdYVANfvTvhfe+e3otCCFqyzVF5SC/eIlkSEfg0MTYjBnpAWy0WcL2fgDfteysM+7TVlM5HJeYmJzMTrLPcaN2kE614vr3D0G1F9MeezG11Zq+FyrSu3Zo3rRNMcovWbml4yyawzhd2Top7jJQkL0zwrri4ItBwUnhz4RVFwUj5BIm36to8LUrjI/k2KZxFSmId9EfFwjXyjQJjHcY54lg+NQ8JbexTS6R4WjjznTIajbh//z737t1b+OcSby/IVgfZWh5HNiX8XlpvoyBDtmVdfS6Mo13MEX5ozPFPO5jtdoTCR8g0EQfDPx21Zua1bbiZm/CVfEd6hm81EUzTVJHhVkRPLUM02vfGYkmbqNNl7/r7cUDv6B7JMjM6Kh+CdQ37KsLvSYRSgnYSUTZk/UVwixe6WGs22++Eq83bRDxHUISsu79K+FSGeo5/jjw758Il0TgWa4gCQTIrXPrBKzeMjJDWkDTiDJ317ylnVAOCNHwWyzr84PfB4K9LJRRiRYdfBY+B9nCPW6HL/DU3rDuRFfFrdvjT8QECZgwGqw7/yE4w1pvKOat5pE827DMyIkqnn42SgjIUdeK5sZJqjv+xPiBvSGpd2sM1VDhvFA/RGLZkhxvRLt/SeR/gpepD0yhkheOU2WD19WI1gpKrtazfkYVN14Z9M/P7AVJxJxz3vSVz/JVh3x11dbVRXgNTp/6Jv2atnpnhn5/nPxXqmDmJc64+HoC9cno9ein7kli7Bp694e+Ps3b4q0i+7fa0E909D0l/Jcefc9A/mkw7/MOGEuRe8WT+HaoXzXhMNLG7HRHHPgpr/6gMZoe2LqgMwvhArKCtioUCxLI5/nUghVwZzWedQVdGk5H//jgyw/CdIcDpjbYby5jCFisl9yfBWM0km37nvfb6YgxDIhNKU5KZs0Q0nB3WWY6KI188cXrBTNDn0Pvz/rQi+ZxzHOT73Bvf5c3x67w5ep0Hk/scFocYZyhszkifX1TmWw2lvFny0Wjx+bLKtE5JiTnnaL7asG8Nwq+Nu9AuqzaWwbhcKeev9sNo+46Z4/fjTJvHaXZSxeGwIP8GNe8zwa8lDgkNT6PzbqxbCMB5p2Mjwp/nOT/1Uz/Fd3zHd/Bt3/ZtfPd3fzff8z3fs/DPJd5GSFrEV+/UZGkBUgZJtEUIUZNx1Vj4WGtpVZF8TcKfTp36K6SRot1SC5LGJETDNbv7EDrjc5Va7SyxjEg2NOzzO9LFi9Md9hRz/CoY9umta8SRwna36O/6zv6VB8sj+qx1KMRaiyOZeaJWSfrBy/rBFw6MdRDk9sK5aTzcSTDa/z0gml14AQiJC4tnhS/wTKP5ZhefFeFvFqRlINgOgYmOUV0IQdbzcvX2YCpXt9V7NlUDNCT98w79Yb+FFLV5o5f0e0Iu50z7VNpGuRwtU15o+Tn+1/MH9e/7xp//nUbnOir8eVCmrIlKW6REKBwwZIIwJSM9ZuxyBILr0e7CbtaGfXF3xmBRSomuJP1zHf6earOrejj8jP70mBXNR/OXM188fXf6LEIIbifXuR1fw+L4j+NXZ97TJW1EMUTo5WRCWI0wZmrc14c8OJ235gm/ahRgpOK22EIgGOrBjCR5Jo4v3j3WsK9CLem3kyBLL2dk/K2zdPitwXegvUdC2XB6f6wPZ45JHJNBD/DMDf8cPOhrJtnmi606kq/x+J3O8J9F0i9DwaLxnNUlR+Nph39kp9fC3fLx0rdxQq1MeRBCcPOq/xwe75dheyGSDz8aUm1LWIPQsxWMZU7960AKicMtRPM55zxJDZL+JBb8h+Kr/O8Hv8QbxcOg3ND1dk9D+CMR+87yCXP8q6CdmZE8v/kwJ5uTHgshUDJiWA7fUnn6WI8Y6SHdqId1BrMsEUF4BcfT6qKWruSg2Gdixkih6EY9tuMdtuItWqpNKlsM9XDjgszbEe2W4nBYLpC5/grTOim94u08nfrz0qzVLfdO/eZCifY402SFIY1XE/5q3OSdQvhPG8k3jzRRZIVmMP7GjOgzxmKdL0hZezEpFfMozdefad9GTOp/+B/+Bz7xiU/wR/7IH+Fbv/Vb2dk5eWbzEm8thJCodhdW5NELEUz7jPEd/mqG33h3Z2MdCoiy0OHvTM+5bYcOf5NQC2il0YK76LL5/dqhf96wz2kiEZEcE910EoSQ0OpCNsRlQ2hvn/wipg79pncVISBNIh5eez87h2+w8/hVHj//e7FzpNdYi4wWkwaWYV7SD/6hHgVZv7UQpYlfvDqL1Hmtujj2fcOi3QmJmnG8F/78hpKlCgaNZbQ8ms8CEjEzYiEKTxx0lLIwezGHydYtuv0HdAYPObr1/vo9o3lfADmV9C8z7QNPK4yzREIRCYmsOvxz+yxjHzepteWF5Ba/Pvocj/Q+mc2JRMQwEJ9mhz8qR41/zyhVXEfzHZg+fZuz7RyPzCEA16IdX3SYQ9W9L5NOPbMMYUw8KBfixgx/hTvJTQ4nQ94sHvHu9NmF32e2qEnaS+md+uff0nkf94/+Pa/mb/LhzsvTYxIKnI/0M1F74TwJWwKOa1teTr43cGx1gtFZ4v//qI7kaxZgBLFQ3Eyu87B4zL3JXd4f+3vpfhXHF1+hS7x8ZGgO3SAhHposJBPkSClopZIst2ea4fdRdRYXSY6K2c/8iW50+KWC0vsHuBW73EoVV3ci9o809x8XvPT8au+KVdDaMg5d363e9Lh8NJ9jdJZGr1QIHQz3lD+ISW4ojT+X7ZamyKbP4HvFE1/Mm79/pQKTzcjxm7hxNebuw5xHewXf9Kyk6TbSH/t/3+6AUwpRjqA1/X7YtMMPviA43+F3uDDTWUXywUEo5u3pI15Id8Bpeh2/vDlNoUEIgcORm3wj2bhxmqxopG44+PIbGR98z+x7pTIlMxMKW5Cqpx9hbJzhsDhACUUsYzIzoXSaxT1xIZLvTNOfa0PbEuMMvWhruU+KTMh0n8xMjo10fCchjRWjSc5gXJDu+OdLXhhGx5jWwfm61BelWf5cmIMQAucu1iF/FJ5Xx40MPI39OE9sEsnXhBCCJJbs93OubrWeWlLH2wU6dNvjSFKW+qmY6ZVPyRzwaWKjp/i/+Tf/ho9//OP85E/+5HnvzyXeSsgIdIkQUe3SL0PXs9SWrh0jnMXJqJbxgzcpA5CT2cV1GkuUkGjrajJfEf6iQbyNdb57O/dALK3marx1rKP6OhCtLVw2RCwhXKuggmGf3vKznGkS8bj7DHl7l3RyyM7jVzm4/U0zr7HWz3WuI9taRvilFHQSP9PnnGO728JFiY9oKwtYraKvUTn0myghaiojnEMIhQudQInACT9aARDNdeWcBRXLmaq0DIS/jFoE4exKjLduAdAePJz+MLxnE6oYI53FMZW+1/sQ/ldIgXaWtkq9sVbomM9L+gGSyM8Y9pIOV9U2+6bPG8Wjuisfi4hWYx44bng7ROW4HivYVp1A+DNwhkfBSX9ZHB9Mu/dl2l0o+LgwVjI/ww9+jv93Jl+u4/nmr52v5vdxOK6p7RmJ/c34KnfiG9wtH/OZ8Zf4g1vfPN1e3EIUI4TO6li/GqYARE349wdwOxxSq3boD0qIaF5xIXi2Jvxv8v7tDwDT+f076TNBWr5+hz9zOQaBCtL6dkX40zNK+p0vWVVjHB2ZMrY5e/qw8Tn7z0BYfawJ+e2bqSf8j/KNCP8gGPYlkZvpWtVZ8WeS9PsiXl20cJajgQYittqQ4d88DuNBuSvY00dcj3dn30dGYItQOFgcoWo69QsjZx36wy203RH+tTrz11l4n007/OAJ/3w31zqLxdbjT2nkyPHd6bHNAAlG0wuFrNMWGiIRMTETlt/px8M4Q577/fJRq47XXh8vEP5IRozNiMxM3hLCP9JDxmZML/LPpmVKCqhmtu3GUuTTQgeVwartCSFQQjEoByuLAu80LCNz49yb1nXby5fo5x3NN87Xj4zz274Yabm1jv6oIF0jklVIjo1/frugjuQ7I0lvJRGTTJOXhnb6dApwbxcY48CFqFD3dNzzn5Y54NPERm0UIQQf/OAHz3tfLvFWQyqccyghptFnuvCyPmvZCotn092Z6RyaIEtXc4Q6Uoo4ljO5rXFF+Gcc+pdn19tA8s6KyrhPZOsT/mhYdfi9AV0SCZSU7N3yJMdH9M1WANd16AeQcy79FVrBrV8IQZooXOjSr5LbzkMEgz8bxXWhxLkqo5q6Maekn+Ev6xn+2TajdSwUWirCb6LWiTNUWe8GDh+5V5FhYxdnQStjxCLpLXYWQ1KAFH4hnYaOjkz8Zzbf4QeIlZcBA7yQ+tjH14uH9MO1u6O6M4vEqJwS/uZnUEfzuQkYzcOK8C+Z34emQ/+SRWinMo4cLczW34yvEglFFojYPCp3/pdadxZ+9y3d99d/UxntAdM0hqy/sD1R5jgVcSWIKSYFHIQ6RBr7sQcHJCKmLWbvPScVd9QuAA8n9z3xasTx3UlvLflkliMVsR8rAUaUtbT+Ssh8393efEEjGpF81XjCi8ltJILclbXSo8YJ3h63wxz/vQ3n+Pu1nN8houlxVTP8k4I6T/70CDd1HaVip475Hepj7ck2z8T+WbZU1i8Vwhzj1H9tOtpQ5EWdNABwFDr8Ox185KAxM2aItbR+g2hDKRS5nf3cLdarkyrTvsiRB6I4snn4bnLBFNET/tNI5yMZk9t8YaZ9HRS2oAiHXsU63n9cLC12RCJmqAdPXdavreawOCQWMTI8cyVy4XMG6LVjrm4/PaOw3OQcX0r2SQdeHXE2X423EzqtiFFWMgzd7cG4QB1jWnee0XzWOUZZuWCwvApKCbILcuofjAvGmaZ1jJy/wtNKDDgrjHXnMhYTKYG29usuKm4dGOsj+UQwFjcXLOm35zwy83bBRlfg93zP9/Arv/Ir570vl3iLIaR3axbImmiq2iFe0C4W5/ehado328EUAtppNGPclywl/IvZ9dY5BOJs8/vVfoT9U/l62llRTOoYP93zHf5IeRf9x1fejVEJST6gNxfR5xzr5aw6t7TDD1UkkyCNJEmkcKHwItZ06q86/DZKkM1IPiFAxfVaSnrBPjqqZvgXTfvmK9K1pD9p4U740rFRQt71n12777v88xF7ACoQ/nzJ/H6dFOCf8fW1INNqhn+R8EslwfltvJB4AnqveMxeiGabj+RrztVHxfT6qP6ubzNKPeEgdL1XEf4onE/XWXIcbT+nL52ZOvlXxy8kz8be72CeiA3MuI6Se1eyKPe/Hu3Ux/iZ8Zdmfufiapa/8RlZDbYEoYiV8AQNuLcXZvgTODRTh34vb2b6xScV1+iQypTSlTzOH03j+GTCDbV14qhHBSFELesfuQJCLNx3fdsu/9n3XOf2jTOQjAZRqzr8V6NtrkT+mfOkMcfvhEKY44lDtS8HR3phHnsd1IZ9La86qNCKqRMrlnh2nQrChP1ydtpx7wpG1p//rmxzJ74BrDLum6odlqHTUjVxf3RgZopzMx1+BAiBLKaFtG578w6/Egrt9Ew0n3MOS0PSrxyF80RpYjMIY1Ddlr8WjXGnIkeRiNC23GiOv7QFeTiXN67E3AqFki+/sfjdk6qUiZ6Q27NIPE6PQTkg0xNaDWd+JaNAtmchpVgoxF8kcpPNKtOWIJIR2mnG+vRRu08L2mqG5eDkPwzwI3ZwOMgptWUwOdm0Li/NuZiXFaWh1G7tKMg4kkyK89l2E8ZaHh1OkGq9a66ZGPB2Rqk3j+RrojLRfKeMMZwntLHTpYUTF1708JF8F7qJtwQbPcn/wl/4C7z55pv85b/8l/nsZz/L/v4+h4eHC/9c4h0GGYVYPlETTWkKBD4vtiLrprM787Ka8BeTBXO5NJaAn7eSOicKhKc5w7+sM66dDoZ9Z5/Tq6P5ignFGl0bVXX329sQ5uaF8N137RSHN71LetO8r/YhWOOhLnSOCF3FyqW/gpSCVqJIUh9RWJknVlF7J6Ga4TdRUndvCB1+oeK6wy/CMa106YeFmbOqCGKiNseLoD3GW96FvlPJ+oMkqwkVTByzZJEoV8aBVZWimp1XocMvi2yhg62kVzI4B1fUFluyg8HyxewNYNawD6amfTBrXLglQ4ffTnhSetLdk+3FSLOAqsNfyfebkFFEWRVWloyVPBfc+t8sHs38/Cu5N+u7HV+jq5Zvt3Ls/2pxf1YhICPAIvOpuZ4w2hO6MI97LdyCk4ZL/+Hc/L7WxrtFawMyQmK43boNwP3J3VrOf7t9B2XKGan3SejVxn1Z7dSfJpJnrqdnkuoKo+v9OGoYNd4IYx1PZoz7JJxQTGu3FFeC4uD+49OTwCqSb7s9p7YQYmrcd5Y5fiG9HB/vX1Cb6HVgFJzge6rNncQT/kf6gGKp6Znwjv8rUMv6j1ydxGCdqwn/TqilORlDOakLL9UMf1E6ilPORUohsVbPzPE7vLKkCIQ/jkzd4R/bzJ9TZ4mkq70gTiPrr8wCi1MSfuss2mqKMMPfSiUvv+Cv8ddeXySnSigslskKg83Twjp7olqgtCVH5SGJSma9VEJhZRNVw3nBx/Bp1BopH7FMGOrBTCHo7QLnHAfFPvvF3tKEiVXotCKORgUHg4y8MKTHEn6fnnAeTv15WcXbrffMrbd9zsTzcFDQHxdstddb813Ufpw3zhLJtwDx9dl5PgmlttPPT3Dhn4H5OlVSbET4P/axj/G5z32On/7pn+bjH/843/md38l3fMd3LPxziXcWfH521eGfSvql8JFx0dgTCtOdNWl0cYqruq9zTvh1vrwxJMHwT8ft2iMAljv0l9aQyoR4jS//+n10jm3EwNXHFQh/pywZ6ZNJf2XYV3X3K8SJwuE4eOYDOATdo3sk40NgQ4f+OK3J18z+phqR+n10wTxRrivpD4UBGyfT+Xtn/QJdxcGp3yKF7/AXccNBfm7xtErS79L2cUlmNSZbXlJfO/ULgZhTQMgqtWEF4cfXi5BC1OoJGdQAwtmFAlMkBUp4V38hRN0Bz5z//JodfmlKVIPgNAl/9XdDO+E+/nzdjFdkczs3JfKdRcIfSShDkWLZHH/VeX2sD8kCyXDOTeX86aKcv8KVaLs2+/vM+IuzuxW1fJc/FHOELevZdiDM8U/RikXdEd8Ns70GaKeKvHQ45+fFn019geLe+M06ju/Z1h1/Lk5xv85E8wmxMgf+1DAFSElhyzDT7Qn/tcg/t57MR/M5c2w0H/g5foD7j07fiu+HGf6tzuLvuvUc/+aLC+9KX5FTM43k64raob8r22ypDluyg8Nxv9xbfB+pFhz2m7h51T+zHx1SS/pHWTX+Mx1RIIoRpqiVE0ksSWJ/rZ22y6+Ewjg74yBfkbyqwx9Fuh7jyV2JdmHEwRl67c0MA5VQTE4Zm+eVCIa8Qfhfer6NEPBov6wLP03EMmFwTsT1cf6IB5P7x+73oOxT2Jx0rnCphMJYXc/QvxXQTmOsN+o9CalMyU3+lkcbLsPYjDkqDilMcSqVSJooitIwnOhQkF+9lqij+c6B7K5r2FfBR/OZc51xLkrDw4MxaazWNqSLlI99Ps94wouA1jZ4KJ2d8J+3d8M7BUVp6+tCioufr/eRfPbM/mFvN2ykl/7RH/3RrwuzlEvMQQjfhRUCAuEXZU4cSdIkQgVyOy/pRwhsq4saHyGzIbbh4C+lLxYMxuXS+f06u37Bod9wRZ2u0+eKie/WzflqVYQ/KXJupVd5lB9AlK5UD1SGfWZrluAlkUAJSRZ3GV59ga39r3Hlwed4+NJ/cmaH/grGWZSUdRxIVXhZW9KvG5L+6rNrdviDU7/Ad8KLpIuVEdJqkqxP0d6dvpdcTfiNs8Dx5K7q8Kfj/VCwUAuvOE7SX9m/WSxKqLrzI6NGekGZzaQXKCWQyhdgkH6O/3eyr9S/n3HonyPfzRn+jmwhkVgsXyl9wWKVYZ80Baoiq0sIv5TSGxKOnyx16u+qNlfUFgdmwL3iMS+17nBgBhyaIRLJi8kzS7db4Zvb7+Wr+T3eKB7xuDzgRjV2IGMoM2Tex8St2rCvwtWthqkDi5J+ACzISNJOBePC0MPVBYq9hjT82dYtGO2DXF+KX0v6zQQXy7Wv8WNRGfYJWXf32yIllXFt3Linj/y4iBC1y70wGnfMDOvtGwmfe3W0UYd/UHX4u4vPhsqp/2zGfcoXW5wFY6aRfB34QiBElULkTnKDL2Rf4275mBfTuetKKt/hd2Zp4abq8D/sy+qRUqsJtjrNAqE/TlFmuNjfb92OojjSDMdTn4Z1IIW/B3WjIOOnOV3d4VfRrCphbDN2AJyj21U8Pig3MO6LyUyGcWatjjN4nxHtDFnuCUgrlXTaimdvptx9mPPa6xO+5YOzz4dUpoz0kMxkdKIlFaE1YZ0l0xMyM2FsRmzHO+wkuySN+7GwBUflIalsLXyvKuGL2W8p4bclFjtVph2DSoUx0qON0hQuCsYZDvI9H23sLIUtZkYnTkKaKPqj/ETTuvOK5tPGcjDI1/Yegkpafr4O+Xv9jEmuubq9vmfTO8Wpv9Dm3PiSUoL869A9/jg45yi1qTv8UooLd9A3xvlC9tObZnoq2Ijw/9f/9X993vtxibcDKgMfIWck/b1WRFtaVJjRn5f0A5hWDzU+QmUj5pcMaRLRHxcr5vd9Z3xeTuaco6VOKee3BqIEZ433IwiQIRHAjfa5kWwjgIf5AS6iNoJrYtrhvzb7c+Vnn7Wx7D/zQbb2v8bOk1d5/MK3Ym10Jof+CrktSWVMZrxTf23aV67b4V9G+K2PJ1QRVW53vZ9Ckrd3aY+ekI4PZgj//DK3muF3Saeekz8OJulQtLZIsgGtwWMG7WcQc+dZ1R3+YKzY+J0NnggWS4SsJf1CCFzSQuRj79TfkNELIYiV75QA3Iiu0BIJmfNEbZbwz8psmzP8Ppqvw5EZMrD+726dYNinVYpKFgmvlAIdFAzzRYYKd5KbHEwGvFl6wl91959Pbp441rIT9Xg5fY5X8zf57OTL/OH4W+vfecf+IUJvI3Q+E5l3ba42EUeWfhjb2FHBvdv5blKvE1McTCi1o4NiN77CYRh1uJJcpStShPFReOuicuof2iyQ1qIuTm0MaxDO4GRSqxWqtIEd1SNCoTEcmSFXoq0ghzfgNCwJJatQGfftHZbkhV3LRRr8c2xQmfZ1F4ljJekfnYXwS+nVEc6QZZYiRPJtd2B0NO3ww5Tw31uWCiEjnwiyovhx/UqMEDAuJMMMttrTSL6dOa7qVIwoRtC+AkLS6ygOjvTGTv1NB3nnfMGyGg8QSwl/grDTDv9ptxvLmLEeUdiC9pqEzViNsdNRg1bqr5GXn28Hwj9eIPwVuR3r0ZkIfzPOzuIl5UM9ZDe+wnayjRKKo+KQ0pZsx8u343DotzDfvrTlqbLKk1AsuWKvopYkS7wV6BdHjPWYXrzFSI+8L8IpljGdNKJvClrJyUtz55gxRN4EB4OM/rjg6tbpzJGFEOfWZZ3kmidHGd1WdGpiLMCPm72NcdZIviaUlBSlmRasvwFgrMM0/LGUEhQXXOQx1p2YRPVOxNdZ/eISZ0KTJFdZ50bTa6u6O2/jFi5ZnCeu3OblEif8NJJEUhIHuX0xM7/vO+NNkxbjLErIzeb3qwV880fbNyFuQZnB4T1upLvcSq8y0QX5/Myqc9MZ/rkOvxDQakUY45hs3SJv7SCtoXt0/1wc+gEKq2nJxMvSsQ2X/nVn+IMkPE4R1e1dm/ZFvhBiLRIvfcc58o4nsunYE7i657vQ4Q+sJO2s/SSs4/n6D8I2G780Ze0LUCZbi+Y7zpNl4yyRjFCNzk8VN7fMuC9SU1MXKQTPB1l/R7bqeDKYkm8TFovRXFLBtpoujGMRsasWu/cwNewzS85nfajB5yLOlxP+58J89d3iMdZZvhzm919KF836luGD7XcD8EbxsB4LAHyX32rk5Mh3bxv3+HYHmryuUCMcjlhEdKRfAFrnUBJaiWK7G5NbCWXGs+3pmMGd9vNBEr9eJF+Fbj3DP/H75SrivTmENd4FVMraob9SK0ghprL+eo5fTF93DDptxe5WNce/vqx/klv8etSx1VnW4ff/P5ycYV5QSESI5jsalvX7Skk90lD5JTwTX0MiGNoJfTt3LVbjDStGK6JI1kWiR4f+/2cN+xpQMcKWiPB8rYz7NnHqZy6ar5K/V8RaqNnzUR0zztDrbibpr5QFp5FkG2dqh34hqItC73qujZSwf6Q5OFok1IlMGOnhqea951E673MghSKWMdvxDhLB4+wh98Z3OSwOGJb9Y7vNEnlq34LzRG7ztbr7FRKZUNiCiXl7mPdlJuOw2CdVLaSQxDIiM5NTpTBIKdjtpWvJ2pUUp/bEaCIvDI8OMzrp+jL6ettKMMnOrgZxzvH4cEJRGlobRM0pJZhsYKT6tHBekXwVIiUwxp250PNOgjEOY1x9jSrh13fmAl31jLEL/lBfD9iow/+3//bfPvFvhBD86I/+6CZvf4m3Co0vWxlNSb3QBWp0CCyR8wescuoHv1BMYkUcurnlnEP/fGe8tJpERKSncOh3RoNStWHT7GEp1M2XMHc/h3n4KsnV57mZ7iCB+/kBDkcrkD6ZDZG6wAm59FiTyEsfnRCMdp8lfXBEp38f13luPYd+puZ384Z9zjmcs/SiNmOTY6ydxiOessPvonRO0q8QMqoLIlJU1XRHFrr6NeF3wY9g7nBq5+1WGzFhrSrzZOsWu49fpTN4iHh2di5Rjb183EYJNk2RbramWkUDGmdJ5uc6q4LUEsKfKDmzyHopvcOX8jcWJPlxOJ6se5Vu/4GX9Dc6zFtySuBvRFdWdh+qDr9pjCU453hS9NmJuyQywrV7M387j5vRFWIRkbuCz02+wthmxCLiTjD0OwlXo22uRTvs6SO+nN+tCwAALmqDHiGsw8WN+1oIrm5NydtETAlydawO55MPgK1OQj5JySc5t7ef4XP9zwLwbOe54BJ/ui/ISmY+shOckEhrEMZ407cVKLVBimNcnBuFh7rD3zBqvB7v8FDv80Qf8l6erz6JY83qKty+mXA40Nx/lPOuO+t1fSs5f6+13LSpe16S/jCz3h/47e10IbM5Fp920g4FnFhE3Iyv8qDc417xmJ324iiNMKstOW/uOJ70BQ8PHS/fFnUk3/Z801goX3i1JZBOo/k2cuqfJaIWC0wNAJ2aJR5jk+GiXYQx9DrtjbcrkWQmYzveOfmP8R3qyqE/TWR9D7VSyXPPtHj9XsZrb0z4trmRhjgQ/sxM6EaL52MdVJ355jMqVS1imZCZCY8zP5bUlquLkpVT/2nmuc8LzjkKm681v19BCIESimE5ZCdd7xwtg7a6fq9N4ZzjMN9HO8NWGDGIRExhc0pXkojzVyAoJZgUm5PuJ0cTslPK6CtESpKdQ6d5MCnZH2RsdzczZ46UICv0W3LNrgNjnTfsO68OvxLo3KKNIzm7n/U7AsZarLWoyicsSPqNcQtr1PPCTCrA1xHOnfD7uRp3SfjfgRBCQjh/URRhVYQ0GlEWq+f3A6aEf3nWfSdRpPmipH9ZZ7x0mi3VOd0XsCl9V2lJhx9A3XwP5u7nsA9fhQ/8YYQQXE93QAjuZ76j31LJtLvf3Z3phlao5viNtYy3b3P1wefpHN2H2+s59AOoYH5YfWYVCqdJZEzXWCJdUkbRqTv81d/ZeBrL55wNhox44z5TIpHhi9qSzXX4bXDHn5FXhjln/4cdVK6x1p0oVas7/KMnSGeQjaJIZdhnOjves22uolpFA1pnF4s/gbguK4RIJWcUCLeTa/yJ3T9Ym8RViGrCf51u/wHSWaQpsME3odnhXyXnh2mH3zbIk3YWhfTFKxlhw2z/Mpd+8B3FZ+PrfK14wKeD+d67ktv1GMM6eG/6HHv6iC9lb/CB1rumCyAVI/IJwjnc3Ptd2xI8OnQkERzZivDPKhmqV0gp2N7qsJdPuCpushVtIYXiRnoTMdo7lUM/TDv82hkKZ2lZe2KHf5RplBRsdZYvoIU1dWV+KeGvnfqnxn1Oypnc+FW4fSPl86+NTzXH368i+drLKXSvNu1b+y1XwPkO/8iT4J2O7+JD8KNonJs78Q0elHvcLZ7wgUZhCKqYwgxYQqCc4da24XNEPDr0x1M79M93+AOEKXFQE/7No/nKel1hrAHklPCLcqbWNLZ5MIEsTyw0PNkv+J1XR3zTe7pcvzp7TcUyZmImWLfeXHlhC6owlUrOX+Hl59ue8H9tzLd+09YMOfEGqjDW440Jf27zpXJ4KSSdqLuWKWD1ORtnTkW8zwOlKzFWE8vTkc9EpkzMOBSETj8SMdJD9vI9elGPq+m1k1+wAkM9oK/7M+evSj4obDHjpXBeaEbznbZDP5yU7B1lbHXijYhyHAkmuaUs7bFpAsfBWseTgwk4iI/xTzkOkZKU2nsZbPoeF4lSW4y2pO3zuZ+UlDh78S71bydoW83Thw6/FFjrLrToUYRUgK83p/6NrsIvfOELCz+z1nL37l3+yT/5J/zGb/wGf//v//0z79wlnjKECMZ9FoXy0W5GI3U+7fB3llfSTyL8iSiJwqK6aE0JxbLsem0t3XR5DNkqOFMiWl3/hkuce+Wt9/j9PLiLy0eItOtJf5jpv5fto4SiHeb3zZxDf4VIKeJIorVlvP0MDkizI9JyglJrLDisIT7wcu1yd9Y0KzclW1GH2GgSa8mcrb0UxNou/eHvonQmlk8EwixUjLW+eikROAGTtiezcT7wElynQDKziKgN+6RCJilSaoxzJz5AytY2Om4RlRm98T5CTK+fyrDPtrdQUi58ifnussAC0VyagUj8Zy2KRaYkpUCEKMhqLXMlWuKeHwh/mW5hVIIyBVE5oQiEf6sx77/KsA9ABcLvGgUc4wyJioK5IVBFQ5YTX5BaUkx6LrnJ14oHGPxr1pXzV3h3eodfH32eAzNgz/S5Hk0/a5d0cUuk2pVEO41pOPTPkY7GddBqxfRaise55gee/SGElP46s8XSYzoOkVC1v8LITmgJ4Tv8x7xGihOUdlZDUIUMTOVHsEj4D3R/asgmY9AT7yFwzCxw5dS/d1hSFJZkjTn+QZDYL0jeAypJf1aANm7touEivErBE37JTpeGQ//ss/TZ5Dq/OYYH5d6iKZ1UoPPa+HAGVnNr2wARj/t+wT6V9C/uUdP1v9vx9+9GnXah0LbwUa0ixmL9Yz68lVElTeOYsc2CkknTbYcZ+cksMbLW8enPD/gPvzPws9DG8T3fMfvMj2RMZibBeO347yPnHNqVlOW0q9/Ei3daKAVHQ8PeQblQXEhkyjDMo5+UQ79s27nJ6g7YMqxTsIhERGFytNNEmy0NN4YOCQEtcTrSHsuYsRkx1iNgd+3XGWc4zA84KPYxziDwXiSbkN/SluwX+8QinrmXhPDfQ6UpNlxpHw8lvYFbaSzpKZ691joeHYyxzqsrN4F3yNd+2yeY967C0ajgaFRs3N33+yGY5JpSv00J/3lG8gU4vrGi+YxxM2sCKUWIzbu4z6DUNmzn64vwn5sgQkrJ888/z3/73/63vPjii/yVv/JXzuutL/G0IGQwdXNEUjUy4HPUyHfEVnX4q/lltYLwt0Nns4jbuGDGV2fXNx6GznkJanLKRQ+2RCQdhPKmffOQ7W3Etu82m0dfrn8uhOBass1u3GVsstqhX28tJ/wIaKXKVx2jlLzj/257/HAth/744D7CaGzawWzNdhSMM2yFvPaWjDFukxn+IOmP07rDj7NTMqYib9pXdfiFw0QtdNxCAOnkEIPzaXiNxU9l2GeTNkIKIqXmJyeWQ4i6y98bzebMq7rDv+3N+Za8n3D+YT/f6RZpe2a/moikCNXZ43ewmuHXSQcdPAGaxn07gfBLBNfj3RPfh05DueIsSSAnALTa2NDJi4vlM6eV+z1AR6bcik/XcUplXDuvv5q9MftLoUAtds9uX/Xn+Epv6tDfJMiwGM/YbcX0EkmW+y4WzoRIvtN/nTSd+hHi2E77G6Ov8Yv7P8OgGas3B2FKnJT0zaIfAfhZ9lTE3thM++NFJQitkeXitTSzr23FTk/hHDx4st792D+B8Kexj22Esxn3OSEROuOo0XEfhcJnb25u+6rapiVSNIaHwXixhlReZbHkGSqs4UrLkESgDdzbh0pRvIzwIyKfmuLMTIf/NDPNsBjNZ6xBNyYwjPA/r8YWPOH3laFO8DJwDsaZP6aDfsn/8XOP+c3PDuri0XC0RBUmFMaZteb4dZihryT984Q/iSUvPuvPw6tvLF5nsUwobbFRzJx2niyftStfJyK8BcZ92nklyCaEOxEJw3K4drRhZiY8mNzjSf6YVKV0ox6FLTbyL3DOcVgckJtsqT/CJvGO68LH49lTk7+jUcHRsGCrs/n1IoTAWbexQ742lkcHY6LomPGsNeDjCTffj4vGeUbyVRCcn2HiOwHz8/TVZ3lRZHw+FeDrCRcyAfHt3/7t/NIv/dJFvPUlLhKyIvzeBbmKOztuhv+oHFFaPe3wF5Oli8Vo4l+fJ4sO/SpqzO87QyzVUvf8kyDiFkQJS5kjoEKX3zz80uzrhOBqcIlXgxDJ11tNttJQSXbAeOc2ANvDh2s91OMnrwNQXHt+xo1ch05bddyV6sHW8YhrSvqrv4sa0UvOIqpzqWIIc3dSSJwI+dXtqazfuSAzbRp451PCDxCr9aufk0D4O8NZwi/rDv82USSWEgEr/QzvAuGvOvxLZviVkr7BdwKxiOsOfwcdjqsZzddTHf6T3of5g1vfMmP2t/A+lWnfjKTfEMmpl4CUkiIJs50r5vg7qsVV5e+Pd6fPbjQb+d7Uz6V/Ob87E2W2Cte3Bf/PPyD5nt8D/RBjNyvpF/PejagoYrcdnJpLE2a1NdoKcm0Y54bBpORoVDDKNIVe3bWvus8jO/EJAma1kuXz/c9ypPf5Sva7y//AOT/aI9SMnH+mcCVE3eV/XBv3gVMRIh8s+H/Mo+ry33u0nuKmcuhfZthX7U+VX38mWb+UOGvrSL7tLoyCeV01OtHc5p3kOgD3ysdz7xMhjEEsUYMIqxECbgbhyJfu+bPaba0YZ1KRf43RtWmfNq7OqV/70EIEW3U9G6cptd9erKDE//xKuG7rDj8G4dzUMHBk+K3fHfL/++QjHh+UJLHgI+/39+xohZmgCHP8J8E4g7FT077WEvXHyy/48/Dl1xeN3IQQSCRDvbxgfhy0LdFWn2kGfeb93oJovsIUp3LobyJRKZmdMNHHE2vrLAf5AffHd5noMVvxNrFMiGTkDRft+macFcZmzFFxSFt1ln7/RzImtzl6hRHmWVBF852G7Jb6fIg2nC0Tfr+fMZyU9NrnoMl+G0fzldqeLXVmCaQS5MXb83gvAtrYJSMr3rzwIlClApx2TOadgAsh/J/97GdnZnUv8Q5BmOHHOZSQdYdfjY+QOscxK+k3zstqMlvi4lYd+bXMuK9SCGTpVr34t5VDf+NaKa0mlcmxBGseLsx0ChWHWfXlD4Ka8D96DTe3sO+qFjuyjRr5jtfKDj8QR5JICoyxjLY94e8O7q+1r8njQPhvvDDz89yUtGRMS0QgFbFQfgw1EHW5jqTfuVr6L+aTFKovnfBZC4RfMOC8JLQxx+8sC9VNEcixC8Q4Un4Rvg7qOf7Bw5lK7UyHX4jF93MChw2Ef/Z5Io8h/EJArNSquo+HtTW513EXU3X457q872u9wLvS26vfxzmSMpgwNiT93sxIUpkJKCUpA+GPV8zxA3xr9xVeSG7xTe2Xjtn51bgdX6Mr2xRO83rxYK3XXNsWZHKMxREJVZNw5/zei/lrQUa0RMnVrZhxrhkMJmRZgbYSiY+Wurbd4pmrXXqdGAuMMz0l/43TvBDNF+Ll5uGcYy/3xbjHxYMVXWIbMuSXG/ZVuF479TeUAlHqI+lOIA1VPN+6Tv39ob8Imx3+kZmwr/v1f1dz/KPsbE79WW4pAhHe6VDP8M8TfpiqSe4Wc4QfAQ7Esi6vNSDg5q7fxpcfLI/km75V5fpfEkWi7npvMsfvcBjrzbkstvZYTGLI8P8xJfy5tyq0DuFsrS74uV/Z51c/c4Sx8PwzKR//vlt86H3+nhxNlisPEhkzNuMTHfSN01hsXcyY7/ADPP9MizgSDMeGh3uLBdxUpUxCFOBpUBH00zjcr4IS6i1x6s9ttrFCQQmFc45hufy5apwhMxMeTR7wOH+IFBG9eHvm85LIU3fijTMcFvs+CnZFgyISEdqWp0p7OA1OG82315+cG9GOI8nBoGCSn470T3LN46OMdnr6GL5lUFKQbVh4uGhkhTl3Yzk/yvHWd/j3+xmPDy9GvdJEXi4SfgEXJumvUgG+Hjv8Gz1hP/GJTyz9eb/f51Of+hQ/+7M/y8c//vGz7Ncl3goI6U3vnEUIURP+6OghALa15SXhAaXVtFRMYQ1EAtvqosZ9ZDbENuTNADIY1ZXtbbQ2xJHCWO/g37yZS2u4Gqen+yIw2pvRRUno8C3/M3ntef83+Qh39ACxO52RFkJwpdRIa7Eqwra3l78JnuxGYY5/snULhyDJBsjJANveWvk6mY2Ihvs4oLz2/MzvSqu5mm4hncVJVefOl6FpI4xeOfvd/BxE1VFuuLEH1hZ2QoHw1XkV6n0OZgi/dYuusk1Jv38bCW69c5R3r2JkhNIFarjvRxmcmxL+9g5CycU6jfCGg0okCx1+mXSxNKIC55AoeexCJCrHCLwU2sSthqT/dBFPUudI5zvY8zGLkVBIIWonY93agsGDlU794HPS7yQ3Vv7+JAgheE/6HP9x8iW+lL3JS+mdk18EMxF2Mw79Szr8SIUzJTs7EVJ1kbklitpE3a5XVwi/KOl2YxQtttsJRWmYFJpJoRnlGgG0U7UQzSeCOeR8Dny/PEI7T+yG5ohROaSXzN1r1iCcwal4IZKviarDv9fo8CMU4JD5GBOvdjK/fdM/E58clBSlPTaK0xhXk/im5P3f9H+dvhnxn+1+F7vR1tSp/yxrJ6Hoj0IEXui4V5L+Lae49uZnOLrxHnRIkng2dPgPzICxzejIuefFktQCEdJLPOF3DTn/cc8BP6bh8CMRWW4ZTjTXrpyOcAgE2mocDuscZYjkSyIoAhnfCd4TFkuOph2SC7qB8I8zSxQJPvp7dvjAy74ja62ratxMMkunPXvdVQ76ucnoRMfEboZ9yHK/CG2ni8/pKBK8606LL31twmtfm/DM9dkRm0jETOyEzExOZfJWrGE4uS6kUE/dqd+PTZTHehCchFQlDIoBuIjCaLQtvUzf5JROY53BOks36i1VQsQyYaLHi54Wx2Ckh4z0iN4Sf5gKlTqldCXr5XqcDvIU0XyTXPPkMKOzQd79MnTbEYeDgjceDXnx1tZa5n2TXPPGoyF5YbiydT5GhpGSb9tovrw0a416ngaRFP9/9v401rYsrQ4FxzfnXM1uT3O7uDe6jC6TyL7DkJCGdBqMsV1U2QZR8ivbmLLsHyW5+YFkW7IsC0vGRgKB/cOkjYWfhF5CUe/x3ivsMpluSJvEmSTZt0H0Ebc/3W5XN5v6Medce+2919rNuedERgR3oBSZ9+xmrbVXM8f3jW+McpTjrD97G5yMMxRS40I/PtdueKGUjZCugBjOreihtLZGrVt6Er0RcKo77N/7e3+v8W97e3v4G3/jb9x36H8jwnf4tQZn1rQPAMTASrFVZ96wTxqFmAXInFxNR11H+Os6/Cf2NZ1dFNIgEFY6011Y2Fcj8jaGKkAitKSf8cZ0MGIC/NJjUDe/BXX7WbDdeVO01mSAHEDe2V0twyKgFXIcZwoqDDFpX0B3eoDg6DqyB7+j8W1ezi93LsNUOvDGxdG1ReRIvSX7AhyyQrxJFjArHqrl/D4xcFFdTNI84YeVAtpcezNP+BMbU7hY3fSmfdrNznNGvhm4XohJDOP2JeyMbyI4vgnVuwDKExf/RdCtLnhu5o65/wkVGURseYHCIrv4ruvwA2gcESj/7oi9DNqQymCCEPtY7vCvgzep1GG7LMbYxTIQs7CcA2YkoN02e1f/88KTsSX8N4sDjNQUvQ3MJEvDvoqcvzatAbBFvyIFNxJ73TY0TaBzDhL1iw/OCS0u0IoFtDbIcoXBOEMu9SyaTyXwkZHWqX+eDB1k853oG8lNvHWB8JNWdpyHGAbSd/iXSdoFF7N2osYotETgiIYRIVBMALVr7yU16LYFeh2O0UTh9kGOh682m7l5Ob/gBi13S8t1URYjns+u4/3iO0rjvnuV9A/caeU77t607+rJLVx69SsQ+RS3H/8eAEDMojLG8UZ+gCfjh8qPqprtzf7RWFNDxnBld/5PtfP71c8qUqBlnfoPTwpMpmsISjoEFAMqZmC+86yNhoEuJf2RMMhdh7tFEWKKkJoME52hBVu8vrQf4tmXEjxwMcRHvmsP/e5s2cMYoRUxTFONSaKWCL/vAicyWUn4pZYgUEn46zr8APDEo2384UsJnn8lwfe8f2dp3IQzgXExRk/0NyZlqU7Bz8hVX3wbnPqltt8X3IOTfcgipDLBMJtAKuWKlQycCXDiCN29uAkBCzCRY+Q6R6tmFr8O42IMTnytsmLbeMdtIDgh2aC7Pcu719hvbx/DVwciwm4vxNEww6t3x3jkSnelcV6aW7I/Tgrs9cIzKygJTijk+RDgNLeRjdEpzA2lsoaKZxXJ58E5Q56pbyvhL6RGkisUhcI0k2czmlED7UZWFgsKnBHycxrjkNpA63nl8ZsFp7qj/6f/9J+W/o2I0O/30e2eLlbmPr79IKJShklEpUM8dwR+cX5fagXBW2Wkmoo7CADwRcmyMWUUHfX3oF13xsASM49CK4hTzO8bVYB1du32M+7mWRWopkLHrjxZEv7gbd839zc9soWNvLNr921FhS8UVnKvtMG4+4Al/IerCX/oCH9xcUHOrwuETCBmEaBSEOPgXECYAqlWdr5YSZDM5goFi/AO/UosLG6MKQk/MV76NHBPUAFkrV37exQpRJGC0/z3kJvhLyX9DOBk5/jFBtXdcfcydsY3IY5vAo+8c+bQH3dtZ5dbp2TvrG+M7S4baIQ154OX9NfF8gHuZr1is8r5/bCNXGpoJ7fnDQWEJvB0NNsPB2m0daDnATisY3wAlOqPIN9+Tncb9HgbV4MLuFkc4rnsVby3/da17zmRNR1xDasGWfx9XZKH0bZTb4p8Y8M+xgitWGCcFJCFqnT4U/gfjJSEWfjJDx3hZ7DGYrfTG3jrzsJ+uS6rMZVIvpqYszaL0WYxpjrFoRrgAeb8OngIykZgxRSaNy/Or16OMHphiht3stWEf2TPzX5rZjQ0ULNiz/PZDbyv/bZKNN+9zCQyDBIn5+8QCiOROUXEfmrP6cj5qHg8GFzEoRzgenF3jvCDcauaMsopH4DZuARHOyL0WsDI1cYaJf3lZ+VznfbxdAVBURJITwDqAGL2wZw4CpNDGyu9n3X4DVK3nyEL0GYRUpXZOX60QVrhnU/18fADEXZ69Z3NTptbwj9VuFQzyRWwEBM1xp7ZbyR3mc7Aia8l/A9diUAEJJnGNNHlMfGIWFQmA0Q1JpuL8N3xbeI7V4GTQPYaO/XbDry+Jw8CIkI/2sFUZTCn6Db6Tnyuso0If65zZCpBuEGMYODSHjaNd9wGgjNk+fpovuG0wOEwRe8eHPHrQETY60U4HmXgjPDQ5W4tCS3J/rTAXv/syD5gj8E0tU79Z0mAtTG4cXeCVixw9UJzsa8JZSRffLbXkeAEqTXkOc2wb4KsUMgLZVVsZ+XFUAOlLPle9IhhjFAU+lyUSEqZxqbhGx2nujoefPDBpf9cu3btPtl/M4ALK6MGKx3iPRYJv4FBi0d2Ts2oxmg+KlIw5zLPervgxCDd/E01kq8wEiGJWoK3EkZbwz4AYMIVLRqM+y67eL6jV2AWHN7N0BJ+1r+M8RqjpkAwW2UsNCY71hk9OLrenBlmNILDVwEAeQ3h7/IYAePWj4BZpUVENtZtU+M+7+SvRVBWJ41j0GXxgyqEH44UG8DwAEVkCWkrPcGijpstSvoZs2KKDeaojAHGncsAYCMJq3J+l0/PicCIoNzx0474E1Cb2OBd+rnMa00aGZ9F89Wh6tCvjYGJLbnYtsPvu/W6YtinjAIHQ8SC0mHcvsYR/nPu8AMz874/TF/dyBW9dOivEGQN45I6ax6oBBhvlS7z2uLaKnBn+th1hH+qU+eyTXaOfwEH+QEA4LGuvX5vpTeWjc+cWehYJ1DQYGDosXo2esnJ+g+Kk7mdMoyD8vFK875rl+x9cd0c/2hkr8d+Z3b8fCHCb+ddeYJubP9+Ly79AErDvp02MHH3r4AEuu7aDZP5dINrbnTkRn533uCSCZCxZnsepCTIzEaK/Bw/sEbSzwRIK5Aq5pz6GyEzoEiWfByYU8rkprASaT/DX+nwhxSUowlTb8DmFoS7/ea8cW/q12TcF7IQmcoazfuMMSh0DkYcqZMWNxF+xgjtuPn7BBMuu30zjwjbHZf3JIef275vg1O/1MXGfjCrsEm3ffX7BSZys3tzqhKnDlq/VhEkUOgCxTkcU58VXqxw6teuu8/IrlvOGowRdrshDocpbh5OoBfMfLNc4ZU7Y4wmZ0/2AfsskWuOwWkwmhY4mWSYbulR4CGVhtRn3+EnN4P07YzmS3MJo21i1ck4W/rNzwo2fm9ZccqZHZU8D6d+pfUGstU3Ju7p6n/llVfwq7/6q/jZn/1Z/OzP/ix+9Vd/Fa+88sr6N97H6xbEeLlIWiL87d3Zf3cV+Y6IEBBfSfhLh/+4iyCMEAQMWa6XHPpzLdER8Vbu5F4OD7+trsNflxQAAKyzB+peBIyBuvv83N+0I/ytvYdAsAqGJgjBEAiOvJDIdx6wMvp0DJYM618/uANWZNAigty5PP+9xqDjZshnEXoMEQkYY8rfga2J5vMdfi1CMH9pG+cSWzXtc8eHM+fE7+6ZXtbfSk+WZ6ZKwu8664zAiWGTIrMyBkn3kjtGE7B0POfQ7z+POCzTB+w56EIjartXwawLQzWGhpxWR/OJSoefiIDW6Qi/J+/VDr8yGoGTkkYuXhEAjCP8TS79Z4lHogcQkMBEJ7hZHK58rTa67DzPSfoBcFD9dAvZvHajFYwuVntL1IA7w8gWi5ySwyDRGQxjoAWnfmUUjp1h3zt33wkGjlQnGFbj+YwBFVOYimFfn7cbCcCFOuM+wKZbFGntOeXhnfrvHhUoVszPekl/v1VP+AHghezG2Uj6AQxSS/p2OlTK+TusVZ7rQqZz5p+XxR4CEshMgaPqcSBui2jVwouP6nPH80pFALGzqvnlFWMVwj9uINYA7CiBzEALHgKcuI3j0wW00chdhz/gGrnr8EcsQNuNiEyVi+bbwB3dd9mbCL8/h5oi85RRdmxnA0k/AHRabPX3bWEgdxbd8SWY19apP1Xp2W7/KRGwAJlON3LUHxfjUiG3DtylAJyHcZ/gDGpNNN94WmA0zc+tCwtYmflOJ8Sd4wS3DqdlATHLFV6+M8Jwkp8L2Qd8QdpsZV64DtoYHJ4kKJRGlqtTGcQVUlsD1HPY523NGs8a01SCczvammTy1EWRdVDaQOl6Sb9U50P47bX05mzxn5rw/8zP/Ax+6Id+CD/90z+NX/7lX8Yv//Iv46d/+qfxQz/0Q/hn/+yfneU23sdrCSZs97ci6feodvgLLREQR0gBYhZC6irhnyc0Xs6v2jt2/j0SKKQCLTj0G2PQ2naOT0sb/1Qh/MR4I+EHqvF8z86+WxUw4yMAQHv3YfRFu+ySNSF28/RBGEHuWif64PB67Wu9O39x8aHSKR9wx5Hx2X4bBRIxQAzClRlNYP+2ioQAsxl+LSoPVq+Rr8zwe2NGT7TMIuFPjpdI3mIsH2C7BXoTxm8MIASKvjUKC45vzDn0A95EEPABbraQY8DYciQfYAtTxikf6oz7OGdgDKViYBGeBGWiBSEIoVcaFOnaaLYqgmKZ8HtvC8CqEzTc57Xd2IAq1hZv7hWCOB6PrEfFs9nqIuxIT6FhFR/dqqO7duaMNSAmbDdW5Y4Ibk/4AQIRlV3ZsU5gs9uLud/gJD+GhkZAIS629nGlZa+1m+mN2faoHFQkgAhXOvR7eOO+g6pxHzAjqEWzeWOvI9BtcxiDWrd1j+HY3oOqM+5+2645l/wXsptoRXZf0xz3JNMcuE3eac/m97ssnitiVbv8jBgeCOw4w/XFeD5gvsNf3k/tjeHKnv3/cQhEwboFLQEqnxHrpg6/0fa4k319Fb7z7LukvtASBEW5NAspKBMmpjqFIapPG1hAGdu3QnkgWICxrM96V84QTisGz7tWEf72mgJD1UBuHc6qO14FZ6+dU78xBrnOzsyD4F4QUACpJbI16opt5PweBDqXY8qYVcU1kT9jDI6GKQj3HsO3DkIw9NoBbh1Pcfc4mXX2pzn2elsaMW8JgouIPSOMpgUG0xw7nRBS6lPF/kl19pF8HtuYNZ41lNYYJwXCgINzBqWtrP9cvkvZ9eki4WeMoI0+l2i+Os+ANwtOdQf4t//23+JXfuVX8IM/+IP4tV/7NXzuc5/D5z73Ofzar/0afuiHfgi/8iu/gl/5lV854029j9cCxIXtloGVhAqwRnB6IWc84gEE42iJ0Eb0OZfy5Q6/I/zO9C8KbHdcsJlDv1UMMEQNZlmNkIXNmHdGf0RkDbdWkDZP+PXtZ0tZsBndBWCAsAUWd7HvDMFWZZlHgiEUAkIwFPvWDT04qif8wYElXXVy/phFc74FJAKAEQJic2kJayX97u8qCEsHftvh57M4PmK2qKN12eH3t0xP+NvpyfwNz5iyw1/1EBCcYZNHjnYmdnLPxtuJ45vlDL9quVYhAZzz8mezNVYNQfWEHwDgtmVlNF/Dz+ed8lPeQhwIBL2OjfKC2XiOXxmDyBFDtRDJF7rzOGCiLKiwIIJ019R5z/EDM1n/i9ktZCuIT3V+v7oo0wbNahsmYKSEKVLbDd6yw0+VotfcHD+zZZ/qD+cN+3aDCxCc46GOnTe/mcyuNSoS6yzPgophXzPh9x3+sU6QLizwDY9A2Xhld9i79d+400wOhpPlSD6vpHi69SgiCpCaDMc4gve6Oq2sP80NMvcT99soHfo7LC7jJwEgTOcVDU3xfIZoXmmhJao6xyu7wPc8Tfjou+uXEIWWJWH1JoCldH5aH4FHqgBkDsNj+98byDWAssPPA7vT3KWatCuEvzSBXIN1kn7AztZnKkVWUwSWrsueucPFOa2UTvvvmzYS/sA6zG9AEM+jO86JI1PpRqNATdBGb7T90kgoLV8XHX5/76v7javYRs7vIUggUdN7OqaNWJFDP80khpO8POfOG2HA0Y45bhxO8NLtEQaTDLvd6NwJFOe0dTxgE3x3nwiIAg6pzakM4s4jks9DcEL2bYoizHKFXCqE7h4Xhecn61fa1I7JMpewIs8hmi+X+k0ZyQeckvD/+q//Oj760Y/iF37hF/Ce97wH3W4X3W4X73nPe/DzP//z+BN/4k/g4x//+Flv6328FnDO7YwIqES7qc7OnDGX1BotV+EOXHW+7PBn07mFFp+e2L+7kYAw4LarKuY73SGJUxn2IYjnCATx0M7CN4BdfNR6FaSjcm5fl/P7V0BE6PAWeqKNyaJbdQVCMIQhg2BUEv6wZo6f8rSMNiwuLsbxKfR4PF/95gGIGIQhK2UVm3X4aZMOPwCIAMbYGWfmnfIwI/xxOgCrdo2KDOTn0Csdfs6p2bOgAm1gfRv2bMc5OL5Zjj5U4xsFp/KhYZxviiA+5/MwByfrbzLuCwI2P5tcge/w56KNKLCqEOXO901l/YXUCB3hr3b4gdkYQrVYwRihCF8bp37Akto93oOGxgvZjcbXlQ79C/FSxqwwZOS2E278sd/y+VhdfnacSdZEJQBjIKVAFbLtDfv2xAUQER7q2GvtdnrLdlyNBmWjcvRlVSSfR8QC9J2D/7KsPwTJDGzFeXD1kr333bzTQGryMYbT+Ug+bTRGjvDv8T7eEtkC2Av5DXTuUdbvu/udCDbrXdsP6pU6IYtwYeTo4dCOF92Rx/OFD6/gcNcPyRymeo8lwnseY3j08vIPn+oc/9vJ7+D/OPnvluAwAagCndh+ltKz+LoqdJHiP3xB4GOfJKSpXprjJ5cuYmDK7hYJe57458Yc4YdPfVi9KCxj+1Z0+L2pW53UXhkbF5jldv9WdfcBzBU+Vn1Xrlbf78+rO86JWyK+gcJgEcoojIohbibXcTu5sXZuXeoC8jVMBFgHQQJTOVlJzLeR85efywRynZ/LqMSqbu/JKINUZqV7/lkjDgXikGOaFtjrnT/ZB2zzIS1U4/N+G/jufrflfD8MVo5uNSHN1bmpKjgjZEV94fS8kebWrM/v23nK+q1KYvnf7e9CZ97ht4aw9zv8c7h+/To+/OEPN/79wx/+MK5fr+903sfrHBV3c1aR9C8a9qESn2fnlRlkEMEQA8GRfodS0u86/IwROlGAsBJ1kmuJmK+OzqmFlmVEWwkR1Bq5eRAPwC4+ZrfJyfr1YGbYB9gK4n6wussvBMNOO0QUcRS7V2AYB8umpWeBR3D4ivUE6O7PEUNtNIiAluv6ej8C4oGV9BNBEIN23WLaaobfE35tu/qV40pOAUGwHX9/y8zjPjQxcC0hnPs8AMD9llqENpLN77/zBlh3yzXOZbXYs+aGYnxcqkBUhfBzRtBe0q8BMANBvPmc8MWHvJ6YCdZg2mfM3Ax/4LLUvT8B35Dwy0KWbv9e/WKMAWFWBOPEbDXabYjPQX8tjPuICE/Gzrxvhay/NOyrIcisyXDIh5drDdD2D13iVKYydB1JszJ0ZhUllXP9MLOGfbvBBXBOuNy+hIBCFDrHYXYAkomd/Xb3o1UO/VVcbJrjL837Ro0FrQev2Gv29mGOL36jcq0YBZYcozi6jULZY9dzp6kdnTAQ4OiwGI+5kYuX8lvotJzh4Cmd+gcT+z4/T+8l/X09/4hfdOrv8Bb2ub0GX8nvzP7AuJ3bN9JF8hUbj218PXkBU51ioMaWeHMB0hLCKLRiuz118vnf+9IEz9/lGCXArRNdGSOw4MShMN/hJ2HPk5BqCD9jsOkCqxfrM28BvXIBHbAQkxpZ/1IkX7gh4U9WqNA2MJArTAGl5ZmTZU7C+iWYzWW6yigMiwFuTF/FzeQGMpUhkSmma/ZBumLJecq9t0HAQuQ6R9Gw76eR8wOAcOMC5zPHXx/Nl+YSx6NsKWrytUArEth9jcg+4Jzr1b3P8WtjcDiw3X3v+E/MdrW3gY/kW3SXPytwziA1vi3GfdOsmPtdz1PWXyjdfG8gnMpbYRWUNtBm2STwzYJTEf4LFy7gm9/8ZuPfv/nNb2J/vybf5j5e/6h0gimYDZ8uGvYxYmV+dUACghgk9LJxnzFgXtLfnjk97XQjdONg7jM7ojniqhlmZtjnt5sLrDPdKOf47zjCP5on/ADQFeu7/K3YRT1xgWK34tZfQdgo55eIKUSLz+b3rakeB5gV5UcshBT2ODV1sj38XLgJopkUe9G0D57wKzBi82b8xJDF9jcKpsezf16I5Cu/j5P1AVhTZdbGQDAGE7YgO1ZFQAA0D2AqKhI/1w244gczCFd4OpAj6HWSfvt59dF8TGZgXm7c6pRKE+/UXy1WNUFpg0jm1gWBGHRk36uMhmB8rsNvzQ2dQsJdH6c17vPKh03xRHQNDIRDOcCxrDeUnEn6lzv8qx8QzhTtFHJcTgCDLYS0S0m/O89EAEpPAC1R6AID56S/F1wEI0LAOS6Gdo7/VnqjHDcBcaQ6K+PoVkn6gcoc/5xTv4OIQEWyZCDo0esIfOe7LFH+7JeH+Mq3xoDKwMd3wSZ3MczsvbETzSKFBo789HkHRIQrYh9tFqMwEnzHFjXGW3hGGmNwPDb41nWNb7zq1QTO8d91onfl/NkSpsvnwMPuWL66QPhJKTvHb5Ql/hv8zpnO8Y30xfJ/D9UEttOuQTpvdOr/+rMjfPWl2bYOp1iS4zPi0EYBmHU0ibtIvgXCn5kCEsYqk9Z0qr1rvlKzLn0dvFv/4ox3rnMwYiXh90WNJmwyQuAN5FZ1yKWWkObs5fAzp/71HTupJU6yY1yfvoJbyU0UWqIremiLDgIWYFgMan0PPHKVg15HlthlSkLDdX8aOT9gi68G5pyc+hnymu72YJwjKxTi8PWhnjhPCM5QKI10S2K+iPG0wHAyb3AYcIZJtt3v5iP5GtWJ9wjByJk1vrYdfm0MJolEGCwUks9J1l8Uq+T1Z59UYE0C7xP+OfzpP/2n8Ru/8Rv42Mc+hul0tjieTqf42Mc+ht/4jd/An/kzf+bMNvI+XkMQKxkFrxC8RcM+QRyh6ywEjCMg4Yz75uf4KU/AVAEDmiP8NON2dsYb2F7Ov2jY58HEWolxOcd/8BJMkcE4yT1VCH+1y6/WdIkAoLjg5virxn3GIDxwhn2XauL4RGu2YNN+3t7+xxhtXd6FPc6bdvjNnEu/AYjPV0kZt+6xmC8EAEDiZP3CGRgCAFLXxV4g/JwRrD/i6pu8waxT7Of4ARdTVy1EsNm5ZwAYMohWxE3Rmg4/d13kxYWQ78oXPEIUzcyETLQ54S+kRhvuuETtslAmXSSff9ALxmx2vDt/lFMCnHaGf5JJTNPNpXMxi0pC95+Gn8OnRl/E15LncTM/QKZzaGMqkv4FgkxYimecA+MwMrcGfluCiFl/PGPQLSX9rnAjYpDKwPIJjrIDF//ZRlt0rLkjI1xycvib0+ugfAzD5+X8XdZam00+M+4bLBetmAC0AhXNhZn3vb2H97/D3h9+74sDfOOrt0HZECbsYJjae1mvxrDPKw+IqOzy592b9hiskPRrbfDCbYP/8S2N/+MzCv/2Exof/5TGf/6SwQ0XxHCpb4/pxEn6d6U9V1J3XQfpcKnj7WX91/O7FTWT7Y6TljZWT+s5s9EmfC15AUVFtuw9C6wRX1HK56sd/pt3Mnz687YQ4RMLBlM2N9YBuLEgLcFAZYffcC/pt79/SKL0L0lMDmhjt30FhCBE4WrnfPv9HBoaqZy/3xS6sJF8jmys6/C32/bvTTP8wMxAblU8nzTWsPBeuuNSGnz92XEZJ+hBoLXy80ROcT15FXfS21BGoyf6aItZMkbEYyQqWdnlT3X6ujDsq4JAjSkJp5Hze3DiG6cvbIO67nYhFQ6HKVrRt98b4bUAYwQG4OAkOTXp1MbgcGh/H1GR4gtOyOXqJIRFnFcknwfbII7xPJDlClmuEC6MiJyXrD8rVKNKhDM6lZniKihloLV500r6T3Wn/dt/+2/jG9/4Bn7u534Ov/iLv4jLl90c4J07kFLiu77ru/C3/tbfOtMNvY/XCJVFnRBOom/0HOGXRqHFI4jKg68lIkzyzEbvAeDOqd/L23Wr22jsVRiJgG0/vw8l7cKcLxJ+vrYNyroXQJ09mMkx1I1vwDgJe7XDD9guf4tFSFW+VoEwZ9znZuf56BAsm8JwgaJCdo0xMMbMf6ZWNmGAcRC3kXwhF0i9IeHaGX5bENBBhcQa7RQP1Z3nANmCRmWEHwCQxLsAADGaRblRVk/4iQgpJRAyRHex6FJFxfyt2LuK+NWvA5hXfAC26wuyntMGNlovWLG4YlEbCtYjoQ6cEbjzBahK00s5f9BGFM4+33fpeUMBoQqpNHqOVC1G8oUkyiIOJ9vtL4xEhAA6tgTxNJJ+YxwHB0HqzbsHT7fegpfzWxjrBOPsOp7PZgWpNovKzPpuTWb9YjxjFcQFTD4FFkdqNgBjNu5PG1Mx7fPHnWB4AEoHOIRVmlwIL4JA7kFMuBJaonw3uwMVPAHulCmbGPZ57Iu+lWKbDFOdll4CHoaHoHQMxLuN3e0PvL0Nk03xhWcV/ts3OZjo4u2PMAyndYZ9y9v2eHQNX0uexyi8AzCJcdr8SP7PXzb4wxvzNzbBgIs7wOUdwgN7hMeuAInJoGFHdnZy25lKu5cQJkMwoxBkYxTxbJTmgthBm0WY6gy3ikM8FPp7oHPLZ2xm/rkC1e5+n3cwVJPSs8BwASoSdF3By0fzjSYSn/j0EbQBnrwi8eDlEL/zFY1BQsBCN5STQGIScOJlh187wu87/D71YaSnmOocfaw2cPXotjmyXGOSKFzYbX4OBWTd+nfDPRCRi+SzXfY0s/ffTWf4C2m9CBa7ZX4/ACBTGToNoym2O35vHcTPf32IL35jjOFY4bvfO7sfM2JIV5jXaaNxnB8jVxl6Qb+26MCIgRPHsBiiI7pLr7FRdcXawtxrjYCFSNQU2ikZPU4r5/cQFCBT6dLn3isEZ5imEoXS5ZjkcFIgyRT2+1umHr2B0esEOB5l2B1n2O9vrxYdTwucjHP02vPXvxAMeSJRSD1XCFiFQmq3BDwf4khupO61jubLCoVCa/QXTEk5t35J4+Ts4h+1sR38pm77eSQVKK1tDODrZMTorHEqwt9qtfDv/t2/wyc/+Ul86lOfwo0b1hDqwx/+ML7/+78fH/3oR183M1n3sR3IhZ8bY0/6ycWH0JqcQPYulq+RWqO9ENkXsxDGLEv65yL5GlBoiRaPyhGBjaEKUNBaIrSWNDMYT6AbwK88Cfn876N49tP2fa0dUDD/oGBE2BFt3MiOsI7WyJ3LMFyAFSn4+BCqd7GU8xf7D84VPAqjEDBR+iAAsNJTHrjtt/GIAQuhnaR/vUu/7/BHlRl+s9yBrXT4GRFMZUGcxLYTyEeVDn8D4Z/qFN0wxElWoIvVCwtfMS3mOvz9pdcwsLLbSoS5otLSZ4YdKABshaSfk3XTrx4BL6fPw/acm7Yn/IFMSq/DOkjtEiVct2aR8EcLBaiQCWQuZsy0naQ/277DL5UCF4RIcExTCbFGOuzxQHABP7b/J3EoBziSw/I/lhTZc+aC6Nc+5Fbexnlgz6VtkzXc59qOrUaHz2TYhZHW/0DEoGyEw+IWAGA/uAjGqXQ97oc7aPE2EjXFbT3CNewCmHWUNyH8gjj2eA9HaogDebJE+CFCUDYBFQlM2LXXp1au6y0BLUFFgu9+eAwtO/jSi4Tf+aoBYxquUVQbybfDZ3eSfd4vyTHfu41x8mDttt4dWLJPAN72EOHKLnB5l7DfXY4smrjrocViRM6Pogg7yFt9xNNjhMlgjvATER4Kr+CZ9GW8mt8pCb9118/svWgD+O7+Hu/jrfHD+Mzkaxhq3+EXgC7QbbmRg6lCUWj8x/92iDTTuNQHPvIOhTtOXDOYsiVFEyMGaSQEBchzR/iZBDQQ0ewc9IR/olPABCCj1o7BdFoMhycrIgMdQh4hVQkynSLmLShtHfoDCmYz/GsIfyAYwsCqFCaJqiX8gI0CnMgJ9sL92vVUptN7Jsuv3LTX/2C0qKbgKHRuPUlqvnsixxjLEbqit3KtF7MYUzlBqhK0xHxBUWoJZSSCxevu24yABUjkFLnOEfPZeiBVCQoj0WLbFzgBOy6QqmTpc+8Vi9F8SmscDFKEAf2RWodzxhAFHHdOEvTawVZGhcZ19wlYIvWCs9Kpv7VhrSfJ5Pl3iYle8xn+JJOzteUCooBjMM5xebd9JvuulIE2QNCgkrAdftV4jzrVd2q/9nxzXjf3pKX6gR/4AfzAD/zAWW3LfbweQMzKeF0V+tV3fj/2wu7Cyt8sxefZTixBRV7SP9/hXzb9m6HQCheD7R+ARhVg3QvLf2DCdqOMxrwf+Dz4ZUv4vVM/LXT3PdoiBsupjA5sBOMo9q4iPHgFweF1qN5FBE7OXxfH1+HzcXxGa1DkuvmMA7CmdcYVV9ZltzOvABALM/wLpNkXdQjG/tSVv02jXQAuWUErgAmQk/SbaLYwsw7REjtRB4fjA2hjagmjAQAypTJct3pQUQc8m8wZ9gG2uMKYlS5rrSDYikg+rJ/hBwGB4EgyNXen85J+FbbnkiI84Q9likIty9Y8isIgijjCY3uOq9Y84Y/F/LURsQAnbjFmfIe/mLqu6eadnkIatGOBbivANJVQxqzswFfRZjHaYVzK+wF7Dh6rIQZqgqvB/HVkXEGIVkr6GWihaLMNOCcUEgiDAAEJFEZiohKXFkAwTOAwt0qT3eAiGAHErCpFMMKV4ApeVC/ghh7imvvMk6bxhAZcFDs4UkPclQM8Gl1d+CuDIQJLBkA6AJQEOdJvtdSwzvWtHj70tPUj+MpLBv/lywYtV/PxhN8YU1uMICI8Hj2IL06fAb9wE5MX6gn/Z5+x589T1wh/oiEKz8MrJbqsVRa3ZNhGHu9Ywp8OsagveTi8jGfSl/FKfhvfZd5hFzzEbVFVrTcaq3b339t+CoG7bode0s85KMvQdU7944nCf/nMMY4GEq2I8KffmyIIA+y4xeQwAbQslq6RruiBNC/z7pUn/JX7aJvHgASmKgV418aErEF7g7l6wBkHGoVEWsIvXYefUbtC+NcTjU6LIy8kJlOFvX59wSygALnOUOgcIZ9nGlbuX4CfYpzGY5oqHJ5YFcXifnMSkKaANBIBzW+fMgon+TEEibWdas4EjDIYydEy4TcFlFFzHgRf/MYI01Thu9+z822T1frRjVxnJTE3xlg5/z2MH/hzpzhjwg/Ye7WXdw8nBSZpgd3urPB8lB0i5i20xbKKaxUmcgIDg+6G99NvNzotgaNhhoNBiqsXNi/MjHx3v6E7bd3bN/MHMMbYnPoV0ZxnAc5sx/21gjEGo2nRGDkahxyjaYFpJs+kyy+VhlYaPKi/5uxYgyXpZ2WOqJR5XXmKnDXO5IyUUuK5557Dl7/8ZUwm5+8+fR/nCGLwTtkczC38ZheAN+wLF+T3AQkIxiH9HPSGHX7vah4vyvI3gQEoqCm5ug7/ugxmdumxOTK8KOf3aPEQMQtXZpl7FPs2Izw4ug6SOYJjO5tbJfzGGEgt0Vt8+GoF8sfBeSkIEqXqYK2kv6ia9vkZfg1aIKD2+BCYAYg4DGZV4jxoQYkQZAz42Bn3OdM+HcwIf6JztFmE/VbbxhI2VJrt70uzxRsR0offDh1ES0UQxsjutjHQpFc79GM2w7/KzDAQbMl/QbgoPRPPy0yNKyAEKkUhm0mC0hrtSJTneFMkX7kNTJRjE9TuwoBAxmwc/+ehjUEcCkShQDsSS3O32yJiAR4ILuBt8SNlRF35XTBgoJUj/PcKzmbpBTNZ/6x4k3KGkSOvu8EF6xlhyxAQnOEKs2qUm8VMjVInm1+Fi8EuAOBWcVj/gqAFyMRK22Fl/ibqwsQ9mKgHBB3A3Se/9+2Etz9iD1jiOHLfdbRTkyN3ZoKLx/pxN8fPdg6RmhzFgifGrWODl+8aiGvPYfzwpzFSqz0mPOHvsFZ5jsmghdwVZ8JkMZUAuBpcBAfDRKc4Us7YjwuQkYCaj+Srw9fL7n4Pj4RX0HP7OHLSaPtM0SXhv32Y48XrKRgD/tR3tdEL7HhWt2XrzdoQJqlauoeHLISsNKMLzEv6gcVoPrKGg2vQZCZYB0EBJmoMY4yL5LOFm2TDDj8wKzCsmuP3BnKLJoHALL/+Xhz6r9+afe7ifnPiUNoWMxYxzIdIZIIW34w8xjzGpBgtGeEtGtgVhcZnvzzEV5+Z4OWbp8ynPCNw4pjK2XVWmMLJ+e9NIk8gZGviFk/1uQTkhYY2BkfDFJzPnrk+KnEit1eVDfITDPKTb0v822lAROjEAgeDFNN0M6M9YwwOB6l9rjSQWc4JSb7ZfHpeaGSFbiTGZwXO2D2bFG6DXGpkRbMiqSrrPwsobaBM8zw9ZwxKmTON5jtr1//XG7Y6I3/nd34HP/VTP4W///f/Pn7v934PAPDJT34SH/3oR/Hn/tyfw4//+I/jQx/6EH7+53/+XDb2Pl4D+Mx2o52z7DykVnOGfR4BEwjAkbsu8KaEXxoFcYr5fWNsPieJesJPjK+M5gMAEiHYhUdnb2sg/IwY+qKNTG1A+C+4rPmjGwgOX7X+B60+dGe2/2OVos1j9Jeq7WZGzokBsLF8zBP+VZJ+Y8qCAAULEsnFLjDj1sjPdeVNpaJJRCjaNmFDjC0JKmf43W9rjEGmcuyFPfREG50oQlYTCwTY5hojmuv+J09+J47+5P9z7pgAlvBzEBQAhXm3+zpQGaPXvDjkjAFmfv9Lh/z2vCu97/CLImlc4NiZMoY4ZEuE3xevFreZ00wER4yhCC0ZCraQ9WsnWwsCBiKUFfSzyB2ug9EGxHCu1e6qdHI+ms/iwKUK9FkbwvA5zwJBBleMfc+hGiLVuVUIuPdvSvgfCi+DQDiQJzhciueD7XKHXUC0ABE5eXv9MSEifN87CN/x0OzvvsM/WGEm2OcdXOA7IDJ45NLXcfWZT2HnzjOll8Rnn80RPvlFBA/9IY7NAM+mzRGLADB2oyYdHpd+Fb7DDwBhuryfgjiuhZcAVNz6ybrrr0tiyHSOr1e6+0SEDmtZs0rMDARBhG44f5/4vg/u4uqOhD2m9j6x03Fd/jGWjPuAWSRfwM1awm+I2aSBNdjEOd8jYiEylSLXGZRR5TWyqaR//vvWPKPAao3epC6gcW+z4Ndvz4hnkum5hTMjBgOz5NSf6xyD4hghjzaWvQYsRGEkxguEM9f5XEH3eDj7rq9863SmpmeFgAKkKin338v5t3XnX4RgARLV/Hw59ec6QjpOCgynOTrxbH2Wqwy5zjGVE6g1iRVVeM+CXKWNMYWvR8SRQCE17p5sdpyHkxzH4wzdVnPxLOAMSbZZ7n1aKCj1GhB+bk3rXiuSmuUKUq7eLy/rPwu3fh+Rt8q0T+uz3f9cqm1El284bLxrn/rUp/A3/+bfxH/4D/8Bn/jEJ/DX//pfx2/+5m/i7/ydv4O9vT385b/8l/GX/tJfwtWrV/Gxj30Mv/7rv36e230f5wXmJf1WLlzNEAeswV7Eg6XZak4MIRfII7vYYtkU0Kok/LqB8OdaIiSB8BTz++DBUiQf4OZvXPTcOni3fqCZ8ANO1k+0MmIIAGTvErQIwWSO1vNfAADkFXf+ws18Xo52lz0LjJkpDhgDyJG80Ll6y7wxF9zKjd38UViRCxKWZeOMAYyBaWvsZWi2TwZA0bWE38/xl5J+11HPdIGIBdgJ2ghIoBuFKNAwJ+uI46byTM4ZtDQwBoh4sNo8pdrhbzguwpnDzf2bK2BQe54U+oIGlzmEMZA1D6280IgjDiE4uCP8yhF+ZTR4TZFCkDVJ9IsF2bKFhrpOaxMKpREIKscM4kggDgWy/Jwe9gbAFr/bacAqBcV26dQ/IzeegF9kHVA+gRCzbQmQo6WAXUfsbxWHpWQ+JqvIKV+bjvDQN34b7cGNpW1osxhvcVL+byQv3vM+ERG+/12EDz5F+M6nCJ3YbvM6b4HHY1sojC+8iouD53H1+d/Fk5//OFpf+S2kD/wO+P7t8rU3ioOV2zDr8Mfgcx1+ew+OGs4779b/cu6/i1wO5PJYUBXz3X0bTcqI0Hcd4GHFuK/D0tIX9l1v7eCtb2mB8ilMZURspzuT9dfdw71RUyhQRjBWC8adaoefsY06/J0tOvzcdd5TlSLX+ekIf3uzAkPoCOLic6fQxT2V4owxePXWfKG0blsWid4wHyDXOaItjesiFmFYDEsCbYvG6RzhPxrMvuvm3RwHR2efWb8pBAtQ6AK58zHYRs4vpcZ/+cwRnnlxWYkjSEDq/MwJtI/mOxqmS3PoqcrciEKObIUR4yIylaIwEsWKmMLXK/rtAEejDMPJ6nNokhS4cXdsj9kKIis4c07964lsVigYnN1cefM2+XSG10Z9keZy7X7FZ+jWr5ReeY9jjKANatdpp8XqGMA3PjYm/P/m3/wbPPXUU/j0pz+Nz33uc/iLf/Ev4h/9o3+E7/me78Fv/uZv4h/8g3+Af/gP/yF+67d+C08//TQ+/vGPn+d238d5gZid8dYaXkBrKlROao12w8O+xSJkgXP2h4EYHoCUdJF89bO+hZHoiHj7m6OSthveYBhGPITZoPLHrzxl/wvjoIox4SLaPEREwXpZP2Mo9lyX30X9FU66bozBWKbYD3o13X3/freoqJD0wHWEyWibTFD3NtfdN8Qg5sYjaJnwE7exaDDgjC2rODquw++d+r2k3xHsROXYC3oIiINGt9EXAQzZqvYilPMJ2PT35dwXmPTKSD5g1uFnesVx4VYCXi1a+Q7/IuE3LpUCAFrIlgxxDKwBYCsS9vzzyofWLLqRgy0lCwjn1C/doj1351k8aZCR10BKK+f3h5EI6LYDKK0ba0D3Au10H+e5aKGKgUTXSfrHFUn/gTwBYOfsWTpEhe/bsQxjcDWwx/JGcdDo0N8/fB7dwXXs3/x67XY8Hb8FAPB8dgPpihi0TcGI8J1PMXzwqdl1ty494C3hNcAAr7QFDoIQSeciXooD/M+XNKatAl2p8aNH9hw/kCcr70O+o97X3Bb0QFBBXHb4RZHU+oF4s75DObDz77AeBSRlo9dEpouyu/8e19338LL+co6fCTBIfPh9Pbzv7T1813t2QCoH+eKtw27HftcgIVDNWJYn/JEwyE1dh98+n6ykn9l7w5qLZJsOP+Dd+kcoXJdaa1MW3zbr8K+PAQRcd1zlS/F8qUrB7kHOfzyUmKYanDfvOyM2Jz9PVYJhMUDMW1vfF0IWIdcZpu5ckEZCGjlHoo8H8+f0l585/y6/1qbW6dsrHDKVoijd+TeT8z/3SoI/fDHB7395uPQ3QQLSpROcJQQnKGUwHOdox/PnRaKmpQ/DquSFRUzVFMwOdmG6Zozo9QYhGBgj3DlJao3ttJPxP39jgMEkR7+z+rcVgiCVQiHX3x8m03ylm78x5kx+f84YlLbxf68FRtNibUrBWcr6lTZL6sxFGOBMJf251G/aSD5gC8L/7LPP4i/8hb+Aft8St7/yV/4KsizDj/zIj8zd/IUQ+JEf+RE8//zzZ7+193Hu8IZugHYdfjbXXTA1hn0eIQ9gAGhn3Bcc2fgv3eo1doiMsTPy28KoAhS2mxceYrMOP+tfQvj+/yvC7/xR0Aq3cU4cvaCNbAN5aHFhZrxliCF3cX1TlaHFQlyMdpa2244oUJkqQE7Sb4xBELZK2X2TcZ936FcinM8JNmZpse4VEGQMiBgMtI3Cc7FvRc8auPHxoZX05jPCn+kCARPoBx1n6hegzzgCzmrn3o0BGGNLXfbjfIxhUdMB4QxKGxhqPs9mLw5Lgr7KqZ9xQLuHAmkJ4eexWwvki6iU9bcpW6rmK6kRcIY44ODjYxAAHcQwbuRCGoWgxneAE7PyZncdFU5JEo9Xd2o9bEyhQRTOL+RaIbdd/nMw7tEG4FhWR5wlbAyj/e+zrqw914wxuFu4Dn90EVwmYG6m1qgCVEyheIxrjvDfzA+Wcu49Ahe5GdRI2QHgktjFRbEDDY1n1sjlT4umbfPo8BiXUnu+/7edS/jEU+/BLz24j4lg2E+B/9erx/jg0REu5XZm/NaKLr9XSey481cGLYAYtAjtf0e9rL/NYlwUuwCAVwsn62cBANUo6a929x913X2Pfg3hJyXx9KMC3/muvvXskJm9j1Q+f7fs8PPSO6EKL+kPhZl1+Gsl/ZmrJ9kC4ir4jnteGBQbRD2FLEKmMkgtwYjPKW3icIsZ/jWKAkYMGnqOeGujkZv8nub3X3Xz+1cvRej36tUNnHjZ4TbGYJAPoIw61Rw7EUFQgEE+gDbaEn4tFzr89tn69ifsefPcy8lGiot1MMbg8LjA868k+OI3RvjU7x/jt/7rAf6X/+8t/PJv3MCv/K838dzL9d34qZog1elWcv6Xb9hn0SRRSznhdkzSnHnHXHCG3GW/+2g+wCpBMp0iMHY8cCLHa1WKgDWFnMopQhYiZCESOd1qHOD1gF4rwHCS42S04B0hNW4cjPHS7RGICBd3WmtJHmfMFofWxOBJpZHkaqVh30RNcCe9fc/HkzkPnNcimq+QGmmuEAXNSi+Ps5L1F4VeL683prbRdBrYSL7NjZDfiNiY8B8dHeHChZmT8/6+7QJW/636tyx7Y0mA7qMCxu1MOBgYUHb4lYvqa5Lfh2Q7kCp2hP/wVfu+hVltD2mUjTc7zVycVqVpWx2Ii7VdHQ/x6Psgrj299nU+Pmzd3HSxPyP8xd5VQASuqi9xKd6t31+tndTe3VArXgoBE7NovgbjPh9hpUVQLqKMy5arjSbkws7wOxM0mJlRm+5bMzSeTsCmA9clBEwYYyoz7IqOLdJoBQQRQg20IoGiphhitJXVzx0frdx8PsNIzs+nMufCTkSI+JoOP1Ep60feRPgJggjSncN+plkzAVPj/+AJf6yycr89MqkRhxxCsNLfQPb2S48EZTSimsUwJwZBDMqRDh9xGU2P1/pMAPZBxIkhEvPHkTFCtxVAKr02dmxrGIBtmDl8Wvjf2hiUkXh+/nyqU6QmA4GwL3ahGQPLhjBGw+QJuLZd4SvBPgiEkZ7ienEXwHIX3XslhNmo9ngTUdnl/2b60kYL4m1RF8m3iA+O7bn5ub7Ep8dfgSEDefgAdgc/iLvv/XGM9h7Bk1N7nTfJ+qVRSI19za5bCMpwpiYq5/iT5e4jUJH1Z07WLyKYuP7+bbv7LwBY7u5X97Uk/F5vUPFCoSKBWbg/ecI/SKg2IcBH8gXCoHAd/uo9teUIv4ZGBmWVUWsMXMOAIXDX1yZdfm+op53LfOq2KQppow7RNooCTgJJxUDOG/atMjRdh+u37f3yoStR47ZwElCuEz9VEwyLwcZGfXWIeYxUJZiqKaQuYGDmPAh8h/+tj7Vx9VIIY4CvPVvp8hsNPrmz1rx2Eb//lSH+P799B5/89BE+++Uhvvn8FNdvZxhNVLlEeOXW8mcGLESuMoyK4cZyfqVMWUwBluMOAVtIqPNluBf4e+miO3qmMxS6QJQMEEuJTGVLapE6pNoqGwIWImCBGwd4Y63pGSO0Io7bJwkyZ243Tgq8eGuI20cJem2BzjZu8obWEv6sUMgLhaDB2A4AUplgKsdz1/RpUU1nOE+kuUQm1Ua+BHHEMT0DWX8u1Vp5PRHOLJpQKQOtmz0D3gzYakVXfaC/WXMK7wMAEzDGdfjBSoIrtUJAYimmxyNg3ErWPOE/sRnaqr1b+/qinN/f1rDPtaJXKQOYaPLWOjXaPELEBPI1cizVuwDtur5ezj8qEuwFPeyIhgW/UTaruiT8zN7NjHWr14GL62sw7vMdfi3C+Ui+hZSF8vU8tJ/NbO69gSmN2iDici7dF21M2EJhNAQx7LoRAxgNYhwR4+iEETRZV9UqtDFzZmsAkOsCMQW4Fl8EgTCRM7JeVlcJyx4HdfvtCX+NWsB/jhCsFHvwzJIPHXVqj4sn/JGyTsfKx+nBFr5asT1X+dj6G6hKLKQ2ulaVQEQIWTCr6Hd3IFkAZhSi5HjtPkppEAgGwZcX+K1IIAr4mXf5vdniecKbOSpj5lz6jTGlnH+P9+z5L2LwPIHJJjDJEBDc+ltQgEuuK+1n/ncbCD8ZgyAb1W7LW6KriCnEVKd4Kb91pvspjcJ4jZlgmAzwnaMTcGOgmL2GilefhH7hPfjAEwG0iJD0LuMpT/jzesLv5/cFcXSc6kVWCqOZd+pvUDv42MabxQFk2YGqPw98d3+3prsPAD22SPhhR8a8SklLQKZLY1le0j9MCEbKJaVWadoXzu6FVUk/J4aY7P1yCut7QhsUcWrn6o2qVRkAlrhlOgcjhjR1cv4NuvvAjPAnmZ7vhBkDysdz+xywAIlOy/n3Qi/H2W0DpQxu3LH79NADcWNCAScOqSUKneMkPwYjBnEPMYCMbHl5lA+Rq5n3AQCkmcLUHcPdvsC73mqvk288Nym75CQzUDayx2cLvHjdXgcXdgM8+WgL7397Dx/5Y7v4v3z0Ir73/baY1UTMpVHIVbaxquHWQT6ndGv63FxnS4aI94q9XjTX3QesYR8ZDVI5uLFFsESul/UncmqbAU7l6ccb3mhoRQJpJnEwSHA4SPHizSEmicReL0LQELvbBC4ISbr6N8tyZbvEDakm2mhM1QSFlhgXo3s2byTC2iLEWSDLbRTtJmSYuzXleHpvsv5crp+n585b4SygtHG/3ZuX225F+K9fv46vfe1r+NrXvoZvfetbAICXXnqp/Df/n1dfffVcNvY+XhsQtx1+RjZuyvcPCyMRsmBpRtlDkEBAs2g+747c5NCfa4k2j1Zn29dB2wgnqjHsK8E4zrrtKRhHT7SR6jU3MiIkj70XsruP7NpTmKoMERO4GO00kyitQIzNZvgZdx1+g4BxGFfcoAZJP08dkQ1ClJ7wXs5fc3ytAkJDVGPpjCmN2lTPzfEf2rEME8aYqgx90UHLezhom5HNmUAvCEF8WcJofQjn9znXEn3RRj9o48H4gnsIuoQBRjDMICC2mZHjmg4/YKP5fNGKSmf9+sKLLp3/E8QBR+5l0VJBcIbYVe7FyBP+/fnvarg2LOG3x4ZzjqRjCwWbzPFLZdCKeC3v4pzQaQWQ8my7/MaYJWXGWYOI3PSQKWXYGhqpyXHgDfvEjj2NiQOCwUyOYfIpeBCXxYKrwbzKbI5UG42gQhDCtL6zzYnjbbFN7DgL874qPOENKSiJ6CK6xy+jrQ2ePGGAChBffy/kjSfxzkdZafxXRD08kRRgxmCkp7XxfBO3KO+yFgJ3Tcig0uFv+Q5/PeHf4z10WAsKGjcbigr2e5Kyu//emu4+MJP0j3VSnvuGcUvyjQGpbGl+H5iZ9uWSkBbL0Xx+5loEtvAqiC+51c9k/bktfG4gny073Z74qgJ8fBt8crdWLRbzFlq8bQl/Ob+/GYloxXbMyRiURBcAoAuwdDB3nw8ogNRFGc/nu+OnbbrcPsihlEErZtjbEeV+j2tm+A0MRnKEiZzcU3ffI+YtTNUEiU7mHfqdnL/X4QgDhkeuxeh3ObLc4A+d+R0VU3vOZCNgwxnoNNM4ce7/f/YjF/DR797HB9/Vx1sf6+DqpQhXLtrrsY6YE9mSxHZy/vnOfd3nBiwspfbbQBuN28mtjccBjDGYyAkC49IudOHGFMYriaYyClM5QVA1PqUAU7n6fa9HEBF67QB3TxK8fHsExoDdXniqLq7gZI3rVhyDaVas/OxMZ8hVjm7Qw1RNN1JbrAJnVKoXzhPjpADfIus+DgWORhnyUzYitDaQav08PSdCvoGvwiawhP/NPcO/Vbn2F37hF/ALv/ALc//2j//xP156nTHn71B5H+cIZskg4Kv89oKSRqPDm915GRFiFiJfkNo3Sfq1MWiLuPZvK6EKO2+/gvAT4wBjMFrVS9pPia5o4SAfrD3Hk8ffj+Tx90MZjayY4sH4wmqvAq0BEVrSb3eg7PBzCmECe9yb5Izh3Rft9+5cRt8vfo0l5KirNjNLIDnZNABj7JQrg/0dZfcCwrsvQ/ixDPeb7oaz7HrjOvzgAbpKQYQMMjXAwtqoegP1YyH+d98JOlBG43p6gBTk/AcMAi42KgSxsA0NgPJmiSTnrBxL4aXRXn2n1bhiFcumiEOOcVIA4MilQbcVgDuZu+/wS1cY8YuAphjBkImyAMWIkLYvoDe6hXh8gMHltzZuuwEAAqIV3Yh2JDAMGHKpVr5uWywWas4ajJHNXIdBSBxtFmGqM0xUMjPsC3bLURMWtmGyKQADFnVArAC0wdXwIr6UPAsAEOClHwBgRzioskAL0wEmeLh2e94WP4IvJ8/ijjzGoRzggqi/b22Lqpy/6Z7RPX7Z/v+XH0WSvQ0JCIID73189vo87iEyBg9nCi/FAjeKA7yNPzL3OTOH/pY1NsR8h39VNB9gF8gPh5fxzfQlvJzfxsPRlaXXpDrHbw8/g8JI7PN+bXcfsOZ5AhwSCmM1tf4FTFiypqW7lxksVrICTuhEwCQDRmODi/sKpnJaZ47ws8DP7y/fV9ssxpEaWuM+am003jUXlady8MldUDayoz9GAgvKNkYMkXsebuPQD9jj3G5xTKYK00SVXXZSOUimcwUKf85kKkVHdJDpzA3bnQ6vVuT8RLQyoYDc9wYU3FMEoIdgAonSzuxwtvz0Dv17O/YYM0Z451NdfPoLA3zlW2M8/XgMysbQog1SOVg+hW4YNanizqEtnOz0RG0xZqdrtyHNNLJcI1pQaLREZyuS+/JN+3y+uBfg4LjASUMhAQASmaDT4OlRh1QlGMuRnatfsQ7zyHWOQueIQCAtQaoovSdynZfn7iIylz5R3baAhW48IN/ou19PCAMOpQ0EZ/cUlRdwhrzQKKReUlIAdj07SeTK+f1MpdDQCFmIVCWYyAkifoo1sAPnhLxQ58q5pNKYZqv3axGtiONomOFknOHy3vaFQqWt8ilcMRoB2PtEIfWZ7L/3Angzc9eNCf8//af/9Dy34z5eR6gSZEEMibc+MuuN1FoixCBaIPw1kn7tiN9p5veNkqC4u5rIu6x5W7g4OxLU4iFCJpBrud5UDsBIJtgJOtgPeytfZ4yaVyz4tAS32GBuRIDVSPpJ5ggOrNnY5NKj2Jnr8Ne49APl6AAnDkNO0m9cbj3ZsQT7fXYBUwQheqJd+hjYz9egIAaMQaQSRIIjMWZ+CU/zJiiZLhBRgLhS/NgPe9BG40Z6hJAMDGkIWo5+rIN36qcG0z7AewjYCLggr0j6a6ArhD8IrGxcOcltOxLuu7JZJJ/r8DdF8nnMFS8IMHtXgNtfW9vht8oCWjkTKARDLw5wPMoRnV5xOwdjbLrCeYLIkibvMtxmLUx1hrFOKh3+3XLUhDFurxHGy2KBgsElsVcSyx3RnXtgezm/x6ooxDa3EX0vZDfwjeRFfLj3njPZz3WRfLxI0BpZk7yvFg/DXz3vepTQjmb7UkT2/U9NUrwUd3Ejv4u3xfOE33sgdHgLIrdqhvoO/3B2f1jAI+EVfDN9Ca/md5YWUoWR+OTw9zFQE7RZjD/Z/2DjAomI0OMdHKshhnqCHVjCT0UK0vlSHF8V/Y4l/IOEcLFB0u8Jf1gzYtbmMVA4xQM3IN0QG1pBSXwnOfjoBCQTmKgHyqc2bWbFsyrZkvAD1ql/MlVzIwQkM5DMQWp+ewUJTOUEe+E+MpWB34O03s+YP/hA7Laj2U+Au3nz/hkVvwAg4jHGcoSdYLf8N2/Yt78z26+3PdbG5746xGCs8MorIzzeyWGiri0052Mg6jWmR3jcdoT/yoX6YnsQMLRjhmmqMRhJXF54Had6ZVUdBiOJwUiCCHjnUx3818+eYDCsl4AHLMRUTaDNhY0LKalKkakMIznCTri79n25ziCNRFdrq4pUBQQxTI1EptNGwu+d/KufL5g1MMx09oYj/ICV9t8rBGeYpBJ5A+HPC4Ws0Gg13AO84sKbbYYswqgYoh/snHpURjBmo/mUKT1IzhpZoZBLhV5787U6kfVPOBik2O0uj5qsg9xwnp4zG01oCzrNr1VaN45ZzF6zPhXgjY6Nz7I//+f//Hlux328nlAhmoIxaKnXGvZ5BCRKST9gXep9bFkVhfMD2HZ+HwCgi5LoNYIJ29nWqjG67zQImECXt3Asx2sJf6pyCOK4HO2sf6hrvUD43ey9I0Pk3LXrOvzhnRdBRkN2dpF3duZm+G3qQs3N1o08cJ+F7uK2RWDf6zvXHjKIsRd050cStCtSEEOYDNAJAyQ8h5QKgeDlgrX6llxLXAp3lrr3F8I+lDG4mR6iIIm4yetgASXhXyHp55zAYefxQ5dLXpX0F1piLBPsBt05wh8KjkAQkkwiCBii0BVJ/Px+3CmVFz6ST1QME830BBT3QFzYf6eZ+oldsF3RaHrk0g7qH4hS2WxbvsZArxMLjKYFCnfszwSvQaVbcELh1sRd1sIBTnCzOEBhJDgYdnkXSlnCzzkBThlCsOkPUmpwwXAl2Mf14u6SKd7izH6TpN/j6fgteCG7geezG/hg5zsQb5k3XodZh7+e8HePXwEBSNoXMBk4/xMx390HAC0iKB7iqSTHJwHcLA6hjZm7Jmcd/rjS4Z/dK4uoC0MMzCgE2RhFvHxvvhJcQEACiclwIAe45IiZNhr/dfh5HMgTRBTgT/X/WGm22IQ+b1vCXzXuMwYsT0AqL0eVFrHTIdw8MhgmtER+yxg14Q37lp9JM0l/alc520j6RwlIpjBRDzOjwRwmaN7XNLOfvx3h5wCKWWfdaFA+tTfiBcl6wELkOkOippCmOLVDf5opHBzbz37oij23faFjmuilRXaLt9HC2Xa9QhZiN9irNezb35k9U4OA4Tue6ODL3xzjy3+Y4PH32cItRGSLMDKBCVY/J24fOMJ/sVldt9MTmKZ5LeHfBt6d/+qlCBf37eecjGVt9zFkISZyjEylaDVF9FagjcZYjtDiLWQqRaKma9UBiUpsrJ6cwDABQDvFIMe0mKAfLBdxtNGYyDFEzbqMuXi+XlAfsfxmh899Xxxb9MgKDak0RIPZcGEK5CotRyUiFmEkh0jUFD12umPKuZX0S6XvSb2wClmuoFWzL0ETWpE4dZdfaQNp1s/TM0ZQ5XGv3z6pNF6+PcLlvfaSqeXc67Q5c9+v1xvO14b5Pt6YcJFwAMDBYWCcYR9vNOzzCJiYI/g2km/5NMuNRMyb/QBWwgAUrFmIM2YVAOeQUdoL2mVUUROkVpiqDJeCvu02rYPRc7GARORGK9zsuevw183wh7dtBGZ25TEQY7OF1CrTPrKJAIJcZJ6xkjS/2FOdvTLyDgB43EVP1Cx4GQOFMQJiaAcxODelaZExBgys/ExjDGDMvEqgsr+Xoh1cifdsdXhDkyRv2ueVCHXgjIG4ddkPnTNutcOf6QLa2HBCP8PP8gREQCsUkEqjHYpyP+oM+6RREMRnqgRv9uUKNMLF9flZZnR3oEQIZjTC5KRx25U2aIXrrxEhOLpxgKwmGvFUIOC1iKcRbOav4M8L7xB/Qey4WDLM0iSW3mv/+9viRyHA8Vh4be41oVNipG1bwGpyp/e4JHZx4Ywj+gZyHeG3cv7x/iPoukvs3W8hxOHy8c/jHh5KJUIw5KYojQo9POHvshZ4vizpBzHkjuQ3+xmwMu7wldz+FsYY/Pfxl3G9uAsOhj/Z/07sitWqJaAmmg+AYcxeG86LpQ47bbvvg4QtOfUXrsNfEv5aSb99Pkx1CkMMpNYT/m5oSeckNTBRF7PVHzUa93lsK+kHljvrpAqQtkWQxX32qQATOXFxdqcj/Ndv2/vR/o4oowFbESsf0dN0/jgR0blIXKtk3xizJOn3eOdTHRABNw4N7k7cM98VVVk2wSpobXDnaHWHH7CEHwAG43sz0Xv5piX8j1yLy1GBojBI0uU1iPdHSDc0wvPdfS//HsvVxoXaaCQqQUAMkAWMCK15n7axiolOarPgc50hazAp9PF8Z202+EYCA5AV9ftvjXObpeW5ylAYWRbriAicOEb3YN7HGUFqfWZO9XVY50vQhGqXf9tZfqU2k+lzRtAuTq8Jk1RiMMkxTVf7fhSFOndV47cb9wn/fSyD2bluwBrVGeMN+8K1BD0gAYraMD6qrCmST8u13aE6GK0syVxl2AdPaMVGnZ1t0eIhAibKSKhFSKMwlFNcDPvYjzat3NJyl5dxGOPnVR1JXiS2skB41xKG5Mpjdta5Kulnov6m6UwBGXkXevt/ZUWVcajO7myf23s1KgVy5okRQIQOC8GDWWyhNsbJtp0Jl5YImJiT889tEhGuRLt4INpBq+b3NUUGPTmCSWddW9/hZysk/YxsNF8hVaXDPyNfymhEPIQyaq7DD2MQhQJxKNAKZwtsb9gnK4Z9ymjE1UWSVoAI7fkKS6I42IzwE0H2L9nPG96t3W5//MSGcjg/o7rt2qF79FKZVV/FazHKxjiV3Vvv1J8Ye477GXqjrQ/DYvVdCCoXSo9EV/D/uPinl2bOvaR/smMLAUExBVPND34iwtvPMKLPGFOS3bqEDlISncENAMB47xF819sY3v4ILXX3PYqoBw7gYW3vBzeK+XPHm/Z1WAThXfqD+e7KLJqvebzhEefW/4qT9X9u8g08n10HgfAn+h/A5WBv5X571BF+MAGoAqvaKTtukwcJAxZMUn0sH7i9/9ZK+qsdfmJrTd4oH6NnbGLGJJsVvAHAcDuGsOrC8oS/Sc5bh/YS4c8Bra3qQRWlj065jaDaODsPlhyDitUk2Mv5H3pgVnQlomXDwtcQ00QjL+y9brc3X8jotgWeuGb/7Usvz+6DRsRAMQZWGNgdDQqbcBIQ9naaCyQl4a+Zt98UeaFx867dlkeuReCc0OvY7a2b4wesEd54QyO81I3qWN+IGFM5Qb7CPDjTGQqVIzQMZKRNNFLWvFJQYE0Da4oNibQz5nUJEILZ992r0dwbGZw3O/WPp3ljlxkApmpqV2eVB2vEYiRqurWBowcRwcDK2s8DWhuMp8XaWfomtCKBJJM4GW93zihtlgr8dfCqC7Vi/4eTDFmucDLOV0Zq5/LNbdgH3Cf891EHYqXBGLloFmkU2hvMbgWMI2AhlCNidfP7icoQsQD9DaRsS/CuzmsIPwCQCGHOocMfsgAdHiOtIQ7KaIyKKS4EfVyN97dIIDDAghSMKh1+Xs6qz984w4OXQVpCtXoouhdAxEqCbYxulIp7wu/4finrr3Z1qw70rVbdAt+lAIgQ4AEiMIQBAwNBahfzx2emfZku0OGtlWMhjBge37mCS51ZocQUKfT4EEZmoPYuTFXl4LqXfEWH30bzcTCyJm7AvKTfGGPTJYyGdv4T3uQoChg6sUBY6bLzsZ27V5WxB230vLTYj5JUCL8gBoXZ+ah2bOZ5PD6snS8ulIYQhGjDh20U2hGEfINupkdreAsPPfOf8cjX/4N1coYb7QaBXoOHH2NU3ms84ffwcXtNEYF2HGX1QsdL+rPOPqQrmgUNhnUe1Yi+l12H+7SY6BQSCgyEHlu+33UG18G0QhF2kbX38NgVwve/kyFsmMf0c/yP5/bv1Xg+Y8ws/k8z2KNDUMG8oqac419xHB4ML4MAHKshPjv5Or7mHPk/3H03Hgovb7j3VcJfSRRgAkwmjXJ+AOh37P4NEwLUfDSfl/Rr7mb4a+THnZLwZ47wq0bCzrIh+Pg2Ou4wJfnCApIJa9q3orM56/BvrljzJHvqZ+d9XBpj8PLrKqysP69fCBsDysZg44NGNYIxBq/e9oR//lk+Z1j4GsN393d6YtkJ3Gi8+xF73J+9YTBJ3e/CA5AswPLmLPNSzn8hXNkpPAvCf/12Bq2BnS7Hbs+ej7trPjd0YxrZGgJt5fwzmX3oXP5X5bjnKoOGBjPanvvEAbJeFjZ9wMrzqzDGYKrGEA0qTl9k2lSV8GaE4AxpoeajNGFl40muGo3tlFFI5HRJOSGYgNIK42J91KQ2GlM5XSoQkbFrhfNAVijkhUZ4yjHBape/2MJNX67o2C/BmMYOf14oDCcFuq0AaSbL0as6FBvEAL7RcZ/w38cSyDnEG6PByeW0G2xkUgcALRFBxp7wz3f4jTFIVI4L4c7Gnzd7r4YpUhAP5+TvjRDhuXT4ASvrVwsLMm00BvkEe0HPkf3NbpLGuekvmRAyXi76mJ8fXZjhn8n5H4che0GTv6yNsUWDOhAHMQbhoofK22Xlhid7M8k6X/BhMG5cwLv0k4gQGYNYhGCBfQB6u0RP1pTR6G2QytBthWiFAiZPLNFXBdjOAxAPPAm2cD7NOvyrF02BYGjpvCRBujLXbGAJuTKWpGt3blE2BecMe/14Vvk1prbDD2B+dk8re46amfNrUInmA1B2+LvJoZMDzkNKg1bYoNCoARGhEwaQW8j6vVlckE+wf+OrdtO9K/5r0eEnKtVEi4qfi2523BgDUUOAqVIsaILv8OdRr9LZXi3rtxF91gzv68kLa/dhFfz8fo93aruy3WM7NjDaf3gjSYWfuX8ysSTprjwulUapyaFdQannzicZtJaMzTbp8McsxGVhz+9vpC8CAD7YfhpPxA+t3cYqPOGf6ATS34uZgBatlXvCPLsAAQAASURBVEVb3+GfZgQp56P5vGmfJi/pb+7wZyaH8gYlWF4Us3QANr4LQxxxK4Zv0E2qtxMmQEqCVqgETiXpb1dItpvfNzxwhVgrv64iYAFSndY/V4wCjALJBHx6VPvcG4wkJlMFzoAHLi4Qfrct429Dh79uft+DZI4HOike2LOFv6++NLvgjQhtRF/DM7407Fsxvw/ME/PTSqtfcvP7D1+bPd/WFRK4G9NYl2+fqRSZShFV/EQECYyKYeP2TuUUnISNvazCNUBCFmLqxkM8cp03yvnL72UBJnLyhovnOysEglBIszTHnxUKRaEazel8MkJdvKM3sVw1KmGMwVF2iLvZHRQLyg7GgSw/nzGLNFeu8XB6qui7/Mejzbv8W8nraeawv4hJKpHmEp2WQKE0kqz+OG0aA/hGx33Cfx/LYKw07vPdBOuov9ncYMxCnFx7K4qdy8ivPDb3t4lK0eExdoPN42islPsYZnIMEiFogWg1wWbNn8+Dqc0iBM6tH7Dy60ExxW7YxdV4fyOH+RLetG3hPdXtZ66TPdfh1wrh3ZcAAPmVJ+wMPticaV9Th5+YneEno60szFnrVzv8sjvr6rNooTtptD1PmHWyp6iNQBlELIAIDKQ07uutFLvQEgHjaG2gEjFFBj0+gNEKbPcqxJUnwfcftOSezbsm0yYdflgpXsvYhZWO2qWvhE+LqM7XV6P5lo5bnoAVKQxmCgi/+AkqC3Hjf9PKtkZM2KKCg9yxhL+VHEPmxRJ3NQZbu9tGoTVL3PSsr6YEXLjxFYh8WrribyKpu1eUdRQA3UqcXkii7IibFR3+lSRZq1LRUURd5LFVjazqbHu8LX4UBCoj+k6LaiTfEowuCf9475Hlv9cgjyzhvzIdo8ta0DC4XdgC1MTJftssQuy6xTJcHpvKNujwA8DDlU7+O1uP453txzfaxipiChG4mdVRtaMoIqyS9MchwU/RDCe6VJ8Asw6/YjNJf//uc3j8C/9vBE59E1IA7pY3U5MDUPMdc2Ms2Z/ctYZmIrYFM3cKjuc4mN3OJfJUwWkIf7tlXztJFCAzu488sN1Yo6yqoAJOHCGLamO8SCuQUTBBBywdgtX4M3g5/wOXoqUC2raSfqUM/vsfnJRGdfcC79BfJ7snOQGMwnses8fq6y8bFF59ISKbalDUR7JWO/yr0OsIEAGFrJ+3XwdjDF5x8/uP1hD+Jkk/YGX96wh0opKlMY6Ix0hVWkr9q5BaItUJAhZY88nyuUSAsedw4OT5VSl5plNII1c6xocUINfZH1lZv+AMUqml7PcsVytd5TOVNo7ihE65M1X14zjGGBznRzjKD5GpFIWZvw9xRjMj0zNGksraZ+82ICLEW3b580LVHktVU9wjIuQNhH8wTiG4VSkLwTCY1J+3Pgbwfof/Pv7oYS4D3k6Eb2LY5xEwjtHVJ3Dy3X9xaVZaaoWL0c5aLwCjJHQytMRP5aDOPviVJ8AfeCt47+Jm+8EEzst2M2QCbR4i0zmMMRgUE+wEbVyLLyDYNmJFz8jzHIjBUzdvUlg17QsOXgGTOVTUgdy9YuXNVJnhhwaJFb8ZD0DGWO7rRzgqhyutzPDTYoyd1nB6ffv3sAUig46IQcLOYyptypGGTBeIWbRRDKPJx2A7VyEeeBJ871pJ6stjUolOKTv8MofWzQ+TVsixy+yxq8r5pdEQxBHzoDwGegXhF86wT7d3yhEMhZpIPuNklGY2Zx4wMcfEdasPHUQgo7GrRnNdfqltnOGmcn6PMOAQgjZ+sMZTZ0DIQzAtcenlP7Dby3B+1W6tyk4TY9aMzxiDiMKSpF0Qu3PKhrptIebUKQ1r5SCfgGCgiUMFrflIujVo8xhvCa8CAL6RvLjFzs1jlUN/a3wXQqZQPMS0V59lvwjf4Q+zcWms52X9M4f+Fnhu/7usSTPxxyHIpytJ7OPxg9jlXTwdvwUfaH/HRtu3CCKqn+PfAL7LP0yo7HbbCCb77wXstkcsQO/oBYTZGPHhy+X3lnP8pgBpA/LjXZ7sjw9s1J6YFSE94S+l4w6GqNYwFQCk1OUM7WlM+6Q0KLJ8Jr12WOzwA0CLtxo6/NKNEQnoIAJLjpbm+b2c/8Ery0XXmdpgs/vGSzdSfP3ZCf7T7x0hSe9NFdDY4TcKlI5heIi3XAF6LSAtgJdu+9+GwRCBZaOlCuc0URhN7Hatc97nnNB1+38aWf/dowJJqhEImlNO7PbXjwoELESmkiUS5+Fd84OFrjsna6Y8kcvXVKYzSC0RgFtFoFuPGMZLM0hPPBM5KxiMi/FaM0juitbrxhDerPDPpMUO/zQrGkfgjDGYynHj+pmIVio2TvITHGYHiHnL+XjMn0+CM2Q1Ywb3irxQOJ5kW40pNaG9ZZc/r5HX5yrDneT2EulnjFDUFDySTGI4lWUkYxxyTFNZr6bcMAbwjY77hP8+lkGVDj8RGLGNDPs8AhIQjC9J3scyQT9oY2fN7L5OhjDZGBS2wC++BeKBpyAuPQrW3rVd703BeCkXPmsQEfqig0IrnBQT9IQl++tiC2uhlZXGL0n6K0Zlbg6XVRadkZPz51ceB4igjQFHxVXZYGUHlLiwhB8EqTQINHfDm0Yx0ge/A+23/rF50g3MEgD8NosQACFmAoFgJen0naRCK/REazN5ugEo7pbJBHPbzHg5bgKgnOEnAKah0wNY07dYLUfyKaPAiaFVkUuuIvx8ZDuI1dhCpecj+cptFQLgrOwsLv69aty3WwwgpS7XrTZmhyD4dg9bzgmtQJRJCavAVFE6td948vsAADsHzyKeHNjRkHuo7Is7L4H/wSfQ+fz/D/3P/u/Y/d1fw95//Z9x4RMfw8Xf/iXs/9d/B8qmYERg7twlonKO/1I195tMfYefWff+JiMeL+cvoi5AVOnwryf8APB06y0AgOez6/Pd6S0w8IZ9NYS/e+Tc+Xcfqk0yqUMRdmAAMC3xELPHyBv3jbU37Gsh8A79NVFyWkSQjuSuOhZtFuP/tvf9+K7uO+7pXDgt4fdz/IMpK+fnZ50sA4mZpJ87g0JRuQfMCH9mr0GjHdk/AZscwHAxR/YBoBvb75wsNq6ZsDP2NSaOae6LV9gqCzsQDKGLQZ2OEpteUILmxhjWYVYcIIBHVhUzOSrNCpUyuHmnfn4f2L7DfzK0n1tIg89/bdnwc1MYY3A0rO/wU5FagipCMCI8ec0eq2dvVq53EYOK6cz/wMHL+fd3xEaGY+vm7VfBu/M/9EA050Gw42b5h2PZSMYCFqBYIevPVrrmR7VScP9ZZKzqo3xGE3NmkL4AHWKqJtBGOzl/slLO7+Fj/V5r5DrHcXZU2+U9L9SlMRER0gpp1MZgksjG86zQOTKdLxVtqoh4jEQmS4qNYTHAYXYXIYsQshAEWiq2cEZQ2pz5HP9wmiPNJOINUoLWYZsuv3Ku+0uEX+dIdbpkVskZLSkuAGCS2phir5IMBUMmFaY1poubxgC+0XGf8N/HMqodficR38SwzyNgAgH4bGYTVtJNIFwIV2fSG6MBVYBfeBj8yhNgvYu1xG+z3bDGdKZmkXYWaPEIIRPo8BgPxhdqzaM2glHOTX/huFT+tz8G3BN+rRDesfPF+ZXHYYyx2eXVogHR0vzuHHgI5gi/hi7Jl4c0Cuz9fxZ7H/7R5fdq7Y6v/T7yxn2GQTBeLnw5EZSTzW9yDnkpfGNhh5jVgbtuHTE+mwXOV8tLfYyTjmbkSxqNyBWzGFkX/Vk0X3OHf2Ukn99UEdnj4xbjnvBXFxCe8HeSQ8QBR5bPOplxLE7llB9HwmUurEY0sftShG1M9h7G4OITAICrL/++jcE77bPPGHS/+B/Bn/8KwlvPITy6DjE6BE/HIGUftixPEBzftB1+jnK8es9FvT3gutdlL68uaILse5vksCXhdyqjcnY9HWw06nM52MO14CI0DL40/cNN9nwJqzr81Ti+jcE4ZGgJ9CPK3m9O1BgTlZaS/g5vgRc+kq++uDpTO5x+XGFT9NkpCb936k9n0Xye8IccyFxXNKQAwnmbBLKG8PsFslFg6bEl+yJcIvsAGiT9cMZ9Ra1xX5rO5PzbFkZKoj3Jgcrzw0YJro4CnIOWmFOzhW1Q4ef5Ne4c5iikQRwxXNhdfk51t+zwnwxnx+Hrz01ObXg3migoZcAZ0O/M3/NZPoHdJ/sMe/Kq3b+X7wK5L2gyYQvm+fy5Vcr5L262binl96eI5vNjDY9cnV+ndFoMgttxueGk+XMZWG2nHgBSmTS65nspeFIpRtpu8gSChPWc0HKe8BtTeh6ELESmstIjoBoZtwqBi/VbNXOeqQzj4vSFoEVM5AS3kpu4m905089dh6P8ECf5ydy/iQWn/rxQyArdaNjnFRerRiWsYkPPxS2OixEO0rsQTCByayfOhB0PqDy/BGdQSjfOsZ8GSmscDlJEAT+zWM5Nu/yqodue69yOnejlkQap9FzhXxuD41E2V4Qht74dTZfvq0qbjWIA3+i4T/jvYxnELPl0F4Ag0WiwZ2S+RKg5MYRczBH+sUyxF3TRXZdJnyegqA1q7ywT4G3hCekWnZJtELMAl8NdPNS6uLUBYRVG6/qYQZqZknnCz5SEUhLB0Q2wIoMOYqS7V3BSTNBiIS6ElRhAY1YSfuJWQM3cA8PWeewNTxoFThytJiftskjhbpA8BIkAkTEISYAHBCE4iJGT8weNcXxz8AuUpuPJmJPKz845L+unvLnDDwAsdYR/ocMfswCCuDPu02s6/PWRfNVRBXs9EBDEtiBRjeZbUL74OX4xvItuO4RUuuSi0SmdcSPB7CJArl4AxFOrVsjatnhx9+EPQDOO7uQudk5eOtV3AwBLxyBZwBDD9O1/HKN3/wAGH/hzOPnQX8TR9/1PyB54EgDAJ8e2yARYYzUA39N9N/7MzodwNXAFFZcYUCe1Y4yBCM0dfhc1WEQ9GNj5dwMCVwX4CjVIFe9rvxUA8Fx2vSTvmyLXBRJHNhdn+MPkBFE6hCGGyc6D232uk/X386SMLrxZHJSS/i6LEXhJf9BA+F3xI3otCD+323B6Sb/rTALIc/tbh8Ig1zOXft/hDyrxnL7AOHUdT5aNwCaHMCKyMWU16DZI+sE4SKla4z7f4Y/D7Z9XPppvOlVAdfyKsdriQhNI5ksKARN1QOkQLBvN3PmvRLWL2k4lInATabCfS49CBmOAz375dOeRd+jf7Qfz17gqgGJiCzMOF3rATsemy710p2LexyNr3lc5XjPCv8EzB6d36p8mCgfHdh+qhn2AfZaWnzts/tyQR0jUFMXCuWWMwbhGzl/9/MUc98IUyHUOwQJbXDVAWQhi3Hb83bqMEYOBQapSTNUUDJsVrAIKILWsjZIzxmBUDHEzuY476e3GQsam0EbjODvCreQGCl0goACDYvCadPmVURjL8VxBBZhJ6JVrOmSFhlS6MZJvqqYrm1weEbPmfYUuMJET3M3ugECIK2a2gqzRo6z4e7Cyw392atbRtMA0lWjHp1CsNmDTLr/SZqnD7wtZSitkC1Gcdv/nk1WSTGKayrk4ZcDK+sdJAblQHFFKvwaORd9+3Cf897EEKk377Ax/xEStYZ8xGmZ8CNQQrRaLSsKfqhwBE9gP+2sfKKZIQZ39Znf5bcDcjPk5EX4iwsVoZzMiuwpG1TtWVzvGQUVyLtPSnX96+VEMlS2mPNK+gp5oNX/G0ucLkFNwKJf5XkboqQLRCpJujJ4j5UQECtsgrdDmMcAVIsHAiZAria5obxZRqJXt7jd2+HmpPin/yY8brCX8lrBVCT+MVaRw4uBkVSmNhN8YcN/hX4jki6vqjlKlEJQdKMB2+DloLprPd/jF6BDtkBAHHJOsgGCE4JTOuEIwxAFHvobw+w5/2rH7IqMODq+9CwDwwCufs3FopwCfnNj/0t1F9pZ3I7v2VhSXHoHcuQLd3oHsX5y9jixx9z9nxAJcDvbL+4QyxilPlr+HyBZRmvhJVdKfZAqjXJexdpvK+i8Fe3gouAxzii6/l/O3WLSk/vFy/kn/KvQGEaNVFM64L0hHeNDP8Rd352f4N+3wb2BgeK/oO3XDUG/b4feSfrJkzqiywx8EGhL2uoqMAHfd8KBIyoKZ7/BPHDGhbGzz21fcrztNkn6QLYDXXBOnieQrv88RbRtTXb3e2VIcYSOMsQR5aWSIw/AAlBzh+k17bjxYI+cHgFZsi2fGzPan+etMSYz/+Ad3QQS88Gpakuxt4A379hfk/Ewm1l9i4Rnju/zzsv7Q+is4BZdSBnePNzPs8zgt4fdy/kv7Adrx8u+/qXFfoYslWX+mbed9lcx+luNuSVCuMmu8R2K5CETMKvMqUcUBBRjLMaY1kXFN8Pfm6vw/YAnyQXYXt5NbpXHsYXawJMHeFIUucDe9g7vZHQQUoCM6zqwwwURuV3w9DVKVIlep6yrPfr+AM0ipy3tRmtnCSt3aVmpZG8dXh8DFLQ6KE9xNb0Mbg9bC+CsnDqnnCT9gi+JyzfN+UxhjcDxKra3UGUvcfZf/ZNx8TljCP++YL41EYQqELESqkjmFAyeCVroswADAeGpJ/WK6QBRwpPmyrF9qM+cN9WbFfcJ/H/VwkXCcGB6I9y2JW4RWQBDB1HQiQmeCZmP4MlwI+s3dYgcjc4ALsIUIuHvZB9thfe2zhbeCMbUSdnJeCsZoWwBxrzF5Us7vjy89gmvRvlUZzHWZrYHfSpUEMedQz6Dh5//tnwot0Rft5sq01kvRiBS2Aa3QFhGIgFbEYUfQDTrrlB3l59povMbtZi6+sKoq8R3+YjtJvzFW9m7l/ITIxeaVhH9B0s/SMZiynevFuMn5SD6XjsAFEIR2TAGWnDKa7/BXjfuCyTG6nRBGe/O909+e40g0dr7L1ziH/rQzG084uvou5EEbQTZG68Uvneq7+dSSSNPbq/27cmaQfHwMABCsmbTbaEk0ng+CU91YNQAgyHyHvwutDQQxZFvO8QPA+zq2y/98dgPHcnM56Wo5v3fnf3jjz/PwRYsgG+NqYAtGN/JDjCuSfp9OUOfSD2wWzXdW8DP8ic7KCMFN4Dv845RglAK0LCP5gnC2YGypGSkOZALlzvuZpD+FCVowQatZOeTQKOmHMz2Ty39ITuHQX36fl9LnC+9lHIDarFjtHf3rzPxEjCxVuHtsj/vDFwAqpqB8YhUP6QAsOQFXSUlY10XzTRONQtoC8aPXYrz1LfaH+syXBlvHtXnDvr2qYZ8xtjjDOBZNd594oCLrL/x3kS2sJnZU5+A4h9b29+h3NyvCeGK+at6+DqWc/1r9820TbwAia1yaLMxvJyvk/B7Cmegl0l7viUpAPl9FpqVhn/sm+/8qRSQ7FpChWDNjvoiABZiqKbS7+aYqxa3kBo7zI0Q8Rou30OZtpCrBcXZUvm5TTOQEN5MbGBQn6IguQqfWYcQgKMAgP/8uf+Iy76WWc0ULzglSz6L5xmlRGxsLWDl/oYuNjq1V0wYY5CeQWqIjlpNdvCpjUdYOMlvl3K/CJJUYTHJ04tOrVptARGhFHHeOE0zSeqNK332vFlAKnUNqiYjHKEyxrHAwpjROVVrjZJzVeg/4IsJ44btloVdOv75Z8EdgF+/jVOCifHg3OqsraTvTNYQ6JAGQjeFrsQj74foYPpNPQa0+UGM0dRoQMTd7+dpnC28FwsKD2f+7m1f3D0uXYR/cfQksT6BFiEsPvgeX4t1lYu5N9VaZ9rlIPTu3b2yEHvxMNKFdM+M6Q00CgDPuC0mAM4Z+N4RmGiETa4s95WYrudKzwRdB6jr8awm/k/Qr1+HXsCkCfm7REn5VzvBTNr8A84Z9qrNbKif8sZoz5CtNGIWd43eLdqoUFSo7NOvyD++iHQm0Io5WnVGO1hAntzaaP48CBs7YknStuo1RcgIAyNoztYLhAq9efR8AoPX850Hp9pJM3+E33d3av6uOLQSIyTFgDISgRqKgF5Qni7DFgvr3hq7Dn0c9gAyCgCENncv9FkT3gtjBo6F10f/i9JmN3zdsiOTjeYLW+A6AzeP4qvBO/UE2wuVgFwIcqcmQGrso7VAE4a6FRkl/2eEfbnQ+3QsiFiByDtXbyPo7sTVm1AYYJQak5azDH/n5fQFRkXhyLcvo0irhBxP199gFeEn/NMMy8WMcKJaN+04TyVfdRwCYZMuGraTmu7FNIK3s62qMH7UxePaoBQNgr6PRL26Cn1wHH14HG94CG98BG98GS47RaVdiAlfgZGSPfb8rwDnhA+/sg3PCrYO8zKPfFEc1Dv2kMpBMgBrPl/0esNe1S44Xq7J+EQP5FCjSOTn/pjO53Ta355peX/DwUMqUoxKL8/semyoHQhZZybJbqxhjrDv/BslIIQsxkkPbTVZTSy61tJ4TNQq/avoDZ1YizqpmvxsgYCFylSHTGYbFADeT60jkFF3RK7PmiQgd0cWgOMFgYQ6+CV7Cfzu5iULn6In+UsEjdl3+6T2OC6yCMgoTOS4jMKsxhP445VJBKo00V42GfaWB4obHtsVbECTQEc3rZQItjX/4MYOzwMk4hda4p4bDKrTjAIVUuHEwqS1SKLXcbfcFF0ECUsu5/WfM+mQod7+epBLTTDYqrqKQYTTJ5+7vuVRvesM+4D7hv48GLHVR66Cl7fLWvC5gHIIEciVdDN/qxZYxGtAKrLN3tsYZIoB53Xf4US+9JwaAlQtyH83Xu/EsAIA/8Db0mgopfn5/VdnSKSCYE+D5G16mC4RMIGYrCH/NNpOIAC4QwSY15Foi0wW6vLV5VKHR9nNWgYu537SM5subzWBI5mBuDthL+q3Z3sxdP2TCehpVO/xVcxwn55e9WUdcQYMTLUfy8cB2bniAamZUyMRSekVJ+Ad3wBjhwk6Mdk11vfPN38Xu//hf0X729xv30yPgHFHIG936o+QEZDQUD8uOscfR3mPIepfAVIHOH35m7Xctgk9PAKzo8Lf7zpRMgmUTcKJGzqkN5pQni2C8/r2kZenYngZtCMYQRxxTT/i3lLK/183yv5TfwqHc7L1NDv3dk1dAAJLOBcjFuMsNkEd+H0bgxHElmBVsBDjaUoFgYEBQDcWzPOrZSDMtSzXAtmgPbiB0RaN1OI1TPxGh52q/w6mN5vNdXR54h/6wLG54MPe7V037Nu08tyKU0vYlbycm7Az0gqLtngh/aN87yRZPcAZAb1as1tIVeDmywuDluwaffUbj//yswr/9hManvmpf9tBFBhO2YeIuTNSHiXswUQ8m6oKKdJZQsIbwesM+T2a7bY53vdX+vp/50nDjDrlSpvysqqSfigRQqrZAQ0Rll39O1u/jYVVWOvRvKuf3n9vvbifrv3k3g5QG7Zjh4l49Md9E0g/Yjrl1yrfncqYtmd5ECh6yCJmyxDtXOQIWgHQBajiGi+dvV/TQXkEw68CJQ0HhJDvG7eQWCIRu0F9qPHDiiFiM4/xoLUGvSvi5I711a0FGDJw4BvnJ1sqBTZGqBLlTPTDiS+MLjIA0l0hzhaJQCGv8dnzRRmxh5kxEiHi8cg3MiSNdGP/gjJDmamuFzSLSXOJklNeOp5wldrohhpMcNw+nS/cLpfXS8z5VKRixmcJhKcbSlKaF40kBGIA3JN/EAbcz/lnFeFHqN30kH3Cf8N9HE5hY2/kxSlrZcs11IkggII5+0MFOsMGi1pv1xds9eNaBePi67vBbV3onU1+Ed9l3DzXf+Y4d8QwefMeqD3YKgVWEn4ExAe6k7T5SyJL0eH0M42IxQQQgEUBojRaPUBgJbQw62yg2CM3z++XXBvPnpuvw86KZ8Jfz+yIqZb1SKwgSEG4/PGnXoT3OZMycaqCc318w7OPEEFQIv9FqZsK4cH3YosL8dSV3LtvvH9p4tUDwuXgnAGDTIeJXvgYAaL3wBbBkjbScgHbI5+baqoir8/s1i4ujJ78HABBd/yb44O7q71oAnzhJf0OHH4xDta20no+PbX5xU3ymsZGKTWAN7/Xz+4oJZBRCcIZ2JFCUUvbNJf2ATQ94PLoGAPjCZLMuf5Okv3TnP0V3H5jN8It8AmiFa+HF8m8dHiMovGFf3FzwY6xSONhe1h+kQzz8jd/Gw9/4j+sLw9ic8N8pjvH10Yvl//ay/kHCnKTffhcPKoZ9cv66F6ktYHjCr6FLR/91YERou3rjcjSfNeAkNf9ZaWafL61TEP5uaN87qbt1GVu4WgfSEi8eMPzapyzB/63f1/iDZw1ePQAKCQQcePgS8O7HXAF58YHtjG07kVswr+3w223ycnUAeO939BBHDIORxDef36yANBhLGGOjDP1oA4x2XgvNJOkJN8f/yl0gK6qkn8NkU9za0rDPY9s5fi/nf/hqM0Hb7dvPTFKNPG++TjxR9kQukYmNjN2gUG7fS0jVbATAnqNWfVaFYWzp/OXENzKVW0TIIozkEC3enjOWW0TEIxgYHGYHS51pj6mc4FZFwh+tSfSJeQvJOXb5p3JqhZfEEJBAptO5EQLBGZJMIcsVVEN+e64z5DpHuIFKYxtwEsh1Prc9fsxAuVGDaVpgMM5wcJLglTsjPHd9gMFkvZfCcJIjKxTicMMGzSlBRNjphLg7SHAwmC+m5FLNPbaUUchUCuGOIwNbMu6DoXLfTybZSj8VzhmUNkgc4dfaQCp9v8N/H390YWfK1yzkjAYRrzYwSzAi7AVdXI52NjJrO1OzvgqsAuF8Jav3BNeZqa3EMy/pd9tf7dbxAPzKE2s+l+rnOsvPtwZ4voPqI/k2JumLHX5ioLADowp0RYxMSQSMo7XhbGDpbr+G8IOLWpd+tpLw1zn0W3d9v1gTbpZfE0H7VISKcZ8YLRv2+aLB3DluVFmcseczlUkWgvhSfaxq3Nc0s9t+7nMgX/jRCp1v/V7jvnqEoUseqOm4RQsO/XMgQO5cQXr1KRCAzjPrv6uEVmCOTJtufYcfmMn6+eQEfEU3Q2mzVPyooum9s0i+HpS2Vf1QcGinOgiz0UZEtYr3tO3xeLW4g7vF8crXaqNLcjtH+I1Be3ATwOnm9wFABTE0EyAAQT7BNTfHD1jDPq9saDLs87iXaL54cgSCQZBP0RqvLwjNCH8zGZRG4RMnn8V/Ofo87hYn9n0dZ9yXMpAsStJErsMfUgC+MFfvExg4McRk7z3TGkfxJsyc+hf/YkefFo377qXD3xX2S6YZlq9Tos2c+rXEZ58PceR8zPpt4K0PEr7vHYQf+zDDT/4phj/3nbw0QayDEQG6gSUE6zr8nhB7MgsAYcjw/rfbAtIffG2Iolh/bR1X5Pz+HkyqAOl8pbHifo+w37XqnxduV44ZDzAe50hS2yG8tHd+hN8YU44vPNowvw8AYcDQiu15sa7LL5g10NNGY6rGJcHZBDGPMJXTmfxdF6jtxBC3Bo9nsCZq8Rb6wc7KuDmPNu8gUQmO8sO5greV8B/jVnITeYOEvw6+2zsozr7Lb+X8EwRO4SiYNVXMKyRTCEIuNcZJ3kgUM51tXLTZBta3Qc4ZCQrGUEiF564P8MwrJ3jm1RM8e2OAl26PcDhMMZrmeOX2aCXpl0rjYJCeynz0NBCCoRMJ3DqcYjCeHdu8mCffhS5Q6KI8zzgTS8Z9xIBCakzSAmmuauf3qwgDhpOxVX4praFN/dhgqqbIt4lHfZ3jPuG/j3oQofaBMfca2LltxktjsiouRjvoLrrG1+DMzfqq4AJr9+PbCdfhb5L0U02HHwD4A29dMs2bgzGzefcmkJP0u1F/RoRCryfpxqkH6lQJFLUArRCyAIIYYhY1e0Aswrvbr3lALhajaKMO/zLhX3TXF6VTf000n9bgE0vy6iL55jo81XEHxsvOIICyMDC36Gn1SuM+7xNQBR8fI7r+LQDA6B0fgQEQ3XoW4vhm4/4CVikQBKw0F6oiXnDor246YM+H6ZPfaT/n6PrGSRcsGYGMgeECaDWrdUrjvonr8KO2bggDs7Lybt9LS+8N0plDvwEgAgYQEPZ2oIhbk8RsO6fnHd7FE9FDAIAvrJnlH+sEGgYCHB02u26DdAiuJTRxZO3mgshKEM2M+9IRdnkXLbc47bCZYZ9qmN/3KI37Ttnh9/AGhKvgCf9oRYf/hexG2Yk/ceaI/blovrzs8JOwr4toFsnnIYpZUaFVnePfEDPjvuUz0hC38+UVnJrwqwItnoM5hUqy2LSq6cbWIU8zHIzsNfJ//z6G/+kjHH/yPQzveJThYp/KQu5KiAhdV0RZO8M/XO7wA8DTT3TQ73IkqcaXv7X+2vIO/XtVh34t7SD9GtLnu/zPVWX9XODWkf0tLu4FjUZqTSgJ/3g94R+MJEYTBcaAB6+s7kZvYtwHOAM9J81PVYpoKxM9+9qIxfbZX6T2HrwIYk7x+NqOORIROryDQX5S5toXusDd7A4O1kj4mxDzFqZyuhSbd69IVeJMDF1H2cnIq8Z93qk/ySSChvn9aTHZqHixLThxKKPmZO1CMAjn2SM4odcOcKEf48JOjN1uhN1eBG0MXr0zxrAmhx6w3f0kl2hHmxUolFH3bJwYR1YBef1gUnbciwV5faHzOfNKO8dfoKjsP2eEvFAYTnK3nl19HsUhR5LakQypDLTSS80DbTSG8mTJTPONjNcd4X/uuefw1/7aX8N73/tefO/3fi/++T//58jz9RUWYww+9rGP4SMf+Qje/e5348d//MfxxS9+ce41R0dH+Cf/5J/gx37sx/DOd74T73vf+85pL94EILayCmwJPrMklO4t+u6szfrmwDjqqcTrBKXBWw15Lg3qfId/trDg155e/bmuw08rJP1E1t2Yg6zRMSNkulhP0n2Roq6Y4ObvQxKIWICdoL35Q9wR/nVO2vaYVP6n62RymTUauDFH7nRlZtoACCqLIkEcgti8U78j/Hw6AGkFwwV0qz/bZGPqj5UvWnAxR/htUYHNRfMtGvctovXc50AwyC69BdnDb0f2kP3tO9/83ZXXqE1KEMvGfcYgqnHo9wfF597r9g60CEHGlMWOdfCGfaq9s9IwUnVnHX5GVqbXNH+4SgHAmZ3xX3yvd+jPw67thDsDoijiyCPn1H+Kzrbt8hNuFAe4XRw1vm7gYqP6vDN3/vtkhKy9t7oYtwZe1h9mIxARHgrsWMiu6JaEt2hw6Pe4lw5/OEf4X177ek/4BysI/7fSl8r/7pUAO64rPZySjeXL3XOGuw4/W+7wB5X/3XGFkO06/G6Wve4tTAAym1OHNMbyrekMkcrBtEQ78s7Riy/YoBtrNG7clQAIux1gr3va4jZD10n6V3X4pdSlqV21ww9YWfEfe7c9p770rTGmawoHx7WGfRKbPK894X/1AEhz93piuDWw/76tnB/YnJgDwMs3bXXm6qWokfB5bKoc4MShoZHIBNLIrTvD3aBnu6BG2Q4/1RN+cn5JrzU4E4hYjJP8EIP8BLeSmxjkJ2jz9loJf+3nEQeBMMi3T4dYhaqcv/pdVeLHOYPUGrk0tfP7hS6Q6GSr5INtsTge0W0H6LQCRCGvnV/vd0JIrfHKnTFGC6RfG4OjYYaAs43XayfZMQ6y7cb96tBrB0hzhZsHk3JEovrMz1TmcycAOMJv1FxSAWOEzBH+Vk3BYiInc0qQQHAUyhZslDY2/nehsZDrDIV583T3gdcZ4R8MBvirf/WvoigK/It/8S/wd//u38Wv//qv42d+5mfWvvdf/+t/jV/8xV/ET/zET+CXfumXcOnSJfzkT/4kXnll1n24ffs2/v2///e4cOEC3vnOd57nrrzxsW4xqhXAhe2ucn7qB8i5mfU5EOPw0XavSxgN8BVuwhXzxLLDzwT4A0+t+VyzkSs1RAABlIEAhVboidbq36L0B6gpUogQ4AECY7AbdDeP4wNs8cMT5FVgfF60UenwN8n7Zh3+WSQfAXNme4zImeqppWg+P78vu/Mz7wZmrmhQqh/8vzHhoiF9h98R/gbjvmBhXp6PDhHdtPnv06f+GABg8tR3QfMAweAOohurO81RaJMYqoWQapfZkz4PbQwYXO49EZQzKPTjDOvgI/m06+A3oZT0j4/BiMAY6os1BvbEbACBXLz0IuG3hDsLO+CCEDgfgIBzFO2KQ/2W6PE23hpbKf7nJ99qXGiW8/sLZljx1CsrakYptkAezzr8APDBztP4UPddeFv8aCWSb12H3xY+oi39DID5YxclAwRrigZ9Zgl/ZnJkNXO8B8UJDipmiH4col/O8BOgFQpH+A33pn1BqeyR7v4YFElJGdv30OGvJfxcgIwsO+/GGKT5coef8gn48CZYctI4OkJOItz4fZt0Y43CDXdpXtu/t+dnp23vWZOk2fxrMLLHPwqpVvr72EMxLu0HkNLgD762+rw6qonkI5XCbNAV3esSLvSWZf23Tux7H7i4PYHsO2I+mijrFL4Cr97y8/vrv2dT4z4AEBQg1clG7vxNIOUM+3jNcfQ+FN8Gwg/YeX5lNO6md5Cp1Er470Hy3hJtTOT4zLr8Uss5Ob+HoACZmp/jJ6DsqC+ijOM74/l9D058TnGwKXY6IaRUeOXOGONkdh8eJwVGSY5OvNlvYYzBVE0wKcZLBoLbgoiw2w1xPM5w62g654lgY72nc8aHRNaStlrw4MzO8GeFXkpMKHSBo+xgye9BcMJwkkFpY5fLC+uMVKWnOsavZ7yuCP/HP/5xTCYT/Mt/+S/xx//4H8eP/uiP4qd+6qfw8Y9/HLdv3258X5Zl+KVf+iX85E/+JH7iJ34CH/rQh/BzP/dz2N3dxS//8i+Xr3vb296GT3/60/hX/+pf4Xu/93tfi11642Id4VfSkhoRWQn2aaU952TWV4Jx243+Nj3g1sEavK14KDBeFivIyXj5lSfXOtkbo9cTZ1gDPOG8fTQZa1q1rtqudaMqATwEiQCkJK7Ee4g3jOMDAKOlPZ/WFX6IzcW2VGf4dcPieDGSTxoNwTiChS5IxEIr6Q/nO/zCR/JV5Py2aLAcyYfKsSEiQITlyIsgBkZ8mfAvGPd5tJ/9LAhA9sATUH1rzmaiNpInPmD//sz/AGSz7DcKOCLBkFe6/J501nWZjcu99xUVP75QN2pQh7LD39lZ+bpS0p9NwHVhwyjq3L1pTYefkxPB1BP+VHQRcj57mNOsGHHaDPp3t54EA8NteYSbRf1xaTLsi9woRbYwSrEtfIff72fEArwtfsSqVErTvnUz/LsAAJGPNzKHq8KPAUinyuqerJb1B0ygRfa+Uifr9919P5rgX9N3IgWpgCRVpaRf85mkX7iOvo+XDOVsvrPtCo7TLRalqyT93uDOz9ZnuSkb8HHoriWjwdIBSKZgk7tg06Pl56MxoHwKw0Ulmm85BrAuFWBuc7TCjSN7bl+7txoS2h2bKKL1TLWwCB/Jt9urf2YREb77vfba/+bzUxydNGRtS43h2B6T0qHfaJcdv5kMelHWn0uDg7H9t8v720upWxFDEDhFyQpZv5QGN+/aYs1DD6wvaG+jHIhYiFSmiFYl5KwB6cIVmerWcO4++G00Mu6ILmLeQjfo3XOTx8q8CcMz6vKnOkWh86V0hMDN8RdVWb9g4FQfZziVExA275ZvC04cmUpPtc873Qi5VHj59ggTl0d/PEytX/IKg9wqvCFhrnOMiu0LxotgjNDvBDgcplBal749hSkgawonDAxZJSqRuw5/IJZ/j0ylmKopJgvPnTgUGKcKaSaXVFQ+YaFpPflGxeuK8H/qU5/Chz70Iezu7pb/9sM//MPQWuN3f/d3G9/3+c9/HuPxGD/8wz9c/lsYhvjBH/xBfOpTnyr/ja1yLL+POZAzdGu6oVhyFlrJuAhPHX13XmZ9JcoZ6tfphav1SoMiG49ofwPxlvcj+I6PIHjPn1n/uUZvdExJBOBkbwTSFIhYsJ6kr5rhZwwIWzAbzJ4uQak5n4LGbXYdfn9u+hl+phV0A/nlmevwO0m/MgoCHGJhH0KXTuGj+Sir6fD7za2L5Cs9GSoxUyIqC05EhIiJJSWC7/DzinEfH9xBdPsFGFA5T++RPPpuqFYPPJug/cIXmo8VAXEsICvxfHEp518mncYYgM2q3WWHf3y2HX4TRKWKIpiegGO5j+l+3XLGvw7kTCcXl69e0p8EHUTBwnnqjPvWdaWb0OEtvC22Dvu/M/o8PjH4LD4z/hq+kbyIG/ldjNUUJyXhrySUGIPYmSWmdWaJW6Aq6V/Eph1+JSIoHoKwXWoBk3kZhXd85TsAAL2jecKvtMHJeH7EpsmpP9MFns9uAADe33lr+RpjrGGjN9EbJKyM5dNUkfS7bSmcaiQoklLxcZoO/0pJvwM5uX7qFAdBQOUilYopKJ/ARF2YIAabHoGP71h5vocuAJ0DTKDjvm9a1+HXemU3Nk2LkuQ+eOEeyRNjaLtbf5Os33epd/rNz5arlyI89lAMY4BPf+Gkdg1x7HwA4oih5SPAtLREdMO1QCnrP7Sy/ltHGsYQupFGL9ye0NpO43pyfusgg1JAJyZcNLfAx7fBkgEon4BktkSm/bEajORagsaZwF60f29Gb6pYOU4FY75tHX7AHudNjP42RYu3MJZjpGcwa51Ie+9cJI2MGDT0XMe31w6x01teKxW6wESOTzWmsCm4m2OXZrtCrcdOJ0RRWHn/4SDFYFKgvWF3H5gZErZFB+NiOGdoeFoEgiMOOaQ0pe9IoXMURi55IQgWzBn3CeepUOc/MFVTa4QpJ3OqgDBgyAqJJJdLNl+Fzt0owZsLrysG/Pzzz+Pxxx+f+7d+v49Lly7h+eefX/k+AEvvfeKJJ3Djxg2k6b1JTv5IgpyTW5MUXkuQ6+4QD0/VQT9Xsz4PlzV/LxXtOkPCs4OZyb/rwGaO9BTECJ7+CFhlhrz5Y816t3sAYDaShzGGQkv0RHt9qoLRK+fsWdjZzF16EWRmcXar4P0D/LkpolmnOq9/6JexfE5JooyGYGJpX8tovsUZfh/JV3HoL7RCQMIWCTy0soWWSiHB7tNsoReyAHLhuqoa93k1QefZzwIAsmtPzSkL7AYJTN5mo/NaL3yx3L86xIFNBvBrzVmXeZl0+r6QX/DMOvwbEv5yhn937Wtladx3As750q3GuPGCdU0HztlctYBUAeGi2vKog1AsfEDfEsPTSPo93t1+EhEFyEyB68VdfCN9EZ+ZfA2/PfwsfuP4v+CuPAEw3+EXRQJRpDCg0xv2OeSx6/CndYTfd/jXeKIQzeb4tzDu84Z9MogxvGiTQlqj22CVeDylNThj0GqZ8C/O8T+bvQoFjT3exxOxNUXMjSwN/PquZjJMGHx0siQXy0ezWL7CFbACmZSFBk/4J7p+QZrpAt9MXsSkogCoSuzrCJphHORUBeX8ftndV2DpAF8truO57BbAApioA8pG4KNbZcwnqRwkpSX8TTGALhVgVZrErbs5/Py+9wK4F5TqhtqcwGbDvkV893t3wDlw406OF15dXn/N5vcrhdEyO36z7vxuh3Cxb+9rz900uHFoj9MDO7osyGyLTeT3r7j5/YcvGjCZANkYbHIHfHgDfPgq+Mmr4MMbdpwDQL8jQARIZdYaIp4FSKYwq47hhukP12+n+Hf/2028eP31bVpmiwcGw2J4T11+K+cfI2xQVzCwjeTriZqiUOcn5wfgzIXn59i3ARGh3w2QZhK3j6copEK4WBhfgUQlYGAIWYjCSIyKNTHBG6IdC1zcncVc5iq3Y3sLBRhr3CdL4z7GCJf2WhALz3qpJaZygjbvoNDFXFGIyBqaKmWWPj/VKaSRp4qrfD3jfMMWt8RwOES/v0xmdnZ2MBg0L0iGwyHCMEQUzV+o/X4fxhgMBgPE8RazxKfA4on2eoOX6mwq2TFa2BkwBlBdLBYBQRyDCQaKY6ixAVsRn1UHnSZg3V3wVufcpE8AA8IQJk+33j4AMEpCTw/A2rsbdZ+3BXGCCAOwhvOHwgCK0dbbThzgYQC+5rzUgUAgOJgAeMDQC+O5GLT588bJacmARWHjOa/jGOCn2GbGIMKw8Vh4GCMAwQFm3LlJoLAFk03AZbrs6q4VmCNB1OqCM4IhjU4QLkW+RUZYouIIP8+n4EbNsuX7F8vP10qhH3bmTHs0abC4A1F5eOowBCq/YSwCULHoPk9QO5fBDl5BMLoLBo3w7sswRMie+s5ap3p19QkUL11FcHwTnWf+B6bv/cHa4xVHAlHAoIxByKjsMufdC0tzawSC4KycSzSuwMHTEbgqgGBFQUbJWeHBvc+qquoJi+nuAUc3IKYnCHbeglyque3R2tasBOcrnfptpX723jCx26B4CIpiG09Yfb8zDAyLKZiR600ia9BhMX7swkdxJIcYqAmGaoyBnGCo7H80DFoswm7QLbsVLTdKkbd2QEFwT90D5YqkXOUQOof2Iz5Gl5J+HXdqo4aqyFs7aI3vIkqHmGyYQxxnlvDn8Q5Uu4+svYdoeoze4DpGl2wBwAAIQlaagQLAjugAGTDSk7kZTS/nf7r9KEIeoMtbGKsEYzNFm0XYbRNuHBoMU4G8SvgN0KqY9smeHXkRMgNpDcZEmRKT6HTpWAzkGJ8Y/D6GaoK78gTfv/M+AEDPCSOUBnJFaIULx4WHtjtPplQctGJm7yVpgnF2iN9PnwMBuBj2sSf6QLwDVozBpreh2xdBKgMTHIYxdFsagMEkW54jtaarCqbhXnrzwC54H7xIa3/rTdBtMdwdGiSTvDYO03e+93eDlXGZu/0A7326hz/46gif+dIAjz3UmnPNP3afc2G3cg8urDu32UKJ+dQ1hoOhxnM3DYSwZPrqHsBUCuK7G39Oud07AYAEw4ls3L9Xb9vz7ZH9AhR155Vubj6eVAajUlDUAg9i9LuidPbfaRiHOBNoZe9pImz0PiEuACPr13UVPPNigizXeO7lBE88slot9O1GhzqYqjES00VPbNAQcfDmdpwxFMihINFrGDWIECLTqfM7qj9HjTGY6jHCIDhXTsDBQZqgmd54TV+H/Z0Yo2mBnV608ecorZDrFHEQgXNCGy1M9Ai7tLs0CnGvyJEhEGLpWmRMICsSaEjwFT5RqZ79ploWSPQUu5X7QrsVuFEANrf/aZYg4AIM0q6HFn7LbfnU6wWvK8L/RgVjhL29zvoXvg7Q72/mhK8LgXTcBoURWE3XtUCMeH8HotuB5CmyNIbY8LMBwGgNiQDxtQcheuc0v++QpX3IsYLobp8CoLMpTHQRRmZb7d8mMMZAIUa83wdv158/BesiyyIEW353YSJEu10Eu6vPSxVKTI/buNw26EctXNnZQVhDgDqdWTFNYopgr4+w4ZzXbYY06YFFYrU/QQVGKyhq2WPRWr3NWgZIR21QEIK55IKk1YHMJohIzm0rAGDicuEZR3vPusenWY4L3R768fxxjZTAHbQQkCVULE/Q1RMQDEwQob2/V8ol0zTHA72duc+QlEDs7SCqHBsVSiTT2W+oMoVjGqKzUKBkF68CB6/YjPM7VrWk3/IOtC5faT4YH/gozCd/FdGNZ8Ce/gDM/tXal+XKSqw7vCi7zOzCFbQWfmtDElHEy2M4jQAZtSGyKbpqBLN7rXFTaDCyPckgQrzTw1RmQAAEZF2DF9UUbP8S8DIQpQP0OhEKZdBqze41eaERBBzdbrSS8BcaSCvvjZ3dedHqo9uKsNNvza99OxFM2ALlCVpyAnQvN372KrQQYgfL56o2GiOZoMVDhBWzoa6Lo5I7l+b283QIoYIWeJGgiwyFKwCwbGrPVRDCfn+tF4vp7wN3gVYx2nib2s78SHd30WqFSC8/hujFY+wMXoV8xCZIKEMIQw6pdOmafNHsABNgbJLyu15J7mCoJghI4B27jyFkAjuig7FKkLIMrVaIC7sF8EqBQcrLySwJ1/2PIjCnwAovXIZxLuQtKhC1urigesARkJocYcxLaegryW38x5PPlgaCN+Uh4ngWr9mOpphmgDQBWq2FY6gFkE+BiMEY+3nddmANr5IJ7jjiaQB8IXkGf/by97g37gPZFCgOrSqp1QLCEPs7CkCGaYbl34BCICCgXb+ovem62o9dDdBq3ftybreXA7cl8rRApxXNG5QaUxL+a5c76LRXny/f+4EQz7yQYDSR+PpzCT70vplKaTBy3fjLLXT8vskBEAdAvPm18Y7HNH7vmylePTAIhC2+PHo1RJtrIBYbjwd4XLlYABhiPNGz7apgNJE4dnGCT10htDornsvJEKACaO/i4l6IwUhimlLt554ZitSeL2HLKuHqwJUtBqzZjsNjF5E5Uue7zWcEURBG5hgtEWAv3s4EutOJMDQSbROhG9X/prEOMJVTxG2OWNQfj0QmIKmx39o507GFOkieIYwJ/fa9rUt3Nq+PAAAmxQRCEXpBD4wY2iayUYthgf6CCfC9QGoJrgx2qFs7HiGzDFGbL63hqkimQ7RMiG7UQqg4Cl0gbnOEbmy12zG4dTTBbitEr2P/rVAFSCrsxX3kSqPXbzXyu0351OsFryvC3+/3MRotS0MGgwF2dppPpH6/jzzPkWXZXJd/OByCiFa+9yygtcFweLZZoGcNzhn6/RaGwwRqMaarBkYVkOMc4BoUzMvQjJZAWiAfF6BiAj3NIccpGDaXfulsAiKOPGMguWzidJaQiYIeTsD09jNVOhmBghZMXoDUEHSKbmATjFYwaYFsmIGy+mOgxxnkONvq2OL/z95/9cqWpdeB6PjmnMuE2+64PDZP2kpThlmGVLHEoiSSUotstNBstsAW0FADgkA0+CAIAu4f0IMAPd0/IF7x6qLR/aC+MldiiRQlUqJYxSpWMauKld4ff/bZLuwy09yHOeeKFRErIlbE3jvzZHIPIJGZe8deLpYb3ze+MQDoQYq0m4CZxcdWJymSUe6kYQ0kA4kEY7kf5wytVoTBIC3OG90fgccSnFcv22gFOVLAqFsY6i2DkRkgJdJeBkoWb7PRCnKYAchBod0m46q8Wb+PwZQcVTy8hxB2fn/g4miGWYaEcnSnRgC00UhHElIyNAFQliC7fwcBrLzd/702BkmeIeNqYhm6PwQPFYZivA86TSEHGUj3QYxjJDMMhxnCPJl4KQkaO2gDoFtvgskMhjH0bn4ZZo68FgAQbqF59QVEd94Aff8/o//1X62c39RKYzSS2Ezv2+PU2MQwMwAmpa+jVIJRUBzDXj5C1N6GSIfIHt5HFs+fPQ8e7SKAjeQ7GiYwgYLOgFyNoIyGcskIAMCJYUu0sAnAHO0hTSVGI4lydHaWK4AIo9FkLM80kiRHmkiM3Eeino0QTEQTRiuMhrPHr9PahMhGUPuPkEVbc5e9LkIEUNJgVDq+W4cPAQDDaAuj0fHdf7OojUY+gj7ax8h1taL+IQBABTFGyXLZLgs62IL1jqi7TZt9e3xHQRujUQbTuYpN/ADR3kcYDUYA4xiOJMhoJJkCOZbeUPb+e5j3MRymICL88OgdAMCz8TWoVCNlEptBG3fSR3g0OsINnqEZ2L+/f+DcRaGROaLO/PVIDCNpvTco6UP2etBRy042wcZg7g16aLMGXh99gD/pvwYDg4tiG4/kIYYqwcP+ITaEfbFrxcAwBfYOM3SiWeJEaQrV6xfENRDA4HAfvNfDXkn2+8HoPt4/uo8nQk92BaAM2OgIOuwAKkNAlqj2RqY4LsV6Mg2thzBiVkqcJBK7R/ZvL3QURqPj+9TEwi7jsJth0D0CSqq2/lAilwaMACEUBjOmA7P4mS9t4D/+8T7+5NUDPH09RNslAezu22uy3YBdjgFYvwdSgFkhCiviwMVN4OERkEkr/GrHBsloBNXrT2x/HcShPZ77h1nl/r35nr2vX9w0AGeLrxnJgKM9aMRoN+059HBvhMHw9Ga7kfTBRxmMWbAOqQDk0P3h3KJAlusiReHgKEO3P1pYdH08wJGrHO8NP8S5aIDtaGepJJsz+35z1Otjt7cPIpoY75lGPxvhEY6wEVSPDuwne+ilQ7AwQIr15uvrIpMKe/IQsTrFkdgKHKSHGCQpRDg+x7Qi3E0fgGXRiRU6RnKE7nCAlmhB0ux3kuUSu/IAIq8m3dpoPOjvAQQMnMFhN+/joTnARjCucoQMUFKi6xJI+nkP3eEAnaCD0ShDrzvCQTT5TroqnzptbGw0aqkNHivC//TTT8/M6vd6Pezu7s7M50//HQC8//77eOGFF4qfv/fee7hy5cqpy/kB6zr7aYBSuta2Gg0oA0AqEJtysMyl7WwYBpLWKEcZgs5lpZFbFXQyAtu+CmUYcMrHThsOpTTMkqidyr/NcrDmDgwYzLALVmM2uS6MlDCGgQyB5hwDrbHWtmulAQ2wJcfWGIIBA9eEJmtUxBHZv1dKF7/TygAaMHOXTVAshEl6YLxeBdTkEtaqnc89FuNttnJbG+Pnttcb92UJlDPs4v0DNN77PqK7NtZONTegtLGGeQZghlXsL0GAY8R40S3kj24DsITfLzvVORg4hBETy9AKgGETx8YYBmUYKJcgwQBtv/NMqwnDP+MkyUw6Q7BrL0NGbZs9tQCD534G4f13IA7vg999G9nl2chG+65mEPQe2WW3dmai7ADYeTag2M9MS7tde3fAunvFz6sQOrIpm5sYyRTnGh1cFFtIpYI0CsooSG3/OZR99GJL+NngyBa/jJ7YJqkNBCfX1V18DIwxxd8KJ+lPgjYCxiq3WTa3IA7uIxgdYqTNx2LO470TRs3qY78qsqiDRn8XYtQtluc9J2TYrLWOJHbjDcNDaKnmdwVLCJwxYxZtQGuDYfMcZNCAyEeID+9huHW1mKWVevy9tMgW/zKTY6RSKKPxUWrTd56PbrjP6SLKsKsG0Nqg424hXVfRCQMN5e5LcW5fqqWwJnEqaoIlfYh8COnW22AR+nqEbj7ED7N38FbyEQDgmegafrb9efyHoz/BQ3mAe9ke2sxuYysCdmFJeNVxJG1gZIrhyF6/UQCgfwDFOI4y+3LIYI2+/rT/Ov7m5tfHRJ4EdOheOLVBI3LHSlnzuWiipkxAnkJJNaPWuH3PFhq3WwZxMBtNuQ6ablv6I8CkQ+jSPLPv+HbaAjBYGl0H2Ji+S+dDPHiU4ds/OMJf+/oO0kwXpoCbbXf/1BKQmc2OX3E/nrlMeOgKHxc37RiEzhVMlkxsfx10mvb7HCYao0TNRHx9dNfJ+bdzaBYv3lYmQEkPJulho227h4dHea3jti6YzKCNqU48KUCAVlAyn2sY/ODRuJChtd3urY1THEU4IQhEMER4OHqIXEnsROdmDN+qMMiHGEkbE7jo+9EaGGZDtNisKlUbjaPsCBzBqX7HHqQZEp0hk3mtfTwJGGPQy3pghk/sozAherKLo+QIW9Hx/Gk8EplAKgXDCKri+U9GYCQT5LJ61n4oh0hkgpZoF9tKhqGXdCe+P86sObn/TD+zzx2tAQ0NuYAz1eVTjwseqwGEb37zm/jjP/5jdLtjM6VvfetbYIwtjNH78pe/jHa7jd/5nd8pfpbnOX73d38X3/zmN091mz+zIDbftE9LkBDj2VcuxnFFtZcPUPgxycSYjW5ZDwYUxGDtHcCRkhND4ei+yGDnGJdoneILMRAJREygUddVlpYvm8VtQK1Q4S6nPixbPdGEmSEAwCkJRJ4B/X20f/h72Pqj/xPx3bdAMEgv3kT/JXsvkEaDE4eg6npnxAIoGGhXRAj3LOH3jvUAkGuJmIcIpqvZVGGWyJwfRhHNZ40Sp536rXGfvSYM4xg+/eWlxwKws9rDp+xnm+98r/Ka5czOGBeGfXNc4m3sPU38QLftZ3l/cTQfHx7a7WluQmqFzaAJRgwhE2jyCB3RxHbYwYV4CxELkUcNGC5ARiNK+jOXqNGAqNFVYgQYmOKVwDv0p2F77hylalrVVyPrQ30MD2wms8JRP6kwS1wHuTOg9NF8QMmhfyqST0qNJJ99bcqjNhQPwIyubdznzQ6z2JFWIvS3rwMAOge37DrIGz+WXgqJo+VM9LpqgLeSWzAwuCR2sC3GXarNwLv5233ZmBIJBZElngRCwxXHJI+sF1nk7wNjxZ037vvD3p8VZP+rzRfwl9tfBCeOS4Htvj/Ix8aUrSVO/YZxUJ4Upn0NnoPkCBAxem67v9h8FhwMD+UBbmUPqxcEIOCE0N0yZtbnPTAqTGfvPbQfvnJMd/4yfEJBP2OgtD9xL/Fy/mWGfWUQEb7xir3W3vlohPu7aWHY12pyhM7scGF2/BJ4t34AeGLbeUMQK4wVV0EYMjRiu03TTv1aG9xx8/vXLljvmMUgGBGAki4223aZi8wATwLWsG/JM5QxkNKF8qYKj/YnlQs+VeHTgICFaPIW9tM97I4eQNYwKBzUjNELmMCo5A5fxkiNkKp0YaSilBq/99/28KM3e8eOEeRMQBm5tnHfOshNjkylCNhk8YeIELAQXXkEdUKRj4lKwBZQVEEcUucTzvuTfz+CgZkoBoQsxEgNJ9IWylBGYSAHc40bP+14rAj/r//6r6PVauE3f/M38Ud/9Ef4l//yX+Kf/tN/il//9V/HpUvjOda/+3f/Ln7pl8YGVVEU4Td+4zfwW7/1W/jt3/5tfPvb38Y/+kf/CIeHh/h7f+/vTazjW9/6Fr71rW/hnXfegVKq+P87d+58bPv5aQARWRJf5VKsJRCMnTTB+AShWQbjMmJPLYpvGoxjWYewCsZoW/QQIShug6KmncE8KRibZ7/oOJArvKzycDDGAET2b5eBCcQixBZrIGLLK/jGGMcKl7yYTTnTL12uVvUc+j24mDgmPppv886bOPdH/xfie28XRP/g67+G3pd/uYiKU0ZBEJuM0yshYgG0MWOnfu96XnLKz7VCm00WrIxWlXGFxXdsPOFnzmV36oWLCHLLzpOPbnweJq7vC5Lc/CJ0EEEMDhHef3fm95wTBGMLI/k8POH3xzfYtL4Ay5z6vbFh3twEgdBcIKcNXVFFue8kGB0CoIkzRptpY8M528sIDGy8vY4Aq7gNMUfm5tfbSLtIPwbCHznDvjxsjQ32jgkfzVd26vdENw8nlTWJ1CAC+qMcsvyiT+PEgHi4PImB5Qm4c0AvCD9QEP72wUdQysZVBoJhmhR5p/5D1cdbqSXfLzSenPiM7/D3nJt/FBDi0q0piF0kHwUQnvCLCMSouGbDfFScS57wJyZFQAK/sPFVfL75TPH8qib8br/mTVIxDqgMSWqv6QYlMCICQAXhvyS28VLjKQDAD4ZvTEQUTqOcDDABYiBdTc7u7jrDvnMn9xo33g6rLCiT5sKhf0EkXxXO74R44Wn7vfzxnx1h77DaoX+cEbIaOg3CFXc7u37Bv5MEdp59DfLhnfqnCf+jgxxpZhAKg0vnana7RQwmU+zEbkRqoE6v+2vUWCWxEPOLSB67B5MkyhdpPi0QTKAddNCVXTxMHswleICd2R7KIaIahnMBBZA6r1zeUA5sL2TBe9ftBynev53gO6928b0fHy9VgBOHNhr5mtF86yBTKXIjK5slMYuRqAQDOT8xqC6MMUjUCGLBOyl38cbeqX/67wdygGDqOxUUIDdyboRjqhLkOpspaHxW8FhJ+jc3N/Hbv/3b+Mf/+B/jN3/zN9FqtfBrv/Zr+If/8B9OfE5rDaUmb1Z//+//fRhj8Fu/9VvY39/Hiy++iH/2z/4Zrl+/PvG5f/AP/kHl//+Tf/JP8Ku/+qunsFefYnAOk+vZOraWoJJpCTFhSY6q+XBV0tlvfzwXlc1tZzBG1yPBHsrGJhEPQUyAtc9D7X0EmJNJFTBaFUR1LojGEXR1ZVu+UFFjG4kxCB7iXI3qdrFsxpceRxKhJeVKLo4d9NBqpRQE4sGE2sJ7BXBXkEkv3sTwma9Cbc4askmj0eaNMbHNU5jRIahz0WYEk4uxiyZbiz4az7hZ9GhaDqmVi0eo2F8RwuQJCLaY1mQhDmQfmFJVDD73DeTbVzB68gu1jwUAGBFi9OSX0Hrnu2i++31kTzw78/3HJBFlTu6+oMvsc++l0RCMo7H5BBQAniegdDhzXDx8hz9ptBHyAA0eYojqF62AccAAsrUN0X2EcHQI3r5kSX5pu+vMpTEiMGYLBIxoTPgbG0sJf5h2YYyGnw4/LYwLLedgAAxGOeJI1FIwzIMn/F45AIwj+dRUhx/GoNOIIEON3jBHTgZxZM/ztLmDZu8houHB0nX67n4eNmFK5/lg4wo04wiyAaLBHlRzByFnRRyk/0o3eAv38j28NnofI50ipgg3wicm1rHp5uhTkyPVGSIWYqMJeAGCCHKksIU5nllCqkRslR7uPhDKpDiXNl2RocOa+GsbX51QEwDARbENAtDTQwxUghaP0S6I75wXciZshz9xhJ/ngGhCG42+Hhb7uiM28WbyEQ5VH++mt/FcfL1yce0YOOgDg3TqTCQXKWskgPG9IkkV9rv2/nd5fu1uZXjCLzWQSoMwH8K4c8l3pzdX6PB7fO0LG3j31giPDnKMXJLH9mbp+a9yHOcK/Btf4RhkAhc6yo42cPv9kMphxGqqgc22wP3dbIbw377nuvvbGqy2GzlBc46mGSAICHlucNSX2Nk8+XcfUhJkJMwcQ7np7SIt55bkd12H/+qlCHcepI9Fh9+T47rvXpw42qKDgexDjSTaQQecOBiYjSImjoAEtEyR6wzNCpn+zDKZgFQD5DqbMJLLdY7+gkg/j/I59err9jr42hc21n6fNDAfa4c/UUllTB4A9+4U4Cg7REu0jzVmkOsMUstanfZcZTNMNtUpMp0inhopJSJw4ujnfWwEs95uPnbxsxbH5/FYEX4AeOaZZ/DP//k/X/iZf/Ev/sXMz4gIv/Ebv4Hf+I3fWPi3b7755nE27y8UiInqCqSh2W4sD2Hyfr1Htnaz/h9XFY0LK43UCktDvctQ0rrMu9EFamxYd+U8KWbGjwWjl3e1i9GKFSrBxri/q7mvXMDkab3vzmi73GXqDBGCeGhf5OoQfsJq8WhMAKWuF7vwFBA2Ybav4PaNzyHauT73pq2MmlQzqGw8vkLcdv4JUKXvWEUtGDeCIo2CYHxWEaGdJLVC/UAisgoAh1bQwF5Fdq1qb2PUXm8GLnnyC2h88CpEfx/hg/eQPfHMxO9biSV0edhe0GU2RY9NGgUBjjCMMWxugYaHEP195BWEn2RWzI8P4ibOixhigQrEqys88RaDQ9AG7OypjwTE3GSpCTBGriZmwHRadKBZa2Muh1DNTRgAXGaITQYpOYIVicEqKCsrtDbQBpBaLzxGy5DFlrgKL70mVurwj78jK7EnhIJhoxkiDgW6/dQWHUJedPijGh3+GTm/XwcXGGxeQefgFtqHt5G2zkMIl3NsDIR7QSx3+AHg+fj6THpDwAQaLMJIp+ipoSP84zltEdoX3JACcJdrL0UEAkFHdvmBHBXn0kuNp9HhLVwPL1Z28UIWYIdvYE918UDu42l+xUn6bVReJRwR9x3+uCEAEAZ6BA0DBoYmsyq4LzaewZ8O38CfDd/CU9GVSmVRsb45KnTSk+MY93btOb7T0mhGJ3feCk6IQyDJgH4e4lw6ABrbAPGC8K8i6fdoxBxfebmD77zaLbLod0oz4Uuz45egGRHObXGMfM69GzEkldUkwGPM6/Dfvm+LadcvrkjORAyWDbHV6mD3UOGodzqEH1raZ2LtxkB1gybNNLp9+7vnnmxYwr9qh98okJJO9XJ8GGPwr39/F1lm8D/9jYsLIyHLYMTQFh2M1BCPkocoPxAIBCE4Wtpep3VJN4GQqATtYFw4TNQIuc4QL4kE7PbtObW9IXDQlccm/Zx4QVJPG9poDNVs17yMmMfoyx6GcoBOsPhYLEKmM6vEXPKeyYljpEaYfmNKVQJlVGXRIWQRUjVCprOJGEFtNPqyv1BV8GnHZ7OMcYaTwfScNMZV1mkSRyKqL+lX9ee1TwSMuxeA1aS7RueAiIrtpCACa23DZCck6zc1ZOyMjTv8tZfrSXm940s8qL98XW/ZxAQQxDBqueOyHROgeoWBYvmTYxp8+yqav/L/QPz1/wW0ebmI26peIRCWHiRGa1ts8DP2zJJ+WSb8JTl/piVCErPz+0Y5tcvsfpAIJoo2MQshGEe+iu/FEpggQuKUAc33vj9TJGq4+f15cn7/ad/hV0Yh5AKMGGjDKiWYM/2bBnNyfh3GUEKgtSAbF0BB8sqSfmKYKTDWuUcwIjAQNMZy/lzE4PGCl00uoF2U3YYaIJOna7LkyXTa3IHWGoIx74e5NmTYhCECM7qY3S86/KVzVxsDDrIvyQQ0Y4EL2w1stkKkucaR2HTbWL/DP034AaC/fQMAsHFwC4FgYIxZXly6726w8ZgKAfhcfKNyPb4w0NVW1r9Zmm5hgX1pjigAd5JzGcR2hj+2hY4gH0G5cyliAZ6Nry2U7F4sZP22MFNI+he+SxOSzK4jdlFyXs7f4Y3iBf6Fxk20WIyhTvDG6IPKJc2V9Lv1TD9b7z60lYgrOyd/3np1Qz8PQCoD5SPkcmy0t6qk3+PlZ9sT6oBC0m+UU9OdcMGNMVC+IOFkDgrC3x8T/izTeLBv///6xRX3nzhAhK2mPX7ThYSTAimJumN0hhhIVT8jHx3YZ3anxfHEBXsPPerJlUwhWdoHGz5a7b1lAXb3czzcy3HYkzjorlZ8ICI0RQudYBOdYKP4pylaiFiEgAVoifrjc4IFE3P8xhj08h448aWk3RdSvvRCBz/rvC1efb2/tryfk0Cm02P7AdRBpjNkarHcnREDJ4FufjTjUbTquuqcy3b/swnfAGMM+rI3HjswBiztFQWugFXL+lOdIlPpRBHgs4Yzwn+G+WAVM/xaApzPxNORCFcgjQoUfIz5lYxb4rDqPJ+WM7FyrLlpRx3mPCzX2baFWKvD7yX9NV+gViH8RtljWWPZLO7UM+5zyouVPB3mEEFOHJ2giXSJUU9QPu5aTRwDQRwcDLJkKqk6pfl9I9ES8aS5HRyxmVfAmdq3mAWIKSjixU4Koye/BM0DiO4jBLsfTvwuGloyM2zO0QAb273wXXVpFBpOUic2rYcKdasJv5fz581NBCxAPMf9ufg8cXBiyB3h5/1DcANMX6G1zmCy0n+jJw37gjmGfR7KJW60ZB8Gq11iq4C0RDQ6BGAl/coAQmBh4kG9BTPk4aRxnyf+eUnSr5UGCWvc6ME5w3YnxsWtRmFGGWRDsHxxt6iQ9FcR/q3rMABaoz3EagRGBO4KMR4dPn6xvhZeQmtOiocn/L0K4z4S9pqJWAAhLaFTQQQignb3a9vhX7grE3iiIPy26OFJby6BLK/+niQ4Mneb8dHx3negUypsCOL4qebzAIAfjd6tLEa2XG2qaoTAkrPJwmlB+E/GEHtyW8rFByKwbFCQ1ChkiOsqCqaet5wTvu5IDmMoXN9JSZCWy1VjK8IwAeTDlUlnucPvidSd+0MYA2w1DTqN1TuxRsTYjl2u/SnJ40kmMHWf+Yy5MYpZ7O7bn1/YCdFpcXBOUNr6D9SC0aC0B5LJ3KLCqvjgzpicnZTxISMGwQRCHq4k4Q4oQK6zYnY80ykSNULElitJ/HW00eH4/PPtY5N+ThxKS8iPYY4/VQk09FKpfoM3MJRDDNX6jbGRGoLT8k67qDAuzHWGVKXjcQCdg0b7YNk4Wo+TQD/vTxzvRI5q7d+nGWeE/wxzMd1FBeDIUcX8/SpO+EaDgo+vikZegr5ihx/GdvUnELVA8QZMujgrvjZqEH5aucNvnNlfzQ4/E/XZjp/hr6MeCCJnOLhk2/3L3godfqvaqP5Vi8eAMZUPT2W0fdBP3NSNPdddF40TQ8CCCcJfNuwzBoirEg20skqXKnAxYb5IRNgQTWQ1HITL6OZDdPP5D1ITxkhufB4A0Hz3Tye+Vx/JN2pUswRtDFiJ8JuSEoJv2jlr0a+WfXvDvqzRQczCpQaQguwcZdroWOm+TBGYrOh6G2O/Xqop3bTxfQahmw/Oo7btoi+AVxfEaRexYEjzk1NblBEOD0HGQIkIMmxBa4AzfiIFhtzJ+sOkBxgNkfsO/5ghKwMIENj0fAQBjVjg3LkOMucHEA0Wd/nDkfue49n5RxU2kLQvAABaB7cmCjEeHd4EuQv3hfjJmWV4FB1+R6A3miUprpiV9CthZbljl/7V8pG9cd+h6iHRGQIxds6f1+VPtL3WiVBE6XW17/BPFoqfia5hi7eRmRx/Ppo11VyYCjBFzkaJwsGRvW9cOX/yr3B+W/oJYHgI5EMcHtkCQ93uPuUj8P6DGdJ/43KMn//pLfzi13cghPtOdT72PzlJ8ABk5FLSSVkfLO0Wz9iNtt3HLDdFCsPte/Z7LUwBVwUT2GzaZZ1Kh1/lgBytUDRxI44VTRA/v39+OwARYdt953U76ySd2aOSILW6wqIKH96ZNY/8pMCJQxmFzO3bUA4hjVwqP5fKoF+KowRwbNIvSEAaOdep/iQxksNaZJi5Z/t+uofRHHO8RZBaItPZ0uMJjL+L8v4nOoHU4+/DqpQSlzpij23IwmIMA7CqgKEaQNQoMnyacUb4zzAfVS/MSoJYMNuN5QIrOeGvMq99EghCmBU6/MbJ4meUDEQ2os+oiZnsVWFv6rS8q70oHnHuwm2Hv/bIxArFmkL+XgMUxDbnVy6R9Wtljf1W6fAQm3u6NXiEkAWVnTRZOPRPx+nxiWMcM4EsHJN33+FXRoMTqya0Rs+cL+PNdT4SpXMw9nPHNR/w2mibsQwDueDcG938EgwTCI4eInh0y+2ABHdkrh/NkfQb4043csaEVIwtsI6V9IeDw8rikO/wp40OOqKxVNrInYpCMQbdsN3iZjrOk7dz0FRrhh+wWboapuTQ35mY8zTGzEgMVcu+aInhEdrNELnSa2R5LId3v0+aO0XRx16ax19bFvkOf8+aKsLAgCBLBphaA2KBPwHnDHrDdvmp92j+VhmDwEv6G9XzmT0n62/tWXWJ4DShZODE8PX25/FTzedwJTg/d5s2HGH2hH+zzJ95ifA7Sb8W8UQsHxkDvgLZiFlUmPs9dG797YUyeyDJ7f01DsZGYr7DvzFF+BkRvtx8AQDw2uh9DKbmbouuetUm0yQ5K8/vN+LjkeR92cXvHn0Xu/m40DOx3zwAqRxHh3Z7687vUz4EpQNQhWLkc0+1cPPaWNlBSp6OY2Zpjn/RdrLBQ7DeffD+Q5BMITih07LH9agnYbTC7Qf2nLt+Yf1XZn/sDnvrkTOtq4vYAMDSLkim8xVmM3/AAajKJsijg3GHHxgXeXyRaRkoH9iCO+OgfHXCN41uX06YBn6shF9l9p8S/LWe6czNffcWzrV79NyISBAQ4mh8Hk2T/u//ZNbbZx6IbLKNrHCqP0lILTHSSa39BIAmbyFTKe6P7qFf4VW0CJnOIHU+NzZ5GgSaSE0Y5gPwUiPNJ41QPrLXCKysXxpZFCSyQhXw2ZXzA2eE/wyLQGzmQWy0BIWz0iVrwseWkmDjsufnEaPTAvFwtQ6/N5ureIBS3AFFLSA7xsPM2OOwrMO/KB5x/rLNauSZMdQmH0bXc92HHfOgMIZZQviNVgAPVzKtKScvTCNgHB3RqCT8ymgI4hBO/eALL/bcHS8r5AHyEmmSbu7dz+9XEn7CfJUC4wCJiVncBgsRMVFb1p/oHA0eYEM00V9g1GOiJpLrLwMYd/lFf7/oMqeiWkZdJvzWoZ8hcA9dau8AjIMpCT04nPnbcSTfBppV6ocpMLLFBG00VHsLABClR/CU22i3LTWZAGcEmLGk3zQnCWlPjnCYT6pyfIefDw/RiASigJ9Kl7/s0A949UK9FI1lKKL50v64ux/EE+oeYwwUy9GX8+9XesOS7056hGFS7d7N8xG4ljCgYr3T6G5dAwDEh3cBmUNwNnPrej6+gZ9qPr/wep+W9DcjwE9oGD6W9HM3o60jd04zDu2u22CBEqYKlwL7/TyQlvCPpe3V98aRu63FpUfEeIZ/dib4engRF8U2FDR+OHxr4nd+XcO0YtSDPDmz56aX81/dVjgOUzbG4L/1f4S7+S5eTz6Y2ZZ+Yu+NhjiOXHe3VoffKFDaB+kcrIbfzTLDvtxI3M/38OPhu3h99P6KsmcC5JzCj8rBBnuA1jBhC5T2wHp3wUaH2Gzb7TnsSXQPh+iNrIHolepaaS1sduwzI81MYfZYF8YY/Ps/3MP/8W/vI8snn3kkU1DahQli1D4fmIt7nGqCJKkqpPvnt+32brvRi1odfi1Bad8qQ44RjVjGB6677wu4p+WBUAU+OgAfzaqeBAkM5QAjNUKqUkQ13OS9J8RmW8zc+z7/fBs/+2VL+v/stR6Go/rHjEDIanglHQepTiF1jqBmB5yI0A46MMbgQXIfh9lh7es215kz7K1HT71xn/3bHCM9GhcmjAZlQ2seaRRIjt8BBAkM5ADGGKQ6qaXS+LTjjPCfYT6IZnngvPg0Jma6pJXQanX59glgJWM6YMahf2JZjIO1z8HIZH2zFO+mW8eoiPPlsvgSjJPd1wWxSbn5Qmhtu/Z1lx21584KjpcpV4rkswtm9g1sThGnLRq2Gz61T1IrRKxUXDC6ZIw4fsgK4sgbHSTXXsTg2a8VIyy5loh5NOMsXhgPzjvuXIA4nyD8gnG0eLzYYLCEVOXYEG2cCzdAwELDv+FTPwXDOILD+wj274K72fuscx5mDtHSgMsRJuuQC164yBPjoLbryPZ2Z3fPdfhZawdxzWJeyASU0VAt7xJ/VNxvfPGhrhuz9ZUYR/KZ1qTkXBkNhslz3M/w88ERODNoNwJIefJd/sgR/tSbJRIgBBWRdceBl/QHSa+Y35dTviPGGEiSyLWae41LN8ffyg4RCVZJ+ov5/ag1l6Al4SbSsA3SCuHeLTtGQKvvpJfEJyZDpnMQETputzRzHX4E4I7M6bKiIRob962CS8LP8XvCP5a2V8Eb9jX8u6UxJcJfkWRBhK+0bJf/7fQ2hnq84EY4TqQYTfNTxkBKg9z1fq+Y3z8ekfowu489aQt1B6Xs7Pb0eAEPcejMxupE8tk4vAw6aAH5wI5szYPRlpC7wqIxBl01wLvJbXy7/2P8m4P/iv9j73fxraPv4PvDN/Ang9dwJ5+9/8xdPA9AVXP8RoEP90ByBIQtgDhM1AHAwPsPsRVbAnXUk7h9xx6byztAINYvsASC0IrsOXPUXU3qftiVuPswxWCksXcw+bxgSdeOLdQotJb+yt58pp4hfn5/s80RhfYZt71Zv8PP8qFVVIgQEFYdQssUfkvw4V17Hb/wtI+HzD8WkzoYZQsW+QCYUgsJZuf4e3kXBqYWOfUO/X5kZBqff66NS+dDGAO88X79YiUngVTPbwCcBFLXYFg1SaApmhAksJs8wEG2X8vIb6RGK83R++9CaolUWTm/L0yQyty1EcDwEJT0i/e8kEVInFv/MB98pmf3Pc4I/xnmY95NrOqFnvNx9N0i+Fz2j1vSv4rHAGBN+YL50mQb0RfbB8I60MqpIpbfZFaasQdsVXOlDn/N7w4ACJa41gQ5t/CFD2hjlqcVTMMbB855gDR4iJAJ5FNmNtpoxOXuvFbWkyCIJo6xcI67vZf/CkbPfq34uTIarao5faOt8eCcQhYRm0gC8GgFjVqSfmkUGBHaIkaLx9gS7RlZ8MTmxC0k114EADTe/R6Em9+XnfNziaYxrqpOdn0hFxOFDbZpZf28tze5b1kC5jqt0cbF2g/OkAS0MZCO8Ic+aB22+MBs4m+tZXG3U57woz3Z4SfYuLe8VNTRjbaVnRoNNuqhGQkEAUMmT7DLbzRi536fNM9BG2O3RXBXWDmei7XvtIdpifCXDPt8JJ/1pZjc/zI84Q/6+9jZCCEEYZhMXjuLHPqL5RDQ27JZ8+HDD1wc3+okKWQBYnLO924u/uUbhHMdgAm7XbEByCtCwgrCL5OVbpveuG9PdpEbuVzSP9XhH5kUEgoEoM1mCT9gvQIuiC0YGHyQ3it+TkRoutvKbIHBebgYbef3naT58vb6pEcbjR8MxhHFR6pf3IemEwoM4zgc2O+wToefZe4aFCFIZoWktnpDpO0yu+fg73b/BP/3wR/gv/Z/iDeTj7CvLKFqsqhQfbyT3K6/ozwA6Xxyjt8YsNEhKD2CCVuYOD9FBB21sBXZL7d7OMSth07Of/74ipyttutSH6ymPvmgNMNeTg+gfATKujBrmSCbmQ7/rismnN8ZP499h/+wly926jcGlPWdcSDBn7fHIfxJqnHfjbB8/rm2tbNQKGbhTxMkM3vuyFmliiBROL3XyYoHgKPe8qLZi8/Yc/yNdwe1UxEEE8h1PuFUf5IwxmAoB7Ul9tOIeIyYx3iU7uJRurtwO7XRSHW60iy9IAGpJaTJnVHgOGKRZDr2BxFhMc8P2OMmjURf9jDSo8+8nB84I/xnWIBp2fS8uXb7YW7JzlJJv4vkW8EV9URQZUC4CFqBhfMfoiSOGdHnXnKoTie+Ih5x8bLNagoKr2So46hrsJK5kp3jX7LsRVL4uX/DF3obhCxAi8dIKtYryuvyIyYiRPnFLyABzvgEIfNkrVLO7x8qCwotJMKZkZcGCxEwjnyJeV+qcjRYhAa3buQ7YQcMtPDvRk+9AkMM4f5dRPfeAQCojfPgjKCqlBHGSeNhCX889SLDNqxTfzg4mCjgFA79URPNOVLvKgh3TRbRfMPDQuZutJ0tr69QJQQyAdO2M02lDr82GkRkX9LKx4sYVNN+jg+OIARDOw6Q58cj4WWESQ9MS2jGkTU2oLUBZ4RQkKtXHa9T5Wf4RT5C6MYZZGUkHxaOj+jmJgwXIK3QyPo4t9EAF4RRSXq8yKHfwyhgeM7O8Ye7HxZTYes05KaN+75wk+Fv/xyHhN2Hpjt2kgVgYnzd6cj+XSiTIpqvDlq8gRZrwMBgNz9Ayx3G3a6pLMoVkv7Az+/bZ0GLNWYUQGU8HV0BALyX3p1c/5ICA2k5nt9vm2PN77+T3kZXDxBRCA4GDY2ei0CcTigYJASprZ/GRnPJOlUO5E5CC4JhDCztz/046dyZtnKMdIp7LhbxotjGy42n8Fc6X8b/vP3X8Ld3fhE/33kFAPBR9qC2KsrP8aP0eZb1wYYHMKJZ/Swjjs1NexD2jyTu7tvvcm3DvhK2Wo7wHyYrPdPLLvW+UwxjwJKuVbmtlR0+G/f4yBn2XdgZL6/T4uA1iDap1M7slwrihnM7078mbt2zRbudTYHNjijI8scxx08qA4yGESGoFOsG2AKdnx2vSxTHHf7519DT1xqIQkJ/qHD7fj0ViDeukwuuCWXmq7uWIdcZMp3Vnt+vQsBCtHgLh9kBHo4eIFUpUpVipEYYyD56eRdH2SEO0n3kqp5hnwcje/9KVIKhHE58H5SPSmo0ex2X70eCBIZqiFznn3nDPuCM8J9hEbxs2j+YfFZulcydCOCzhGYG80YCThnWFI6vYLRnlhrgsNbW2hF9CyPcZla04gw/6s/ZA1ZBQCJaLL0sYFbLSxah/b7nVPltMWkNTwe2PL2gIxoThN0/8ILyS55RVg3BQ5QLQoIxaypX+vvcSARszvx+odhYQPiDeGaeMWIBIgqWuvWnKsdW0CqiAJs8wlbQwmDefCoA3eggvWolxD5uzWxehGAEWXE+aW0KCb0xliCWwTZshz/qHyErKSe4m+mXzc0ixq8OOHEYAKptO/zckWNjAG0wE3u4CIwIcT6WtJdVKNL5NsQVHe5ijt/tQysOIARDfkJd/kLO39wBiNmiEQME5xCgmRjCVaFFBOWunUbvIYCpDr8yMEwjYBwhBfPHQIgg27bLz3t7iEOO821rhJdkTgK5wKHfQxmNfPsKDONg2Qhh0l1bydCZIvweqTOoajgXfukiMntyiJFKiw5/KEcTvhx14Lv89/N9XDtHEAzYPQK+99bs9ZK4237DnfKL5Pxl3IyugEB4JA8n9m1s3FdxrycCtBzP7++Y+Qq8JZBG4VXnIfCl5rPY4rZodOhk/dMJBQfu/XijqcGw+FnH5KiQ0AKwMnM5nDE+K3ZLSS9DwYG0BasN1sIvb/0svtZ6CTejy0V04w7fwDbvQEPj/aliyWLQ2LhLJqDhHgyvfo/x2HIWDEcjBqmt+uJc/Vrm8uX29UIzwTIGI1VI7YHxDDvJISjrrdndh4t7nHzuFJF82+N3E8aoiFA8OJr//VM+dMWH0nODhVYOv6aLvC90PHnV7uPWx0n485FVK4jI+iRMqTlj3kDM4toy925phn8ehCA8f9PeP157t16hpMqp3kMbjaPsEHeGt9CT3VrLm0aq0xOZb+dMoC066Moj3B3ewu3hR7g9+Ah3hrdxf3QPD5MH2M/2wIitLK8nEEbSuu4H/v1MS0AmE80kI2JADor7UcgiJHIEAlt5XOHTiDPCf4b5IIZi1guw8rsFcnwS4XJZuNHzo8tOE0Fsty9fXjU1zmdgKQkNm6CwtZ6sXytrJFgDlfGIi2CwsiEYhc2lhQtTuP+v0OEnAsVtmHkvN76ItOLDxEYtLvaMaPBoontujeh4YUQHjFMHrJplHCHIiSMgDlkiiLmWiFhYONdPwJ8zi5IRKo5bnXi+XEsEXKAl4om/2wk74EQL/3b49CvFzL7hAqq9iSDg0LIi7xv25c479E8/4MkR/mB4hKwk0+VDSwRNa6uI8asDTsySwSCGDmIQgGbag4b1XhArzMsyRogcYVDx5Ju5TWbgaInGjBdG0eF3KgUhGNqNAOkJdfkLw76mJZJaAwHnIB9Zd1zGT2MDvbjvxjZKHX5pDBg5vwjvZD/nmlFO1i/cyEYcC2x1IkhtYICxQ/+CDj8MgQsB2bF+D2HvkbtMV+8ueaf7XinP2RiDzBH+pnTXtYjAYP05Up2PCX8+Wrmg4uP5HuT72GgSfv4L9hz8wbsG79+f3IdC0u8eE96hv8qwr4wGi3DZJRSUieuiaD7DGEjlxfz+1e31c+tfH32AoU7RYg18Lr6BLWHPn0M1dtMujzMcDux+bzd0UTisxIykG/beKiXYHD8FkhmMu2ceKHt+bYtqZk1EeDa2ppDvpPVl/YYLUDYqTPpISWCOcalHu4GJhJBr5+lECMGm6/AfDqk24feRdP7R0u0rwGgwPwK1LhFjDCi7m48UBs4s7tz25LtP4dQ/j2gbBUp6MNPvTFyAlFxL1q+UKbrcT16J3XaMxwtOFUZZbwkmUNUZBqzTe1jTN0GVIvk2lvhgeFn/rXsJ+sOayQggyKnxxUSNCiKdqgx76V4xi78KEpWATogqMmLYEJsIWISYN9AWHWwEm+gEG8U/TTF7/9Ta4N/9wSP8wXerY2NtPGFWrANwipNy8RFw96O8uB8JJsCII+YffxPyk8AZ4T/DfBBNyqa1sh3bOaSGRFhPpvYxG/YBznSssQFT54a3wKF/YplEdpnrzKgZbU0B64DVlza7DVu5+zM9w14Jb3BXN+7PLztszF+2j+Rb55zgi70NIhYgZlEh/1RGgYNN5rNrZQtQhY+BLv19ONGZlFqhPefBYLQCgiUFHMYr6zYNETkiVr0vic7Q4hHiKUldk8fYCtoYLJiR1c1NpFc+Z7e/cw4ghlCwynUZg6IbyxmbVEIAoMamvf6NBusfFj/33XHevrDSS7EgDk7MGfdtAQDi9AhGGzuVsmKHP0ot4VKNKcKvFWIWIGKBlf+VvlO/XuFMDQGgFQtwxiBXyHGfhyKSzzn0K20gnIoi4NXfw6rInayfuepB2bTPeoPaGf62iBeqSfwcf9mjIQ44BCMoqRAmlhDOi+QDAJAdC5HO7yHs7oKvqWSo6vDnRsK4i6ilxoQfjFycZHmGf7RyQcUb9+3KQyij8PxVhi/ctN/X7/9I46A//r5GzrTPz/B7r4GNOfP7ZXhZ/7vpnUJ51HLcoVLSTxzDYV4Qriubcq0Of6pz/Hhkx3teaT4PThxb3BH+knGfH2foJwaH7vBvtQHKBnPvucV87NRz03Be/XfG2A6cK4Tuu4Ldtph/fj0dXS3UEeXtXQhm5/j5cM8WJKLl3w8jwmaJd1yfnyC5ErxK4GBAGHTrmUp+6Lrcz96w233Ul0A2AKWDtbv7FswW3N390MfxbW0IhMHkubVdEP5qou2NGmffmfws9epE8+7DFLk0aMasGDH4uDr8JJ3Zm3tHM4HtDNMCRd0i9AZWuRYIQiNafN1ubQS4fNGZ9703NTI654bGiCFx77bKKOyne7g3vIOh7KMl2ugEHUidYy/dW2nWXxuNoRoiXGtkpBpEtpnAnU9SHXT7EncepHjr/SGUmr3/CCYwVKOJsQNbZDKYprmGB25Ew573LdEaqwJKuP8oxY/+XM542XyacUb4zzAfnty5B7VRErToAbOk0vxJRfJ5UNSyETzLXrKVBPGw1naOTenWIAd1K/PEsBLjN2vIPUU40eGuhLby+5Uk/fBz/HNGH7Qad9hXBLFgoWSXiLAZNIsOvzIaAQsm5WK+8ML4jAlg5GLjANtZNADieaoMo5YqV2wawmyUYMxCR8SqX6ak1tgQrcqH43bYQcD4wmi/4XM/g/TS0xg+Y80HBZ9zbpB90ZVGIQCfUTIQUSHrjwdHRTGEuUi+sHNh7jZUgRMDA3PRfFbWH2fdggQTW+GcJyBys6KmOSk5t0aN1sQxID4h68/PXbPd68P7YE6pEAiOVkMgOW6X35gZh34Dg8Adf8bp2C79AJBNKxrKkn5jwLkBJ+58LarjKoEx4Rclwi84g+AMlPbBjIIhKgoM0/AeF5wT5KY9F0T34dpKBk+cyx1+391nYIhyW2iVwslqjb1L+hl+kY9WLqhs8BZiCqGh8cg52H/9BcKVHTvT/q3va2S5Xabv8DdCe552a0r6AeDJ8AlwMHTVAPuus70wBpAY7u7b8/HcBkMsXJzoivjz0bvIjMQW7+Dp6CoAYEs4Sf9Eh3+sNjh0RY6tNgfJ0dzONMnEKbamu7xR9d8Zaf9x95kDJzne5vO18w0W4Wpgz61363b5GbfP9LQLE7VR97W3TPivrWDY11ND/H8P/hB/Onh95nfthj2XDAivf5DNJXAeWa5xx6k6vvB8G0SAlAbp0ZFVRhzHWZwxALrYhl0/v789+96zvek663Oc+lnad6rC2WNrFRYVSQlL4JUNT14dy+a90uDwlKP5/Px+sT/MKlVoxahPj6OSQ38dkvuSN+97r2Tep3Lw/sNKPyROAplOMZB93BvdxaNkF5wE2sFG0fFuiTb6soej7LD2dqc6Ra6ON79/EhiMxufOMJm9ZgQFCCgYz+8bA8qHMFXv2CKyoz1LijevvtbDR7c03ruzvgfF44Yzwn+G+aCpOWmjbSd4HpaRNu0e7p8U4Q+b1lBmiZTOqBxUowsAODIrQkDWl5gZJQHOFx/LiZWsISVclZTz0H43asGDtIiwW/ElQ0SWDFcoIYyW64948OVmhg0egTtpvjSqOjKOibGBYjk2r6Q6kEYhYLx6fh+wD5hl57XzkZgeexGMoy2qiVimcwRMoDVHWdDkkXXsXzTLH7fQe+W/Q37BmqkJQa6zPkssiDnCP+XQ7+GN+xqDri0yGFPI4UNXDKgLTgyCGBRKHf7kCNoAILPSDD8ARD6SrznZITQAAi4QMIGQhRPGfbrRQX7eusrHt8cv6K1GAA6CXHEGvAyRDSFkCgNC2tx2PyUwT/gZYaVRnTnIp4wSyx1+AwNwFKMWrSCeS4K9pJ8nPZAffSLb5Q+GTs4fdeYWE70hIaNxh190dxGw+eqVRfAd/pFJi7QNP78fUQDuuoaSW3USkfXs9x1+kY8KNUBdENGErB+wioVfeoWhFQOHA+A//cgWjadd+utK+gGbGHE9tNfSe8kdAIsl/YnkeO+B/f2V82zmmXAo+/jx8N2JqL9pDFWC10bvAwC+0vxccX35Dv+RGhQFzrJT/4Hv8HfsvauyW2s0KO3BVCm1mACUmpmBJiWtvJ5xaKNxqOz1u7Ogww+gkPW/m96ueV4RjIhsN3yFZ9dm0x6f8xtAM6p3LzLG4Nv9P8eR6uON5MPK8ZmXbthlvX6HYPLF7yK37iXQ2jq772wJtJ1pYvcoAY7V3Yd9v9Ma5O5x3qH/Qsmhn6VdsNEBtjt2vQddOdswUSkgB86osQJOYbHKHL8xpojje/LKeD99h3+UaKTZyZmrToPykfV5KG+TCEBJb2mRpgp1HPrLuHm1gThiGI40Prrr/CdUBsgRSM0+660hbY57w7tIVYJ20JkZN2DEEPMGDrJ9DGU9EpuqBBq6VuzgaWI4UpX/7UFEaIrWeDt1bs/LOQbjtiCw+Bj4IkMcfnZo8mdnT85w4iDy+eSlG+sC6bU1xpvtYBZQx5BvnwRECAobMMvm+JcVNkogv8xVpF4ytYWCug9sYrV5gTHGztmveoPmge10LyL8WjtjuhUl/YyBonb16INRoHC9+SlrTLj4oR+zEDELkaoc2phqwu7JPps814WbRTXGIDcKIYnq+f3SchaCibnxhy0RVxqbjVSGNo8RLSgm2C6/QFrTPJIzBiYAXSFZZ/AO/dUVfT/H3xgeIdUSlA7BlIQBQTjTt7ogIgQsgDK6iOaLk27xFazS4AeAwMWB6RLhN8aACIVvQ5NHkFPHObn2kl33nTeKkY5IcDRifqyXysjJ+bPGJgwTPkAOTtFvI+tOYC64TPgNAOlMUZ1OAkSmkGTGLIRgvNK8zwQRVGy7vWVZvwgYohoO/coYMGa9CVRry3b2lEScdlcm3sDY0BIYd/m9kiViAYQjkFJEAGkw2GKDcvcTpnKwFQqxHtOEH7CE7298mYEx4P0HdqZ/VCL8qc6LYkSdDj8wlvW/n92FNqZk2mdHP+7uG3z3LY1/+d8U/vnvA+8+sPeXq9saZur+/t3Ba/j+8A383wd/gB8N35nwHvF4dfQ2FDQuim1cC8fFuTZrQIBDQxcqBT/Df9g3RQFiqwUYJkBZf6bQSjK1HbM5pM+IAJR2J/6OXMEQYLbYAGuu2WaLn4vXw4sIKcBQp7iXP1r42QIiWtnJ/tnLhEYIfOmp+tfoB9k93M13Adj76EFJNeHx9CVCHAKDlPDRncUd4w+mutze4f0wDXDs13filrwaS+J9h/+8k8+TTEHDPbD+Q2zTPhgBsjSL7sGyBCQrlB3FB2x6E1th9PHRQY7BSEMIwpVL43MqCBhaDXcMTkvW783epvdHROMkghVRx6G/DM4Jn3vK3kded+Z9pHKwPJmJCASs5xCBEPEYLdGeS9B9B3wvfVRp8uehjcZBeoD9dO8T7+4DKLwl7H8vfyaTykBKzVXRGh6C0sFCo2pfWGg3PyG+cgo4I/xnWAznEG98XvmiLiYTKGJwKmAj+aKPP5LPgYjAGpsLI+KK6nVNQz0AoLhTL9LOr0MmoHhjscFbefnElsvti4XrsffCCiDGABHBLKrCG+vAu873R1GzuhtvaH3ToRqFEEaETWeKR/Ak3q26iJl06+fBRIqDnTEnKGhkWqLp3MBndsEVWZYWstj86EovOS93n42xcWAbwWIC0eAhtoM2hhWV/8rNYISAc5T5viejxKw0ep6SwUv6RX8fxuhifh/NDTuysCJCJtwMvyX8YXIEpRUI5DrgNWEMAjdjXp7ht4Z9wkUAAjEPZjpU2cWb0GEDLB0ifPSh/SEB7YY9BmrN6LzCsM/N72ttwMGKJATGae3IujLykqRfBY2iA+8j+RgBgdv/cSpE9XU+bdwHAIFgiDM3v7/Aod9omz5ABIAY5IaVXsfDvbWFDNPRfJ5UhxSAuyKrFDEM2fskJwbJg6LTHKxhUuUJ/0N5MNFBvrRF+LmX7Hf33bcM/GkRh+P5/ZiiCVPQRbhaIq4P8r2C8EsF/L9+T+Nff0fj++8YPDyyh2+npfHK8yGe3JETRVdjDPbc+IE0Cj8Yvol/dfCH+CC9V5zrXTXA28ktAMBXWi9MyIqJCJtTsn6vNnhwON7HOCT7/Pbz2iWQHFnyOK+DzkNLlsqFcZUXz6nCsI93lkqeOfGSB0J9875VcXGL8L/9IsfzV+s971Kd47v91wAAzI1b7OaHM5/jnPDiNfv7196ff89WyuDWPXv+3rxqT47Nhr1pHyUnREIMgbTCcKQxSjSIgPNbAWAU2GgfpCVM1AZPj4qEgYOyrN9oOypRw49oWuGxCF7Of+2JqPA88RjL+k/HuM+SxbzieW7fw1jar+d3pMYjG3Uc+qdRmPfdT9HtS5BMrAFvPppRGfgOd9Us+jSavIWhGuIw268cb811jt30IXbTB+Ak0ODHVJKcAJZ1+KcxLsrMuZeIECTTuWaiWhuMUnutdZqfnbi+M8J/hsVg3BKjOnL8wvhszgWp5ScSyVcGhfaFeG48n1ZWbl83Ms8vE/UIuTHGzprWHBkA4LwU5mfOT63AvvCvQ8rD5sKKpzFqbXUGBTGmYxHtw8asr/hwzvrL4Im67SiXXkhdEct35okHE8c4KJnKGWPQmOfI670plhDeRdGV0waDgH2BjBbI+cvYDtoImUBS0/k5DNgEkfXO/OR6scEctYIn/DQ8QmgMVN8SQ2qt1t0vtoMJW9hodGCIgWkFkfTBiFbq8LN0CDIahgg6Hs+YS6MhMDYgDFlQfKfjP+ZInLFhdGss649DgWYsili6VTEm/G5+XxuQsAoLAG4f14usKyOPxhLyCTm/MiAOMMaKQhcjQkc0JgpLZVQZ9wW8TPgXdPi1QVjyh5De76G3W78AaczEy/S0cV9WJvyOQCgR2xEQoPCE8HP84Rpz/Nt8AwEJ5EYWRNTjpRsML14f74vgQMCpkPNv1OzuA3ak5Wb4BADgvfQuAk6FcV+uLMl+9jLhr36R8L/+NYZf/0sJfuYFBkaTxHqoU6QmA4HwjfYX0WQx+nqEP+j9AN86+g725BF+MHgTBgbXgotFQaOMwrjPyep9h9/fIjzZ8wX9iS6nUaCkD7OoSO78Ucoz0CSTojDjI/mWyfk9no2srP/D9P5C/5KPEz8YvoGRSbHBW3i58TQAWzSqgpf139o16PaqSf+93RRZbtCIGC7uhICW2IrsZ48GJxQhRgbQGrsH9rmxvSEgBANLetZ1P2gCxGHiDrab9p5xeDCWQpMc2SLOkgaJ4SGQD2vL4T90MvabV2bJ5mkb91GhCqrwIxARKB8uTljQEnywC3F0G/zwNnj3Lo669vObDekKAcvv+RttgWtP2BvCG+/2AZnCiIYtSKxhguhBRGjxNg6zQ/TlpAJlKAe4P7qLo+wQLd5CVDOF4LQxTBbP8E/AKFA2nE2MmADBMO7USrPPB78+IqAZH8Mn4zHDGeE/w0KQd0JX0mZbLyH8xKo7mADs3MwKRPpUEMZWrj9Pgu9jPOo66KM8x1+DbMnMjRasQPiJA+V4xEVwXetVZfcAnFP/gg9ovb7hYhDZ7758jIwrrqy7TKp3TGIeInJmfeUOvyfqhcKAhxMu/XbGnCPTEpzYgvl9BZCo5ZtAIqq8PqggYuPfpTpHRzQXjxGU9nE76GBUk/ALziZk1t6h32A2unBiO6MW4MhUezCAcYSfd9azsebkemGMFXP8UXJka1YrFK3YyBIzHbcnzn1lFEIuColjSM64b4rwptdetL/f/RAsce7fBLTjAAbrdeG9pD91kXwSBsLJzgGrtFg3sq4MwwRydz+RpTEhCQMOm3bAvEoLQFNEbp9m11tl3McYIU6XO/QbYya6cbl36u/tWjO9Ggfxibf/EFf+6/+7iH+bjuYrS/r9DL8S9r7FwMCcJ4Sf449UMja9qglGhEvCKk7ul2T9Hj/3EuGiEzqMI/nqG/aV8XRsjfM+yO5BGYW//mWGn32R8GvfYPjffoHhl15heOEasyZ6RFZmbdTEvcYXJTZ5C8/F1/E/bv88vtR4DhwMD+Q+/u3hH+GD7B4A4Mutz1VuxzZ3HX7pO/yTv99qjb9XK88fy/pJJnaueMmz3cpo+/Z+qaXr8LvZ8MKwrx7hPyc2scnbUNDFvn2SeJgf4M3kIwDA11tfwBOBvY5282rCv9Gkwvn/jXer0wbKcn7GCCQTbEX2vnU0PAG3T8COhugcu/v2ujq/E1oFR7JvZ/KL5yXDjjfu2+/bSEBjwNIhbAdjybOPC5DOS2R6PnoDib3DHETAjSuzhPO0jftIDoqoyBkwO/Y417xP5eCDXdDoCMa9L6gsQX9or5Vt/RC8exu8/6DWQ8V3+d98fwgtpXv/NmunBXgIJiBYgL30EVKVOgn/Pu6P7iHTGTpiA3xd5eUpYFLSv5jwk8xBWi7mKoBTK1UXb7yKIApxInGcjwvOCP8ZFoNZYzSjpc2yX3DyExEggvndc+ATM+zzICZAcWf+HL8zkVtFnkwiBEWNWvF8RiagqLVa4WM6HnHhCrykfw3Xex4sVj9Ar12wISaAsDl5jFR9oly9TO5GHRY/ODkxbIgmBHGIMpHVys3u+w6/QLniQUSIWIhEZQhJIJp3TmhlRyJqKBUWRVc2eFjkpGsn5++I+gRiI2hCEKucz56GcO1zv7fGGBADFFxHfMF34o372sM+opElCGzF+X0PTrwgn17W38x6IMJKkn7uCP9MJJ9RaLDxS6NgHBEPJpz6AUC1t5FvXwbBILrzRvHzMGAQnCDVal1+JlOEzkTQS/qNAoQYR2wyorUj66bh5/gnIvkUwASBMwaeDmGcuaIfH6mK5ysk/f298Qup1gjT5R1+EApDQgCFU3/Q3wMns5R4szxB59F74PkIjd4DAECH1ZD0h7bDT0QInQFcOZpvHcPAS46wPcj3Zn7HuZ3nv7IDfN5F9k0b9hkAuVz+zV4SO2iyGLmRuJ3t4oltwpeeYriwOZv7bsmZdlmL4+O878my644HJPBK63n86vZfKaTvgI20m9dB3xK+w2+/51AAQekWsF0OZuCh6zLa40/FTPGS10kRFt1J0hKkx4WLfeUj+eY79JdBREWX/51kfVn/w3wf3+7/eCIJYlVoo/Ht/o8BAM9E13A5PIcLYguAHfWYZ6T48g17vN54P52JGjPGTLjUAwDLBthoOkn/sLpgtzKIgVSGR4VDvwBL9u3885Qfw3bbno/7fQ7Wfwg+fATkA5g67wRe4VFj7Mzv9xPnQ8TR7HOoIPyn0eHX0jaDFkjjjQhBSXdWraBS8MFDq4yI265xFKGXN6zHDQcanRYADshRLRPDJ6/EaMYMo9Tg/Yf2vc7Gyg3qvQ8uQIM3kOsc++keHiYPsJs+BCeBlmg/diR3UtK/eL9JpYvHizwKM9HZa9+rCKL48ToOx8UZ4T/DQti4NGNJTQ05/rwO5tgD4JOvGlLcnnuzNCpfrfvuwOKNenP8SoI16r3UjBfuXJlrdfjN2GxxVYjQktZ5sn6D9ZbrwOLW5LJ1DdXIIhDNmkrOQUc0sSmakzP4RluzQv8zxmdGviIWQBuDmIeTcX5l+GjBOsdmwfnf4CFiCpFqiVRnaLAQzRUkdQ0WoiUaGNV4qRLczjsrPY4dJAI0VUQXTsHL+oPhAeKRJbXrEn7h5q41DFR7y+5H1gUHrWRDwZyLvJ7qQBszdqj3aLIYquIelbguf3z7jeJa45whFBw1uNsE4oHtDOdhG9q9OCujEYjSOUJYO7JuGp6I5+FY3m+MsRMrxMBLKW4+9aEqFUI1t6zUUclCNcGSHshoaOKQpeWXYQxmfBd0cxNahCCt0EgPlxKUVvdecfmFbt1Fh9/NyI9d+gW4u9/qwCoWBHGEZD0hPOEP8wTrCCjGxn0HldvdbhD+1l/ieOVp+316szsfJSilwihVkBXGmGUQEZ5ypPy99M7ijSr8cSYj+Tzh35nqjrd4A9/svIJf2fxZvNJ8Hj/Tennuor2kv+uc+oloostf7vB7szeSib2HZ4PFcv4C9lhRNrTPAfdSnuqsIMWLIvmm8XR0FQQrm+/WdB330EbjB4M38TtH38abyUf489G7K/19Ga+N3seB6iGiAF9rOaUQC4p9qZrjB4AnLwKtyCDJDD64MzlLbE3rFIQgXL0YW3KYD7HRscc5lyhMI48F4jBSFg79F1upTVuIZq9zX/Q5GBC0iEHDg1pyfg9DvJbhnZfzP3ml+n1zq2PfF7p9ubJ6ZxlIpTY5YtE7iS9clfaF8hF474GVkscdlKnVkeOTm02nWhOhS6hY/gUyRvjc0/a7+MmdsRKx8Bk4JlqijW5+hG5+hJZoPzYS/jKMMSvN8FM+gqnZ8BqrlSaX6YsK8eN3OI6FM8J/hsXwxmg15fj2MxUvOdrG73zSHX7AzdzzYI5rfH2H/gmE8VJjPeNnvVeN05mOR1wE1+Gvawg4gWVO/YS1u/EAgGDyGBmtnInjmlVUxmsT/paIcSnenviZ0WrynGZ8ZqQhYBwBcbTE/GKXXU7Nc8YdvyoSwd16Up0jVbnt2K9wvIkIm0ELyqjlqgfOwPnYkM4nDitj0FjyAucJP+8+gnAdfmrPzgXXASduZdgl475G0gXnq52/4cMPAKAwigPGvgRiivBHPKicXEmfeAZahOCjLoL9MfmKQ14URurCy/n9/L7dICrm9z0CztbqQE9j/8rncXDpBRxdfG68OljVBidmCzgl9U5bNKq9AxiDdN+l6FoHdD6whnBp1IGas6nKaDCiQjkCACjF87WH+3P/1qN1OD7mQWLX6TvmQ51AGlVI+hvGK1QImocwZPczIAFjAO2KtqEcYZ1kxXNiExwMqclwpKol12X4goSX9GsAYcCRyeXfre/C38oeLp5HZwyAwnRVct9J+ud17y8E2/hS87n5I0kAWixGQAIaplBTtMuEvz35edtl7IN5SWxN5ZfhISgbOLMsb9hn7yFt1ijSJOqgxWNcDuz1/vYKXf4j2ce/O/pj/Gj0TnEfuJvVdPufQl8N8erwbQDAV1svTqSbXAjs/WzeHD9jhBev2i147Z3JgsWEaZ0gsDwBKQkeBOi414ejk4gHZwz9RCNJNRgB58MuDI9RRQ02W9ZKKFfAIBMwcRsmamOuMdo0eGDd7xf4BKWZxt2HtmD95NXq96RmgyEQBGPGZngnBZIZpgtqs2AwRGBpDz7ejfUfgFReeTyOBvY73ixqKASAasvyX3yqAQJw54DjsG/GPhrHmOMv9oQYOsGGlfCvoQr9OJDlZsJgeOEMv09YqMszRGQVR1PHsujw14zj/LTgjPCfYTGKriXVu4gqSBMA5wHwCUbylSEiS/qnbrjGRQStU5SoNcefuzi+cDXCT8SKtISlMGZt13siAgVNmEWV42MQfhLR5DFahShXLtArH9aUthk10Z3w0Xzloo1gHDEPF7+IGlX7hddGV/K529wSsUsPsKRsVbR4jIiFld3bie0gIBS8EONYr0cGA72QGAAoovnM/i0ryyUGasx3b18EQQzCGa1JN8Mfp0eFk30d8N4egu4uDDGkl58tfq6MBmdjwz6PkAUQxGajy3iA9LIlzPGt18afF6zIeK+LaYd+AADZnPqJVXI6tks/AGSNLTx46utFB74cyRcwYQ0Q2Vi9E/MK80KHaad+7kYBsrgDOYc9a23VBNPfmy/ANIePFl+mxqB1NCb8vsMfUYDQjeH01LDo8MeueiBFBEbMeU8wcKdI86Z9VtK/+v2BEysI24OKOf6JfTSq6FAXkn4NCE7Qenkg4Q7fwCZvQ0Pjw+z+/A8SA0k5MV+cG1kQ9Lpy+MpFE2HTz/G7Aod36mcEbEzfirh1uaa05yICa16vrjsKlRX7cTA1krAKno3Hsv5lRU5jDN4YfYh/c/hfsSePEFKAb7S/CAKhp4cry/qNMfhO/yeQULgkdooRA4+Lzgdi3hw/ALx4g4FgcG83w2F3fM/2Hf+bjvRSNrAO7SBsOAHiiczxE8Oura1hpwME0HOjFTmjgrTu9wHrWr/C+wAPQCpfKOu/dS+BMVa2Py+znohOzbiP8iFMnfcnEYPyIVhyANZ/ABgFE7ZQdR2MO/wlHwwurNKlxs2/3QRunLf3sNduuTwdzpfmyNcFI/b4SPhVCjbcm+i4+5l97k61NDOQcwqpVqGRr/AOz2A9ESbf272KID4j/Gf4CwWfTc5ZPXO1ebmXRTf3kz/liAjU2Jjt8GtpzWXWmFMnHoDCJsyCqq2N4+u4MYkVsYAkTqzD6OOR8rBRPZJhbA/4ON8fiRAUxOPjbjQoOIaJY5EKsS7hh1U0lJdHkykTggRiHiJeRoLrmjwyR/jnzNk3WISABWiyaCU5v0fIBDaCJpIacr8w4EWH32g4V3xaOL8PAMx30d0+UGtnvXMaTm4+1eEPZIJAVxfOUpXPGO7FbuY+u3gTplRMk0ZV+hGETFgX9kpZ/0v2Mw/eA2X2pTsQNkpPyfrnWeQIvzfsKyTvU4SYGGGxU+Z6MMbYaDBuELoRH+J2ZhGwc/wRE5WFocKp3xsyug6/bG5BzXnR0tqmD0y/OPoOf2Owt1DJEI6OEJTypYPEkkAimojm8y79DXfNSxGDOQNKDpuqAaCQ9It8uPbhvSTsd3dfLib8fUcUAxKIyN4HjLEdXMEJqoas33f530/vLvggHxuEOniTvZgiNNnxEnC8cZ93zG+7S2mzVeGnQbawYiXdq9yn3BiWSov92HfrW0XO73EjvISABAZ6hDvp/C79SKf4/e6f4juDP4eCxuXgPP7W1jfxXHy9IOZ3s92V1v1hdh+384dgIHy9/YWZc/+iKxg9kkdQc+Z22k2Om+ft715zeevdvsT+kbSmdZdj6+ouh8Vx3nTjFSfS4SeG3SO7vIvtHGZJelAh6++vc1HZ9UyTqzK8UaGPIZyHzdMw7tO5PdZ1VCZu/psNDwAQEFSPOgFVHX4ALADpHJjznCuDVI6Xr9rPvXnbevuAhbZhdQKy/scGRoEP98EHu+D9RwXp9+R7oy0KU9h5XX6rmlim0JhaLQ/sHH/p+eRd+qMzSf8Z/kLBd1GXRfL5j3NhpaPT5PQxiOQrg6LmrARf5U6FsB4JZY3OXDm8jePT1uV8rYXzeiY9Rq+Vh15gHnHVjhEeR9IPgOLO+CFFON6IxyqjDpV/j8n9YdzJ5cbLa/AQV+Kd5U75dY8LE5YczyH8IRNosBCbolU4y6+KDdEEEZbGvVnZvJP0GwNixnbcl+SIk4hArfF4BFtTzu8RssBuqwigYnt9xKOjys8OVIJBuaimFaK7bwEA0qsvTHxWmWo/Ak4MMQ8ro+nU5gXIjQsgo4vl+jn+fJkmHQBphYsffBfx6BDAuMOvtAZnBD5FCoQ35DxhaGXcKWkQghdpFMbtMyOGtmhWSsjndfhNa3MuaVfaIBSz56sn/NHwYKGU13f3k5a1Lg+yYTGj6rvmPTUotrfpChe2w2/f1XgpflA54sKzsXR8VVwJ7bbcyXYXqgR6pfl9T/q0MRCcIQ450nz5/enpyLr138sfzTV5AwDT2JrowHqzu51jdPc9po37fBTfuU718TM8tM+7Fe/hRkQ2hcFH8i0ZSVgEQRxPhZcBAG/0Pyx+nuocD/N9vJV8hO/2X8O/PvgvjpwzfK31Ev76xk8Xcaf+e76b15f1ZzrHdwc/AQB8ofEMtkR75jMd1kRMITQ09mR35vceL12z5/Jb7w8hpSlI7+ULIeKIgcnEzZXb47XpOHl3fZ/BEggPe/a6vbDl0oAWoDDu6y382FwYxmfIlYeUBrfuL57f99jacIkBJ9jhL+bia6pQTdSy18ASJV5Vhx8uzarOHD6pHDd27MhFkgODBLYxtUQt8WkDS7qgtAcdtkDJYUH6PeFvNTiaDXt+Vs7xG1Mjjq9qxcIWIEvPws9qh/8x0Fef4XEGFd2hsJ7hnnc91wqYmMM1683GnxIoaABBBORpIbE3SoLi9nrz736ZRHame5oAqtzKINcwBASs3HyRP0ABc4xcezgPBs5htJwsHBhtyfBxCb8/1trOoh6nOEG+ELXGQ88WT6bWT9x+91PdmEVyfvud1N8P8jGAc7ocRITL8c6x5umaPEKDRUhUttB7IODWCdyTOEMGggTCGt8x61yEGlipKq1p2OcRMgHtfD9U5zx4MkDz0fvIL1+f+JwyGoKsC7s1GSSEjz4Cy0bQYQPZ+cnPS6OwOefh3xQRDvLq2ezk2otov7aL+PbrSJ78IkCEOOQYpjmA+ccmGB3h6tt/gNjN7z+68kVIV+DTLgVh2puAcQLBKQBO8N1CwkCQ/X65gdVDBjEwGr+pN3nkYu/NRHey6PAPu4DMiw6/bm0BoMr+iTHWCHIaOm5DBzFYnqA5OgSaT1Rur5/f751/CkHWB88ThEkPaWunMMLr6iFSY6+bprQv+pJHRffZx/JxYta5HwDPExCUC0RcDRfENmIKkZgM9/I9XA0vVH6uqycd+j0EZ+AhQz/Jl/acOryJC2ILu/IQH6T38FLjqTmfnFyKl8OvQ5an4Y37vKT/mct2XVfPzdlyEdnotlXBAujGFgDrX+EVBeuOJDwbX8Nb6S28O7yDbjbEoephpGefCdu8g292XplZz+XgPP4Mb+FeblUorMaF+G56G0OdosOa+ELz2crPEBEuBNu4lT3ArjwoOv7TuH6BoxMb9BLgvVtDfOjk/E9ebTgS03cmZHa7bIffFJ3j48AYg92uI/zby59hO8fq8MMWhzy5mmqs/PitPvLcoN3kuHhucdNlLOk/uQ73WHlQ805BfKwznwOlDXrO22+zotdDMoEJZ4tFk59JAU7oNGzxoDsEOg073sGyEdSSvz81+PekE5j9p3wESg5geASwACZqW9IPYDCy9/Jmg0Mpg25fVUfz6QykspoGoiUwYaMoS387duk/zl49fjjr8J9hMZgj/HW780w4mfXUBWmw9mz5aYC4AIs7MHmpm6LXc+gvEMS2iFBB5kye2GWvGWtn4xHrPGT18ZIQeOhI9FTlvMisP94tgwI3x58ntVUjC8FFvULINIzfn/HDqiDjqyzPR0utUggJwoXRlTEPl8rqF4ERw1bQWmwABtsR5ZyglbHED8sd+j3IdW6B4xP+gIni1B7d+AIAYOPeG6B0soWVa2mjFZkoYvV8hF5y5fmZ70AbM9ePIKTAEe3Zayq9/BwMExD9fYhDGw9nu9dz5viNwcbu23jqx/8G8XAfSkS4/fwv4NGNr4y3pZC823U+SrvIdA5GBEa0VI2xKnwEoI3+swVDFjZQ1rfb80zMRBSasAHlChWiuwvmiwSdbQg2R6JOs8UM+/OxcV9ztFd5/EhLNHt2dn2wdRXS+UGETtbfKST9fWTG3pdauSP8Ih4TfiJwsqRfBpGbLQeiPF3LGJER4UZkCxQfpvOz3n2H3xv2AW6kgoBIMAjOIGvEPPgu/3uLZP1T2F8xv34Rtpykv6sGzv+C8PxVVszynyzsd9PTAyhocLAignFVXBDb2OAtSKNwL39UkP0mi3ElOI+X4qfwjfYX8d9vfaOyqHBebCIggczk2JPVyqJpvO/OhxcbNwtVSRX8uMDDBXP8JAReumrP5x++0cf9R/b94ebV2JKYPJl4b9gsZvir71+roDcCUklgzM7wL4Pv8B/011w3EyA561A/TBRefd3eZ772hY2lM+VbJUm/VU8asLQLlhzZf9IeKOuD8oHNWs+Txc91s8L8/grojVwxlAHNqdqY4YEdG1u4XdpG+DFReDd0h36OPwTy4UyD4uMCGx2AO/+CY8EosNE+SJX8I4gXpH/UtQVV2+G311pVNB+Tmc+iXXED3KiJ4wJaG4wS79L/2erwnxH+MyyG7/CHdQk/n5EsG60AzuvPOX9MoGgqns/gWCoE4gIUtqrd/1UO1lz+IFu07Mr0g2kYHKtVSFxYI70pqZkx2qk9jlnN5SFIRDDZ0FbHl1TIl4H4igTdQ6tqxYIIYFbxBPCEf4Uiy7zoypNEWzQQsKAya92DM4JgDNK9uCloxDULMN6pH1g/kq/YDmJFTyU/fx35xgWQlmh88MOJz0mjEPMADR4i0zkoGyF8aGW803J+C4NgznhCxAIIxiErzh0TREifeAYAEN+25n2Cs8p5bCYzXH7nv+DKu38EpiUGG0/g/S/+LfR3bkx8rix5l0YhZAJDlYExcvYcJzvHr40B57bLKLyRpwgBUPGiHpIojuU0vKw/evA+CAaaB2CNtiWvU9vqXj8xz2dRbtrOeGu4V0kSGr2HYFohD5rImtuQTU/4Lfny0XxlWXTL3WNzERUdWQZmYx5hYx61UxMFerT28b3p5OIfZQ/myvq7FYQfsAVEIRgaoajl1n8zugwC4ZE8rGUgZ4xZ6tC/CprOqd+UnPpPG+Xufp3OehWICH9148v46uYL+LnOl/Arm9/A39n56/jbO7+Av775M/jp9kt4Lr4+t5DJiOFyYM/3u/nyOf6BSgrn/SfDasWKh+/qP5wT72h3gOPFyxkYAQddCWOAc1sBOi1hRx+UnJgr98Qvk0ByzGi+h0d2m853MGMoWoWtlqVHmQSGa6nJyZlPTo6t/OmPu8ilwYWdAM8+udysdrMtQGQd3EeJBqkUbLAL1n8A1n8I1r0P3r0HfnQX/OgOePcO+ODRfHKqpFUenHCKlPdZ2Ghh9t2PByC9JF5P59YYlwlsuJGAYpRDBHYMoabb/4nCKFA6AEu64IP99ccqAbDRISgdzPpHONI/HLoxrpjQjO01PKiY4ac8Wfvd1xZfBoCxiRX+Ug2PYTH1OOKM8J9hMYg5mXe9GyERAWKqg6mkNeh5jDr8gJOXcwGjcueMTvWMCReAxW3ATJIso5Vd9nHUA0T1zKd8Nv0xQGETZrrDP51Zv+6yiUANO8dPLDie3wDgZuHWIfzaufJPrp94uBoZn7OcRbDn2MkbtZUR8xBt3sBo0bgDAWHAoJSxb3FkJmKlFqFM+NeN5PMQxAHX+QYRRs9+FQAQf/TnoGz8Yii1QpPFaPMGcje7T0Yj37hQEFQPZTQ48blKiYAJCOLITXVBJLluzfui+++AZAYh7By/dHP8pHI0j+7i5o//DTb33oMBYff6l3Hrxb9RmVVflrxLo63zvDEgAjgIJ13+MTA2cIQ4mCH7csgDW2DzZotExbGchpf1hw9sPrlubgKMEAdWVlmG1gYcbG6ygu/wt4Z7lbnZXs4/2LpiFQGO8AdTHX7/XQlwhI7wSx6BjLF2HEQTJpDeuC+UI6g1O6FPBDuIKEBisrlu/T1Hjic61DR+uWpEAsYsd+tvsGglA7meHkIaBQaGTb5ed7wMIiq6/D4q77RxcEIKhXPBJn5m6yU817iOC8HWSvF+AHDFxfvVief7MLPd/YtiGy2+mJyeE5sgEEYmRV/Pz6BvxAxPPTG+fp68Go/l/FPFZMGpiEw8Wl4XWoj7TnhwYbPec51zwoY71Q6Wp1VWwkY6dsH7D8DSLvb3BnjzfbsjX/+pzVrvGJwTOi17bz/sSVDWB7SCiTZgog5M3LH/jjowURtGRKCRmwuvKoKrFKTW6Q4vhk9S2Kx69XN+QdNqh4mPKFlEWm/MeDd4h/kahP+EFWQkrQReB3beniXzPSoWLicfgI0OYYLqKEgQxyC330mH+mg1nGnfUNp3yHwEyvpgo0MgH8KseN0X4AFIW+WJl/M3YjZrVvopxxnhP8NiEAOEWIkIkwgnbzBagjg/8erpsRHEdu7eV9F5MN+0riYoiFHOuwYASB/Hd4yBoLok3uarrb8ewKk5pk0X9YlFKtpCS3AiJo62YLDGy7yrmk/7NVgVygoPR6NWL4Rwsa6P2ErYDJowxix2RxesOHqMaKE8tQxqnwdtXgLbvmqNGI8BnxOv3HHPLtyE7JwDUzkaH/5o4rMRDxDzEARCdOdNANXdfWnUQgNCRoQmiyuN+wBAbj0B2doCKYnGO99D/MEPcfXDb+Ppt/4Dnvn+/4XPfe//gxuv/weEaQ952MZHL/9N7F390oJrzxSSd2UUAsYRsQCJzsE5O1FVpo/kY2TAQRAwtpDFA+evMt7nJo9AhJnutS+g8MS+1auWJeEiYDOdSq01SNiRhSpIVxyKk6NK9ZM37BtsWkl7XnT47UtkTOGEUiNkAbiTX0oRwTBLVr3JZeA8IXzHKFLp2u+7jBhuhJcAoDIyTxtdEDmvRCgiEd3LYhQwiIAhryHrX8VAbkyW22sbfE6jmOOXHw/h96aDx4kUPAn4474rD+YWAT0+cHL+m9HlpcsVxHFO2PN5UTwfWICXr47Xe/NqbCPGZFJpIuznwY8zx98fGbz+kf376+frP5D8HP9+b811iwgAB9Ie6Og+vvODPRgDPH2Z4fJmXtt5vjDuO0xsPORcPwnr9WOiFig5Ah/sThi0ASgpDk72wezU6EWyQiWm1A5ljIsBVHT4e6PxcS93pudCpeC9e7YockKgfARvumx4CDbas9uxCrQEG+zb++WCufuBOzwt6qNNdh+GvSF495ZTb9wDGzy0z7V139/JFsJJpsW4gFcTfJZwRvjPsBDEBVj7/ErZ8SSiCemU0dKS68cl69NhIp6vcOg/ZlEijO3+l15sTZ46M8BjEOZVXuiOaawHHgCGJl/sjbak4QRAIrIP/XX9DMpgbC0ZlzEKqIoEXPHYGa1WjnG05wGt5z2wAlo8RsxCJAuifwTzJFRDMLE8jcCBGEf8V38D0c//vWNHbXLi4KAx6STC8Bk7/x5/+CNQnkIaBU4MIROIWYjW4BBB7xEMMaSXn5tZptQKggTEgm1riHB+MYQI6bUXAQDND36I9hv/DZv338BG/wGC3LZYpIhweOFZvP/F/wGjzqW56zGAnXF3p6k0Cg0eYyNoIlU5As7WmjGfuz4XyWfY+NgSD+y4jndWd4h5gIhmRz/ktGKiuQXARhQS0YSdiDKAAM3thui4BRU1QTCIh5Okh2dDxMMDGADDTRtNV8zwj0rRfGzcIosoAJee8Mf2fZ4Y/GCIT33QzocglKMifnIdPOmI3YfZ/Zlix0AnMDBgYEUsnj/+/nBwztAMBfIasn7fab6XP1qYDACM5/dPQs7vMe3Uf9o4qQ7/cdFhTbRZAxpmrpIDmJbzLyf8QGmOXy4g/Fzg6maGF29GePGZJs5tBaA8tTGaFfdk7/h+nA7/t98wkBp4Yhu4Of/2NYPyHP/aEBEQtvFhr4Pb+xyMDL5+c2gl+N27tYx4vXHf0VECkrMmgDMg7kh/D7z/0EbwAVZJkY9mlBQngYUdfpQj4aqvdZIjGPdO0nGv4BPpDCwYZ89XQeXgg0dg6ZHtgp9EZdnJ+Y1XA4oIBgQ2eFR/vMAYK+XPh8AC5asxphgdababaHF73x+mBLAQJmo6FccGELZwHEprEyRGRYffJwJ8lvDZ26MznDhYc2u1nG3GJ5uuSj1WkXxlFPF8MgPCxrHJCzEBRC2Y8o3PaOsXcBzUOP5eEn3sfRCh7UKXSYA5phlgGUEEChsn4+nAeE0zwyloVV3AmD53l8GscW6XkyxOEYJxbAYtpAs6JlwQuJ3ShmAMwQoeDeRjEY+7nc5orWxcl116BrK1DSYzxB/9GLlWCEggZAECxrF17333uadgKpQzymjELFxYZAxZAALNna1Nrr2IfPMSZHsH6aWn0b/5Cj588ht498Vfxltf/Tt456t/B/ef+TnoJU7l2kxJ3o1NJmi7OCdiy+Xeq0BrF8lHBqErLvn7B4VxEc0H2IJAizeQTnW8VGurML2z/+9k9pyBC4JU43NXa0CIxeeNl/XH/cnO9TiO7xyUu468pF/IxBoxYdIBP6QAPLf3Vyki+8KOcoefwxiMJf35fCl1HVwOziEggZFOZ0ibl/Nv8HIkn61BlmfSG6G9dy67VZ0TmwgpQGYkHi0xkBt3x0+OLG87Sb936l8Hh7KP7w1eLzrh85DpvFBHnESs4HFARLgSOHXFAln/pJy/3n2/PMc/fwM4CBo//6UAP/fVbRAMKOvBzHlGbhQd/lqbMIN7+wbv3LMn419+ia3UjNn2Hf51nfodtDb49hv2nv+Fmwwb2y2YuANSKfjoaOnFUhj3HWUwzp9kKYjDxG1QNrCkX6aW+MvsVEZOj5Z1+AspecUz2qiJ7fKS/lGGcfHQGSxPeyIAALQEH+6CsgF0tAnKh2Dp8bv8Xs4/0U0PmiCVgQ3njExMLyMfgI2OYMImFn1vSWbvp4CV2Dfb9pk5yFxC00lSWC4AmZQ8A846/Gc4w3JM3zjJrNwF/bhAYaNwjWfHmbEvgcXtgswZl+tKKygkqmAN8+aTE7sy7Wb4j6mk8BGMEw8hOr5ywC+JGNjmJVB8AnEy6xJOY6oLDm4fazsQG6x+XLj4WAg/AHSCho0pm7MuwZm1QYCdKxcn9B2vAiJCwMSkUz0RRq7L3/jgR1D5CDEPwYnBaIn4/tsAgKTSrM8R/iUFpYjZ/Z12qfcwQYyjr/9POPzLv47eK/8dkhe+jv6l59FrnF9K8ieWo4z1hyRWzHIHjKPJI8QsQE5qvaLVHEhjI/ks4Xd+Ea5YR0Fj5rxrBfGswoBxqPY4Rsx3+BkjhJyj7F1ojEEgFt9zvKy/OZwi/IfWkd7L+QHAiBAysPdLL+vf4JMdfiHHkn6Q66jDu/Xb//KEX+SjYx1eThzXvaw/nZT1Vxr2uQjGMomKQg4hCLlafM0zosJA7t4SWf+pdPidpL+nBpArdgP35BH+c/f7+FeHf4ifjN7Df+m9iqQiHs/D+wQ0WYyopnfIaeKKi11cZNy3ipzf44LYAgAcqO7CcQFDvHAKJ5m6OLbq47JVdPhXP7G1Mfij1+wF/OJ1qj2/77HTOaZTv8NrtwwO+kAcAF951m8DwQQNUNoDycWFuiKab4Cxu3stMJioA8pHYL0HdrTAnPz8/kQk37xXS+K2IVahaCCZg7QstisKCJF7pJW7/IYJK7EvwyjwwR4o6cFEbVvo4AFodDgzzrAqqEi2mnz3MlELlPbBh3vzRwyMsmR/sA/DaMKMsgoDd1gaoTWVbLmvOZeoZYS6EngAUvmY8DfOCP8ZzrAUxLidYy9f9I/b/L4D8cDOIHNxMhJzuDl+xu0cf57Yl+zjKhw8kV8Y4eLm94+tUmBAEE8Z95kTI/wAwBobVtp/TJDb35Xl8YTKBzyRi+pbZXmrvigwMZNkcVposAgtEWM0R9ZPRAg4h2YKrWMkVBwX0TThB5A+8SxUcxMsT9C6/Qaa7nxR998GZSPIsIFk52rV4kDAXId+j4AEQuJz5/irEIdj4766UDDgROCMoKALbwFOVoEhTT5ZpFOZK7at90LjI/kAOOLPxgqtCpVOg9kYyOnjUJb1+w4/AEQBn3DqNyV/guLzRuMg6xeFBO/U3xyW5NLGjOf3tya/x6xhSax36i93+CPiIHeuSBHDEJyE3u+z9aXwhJ9nQ4CO93J407mxT8v6e3rWsE87M8byiANjhFYY1JP1e+K5oNOc6hwD1x0/STl8g0UIScAAtZ36H+T7+L2j7+LfHv5R4XMQkPVReDP5aO7feYf+Hf7Jdvc9nnCFlkPVx1DNdkwHarSynB8AWryBFothADzKD+d/kNkOI4yyHVvjkmQqUO7wr0q637ht8KgLhAL46edXbw5suXWnue02r4M0N/je23a7v/YcIQpK2+FIIEsOFz6Htzr22PQShnzlRynZ2DeVAcMjONfaVReyEP2R7U4LBrQWvf4xZsc3prdQZ1Y+VToHCuO+Mr/ngY3u80TeaPDBPig5smTf0zwRg2SytsGeXbYCpX2Yyvd5BhO1wUZHYKMD+z5qNEimYM6kkR/eBj+6C9IpECxvghXz++74BYLgxFIYzrc+WBPWBHE4cpL++LNHjz97e3SGTx5c2Nlqrax8lPGTk4OfAljcth4DJ1WUCGKraJApjMxAjfXj+Aq4Dv/CVpXR9nNzzLNWWl3YmKwEn4D7/6mAcYAtKYRUYV5nngm7nzXIuHHHe9Vz2yZZRBPS6tMCEWFLtCC1mvtiGAX2e13WET9NhCyY3T7GMHz6ywCA7Y9+gtB9xerDVwEAw8vPIaswWLSEiyYc+o3KYfLJNwQiQlPEczv8ldspWO3AjGJ7lHPoJ0Bplx7gXuLaogHBbMHKGLgOSAIYCUpslrSdZ62/RmU0Ak/4Dez9wEv6eTBTIItYgJhFs7J+R/i1iJyL8vgYjMP4AIBsYaGEvhxZZYnraHpJfyPtFjL9aLAHIVMoJjBqX5j4+zyedOrfKBH+2Nh900yAWGA7/MQKCT13/y2dqopnIze6UX28pNSQcvH940p4AQIcAz2ayGrvVXT4NWzywvQtPw69emjhqgpp+UN5MLcYdeDi+FqsgWhdZ+oKWKf+esZ9d7Nd/PvDP8bvHH0bd/JdEICnoyv4W1s/h6+3Pg8AeH30IdSc68vvw0mOJBwHMQsLg70q00RfzFhFzu9xoeYcP+ncSqbnkiqLiWi+FRq2aW7wJ2/aE/CrzxGaa+SMC07F+vfXtHr4wbsGSWaLBy/emN0GE8Q29m2BEVyDpYgDuy/rjTYQTNgu1nfS8P4KG00sfP8zLADy4ex8vcpm1JrjaL7STYQHICVBMnOz8Qeg0YGVy08UjLx64mjtKD8r58/nN8eIQwcx2PAAfLjrTPVug3XvA6k9WUzUggk7qFNgGaZ2P1ulXkTT/fdgvV1YCMPEmPCfdfjPcIYaKM8oKwVr4fx4dvgBgMImKGqdXIefcVDcdgSDrE/AccGYvXkv7PB7Sf/xb1TWeNEvVsG6Tj+GN0DGALCVovmMVrYIVUn4uV1mnQKCku7zqxezWNyeME87TbREjJCJGWM2D84ZOGMrR1mdJDjxSkqbXnkeMm5DZAmCW38Ok/ShHrwFADDXv1CZIW8N/viEQ79J+jDJ7PxizMKVOmSBYLZTr+qfb9oYBIGP5FMIiBejEw0eoiEiSEircFA5jIigO1egNq9YMyJjQGkflPbszOky8m/GBnrc0Ph+DNi5Sy4mzj0iwoaYjefLt2xXW25emHjxFILAwaC0GRvUlSL5vBQ8YgGku45M2IB0IzzRYA8A0Dqycv7h5uWZ4lsW+w6/j+Yb30Njt/tWzg/AmImEAE7cFhsKwj8EA2ai+YwBBolELg2SJS1CQRzXQlu0+CAbz6ZXEX5ogPHZV6sw5AgEIVsi6+/wJjqsCQOD+/le5WdOQ87vUce471b2AL/b/S4eygMwMDwf38D/uP1X8M3OK9gWG7gZXUaTxUhMivfnzPL7Dn9dh/4g6aHRfbDazqyIYo6/gvCvI+f38HP8C5363fOdpYOFcn4ACDgVXc9lZLe9/yGuvfF74PkI339nTLQ//+T6TQjv1H+wxhx/d2jwow/s3/3si/Z+OgPi1kRtdFA9E24MWNrDdkuvvR0FwsYpze87w75liZlczM7xGwPKZo0EN1xTvDdh1miPH+UjsOQQbLgPM2+feAhS0qknVj9mVs5vsJA68hCGC9DoCDASRsQw8QYQtt3oRX3a6Tv8zXh8jjRj/7sTlvQDAA+KIsPZDP8ZzlAHZcmyliAhTuWGelKgsAF+/sbJdfgBW0BQEgjCY8/v2wXW6fCbQuJ+7NWJ0HkG6FLW/GN4A6QVCLqHVk4JUXFO+kJAnQKClusnO3yMnhYhC7ApWhioBCOVIp/q9geC0GkEzuDtk4EgVl3vZxzdm18EAJh3vgP54Z/Zl73ta4i3Lle629tIPj4ZMWg0wGYj5SIWuFi6ei8PgjMIwVaS9RsAwr3UWof+8XfPiGE7bEExBaMNSOW2AyIimLAN1b4ItXkNauMKdHPbLi1fbM1tDeNsp1vATF67zq1/utjUFBEY0cRYhdy+jKOv/Q/ofeEXpo4Bt/5GWhcGgeWX9oFM0BFNRCyY6O7mG7aLHznjvvbhZBxfGbmX9Dun/gZFELD70HTHXokYxABDBqL0KsPBwMCQOzNHMhoCKUzpmpZKY5DkiEKOjXZYS83rid6HqZX1G2MKwl9WIGhtKkkMY4RmHCDP68j6LfG8M2eevCD8pyCH33LGfQdzjPu00fje4HUAwM3wMn5t+6/iZ9tfmDgGjBheiJ8EAPxk9P7MdWeMKWb4a40kGI3rr38LT77279HonR7pLxv3lbd5XTm/x9ip/3BhgdEQd8o6vbRw7+fCu0vm+M/d+SHah7fB7n2IHzui/Y2X5hDtmvBO/Q8OV//b77xpoDVw7Rxw48KCDwYNS2LT2cITyRSUD7DVttf94cklzp0YfId/YSQfgCISTpXmI7QETD7zjrIx5zv38XxsuGcNDBcU703QtAVkuWLEg3fn5wHS3ODV9zSSbM65J2KYqAOIxrEaUL6L3yx1+FtOlTI8jQ4/8WK5rTOX/jOcYTmIyFanjbayZRE9dpF80zhWZF7V8oLYkv2ofTKFBO+IXqPDP50tvxZEYImskjbC7oQKCSeOOsdlGkYDnNt/phdHzv21hszbKBc3ucbxJhEBnFtTx48B22EbO8EGCIRUZzjMBzjI+jjKB0iRYSOO5mbWfxzgZJ2iq6LIjp542kasJT3kr/9n+/knfwoxCyCIzZiLKaMQs2DCJR3ATAY9YN3yAxKF9HwpCGisPMc/7kBrYxBNde42wiYEsaLza8RUgZAJmLAF3TxvzaYWFKO0c6w3zMrcbYdfFGkKRKxynCRmIWIWzsj683PXYOLJFhUREAUCShooY8AJxf757+Jc2EHMQsgyyXbGfY3+IzCVo9F/CGB2fh+Y6vC7EQ0/x9/Qfn4/KsYreKkYyX3qAyNo50sR5QkU7GeHqUKaa2y1I1zYbCAKeaXkPxrs4cZP/j02dt8BAFwNL4CDoaeH2FddjEwKCQUCocXG35kBxokMU4gDvrDAdPWt/4SnXv2XuMotQazqNAPjOLtT6fAvkfS/mXyIrhogphA/2/4CmnPk7Z+Lb0CA40B1Z5QKfT1CbiQYGDb5shYo0Dy6h9A5jG/ff32V3VkJF4NtCHAkJi0KEgDwwTHk/ID9njgYMpPjaFECAhOOVC0vCHsiebiow681aHSA+yHHo3s9aAM8eQG4caHe+1iis8oCxdVz9u/fvmvw2kf1n72vfaTx7r1xd3/xeyHBiBiUHM7E9FHWB7QaE/410wpOE0WHv4bA0zA2YbxHOgNVRDIWkv5pP0MRgmQCwwTAl3jxMAHAgCVHK703kUytuaAI8f13DL79hv3nNDF0XfyyB0Kr6PCf/PqSnKCNPcaNsw7/Gc5QDyQCK53W0prW/UVD0ACFTbDGCXVganb4T0xJ4TqBRuW2283mdMQ/YZCfT15FnqaVM5acc0MXwUQ3cP5yctC6yQ4idJnoHw/hb/AIN5oX8GzrCp5pXsHTrSdwvXEB54IOYhagweOJmfePG1aGzWeM+wBAMgb5zNfs/xgNMAFx9WVELEDIZjPklTaIS67fxo+6VHS2BXGEJGbk7IsQCg7UnOM3BjYyzhFAcussI2YRmiJGJm33xCwys2Ri4bnuO+5ExhJfYybjk+CKkVPHjBFDRzSR1TwfI8Gg4f0JeNEh9939Fm/MnE9qyzrdx4NHaHbvgYxGFnWQx7Ok1f+MqwzczZt+vvE0rgQX8FRulytFZFdLKLr/AAr/Bm20LRQBiFUCKTUGoxwhJ1zcamCrE4FzgmDW9K9Mwhvd+7jx2u+g2XuAc3d/DMAa0V11hnofpveL7n6LxeClYqgxmC02+eMWckSCIavwDBDZEJ39DxElXdzM7HnTVQP01eTbvTa66L6fxvz7lrAd/p4ezhTTUp3j1aFNyPip5vMLx4AiFuKZ2BZzXkven/idL1hs8XZhtrgIm4/eKf67s/+hNWI8BXDiuBTsAJg0TfzQyfmfWkPOD9jr67xz6184xy9CGM5rKcDGHf75n4lGh/jX59v4f944h11xBEbAz75U77X/neQ2/s/938ObyYczv7t+gQpn/f/y5wbv3V9+N3z9lsYf/rn93JefIZzbqFF0EBFI5eCj7vi+pzIXWRgXSoNjSfoX4DgpBOMZ/hr7yQIgT4pGAynp9nd6ht/+uzuc3jYGE28Col4xys7yL/ZImIYtSFg5/909u+73HxgofXqk33f4WyWvCd/tP40OvzcCjAMDzk63mPFJ4Izwn+FUQEFsb14GJ5O3/ikDMQa+dQXU2Fz+4TrLK2bz5xNRo1WlC/d662N2tk1JS36ZOBnlwGmAi5Uq1fY4zc9oJ6dOWb4ggNZ0tifGXRLCx0P4PRgxRDxARzSxE3ZwpXEez7Su4Hpjkbby9CGIgYNmCL9xHWv+5JcBR974lRdAYQOMGNqiUTHHbxCUr4PCs0HMmDESEVoiXhiXNY1AMIiac/zKaDAicKdemDYTBCw5PBe2kcvEOhcvKKwZJhbKz33HHQQETIBB2/O5BHvOzr7MtEQETBHfeRDCjmAooyf8CQDb3WdEEMxnzzsJ/qaVS0dZHxuP3gMADDavVO8nF8hD+317p/5n4qv465s/jba037cUcRHFx6fuTRHZ1Afv1B/JBATCRivEhe0GGvH4GBMxOz7ttrO9/xGuv/674O7aDEeHxXytl3N/mN0rXOw7FR3qeYSfiNCIRaVJYPNoPOvezhKcLwzkJmX9R2oADQ1BHB12MlGyZTQoQkSBW9dkN/pHo3eQmhxbvI3n4+tLl/VS/BQA4Fb2cML1v5Dz15jfZzJDZ9+SzjxogIzG1sO36u3MGvDjFF5dcVw5v0etOX4QELRQ59Xcd/h9J7kKweARftK21//9rQRffIqwtUxi7vCWS1h4O71d+fuvPUd48TrBAPiPr+qCBFbhjdsaf/Bj+/sv3KSV0gEsOe0WMX0sG1iDOh4WiQGHa6QVLMObdzT+2e9pfLS7+nK1NsWc/dZyAUvJsNHK+ilPYCoK8K3Y1q6VPibhLTwSDqs9EqZhFCizypNM2pQHwCY13F6cHnosDKdc+sv/fRoz/P6YNkMzOWLxGcFj+gZ/hk89yl3Xx9iw7zRBcftk0wn4kk62lmDxyc10srDpZsnUiY88nCSIiXodeQ+trEfBvOXxYCnh913j44xrfJzGfYtARHMJyseFeR3+3CgIxhGGDYRf+mXQxiUEz/9c8fsmj2z6j7su/L+DchfdEX6IsDIZIeLhxDKWYZU5/mLGnROk0c5bYPZaagcRuAHyJVLe1EhYWl19fmoFBIJDQSMiqwaYOUd5AFTsb8wiZ+64vAgluDcvNIU/Qbm7D8DtK4Ny22qCuJDqd/Y+sH9TIef38J8NpmKkuEtbkDwC45byTztACBIwZhzNFyPFxa0GdjrxTIQgYwRGtliysfs2rr71n8CMQm/7BvKgCQIQO6PB6+FFMDAcqQFuZ3YkYYPPkm5aMB8dhcKNr0we/2b3bvHfYdLDlaA6nm88v38C6S8VmOfU31NDvD76AADw1daL9Trzoo1rgR3leG007vKvYjrY2f8ATCuk8QZ2b1ilz9bDN1dPZqkJP8f/IN+DNKqQ818SO3PHF+rgYh2n/hXgO/xHCzr8e8kDZK4YdqsNvPJ0vXvcSKfFdu7JIwz1rH6aiPDNlwlPXbIE9He+r/GoO7v8N29r/OcfObL/JOEbL9Jq5y0LrG9LcgioHJR0CxVUp2nFh0qjyLw/CeTK4NuvG+QSxQjCKugnNpKPL4vk83CGjaQye17LpLLwyxmh7Za3SNlRCws8EmY2T6auyBLgwcFkubiOumMdaGPGBLxihv80XPoH3rAvNGsnGTzOOCP8ZzgdMO6HGU/UDO8vNBifS2yNzGyVOKpTTq4JR4qN1jOy4McKbLUOP6AXEv5a5oRKWuJ0nOPyMRr3fRoQMpvdXUauJUInuxdXX0bjF/53sM1Lxe9jFiJgouguS6MhGEfAJjv8xAVY1KqMW2xxS3Sn59fnws/x15AyajP2JxinB8yeX01iiKiB0ZwnsjEG/bwHRcAA+VxTSR/Jp41BQMJu7NT5TDywxcOpYxEwjjZv1DoOgjMIbuPvOGMz3X3AFl04sYkiTtqxZIpgYEAYbszvmE479Xt4iX8uYnhePU0+BeMwMAXhD/OR7epXGYKTHUs4f+81XHn3j0AwOLzwLO48/1eRtO32xgNLukMWFITQx7TNdNkJmDPCb5chGLgg6HLByBi0Sh3+IO0VneZ7+aSBnI+zO435fQ8v6z8sdfi/P3gDGhqXg/O4GtRXBL3UsF3+d5Lbxbm1imHfpvNQ6F54Fr1zNyFFjCAbon3wUe1tWAVbvIMGRVDQ2M0P8EFqCzE3oyeOtdwLrsN/pAZI9fG7h17eneaYa552W4+vnZQT9k29duytbNIY8U5WbR7JGOEXf4rh8raNCPx339MThnJv3dH4T47sv3yD8I2XViT7Dia0EnQ+OnBz5JYBMiJsueNwknP8r31kMHJf0X5vdULrkxOWRfKVYYiD8hFI5SAj56o1C1n/6LhEm2BEBEqOZjwSZj4pnZyfOO4dmInteO/+6cj6R6mlEASgUSb8ruAxTE5e1VFWFJA8BZOATxhnhP8MpwJiYjz3fZJd7r/AoAXE1uQJKGwBJ5gnSzywRQaVP9YqDTsysoppHxaT+jqjCypf36Hf4eM27nvcEbJgpsMvjUJTxHNfmkImENE4clAaBQE+0eH3IxzzCiwhC7AVtDFaQcIXCpepvuRzWhkEwp5Pc80EAQidoRFtQ1Wce9po9GQXEY+wGZ2DAassXNgNIidvNy76z8ye6zyw9+UKtUM7iKGNXv4iRdaAjjHrTzDd3QdcSgAJyNK25p0xURx1LkIvKHplU079xXJdhz/nYRE/OH1MuUt90M5jg6UL2mHG4NLt7+PqnT8FAOxffhn3n/7LALGC8Df6Y6L05BTxK0v6rWfD4g4/IwIHoEpnT5B0EZTmaYO0jwtiCwEJpCbHnhofA98dL8/vM5kh7j1cK2qrCkWH3xHzh/lBEUf4tdaLK5G2y8E5bPMOJBTeSj5CbmQh718m6Q+SHpq9BzAAjs4/A8M4Di8+b//2/hur7lYtEFFRbHk7vYVdeQjgeHJ+wBYnfZKBX+ZxEAgq8skru/zG4ANhr/GmGz+6ndyt+OAsPkot4fejHV7NUgXBCX/zqww7HSuJ/v99V2OYGrx9V+M//dCejy9dJ/zcy+uRfQBjCXrWs2NNpcrd1jEiAqsglcGr742Xtd9fnVjOi+TTxuDV4du4l1UUXpgAZGqJplJzPYYK476TsLEQIUhl4L2HE6aBEzDaGUna93hP+L/0FKEZ2ULPacj6y9398v3dd/ultus+lXXGZD0VVlGOfgpwRvjPcDpwUVDEH+9Ivk8VFpnTqQystXmyEk8RglgAI+XJjiacNGw212p/s4DwExPjSMI5MEoCYaNwP18LH7Nx3+OOgPGZ01ubSQO+aRAR2qKJ3JFXZRRCLiY7vlqCgth9r6zye90QTXBitc37AsHAafkcv3afBWbNBMtgRiKKz4FBIC912KWW6OVddMQGLjUuox1sgPMQ0sw5Z8jKPg2MfUkiNnPtEhf2vKsg/A0eIWAB8hopFSJgCATBuGLbTtCZeDEjIhfNNz5GuXPqB+bP7xefndvhd5J+EYOcXwGbepXxJnq+wz+X8BuN1mt/iHN3fgQAeHj9K3h442u27Q9g1Jrs8APAjfASqEQ4ypJ+DQMGwsLEMwI45xO121bXkmnlRjqCtAdGDE8E5wAAd0sd1qpIvksffAc3f/LvsOMMBo+LsaS/D2MMvjd4DQDwXHRtZWUBERVd/teTD4rtjylCgy32QNlwZn3DjcuQkVMdXPocDAit7j2Eo8OVtqUuvIrjPdfdP66c36OQ9S+c46+PDUcoq+b41WgftyP7nPu5A3utf5TvLiWvuZaFf8FXWi8AsH4GVQkqHlFA+O+/xtBp2OLDv/q2xu+/amAAvHid8M3PH4PsewQNGNBMU8Mb951UNN9rH1kpeadha/9SrT4uUETyTRn2fZTdx6vDt/AHvR/MGGJCBLa7n4+K+08VNlxN9UQIP8gmv6gMrH8fLO3OvGOO5fwhlDZ46E7dKzuEp5+w27nO2MMyeBf+5tRlJzghCiY/c2Lr9JL+BrPH5DP2bnZG+M9wOuDCkqpgfnfuDKuBXJzKNGwHXqzvGD9vfU6yTsSsydzjihW2zc7es8WeBIzbJ/2iMQEtrcfBMfBJGfdNwxhju+CfMKal7toYGwG3wAkcABo8hIHdD2kU4mkSYYxVgYig0qkfsF4AHdHAUNV7gxCcIagzx29M0YWeMRP0P1U5eBBCRJuIKEambZshVSlGaoid6BwuNi4hZCECFiIUTWQVagQbyWfrX4wYhIFTWVXETwaxLVpNISSBJp+N56tCFDCEgiM1GTqiifZ0nCCAmAUTREFuXLAv7Vg8vw/MRvN5iELSb2P5GFhFh5+DEYOM7DZRFeHXGu0f/T4at16DAfDBtZ/B/tUvTrxsJ61zbht6YG69EQtx2RFxAGiXCL/RxgaqLHJWhH1pLctgvWHf0YVnAABBNgRpOc6FdwRsqBMkJgNhssMfOwXChVs/sJ3+Y2K75NT/Tnobu/IQAhyvND+31vKeiq4gphBDneDVoTXc21lm2GcMNnffBQAcXXi2+LGM2uhvXwMAbD04nS7/Zdfh97i5pjv/NLxx38nN8TvjvorT+/3dWzBE2EoNvqQbCLRBHzn2VXf2wyXcyXehodFhTTwbXUdMIXIjl25zK7akPw7t9hgAL1wj/PxJkH0A1tCwiWnaMjbuOz7plMrgz94bJwlsu2XvLR9zn8DRsDqSz49KpCbHh+n9qb9y7xxaVhr2eYyd+k+KZBOMM0hlvV2w0f5ELLGV82uAOB51bWc9CoDtNvDMZfu9noZbvyffrYqa4Gk59fvltSIXY1t3zO9TgjPCf4bTAeMgxkE1Y0LOUAPzpOZ5Agqa1lX/hEFRyzrPPK4O/YBlOLVC0uAM3KpJUAEf2bdMznUCYw6PhXFfNoTpP/rESb+XYfsOlDQSAQmESxRCMQ8RMmGd9g1mP09wMvbAFlkqOttEhK2gDWNMLZd6EBBHfOFLjrELhmBUbSbokSfgUQM8jNFgLSijMJQDSJPjfHQR56ML4O7viAiNoANVkSqgtQHnVETycQN7HlcR/jCuHAsgInREE3mNczIQHFsbIUCz3X0PMVXgYGGA29d+Gg+vfglJ6/zM58vIog4MCExLcC83Nbog3pLZtAEiquzwc2LI3T2RpVMDvlqh88PfQ3zvbRhiePTSL+LR+edmtkEHMbLIElNv3AcATzoC2KDIeSW4zTMGYCgVearBy783Bk3X4e+dewrKnb9BOiik5Q/zA+RG4sCZ6HV4a1wgMxphakkcweDKO39YHKN1EbMIMVm1wZ8MfgIA+Hzz6bW73II4Xmg8CQC4l9vjuEzO3+g9QJj2oJhAb+fJid8dXHoRgJ3vp1MomDZZXKgcgNkxjnVxQYyd+mc6vEvQVQM8kkcTP9ssOvyzn78t9wEAl7MILO7gecdmPpohmpP4yHlT3IgugREVUZSLZP0eW23Cr3yVYatlDfr+yhdOiuzPxzia7/jLev2W7e63Y+Bz1wg7HbvsVef4/fexWUpEMMZMeCFUxR0azq1Z3IJnnpf0906kw1+CaMCIEGy4B95/BOi8JOe37zr39u1xuLxtnxVPbOPUZP3jDv/s+XNaTv3lMQLDOJhMTmxM6nHAY/wWf4ZPM4iYdQE9MyY7ORBDleuUkRmouXk8efm8VYYxmJvlf2zBmJPg17gxa1upXugrwVyBYw4BNq5ocCLn9mNwfRiZgRqbMKPFnZ/Thu/Kale8ybWyZn1zZhk9QibQ4CFSLWGAidg7K98nkI+VDKLKzjYAtEWMBo8wWmJg5BEJaww376wzxsq7C4d+xifIYfE5mYK3t8E5R4AIAQvBiONS4zK2o+2ZF+Y4aFa67Jcj+RgYBADi1YR/UbGqwSMIxmsRkoFK5nb3gXGBw28rI4a9S5/Dwys/VSlb1cbgaJBZ5QTjyJ2M28v6uUyLO6AMQhiyDv3Tx8jGPDJIJ/9lKgdcnB+0QufV/4DowbswxNB75W8gfcJ21qu+S9/lj0tz/E+HV3A9vIQvNp+Z3H7Yl6plqRecsWJd0XAfQqZQTGDUuoDcJa0ESQ8brIUWa0BD40G+P+HQ7xGkfZAx0MSRRR2EaR9PvPfHx35R9cZ90ig0WYSXG08fa3mfi5+cKMwsM+zzZn29czcLwuEx3LyCLO6Aq7yIeDxpeHXFJbGDJjuZxsUWb6PFGlDQM+kLi6CNxreOvoN/d/jfJpITxh3+ye/64aHBXmyLZE+G28ijNl4aWFXQR1OGfNPrueWI/Y3QFjmuhnYMpw7hB4CLW4T/5ec5/vLL7GNRd/oO/ygD0nz9c15Ndfc5I+y4ms/+Ch1+bUwhty/P8D+SR0hMBgEOAuGhPMCBnHrm8hCk04XvJx3X4R+kqJUUsxJ4ABO2QMkReO8BWNqzJolu1MjP7z+xM/ZOOS1Z/7jbPvu703DqN8YURYZWDIAHYCr7TI1cnhH+M5wa+OYlUOP0nIT/woEIoMmbqlESYNx2ik9jlTwEggi0hHR9kiBibo6/hsGKVvNJULFAbvd33vKUtFFBJ9DhfzyM+7RVchDZtIdPCMJ1Zf3Md24kWgsM+8roiCYylUM4o7gCWk0Yh1LQmFvI4cSxHbSR6rxW8SgQDLHgGCaqkij6SD5GBOXMBMXUeWe0NWdiUQtRwEEQuBBdwOXGZbRF9TUd8CYCxpFPzfFrZd3mFWl7LA0AJioLgcSDuX4GMQsRswDpknPSm/HN6+4DtrPL2ThusRyBNw0DYDBSiAKGXNllTzv189y+4SkRAeAwZOXznAgmHcC43zN3LknOnckXwLIhoCQ2fvA7iB5+AMM4ul/+ZWQXnwJnAAerVHcUxn2lOf6ACfzCxlfxoptNL/bBAIyxyjSAMqwCwElWnZx/tPEEwFhR5AjSnjWQ87L+7FEhxy7P0ftjk8cd3H3u52GIsLH/ATaPmVVf7nC/0vxcZbFqFTRYhGeisW/Dog4/aYnO/gcAgO75Zys+QEWXf/vB66fShXu58TSeCq/ga60XT2yZRIQboU0Z8Z30Orif72OoExgYvJ3eKn7uCWV3qsP//Q/76EUAMwZXOteQR228MEhBxiYk9FR1e/h+vo/cSMQUFmqEq8EFEGxiQ3/O332SCASh4+qNb99d/zx4/bYlfK3YjiIAwDnf4V/BELA/suksbCqSzxdMroYXinPgzWQqaYIF0PEOFlGzOAACdymeZBRhAeIwcQeUJ6DRvn0PIg5jDO5b0Qgub49vcKcl6/fd+6pYQz/XPzzBGf5M2nhHwI0MMAEyCvgMxfOdEf4znBoobDzeZm+fNlSZ0+WJnd0/BTk/YB3wWRA/5h1+boshdQi/UXNJkAcR2XnvecvTOUgcz6G/wCds3GeMAQyBmptg7XMwyYrDiicIThwcY8JvDBAtyaX3iFgAzhg4TTr0j0c4HOEX4cLzpBM0EbGgXjSdYNjZjBEIwqiC9PuOO3OxdQEXhZlcgTyx8vqwgTCwIwLtoINogXQ6EDEiigpzP20McqmQK4UgsMcvYAGMUfNjI71qp0LtwJysP6sYffDQRqObD7El2nO7+4BVW5S/Ux+BV/UVDBOJOOKII1H8fuzUb6XMY8O+CCCAjDUnJDCYbAiTjQlJwAQ0jaP5+PAIGz/49wgffQTDBLpf+RXkF24U+2xrfLMvrKO2lTSXO/zzYDQglsj57frc5wE0u9YYbrBpxwRyN0IQpFaj7CXVd/PdoiM4QfidMieLN5C0L2D3+lcAAJc++BOEw/Vnxc+JTQC2E/9MdG3t5ZTxklMJCHBs8flF6vb+R+AqRx62MdyoltMfXXgWmnHEwwPEvfld63XR4jF+fuMVnA+2TnS5nuzdyh7WGx8CioQEAHg3uVNcT35GPMnH3e3u0GDPff56ImFa55FHbbS0wZOpLaTN6/L7IsT18FJRxItYUJD/23Pi+T5pfOkpu63ffcvMjShcBKUMfvCu6+4/bVVZAIoO/2EftclsIedvTip9bueW8F8LL+JzsR1ReTe9Y0fRVgARnbBxX+VaYKI2AAYT2JUdDux5JhhwYXP8ycunJOsfy+srJP2u6+/n/E9yfaGwHitF1XalyOfHG2eE/wxn+JTAdrIn3eONTE5Nzg/Yok2wcxkULHZT/kSxQoffaGW76ssWyYO5M+1GSVDQPBG5IjEOhI1PrsPvDR9FBNY5D4gQJjuZtoHOU0vC0j70qAs9PIIeHEAP9qD7ezNqAkYEwQS00VBGgxEhqpnwEbMQIQUImZjsomsJ4sG48LikSBOxAFtBq3ZEXxhwnNuMwYUlrGUYbcktESCNrnToNzIBxRsgxhEItlRZYIxBoghMheiPEvQTiVGqoAC0GyHiwHbTIyacmmVOwcQfkzmkviliEKiSkGhjcJQPsRW28US8s1C+7gsw5fGAacM6AEhy5SS0fh/cWMdUh1+4SD4lYgAGhszYtG/KyyNkAsqMCX/nh/8R4d5tGC5w9NVfQX5uTGIZYyBC5f6mrXN2VCQbgC+5NvSESeN8cG59B4ySaHYt+Rpu2O63J/xhaotv3qn/UPVxqGwRoCyH98fGqyH2L38e/c2rYEbh6tt/AFpQuPHbXKW4eCa6ir/U+jx+ceNrS0cU6mJbdPBLGz+NX9r86cKXogpezn904Zm5juVaROieswWErVOK6DsNXAp2EJJAajLs1jDv08YUc/cEQmKyolscCCoMzDzR/PEHBtGWPaeeygmGC+ShLa683Lfnb9UcvzGmKATciC5N/O7airL+jxsv3yDstIE0B/707dVJYNHdj4AXro/Pt3YMBNx27P//7P1XkCRpft0L/j7hKnTKqizVVV2t5fRoheGAAEGAACiW5OU13qVRGF+5ZjQ+0taMjzSa8YV8Ivmwtrt394Hici9BAiAwBCEGM8Domda6uqtLV+rMUO7+ffvwuXtEZIZMUV3diGMz1t0ZEe4ersLP/3/+5wzzSRiGfN6/0Sfnb5kO65n/wnl/hTVviZosE9uE9zvTRSX24+SN+0ZAB07NSG9+f7Ux6EEihODqKcj6B+T1B1DO5vpP0qW/8Ax4iB91j4s54Z9jjk8KpHStoezhzJpMzh+UJ3zweFDR6YwLnBiKmftpJP1mdNezH8obvTyTIk5QUSGD8sdn3JfGhYO98CNkbRXb3R8bSTgNrEkwrR1cBpmPCMvI8gKyfga1eNGN+gyRyvlCk1pDYlJn2CemU1FoqSipkPAAwbUmHfBJENp1tscZFNZ0eaaIvsBTLNUitBYDpD81Fk+5n1hr7aG0gXwfi2wcRytZONgPg7WWzZ0OsVGUg4hqpFmsB5xdKnFusczqQuS649biSe3SCUYUOCb5GUTSJ5D6kNLBWstOvE9VlzgXLg74JYxCIP2BaD6tBh87ksSQppZGNSD0NUpJRKZkOiTpzzr8qecKEgjQMiuUiJ5MHlyH3/YRfhm3Mdpn+/O/TrI4mBAghJurH9bEM8qjG7mWVn883zBY7KAh3wgIBFJCuHsPaRISHdApLWTfuTfDD66YlXfbwWWjl/qSKLy2IxL5NiIEtx77ORIvImhtsXrte2O3pdlJabUPn+tSSJ6KHqF8AnF0/Tjvr3DGWxz5uu42KW87EtTvzj8Mm2ed3L66fm109OJDBikkF2aQ9d+JN2jbLr7weCa8DMDb7T5Zf0b+tpuWTmx57bqhU3XnzkXhrp/Ej7BC8Oyeu37uJhu0zWBRcz3doWnaaBRr3qChZk74b8X3ZzYbfBCQUvC1Z9x95ZUPLeszmOylxvLDd9z96aWrIuvuOgjRP8c/3TJvb+XEuK+7nxVKlnSdknRjak+ETl30RuuD6fyH+pAb951eh/8wbmW1qbXFw/e3R/tl/SfgK5AaSys7PR+US38zj+T7FPuMzwn/HHN8UiAkRXQLZO78IZxwHN8nDkI5hcOUP5qjSNDge4ZHIBaYpmgwLT5G4z6bxuCXCoWILC+4ef6DruazIk0QXoQ++xh67Qn06lXU8iXUwjlkbRXhl4bHwklH+GObECjv0Mz7OCz5Ver6QPErTd01kkNq9/8xBZaSCqjoaGrzPoDQd6RfakEzk81aa/seHu1h88G4AzpA5JJzNT7MrdlJCAPN1fN1Hl1bZbkU4vmu4HCwq+zWJcaO4jg/g+H7QUtFVUeHCP9O0qSkAs6Fi/gT4hJzhNobIPxSiOJSTa2lHafUKz6V0CteB3f1dUNHYr32LliLyh36dYBEgDAodDZnOvg4I7PUB5MVVIwO2PnCr5MsDI9Y01KOrPHliQKTCD+AmqIbrpRASAp3/mZtrehk92b4e7bj5/sI2KKuDaiLDnb4AVIv4uZj38ACC3ffpLp+7fBGWItIuuikzdQpJw8AtfvvIrA0q6uFwmMUOuUlmpUVhDWUb77+gLbw+Cjm+Dt3JpK9DzJ5/iX/DE9EjiTeiO+yn0WI5k7w2/suQz4Nd0i0JUgNi2F23ghJ7FdYTAxLIsJyuFufd/3P+yuH7lULqkpJhqQYbsfrPIy4sCy4csY9Bvzxa2ZqEv3qtZS9liORT188fO0WTv1TpgDc2XL/PNtH+HN3/gveSvG3x8ILSCQb6c6h9IVJKCT9rQd33fYc+g/vo35Z//UTkPW3sp9eKSAc8njUc+k/bF57VOQGgOUhIwSfFswJ/xxzfFKQSfqLDn/cQZQarlv3ZxhCCEfipupK2+n8CKQeKiW1JgGlTjR9whn36Y9H1m9SZF/BSGgfWTuDTbrHiumzaeK66aM6zF4w9HhpqRBAYgzlGZ2xyzqkfCgG9ECXW3nOf2GMzFkIwYJXwVgz9YwtONK/XA2RElqdNOPbbn5dCXWoG27jNiKqFtunpev6pkNYp7WWdidluR4SBRrtlykLTXdIB15A5hUw/lx3x2D09yvrCGtt8UC1EzcJhMe5aPmQkmIcDpIHJZ35qLXQaidUSz71clCMTGolkNqZHsZBGSsk0qbo7j4qHpzht9YR9R7h76V16KwA0Lr0PK0Lz7D9pb9CUh+UKvfD06OTPgrjvklz/JbegP4YCCFQQlLJCP9+vWdml0v6Vdot4vXW+ohCv0O/MCleVpzrHiDHzfo51s+9AMDZ9/6YC2/8Do+88l+58pP/xGM/+P/y5J/+P3nyB/8fPvPKf2D1/psTt/lBwFpL9e7bAGwPM+sbgq3MvK9y47VPzLzteW8FiWTXNIsxjWGw1vJBpgK4HKxRVxVW9QIWeLfzEdCTd2/uwc+uWVTNnaNXWzFxqVcoijMl4FXjPnBQXVDI+f3D14gQoiCrNx7SOX6Arz4tURJurMP7U9g6pMbyJ6+7e+hLjw5293PkHf5pVAN7LTcaIERvzt1Yw404I/yZUgKccudKFu85LKKvH7FN+P2dH/HHuz9z18hpRfONwF7bsttyt+gzjcOvD8j6bx+fgO8X8/sMHZ3MO/zGOl+Bk0BzLumfY445HhoUhN9k7t6ikAP/mYfSE2XoxcP8NEaSUg0nQ2mSub6fZIc/cKTvARP+Yn8cKF6IUgNRqh/PwM+kSG+Mw/6I/aeFwgIWQ3BS+7jveDtDxsAVbsZg1oi+HGGgWa6G7lJFIKVz6FcH0gOcWaJB9pE0paSTlQ/RlTfbCVGgWai6pxHh+ZSld6ggYbDOoR430y7GFbcm+CNEyseXmtgm7CUtlJCci5YoqdmeiDyhEfTONyEFAsF+OyEKPBoVf6C2ppTbfmMcie/mM+3tnT7TvrBIKdVCZXGb2WhPJjlWwsWCJaUq+899k7Q6KFM+CCVHE/5W0eFfH68kEtN1+AE8EkqZYqBZ76kOrNIkmVFWLutf9Rpo3LFc6DPs8zq7CCyp1KTe4TGj+xdeolVZQaVdKls3iPbuEbR30EkH0dfVX733xlDDwgcNb/ceUXsbIxS7S1cmfwAX25foEN3Zp7Q1+zz0xwFPas5l3gzjZP13k01apoMnNGvZ+x8PLwJO1m+tpZF1+N+77TLkg4Yjl483u7TLvdGJXDnyROzOoxvde4U8fyfdZyvdRSCKcYOD6J/jP6mu6kmjVhKFgd93XjcTY+teuWbZaVqiAJ65NPy6XaxkHf4pfg5vZ7F1S1VXQAS4E286xZrwWdKNgfc/mcn63+/cHGkUm9qU/7nzQ651b/F25zpN0+6b4T+5Dvc43M66+0s18L3h+yl36792ArL+cfP74O7Veef/pJz6x8UAflowJ/xzzPFJgZCZdN1k7t6Rc+ifwxGbSd0dm7ru/BQdfiHV8NiyNEEof6qxgGkhpPx4jPtMkhn2HSD8UiJr7uHuyDF9JkWGo89N1/1Xh4i3Es6ATQmFP6Vh3yjYrOsrDixnnJS9tx2zRfT1Iww1S9WQ0NdoKUiswROq6DgDkHZdQkPf9auVy34++LBkraXdTVltRHg6O3eVRyA1WsgiHg/I1AQSZbNcqDHFrVHHIIcvPSIVsJO0sMC5cGmsI/8oaOHiCJPsWtLSyfY9T7BY81EHZvqVFCglyXdDYdzX2ili+RIVuJRSkY0AWOOuo5z8AwqVxTxOOeojswrCEHTKi1gEOm6hu8PHXfK1TOtvV927h7SG2K8UXf0c3Yyc+ZmsXwnFs9EVFlR1oEuYO/THYW34iqXkoyd/kduXv8ytR7/OR0/8eT545ld474W/yjuf/Vv85Nm/iZGasLuLv/fxG7I17juzvs36BdIpVVRWKvYXHXEqbd+a8O6HB5cClz5wfYRjPsAHmcz+kn+mMDm8HKzhCc2uaXIn2SjIn7GATLEVJw+/nGpMn0FtTvjPtzuUZUSK4WbXFZw+7LhtOOstHvIaybHmLyMR7JomO+kxR75OEZ+9KiiHLrLup+8Pv/aT1PJHrxq+/Zq7V3zuqhza3Ydeh3+nCXEy/l5ye8v982yf7P1G4c6/csj8ckUvsKCqpJhCsdEPYy1/uPsTbsY9ZdFGulPEEMYptB9Aku64+f0cZxccWT4JWX8zi+Tr77Zf79wZGCfpOfUfb13FOucz/HPMMcfDAvdA62bVbdJBRPWpyOufCYwz2cthXJ7spM4m0OsWHpC12zQuZq5PEtMa95n9TUxr62RWmsaucDHkwVqEVURl4Rhd/tGGcUAWC3d4ll4LR9J8oaeeER+J1JlaHlQTuGi+yR+fJaLvIKJQs7oQobUj5IH0B9QONm4jgvJA+oWS0hH+A53W/XZCOfKoV3rvFVITSB9fqIHtS61BIVFWZOf6mPvDiGPQj5ouEUqftWCRunfYHHSasQ8tZRbN594rpSTwFYuVsFfAOPgZJYrLuYjma28XHf5YBwU1l4iepL/vmlVCIhEYppN5uyQmO/TUsFIXpnrh/vAZZjdOIaZy6YcDcXwHiEAvmq93/b1UfpK/svCNgbQH/6Bh3xCkXsjW2afZXn2cvcVHaNXO0i0t0PUiUi+ktXIZgMa9d6fa7lODtdQ3rgHOrK+TTD9SlEf3RTvTZ9ufJtKsSDcOeeHmfrJdzOP3w8n5XQHjEb+nAPGE5kr232+3r1Pvuyz9+gZWWBpxSjlYGFhe4udFpP2+aEC3v3KVwSV/eARivt4zmcogj5h7kLDWTmUY6GnBl59019OP3rXsHZhz3963/OfvGl75wP39i09qnr8y+potBYIou+Q2J8zx38k6/P2y99wrob9Ql0MIUUT0vdkeNO+z1vLdvZf5oHsbiaSh3D1hM9lFK1F0v3dOJlRnLMbN7+cQQhTmfceV9Rfz9Jkb/27a5H/s/oBv7Xy/+B3pzfGf0Ax/Iemfz/DPMcccDwP6HMbncv4eXBd3wo3fpK5AMtUMvyIL5h78uzWDJnAnhSm6WTbuFNtuhzjczwqbxuCFQ4tGQghUdfVIMX3uoUW4DvIoSO0KAsM6/EgC5R/OrJ8Vxik6UAe+n9L0z3qPwqwRfQeRczhjDeHB4kWaIKPDhmSBpwYIf97dX66HeLpvfyiNVB4VGQ6kCRhr8KRGknW8J0j6hx2DflR1iQvhMgve4XuNjdvY3XsTSb/zL+gZ90kpWGmEROHowpvfF1HY79Sv+2b4JQIpBDJXPSmN6LtmnVpEDRgGjoOUWVTehDn+cMQcv7Fk2zPV6ogyJ/p+OX+O+IBT/yh4Qwz7pkWcGrQWxOefAqC+ee1QgfNBwuvs4iUdrJDYlUdI4unn8VsZ4Q/37yM+rojTPnS6hm5ixk5/lGTISibxHtblv59ss2/aaKE45w+OozyWyfqvdW6BTApCunTeFaMeb3bplJYGPtNvBnmxIPx3aZo2d7N4wGHz+/34uOL5bnXX+Q+bv8f/b/MPpirAPn5OcHYBkhT+5M3eQXjnpuE//LHh/o4zg/u1L0q+8YI/NHaya2Lean9IYtOpnPqT1HLfXY5Fh383dR4NAsG5Ph+OflwNzqOFYjvd53a8Ufz9h803eLtzHQF8o/oZrgYuWWQjcSspjPtOOZqvE1vWs9vQ2YXx783n+I8r6y8k/VmN+262XxKbspm4jcmJ+Uk59c8l/XPMMcfDBaWh20J44al0mj+xkHKUGrcHm4KcTtKP1I4w9akGRs28nwSmMe6znT1keRFZXsK2jjFfn8OkzpF/1Db5EbK6nMX0zfDjbRKE0mM7/EIIhBcdcup3s+5q5jnx4duRIqR3WNKvnJR9kqwfXESfFpLuFO8dBQt4fdL6wvhxSLSj7w8S/v1WQjXyaFQO7A+lQSlKUmHpOVKn1rhRCGOcQeGYookQArxwZDQfgCcVNa803IshjcEPIZ48RBlKPdCdG+ntkEFJSd5rz8ms197pufSrEKlk5pEnsMZkahWvVxAVAk8qzLSEX4gs3XME4S87AhWNcuq3NrNZmcK0r9vG33PkbL82hPAX5Gz8dT7MoX9aJIkl8jXJygUSL0InHSpbN2Zezkkh3HcP9d3yIuWSh1aSeMoufxJWSMIKwlqiveGmcsZaktTQSVLa3ZT9dsJeK2avFTuTzROEMQZfy6EGnP3IO+rD5vjz7v5F78wh48sV3aChKqQY3u/c5OmLLofeVjLC3+oW52uO/JzSnX3O6gV8oWnbLj/ad4aNS7pOWY0f2bngO9J6J94gHnFPvNa5xX/c+D2+v3/81ARrLT9tvs3v7PwJTdNmz7R4vX1t4ueEEHw9i+l7+6blo/uWP3jZ8Ls/scSJc5X/m1+XPLI6+v74g/3X+c7ey7zcfHcqp/57267oF/kUkvsbWWFkVS+MHJXwpObRjMzn5n0vN9/lldZ7AHyl8jyXgzUWM++OjTQj/A8omu92JuevlXod91E4u+A678eV9R+U1+cFKaBINOh36j8u4sQSZ7eAuaR/jjnmeCjgZtXTTM5/vBnnTxWkmtjgt8ZMTdaL7mi/hDDrGJ/k/H6BCcZ9Nm6D9pHVJWRtBfwQe+zcaTsgKR8GWWpk4xIzEN7M2HBshx8QfniooyiEoKqjEyH81qTgDTne2nPHdopuZkkF1L0yzeRoTxXGWoRwctgCSez26ZB976leh9kYSydOWa5Hh7LrhdQI6REi8aRHnJ2nxlp8obE2nSo6UvrRkZ3NbZoggspUapNA+TMlHigtILOV63X4d5HZeRirAIHbtzKPKlWeu4b6vk8g9NQd/jwqb9R2tvo7/EPekx9rCZTe/C7Ruz8cOWbkbdxAAK2wTuIdLtzmkn6/M15DfBzCby0EvgYh2V1+FHCReB8XgozwJ7VltFaUQk1nwsx0PzoNl3RQGiLr328ntDvOxE0Avqeol3yWayGNSjC1z8M0SI116hLJxOXmHfXb8fpA4oa11nXvgUeCwzJ7IUTPvK9znS89Kfn1r8dsm12EtVxtdukcJPx+GYtA2hQv6RTd+ney2fFJ3X2AmixTlSUMdmCuHFz39bt7L/P7uz9iz7R4tfUe77YPz6VPi5bp8Ls73+PHzbewUKghXm+9T2wn/x6t1EURs/cb3zO8dt0di89eFfzlL0kqY8hrag3XsoLLrfg+i5nAaVyH/86We+3sQq/o91GWaHDeH97dz/FUJuv/oHubnzbf5ofNNwD4fOkpnsiM/Ra0uyfspvskNh0w7jtN3NqcLOfPIYTg0azL/+aNoydm9Dr8bll3463itfVkK3ste2/n5FIBtAJfzyX9c8wxx8MAqZ3Z11zOP4hp5N8mRcwQJ4byXJEgR5oRtSmI1KwojPuSEYS/s48sLzqjRi9EVlew3dbEZIJRsMbNt08sXujMoHAKf4ECJnXy6klpCCPWfSZcGBKvdwTYBDFkOUJqdx5M8Z2EECz6VZRUR+rypzZFC43uU5XYNEboYGjBTiuJzaQq++2YSuRRr4w4Zz0fbZybfo8sWLeuac915XHkDHZrsmNsJ56HWqiJApx+yGz+3lpL4pcxQhWu8lZIEqHdyD4yk+Nm26L8gUKOFnrqQkMelTfKrL4TLWCERKXdoZ13AygE4a23KL3/Y8pv/ym1H/5XxBAFhLfuiNBudW0oKexmkn7d2RtZkBFpjNdtZu+fjfAnxqKEKB5u988+AUBl83oRBfig4WfeCHmaQin0kAiSKdMDOg2nlDhI+PNPL9YD1pZKrC1VWF2IaNQCKmWfwFMc+RoYgjg1eJ5EKzWxllbXFeqqjMHyUdxTJmykO+yZFho1dPYbnBRcILifbLOZ7HArM+A710kIVFAkPRSQkiQzCfU6e4fm9cfN7+cQQgyV9W8ne/y3rT/mzfaHgOtoA3x37xW2kikD7PtwO17nN7b+iJvxfRSSr1Ve4FfqX6Umy3RszJut8TF2Ob74hMDPbrORD7/2BcmXnpQTfTZuxvfoZkWF+8kW9Yo7kOOc+m8X8/tu2YlNuZUVRS6OOIY5FnWNFd3AYvlx8y0Ano+u8lzpavGeSASEwsfi5vgLwt86uXN3GHKH/rXFCW/M8PSFPDVifIFkHHoz/G60YitTNUCvw1/KCjYn4dL/Z0HOD3PCP8ccnygIpRF+aS7nPwAh5HBX/X5Yc8iRfuwytT/4sG2SkUTtJCCD8tBOuu22XHe/0vvFlZVFRFTGtmd/mAJcl1lq0ON/4YRU4AUzJQhYkwyVqx9atvImH7NjYpTKQPjhxGi+HCUV0tBl9o/Q5U+sQSPx+iW5Jhk5SqGUQOC6+93EsNI43N3PIXSIIKWiomKO3+Jm5rETTBPzZSgP52dwhGMgQPhldw5NSHPQQoGYPkJKKeFEGMaCEAUBBhfJl7fSezP8ZAUs589QrHdGU1OtxGiSJhWdkrsGh87xG1DCUnrne8Wf/PWPaHz3P6H2Ngfe6meEf692lmEVhsQvYYVAWoPuDm/h+dl8f6oDzIy+IkkfKQVIqks0wwbSplQ3piNTJ42w6Tr8pu66oaGnKIWKzgTzuxydBUf4w737iL5rO02Ni/HyFErJQ2EG7poTMylQsJbavbep3n8Pv7U18DuRJJYoUPiePGTAOQwXc1l/p1eoyLv75/2VQ3L+HKEMiq78W+3rRcf98VaXdmlpaGpD/xz/eW/FqWOAqizRUNM1EXLCfyN28Xzvtj/iN7a+zWa6Syh8/kLti/xy/Suc9ZZISPmD3R9NZbYH7v7ws+Y7/PftP6FpOtRVhV9rfJ3Hw4tIIXg+I8Cvtt6fapmlQPAXPyt58Yrgb35dcnFlurJjvv/BRZ2aaAtwRLTdPXxMrbXccW/hTNYJvx2vk2IoybAw3BuH3LwP4InwEp8tPTnwuhCiiOTcTHcKSf/uKXb409Ry1/HrqTr8AEs1wZVMLPLDd2Yn/Elq6WSPG+XQEXwL+JlKbivdJbbJibr07w9JBfg0Yk7455jjkwSpEKX66cjKP8mQCqSYIE8W0xn25e/W/oCk36bx6cYgZuT7ICmy3SaysjRAooXykLUzYOKpiesATOJ8ICZ14cF951nWYdLpjA2152bRZ1EPzALLyEQG4R0eJxiHRb+KJ9WA7HYapDbFV9qR0r4NG7V/tHRS4J1ml2rkUyuPLlDlxYxIuRz71BqkEOg8Xm6ac30Kp/5hsCZ1kYdBCRFU3cjJGGip0EJP/eCvpHPNz7vfcV8HO/UCnC0kzhUfkf1HNobT91yqhJxJWaC1HEv8CuO+IXP8xsLi3TdR7T3SoMzWl/86aVhFNbep/8l/wrvniLRs7aKa21gErepZ0mHdZSGJ/R45G4Zjze+nljBQBSdUUrKx4GT99XvvzLy840LFbfy4iQXSWiZFF1AOPSyjxyz6kUR1Ei9C2nSgIJOkFq3lyMKZki4Oc5R3wzA07r7JuXe/zfl3/oBHf/qfeeJ7/zuPvPwbnH3326zef53a3h00dqxpX46ctN+I75Ha1LnzZ+T/cnDY36Efuaz/vc6NImLvsebh+f0ccVZo9Lr7eFJzLnPdvxScmcp7AuCMt4hG0TQdvrXzff5o76ckpKx5S/zlhZ/jfBY/943qZwiFz2a6y/f3X5u43Lbp8q2d7/Oj5ptYnILh1xpfK6TsAI8G5ynLkJbt8E77+lTbe2FZ8NWn5cT58xypTfkwM1GsSvd7v243irn8YXP8uy3XJZYCVrPAjH53/mn27eVgjUf8szwdXubL5eeGfmYx2xcbSS+ab6/FVIWlo+DuNqTGqSPqo+1+DuHzj7tr7Z1bduYuf95tVxJ83Zvfv+CvEkl3799IdooZ/mZn/P3hzRuGP3nDjH1P0eGf8hz5pGJO+OeY4xMEUV5ADnF1/jMPKQE5cmbWwY7NJT+8zAO+ANZMnHk/DoT23fb1kWvbbYIXICuHH+BEVEeUjhad5+IFp/sFFzqYWfE6aX4fyGauT4fwW5OClKMLGjMWzCIV0PAq7M8od05sSih750xBlEesXymBkpIksSzXw5EkBXBE3UIofXzh0Uo7KCGzvG47NeEXB865qWBSt36lkVF1YvFEC4VGTj1PLxBopYrF9sfOpTp0A+jCZk79vQ6/u2Z7J2ue9DC1skAIhgfzObTLjvBHQzr8IumydPOnADQf+zxJ4wxbX/nrxAtryKRL7Ye/SfT+T/DWnTFeUl9BBNHIGmXu1O+PuL6P6tCfF0uCvkhEqQQbC5exQGn3zsR0gJNGkMn5k6iG7VNhhYEm9BTdaRz7hSjc+vtl/amxhP5gIagfLg5z8rx9AWtZuO0M6bpBFSM10qZE+/dp3HubSzd+wMpP/itnX/ntyUayuNn0SATENuF2vMFWusuO2UchueCNl4Kf81YoyZCOjWnZDtpaLrdiOuXh+uv+Dj/AFyrP8Gx4hReix6b77rhrec13v0c34nsI4KXSE/yF2pcoyV4hsyRDvlH9DABvtj/k/c7Nkcu8E2/wX7b+iBvxPRSSr1ae5+uVFwe9T3DX83OR6/K/3HpvakPOWXCje5/YJpRkyLPRlWL7xs3x5/P7y7VMJWRtj/BPOIY5tFD8fO1zfKny7NDUAIBFlXX4k11KgSPFFkf6TwP5mEK/L8E0WD5Gl7+Y3w/dOu/GjvCv6AWWMx+H+8k2ke8uL2uhPUJg1oktv/+y5cfvWa4P9/IEeoR/3uGfY445HhoIId289xyDyDO4RzwAWGscAZxF4tvXlXWEQc5MFGfCAeM+a23W3V8eWmgQUjoDPyGwEyTVh2EdkZ8CQvuZHHvyw5W1xklJp1EOCAk6OJpCYRL6COnQdSvP7bcZHhgXvCqe1HRmif2yONf8HGkC0htpHqmV6zbWyv7o2f0MQmmQCoUbO2ilXSQSBa6oMMW5LqR02zJrHJtJsohLz40XKW/sOaiExFPTd/gBPK/Xbe8ntakO3PlIdj+0TvYv8u8sZeHUr4RCComZsmIl8yfoEciN+4L99UP3mtV7b6DjNmmpTieLurNBie0v/GXaF55GYCm/+R3Kb/wxAPHSBbQSI7tz3WBSh99pbWcl/GliUEoMxDwqIUiDSpEYUFt/b6ZlHhe5nD+uDMbPCQGVkkeSTncEmznh3+3F3Fksvh5zLQgGikuTUNq5TdDawkjNtef/Mm994f/Kuy/+X7jx+M9z88zz7C5cwgpJuHWT6v79ieoEIQQXA8eOPuze5lrW3T/nr+BNGB+TQvBYcKH47yutGA2jO/wHVCN1VeELlWcI5GzJM/m8f0kG/MX6l3mx9PhQknrOX+GFjKB/Z+9ldtL9gdettbzSfJff3nYu/DVV5lcbX+OJ8NJIgvl4eJFQBOybFu92Tj5V4lrXFSYu+2uczRQQd+NNFqruOA6b47+TTezkcv7tdI8900Iii+LISWDhkFO/+/tpGffdKub3Z+98f+6xXpd/c2960t9Pvq213Ms6/KveAsvaFX7Xky2kFES5rH+EwOzd27boAV27M6bD3+6t89OMOXOYY445PvkQyhHIUQTOpCDUTJJ+9948TD1xRnSnEMmX45BxX7cFXoisjA6/FUHFxfS1d0a+5yAcGZLTfxftuULHNJ34jGhPa44o/Oh0JP0mzcjfmA7/jFL2SPkseBWa6XRdfmtdr9jrP+fSGKH9kfteSUkp1Kw0ItSkwp7qpQ1UdIgAtJBIY13xa0o1y7B4xEmwaQJekBUMAkRQmijrD6Q3VYc/tS5mUEtRkLwBwu+FYAUIi0I4M788VUNqd51n63GKh+mVBa5YMvrhthvVMVKjTILf6l1zMulw5u6rAOw/9sXB+4xU7D37Tfae+rpzSc9UIvHSBdQY87DcqX9UNN9RJf1x6giw7iP8UgqEgs1F19Gs3Xt3aBLBaaHo8NcOk6PI13iepDtFRF/e4Y9274IxzjEfiTfBedv3pj9HGndcd3975TGM9kEI4qjOztJlbp59kY0Xf5nOOWeCeObeq5gp8shzWf/17p3CHf7yFCZ6AI+FPcL/eLNDqrzi3DmIgx3+o+JqcIG/UPsif6XxjYIUj8JnSk+wqheIbcIf7P6YNCv6dUyX39v9AT9ovoHFciU4x6/Xv17Ez42CFornss77y813Z/NemICkT85/OVijrioEwifF4NdcgW19SIf/9lZu2Of+O3fnP+stHlIpHAd1VUEiiG3CnmmdqnGftZZbWSFj2vn9fqzUBZeP0OXP5+nLoWAr3SO2CRrFgqr2OvxxFs03gfC/faO33g/u2pFKr/0DMYAAr7eu8XvJK6x3N4d+5pOIOeGfY445PvHoxeiN+GHJJN4jCeDQZfZ1C9O45wJ+isiN+6y12LiJrK6M7cQLIZDVZdChk/9PgzTJ0gam/C6F9H6KznaaZPtpSrKpfU7SIbuAcd9xZJf7iFL2Ba+CLzXtdLKiIsWghUT3PfBNM0pxYaXCQnWKVoPU7vuZhFD5+NLDk17W8Z6+uCW8YPZoPpMWCQhCCGSpPvH8CKQ38eE8tYZ77W3aJs4KHsM6/GFWh7Noqd0Yj1B9pF8WigUlJAo5tfRXZqaJIzdTyKJ72j/Hv3TjZ2gT0y0v0l0bIo8WgvblF9j5/K9hdEAalIgbZ1FSjjz7c0n/RMIfzdjhN4aSP3huSCFQCLYWHsFIRdDeJsxI+INAHslnaofjy5QSVEKfeApZf7fUINEB0iSE++skxqA0hTnhKCglXRFpAnRnj+qGc6LfPPPUwGvOHFASaEHr8mcAqG9dR05RjD3rLaGFm4vfTveQCC5OEZMHUFNlLvtreFby3F7HGUuOKFoNEP5jEGUpBOf9lamUAVJI/lz1JQLhsZ5s84P9N7gXb/Jftr7N9e5dJJKvlJ/jG5XPTFQ05HgyfARfeOyYfT7o3pr8gSlxo3uPxKaUZciKbiCE4IznCu5x5Ijfxu7giFCSWtazQ3w2I8Yfxb35/ZOEEpJ6ZgC4mfSM+06jw7+xC93ERdUtH7jFNNM239t7jb10/Io/n3f5b07f5d/vc8zP5/dXvAZSSJayDv+O2adj4oKgN4dE8+22LDfdbQUt3XLvbQ9fZ8+l3+1Pay2vtN6lRcxOfLzi2MOEOeGfY445Ph2QemyHX8hZO/wuoxprBjuap4mc3HebCL+ELI/u7ucQfoSsrWC7zekk6lmXedrxBCEkeFO62k8i2gdRuMSfLOm3Jh1fKDmilD1UPgteldYUXf7UGJRQgw79NkX44w0Nx87t96H/O4TSI5CeGx+waa8ANg2y82CmY3DAz0L4JZBqrFJgmmi+VtqhoiMSk2bkW2AtpF5EmpGBxAsAixWgyFQ9QhSk3xVBeh1+OUOH37n+i7HvPzjHr7vNYqZ758oXxioE4uWLbH7z77D1c3/b+R9IwaiCV0HOhszTy6SLzhQVcVg/9PoouOkHgfYOnBvCkd5UeOwuOLfw2v0HY94n0oQgI8VpfXheeTlUaCVJkgnHUQhaVUeUS7u3SRJL4OlxhwQALUQxJjIOjbtvIrDs187SLQ3em5PUEvgKrRRpdZHu8iUEluVMETB+/YrzXu+7n/NW8OX042PfqL7E/21/gcXEjJTzAyRZsVGa5IHGL5ZVxNcrLwLwevsav7n9XfZNi6os8auNr/Jk9MhMM+Ke1DwTXQbgZ813Tuz3I3fnvxysFdtzJlMw7MoNhHAkuN8Z/u62M+wsBVDJYuTuxI5pnjThhz7jvnSXWmbct9M8+aL5rSJmkEMxhj9pvc1r7ff5zt4rY5exUhdcXnXX1Y+m7PIX8voQ7vXN74PzqymMFJPtgqAP6/C/fdOtb+Hxt6g8+wOQCdfujujwH5D0b6Q77Js2EsGF6NPjmTUn/HPMMcenA0phD5j2WZNimtvYuIMIyjM9VAx0C01yug79GXLjPtttIirLU8vuZWXRdY47+xPfm3eZZ9kXTnkwmRzbdLpIvhxCeaDU7KZxkzdkIrE+ipQdYMGvEEiP1oQuf2JTPKGKaDjnbyCnV1ZMAeGF2DRBCklVlwik58iu1K5QM80yhphFToV+FYcXuf09JrpQC4UQo+PPrLV00oSSDkhtihLOzyA1jtDnxn2Jjsj68C6RwJpCjSNEpuLp8wrwpcYwJeGXLg7QjnG9bh1w6l+68VOkTdkrr9BeeWTk54rvqf3CmC5/jh62tm4u6Y9bAzFz0OvuJ16EmcFXJE5TtBb4+vC5kfsJ7Cw7t/7a/fcnmKCeDILmJgJL4kXYcLj6RWtFKdS0JxF++ub4d25jLQQHixtDoLRLexhHHIVJadxxGembZ58+9HqSWqI+c8DWZUdwl9bfmYpcX+qT8D8STCfnzyGFoJypJNojDPsArNQknrs/H1fWPysuBmd4NnRSfIvlEf8sv974etG1nRVPh5fRQrGZ7hYGecdBYlOu53J+/1zx97Oe2593k03q5cNz/Hf6iLEQghvxPSyWmipTUzNY20+JhcK4b4fqKXb4P7g7fH7fWsuNbGThZnyP+8mItnmG3LH/7ZuWrSm6/Lm8vr/Dv+r1imv5+XI/2Sqc+g9G81lreeuGBd2l3XiPTnQftXCH94fM8SeppZvdXvPlfdhx58GKqE2tOvkkYE7455hjjk8FhPSKDn9B9JvbiKCMOvMocuHChCUcQH+30DK1yd2xkBn3iaCMLDem/lge02eT7uQu/xRk+BCUN50E1JrZ9tNpRfPlru1jcCQpO06avuDVaCWdsQQhsSlR/whINkpxkj4QLkHBfYfVoMGCV8HaFLwZ1qH9zCxyumPgEhDUQNKAkBIR1bHxaGLjSYUSaqRxX8fEhMoj0j4W13EWshe5dP/CS2wvP8Zu47wjZ8KZ8rkOv+oVOLQ3UPjzpJ7agT2Xto8rbeUd1GB/A7+1TePumwDcXPssSs0266qUQCGHnkdGB6TZPj5Izo5q2BcnltDThzp24JQlFthvnCfxQnTSprw92hTNWEtnirn6SQibbnQgHpJE0o9S6CGAZEIEWbPmOvzR7h3ADHgVjIIUMrPDGL3s6vo1dNIm9kvsLVwaeM1YixDg9RUX4qULdMtLKJPQuPPmxG244K9maRaqmOmfGtYSZMaHndL4/VgoR7oPXqr82fJTvBg9ztcqL/DN6mdnUjEcRCB9nsqy63/aOn6X/6PuXRJSKjIqzOHAEWxPaGKbUFtw+6zfqT+f38/l/O+23TXzyJQeDLMi9zjYSHZOzbRva9/yYeZq//i5wXvFjtln3/RiAV5ujlcCrdQFj2Rd/h++OwXhz2rGXhAXJo95hx/oM+7b7kn624PLXd+FzT3wFu4WBTi1dJuN3cNqiIMxgEBR+DkjjlaMelgxJ/xzzDHHpwJCe2CTHtEPHdFXq48iS42Z5fh5t9CaBASnathXrFNKRFhF1lZnXp8o1RBhdWyX/6hdZqH9Affz0W/Ekfhpl5sb/J10h18weWRhlojGA1jwy4TKp21Gd/mNtQQDhD925+hJ+kAoXTzQSCGcasOYqU0TIfOq8ALstOkDJnHFlAP7VwTlsckHk6L5WmmXhlemXHgDgKdU0WTeX7jIrcd+zkn7hXt4UUI6ct93LIXyD3X4pyYDmbR9nCAgDmukykfalHNv/z7CWnbr52jWzmTKg+khEK6oMYzECtEz7jsg6z9yJJ+FwB9eCCvGC4RkZ8l1+ev33x25rG5siGNDkh5PBZDP708i/KGniAI9cZa/U1okVR4qjal2t/CmGJFRUqCFIBlznixk0vytM08NJLgAdFNDoOWgmkAI9i497z57+7WJCqlAevxq/Wv8auNrM7vme51dVBpjhKITNca+N/bL2Wcmq8FOGkpIXio/wePhxdnUdiPwbPQoCsn9ZItb8fE8J4bJ+cHdV1czwqnr7lzNO/zW2p5Df0PQMh1uxI4pXw1mbDBMiVzSv2uaRKH73ewmLoLupPDyNbesR1ahUR48Tjez7n4urf+ge5vtZHzxKJ/lf/uGZWt/QsEuI+Btz+3YunKKuhzLXgPIOvy5pP9AnfmtzKyvcqan/FD1+6C6h2T9/akAQgj20iYb6Q4CWBWz3V8fdswJ/xxzzPHpQEbQC6K/cjSiPwDlQdLNTO5OMZKvD3LhPGLCw+8wCKmR1SVs0hnd5T9ql1l5Lk5uTBfYrVMiZpTACf9o0vqR25ElMkzyERCZy/3EIsYQ+NJjyavSSrvsJ206Jiax6QCxdK75vW2waYzwSifyoFtAaQ55IFgz0H2fBsIvgZmS8KfpUGNG4ZfAC2CEW78UEl/pwqW7H4lJUUJS88poqZAIjDXDY+scJ0XkBQ5r3Pbk23FAjSKFnImGqzFReW4Fomfcl3VV75z7LMjDs66T1zWoYjiInsnaIOE/ikN/aixKCAJv+P1Q9Z2X28suSq2y8SFyRNxiaiyl0KPdPV6XP3foT+vL498ooBRoN+Ix9n2SVtXNTteb96ZTXQg3NjBq0eHefaK9exgh2Vp94tDraWIJ/cNeAd21x+h6EV7cmirqcEFXWdDDHfbHIdzPu/sNN4Y2BqPOqZOCittceP13qN9961SW349IBjweXgTgZ62je07EJunJ+YNzh14/k8n64zA37nPX624LWl03mrNSh/c6N7BYlnWDhq4ceXvGIZQBkXQquj32iLKf8pPq8ndiyxsfue/3wuXD59KNrhtleiK8xMXMo+Dl1ujCIMBqQ/DIyuRZ/jjpyet3ZSbn7+vuAywp13XfN2104Nh6/wy/sdbN78uUbuS2NRCeS3VZuHsonu/g/H5+HqzqRfe5TxHmhH+OOeb4VEBEVdTq1ZMh+vkytQ9pNyM4D+bmL6Q8MikUUR0RVkZ3+Ysu84zfRXnuc+NIYeqiC2ctjBxVWj8SIzrQh1DE2h2t2NDwK6z6dTzhSEgr6bAV77PZ3WOzu4cQYjCSz6SIYHp/g2kgpB5wpc/+Ops5JflowHTvtSZxoycHupxCaWRYGyvrD6RPMuRYN9MOFR0SqQBPKJSUJNbgKYk9sGE2k08L6SLXMGbwWPfHaeKiCid+pz7CrZWcOL3S7suL31m8TLO8iISB6zae4rwSwnU9R9UXcqd+/6CkvzW7Q3+cGjwtRjrWC9kzSeyUl+iEdaRNqW58MPT91oKnJVpNF5k3fCGGsOUe7M0Iw75+BL5058YEVUGz6uTUlb07U2+K78mRhZc8im936QqpN3gN558YppxQnsf9VTfvv3jr1VOLOsyLJp0xhn05eoSX4nIUAACw+klEQVT/dDr8C7dfo7J9g+XrP3og0Y7PRVcRCG7H6/xo/40jSfuvd++SYqjKEkvq8DWVz/HvyA3AsrnniOXtbH5/ue48MN5pfwTAY8H5o3+hKbCoTk/W//p1S5LCYgXOHzidUmu4nSkpzvnLPB+5RJJ3OzfYT1sHFzWAfJb/rZuW7RFd/rxT7ylYT7eAwfl9cCNaDeXO4ZZ272l1KYq0N9dd1z5YvI8RhnoKP7fh7p9q6RY3NwbVELnDfzG/nxH+aVMyPkmYE/455pjjUwGhA2RUO1EnfZF1UPHCqU3QPk4IpZHVlZGz/DaNEX5p5u8ihJhscmeSzDxt9mLCiaJIZJigNCjiBo9G+D2pORctc7W8xmPlczxaPsej5TUuRSucDRZY8mqFFNFam7X8T9gHQmn3PQfIpT0C4fdByOlSHkyC8IZ7QIiwAgeUDv0I5GEvCGstqTU0vApSCLTUaKFIbYocEpdmcLtS2LwwZgdVJVLRX71QQo40C0ytYbO7y3bce1qWUoAYTxpyp36L4P7FlzA2UxJkm9pJY7bjfbpTqCa0EiPrXd1hTv3W9nX4p58xTVNLGI52rNfSyZeNs/JnZ8V1+WtDZP0WQEDkKSolj25senvcWhZuvUp5a/T8fw6/vYM0KUZqbKUx8f2eUgS+Ik4mzfE7wh9t3x5POq1FNnfcP6UY+l4Vt52BIbB5ZohZX5KilMAfopwQQrB95ilSqQmbm5S2b47d7qMij1BsT5jfhwPRfCcNa6jfe9stP27ht7ZOfh0HUFERnys9CcDPWu/y7b2fTp3KkeP9jjsuB+X8OZZ0A4WkSxdV2icxjmDf2XKvn20I1pNtNtNdJJIrQ1QCJ4mFbI5/M+2P5jt+ccUYyysfuOU8f0Uc2hd3400SUkIRsKhqrHoLnPUWsVheaY1XsKw2BJdW3CX2p2/aob8RuUN/FBruJ1vA4Px+jiXdAGCX7cL4tJUVC3I5f+2sk/M/t9vkpe2M8Nc2sKpbGBJCr8hQCgQdE3M7S1i4FMwJ/xxzzDHHnx1kUX4PwqH/pCCiOiIoQWdIyd+kM7noDyzXj8bOoR41uvA40vqhMKkzopuwHUKI6eMGJyxHS0WkfKo6YsGvciZc4Fy05EzlIFMdeDNL7SdCale0yPZd7tEwdSxijtypf6o5fjsQydcPEZRcUWOEDFwLdUhI0DJdIulTVu68lELgS01qDUoejkuzGduUUvRk6H3HWkg1ULxQKNSQaL6uSdiO96nrMmCLgoBb5niFzd7CBXYXLnH3kS/QjRpY4+bAcyQ2paJL7E/hzq716M5yMcPfR85U0kFlCRG5AmASbPb/QI8+L6SUWQqp25Z8jr+0cxvVHbyXGGtRCJQWVEIPz5N0YncOlrducOaD73Hu7f+JmFBMy+f3O+XFQ3PxQzGlrH8/WiSV2u2rvc2R7yu//kcs/uH/Tv17/ydhe2doNF/97ltIm9IqLw0oO3I4I0TlvB+GQIUh9xddJ3Tx1vgYs6PAa21T3nGEtVWdrJI4TcJf3r6J13eulE+pwHEQz5Wu8rXKCwgE73Zu8K2d709VbAMXo/dRx5HDy8HwCDYlJCtZp7mylMv6KTr8ZxZ6Zn0X/dWZPRhmxaLKovlOuMN/7a4bUwg9eOLc4Xvgzcyf4Jy/XBQDXsi6/G+1P6Rtxt/vvviEK4q+e9vy6oeH73m5Q39Y2yXFEAiP+pCkgwHjviD/LMSp5b3bFjB0Su6YPrPfYSlJOdc1maz/Nh/0hTo0+yT9N7p3sVgaqnIqCQsfN+aEf4455phjFKQCz38ghn0nhV6Xf3CW/9hd5klSfZMi9Izu/5BJ60/Oqd+adOrjJbxwqrjBYyONHTE/4Q6/EAJ00CuWmNSR31kJfz6yMc0xsIxUTwgdIIIydsQcv5Yy6yL3zstOGlP3KgPjD4H0SKxBS0fAB2bqsxl+iUAg3Tnd/32LOM2M8AvpPAH6nPiaaYdm0uFssMBauIQvnQu3+3gW+jeuMSw1N578BTbXngUyAtw3K55aQyA0vtS0J8Q3KiEOjS3kyAm919ktNih36I/9MnZKv4w0NWgp8MY41kshUALSbFvisEqrsoLAUt24NvBekxqEBiUlWkvqJZ8kMVjbUwSoNKay+eHY7co703F1es+ScApZf4ygVXbk19scTjqDj14n+vCV4j1nvv8fWbv7Gibtux9Yw0LmsL915mmGySOMtYTB6OPgK8md5aewCCrbNws3/ZPCyvUfIaxlr3FhJkm/Srsj/RmOivpd191Ps/vcuJSHk8bj4UV+ofZ5NIpb8X1+a/tPaKajY0JzXGvdJsVQU+VCKg9Q2rrBlZ/8H0Q7mWO7drJ+XXeE/+6WZT0T3qzWLe913Hd9LDwds75+FB3+ZJdqlPsJHL/D/7P33TX1zCWBHuJ9kRv2nfd6ha81b5klXSfF8Frr2tjlr9QFX37SLfePX+uNROTI5+lldcu9Xy8MVVwsF9F820ShW0azDdfuWOIUKstbxMSEBi63XOHnxawiopZu8+E9W/ymNPtiAD/Ncn6YE/455phjjpEQUjsS8wki/ACiVHeqhP7O3DG7zC6vXY3uiFszsvM7FspD6CPkwI+CSUdKzg9CaP+BzJnaNAY/OtFxkxxCB719Z1xE3awJBG5kozTRqd+aBJRyxYERkKX6yGOphZPr53P8XZOgpaJ2YC7az4z3pHRxaf0xe05xbhFCum68ZbA7LJXbB5k5oBISKRSpNVhr2U2aGGu4EC1zJlggUB6h8ulm26yEI7/TRvmByxXv7/AbayipgEWvRisdH98o5JC2coYeOYuLLPejOPTHicX31PiIOgFKqYHxgp0ll5teW39/4K2pdd4IuUlhKfQIfU3cblPd7M38TzKqy8lvWp1g2NcHrRShr+iOkfWniaXdcLJ+b+Mw4dfbd6m89ocAtB55ge7SBYRJOX/zR1x59b8VyoPK5kd43T0SHbCzfOXQchJjUUKONEIEZ8zYDSvsLroIuYVbr079XSch3LtHbeMaFrh38XNTfcYqryDkJxnNp+I21azAc+eRLwFQ2rmDeBAF1QwX/FV+ufEVQhGwme7w37a/w1Yy3pzwnX03d3/ZH5TzL95+jaC9zcr1HwG9Of44dHP8b92wWOtmv7fVfdq2Syh8znuTVRbHRV2VkUgSUrzIzc73d/ittey3LR/dt7x8zfDKB2Z4Ekgf7m1bbm06A8LnHjlMslumw3rq7j3n/N53FELwfOTGf95oX5uorHjxiuDqWYGx8Ds/MgXhhp5jvgm3gMPz+zkWdA2BoG27RCVXJdjv2ELOXz/nWvhPNbsooBPWeWHPvU9VN+iKDjezUIdc0h+Gho9i97mZYzE/IZgT/jnmmGOOUZDKdWUfkGHfSUEoD1lbxnb7yEZyzC6z8id34o8QdVdI60/MqV9Mnt/PoTwOudyfBtIEGZyORHCgaGFTV1SYtcNPPrIx4RikKQg9dv8KP3KFoSHFAy1yeb0jAa20Q1VFhAcksLn038n2Jf3x6HnmuQCEsSAPjDBI7fZBViTIzRNTm7Id7+OhuRitsOhXiwf8sopIMmKSS9tHOumNgDzQidJKs+BXCKVPa0x8oxaHZ2VzWKmJs2JIbtxXGPaNIPwWSFJDO07ZbyfstRKwUAomnxMHUxF2ly5jgdLuXXSfBNykdkAtIKWgWvapbn6INClJdo+pbH2EGqH2wNrCXT6tTU/4ERCFGjNG1m+tJV50xml68+ZAUU90W1R//NsIk9JZucz+U19j5/O/zu5zP0+qPErNdS6/8l9Yvv5jFm47cr69+sRQNUWSGDxPjjRChFwxIlhfew6A+v330N0T0F9by8qHPwBgZ/mqG4uYEqch66/dfxdhDa3yMjvLj5J4EdIkRLt3J3/4BLGs6/xq46vUVJl90+I3t7/Dre760Ht818R80HJd3Sv9cn5jiHZuA1DavY3f2mLFW0AgiGUb4bcKonimAe90XNHg0eA88gF4/UghWciM69LAFTR2W/D7Lxv+83dT/h/fMvy/fs/wG98zfPs1yx+9avmfL9uRo0MAP8ui+K6uCcrh4fvRrcydf1HVipSAHI/4Z6mrMl2b8GZ7vKpHCME3XxAsVBzZ/p0fm+Kek3f4275TUQyb3wf3+5CPNciKUzzd34Hr9wEs7cgd0+d2mxipuXPlyywkhottF7GsFm4X8Xx5kaHlbZDYlEgGLGceAZ82zAn/HHPMMccoeCGqsfaJ6/BDPssfFV1+a47XZRbKqR2GzXnbTEp+ZPWAF4E9PuEvHuqmLDwI5YE66HJ/GrBuTv400P9djXGE9ygPndpn0uw6JnFqjHHH2QsRXmloPJ8UgkD6pNZgrMFYS8OrHCK8nlCF9N/TEpMOPqjmDv2i0Pervtey/+6L//OFpp10qegSF0urVPWgJ0eovMyh3h6Stk8LkXW73Tko0ELhS82SX6OTxiOLSkLlnxu+3N4cv3uwLwz7okHDvk6SsteK2W8nJKlFS0m94rOyEHFmKaIcTT7/9IE59MQv08oc7/u7/CZz6O9HKdCsbGfmdmefoV1aRFhLdf3a8HXFTXTSxiKwUzj09yP0Rsv6XUFIYBbOYIVEdZrOmA/AGKo//V1Ue4+0VGfvhV9wMn0h6Fx4mmsv/XU26xcR1rJ84yeUd25jEWytPjl0OxJjiILRRojgRjaUFOyXlmhWzyCsoXH79Zm+7zCUt29S3rmNEZJ7Fz8702dj3xUf9UkRfmtpZDF826uPgxDs1x2BPi2jwnGoqhJ/qf5VVvUCXZvw33f+hP/3+m/zHzZ+j/+69W2+tf19/nj3Z3x792cYDA1VoaF6fhjh/n1UX/GzcedNtFCFlFxWe74Qywsx17uuqPEg5Pw5cln/vtxxP2HWOezf3oRO7O7k9RJcWnGn+Fs3LH/4ynCzvP225Z2b7u8vXB5+Mt/om98/CCEEz2Vd/ldb75MMiV7th68Ff/GzEk/DrQ34kzcywt+xCL/liioIlr3RpqRLXgOANHSEP1dcLK3u0bQtlBU80ezSrK3RrK3RDau8uOvUEGrpNtfuOFl/O6vF3hc9Of+JRuc+RJgT/jnmmGOOERBCHNnk7uOG0D6isoSNW+5H/gS6zMIvDe/Em8R1fY8zLnASsCkoOZDLPha5f8BJjRMM2yTj4gpPq2gklFeY1FmbHrmwUIxsjFFa9CL5Rj8QCSERpTp2hGGdm89PaaVdSiqgPMT3QUuFyqT/npb007rcIR4hkDYj/AcLHMobGAMIpMeZYIGL0TKROrx/AunhSUVs06HS9mmQGwimGJRwhB+g7lUoqYD9EfPESoixIwTFHH/7AOHv6/BbnGy/UQ0424g4u1ji7GKJRiWgHGp8T40lpTmkEIcKD7mU/aCs/6BJnezsU96+BcDm4hV2ljOX//XhGd2FYV9Ud0WkGaC1IgyGy/rT1KC1wPN9koaT5uZz/KW3/xR//SOs0uy89MvYAyNIMqrw7uVvcOPxb5JkY0F7CxeHmiPm5pHj5Pzg9pOSkFrLRub50Lj75vFGifq6+1tnnyYJZst8H2YGeRyEe/cJWlsYqQqzx/26c6p/UMZ9h7ZJ+vxS/UuFY77BsG9a3E+2+Si+y9ud61zruPP1oDt/ecf9PVfX1O+9gzAJZzznkZDP8QMktVsYDIuqxqKefszmuFgsnPp3+fqzTib/uccEv/gZwf/ydck//IuSv/1Nxa9+QfGLLzpfktevu27/QdL/6ocWY+HsgnPTPwhrLTezDv+okYWrwXnKMqJtO0U84TgsVAR//gV37fzsmuXtm4ZmG2Rly30/VcUTo+8LefGl67n7YV77q6854n61a/Et7DXOgRBsrzzO83vuN0lVN9lL21x3NQyksNxM3Oc+rXJ+gNn1l3PMMcccc3wiIMsLmL37vVn+Y5JO4QUMZUJp6kj2EST9kJFWBNaa48UfmsmS88H1aoTyYYKx2rGQxK6wcFodfqldRztNwJijFxa057YzjUcfxyn9EWRQxgiXvHAwMcCXGmstXRuzEtZRQ463FgqNc9Y/FJeW/bsWCmEtdsgIg9D+QOrDkl8bW6TwhCaQPm3TwZcarQStznSELH9XvvjUGpSQeBnh96Ri2a/xYesexppDkl8pBUJBlu13aPk9+fXugUi+HrnITfkqoTd+Tn8C1JBIwt3Fy5x5/08I99fxWtt0wzpCDKYSAAS33kZgaVZW2JVl5PIVVj78PqXdu3jt3UOkuTDsq0xv2NePKNDst5JDOowkhdBXSCmIF87hbd7C27iJ1T6l93/svtNzP086xChQKglIdpeusF9bo7r5YTF7fxBxmuJpge+NH5UQwvkOtLspe42LpFKjkw5Bc2Mqk71hqK2/R9jcIFU+98+9MPPn46zw63X2j7T+g2jcc9393cXLmOz+08wIf7h/Hxm3MVP6qpwktFD8uepLfK3yAi3ToWU6tE2Xts3+3XbRWvJs8OjA50qZnH/j3Ass3noVr7tHdf0aZ+uLvNJ6F13boIPzBr0rb0AKVx9gdx9gQeXGfTv8wkXJMxdHv/exc+5e+ns/de74SsJXn3YNjSTtOea/cHn4vWMz3aVlO2jUyLl6KSTPRVf40/3XeKX1Lk+EFyeONzx6VvDSo4Ifv2f5/Zdd0UEtbwEUqQijkMvu9+U2mZELQkArugsGnt92BdL9uhvt2V5+jKvXf8zlVpdrkY9avM1rH14GIGzsFN/vrHe0a/KTgHmHf4455pjjUwqhfWRlGdvdz8zWjkk6s88f7BD0Or9H/Ek5Kaf+NEWo2UzrxIn6BxyGTWNn/Ditr8CsUH3RfNYcfawiM6gcq3awdrpzyAtdAWGIC7jrfAt86R2S1ueQQuIpTWpTtHSS6+KME2CEM+MjLxAdOO/cNvYKU5MkmkIIKios5vgPStvHwuLyAjICnFpTeBXkqHllqro0tMsvhUAxeoQg78b6nT103EKaBIso/g6QpBZPTzDlmwJuLEEMbEnqhUW3trb+PqlxcYn6AOEPbznS1z3/JBJBW0U0a2vZ5w6b9+WGffEMhn0D6/OU8xw4IOtPrSHwHQmPF936/fsfUnn59wBoXX6R7trjQ5dZxEBaMF7I9uoTmBGeJ3FiiXxdHPdx8L0sFlJKWjXXQcxJ5awQJmU5M5JbP/f8kYj0Sc7wizSmmqk/tlafKP6e+GU6UQNBr2P+cUELRVWVWPUWuBSc4YnwEi+WHucr1ef4xuJnCGTvnilMWjjz79fPsXXGfafGnTeLmXLjN8Frs7i8x3q6jUDwaKYkeFBY1O763zOtqSIInzwv+ebz7lz92TXLn77pOv3v3HSy9koIV0Y0t3N3/rPeYi9qdggeDy8RCp890+LdznQJDV98UnBhyRXqjOl1+EcVFnI0VAWFJBUJInSFq3NnWmyZHQTw9F6b2K8QZ4XRJCizXz/HC1mXXy/d4oOsw+8tuuN93l8plFmfRswJ/xxzzDHHpxiy3AC/dCJdZjfzPkQCb5KpnfGHQnkZaT0m8c4k7bMUHoR/ytF8JkackmEfZLnzMiP8iCMZ9hXL8kvYZPjDY88fYXJBQSidFVKGGPdJR4ZrukQwZlmh9EmsQSmBQvQMp6yTp3oZ4Ud5hwn9EfZBqHrFrGHS9lEw1iIRRXM+tSm+HNwmJSRLfpXUWEf8+jFhhKDbJ+n3W1kkX1Bx7cUMSWoJ/eM/qCrJ4L7O0JP1v0dqDFIOSvrV7gZ65z5WSNLzT1ApadrdtCfrv//eIQn7kQz7+qC1dG79cV+CAwACP9u2uLGGFQLZbSHTmHjhHPtPfGX0MqVwMZBTzHNYawn86Yp4/fsqL4KUjkiCG3fewO/sEXslNs8+c6RlnCThr61fQ6Ux3bBKqzrIGD9uWf9REO7dQ9qUxIvoRnW2Vh7HCkFp7y619m4R3aeqm1TPue91wV85ZGR30qjdf5fq/V7hLJA+Jel+czfT8UkEOZ6+KPm5Z9196cfvWX7wti3M+p67LEYWr27ETs7f784/DFoononcveI7ey9PJe2XQvCLL0kqISBTRNkpmFZHGPb1PidZyj0Vss/U15yXwvlUUzG2kPPn2F51sn5hLbKyjfCd8tFUP93u/DnmhH+OOeaY41MMoQNkZRnhl47fZda+I/2HOuL2aJF8+TZKCV5w7E67TRPXpZ4FGek8Taf+YxVDply+i0u0xyP847bTpE4lMqWCQAQVGNJ58oSipEJq3vgiiC+1i+YTMkvZy46PALAoobDWDB/fOMI+CKSHlprYpkOl7aNgrXU2AqLX4T+YOgBQ1SVqXom9pHXotYPu+P0oyFl3H7/tCH83GpzfR0BwzO4+0NvXB7Zlb+ERjJAErW2C5haeGvQECPLu/solrB9SLbnRgvu1CxihCFpbA/nzMuniZyaEpnb0GLMw0KTWFoqENLVoKXpKB+2RZMtPgzI7n/mlgULJQSjlYiAnRZglxqCkxNfTmXtp0VNONGvOBLG0c2f4eNQYyKTL0o2fAnD/4kvYI45Q5eeUTtqIUfdcawl3702M1atncv6tlSc4aBSRE/7S9s1DBZ+HFbkPRbN2FoQg9UvsLlwCXJf/TBbP9+wzm2wHrot9NThdOb/qNll75w85984foLu9MYy8+LCR7Ey9rOcekXz1aXecfvCOZX0XtIJnLg4/lxObcid21+45b3Jx7tnoUa4E57BYvr33U368/9bE39bIdyZ+fm0bISwlGVCWk72TcsJfXtymXoZm5Ij7s7tOSdXM5Pw59hYuURIeV1rud0kt3kYETRJ/D4Hggr86cZ2fZMwJ/xxzzDHHpxyytoJaOL7kUEiVEfMDRM4yfRTeqGV7U8TCTYI1MxN+4Zec8mGEydzxNicFIU895cGpFBK3ruMQfu1nkuYhRKQwZpzSH2FEAciTmrVwkYoaXwTJpZVKCrQQJOTEzoIQqCx6b2gBQrqxgVmKOL7U+EITm2SotH0UcsJfdMesm9s/tElCsOS7B/T4AIk6aIDXj8QvYYVEWEMpIyPD5vePKuePTUo3u+6kdEqFgwaCRvvsNxypqW+8j9dvVGctwU1H+jrnnPxZa0Wt5NOxmr0FN1xcu98z78vJf9cvIaPhYx3TIPQUnpIkWTEoSQ1ayYGRjNaVzxDXV9n97C9jg/HrEgI8pRiT+OfWk7hYQm9MHF8/lO6pVNrlJVLlodLuQBFkGizeehmddOiEdbZXHpvps/0wyifNrhuvO7zLf+ban3L51f/KpVd/Ez1i1t9vbVHavYtFsDNke5q1s1gh8Tt7RcrEw45cebFf68X05SkNtfvvclY5kvle9yNatkMgPC6eMlGM9u45n1KgvNnrmuey/lkIP8CLVyRferJH8J88Lwi84YT/dryOwVCWIXU12RxSCck3Kp/h+cy1/6ett/n23k8nqmZWG4LPvegKmit6YSqn/HyOv7Gyw1/9WsLdxF1PL2xtY+klReSwmanki3uuIKCWbiMbrkhwxlskGFKo/TRhTvjnmGOOOT7lEFLN3vketSwvGujwOxd6hdBHmx3vLTeAqSjWuIUws3Gg8AJkqY49iWzsg0hjkN6R0wumhtTZAORhA7uZUBj3DUtiSB25ntYQ0QtAqkx5MIhI+RMf6DypXLwaFq2lS9nL5uWFsEgkYIaed27MQQ5E803cXiGo6Cjr8A+Xtg+DAaTbquJvesQxqKiQhq6wnwzO8qtx+0LIoiObz0J3w15c1XHm96217CZNmtn25AZzw57Nd5acVHdh81rWsXbQm7dQ7T2M9umuXC7+Xok8Ql9zv+7+Vrv/ftHRDjOi2ykvTZUekG9rbNKBIk4u648Td5yT1BJ6aiBdsnv2Mba/8jdI6tPJdX0lR6otciSpJQoG1zMOSkqEBpMaELKQvs8yx6+6TRZvvQrAvUufO5xMMQuEGCvrL23dYOGOiw6M9u9z+ZXfINy9e+h99btvA7DfuEDiHy6mWOXRqjgyXN56+GX9Ik2I9txgd7OPLDbr5+gGVVQa89hu5gqfeYRcCc6NnWs/CeTbBFDZul78+0KfU/+s+OxV1+k/uwAvXR19Iufu/Oe8lanj6oQQfK78FF+tPI9A8G7nBr+78z06E7wG1tMtYPL8fo7cqX8j2eZGcheLZcn6LCUprcryUP+NrdXHeW6vg7QWWd5Bn/kQ+PTL+WFO+OeYY4455pgBh4h5Opsz/kgcU1pvrXWbdQSZqyg13DJOepY/TVw84il3+FHaEVyhjkf4cy+FIbP3Nk3AGx/JNwDtuwSEEZ4AEz8uXDRfalO0dqZnBjcvL4TrmDtz5iGPMVK5fTGpVXsAkfIHxwgmED/IbASUBOHk/FLIkcZPQggW/SpKCOK+QoiUAjum2NXNyJnKVCj9Hf7EHH1+v5l2KB2YPVZSDJW07y1cxEhN2N0j2r9f/D3MuvvdM48OXHtSCmpln63qOVLl48XNguDmkXxxZbREOLWGdtplN2my2d1jK96nmbZpmUEjyCj0SFN3/Vtr8Y7pZaDVeGVIb4Ri+vVIKdBCkk+l9GT90xP+5Y9+gjQpzcoqe5nE/DhI/OGEXyZd1t77NgDrjcs0wwY6bnHptd+idu/t3huNoX7/HcCRqFHYb+Rz/NOZuH2ciPbuIqwh9ssDppgIwdYZ1+U/d+dd6qo3jvTYATm/7uxx5r3vcOb979K4/TrRzm3kMdVjYR/hL2/fRGT3jsU+p/5pipMH8eIVyV/7iqIajSH8sVv3+Qnz+8PwRHiJX6h9Hi0Ut+N1fmv7O+ylwwvrxhruxi7ucNL8fo6aKuMJTYrh5ZZTED3Vdvf8g3L+HJ3yEipc4GrL3Udk6Lbn4p8Bwj+P5ZtjjjnmmGN6aN+5pucO6SZxOdrH7GK77rHKZsWP8NOUz5gfofAgggoiKEG3BeFsmdbjYNMYWZ7u4eU4yCMRhZTHKrwIIcGPsPtbh5uXNkHo6b0IhNTghdj2HoLJ85gHkUfzJdagpQQrCvk8iKzDP8KksOjwz0b4A+mhpCLFIAVTPURbmxUf6EXyjXN6LqmAso7YS1p42bHKxwFcuNRhDJAPKJyn8607yvy+sZaOiVkNGnS7SW/b1fBRBqs8dhcuUl9/n/L992ivnoM0wb/tSF/n3JOHPhMFmlIpYKPxCCvrb1O7/x7N+rkiki+pLQ90nay1bCdNrLUoIfGFpqpKlIKAQHo0kw63O5uUVK9IEWiJ1tCJncGjp6YsSI1AXrwZhSRJ0UrgTYjjOwhPS7qtFLx+475sjn9Ct14mHeoZ2Xbd/eN9R+ib4z8g11/94Ht43SbdoMoHF78MwGMffYfa5oece/fbhM1N7l76PJWt6+i4TeJF7DVGZ8Lt18+xcv1HrrgxxXf9OFE6ML/fj+2Vx1i5/iOi/fuc4yzb7FNXlWKOHFwh68Ibv4MXH/bpiL2IbmmBTrTA9spjdMqL022UNYR7rsBmpEKalNL2LfYXLlJVZedUj2E33aeuD/92fdS9y27a5Mnw0sSYvIPYT1tspXsIYO2IcXUX/FX+Uv2rfGvn+2yle/y3re9wOVijbbq0bIe26dAyXTo2I+BIFvv26TgIIVjWdW7F6+yk7jx+ccMVDfYawwk/wPbK47yw8VPeLrn7yIKqUlVHHy36pODhvfLmmGOOOeZ46CCUPxCh14vkO+ZDaC4XP+ocv0lnmjHvh5ASWV7CJodj044Fa9x8/WlD6kJlIcaYkk21KL88PLXAipmVCiIoD1ULTLUdfdF8LvPdZv+zCCEykm2HEwihEELNnL7gSw9faBISpJRTCQSMtUVEXWpTVKZMGAUhBHVdIrWm6CS7EQI5srPcn2FvhCxy1I8zv99M21RUyJJXQwtVRBIqKUdqDTYbLpM+uvMuWIt/7wNk0iUNy8SLhz1ChIBq2Wdz0eWcVzeuIZMuQWvLfZf6YNcwtilaKC5GKzxaXuNqZY1LpVWW/TpVXaLqlVBCFtsKTtYf+ZpWO0FLgXdM80Kl3HjGqFpPnDrvADVjYcHTklw40S4v9ub49yfP8Vc3PkRaQztq0MrUAcdFfg71d/jLm9dp3HsbC3x05WtIz6mTPnzs57l//jMALN56lQtv/C4Lt53kf3v56lgjROdZ4KPSbkFcH1bkIzMHZ78BUi9id9Gd/1/ablFTZT5berL43Stt3+LSa7+JF7foRA3Wzz3PXuNCoc7x4hbl7Zss3n6Vc+/8wdTbFLS2UCYhlZrtZeeTUNl0sn4pBAv5HH86OMe/n7b5vZ0f8K2d7/On+6/ys9Y7s+wKAG5m7vxLunGs+fZFXeNX619lQVVp2Q6vt6/xfvcmt+N1ttK9guwL4Mnw0kCk6SQsZXP8AGV8LrZapMqnPUY9tLP8KM82Y1R2kf9ZkPPDvMM/xxxzzDHHLNCem5tOE9ftN4mb6z8mhNKZBLwLRxELmKQXUXeU9YcVUD426ZyI34G1JhuKfgBGQEojlDqZdQ2Zie9F8s3ujzALrLUkO+vYRIPwCKTHXtLCVwIhBIm1ICxauql5hBhqUiiEcN+jM1uxQQpBWYfc7+7gKUW3O13BQGbkL7GGigqKjv8olHSILzVdmxAIzzkASOcOL4cQyf4OfxxWiyJHklp8b/b5fWMNsUlYKy0RKA9PKLcteJnaYDjb3a6dd0S1s4/evFW483fWDju05wg8RWvlPJ1rJYK4yeKtVxDWONO4aFC5kNgUXygWvMrQAmIkfco6pJl2qPa5eJcCTTeN8ZU6duFRCoGSgtSYAfO/HMYYQn/2+8OAMaOQtKpnqWxdp7xzi84YcgIuDhFgd/nRmdc7Cgdn+GXcZu29PwZgY+1ZdsqraCFIsRhruX/xJTqlBdbe/SMqfTF726tPjF+RkOzX16htfEB5+ybt6sPphC7TuChINGuHCT84877a+vs8fvcD/sbF/xWTqdqq6++z9s4fIq2hWT3DR0/+wsD8uExj/KZLqjj7/ncJWlvobnOo78FB5NvUriyzt3CJhbtvUtm6zh3rzEsXVI37yTabyY5zx7eWN9sf8MPmm8Q2ccUrLD9tvs05b5lVb0plAXCjm8n5p3Dnn4SyiviV+ld4vX2NxKaE0icSAaEMiKRPKAMC4U+8dx7Ecp8a4PHEQ5AVbMYUDVIvJKlf5PM76/y4VuJqeLopCw8L5h3+OeaYY445poYQ0km1cwMey7EN+4pl++FQk7dpYE16LKWB8CNEVMd2Tsi8L03cTPwDIPxCSDczfwLrEtoHdcBsLzdmnHFsQ+jALWvauMU0xlqDzWZeA+m5nPuchCUWgZN9Smszk8LhjzFCeUfyZIhUgLUWrZxh4CRYIDfoT21KMEXBKZAeFRXRTl1nSynpCP+ItnLeJYQDhn3GEMwoLQfYS9pUdZmadoQj0gFJZnDYP15wEImV7C1edp/58BX8ux8APXf+UaiUfLYz07/ceK4dLaIPzMEnJiWUo69hIQQNXSY5YN4X+JrQ1wT+8XtYSkmkPJxUAO5vUkh8b/ZHZxf12Nuv087xq26rkJrnxokngYOE/8y1P0XHLTphnfsXP0uaWnxfDaQW7C5d5oNn/xKx79QBzeoZutFk+XWzns/xP7zGfdHObQSWblAlCYaPdTVrZ+mEdZRJitSJhduvce7t30daw+7iI1x/+pcOmcUZ5dGurrB95knamZQ/ytQEE7crM0tsV1Zo1s9ipMbrNgmaTrq+qPNovl02k11+c/s7/Mn+q8Q2YUU3+MuNn+PR4DwW+MPdn9CdYJxXbLO13Mo6/OeOML8/DL70eLH0OJ8rP8Wz0aM8Gp7nnL/Mgq4RycmF0mFY7uvwP7frZP37I+b3+7G98hh/9d4u//cPtqiLB6DCewgwJ/xzzDHHHHPMBOGXwCR9nd8TIvxeNLMMu4BJj92Zl+U6YIbH0s2KNHaFEPVgon6EXzqZ4sKBkQ0gG5dQsx/n3Lgv7U5+L2DjDjKqOCNI8mg+2yNhxqkmpJTZw0tmVDjqe8xo2gcQSs9JSoVhWhv2fIzCWvdQOw1qXgmTGc0J4eKsRnkE9kv6uwPz+2Lm+f3UGoy1LPnVQjobSr8oNuTjBcOKDxZonnFxW8HtdxDWkFSXSKvj53u1lsTnnwJAZoWkTnX50O5NrSGacA6X+9QRxfKVoF7xj2xe2I8imm/IbShODb4WeDMY9hXbKAVKOOUAwH7dEf5o985Yr4nqxvsILK3ycuHdcBIoZvjjJrX771Jffw+L4NZjP4eVGmstvlb43mBqQae8xLXnf517Fz7D7Ue/OtW6cgIW7d1FHnHE57SRx/E1h8j5CwjB1hlX3GrceZOVD3/AmWt/igA2zzzFjce/iZ1Q8Nspu+MebNyYKpMmN+xrVVawUhfjBpVN5y6fE/5b8X1+Y+uPuJds4QnNl8rP8iv1r7Kgq3y5/CwVGbFnWvzp/qtTrNU533dsjCc0K32k+jThtXcRM54fZRly2V/jvF7iqfU8YWFyBPF+4zyJV8JLOp8IQ8mTwJzwzzHHHHPMMROE9t3Tf26Ud1Kxc9qbOuqqH67wYJzx3jEgwoorZnQPmy7NvE1p7Ej4CRhsTQNZW0VMawQ1BkJpVzjpf/AyCUL5zhxwlmVJ5UwAp32IS7tILyzi9LRQSCGxWLRSzj1eWCRM0eHXHCXmMZAevtSkmWfANOjfgnGGff0oKWdEl0dVaSVG8j6Xm+6IcE7409Sg1ezz+3tJi5pXoqp714oWqrjspBCjEwosdBcvYLxeR2xSdz+Hv7xKO+oZWI4qEnhi/DnmS4+qjmgdKCLVKwH+Mef3i23w5NDc8DSxhL6e6JmXmPRw9KKSzpM026+d0mI22x4XJobDULv/PuDmjk8SqQ4x0h33s5mUf/3887QrK86/QLhzS0t5yM8g9SLWL7xEN2pMta44rNINqghrC2L9sKGcKS32R8j5c2wvP4YRirC5wdLNlwG4d/Gz3Ln85akMCXcqbl68tneHZjsZe4uRaVz4XbQqrsueJzRUtj4CnOEcuJhAg+Wif4a/2vgGT0eXi465Lz1+rvoZBPBu5wbvdcYrLay1vNNxy1/zlmY2+zsKSts3efSn/4lHf/J/4LW2p/6cEIJv1j7LXzNraCydsDZQIB39QcnegjOb/CRERp4E5oR/jjnmmGOOmSCU5x5u0m5mlHdCHf5suTNLseO2k/MH5cnvHbd+qRHlRewQl+WZYVKEf3xvg2khpDq2YV+xLL80QNJtmiC8o8keZVAeVAuMgM0cvGXfeIiWvWg+XzkzOSF6kn4hxnT45fQ56QMfE5KyCkmIQYwLy+vVA4QUGGuQQrhEgSngSU1Nl2jnhF8P76q7FQg6JVfMaZcdUU5S14HNCX+uFhiHOLuulvzagHzWk9qZ4dkUKSViSEJBNjKM0orO2avF9++sjY5kG/wKgnbfe5PaoEw4sSlayCK5YBxquoy19khRZNMgT4Xoh8UZRvoTVATWWnaTFrFJBooGhXIg/5OQNGuO/I2S9evOHqW9u1hg9wTl/PkGxVk0nzQp7dJCYcyXmswMUgq0GhxFOCr2s65r6YiyfmMtu8146KjFcSHjDkFWdGlOMEU0Xsju0mUAp4h49Ousn39x6uSE3fIKVgj87h6VtDmW9Id79xBA7JdJs3n//caF4jXVbeFLj4v+Gcoy4uern+XPVz9HWR3+3TnjLfJC5K6/7+69zF46/DeuY7r8z90f8kbbjetc9scXQE4CMumw9u4fIazFi5tcev238do7kz/Yh/KW69KPiuMbhjwy8qjn5CcNc8I/xxxzzDHHbNA+KI2N2704vZPAEZ36bdxElhZORNIuoyooD5tMJ0Mfuj35Q+kJmP99HBB+yEBb7zhpA9k+mERGiZ1ZoizVXNHHmiKaL7Wumy0ApJvplwDjihxSHZmllFSAkK6wMDaT3VokAimcYZ8SauoOP0BFR2AdmVHCmWuNwo3H/xwfPPMrhcFbYsyAhH2ru8dmvHeo892P/aRNQ1eoqMFj6WXJAqkxjtQPSShIjUFlJLBz4WmskHTPPIqZIcbSXHgSIySJ8rHVwbjKxDiHfn+Ke0lZO6Ovtjn6NToOWopD/M0lIsiJKoJm2iGUznAyPnAf89WgPL4Xzzec8NfW38/ed3Yqg7dZkcv6rZDcuvqN4j6eGItWEq0kSgkUolAmHBU5uTpqN7WbGqQUJOkJjFsdgJvfh05UL4j1ONy/8BI7i5f56Km/wPbqdAWvHEZ5dDPjwjPpfQItR5L+3LAv7+4DJH6JVnkJQa/L/+ern+NvLPw8jwRrYxVlL5YeY0U3iG3CH+3+5FDB7G68yX/Z+jYfdu8gkXyp/CxXgsny+OPizLU/dVGQYZVO1MDrNrn02m/NRPpzf4j8PJsGzdoaFkHQ3kb3pVV8WjEn/HPMMcccc8wGlTn1xx3wTiCSr1iudlLsaU3eyMz6EIhoChnfNPAiRFjFdo9m3metxbZ23H75hBJ+tA9C9HkZ2COrOERWHJpUxLFJBxFWkH5UnANKSLTUpNYglXSz+wKUVG7uecyIgUtsOIJaBAiU56L1hBlLdEw2fy+FcEUJ5EyEv6wDQunRNl2kkmMLFKlfKiLZ8vl9X+XdfYOSklW/gbGGze4e3QP7u2sSlBAs+tVD16uWCl96hXGflof9BFJrkdJJ05P6Kht/7u+w+8IvTv1dAUypyvoX/iofPvuX0N7g+ZTYFD/f7xOghKLuVeic0jy4zKL5+glRkYgwxLk/R2oNXZOwEjSIVEBsB4+B1mLgEOfd5FFz/LX7zp1/Z+lk5fw5WhnxvHfhpYFc+DS1hJ5TyGglnaXHEfww+jFIrvZn/nySWAJvuLcC1iKTzpH9X3JTxFHu/AcRh1VuPvHz7I/Jeh8Ga0Eg6Cw4Uhpu3WKpEY4k/VE+v18dVMPsN5wUvbLl4vmEEFP9Bksh+bnqZ9BCcSfZ4JXWu9l2WV5uvstvbX+XfdOiKkv8auOrPB1dHrpcv7XFubf+Z+EvcBxU169Rv/8uFsHNq9/gw2d+eWbS77V38Du7WCEnjmT0w+igiO97mA0lTwrzWL455phjjjlmghAC4ZWwbCBPsPMkhEQEZczu/enl+d0mIqggRjgrz74NAlleIN3fxFrjZONTwqYxtrWDCMvIxrmZY+keFog+4z6rNCBmjuQroANH+pN4fNHApMiw4gpJhWmgT6g89tMWgfRQUmCFdZn1JkWOM8iTimwYHZhNgRJIj1B7bIsmxo45/m4KASkFqUmJVDDTvKsSippX5k5nkwg1tSw4TQbn95Msv34lqLPoV1nv7mTd/g4VHaGEZD9ps+LXKevhSo1QeYXM19MC0x7cbyaF0FfFJtrwaOMzYvEsw6znEpsSyemvl6oXcq8rSUyKOmIU5ygomc3bpxaps8jF1FAv+2PHRPaSFnWvTMMrY7FsxoNdQyXlgHKmN8ffJdxfp93XyfVbW4TNDawQRf77SWP9/AvsLD96yAzQWovOkgiEEC6iMj6imWqGnFxFe/cob9+cqTNeeMMqQTs+cD1by4U3fpdKZrxmhcQoDyM9jNKuox5WuXfpCyNVEoVh3wxk8ShIs7GfZOkCfPBjvPUbeEqy1AhZ3+7QbCeUQu1OMWsLwt9/XgDsLVxk+cZPKG3dQJgUO4PCrqbKfLn8HN/e+yk/br7Foq7xeusaN2K3riv+Ob5SeW6s+ejyRz+htnGN0s5trj3/6yNTDSZBdZucef87AKyfe76IbPzw6V/m0uu/RdDa5tJrv82Hz/zK2Ln8XM7fqqxiZyxM79fPu3Ny68bkiMlPOOYd/jnmmGOOOWaG8KOeBP8EIcuLrjM7paTeJh1EqXFi8+sAIqy679dtT35zvh2dpiP7tWXUyhVkdHKO2g8cOlNwpHHm0K+PbMwopJxo3GfT2Jk/+pHzItB+0a3Lo/m0FCjlUqX1FB1+sg7/Ubp+SihKKsQIM9I5H8DgOvwi6/AHUzr096OiQ6QQGOkiB6cZUU7M4Px+bFI8odFCESqfc+ESl0tnqOoSu3GTrXgfT2oW/NEPzaH0i/EFJQ8PbafW4B0hjm5aWGunijTMEcqAkgppnYKsX0mBFoK85+r8CwTemAjEThqjhGTFr7voPum5DPS+A6qU68QWygEhevF824NmdrlZ3379/IBJ4olCyCFk333XfiWDrwdHEY6KfI6/tv4eXnt36s/FaYqnBf6Q/R/t3i3IPoCwBpV08Lp7BK0tor171O+/x6VX/9vQbrHstoqIu0nz+8eFMRapIF1cwwqJ6uwjm9t4WrFUDwg8VXT6dXcfHbewQhS+HTna5SViL0KZhGhCrOMwXA3Oc9lfw2L51s73uRHfQyH5auV5vlH9zFiyL0xCedMpC3TS5sKb/wMxgyKvgLWsvffH6KRDu7TI/QufKV5K/YgPn/5lOmEdr7ufdfqHny/CJIXSYW9GxQX0zsnyzq2xaRmfBsw7/HPMMcccc8wO7YEXun+eJIIyIlrA7q8j9HjXeZt0Qflu7v4EIZRGlBcwmzcnOv9ba7CtbZAatfwIorI4kyrgYYQQErwI29x2/67U0Tv8gPTLpLujnchJOs4UMPcJ8CPs3jaCnoO8Um5+PBUuNg5rxqcGSOVk/UeUIld0iJAWO+ZZ1lgnf89N7o5C+EvKzaO3kjgbDbDoCZ3+xBhqfs+vIrEpdd1LhBBCUNERJRWw45W539mmoiOiMRGRXubYbq3NimcHtsEyVs5+HFhrEYipIw3BjVE0vDI7rdnl4f3IjfVU/zUrQGtFt5OAdoRTazFyft9ay37aZi1YLBQUgdRoqYhtip8lD6isaOWIn9u/zdpZqpsfUtq5zcb5F/IFUlsflPNbC7vNmFKkpjaGPApSY1BK4Kne8dfqsFP/UbBfP8/yjZ9S3r7J1Z/8R7pBhWb9HPv1czRra6QjChtxYqlEXhZB6cYi8q1bvPUKAFsrj3P3kS8i0xhpYvfPNEamXVY/+AF+Z5dHXv1Nrj/1SwPjC8GmKxa0S4sj139SMAZ8TyG0Jl44i79xE3/9Bu1yA08rFmsBdzdbJElKLe/ulxYPR/0Jwf7CRRp336KydZ3mGKJb2rpBuL/OxrnnihQBIQRfqTzP3a1NmqZNXVX4ZvUlFvTkInV56wbKJMRehLCWsLnB2nvf5uZjf25qhRJA/e5bVLY+wgjJzce+ccgHKPVLfPjML3Pptd8maG9z6bXf4vaVr6C7Tfz2NkFrG7+1jdfZIx+U2Z8iju8gWpUVUuWhkg7h/kYh8f80Yk7455hjjjnmmBlCeVlH9mR/RoQQyOoiaXPTRduN6SzbbhMR1Vzh4YQhoxpm587YbbBJF9veQUQNVOMsYgYDs4cdMiiR7q2DUQgvON5x9gLn9G3t0JlQm3SQ5V6hxMU+OiKmRc9tXyuJFW7mHGHGmkUKIbPRgOlVGv0IpIdWiqSbMnIkwGbdcCiKE7NCCkldl9lN7iOUxJrx36uY3+8jn8ZaQnVYDi+FpOFVqOoIMSGyQAvn1J9iUIIioUDk6xRiYiHiqIhtipYab0bzz7IO8bNowzKzj8/sJ226JkEADX/w2vW0wLbd3s4Jp5TDv/9e2qKiIhb9HmHyhCYQmq5J8GVO+KVTDlhbPHznMvJo945jhFIS7K/jt3cwQrG36GLY4jRFKeEM9U6xnpikzrBP9RUVtOw59R/nDGhVV7nzyBepbnxAtHcXv7OHf/ctGnffcokP5SU2zzw9IPfP0xHCQA8YCCop8No7RR79xtpzGO1jhhi3tiqrXHzjdwmbG1x67bf46KlfpFV1CQnhppvdPu3uPkBqrEs9AOLF8/gbN/E2PqJ96VnAFQNKoWa3GRPtDpfz59hrXHCEf/M6dx/50lCyXd78iAtvfQthLVZqNteeKV4LpMev1L/Cze49Hg3PT4zDzFHduAbA7tKj7C5e4tLr/53a+vu0S4u9gtUEeO1dznzwPQDuX/wc3dLC0Pf1SP9vEbR3uPjmt4a/T/nsLVygc0AJMRWkzIpu1ylt3/xUE/5PdhtijjnmmGOOjwd+hKwsnQrZFkEFUapjO6Nln9YaMAmyvHA6Wfd+CRFUsN0m1qTYpIPt7GNa25j9DczeOrbbRNbXUCuPfKrIPpAZ94E1ybG9CIT2QWYjAgdgrcu771dSCO31SL50zveJNTQqAYGvHHm1TE6H0F6f8eBs8KVHpDQxo1v8xliUymTb4miEH6Dshe6zNmXS1ubz+17G+nLJ+DiyrISa6C3g5/vZOGLZn1BgrEUhUPp0CH/uQaCnJB05AulRU9HYZIJhSK1hq7uHQLAaNBypPNDCVqr3/a2FYEQcX2xSjLWsBo2BYyCEoKwjYts3UiJc/GL/nzqlBVIdoExCuO9c2XN3/r2Fi5is2BiPM607QaSmZ9iXQ+mTcepHCDbXnuXDZ/8Sb33+f+P6k7/IxtlnaUcNBBDur7P23rcHzODydIRAuyKE1GAy1c7irdcQOCl3t9QY/Z0y4tisnkGlXS6+/t8pbzqH+7zD36yffvycxeJlKpl4ycXreRs3B+Z4SoHGQrEPWiMI/379HEYoVzQZklsf7t7j/Nv/E5Ete/nGT5yxYR+qqsST0SNTk31hEiqZnH9n6TKt2lluX/4yACvXf1gUX8bCGtbe/UOkSWhWz7DRV4QYhtQvcf2ZX6FVXib2K+zVz7Nx9hluX/kKHzzzK7z92f+Vtz//t7k1o8KgH/tZlF+5bzTk04g54Z9jjjnmmGNmCCFPjWwLIVwxATF69jtugx+dGtF25n2LYAy2vePGB6REhFVkYw21chl15ipy4dyR59sfZgjlOdO7pIvwDuc6zwTt9zwBDiLputf9vnVIz0XzZVFtCklqU7SWCERPfj2BxArlH1nS70lFpEMSm46UM1ucYV+SRwgekfCHMqCsIxJpJo6Rxqmb31cqN+wzeFLhi+Odg0ooPOmRWoNAOPuDjOCZ1CA0A13fk0RiUiLpI49wL6l5ZYy1mCkLO+20y068T90r80jpDEt+DV9qugcd9aUAIUiMQQlBMMK/YC9psZCpKA4iUv6hgpOn5WAcmhA0s25zaef2oJx/OZPzZ/8vikuniH7DvhwHifaJrEd57C9c5O7lL3Ltxb/G25/9W+xk5oSr175XkOC80KG1REqBkpLUuOz2+r23AdfdnwSjA64/9UvsNS4gTcqFt77Fwo2X8ZrbWATN6ul3+LGid93WV7FKI7st1N5G8ZbA10TKFT9gNOG3yqNZd9ucz7Dn8FtbXHzzd5EmYa9+nk7UQCUdlm/89FibX96+iUpjYr9UKA+2zzzJ5pmnEMDaO3+I39oau4zFm69Q2r1LKjW3rv7cxHs4uCjCD57/dd797N/ko6d/ibuXv8TWmado1c6S+tGRiX6OfBSgtHsXcUrJHw8D5oR/jjnmmGOOhw4irCCiOrY9PB/Xxm1k1DhVsi1KddTqo+izT6DXnkStPYlefRTVWENWlpDh4YizTw3yOD1xDIf+DEJIhF8eWryxSceNhvRFGAqlnRzfpCghCyIKeePRgpBuRn/cepV3LCOm5VIZ35fsd4bnZFsLSghSm6KQR56tlkJQ90pYmU40R0uNIezrNic2RaNmlsMPQ6R8YpuilERICmKaWtBCjpS0HxepNURDpNjToKQCQuVP7PIba9mO90lsyrlwmQvRCpHy8aUmUgFdM3hu5vLxTteZFWp1eP820w6B9FjxG8Pjy6TO1Cm9tny/cqBYTibrL+3cItq9g9dtkiqviH1LkhStBL5W2HHZjcfEMMM+cEUtLRXpKXqapX6Ju5e/hJGa0t5dqpnKITWGKOjdf3IDwcadN5EmoV1amNpd3yrNR0/8AttLjyKsZeWD7wPQqSwNHQU4Sbh9S+8akoq44bbbW+8zHRSwYHaQNiVV/iFTxX7s5fF8mz3Crzv7XHz9d1BJh1Z5mRtP/Dx3H/kiAAu3X58p2/4gquvXANhdvDxAsu888qVMPRFz4c1vHVISeO1dGnfe4Pyb/4OVj34EwN3LXxrrvP8gEYc1Yr+CsIbSzp2Pe3NODXPCP8ccc8wxx0MHISSyugxY7AEXYGsSQCBKp+uEL6RCluqIoIzQ/ifejG8WCOU5Ei7ViRRVRBANd8xPY2RUH/yb9hzpz457KHXWac9c5A0gxeTu0DFJcEkHNMo+SlnaneFaaiGdQ78WaqoM+VEoq5BAeSRjXAItjpD1z+8nNiFU/kxxgKMQSC+LonQmdnntIU0t/ik69ANTy4oPQktFwyuPJPypNbTTLtvxHmUV8Uh0hpWgPmDSV9URyYHutZISoSFOUsJAHWoiptbQSWNWgwbBiOvDlx6e0MSmd0xz5UA/bc87taXdu9Tvu2z0vYVHCrO2buJk9v2mdaeBNM0N+w4f6+CEnPrHIfHLrJ97HoDVD39Amrjkg/5zz1cS0oSF268DsLH27GwdXim59dg32DzzdPGn047jg14kn+4rmsVLrqDjbQxKyStN191vlpfHfre9BUf4o927yLiNTDpcfON38Lr7dMI6Hz31F5ySonGevfp5hDWsfPiDI22/MGkh2d9dvDz4opTceOLPE/sV/PYu597+fSobH3Dm/e/y6I//I1d/8h85+/53qW5+iLCWnaUrbK9MH8sIrmC33x5eeD02hGC/kbn1f4pl/X92nl7mmGOOOeb4RKHo8ncOdPm7LUfC/aNlgc8xHYRfcp32k1BR6AAQAxJna1LXqfcH5dBCSNB+VtgBX7loPotFCukoj1CTCf0xCX+kAqp+SLmksNaRv0OrKCL5jtchDKRHVYV07WhJaZpkhKyP8KfGEB1z3TmcSsDJxrWShTiif/b4pJFa40jdMUwhqzpCCUkr7bCftNmO99nq7rHZ3WM/aWOsYTVY4GK0Urjo9yPMxgn6xwKkFGgh0UoS6mHd/TY1r0TdG30PUkJSUgFxX6FLK4lWgqTvXOpECyQ6QJqE+l0nU8/l/OC6w2Gge7P0pyTrT0xm2KcOk0ytT6/Q0I+NteeI/RJed5/FG6/geRK/b/8rJVnY/gAvbpJ4EbtLj45Z2ggIwZ3LX+Lepc8RlxfYWZ2NfB4FeSRf/76NF3PCf3NAieTv3gVgNxpvIJcEFdqlBQSW6uaHXHjzWwStLWKvxPWnf2kgdeDuI1/AIqhtfHCkKL9SLuf3IlrV1UOvp17IR0/+eYzUVLZvcuGt32Phzhv4nV1sNrZy7+Jnufbcr83s6A+QpIY0NaQnOFbSjyKeb/vmqSz/YcCc8M8xxxxzzPFQoujyW1OQP8hc3SsLWXzYHKcF4YfOcO+Ykn7AqQW0V3TtgSyOL+jF8fW/34sgO+Z599dkLv8Kcn3s+HVK5bqpR5T1KyGp6TLCszSqPp3YDHY5hRMaGGtGdnmnhRCCml8m7VMyHMTB+X1wZNw/obEWT2i0kE6xoPuIpWVgnSeJJPNpOGqHH1xhpqZLGMAXmiW/xvlomSuls1wtr3G1fJ61cHHk2EOoPALh0TGD6grfk2gt8YaoGxJjaOjyYJzfEJR0SNon6ddaUgo03eTAHH/mEi+wJDpkPzORS1KDkoLQk67YpcCmp0O9U2MHxkX6oaXsJTacIqzS3Lv0eQBW77xCVXQGDQQlnL33BgCbZ5/GHrWoJwSbF17k9pf/1ljDv5OCMZlqpI/oJrUVjPaRSQe104st1VuO8O+XlycWd3JZ/9n3v+tm45XP9ad/iSQY9LbplhbYWn0CgNUPvs+sOYu1TM6/d0DO349OeYmbj/0cRig6YY3NM0/z0ZO/wNuf/9/48Nm/xPr5F93s/xHG4IwFqQT2lFQm+7U1LBC0ttBdF/WZK6o+LZg/Lc0xxxxzzPHQQoRVRFQrZvlt0gHlI4JPmSv+QwjhR8hSY+Ks/FTQ3iHjPht3nIpjSHfXRfO5hzstXEa8wSARCGMzMj9Fh9+5zx15s0s6RCAoR5pqyafVSbA2m8nFSfphvEv+tKh6JbTQg87uGaw9PL/vuuMK74SiMb0iESFFC9fpz+e6T2t+P7EpvvRc1OIEjCrcSCG4XD3D4+VzXK2c41y4xJJfo+aViFQw8dgooSjr8NAcv1aS0FOHih1dk+BJTUlNTijxpUaIwa58KegVsHL0x8LtLl0uxlXixBL4Cq0USrpoxJmFzWkHhpxTB2EBb4iaAZxTvzxFdUE/dpYepVlZQZmE5Q9/OPBauH2LUmsDIxWbq0+e+racFFJjB0ZxAJCSZMEVdvwNlxogum10cwtwxn7dePy9K5f1C2swQvHRk78wMubu/oWXSKUm2r9fGENOhT45/87S5fHbs3iZt774d3j/M3+dO1e+zN7CpSJp4jiwxhWdTstGwngh7bJTVJSyLr+gF7v6acCc8M8xxxxzzPHQQsisy2+Mi8frthBR9ZAMfI6Th/BLyMbJuFc7476SSzvIYQ1ilHFT30OiFgotFbFJnYN8Jumf2H3JiwJTkJ1RKCmfUHp0bEyj4hMFHs1OgrHWFR+ydPKjOvT3I9KakgzomC4W191td1P22jHNToLnyYF4ONcdl8fqjvdDCYWvPBKbIpQEIUiN6zDrU3rwjW1KpCaPJFiTYnfvYTvNoa9rqaYqGoxCSYeHyGw51DQqh7etnXYpqWAqVUeQz/H3eTMEvibw1QCZ658j31m6Uvx7agylIIvJGxLrNw1k3HKpJmOQF7D0EDk/9Dn1n6ZzXw4huHHBdflLt99Cbd8tXip/+DIAG0tXMacQCXtaGDUW0y3i+dzsuM6+a1qqE1WrJOl4m8Z2xcXVWQQ3H/9ztGqj79epH7F+/kUAVj78IcKM9gvpR3n7FirtkoyQ8x/CKXTFjbVoKY7jwToRhax/62YhgPgU8f054Z9jjjnmmOPhhghrWZd/F0yKfAASzDlOHsIvQdajsUkXlIcY8dDunPqVi+aTEoUktokj2RY3HjAJUjklwBE7/DbpIuMOVa9EN03c/HDVR2lBq5s4J3ssSpwM4RdANYnZa7XYb8fEiUVryUIl5MxCxNmFMoE36NDvS/9E1AU5QumT2JSc96XWIuXpSfqttQRyimMZtxBhFRu3TmU7QumhhSQxg476ekjHO7WGui5NtVxPakLlDxj3CQGV0Bsgc92owfbyVbaXHqWVxfSlxmamdb1tOBTrNwk2xUoPMYEpJWmKUmJk0kR/JN6DwE64zO7KVQRQeeOPwVrU3ibBvWtY4O7y+Pz2hw5WIIdcQ/kcv964BSZFbzuX+LhxhtBXaC2GeocUEJIPnvtV3n/xr7KXxRqOw+baM8R+2Xkk3Hp1qk2vblwDYHfxkali9E4D1oJUp2scmadilHdukhrjxsc+RWODn55vMsccc8wxx6cSrsu/5Oa//RARzuX8n0h4fcZ9SceR/VFdOuW5Dr1JUFnGfWxSpJBI7FTJAUJmxn5H6PDbuI3t7GK7TcrKRQYaa/E9xULFyfyFBCscKTsJwq9sQs33qIWKxXrI2lLE2YUS9YrvTNsOdF+n7Y7PgkB6YB3BE0CSWDx12KX+JGCtRSCmMuyzcQfCCihvUCVyQgikTyA9OmZ8Dvcscv4cZRkOFBKAw2ROCG499g1uPd4zNIsTFwnoHTCtmymaL02c2/+EIkFqyPwhRh9o/wE49YMbLbDA7tUvYaXG27yFf+c9wg9+BkBz8RKt4OGIdJsGFkAMl4en1SWMFyDTGL1zD2/LEf6kfgatJZXAG/R7GILEL9GNGtNti9Tcu/Q5ABZv/AzVHa6YKWAM1VHu/A8Swp7KPagfrcoKRmp03Cbc33BFrjHXwycNc8I/xxxzzDHHQw8R1RClOrK0cCIxcXM8eDgDQDfHb5OuO6ajnuKUHojmC6TvZtbzmfxp59aVh52xw2+7TWy3iaydBeUTIZ2s3ziimUu9vYx8uUi+4z9OibTLxbNnWSlHeD6uuzzmeXPq7vgM8KTKhhQcQUnSdKhp3TgYawc62qOQ2BQtJ3sQ2DQGpVCVpSy1Y3+m7ZkGUggqujTgqD8Ms8j5cwTKO0TRCzIXjyZzSeoy6PsvES2ctn9q2m0TZ7o5gS2lZnL0oq/lA3HqT5IUrQWqWqd15TMAlN/4Y8IbbwKwc/GFkcaWDyNSY5wKaJg+XIieW//6R0WHP2k46XwYagROaXNS2Fl6lFZ52XkkfPTjse8t7dxCJR0SHdKsnTmxbTgKTt00UqrCS6O040YsPkWefXPCP8ccc8wxx8MPIRVq8YKb55/jkwnlO9KfdAGBCEbLol00X+Ci+4BQewgEGgVYhJquoy60DxNIXD9sZw+bdlFLF5GNNYT20MZQ9aIBF/daOWCxGpKSEkj/ZNyc0y7KL1EW6pCB3KHttBYBx4qzGwZPaDcLLy1C4vb5lHJ+Yw17SYvteJ+9pD2RPDtzwMkeBLbbdCadfglZboC1xXlxkiipAIsZSyZnkfPnCDJTwoP7IwwdmR/WNc8TKYIDrvm5ed60hFcYk5lbOtvLUbB2tGFfse4HJG/uJpbIc4qW5pWXSIMyqr2HMAlJbYV0YQ3E6ScGnBSGRfL1Iyf84UdvIOMOViqS7Hcu8BShr+l2T3CWQgjuPvJFABp336a8eX3kW2sPg5wfgMw49JQPej7HX92+hZZzl/455phjjjnmeOAQfuQI3ByfSAghEEHFdWg9f+T8fvF+Pyo6/HkXvTBmm1JC786X6R6WTWsHawxq8RKyuoKQEhGUsWlMWUVYa4v5aZEZqCXGnEiX3VoDQiKkoiz9iXPasU3RUp+YQ38OT2o0khSDEhKpJhv2pdawEzfZiZsEwuNSaZWGV6aZjjeKS2xKKH3kmIdqay0kCbK84M6fsOJGeiZJkY+AQHl40huakgBHk/MD+NLDP2DcB47MRYEe6sQepwZPC4IDXXcppJt0mSGaz2p/bFqFKy6AN0G+rLVAnbJTv8Ud8zBLMkB7NJ/8cvF66/KLaC1R4sGMF5wEhkXy9SNecoRftXYASGrLbhQJd58pR5rUmBPluq3aGbaXHkVgufDmt1i88bPDYx/WUNn4AMiSIz4mGGtRCGd6KGYaaJkZxRz/3h0ejJ7lwWFO+OeYY4455phjjgcC4YcgBMIvTSzeCO3jHPoyp37hzPsQwhGYaTCloZ1pboGQqOVLyMpi3/aWwKREKiCU3tDO+4mY5sUd0D4iKBOq4R3hfrjueC+//qQkzkrIwqlfK4FCjuxMJjZlO95nN25RUiGPlM5wuXyWBa/CglfFWIsZYxaXGEMkJxTwko4rDmW+HUIqZGUBm3ROXNbtC00o/ZHqiqPI+cGNC5RVcGjMQQgohcPJXJJYSr53iCTOFM1nUxASqwOskIyyOE9Tg9KTlRxKSoR27z8tpKlBK0nQF2HXWXuC9rkn6KxeoXP2KkplRY9jxG0+SAyN5Ot/vbyA6UudSeqD0vnIV2hPjjfvOwJuX/06W6tPIIDV6z/k3Nu/j+iLTS3t3EYnHRIdDMRGPmhYYxHKxWRK5KmOc3TDOrFfQlpDo7l5auv5ODAn/HPMMcccc8wxxwOB0AF4ITKqTX6z8goJp4vm071u8LQke8L7rLWY5iZC+6iVRw4nQGgfF7snqOoSbTNoGCfgWHFwxXYkXVcE8UJ84RMwXtafmJSorztu99cxze1jbwdAlDn1a+0I3jApdyvtsJe0qOoSl0tnuFxape6VCy+Dsg4pq5Bm2hmzJos/gTzbuIUo1dx5k0FENdDhxKi5WSGEoKqjkYWWo8j5c0QqGFr8iHyFd4DMWetO+4NyfreRM0TzmRQrFVaHWTzlCMJvwFfKSabHQEqBFpIZxAUzI04sgafQ/QRZCPZe+EV2P/srLnlDCDyljhq+8cAxKpKvgBBFPB84h/5+KDXZ7+FI2yUVt698ldtXvoIVgtrGNR559b/htXcBqK5fA3Du/x+TnB96ChStRSZUOcUTUAj2667LX9u7f3rr+RgwJ/xzzDHHHHPMMceDgfYRYdnJ9SdAKA1KYU2CJ103W4KTvk/7ACrd/PKwrpC1BtvcQHghavkRZHjY+Vt4gYsATBMqOgLb66an1iBPyKEfk7giiPKQSlNRwdgOf2oNpYwEu+2Rbq65e/zYOl96WAtKCDwpDxFBYy2ttMtasMSlaJWaV0IeOB5KSBb9KrFJh+771BqUGG/YZ60Ba5BRfeDvQgfI8sKpRPRFynfT7ge2+ahy/hy+9JBCHiL9SknKoUc36f09Tp1pXX8cXz+mjuYziSuaCZUVz0YUMow9NDow8nt4kvQUGX9qDFEw+XryTzmi7UQxIpKvH/kcPxzu8AOEmXnjSZr3ASAEW2ee4sOnf5nECwmbm1x+5Tcobd2gmsn5dz5Od37AWHc/UVK6ZJRTNmws5vh37p3qeh405oR/jjnmmGOOOeZ4IBDaRy1cRATlyW+WmkxDjBKKQGqkxXWbpuyqu2i+w3JmR/a3EEEVtXx59PYoH6E9SLtEysfvi25LbXoikXzWpCCl8zRQCpQiyswJxz3cFmZ3JgGlEOUlbHcfO4VD/jh4UjuzPi0ph4cJ+X7apqIiFrzK2Pn7qo4IpXdIFQFTGvZ1WwgvGhrDKUt1J1dPj/ddDyKU7hgfVFccVc6fI5AentB0hxybKNBIJElGYOM+07phUGo6WbMwqevuA1Z5zsBvCKy1LhFiCvhTrvsoSIyLuBxV6OiH1jMkFXyMGBfJ1494+aIz6ys3MNHhwqOvJUoLzCmNU7RqZ7n23K879/6kw6U3fgedtEl1QLO2dirrnBbWgFbOtE8hOHm7zkE06+77Rq0daO+d8toeHOaEf4455phjjjnmeGAQXjD5TQDKQ2jtCC2wEtSpKN8R/pk6/HLAqd9ag93fRAQV1NLFsWqDwmgwifGkpqoj2hkZTLIu9bE7/EnHSdb9ECE1QnqESDx52OjNrdcVGgrvAJOCVKj6KqKyhG1uHYuU+UKjpER7gkppcMY+tYbUpKwE9YmjDJ7UNLwq7XQI4TcpntBj/Q9s3EaUFxDDVABBCRFWsN2TjejTUlFS4SFifhw5f77cUPlDDQEDrYgCRTc2WQZ9n2ndsGUJMWVemAXlsRfv0B5Bk4y1SCGHGvbtJ232k8GxCaXkqWWVdbopUagmpgXAg0sMOC5SY7NIvvHvM1GVra/+L+x84a8M3b9SCjTiVMcpkqDCh8/+CtvLjxV/2124NL1fyinBWFv4Syglp/VgPTISHdGMnI+L2PjodFf2APHJuGLmmGOOOeaYY44/UxBCZNF8jnxFKkBZEHL6Dj8HOvwF2Y9qqOVL040W+FEhh65o59ZvrSW1zqH/uNFNNukigkqP2HoBHoJI+QNRgDkcWVa9SL40QWSRh6pxziULZHO4R4GWCg9FOoSc7iYtal6Zqp683wBqXglvSMc8sSmRHl34sWkCUg0dswAX2ygrS5DGTvp/gqjocOC7H1fOn6OsQpJhYxoCSpGHscZl0MtB07qDkMpF842X9bvUh0RIQNAZJedPDUoz1LCvaxK6Jh4oHqmp1j07ktQgcQWmaS6n09qOk4YxJovkm0y30soCJhytfNL69H0LrNTcuvp1bl/+Mq3KChtrz57uCqfZJttTSCglTn2UI7WWW2ufYa9xBtv4eNUNJ4mHjvC/++67/P2///f5zGc+w9e+9jX+xb/4F3S7h6vDB2Gt5d/+23/LN7/5TV544QX+1t/6W/zkJz859L47d+7wj/7RP+Kll17ii1/8Iv/0n/5T9vY+PZKNOeaYY4455vi0QHhR0eEHHHHP4uumW4By7zVpRvY3EFEdtXRpYixgsQgdOPm4NUQqIJBOmp3a9EQi+TApou9BX+gAbEJVl4YSxMSm+MpDZcoCa5LiuwgvQDbWwBpsPM4wbzScU78mOUASuyZBIlj2a4dm9kchUj51XaKZDD7HGWsIxzj0227TjVkEo7vqIqwg/NKJ+Bb0I1Q+SijSrJDQTruUjyHnzxFID8HwGeTIV3ha0uwkBP4B07oDUDJ3qR9DfFJn2BcL8JSPkDrzDxj8TJKCN8Swr5v7ZhyIKdRq9ljAadDuplRKmnCYUeEQFPvgNFveJ4BJkXyzwNPDvUhOHEKwdfZpPnju1+iWFk5/fRNhEdn5qdUDCMszlt2FC1x/6qtQqk9+/ycEDxXh397e5u/+3b9LHMf863/9r/nH//gf8+///b/nn//zfz7xs//u3/07/tW/+lf8vb/39/g3/+bfsLKywj/4B/+A69evF++J45h/+A//IdeuXeNf/st/yT/7Z/+Mb3/72/yTf/JPTvNrzTHHHHPMMcccR4DQ3iBHsQbU9NnzQghQHjZNXGe/1EAtX5x+rACcU7/yIInxpaaiItqmi7X0uuxHhE2z+fu+4kP+nUPpup0Hjd4Sm/L/b+/OwyS7ysP+f89yt9p6m00jjUCSjSywsAAhIYQFKCwSYQ8G2QnCZpOJBFiEx8j6YfYAwQlLMMYsQgZso2CD4wcjg2MioxjrUUwIhgQbgyRsEAGkkWZ6qa6qe+85vz9OdU1Xd3V3dU/1dE/p/TzPgKa6lnurb9f0e867VPSy43dlGHfYpSuT6In9+NZ86A+wBalOVgX8C0WLqahGdZM73RNRFaXoPZ/3HtUtWVhT2UFXp9ZtzqhMhKpO40fcrT/VEbG2y3o1OBrHkc6/JDERVtuBaf1aK6ppaOyXxetfU0uj+dZt4OYL0BEdPJlOiW1KR7lVvSxK5wY27Gu7nMwkZKZ/TKHWCqs1xQgDz3YRJkLUK8MvqPTGE+7yHf6NRvJthtGaXX6620MpTHfBRCu1cs1q5Eo8WsEQSRknleP7l2rEbrrpJhYWFvjt3/5tJicnASjLkje/+c1cddVV7N+/unMlQLvd5kMf+hAvfvGL+eVf/mUAHvWoR3HZZZdxww038KY3vQmAL37xi3znO9/h5ptv5swzzwSg0Wjwkpe8hG984xs8/OEP3+5TFEIIIcSwuruq3nuUUnjnQvf+TVAmxuf3oup7Q82+3WD2+4BjUDaBogNRQj2qcDgPKfMjq9+PlqXId885NRGJiui4gtQcO2bv6R9np449Zolu7MW3m/jFo6jq9KYPK9G2L7holR0ibZmOG5verayYlLqtMF8s0ogqFN5htSZeo2Gfz9tgk4HN+lbSlQYs3IPLN84EHZZWmprNuLdzFNudJHC86fwQeiPEypK7YuBCUSWxtFNHEm8QaXRH8+Xtcs3f4lVZ4JI6HkdmK2jvmcWTuDI0hgSKwmG0HtgvIC8LGknY3Z3Nm/3nEWnazRJGkNzigTx3TDfSoRsHAqAgigydxXwkx7FdvO8vl1gqBdrKKE+jVfhZfwDxPpzy0g6/1grU9kb8YU15zKJ9dtkO/6233spFF13UC/YBLr/8cpxzfOUrX1nzcV/72teYn5/n8ssv790WxzFPfvKTufXWW/ue/+yzz+4F+wAXX3wxk5OTfPnLXx7tyQghhBDiuCgThQBlaafaO9Rm0+ijBNXYt7Vgn6XGfVV8t/lc6NZv0Srsdh4PX7RRaT30JVh6PW1C/boPdd/tZTusocma6gXLoX5dhfdp+TFri5k6CDbGb6HTtO126l/qV7BYtpmJ6mRm8++fVoqpqIbzDud96NCPWbNhn+80UWljqJILFVdQlQnciLtpV00KPix01Ex63On8EK6jqk0HNmIEiCPDTCMZqmldZHWv5GAwT6E0VlkSnZBFdbxSuO7PkQdaeUm9GpGs6IpfuBKrDZlJSHWMVqrvtUbZqb/dKUkjQzXd/PsbxhOO5DC21fL6/WbZ5kg+v8H3bq3nUd2SkBEe3C7nvEdzrOnhUunJdr4FznPcn+u70a46ozvvvLMvGIewA793717uvPPOdR8HrHrsWWedxQ9/+ENardaaz6+U4owzzlj3+YUQQgixA4wN4/l6dfwupLxvgq7PhAZ9Wwj2l4TGfeG/Yx1RNdloOvR7v3okoIlCs0FXULVpX2OyMM5u2fx6V4b3Z0DWg4ozzORBfNkJ6f2tOdziUVzzCG7+Ptz8YdzCYdzi7KrHxsp2U7cdzbJNphOm4sEN9IZRsykVk7BYtil8SWLigX0AvA9p57o6fO2srk6B91suXxgk1XFIv3fF0A0Kh3peE68bsK1Xu7+c0Rr8Wtu9HlB0lCfSMZGOSUxKbCrkPvR1aOclUaSpDQi02y4n1XH4Y2KSZaMoYalT/1CHuS7nPYXz1GvJmiMI1zNMI7ydNGgkX8eF3hyDJldsRCuF0Ypyuzv37SLee5ShV9pjNGi2bzTk0mtaO36pFLsqpX92dpZGo7Hq9omJCY4ePbru4+I4Jkn6a/IajQbee44ePUqapszOzlKvr/4Ha6PnH8awH9I7xSwfaSHEkOS6EVsh143YikHXjTcxxAm+6KCNAq2wkUVv6t/crQf6S1yagtUo5VDaMJlU8J2SxNp1Z9Gvx5c5Oo6xWQVlV5xzFAGOapwQdwyekAbsXHjN1NpQ4lCWEEXYJOnLEug918QM2nVCav/S4kl3QUGZsJBS3vdDlPZ99fKptkTG4nxJQcEplb1k0dZ3uQ2WPWmD7y/eAyhq0eAgz7fbkFWw1TpqyM8PHTXQRRU9t4CKjr/WHiDTEZmNMBrqcbalgHSQio+JzLHv51bFcWgEt7LZHhAWgWxEaTSTcQ1rDRZDNW0wNz8HSlGWsHcyJRnQJK+gYF8yQdS9JifiCve2j2J0yLiIIhN2QBVbvvYBFlsltSyintktNbVLrO6muSs2GHM/kO7+vIT/H30QXboQOMZROE7nPVYranHKve2jhEMf/sB1pHuxxsDv+zhyCmsUUaRCxpEx3bXNNa79kVBE1pAXCmv0qvjuZP39ZlcF/CcrrRVTU2uP0thNGo3RrVSLBw65bsRWyHUjtmLlddNuT1LM34+tZRSkJFN1bP3E/pvri5jFxQbKWHScUvUJ00WNerT1a7xcLFC1SdJ906ua07WaDVy7ST2rc7+aI3cl1Sgh7+TMJA0maiGwLZsFKk7JZlZvlvRM//Ta51XmLLIIeEzafy7TqspPFo+wP5nkUGPPcQWoAGlpWTi6yELRYmaiTiNZ/d7lswtE0wdJ9kxu6rk7xQRZawE7ws+cg9EUi2WHvfV13ttNqvmEI/rY93NYpXfc25plMq6G5n+x5WizII7t6sWITomPUyqVCnsak9SXRk/me1hs/z8cMDOZsm9PdVXAXnpH1absn5jsXdsumWRhbpFKHKOUInWe2cUcozXxgIZ/wyhKR4riwEyVSrq1UCRKHJVWQWQ10XEEX8mAHgaj0Ok4bGRo1FO0UjSLNlNpjQfV91LMhvGL6SZLZGqLJe2iJNumY9512gWx1dSqYbHJeU+1GbJNBi1WjULuoFZNWGxF1OvZmvHdyfb7za66YhqNBnNzq2fHHj16lImJtdO7Go0GnU6Hdrvdt8s/OzuLUqr32EajMXAE39GjRznllK3PWnTOMzvb3PiOO8gYTaORMTu7SFk+cNKBxPGR60ZshVw3YivWum6KlsfNLqBdgptv0Zpto4uFE358edvjO7Po9Fg66ezi1kfCuYVZ9OQptI6sfo6iBW52Hl1E6I7mSGsOFSvmOm0mnWfWLXafYx5dT2jdv/X3o/Ap7v4fomv9QZNrQdn2VGxKc340TfHiIma2vUh7IWe23X/e3pX4xQ62HtHcxPkYo6kkVRYW2uCbIxmBBhC5GItldna0Y/9Mx3JPaxYVD3+czbKN8op7W3NMxlUK58k7Oa50RCsCftVZpBVXKDqezqLvvc9Fx1C0HS3dYrJaZ7G5+nvaLNtoFEXTMau6j3OOvFVyf2eBREd4PEVe0ipzyi0GXXOLOY1KhCsLFha2Vorh8eSdgrztiaPNH4fWmiSxtNsFbhvS5Fudksjq3vt8NF9gKq5RNj1Rbrm3fZSpeOPGlMuVRUGzmaMeIGn9zXYBiQ0/212dTkFROly5PQF/q1XQanVotXPm5haJ4/7Pot32+02jkQ2VbbCrAv4zzzxzVS393Nwc99xzz6ra+5WPA7jrrrv4mZ/5md7td955JwcPHiRN0979/vEf/7Hvsd577rrrLi6++OLjOvai2Plv+jDK0p00xyp2D7luxFbIdSO2YuV147CUpccVJd6BcuB24LpyJsN1juKj468f9d7jCwcmHfgz4lREWZT40pOQUDoXfsl1HoOh7M4fd0UBOjmunzMf1SidwuU5aln3+AjLhK1RUVnv9Y5XTVdY0G20t6ue0+cdvLIonWz6+6srKWhDmeerGhhulUYDemTnviRVMc578rIc2MdgkMW8w0RUo+UWwuPQKKAoS8yKPhKqKGnHioQY7U0vKNEqQXU0puaIjaEc0PFuMc/Zl0yAU5TdphUGS6ISFopFrA3XhzWKxbbb0si5vCgxKowhDHHr1t9foxSt3GHNVp4jvC/OhZ+rUcsLRxqH99l3v9+ZSilLT01n3OOP0ilLzJDXAIQSirL023K8u1FZerRWfdeq6t6+He9BaA3g8T5s5hbr/A5zsv1+s6sKEC655BL+5m/+htnZYw1kvvCFL6C1Xjcgf+QjH0mtVuPP//zPe7flec5f/MVfcMkll/Q9/z/8wz/wve99r3fbbbfdxpEjR3j84x8/2pMRQgghxPGzEeDBOdA6NLTbAaFx34h+ySw7YGPUWiUBxvYao6UmItKWRdfBakO0cpzdJscUrhJXQuPATv9O9oStcmo6c1x12itlJuZQtndwh/4yR9l002MXAVScgE2gaG985x2WmZhUxX2N8NbjupMYJqMqFROzWHbCWDprWN2nMMwxKxRUbH8/g8UC6lGVNGFg072l5pBVu3o6QsNWKJbtKkdG47zfdKjugXbuqFWiLe3KrxRHG00r2DnLR/LlviTSEZkOWcgVk1I1GYvl5q5XPaKGicer9H7ggtGoeTx2xeePNaqvkekoLU0FOMnK84eyq07piiuuoFqtcvXVV/PXf/3XfOYzn+Fd73oXV1xxBfv37+/d70UvehFPfvKTe39PkoSrrrqKj33sY3z84x/ntttu49/9u3/HkSNHeMlLXtK731Of+lR++qd/mle+8pXccsst3HzzzVx//fU84QlP4OEPf/gJPVchhBBCbEwtdaEvO4AOQf9OHIeNQesNu8F77/Cd5vqdpItOGDu31uQAY6E7Fi9SlszENIsWEaY3w917B0of94620hpVmcAX/SneSqmhd6A3Y60dTV/kqGRrTfeU0qis3huduJsZZahHGW03eDzfSqFrfkTNpkxENTrdhYKBo/lciVMaTESij5W4eu9pdjx7anUqNkwfWKnjchJte0HpcqmJMUpT+HDtp4khiQzN1nDnsKTZKojXmA6wFbu6cZo6dnwdl/fGeULYqZ+MquSu3FTH+VC9sfmFllFbbJUstkc3FWNNnlXNO43R23b+S1MBRrnIuVvsqpT+iYkJPv7xj/PWt76Vq6++mmq1yvOe9zyuvfbavvs55yjL/gvtZS97Gd57Pvaxj3HfffdxzjnncMMNN3Do0KHefaIo4qMf/Shve9vbeM1rXoO1lic/+clcf/31J+T8hBBCCLFJ3a7yvsjBGDjeUXhbZZNwLGW+bpZBb+595z6oTKIG3NcXHXRj35r15krbsLDhSpSx1EzGYT/bP86uLMJxjCCFXWd1nLH4onNc4wuPl4pW7y4PSycVTorB7EDVhJRu7/2GPQfaZcHeZAKjDDWbEWlLxxWDR/O5kg4Qm4zYHAvc5xdzqpWUPdRpdVq0XH5stGNXy+XsieoDmzOmOiLRER1XYI0hsobpRsq9RxdpdUrSIWr5m60CaxXT9XRkk62sVoDqDiLcPXz3f5dG8uWuZH9S6fte12zWG3k4bPM+YxSGkF1hdigo9YBSoAip9mYbJwYopVh5ZYXu/Nu3w6/UsQkO42RXBfwAZ511Fr/3e7+37n0++clPrrpNKcVVV13FVVddte5j9+/fz/vf//7jOUQhhBBCnCDKWJSJ8e2jKFvduR1+Y1FRim831wxMvSuhzDEzh3CtefzCfZBN9O3C+26KtorX6fK8NELPFWDCDn9iIjK9LDDoLgaMIuAnylBJFd9e2JGAP2QrcFyvraIUjMWXo6vjX4v3Poy/02ZLTQKXdns7riBZ51iXUpdr3TT7VEfUTMbRYoFYJ6ujXFeQG0M1qvVq+0Otsee0vXWixYxaHjPnWqvOx3tP1Q6+JrXS1G2Fn7SPUOkuJKSxYaaecu/RFq28JF0nRb/ZLtFWMVNPSUfYYT4EwCr0thhx4Nlql6BZ97zWUjqPURqrw+QDrRSp7r+2Y22ZiKr8pH1kw4DfeU/bdYhVhDLgSw87NCu+LB1GK6xW5IXDbFO3/KXEB7WiKeV2LnQ4D1ZrxnCDf3el9AshhBBCrKSiFFwO2q4aYXdCjyOpheNYg2/No7IJVG0PZuZ0dGM/fnEWv7w+vliq319nN1vbEMx3ywdSHVMxSX9w6IrwPCNYAFFKoatTUBabSjEemTIPCxfHs9gQJWHBoNj+tH7fmsW3w4KOmz+Max4Jfy/a3QWdDQ5Vh6yNllv/WNuuQ6qjXpCtlGIiqoZa42459/J6ZuVLCmNJzbFra66ZM1mPmajGKJtQURajTC89H6DjC2JtyczaowLDMfi+6yNLLVONhLL0dIrBKd7Ndok2sGfEwT6A0Tqsi424a33pPKX3W27K5p1Dm7BT3HY5iY4GBvUNWwmlEuuUCXnvOZov0HY5JSVWKYodTOovnMcaTSWLKEbc0HK50nu0UqycOqmWZXWMmnehR8A4koBfCCGEELuailNCUezOJiaqKFkzm9SXBfgS3dgT6uKNRU+fip4+DV+28a0wdtgXHVRSWXc3WykFJu71C7DasDeepLIskPNlsXbTv62cW1ILAfdONL4r8/B+HMfOvFIaldZX9SIYNe8dlAVm+lTM/p/C7DkdXZsGE+GLDr55FDd/eMOFk1qU4bxb935tV1CPsr5O/BWTkumYnBxjVF+38sI7jE169ftLAeueiQytFcrGpEqT6oh2eWzhql3mVE3aqzEfZHlWQt95ZBFT9YS8CF3Nl1tsl2i9PcE+hPRuozWjno7W6jjS2LLVrd7Sh14VWityV1C32cDeFRWTULMpzTWa93nvOVo0qZqUik7JfYm1Gn8CyufXUpaeNDGksQlTA7arjMZ5lD6WXu+6C2lGE7I6tmFh0nmPHcN0fpCAXwghhBC7nYnAmC11cB8lFSVgDH5A0zPfmkNVJlFZ49j9lcZM7MfseTBeKVzzPig76LQ+xGulYRe/qxFV+rvbe4eKRpd+r6IElTX6sxFOEF/kqLiypfT45VRcCdt026mziIozVGUKXZlA1/diZk7HHHgI9pSzMQd+CuJ01dSDlTKTEOmIfI3ozS2l2Zv+RZ1IGxpRldwXGBV2QgHwJbnyoX6/G/DPt3ImajG1rLuQYiK0MtRttS9wL72jvkY6/7HXtVRMOnC6QKMSM1GLaXXKXjf/xXaJ2sZgf0ls9UiDzvBcniwxGNSx93cTXOmJrMZ7j/O+b6FuuZCxUaNcY+FntmiS6YhTsxkqNqHoBvzb1aV+GB5PbEMfhzjS5Ns0mq7Eo1VooNdxBfe2Z3vlEUqD36axfFp2+IUQQgghTjxlolDTvs212Rta2oUu+oMeX+agQNf3DCw50JVJ7N4zUHEtZCnEGzenUzZefwygYuTvh65MgHdDpaWPlHfr9zQYkorTsCBTbq57/Gb4vIWqzaxafFIq7KDrtI6uzuDz9QP+pJuq314jrX+pO39lQJp93WYYbVCaY6P5yoIcRRpPoJSidA7nYLqeHltI6S4YVUyMVgrnHR1XEGmzbjr/kprN+koBjp08TFQTJqoxi+2SZqs4Fuynxx/s567gSD4/cARfbPRIy1BaHUc1tVQSizIet4X0AefDFIW8Vyqx9sJczWRkOl5V3jFXNImU5WC6h8wkpDru7kBvTzr7MArnMWgiq1AKqqndtrT+kF5vQB2bctBxBVrrcN1vx6KH8t2mgONHAn4hhBBC7G7d5nRqnZTjE0Fpi4qyEOAvE3b3p1Dr7NyrpIrZ+2DM5KlhJ3ojxq7Zety7ciQj+VYfYy0E3p3WxncekRCsqeOr319iU5RNtq2O3+ftsEu+LItjEF2ZABvj8/XfxzDffvAOf8fl1KPKwK75mUmomJTSFL3Ax7scbw2pDddWs1VQyyJqlWPXSGjyqMm0JVGhQ3zb5WQmIdEbX0uZiYmUGXjMSsFkPSFLNW3dCQ36RhDsN8s2C0Wbik6ZL1YvopgRzqZf2t2vZRHzrkmbztbKBboj+Zbe23id9zbShomoSmvZZ8p8sYhGc2q2h2q3YeNSdk8YGbczIX/hHJFVIRAHkm1M63eeXiPGwpVkJqHwBUqFcontqiTYqekH200CfiGEEELsbsZ2d/l3/tcWlVRDk7kuX3RAa0x9z4Yp6crG6MbegaP6Vt1XW0AP3m13ZTfjYbQLIMpYVDaBL05cwB8a9tmRTAdQWodpA9vUh8DnC6jqxIbZCCrO0JVJfKe57v0yE2MHBNBLXfNrZq2u+WGOu1e+V8NfugJjq8QmwXtPJ3fsmUjD+L7eAy0og/GeWpTRdgV5WdCww5VTJDom0fHAtH7vPQtli7QCexspzh5floXrNqvz3nMo28PeZALvWbXLb4xCodZNhhlWq1NSSS1RpMNIOLP5YLY3kk+FALlhN17cq0cVrNLkrqBZtvHAwXSmr8wiVhGRNnjtR3a+m1UWnjg2vdYGkTXE8fak9TvvsEaFnwVCH5OlchFr1Mgrd8LbqbpNAcfPzv/LKYQQQgixDqW7afA7vMMP3Tr+ZXxrDl2dhqQ62hcyUUjBHpSeXhajG8m3gqo0ANVrGLjtygJlIxhyFvlGVFJdvxRii7wrwIOuTA11f12dAq1XZYMsl+iYdEAA3XY5sY7WTbOv2ZTURBQqXB+5z4lslUhFNNsFWWKpV1a8p8aGxSZXUjMZ3nvskOn8EBYa6rayqnFf6R1H8gUshgdXD3CouofcleQDel0MI3cFR/N5qibjQZV9TMV16jajZjMWVixGGb0UmB9fBLhUq19PI1quE7430eBshvW4btq71w6j9IYj9wAyHVOzGbNFk8KVHEymmYj6P08ibbAYPKGOfVB5w3bz3hMvG1OoFFSTbUrr92G3vfAulJzoBNU9BqtH38fAeY9BYcY0Mh7T0xJCCCHEODGTB1HZxs3utpuySa9OvJfiXZs57oZzqxgLxiwr0j7GL43k24YRhSquopJsw6Zzo+LLHKJsJOMFodvsUOuBjRWPh283UWk9TDMYRlIN2RKt+TXvopUKDfhWHGvLdWjYrL9J4wqxjpiKq+Q+x5UlBZ5qHH4+Wu2SPRMpke1/T5XSoXTClWQmJtGWtLvoMKyKTVDLuqS3y5zZfIGpqMaDKvtpRBUmoxp74gbzxeKmA7OlFP698SSHsr29hndaaWbiOs67Xsd2CKP5Emto58cXALfaYXc/ScIkgrrNSG1MocpNJdA759AWSkpSHZEOUSqhlGIyqpHpmAPJFFPx6s85rTSJiXE6jDl025XTvgbnPUop4hXXVBIbzHak9SuFMqEPQqQsNZtitAmTKMzoMxx8dyqAGlV9yC4jAb8QQgghdj21TQHuptkYZWIoO/j2XAj2R727DyhtUDoaGPDjRjuSr/91NaoydeLS+l2BToboaTCsKA3lASOs4/feh+kKtemhFyaUUiHzA79utkTFJKHJXjeI9d6Dh+oGXfMBJpMqWkNedEBb4qhOu1OSxJaJ6uBde2XDuMdIW2o2Y8JWunXhw0l1GM/XdjlzRZOOyzklmeHUbA9JN+NEKcXeZJK6rTJXrF/WsCSk8Dfx3nNatocD6fSqBY+azaialIXlY+wU1Lt9ClaOBRzW8t19191Bb9gKjSjFUW4qmF0ayVd4R81W0EN+ZtVtxmnZXmbitftDVLqN+4zWHGdCw6YVpcNatWoRKbKGaJvS+o0K2R5Vm5LoKPSP8EVIu1ej3+FXutsTYgyN51kJIYQQQmwDpQ3EWdi5tUmYwb5drxWlg3eqvR9JzftadBqmCayXjj5SIzwXpQ0k1dBbYVTyRYizdZsyDjyWtI5K6/j2wpr3yUx/Wn9I57cDu/OvVI8yKjphvpgjsimxrdBsF0zXEpJ4cHaAilKWBrkfSKaZTtZvQLhSpA01kzKXLxKriNMr+9iXTvbmzPsyx7cXiLThQDqJVWbNOfNLcldypDNP1aQ8qLKP6bg+cBHCKM100qBwZV/mQBpb6pWIVmdrZSitdkklCbv7rbJDpmMyE9NIKijtcZuIrsvSE9nQWG+Y7+ESrTQ1m62bKRR3F1RGPYpwGEXhSaxddXzbkdbvfejDqHWYJJHpGK00mU7IXdltrDfanXjnwaAY0559EvALIYQQQmyG7u7o69rMSMbJrUXFx4KzVbZzRGFcQSW1DZvOHS9fFmDMyBcvdFqDEab0+04TXZ3e9HEqrdG1mZANskbNtVY61MV3F1daLqduK0RD9Kuw2jAZ18iLnCSewJUKqzWT9XWOU9tek3erTS9Q34xGVOVAOsnplX3UVzSl8+05fGcR70oqJmV/MkWnzMnXyHIIKfyL7E0m+lL413xtm1E1Cc1yWQZKd5ffWk272FzQvxQ417IIpaDjChq2iu7W36fG0tnE7rX3HqzfcBzfVkTahMwRfeL79DsPaTz4Whl1Wn/pPVopPL5byhA+6yo2wXmH0qpbz7/RM3lUe26ozwLvxnd3HyTgF0IIIYTYHJugqpMhmNtO2qz6zd67ErRZNQd+lEI6+hQUmw+avffD766XeVi4GHHAr2wC2oyk8aAvOkON4lvzWLJGKPlYZ/GkahMg7GZ676kNkc6/ZDKtkmGpxA0WFgsm6wmVdJ3FoHXGPQ6rEVU4Ldu7apSfd2W4XpOsV1IxGdWYiRvMddP1e/ftduF33nNatpdT0pl1exb0Dl8ZpuMGuSv6ni+yhkYlJs/dpuq7252wu58mltKHdP6lUXiJjqhECR0/XKaL9+Fnx6mSismGWrTZjEiFtHan3LY0plxLb3KmHfz9GXVav3cOZUIfhFhZYtXNbNAWD2jl0cv6SKypLML40iHKk5z3GDOm2/tIwC+EEEIIsSkqrWOmD63q2D9yg3bxXREWArZzh59ut3sbbX7EXWcB3zwyVDmAL3NUlHZHEI5QnIZFhA0WHlzzftzCfSHTYK1jbC+gsgbEW+szoIxFVWfweasvQF0u0wmJtswViyTaDt01H6CmoK4nsKYBCqbq6z9WaQNqNIshq+SLqDhDxcdGI2ql2JdMUu92oYcwV/3+zjwVnfCgbO0U/rU0bIWKSVaVCtSyiDS2Q6f2l2UY+ba0u788nR9CCUEtToeeNlCUJcYqtPbU7fqZClsRaUOkLCgHSp2wXf6iLLFGEXV3wEvv+qYEjDqt3wGGbuNDk2C7C0Gxjoi0xeFRhjV/no49UQdv0+6KxfqLER6w3fNbel6rNl6AOllIwC+EEEIIsQlK621N5e+9jrGrd6p7I/m2d0ShilJUWsNvslu/z9uorDHc41yO2mIgvR6lbTfoXDvg96250ICxOoVfPIpvza8KIMKOtUNXp45rCoOuTkCUQj54p9FqQ91mLJYdaiYj3sQCiC0XybJTaLuMiUpMNdtgIah7TQ1sBnmcfN5GVafRWb3v+SNtOZBOY5ThaL7AfDeF//TKvt5u+mZYHXb5Oyt2+bVW1Ksxpfe9RnzrWeyOL0yT8H53XMFEN53fd5r4ziKNuIJXfqjguijBaIhtRLqJRZvNyGyCUw6D2jjgHZGihMSa3g74XN5kNu/vSzHKtP6QXh868ofslyBSlkgZSuVQig13+FVZsmgVpbYbN/H04fqB0Ecj0Xbbvoc7QQJ+IYQQQojdSC8FZ8d2GL0rQ0nBCZhYoCuTsCKoWo8v81CTn1ahHC6tX0Wj3wkF0Gl1zdpdn7fwrsRMnYrZ8yDM3gfjtcIvHO7PTOg0UWl10836VlI2QVen8Z21m/dVbUbVptSj4RdAfKeJiVN8ZZrSwfREuvFOuY7CLv+IA/7lpQ8qznqjK5dUbcq+eIJYWQ6mM90U/q0vWjVshUzHLLr+66ySWGqppdVe+/y8h/nFAmsVE9Wwu1/4EqM0le4ChO8s4ttNMhthtSYforyldB6MI1XRqnKHUUl13B1Zd+JG85Xe9ZpA+m5+f6wjWst+xkeZ1u+cZ6mcfvn7qJWiahIKX4RJBeuevqPA09KGxShGbfR5pHy3GWAI+Gs6HXlJxk6SgF8IIYQQYjcyNuzmlyt2+E9AdgEQAnebwJBp/b6ziIprobeBidffYXdlqK/dpmkDKspC2vOKwNaXBb49j544gK5MolRorGf3nYVq7MW35sIf7/BFOzRmHKK2fCO6Otl9Twa/lxWTUDeVoTu7e+/xnSa2sRcTZ9SyqDeebj1K61AOMsKmhhAWH1RaC5kMNg19FFac60zc4MHVA+xJJjaVwj9IpC1TcZ1W2elbkFIK6tUYrRTFgOCzKB0LrZxKajllpkoah6CuXeak3XT+pWaSxAlVINWW9gbvl4fQG8E4GlH1uM9vLZG2GKXQDJfFcLzCKyjibgTecQWxNjRshcVlQfQo0/odHq8ckbbEKxZOUhMa99mNRhMWOW2tyOJJOjYi1AAMXgRaOmKlQ9aE957aGO3ugwT8QgghhBC7klLd4Gz5L6pqe0fy9b2+TVBpA79GKvoqZQddm4Io27gcoMxBR9vXiyBKQh3/sh177x1+8Qiqthfd2Nd3dxWlmOlDmL1nhJGE8/eGwHWLzfpWUnEFVZ1Yc0RfpC2nV/YOv6vYWUDFFaKJPaSxYaaRYvRwv9Yrm4y0ht97B67slT4orcN1syLgV0qNdOd7IqqS6pjWil3+JDJhTF9e9qXitzol7dwxWUvYM5ESR8cWcjquYCIK6fwU7ZCVkU1gyzbVKKO9Tp8HgNI5PI7UWmrbUL+/JFaWyBiUUdtRlbFKWTqsVlgbrq22y6mYlOm4TqQtHXfs52t0af2h8WFo2Nf/8xBri0JhNqjhVy4nt5bUVjA2I7cRrNG8z3uPRmM05L7Aaku6TRkaO0UCfiGEEEKIXUpF6eqmctvcsG85XWkMldbvi3YoNUiqoct/ZRJcvvbjyiIsXGzTuSgToeJKX9DpF4+i0gZm6pSw073yMUqjq1OYfWeiJ05B16bDTvWI6MoUsDrrYLO8d/i8hW7sxUQJB/fUNmzW18fGa4973IpOKzTrW1b6oNIqdHdLt0usLdNRncWis+p1allEFGnaeRlS+FsFSsOeyYzJWoLRx3bgl9L5l+rFfdFBJTVUdRKUYjJJyTd4vwrncTqnEVdC2v02ibTBKoOyfuMu9SNQlB5rda+hXekdNZuRmYQJW6G57OdrZGn9Hkrlqdp0Ve+MWFsibfEhD2DNpyhdgbYZtahOajPaNkaVJYMGGjrn0RoUilaZUzGhieY4kYBfCCGEEGKXUjYJXawA3+3Qv50j+Va9flINadobpPX7ziIqrfVq8kM5wNqP82XeWxzYLjqth9FcgG/Pg44w06dumCGhbIKZOYSZOjjS41FJJUx22OzkgxV8ax6V1lGVKQAqqe01HBvqOOxoF1l8voiqTvVdlyrKwmLOENMajsdEXCU1MQtl/+6ttZqJStJL4a8mln2TGdV09VjCdpmT6ZhUdxdNvAvXZlJFJTWqrkT5MDZxLUXuMBYm49r2XtNKdxcU3Alp2lc6TxYbUCHYN0qTdhfppuIaRuneFAOloJZYitJteYJAKI3wKHxvWsJyoXGfpdRuUOweuIKO8sRRjVSn1GydjonwdvD16L1HaTBGUfqShh19I9GdJgG/EEIIIcRutXxuelmERn4ncIdf2Ri9Qdf9kNJdhF393uMSVFZf+3G+RMXbl/oMhPF8SoUmfUUHM3UwLGDsEKUtJOtPD9iIdyWUObqxb+sLP9quHSxt9njKHLQJiyvL2Tj0mjjOxY2NJDriYDqDQnE0X+gLgquZpZpETNYTZiZSojXmyHdc0au77zWejNNuf4dpKhpiZcjXyczo+JxqnFI123xNA5mO8dqvWrgYNQ94fO99a7ucWNteBkOmExq22jceMU0sNtJ0iq1lkCzV0Fuzun4fQllIxSZ4X4YVhkFcTkdpKkkoMUlNhrUphU1QA372SsCgKLzDbnIs5slCAn4hhBBCiN3KWFgaweXK7qi+E5tuqrIGeBcC+0HyNkTpqmBaVyYGPs57B0qH1PJtpGyo4/etWfTEAVR1altfbxg6rR1Xh3zfmkNlE6hsYsvPEa4hPZI6ft9ZRCU1SPp3RZVSYTzjcSxuDKsRVTg920eqI47mzV7Qr5TqpfCvlQFRuP50fopO97pZylSpk2U1Kkqt6hWwxHlPQcFUUt3USMXNWF6aEpsIrTUKxXZu8pfOY5QmsuG967icms1CnwPC+zsV14DwPkLIrKinEXm+tV1+5z1OlyTartnvISx4hPWOQefvixzijNSGz6NYx6QmoxVFhGWMFZ9jDozRtF2HTCdjV78PEvALIYQQQuxaatloPu+K0EhuG1OGBx5DUg1N8PI10vPzRXQ2sSpVXiXVsMu+sulfWYCJUANSdkdJ2Tg0y6vtQU/sO+Hv28BjilLQZkvBti8L8A7d2DuwB8HQtA1dy4+7l4AP2Qa1qYFjIlXcnZSwTir8qFRtymnZPmom5Ui+0Eu/3+hb3nKdvnR+X7RRaaP3/iobY2sz1FF0ysHvV14UGKOYTmujO6FlfN7GN+/Hd3/+Im2xWsM2d+ovnCMyCmtMd+edVRkMVZPSsJW+kopqGmEjTb6FXX7vPKUqqdkEs8bo0VhHvRF6q/sYeDoURLZGYhIWFnO8h1pUI9cWP2B6ROk8xihyV1K32a74nBg1CfiFEEIIIXYrE3UD/hJcsW1z69ejTITOJvD56vR870rwoCqrd5zD4yZXP67Mwy7ziGvJBzFTp2JmDoWFk90gSsPCyBZS3X17NtTKZ/WN77weY8PYuXUCfrdwP27+cFhkWkvegijpa9a3nIqzkMVxAnb5ATITc1plD5NRlaP5AsUQjQmPdefvBnneo1ZkK5jqBNU4xZflwLr5ZpFTsyn1aJvGZZYdSGq9aRmRsiTG4kyJX3c23XG+bOFJYoNSkPuSaFk6/xKlFFNR+P6X3UWWpV3+zhZ2+cN3zFNd53Mu1pbERDhd4ldOBChzOspTSacoizCZYaGVk+oUq2M6UYYqVtfxKw1aqaHHYp5sJOAXQgghhNitlpr0LQXWJyBIHiSk9fvVu7V5C5Vkq4KkY4+rs7IzvS9zVFwduCs8aipKUCew58FGlDZbquP3RQeUxtT3Hvf7prRB6WjNgN+3F0IGRm0a3zyyarxe7355c2BmR+91liYlrJEZsh1iHXFquoeZuMFs3qSzzoJF7kqMMlS66fuhft+uXlRLKtRqU0RlQe5XP1/bd9iT1dfckT5e4eelAt1zibQh7WbHjGDs/dqv6yHqji7suJxUxwNLFmo2o24zFooVu/x287v8vvSYZec3SKQtqYlxlJQrlhR82cGbhCxusNgumKjGdHJH1E3rbxvTXew69n30QOELUh0PbBQ4DiTgF0IIIYTYpZRSYJPuTqs6oQ37+o4jqYYd205/er7PW6jK5Jo76L3HLU/rd2W47QFqK3X8vjWHrk7DqJoORvHAsgLvCnzewkwewMycjp48iG8vhEWAvvuVgBqY2bGczhrgtrdT/0pWG05JZ9ifTNEsWhzJ55nNmywULZplm3aZ03EFzaJFxSTHdq2LdpiiEPXv8iqlqTT2EbkQGC6X+xKDYbL7ffGuwLeb+KIzulIG78NxGRMWJQjZDMp43DZF/M57tFLENoSKuSupm8HlRLq7y++865VSWKupZ5vf5W+7gsSagQ37lqvaFK8dq9Yfyw5RUidWCYXzpInFaIXznlpUo9AaH61oJumhUAV1W+n1Jxg343lWQgghhBBjQkUp5B0wesd2q5WxqGwCXxxLzw9jAvXqDu3LH6cNqjLVS+vvpURvc8O+3exYHf866fLL+KIDxqJrMyOrL1Y2Gbjo4JtHUbVpVHUapQ168hTMngfhvcM1jxz7/nWaYVZ9sn7duooz0Hbocx0VozT7kykOVfaxL55iwobxfRpN6R2d7iLE5LJ0fl90Qv3+gKDP1iapRA3yFeUpzbJFZlIacRqC/OZR0ApftPHNI7iFw+HP4iy+0wx9GDbBuwKMQVcmUVGl10cj0RHGjGzYwip5GcYMRlbjvEehSO3a6e41m1E1aV/H/q3s8he+pGKTDZsfpibCKE1fRr8v6ShHGk9QFoo0suyZSEkTS6tTkpqMSEd0bIpyJWEGAXgcGnWsceMY2iUFTUIIIYQQYhBlIvAl6GzHdvihm54/+2O8K0NqemcRFVdXdWhfSac1nLbdYMeHtOkHcMB/rI6/A/HGv4r7fLHbAHF088HD+78iHbo9D1GCmThwrGmdUqjaDNgYd98P8Av3QWUSX7T77remKA2703kHkhMbdoSd5xos+5Hx3uNwoD3VWkJroQDXXYjybs3SlCRNiKt78PP3h7ntKkzO6BQlB+MqETm+1URPHEBP7g+LKUWOL/PQdK/ThLyFbx6B2vTwZRlFHppbRikqa+DuvxtFjVhbjNYU29QQsSg8tSxCKUW77PSN4xvEKM100uCfmz/pZQdYq6llEUfm2kTWDDVFsKSgNsRow1hbIqPJO2GoHoTu/E4ZsniKVqdkz2RKGlsa1ZgfH25STRNSU6HpCuLuz583MSWO1KZkenwDftnhF0IIIYTYzbqj+JSJtj57fQRUUulLz/dFG10d3KG9T1IJNcj5YrdhX/TA3uHXBpXWhq/jL4vu+zzC7uG6fya9L4sQxE+eMrDcQqd1zN4zUJVJ/MJhMDFqiK70ShtUUluzD8CJppTCqJAyni3vBF/m4ZzWaBZnjSbJpgFL4cP3LfcF2humjYK8hZ4+DT11CkpblE1QaQ1dncJMHsDuOxOz/yyIUhjQNG4tvuyEYF+bsBjRnXoQaUus7aoa9lHwhAWQpFe/X1AxKdGKa2alhs2omoTFZbv8tU3u8nsPWbRx4B2riMTYvhKLslzExjVik+E81Cvheapp1DunalSlVODiKqrshJGKKqcepdgNzu9kJgG/EEIIIcQuprqd+tV2dQEf9ji0DQFf3uqmmUfDBX1Ko6tTIc25zHsBzAOZSqpD1fH7oh3e51HV7i+9vragNN67MHJt8QiqugdVnVr7MVGK2fMg9MQpqOrE0H0YVFpjVbH1blN0QrC/Tlp3vTGF1hXyTuhn0PY5ldxRiyxmz+noxr51F7+UTVBxurnFj7IIPR8gjJiMwpjLSFliY/G4AaPpjk9elNhIk8bhZ7T0JXW78a67UYbpuEHuSlplWBRZ2uXv5Bt//wtfYpQm26B+H0KfhsTEFBx73rYvSOIJyiIcezUNi6OVxJLEhvZSWr+y5DYGFK4IWUeNaHTZM7uRBPxCCCGEELuZtiENPj7xI/lWUmktBIrt+VC/PeSYQJXWQjlC3h558HoyGraO33cWUWlt9OMYjT027rG9AHGGmdy/YbaGMhY9fRpm+tDQL6WiFEy06ckEJ5Iv26isvm4WRZbGRPEeSpfjvMO356nblHjfg4bur6CzRhizN8wxeQ+K3s+YMhaV1vF5G60UtSjBqRK3cjTdcerkrrczH4Lw9bvmLzcV1TiYTtNxRa9r/9JzdTbY5e+4gkhFZNFwZUt1m+K6g/xwBaVSVNJpWm3HVD3BmnAtR90Ggq1OSaxjMlOhrRXeJhRFk1hHY12/DxLwCyGEEELsbiakCO9k/f4SFVfDwoMr0NXJ4dPMozQsECj1wK7fX7JUx5+vHfx578GV6Mrk6F/fWNA61JUXHczEKUMvKiilNjcaMErDc++StP6VQv0+G2YsxNZgkimcjshb92FUSjx1FunEzPAvFqW9zIoNlTnoKPzsd4VsiRLvPZUoBeUpR7jDX5QOozSVbr+FjitIdESyTv3+ckop9iQTHMr2AjCbNzFGdXf51znOok3RvI8KeujU+jSKu6n6UJQttE2xuorWUK/0H2+9ElM6303rr1HicXGFdtGmalOSMR3Ht0QCfiGEEEKIXUxpg87qo9/l3dKxaFRlCpLqUOn8vccpha5OQpxJwM/yOv51guCiDTZGpaPPiFDdnhC+vYBqzKCqkyN/jd5rKYXKGr2RcrtOmYf3eYOSmchq0qiCjus0jcFUH0SlPt3bSR5GKBvoNmwc4rhUFIM9ttCn4kooOyg7JNpijB5ptUQ792SpIV5Wv1+3WW+SwbAmoiqHsr0k2nI0b1JJDNaqwbv8vkSVbfKoStWVaD/cJINUR1ht6LiSvGiRxJOUhaWSRr0FiyWVxBJHhrxwx7r1G0PhCyZ3uFTqRJCAXwghhBBil9NrNFPbCboygWns79t5HIZK66issWrO+QOVSqrr1raHdP7Gpt/nodkYlU1gGgc2t2O/BSrOwPvRzaYfpaJ9LBBfRxxp0ijBJ9Po+ilYO0m1srnFK2VjVFwZqo7fF50w+nDZ90ZFCSrO8Hk7dM43lrwcfuzdekIvAE8tDQsMvvv9qgzRNX+Qms04LdtHzWYs+BaV1NDJ3crZEKjOAmVco8hmsLV9qPb8UItDWRQRaUNR5mGcXzJJp/BM1mK07l+gSLo1/a1OSaQjMlOhSYFSCdWNJk2MgfE/QyGEEEIIMTIqztD1PZt/nI2xM6eHhnGiW9s+uI7fewfeoSuNbXt9XZ1CT58axuZtMxVnYWd6F9bx+zIPi1Eb7GIbrUljS6SqpLZKrFLSaPPNJ3Vah3KIXWzvBk9MqExA2QmN+6yhYO3nKjexwNLuOJLYkHR3x3MfguN0RSmRL/Oh+zFkJua0bA9TUY3S5pgIji62aLucRddmoXOUOeU4GkdoFZNMHkI39uEXZzcM+iNtSVVEu2iiTIwxE0RGUcsGL8I0qjF5Ed6Pqq2CtsS2SrYbF6FGTD5xhRBCCCGEONGiNMxYHzSjPm9DlGxrg8Nt6Q2wBmVjVFLBt+ZGWprivQuz7Zca3HkFaumPDkF8nK25yOS7u9rDZs9kqSWdr5EaBZje6LpNidPeeL21Miu8K8PxD8juUHEFjMV4HzrVu9XZAs57mq6Fw2HQVM365+cJiwNTWcLSukfb5VRNQryia75fnA3/kdaHKs+JteXUbAarDD/mKO2jHdqFJ9WKzGtU/SA6m2ax6cnSFD0VeiK42Z9A1ghTSgZQSlG1Gfcv/oRatpfSxdSziCwZ/D2pJBGR0RTdtP7UZOhIYxhNhsRuJgG/EEIIIYQQJ9hSHb+bOxxmrC/ji0V0bc9Y9TvQWZ1y4X6898M3e9xIZxEVpejG3lAy4EpwDlyJ9yWUOX7hKFTWCBzLDph46AkYaWSwKsJ4g400cbT5ZGkVZaF8IG/DWgsNZR5q9wdlX0RZtwlii3qUUqojeMJ6B9DbPU9JqKiUWT9Hx+WrAvfl2kVJZDVZfCw0LFxJbcXx+bIAY1DZJH7+XqhMDTVi0yjDgXSamaTBfJTzk8NN6uU8unE6ZeMUUJr72m3iyKK0Rk8dBMDN/hiyiTWD/mocY5ynEk9TljBVT9a8ttLEkCYhrb9WiZiKp2gnbYy9H+/KsR4VKgG/EEIIIYQQO0AlVZi9p++2kM7vQ7+DMaLiSqg/X7gvbMSbJGQxHMf0CZ8voqcPoet7B3/dFbj7/18IHNPGqgUUn7dRUTZ0n4TIhgC/nZdM1dItLVwoY0Md/+Lc2pkFZY6Ks4HvjdIalU3gjvw/KjZCK2h3SkrnWHCLaK9pmCqTtk6Ep9nJaUZNrDLoNTIKitwxVU8xJpyP8w6tFJlZ8b7ki6iogpk6SOnKkF1RnR5uJKFSJCoirln8wjyHmwlJZQazdEwebLf2XmmzKuhHm1AK4Yqw8OAKss48sa6gbIPEGKrp2teSVoqJaszd984DETXTwMWL6GgxNMiMK2s+9mQnAb8QQgghhBA7oFfHXxYo0/21PG8dG2M4RlRSxew/C99p4TtN/OJc+P+yCOnrURLS1Yfk8xbYJNS0r/Wa2qKnTgWtcUd+FKZLLC8pKHNUbd/QrxlbgzWGdqcgXSN1fBg6a1Au3L/m133ZQSeDFzFgqeEjJFGo42/7NljPwXiCfdkkjTjDlC3IF4lcxJ1FxJxeZMKsLhEpCoc1mmp67HzariBRA+r3iw66sQ9lY8z0qZRlB794FLWZ8pCyw0TV0qyewv1NxVSjm/GhPGZZs73+oP+ekMKgbVgwSauoKCON9pH5+3CuRr0ekcTrf0+qWYRSitI5nPNoE2GyOr51/6auvZONBPxCCCGEEELshKXd5aID3YDf54voxoFjCwBjRNkknG9lAj+xH/I2Pm/h2wu4+cMhRX/IenrfaaLrezfsCaC0Rk+eAsrgjvww1PtnlZBJodSmpl9EVmONwkWadIPgct1jilJQet1U8vXKDFScQZyQOseByRpKwf5kismoilY6vKdljp45lQPqR7QXIu5qHmYxa5Pp/l37duGoVyKsXR7w58xEdYw6dpsvC9AG3R3HqaIUPX0a5T3fC+Mdh+g34b3Dt+aIJk/hQHUf7R/PM9fMqVciUAqzYsThUtCvskZ4n0wEJkJ1O+tb2yadj/EKJmobZ2lkSei70O6UaK0wRmErNVg8vOFjT2bSpV8IIYQQQogdoLRGJbXemDbvSkChsvrOHtgJoJQOEx+qU5jp09ATB/CdhaFG9/kyB63R1amhX0tP7EdPnYYvWrj2Aj7voEy8qSaCWiuy2BDbY7PqtyROIYoHTi1YCqzXKzNQJkKndWyRc0o2zZmVU5iO6yHYLzr49gJ66lT01ClEE9OcXtWcUpnm6GKbwh9rUle6MCSvsmwU39F8AasMdbtixztfDLvgyxZIdFrHTB3EF+3hRg0uzqLSBnpiH1kScXAmZCosLBZYpfp2+Hvnqg26MoFKayELZNkYPWMUSkEW23XT+Xv315rJakK7E3b4jQKThCaIw4wCPFlJwC+EEEIIIcQOCenZ3SA3b4Xa7WR804vXomvT4b1oL2x4X9+aR6UN2MQUA6UUZmIfZuZ0lCspF46E93qTjRGz1FJJLNZsPYxS2qKS6uAguQgLEWzQV0CldRSeqahG0k2992WOb82hJw6gG3tRSmMa+4jimLMma+xNGxxenMf5EOi3OyWVxJJGhtyV3N+Zp6ITHpTtoxGtbCTZQVUmVk0WUNXpsFjTmltjxKTH523c4lFQoCcP9HoTNKoxB2YqtPOw427N5noiWK2xWjNRjXv9FTZSrYTXLp0nsgYVp6GRYr7xgsXJSgJ+IYQQQgghdoiKj9Xx+7yFqkyuOUZunCkToRv7ww61W3tUmncleI+uzWypaZ6uzWD2PAid1rbUGHGylrBvavgygDWPI63DoAC57EBS6dvJHkTFGZgI380S8K7ALx5FN/ahJ0/pBeYqqaJre0hdm7P37KMeZRxeXMB7cIS69qZrs1AssjeZ4PTKPqq2P+vBu246/4AFFqUUemI/qjaDbx4Naftljm/P4xYOhyaNZSf0cJg+Hb3iPd8zmbFvKiOyGrPBOa9kjCJLLfXq8Is2lSRkZzTbBZHVIdMkq4f3fUw98D5NhBBCCCGE2C1sGtK388XQvC4dr2Z9m6Eqk6jKZEj9XiNd37cXQnp3uvWyB12dJN0zSWs+p/Sbe2wajyZ8UlEK2qyu43flwMB6FZugkgq+3QzP0zyCqs2gp05ZtVig63twzfup4zl7z36+ec8PuG+hST1J6OgWkbeclu1lMqqhBy2idFrddP7BmSdKG8zUqZRFjp8/DDYKNf61md50hrUyKbRSnDJTZaFVoAek9K8ntpp9kxm1bPhJD5E11CsRRxfaxN2sgNCwz+O9W5XBMA7G74yEEEIIIYQ4SfTq+FvzqCRDxcOnqY8bpTW6sReU6u1cL+e9gzJH12c23AHfiE6rxzUS8LhF3YWeZWn9oX+B2jCdH7o769kElJ0Q7FcmMVOnDswOUVGCru/FdxbZk9U4a3ovRCUu7lCzFU7P9nV7AAwOuH3RDun867znysaYmUOYfWdhD5yNOfAQzOQpof5+g7IJa0Ja/mYppZioJWse91pqWUQSmV5ZRsiWiKEYzzp+2eEXQgghhBBiB6mkGrqPV6aOO5A92am0jq5N42bvQdVm+r/Y7eK/lVT83UZpg0pruPn7jo2EK/Pu7vjGAT8Qej0Yi4oqmOlD6wbWujaNb94P7QVOq01TkJPYmP3JFNEakwJgKZ1fD5V1oOJsU1MPdkoltVRS25sKoGwcsiVaC0O/9yeTB/YnihBCCCGEEDtMxSmq0hgulXvMKaXQ9b1gY3xnse9rPl9E1WZ2dmd+hFRSBbdsKkGRh11/M+Rud5Sh6/sxM4c2DFSX90jQHs6oHeDUdGbdYB/opvNna6bzn4ySyNCoxCTRsVBYp42w4DKGJOAXQgghhBBiJ0VZmBUvAT8QdopDCvqxMX0+b4FN0JWJHT660VFRCkb3utsvNbcbthmh0hozdcrQu+oqm0BVJvCLs2ilh3qdkM4/XpknSilO3VvrjSOEblq/0us2jDxZjc93TgghhBBCiJOQUgqd1rfUdX5crRzT59sL6Op0CJLHRZR1GzZ2+xV4v60p8aFHwj5QDOyRsNJm0vlPenEasiQGjUo8yUnAL4QQQgghhNhVlI3RjX1hTF/eAmPQ1cmdPqyR6jVsLNphZ1nrba8hV2kdVZvGt+Y2vnM+fun8a1HaotLaUAshJxsJ+IUQQgghhBC7jqpMhRT0hftQ2cRYBp4qqYJ3UHTAREN16D+u11MKs9Qjod1c974+b6OyybFK51+PSmogKf1CCCGEEEIIsf2WUtBVdSqk849hyYOKUzAmNCSMM5TZ/iFqKq6EBn6us+ZOv3clKI1Oa9t+PLtFGM9nxi7ol4BfCCGEEEIIsSuptI6ZOX0sRvENZNNuHX877DCfIGZiH2bPg/Fa4xbu6zVH7MlbYTFiDLMq1hQl3R4RfqePZKQk4BdCCCGEEELsSkqpTXWuP9korVFpA0x0wmfA68okdu8ZqLSOX7gPv2wsnc9bqMoDJ50fQKnu92LMrrUHzndQCCGEEEIIIXYZlVRQaTXs9J/o144rmD0PQjX24heP4vNWL51fPYDS+ZeopAIm3unDGKntLxIRQgghhBBCCDGQSqqhKeEJ3uHvvb6NMVOHcCbBHf0RtObDAsQDKZ2/S8XZCc+02G4S8AshhBBCCCHEDgkB98GdPQatMZMHUFFCef/d3XR+s6PHtBOUTSDKxiqtXwJ+IYQQQgghhBDo6lToVv8ADPaXmKlTxur8JeAXQgghhBBCCAHQ7VT/wLUTvRS2kzTtE0IIIYQQQgghxpAE/EIIIYQQQgghxBiSgF8IIYQQQgghhBhDEvALIYQQQgghhBBjSAJ+IYQQQgghhBBiDEnAL4QQQgghhBBCjCEJ+IUQQgghhBBCiDEkAb8QQgghhBBCCDGGJOAXQgghhBBCCCHGkAT8QgghhBBCCCHEGJKAXwghhBBCCCGEGEMS8AshhBBCCCGEEGNIAn4hhBBCCCGEEGIMScAvhBBCCCGEEEKMIQn4hRBCCCGEEEKIMSQBvxBCCCGEEEIIMYYk4BdCCCGEEEIIIcaQBPxCCCGEEEIIIcQYkoBfCCGEEEIIIYQYQxLwCyGEEEIIIYQQY0gCfiGEEEIIIYQQYgxJwC+EEEIIIYQQQowhCfiFEEIIIYQQQogxJAG/EEIIIYQQQggxhpT33u/0QZzsvPc4t/vfRmM0Zel2+jDESUauG7EVct2IrZDrRmyFXDdiK+S6EVuxm64brRVKqQ3vJwG/EEIIIYQQQggxhiSlXwghhBBCCCGEGEMS8AshhBBCCCGEEGNIAn4hhBBCCCGEEGIMScAvhBBCCCGEEEKMIQn4hRBCCCGEEEKIMSQBvxBCCCGEEEIIMYYk4BdCCCGEEEIIIcaQBPxCCCGEEEIIIcQYkoBfCCGEEEIIIYQYQxLwCyGEEEIIIYQQY0gCfiGEEEIIIYQQYgxJwC+EEEIIIYQQQowhCfiFEEIIIYQQQogxJAH/mLvjjjv4lV/5Fc477zwuvvhi3vWud9HpdHb6sMQu8ed//ue84hWv4JJLLuG8887jWc96Fn/8x3+M977vfn/0R3/EU5/6VM4991ye+cxncsstt+zQEYvdaGFhgUsuuYSzzz6bb37zm31fk2tHDPInf/InPPvZz+bcc8/lwgsv5KUvfSmtVqv39f/+3/87z3zmMzn33HN56lOfymc+85kdPFqxG3zpS1/iF37hF3jEIx7B4x73OF796lfz/e9/f9X95DPngeuf/umfeMMb3sCznvUsHvrQh/L0pz994P2GuUbm5ua4/vrrueCCC3jEIx7Bq171Kn7yk59s9ymIHbDRdTM/P8/73/9+nve853H++efz2Mc+ll/91V/l29/+9qrn2q3XjQT8Y+zo0aO86EUvIs9z3v/+93Pttdfy6U9/mne+8507fWhil/i93/s9sizjuuuu44Mf/CCXXHIJv/mbv8kHPvCB3n0+//nP85u/+ZtcfvnlfOQjH+G8887jmmuu4etf//rOHbjYVX7nd36HsixX3S7Xjhjkgx/8IG9961t52tOexg033MBb3vIWTjvttN419NWvfpVrrrmG8847j4985CNcfvnl/H//3//HF77whR0+crFTbr/9dq655hp+6qd+ig984ANcf/31/MM//AMvfvGL+xaK5DPnge073/kOX/7yl3nQgx7EWWedNfA+w14jv/Zrv8ZXvvIV3vSmN/Ef/+N/5K677uJlL3sZRVGcgDMRJ9JG180Pf/hD/st/+S9cfPHFvPe97+Wtb30rc3NzvOAFL+COO+7ou++uvW68GFu/+7u/68877zx///3392676aab/DnnnON/9KMf7dyBiV3j8OHDq257/etf7x/5yEf6siy9994/5SlP8a95zWv67vOCF7zAv/SlLz0hxyh2t+9+97v+vPPO85/61Kf8Qx7yEP+Nb3yj9zW5dsRKd9xxh3/oQx/q/+qv/mrN+7z4xS/2L3jBC/pue81rXuMvv/zy7T48sUv95m/+pr/00ku9c65322233eYf8pCH+L/927/t3SafOQ9sS7+3eO/96173Ov8v/+W/XHWfYa6Rr33ta/4hD3mI/x//43/0brvjjjv82Wef7T//+c9vw5GLnbTRdbOwsOCbzWbfbfPz8/6CCy7wb3nLW3q37ebrRnb4x9itt97KRRddxOTkZO+2yy+/HOccX/nKV3buwMSuMT09veq2c845h/n5eZrNJt///vf53ve+x+WXX953n6c97WncdtttUh4ieNvb3sYVV1zBGWec0Xe7XDtikM9+9rOcdtppPP7xjx/49U6nw+23385ll13Wd/vTnvY07rjjDn7wgx+ciMMUu0xRFFSrVZRSvdvq9TpArwRNPnOE1uuHNcNeI7feeiuNRoOLL764d58zzzyTc845h1tvvXX0By521EbXTaVSIcuyvtuq1Sqnn356X7r+br5uJOAfY3feeSdnnnlm322NRoO9e/dy55137tBRid3uf/2v/8X+/fup1Wq962RlMHfWWWeR5/nA+knxwPGFL3yBf/zHf+Tqq69e9TW5dsQgf/d3f8dDHvIQfud3foeLLrqIn/3Zn+WKK67g7/7u7wD453/+Z/I8X/Vv11Kapfzb9cD03Oc+lzvuuIM/+IM/YG5uju9///u8+93v5qEPfSiPfOQjAfnMERsb9hq58847OeOMM/oWmCAEb/IZJABmZ2f5zne+0/dv1W6+biTgH2Ozs7M0Go1Vt09MTHD06NEdOCKx2331q1/l5ptv5sUvfjFA7zpZeR0t/V2uoweuxcVF3vnOd3LttddSq9VWfV2uHTHIPffcw1//9V/zp3/6p7zxjW/kAx/4AEopXvziF3P48GG5bsRA559/Pr/927/Nf/pP/4nzzz+fJz3pSRw+fJiPfOQjGGMA+cwRGxv2Gpmdne1lkCwnvz+LJb/1W7+FUopf/MVf7N22m68bCfiFEAD86Ec/4tprr+XCCy/kyiuv3OnDEbvcBz/4QWZmZvhX/+pf7fShiJOI955ms8n73vc+LrvsMh7/+MfzwQ9+EO89v//7v7/Thyd2qa997Wv8+q//Os9//vP5+Mc/zvve9z6cc7z85S/va9onhBDb7TOf+Qyf/vSnecMb3sCBAwd2+nCGIgH/GGs0GszNza26/ejRo0xMTOzAEYndanZ2lpe97GVMTk7y/ve/v1fPtHSdrLyOZmdn+74uHljuvvtuPvaxj/GqV72Kubk5ZmdnaTabADSbTRYWFuTaEQM1Gg0mJyf5mZ/5md5tk5OTPPShD+W73/2uXDdioLe97W085jGP4brrruMxj3kMl112GR/+8If51re+xZ/+6Z8C8u+V2Niw10ij0WB+fn7V4+X3Z/HlL3+ZN7zhDfzbf/tvec5zntP3td183UjAP8YG1YzMzc1xzz33rKqPFA9crVaLq666irm5OT760Y/2pSMtXScrr6M777yTKIo4dOjQCT1WsTv84Ac/IM9zXv7yl/PoRz+aRz/60fzqr/4qAFdeeSW/8iu/IteOGOinfuqn1vxau93m9NNPJ4qigdcNIP92PUDdcccdfYtEAAcOHGBqaop//ud/BuTfK7GxYa+RM888k7vuuqvXEHLJXXfdJZ9BD2Bf//rXefWrX82zn/1sXv3qV6/6+m6+biTgH2OXXHIJf/M3f9NbuYTQZEtr3ddBUjxwFUXBr/3ar3HnnXfy0Y9+lP379/d9/dChQzz4wQ9eNf/65ptv5qKLLiKO4xN5uGKXOOecc/jEJz7R9+c3fuM3AHjzm9/MG9/4Rrl2xEBPfOITOXLkCH//93/fu+3+++/n//7f/8vDHvYw4jjmwgsv5Itf/GLf426++WbOOussTjvttBN9yGIXOHjwIN/61rf6brv77ru5//77OfXUUwH590psbNhr5JJLLuHo0aPcdtttvfvcddddfOtb3+KSSy45occsdofvfve7XHXVVTzmMY/hzW9+88D77Obrxu7oq4ttdcUVV/DJT36Sq6++mquuuoof//jHvOtd7+KKK65YFdiJB6Y3v/nN3HLLLVx33XXMz8/z9a9/vfe1hz70ocRxzCtf+Upe+9rXcvrpp3PhhRdy8803841vfEPqbR/AGo0GF1544cCvPexhD+NhD3sYgFw7YpUnPelJnHvuubzqVa/i2muvJUkSPvzhDxPHMb/0S78EwCte8QquvPJK3vSmN3H55Zdz++2382d/9me85z3v2eGjFzvliiuu4O1vfztve9vbuPTSSzly5Eivj8jyEWvymfPAtri4yJe//GUgLAjNz8/3gvsLLriA6enpoa6RRzziETzucY/j+uuv53Wvex1JkvCe97yHs88+m6c85Sk7cm5i+2x03XjveclLXkKSJLzoRS/i//yf/9N7bK1W62Wu7ebrRvmVeQdirNxxxx289a1v5X//7/9NtVrlWc96Ftdee62sdAsALr30Uu6+++6BX/vSl77U2037oz/6Iz7ykY/wwx/+kDPOOIPXvOY1PPGJTzyRhyp2udtvv50rr7ySP/7jP+bcc8/t3S7Xjljpvvvu4x3veAe33HILeZ5z/vnn8xu/8Rt96f5f+tKXeO9738tdd93FwYMHefnLX87znve8HTxqsZO899x000186lOf4vvf/z7VapXzzjuPa6+9tjeycYl85jxw/eAHP+Bf/It/MfBrn/jEJ3oL1cNcI3Nzc7zjHe/gv/23/0ZRFDzucY/j9a9/vWyYjaGNrhtgzWbWF1xwAZ/85Cd7f9+t140E/EIIIYQQQgghxBiSGn4hhBBCCCGEEGIMScAvhBBCCCGEEEKMIQn4hRBCCCGEEEKIMSQBvxBCCCGEEEIIMYYk4BdCCCGEEEIIIcaQBPxCCCGEEEIIIcQYkoBfCCGEEEIIIYQYQxLwCyGEEGKkPvvZz3L22WfzzW9+c6cPRQghhHhAk4BfCCGEOIktBdfL/1x00UW88IUv5Mtf/vKWn/d3f/d3+cu//MsRHunw3v/+93P22Wfz2Mc+lsXFxVVfv/TSS7nqqqt24MiEEEKIk4sE/EIIIcQYeNWrXsW73vUu/sN/+A+89KUv5f777+flL385t9xyy5ae70Mf+tCOBfxLDh8+zKc+9akdPQYhhBDiZGZ3+gCEEEIIcfwuueQSzj333N7fn/e853HxxRfzZ3/2ZzzxiU/cwSPbunPOOYcbbriBX/qlXyJN050+HCGEEOKkIzv8QgghxBhqNBokSYK1/Wv7N9xwA1dccQUXXnghD3/4w3nuc5/LF77whb77nH322TSbTf7kT/6kVyZw3XXX9b7+4x//mOuvv57HPe5x/OzP/iyXXnopb3zjG+l0On3P0+l0eMc73sFjHvMYzjvvPK6++mruu+++oc/h6quv5t57791wl//222/n7LPP5vbbb++7/Qc/+AFnn302n/3sZ3u3XXfddTziEY/ghz/8IVdddRWPeMQj+Pmf/3n+4A/+AIBvf/vbXHnllZx33nk88YlP5HOf+9zQxyuEEELsNrLDL4QQQoyB+fn5XjB9+PBhPvnJT9JsNnnmM5/Zd79PfOITXHrppTzjGc8gz3M+//nP8+pXv5oPfehDPOEJTwDgXe96F69//et5+MMfzvOf/3wATj/9dCAE+8973vOYm5vj+c9/PmeeeSY//vGP+eIXv0ir1SKO495rve1tb6PRaHDNNddw99138/GPf5y3vOUtvPe97x3qnB71qEfxmMc8ho9+9KP84i/+4sh2+cuy5GUvexnnn38+r33ta/nc5z7HW97yFrIs4z3veQ/PeMYzeMpTnsJNN93E6173Os477zwOHTo0ktcWQgghTiQJ+IUQQogx8Mu//Mt9f4/jmLe//e1cfPHFfbd/8Ytf7Auc//W//tc897nP5cYbb+wF/M961rN405vexKFDh3jWs57V9/h3v/vd3HvvvXz605/uKyF49atfjfe+776Tk5N87GMfQykFgHOOT37yk8zNzVGv14c6r2uuuYZ/82/+DTfddNOqc9yqdrvNM5/5zF7jv2c84xn8/M//PNdffz3vfve7edrTngbAYx/7WC6//HL+63/9r7zyla8cyWsLIYQQJ5Kk9AshhBBj4A1veAM33ngjN954I7/1W7/FhRdeyOtf/3r+4i/+ou9+y4P9o0ePMjc3x6Me9Si+9a1vbfgazjn+8i//kic+8Yl9wf6SpcB+yfOf//y+284//3zKsuTuu+8e+rwe/ehHc+GFF/LRj36UVqs19OM28gu/8Au9/240GpxxxhlkWcbll1/eu/3MM8+k0Wjw/e9/f2SvK4QQQpxIssMvhBBCjIGHP/zhfUH405/+dJ797Gfzlre8hSc84Qm9VPtbbrmFD37wg/z93/99X839ymB9kPvuu4/5+Xl++qd/eqhjOnjwYN/fG40GALOzs0M9fskrX/nKke7yJ0nC9PR03231ep0DBw6seh/q9fqmj1cIIYTYLWSHXwghhBhDWmsuvPBC7rnnHv7pn/4JgK9+9au84hWvIEkS3vjGN/LhD3+YG2+8kac//emr0vFHdQyDbPa1Hv3oR3PBBResucu/1mKFc27g7caYTd2+He+NEEIIcSLIDr8QQggxpsqyBKDZbAKhfj9JEm644Ya+5nqf+cxnhnq+6elparUa3/nOd0Z/sBt45StfyQtf+EJuuummVV9byhyYm5vru30zpQNCCCHEOJIdfiGEEGIM5XnOV77yFaIo4qyzzgLCDrZSqrcQAGF03Ze+9KVVj69UKqtS2bXWPOlJT+KWW27hm9/85qrHbOdO+AUXXNDb5W+3231fO/XUUzHG8Ld/+7d9t280zm8r8jznjjvu4Cc/+cnIn1sIIYQYNdnhF0IIIcbArbfeyp133gmEWvvPfe5zfO973+PlL385tVoNgMc//vHceOONvPSlL+XpT386hw8f5g//8A85/fTT+fa3v933fA972MO47bbbuPHGG9m3bx+nnXYaP/dzP8drXvMavvKVr/DCF76Q5z//+Zx11lncc889fOELX+AP//APe7vt2+Gaa67hyiuvXHV7vV7nsssu4/d///dRSnHo0CH+6q/+isOHD4/8GH784x/ztKc9jec85zm8853vHPnzCyGEEKMkAb8QQggxBv7zf/7Pvf9OkoQzzzyTN73pTVxxxRW92y+66CL+/b//93zkIx/h7W9/O6eddhqvfe1rufvuu1cF/Ndddx1veMMbeO9730ur1eI5z3kOP/dzP8f+/fv59Kc/zfve9z4+97nPMT8/z/79+7nkkkv6JgBshwsvvJALLriA//k//+eqr73+9a+nKApuuukm4jjmsssu49d//dd5+tOfvq3HJIQQQuxmyksnGiGEEEIIIYQQYuxIDb8QQgghhBBCCDGGJOAXQgghhBBCCCHGkAT8QgghhBBCCCHEGJKAXwghhBBCCCGEGEMS8AshhBBCCCGEEGNIAn4hhBBCCCGEEGIMScAvhBBCCCGEEEKMIQn4hRBCCCGEEEKIMSQBvxBCCCGEEEIIMYYk4BdCCCGEEEIIIcaQBPxCCCGEEEIIIcQYkoBfCCGEEEIIIYQYQxLwCyGEEEIIIYQQY+j/B3kK6wn1hRqbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/wAAALGCAYAAAD4N5qEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gkVdX/v/dWh8mzkSWHRRbQhV2WJa8LwoJkFJCkZGFRgoKoiOEFESS9K7LknCSsgRcFRDAAisIPRJIYCLukZePEnu6uqht+f9yq6q7OcWZ25nyeh4edngq3qm/31Peec76Haa01CIIgCIIgCIIgCIIYU/CRHgBBEARBEARBEARBEI2HBD9BEARBEARBEARBjEFI8BMEQRAEQRAEQRDEGIQEP0EQBEEQBEEQBEGMQUjwEwRBEARBEARBEMQYhAQ/QRAEQRAEQRAEQYxBSPATBEEQBEEQBEEQxBiEBD9BEARBEARBEARBjEFI8BMEQRAEQRAEQRDEGIQEP0EQBEE0mQsuuAB77713TfsuXrwYW2+9dYNHND544YUXsPXWW+OFF15o6HHreT8JgiAIYjiJjPQACIIgCGKkqFRI33PPPdhll12aPJrRxwUXXICHH344+NmyLEydOhVz5szBmWeeiU984hMjODqiHB9//DF++ctf4umnn8Z7770HzjlmzJiBr3zlK9h9991HengEQRDEMMC01nqkB0EQBEEQI8EjjzyS9/Nzzz2HK6+8MvT6HnvsgSlTptR8Htd1obVGLBarel8hBKSUiMfjNZ+/Vi644AI89thj+NGPfgQAkFLi/fffx4MPPgghBB577DFMmzZt2MdVKS+88AJOOOGEhi/Y1PN+Dif33XcfrrrqKixYsABz5syBEAKPPPII/vnPf+Kyyy7DEUccMdJDJAiCIJoMRfgJgiCIccthhx0W+vnVV1/Fc889l/d6LqlUCq2trRWfJxqN1jQ+AIhEIohERu7PdSQSybsfs2fPxsKFC/HMM8/gqKOOGqGRDT/JZBJtbW11vZ/DyS677II//elPmDRpUvDasccei8MOOwzXXnstCX6CIIhxANXwEwRBEEQJjj/+eBx88MF444038MUvfhGzZs3CokWLAAC///3vcfrpp2PevHmYOXMmFixYgOuvvx5SytAxcmu+P/zwQ2y99da4/fbb8dBDD2HBggWYOXMmjjjiCLz22muhfQvV8G+99db44Q9/iN///vc4+OCDMXPmTBx00EF49tln88b/wgsv4PDDD8d2222HBQsW4MEHH6zbF8DPdrAsK/T6Bx98gHPOOQc777wzZs2ahaOOOgpPP/10aJtf/epX2HrrrfHhhx/mjTO33t6/92+//TaOP/54zJo1C5/+9Kdx66235o1pxYoV+OpXv4rZs2djt912w2WXXQbHcfK2e+mll3DOOedgr732wsyZM7HnnnvisssuQzqdDm13wQUXYIcddsD777+P0047DTvssAPOP//84He5NfxKKdx111046KCDsN1222H33XfHD37wA/T394e2e/3113Hqqadil112wfbbb4+9994b3/nOdwrd5oAf//jH2GWXXZCdlHnJJZdg6623xj333BO8tmbNGmy99da4//77AQBbbbVVSOwDQCwWw5577okVK1YgkUiUPC9BEASx7kMRfoIgCIIoQ19fH0477TQcdNBBOPTQQzF58mQAwMMPP4y2tjacfPLJaGtrw/PPP49rr70WiUQC3/72t8se99FHH8XQ0BCOPvpoMMZw22234eyzz8bvf//7slHkv//973jyySdx3HHHob29Hffeey/OOecc/OlPf8LEiRMBAG+++Sa+/OUvY+rUqTj77LOhlML111+fJwLL0dPTA8CI2g8++ABXX301JkyYgM985jPBNmvWrMExxxyDVCqF448/HhMnTsTDDz+Mr3zlK7j22mux7777VnVOn/7+fnz5y1/GvvvuiwMOOAC/+93vcPXVV2PGjBnYc889AQDpdBonnngiPv74Yxx//PFYb7318Mgjj+D555/PO94TTzyBdDqNY489FhMmTMBrr72G++67DytWrMC1114b2lYIgVNPPRU77rgjvv3tb6OlpaXoOH/wgx/g4YcfxuGHH47jjz8eH374IX72s5/hzTffxAMPPIBoNIq1a9fi1FNPxcSJE3H66aejq6sLH374IZ566qmS92Du3Lm466678NZbb2HGjBkAzMIF5xwvvfQSTjjhhOA1ANhpp51KHm/16tVobW2tKkuFIAiCWDchwU8QBEEQZVi9ejUuvvhiHHPMMaHX//d//zckAo899lj84Ac/wAMPPIBzzz23bI338uXL8eSTT6K7uxsAsMUWW+CrX/0q/vKXv4TEdCHeeecdPP7449h0000BmPTtww47DI899hi+9KUvAQCuvfZaWJaFBx54IKi1P+CAA3DggQdWfO3JZBK77bZb6LVp06bhjjvuCC0c3HLLLVizZg1+9rOfYe7cuQCAL3zhCzj00EPx4x//GPvssw84rz6xcNWqVbjiiivwuc99DgBw5JFHYu+998Yvf/nLQPA/9NBDWLZsGa655hoccMABAICjjjqqYGnG+eefH3rPjj76aGy22WZYtGgRli9fjg033DD4neM42H///fGNb3yj5Bhfeukl/PznP8fVV1+NQw45JHh9l112wZe//GU88cQTOOSQQ/CPf/wD/f39uP3227HddtsF25177rklj7/jjjsG55kxYwYGBwfx3//+F/vtt18g8v3fT5gwoaSZ4nvvvYennnoK+++/f16GBkEQBDH2oJR+giAIgihDLBbD4Ycfnvd6tnBMJBLo6enB3LlzkUql8O6775Y97oEHHhiIfQCBUP7ggw/K7rv77rsHYh8AttlmG3R0dAT7Sinxt7/9Dfvss0/IWG+zzTbDpz/96bLH94nH47jzzjtx55134vbbb8cPf/hDtLW14fTTT8fSpUuD7Z555hlsv/32wTUAQHt7O44++mh89NFHePvttys+ZzZtbW0h4R6LxbDddtuF7tGzzz6LqVOnYv/99w9ea21tLegvkP2eJZNJ9PT0YIcddoDWGm+++Wbe9scee2zZMT7xxBPo7OzEHnvsgZ6enuC/T33qU2hrawvKFDo7OwEATz/9NFzXreDqDZMmTcL06dMDcf/yyy/DsiyceuqpWLNmDZYtWwbAZH3MmTMHjLGCx0mlUvja176GlpaWsosYBEEQxNiAIvwEQRAEUYZp06YVjNa/9dZbuOaaa/D888/n1UMPDg6WPe4GG2wQ+tkX/wMDA1Xv6+/v77t27Vqk02lsttlmedsVeq0YlmXltXDbc889sd9++2HRokVYvHgxAJOtMGvWrLz9p0+fHvzeT0evhvXXXz9PwHZ3d+M///lP8PNHH32EzTbbLG+7LbbYIu94y5cvx7XXXos//vGPefX1ue9hJBLB+uuvX3aM7733HgYHB/MyIXzWrl0LANh5553x2c9+Ftdddx3uuusu7LzzzliwYAEOOeSQstkgc+fOxTPPPAPARPJnzpyJ7bbbDhMmTMBLL72EKVOm4N///jcOPvjggvtLKXHuuefi7bffxq233jqquysQBEEQjYMEP0EQBEGUoVDt9sDAAL70pS+ho6MD55xzDjbddFPE43H885//xNVXXw2lVNnjFkuprqRjbj371sv666+PLbbYAi+++GLV+xaLPhe7X41MO5dS4uSTTw58AaZPn462tjasXLkSF1xwQd4YYrFYRWUISilMnjwZV199dcHf+6UPjDFce+21eOWVV/CnP/0Jf/7zn3HhhRfizjvvxEMPPYT29vai59hxxx2xZMkSfPDBB3jppZew4447gjGGOXPm4O9//zvWW289KKVCGRbZfO9738PTTz+Nq6++uujCBEEQBDH2IMFPEARBEDXw//7f/0NfXx+uu+66kElarvv8SDF58mTE43G89957eb8r9Fq1SCmRTCaDnzfccMNQir+PX9rg18Z3dXUByM+A+Oijj2oey0YbbYT//ve/0FqHFhRyx/Pf//4Xy5YtC3kCAMBzzz1X87kBYNNNN8Xf/vY3zJkzp6Sxn8/s2bMxe/ZsnHvuufjNb36D888/H48//ji+8IUvFN3Hr+N/7rnn8Prrr+P0008HYAz6HnjgAay33npoa2vDpz71qbx9r7jiCvzqV7/ChRdeWDQDgCAIghibUA0/QRAEQdSAH/nNjqg7jhO0RBtp/FT8P/zhD1i5cmXw+nvvvYc///nPdR176dKlWLp0KbbZZpvgtT333BOvvfYa/vGPfwSvJZNJLFmyBBtttFFgJOf7DmRnB0gpsWTJkprHM3/+fKxatQpPPPFE8Foqlco7ZqH3TGsdam1XCwcccACklLjhhhvyfieECMos+vv78zIwtt12WwAo2EIwm0022QTTpk3DXXfdBSEE5syZA8Ck+r///vt44oknMGvWLEQi4VjObbfdhjvuuANnnHEGTjzxxJqvkSAIglg3oQg/QRAEQdTADjvsgO7ublxwwQU4/vjjwRjDI488Miwp9ZVy1lln4S9/+QuOPfZYHHvssVBK4b777sNWW22Ff/3rXxUdQwiBRx55BIARxx9++CEefPBBKKVw5plnBtudfvrpeOyxx3Daaafh+OOPR3d3N/7v//4PH374IRYvXhyI7a222gqzZ8/GokWL0N/fj+7ubjz++OMQQtR8nUcddRR+9rOf4dvf/jb++c9/YurUqXjkkUfyou3Tp0/HpptuiiuuuAIrV65ER0cHfve731XkmVCKnXfeGUcffTRuvvlm/Otf/8Iee+yBaDSKZcuW4YknnsB3v/td7L///nj44YfxwAMPYMGCBdh0000xNDSEJUuWoKOjA/Pnzy97nrlz5+Kxxx7DjBkzAr+HT37yk2hra8OyZctCHQIA4KmnnsJVV12FzTffHNOnTw/eR5899tgDU6ZMqevaCYIgiNENCX6CIAiCqIGJEyfipptuwhVXXIFrrrkGXV1dOPTQQ7Hbbrvh1FNPHenhAQBmzpyJW2+9FVdeeSV++tOfYoMNNsA555yDd999t6IuAoCJPH/rW98Kfu7o6MB2222Hq666KlQLPmXKFDz44IO46qqrcN9998G2bWy99da46aabsNdee4WOefXVV+MHP/gBbrnlFnR1deHII4/ELrvsgpNPPrmm62xtbcVdd92FSy65BPfddx9aWlpwyCGHYP78+fjyl78cbBeNRnHTTTfhRz/6EW6++WbE43Hsu++++OIXv1iwhV81/PCHP8TMmTPx4IMP4ic/+Qksy8JGG22EQw89NIjG77zzznj99dfx+OOPY82aNejs7MT222+Pq6++GptssknZc+y444547LHHgvR+wBgLzp49G3/9619DrwPAv//9bwDAsmXLQu+hzz333EOCnyAIYozD9GgKRRAEQRAE0XS++tWv4u2338aTTz450kMhCIIgCKKJUA0/QRAEQYxh0ul06Odly5bh2Wefxc477zxCIyIIgiAIYriglH6CIAiCGMMsWLAAn//857HJJpvgo48+woMPPohoNBpKdScIgiAIYmxCgp8gCIIgxjCf/vSn8dhjj2H16tWIxWKYPXs2zjvvPGy++eYjPTSCIAiCIJoM1fATBEEQBEEQBEEQxBiEavgJgiAIgiAIgiAIYgxCgp8gCIIgCIIgCIIgxiAk+AmCIAiCIAiCIAhiDEKmfQ1Aaw2lRr8VAudsnRgnMbqgeUPUAs0bohZo3hC1QPOGqAWaN0QtjKZ5wzkDY6zsdiT4G4BSGj09QyM9jJJEIhwTJ7ZjYCAJIdRID4dYR6B5Q9QCzRuiFmjeELVA84aoBZo3RC2MtnkzaVI7LKu84KeUfoIgCIIgCIIgCIIYg5DgJwiCIAiCIAiCIIgxCAl+giAIgiAIgiAIghiDkOAnCIIgCIIgCIIgiDEICX6CIAiCIAiCIAiCGIOQSz9BEARBEARBEGMKpRSkFEV+x5BOW3AcG1KOjhZrxOhnOOeNZUXAeWNi8yT4CYIgCIIgCIIYE2itMTDQg1QqUXK7NWs4lBr51mrEusVwzpvW1g50dU0CY+Vb75WCBD9BEARBEARBEGMCX+x3dExELBYvKpYsi1F0n6ia4Zg3Wms4jo1EohcA0N09ua7jkeAnCIIgCIIgCGKdRykZiP2Ojq6S20YiHEJQhJ+ojuGaN7FYHACQSPSis3NiXen9ZNpHEARBEARBEMQ6j5QSQEYsEcS6jD+Pi3lRVAoJfoIgCIIgCIIgxgz11jwTxGigUfOYBD9BEARBEARBEARBjEFI8BMEQRAEQRAEQYwiLr30Ihx//FEFf/fTn/4vjjzykGEeUX3Mmzc39N8hh+yHb33rXLzzztsjPbSCLFlyP+bNmzvSw2gIZNpHEARBEARBEARBNJUjjzwaCxbsD0Bj1apVuPfeO3DeeWfivvt+gc7OzpEe3piFBD9BEARBEARBEARRF7adRjzeUvT36623PmbO3C74eZNNNsXJJx+HN954FbvtNm84hjjsOI6DSCRSl8t+vVBKP0EQBEEQBEEQxDrK44//BvPmzcUbb7yOc845A/vssweOPPIQPProI6Ht/DKBv/3tORx//FHYe+/dccopX8Ibb7xe8JgnnngM9t57d3zucwfg5puvD7oghM/5Gr7+9a9iwYJ5uP76n1Y17ra2NgCAEGEX+mee+SNOOuk47L337jjssP2xePEi2Ladd+6+vr7QfieddBwuvfSivOt9+eWXcPLJx2HBgnk47bQT8O9//yu039BQApdc8gPsu+98HHzwAtxww08hhAxtk0qlsGjRFTjqqM8H9/eqqy5DIpEIbXfkkYdg0aIr8LOf3Y0jjjgY++yzB15//VXMmzcXL774fGhbKSU+97kDcMMN1d23aqEIP0EQBEEQBEEQxDrORRddiMMOOxxf/OKJ+MMfnsTll1+CKVOmYtdddw+2Wbt2LRYtugKnnHI6Ojs7cd99d+Mb3zgLDz74MCZOnAQAePDB+3DjjYtx1FHH4ayzvo5ly5bhlltugFIKX/nK2aFzXnzx93DooZ/HCSecUjK6DwBaq0Dcr169CjfeeC0mTJiAHXbI1Mr/5S/P4Hvf+zb22Wc/nHHGWXj//WW4+ebrsXLlCvzoR1dWfU96etbipz+9Gl/84kno6OjAzTdfhwsvPB9LljyCSMRI4R//+Id44YXnccYZZ2HDDTfEww//Am+99bvQcdLpNJRSOOOMM9HZ2Y1Vq1binnvuwHe+8w0sXnxzaNtnnvkjNt54U3zta+eDc45tttkWn/zkTDz66K+x0067Btu98MLfsGbNahx00GFVX1c1kOAnCIIgCIIgCGLMorWG46rQa1JpCKGK7NFYYlE+LK0C99//IBx//MkAgF122Q3Ll3+EO++8NST4Bwb6cckll2PHHXcCAMyevSMOP/wgPPTQ/TjjjLOQTA7h9ttvwXHHnYCFC88EAOy0066IRiNYvPgnOO6449HdPSE43mGHHY4vfemkisZ3442LceONi4Ofu7q6cdllV6GjoyN47Y47bsGnPrUdLrroUgDArrvujni8BVdddRneeedtbLnlJ6q6JwMDA1i8+BZMn74lAKClpQXnnHMG/vnPNzBr1mwsXfounnnmT/j2t7+Hgw82wnvnnXfDMcccHjrOxIkTcf7530EkwiGEWbjYYIMN8dWvfhnvv/8eNt10s2BbIQSuvvpatLa2Bq8deujnsGjRVRgYGEBXVxcA4LHHHsF2222PzTbbvKprqhYS/ARBEARBEARBjEm01vjxfS/j7Y/6R2wMn9i4G9/54pymi/758/cK/bznnnvj+uuvgZQSlmUBADo6OgKx7/88d+7OePPNNwAAr7/+GlKpJD7zmX1CqfZz5+4C27bx7rvvYIcddgxe3333ymvvv/CFY/HZzx4AAOjt7cHDD/8CF1zwDVx33S34xCe2QjKZxFtv/Rdnnvm10H777LMfrrrqMrz22itVC/4pU6YGYh8AtthiOgBg9eqVAIB///tNaK0xf/5ngm0sy8L8+XvioYfuDx3riScew5Il9+ODD95HKpUKXv/gg/dDgn+HHXYMiX1zDZ/Ftdf+BE899QSOOOIo9PX14bnn/ozzz/9OVddTCyT4CYIgCIIgCIIYuzQ/uN5wLMuCUoUzEJSSQTp6Nn5Kvs+kSZMghEB/fx8mTZoMAJgwYWLefpMmTcJ77y0FAPT39wEATjnlSwXPvWrVypxzTi59IVlMnboettnmk8HPO+64Mw4//EDcddet+NGPrkQiMQitdTBWn46ODsRiMQwMVL9ok509AACRSBSAMdMDgDVr1iASiQRRd5/ce/nMM3/Cj370P/jc5w7Haad9BV1dE7B27RpceOH5cBw7Z9/8e9La2ooFC/bDY489giOOOApPPvk4otEY9t5736qvqVpI8BMEQRAEQRAEMSZhjOE7X5yTl9Lvp2YPB7Wk9E+YMBFr164t+Ls1a1Zj4sR84d7b24OpU9cLfu7p6UEkEgml4Pf19ebt19PTg8mTpwAAOjuN8L300qswbdq0vG032GDD0M/1ZC3EYjFssMFGWLr0XQBAR0cnGGPo7e0JbZdIJOA4Drq6uoP9AEAIN7Td4OBA1WOYMmUKhBChVHsAeWP4059+j622moELLvheMG/+8Y+/FzxmsVty6KGfx69//TDeeuu/eOyx32DvvRcExoXNhFz6CYIgCIIgCIIYszDGEI9ZI/ZfLaJ49uw5SCQG8corL4deHxpK4OWX/45Zs+bk7fPss0+Hfn7mmT9i6623DdL5ASOe//73F0M/v/TS/8MnPzkTADBz5vZoaWnB6tUrsc02n8z7L3vxoF5s28by5R8Gx2xra8NWW83A00//IbTdH//4FABg++1nAwCmTjULEcuWLQ22WbZsaV72QSX4GQfPPvun4DUpJZ599pm8sfrZAT5PPvlE1efaaqsZ+OlPr8Y777yFgw46tOrx1gJF+AmCIAiCIAiCIEYRO++8K2bN2gHf/e43cdJJp2H69C2xZs1q3H//PbAsjiOPPCZvnyeeeAzxeBwzZmyDP/zhSbzyysu46qprQtt0dXXj8ssvCbn0a61x1FHHAgA6Oztx6qln4IYbFmPVqlXYYYcdYVkWli//EH/+87O49NIr0dJS2o2/GKtWrQhaAPb19eJXv/o5+vv78bnPHRFsc8opp+M73zkfP/zh97Hffgfg/fffwy23XI+99to7qN//1KdmYr31pmHx4kVYuPAsDA0lcN99d6O7u7vqMW2xxXTMn/8ZXHvtIjiOgw022AAPP/yLvOyBnXbaBYsWXYE77rgV2247E88//xz+/vf/V/X5Djnk81i06ApsuulmwQJGsyHBTxAEQRAEQRAEMYrgnOOqq67BbbfdhAcfvA9r1qxGR0cH5szZCT/60ZWYMmVK3j4XXXQpbrrpOtx5522YOHEivvWt72K33cKmepMnT8ZXvnIObrjhp/joow+xxRbTsWjR4lDd/LHHfglTp07FQw/9DL/85UOIRCLYaKONsfvuny7oHVApv/jFQ/jFLx4CYNL3N998C1x22dUhs8F58/bEJZdcjjvvvA3f+c430NXVhUMP/TwWLjwr2CYSieCyy67G//7vj/H9738bG2+8Cc4++zxcd901NY3rO9/5AX7ykytx443XIhaLYf/9D8bs2Tvihht+Gmxz2GGHY/nyj/Dznz8I23aw88674n/+51IsXHhSVeeaP/8zWLToimGL7gMA01rrYTvbGEVKhZ6eoZEeRkkiEY6JE9vR2zs0bPVKxLoPzRuiFmjeELVA84aoBZo3RDau62Dt2o8xefIGiEZjJbcdzhr+ZvP447/BZZddjEcf/T0mTJhQdLtLL70I//73m7j33iXDN7gxRr3z5tFHH8FVV12GX/3qscA3oRjl5vOkSe2wrPIV+hThJwiCIAiCIAiCIIgm8fHHy/Hhh+/j7rtvxz777FdW7DcSEvwEMQ5I2QL9Qw7Wn9R8J1CCIAiCIAiCIDLccccteOqpJzBz5vY466yvD+u5KaW/AVBKPzHa6U/YWDuQxvQNqzMzoXlD1ALNG6IWaN4QtUDzhshmvKb0E8PHcM6bRqX0U1s+ghgHKA0opaFofY8gCIIgCIIgxg0k+AliHKCUhlQaIL1PEARBEARBEOMGEvwEMQ5Q2gh+ivATBEEQBEEQxPiBBD9BjAOU1tAaIL1PEARBEARBEOMHEvwEMQ6QQsP4c5LiJwiCIAiCIIjxAgl+ghgHCKWMcR/pfYIgCIIgCIIYN5DgJ4hxgJSmfQh14SQIgiAIgiCI8QMJfoIYBwhlCvhJ7xMEQRAEQYx+br/9Zuy776dHehgN4dJLL8K8eXOD/xYsmIcTTzwWjz76fyM9tIIMDg5i3ry5ePzx34z0UBpCZKQHQBBE85FSQ4NM+wiCIAiCIIjhZ8MNN8IPfvAjAEAqNYRnnnkal1/+I7S0tGLBgs+O8OjGNiT4CWKMo7x2fFpraDLtIwiCIAiCIBqMbacRj7cU/X08HsfMmdsFP++006745z9fwzPP/GlMC/5y92U4oJR+ghjj+C35FCjCTxAEQRAEMVZ45523cd55Z2HBgnn47Gf3xPe+9y2sWLEi+P2Pf/xDfPWrXw5+7uvrw6c/vRO+/OUTgteSyST23HMX/PGPvw9eW7ZsKS644Dx89rN7YsGCefjmN7+Gjz76MHTuefPm4t5778INN1yLQw/9LA4+eL+qx9/W1g4hROi1FSs+xve+963g3OeddxbeeeftvHPff/+9odeWLLkf8+bNDX5++eWXMG/eXLz44vO46KLvYt995+OIIw7Gz352d944fv3rh3HkkYdgn332wNe+9hV89NEHedv89reP4itfORX77bcX9t//MzjrrNPx5ptvhLbxyzDefPMNLFx4Mvbee3f88pc/xymnfAkXX/y9vGPecMO1OOyw/SGlLH+z6oAi/AQxxvEj/NCaTPsIgiAIghh3aK0B4eS8xqGFGp4BRGJgjDX0kCtXrsCZZ56GjTbaGN///iVwHBu33HIjzj77dNx99wNoa2vH7Nlz8NRTT8C2bcTjcbz66suIRmN4663/IJkcQltbO9544zVIKTF79g4AgI8++hBnnHEKpk/fEhdeeBE4Z7jnnjvwta99Bfff/0vEYrFgDL/4xQP45Ce3wwUXfB9SimJDDfDFfSqVwjPP/BGvv/4qvve9i4PfJ5NDOPvshWCM4fzzv4NYLI577rkDZ555Gu6++wFMm7Z+1ffpqqt+jM9+9kBcdtlV+POfn8aNNy7GlltuhV133R0A8Nxzf8aVV16KAw88BPvssx/+859/4fvfvyDvOCtWfIz99z8Im266CdJpB7///e9w1lmn4667HsCmm24WbOe6Li6++Hs46qjjsHDhmejq6kZbWysWL/4JEokEOjo6AABSSvzud4/jgAMOhmVZVV9XNZDgJ4gxjtIaWmlAU4SfIAiCIIjxhdYayV9fCrXy7fIbNwlr2lZoPfTChor+JUvuh5QCP/nJdejq6gYAzJixDb70pS/g8cd/gyOPPAazZu0Ax3Hw5ptvYIcddsQrr/wD8+fvhRdffB6vvfYqdt11d7zyysvYZJNNMWnSZADAnXfeiq6uLvzkJ9cjHo8DAGbOnIWjjjoMjz76CA4//AvBGDo7u3HZZVdVdF1Ll76LvfbaNfTaMcd8Cfvtd0Dw82OP/QYrVnyMe+9dgs033wIAsMMOc3DEEQdjyZIHcPbZ51Z9n/baa2+ceupCAMDcuTvjb397Dk8//YdA8N999+2YNWsHXHjh/wAAdtllNziOg7vuui10nJNPPg0AEIlwOI7ATjvtgn/965/47W8fxcKFZwbbCSFw+ulfxT77ZDIeNthgA1x33TV46qkn8PnPHwkA+NvfnsPatWtw0EGHVn1N1UIp/QQxxlEKUNDwND9BEARBEMS4gqGx0fXRwKuvvoI5c+YGYh8ANttsc3ziE1vhtddeBWCM8tZbbxpeffUf3j4vY4cddsT22++AV1552XvtH5g9e05wjBdffB7z5s2HZVkQQkAIgc7OTsyYsTX+/e83Q2PYddfdK17E2GijjXHbbffgttvuwXXX3YLTTvsKfvnLh3DnnbdmXdM/MH36loHYB4Curm7MnbsLXnvtlepukMdOO2UWGRhj2GyzzbFq1SoAJsr+n//8C/Pn7xXaZ6+99sk7zrJlS/Gd75yPAw5YgPnzd8Zee+2K999/Dx988F7etrvtNi/0c3t7B/bee1889tivg9cef/w3mDVrB2yyyaY1XVc1UISfIMY4ShuxzzgopZ8gCIIgiHEFYwyth16Yl9IfiXCIdTilf3BwAFttNSPv9YkTJ2NgoD/4efbsOXjllZcxNJTA22+/hdmz5yCdTuHpp/8Ax3Hwr3/9E4cc8rlg+76+PixZ8gCWLHkg/zIi0dDPkyZNqni8sVgM22zzydC4ent7cM89d+CII45CV1c3BgcHMXFi/jEnTZqEpUvfqfhc2XR2doZ+jkajGBwcBAD09fVCSpl3ztzrSiaHcN55Z2HChAn42tfOw9Sp6yMej+Hyy38ExwnPq5aWFrS1teWN49BDP48zzjgFb7/9FiZPnoK//vXP+Na3vlvTNVULCX6CGOOY+n0AYJTSTxAEQRDEuIMxBkTj4dciHIwNk+BvAl1dXejt7cl7vbd3LTbZJFNTPmvWDrjuup/gH//4O7q7J2CzzTZHKpXCjTcuxssvvwTHcTBr1g5Zx+3GbrvtEUrd98kXsvUtYmy22RZwXRcffPABPvWpbnR1deH99/Mj5j09Pejs7Ap+jsViEMINbeOL+GqYMGEiLMvKu489PeGf33jjdaxatRJXXPETbLvtNsFC0dBQAsB6oW2LLezMnLk9tthiOh577NeYNm0aYrE4PvOZBVWPuRYopZ8gxjhaaQAaDGTaRxAEQRAEMRbYfvvZ+PvfX8TAwEDw2vvvL8M777yN7befFbw2e/YcpFIpPPjgzwJhv9VWMxCPx3HffXdhvfWmYYMNNgy2nzt3Zyxd+g622mprbLPNJ0P/bbrp5g29hnffNVH7CRMmBNf07rtv4/33lwXbDAwM4KWX/h+233528NrUqevhvfeWho714osvVH1+y7IwY8Y2ePbZp0OvP/30H0I/23YagMkO8Hn99Vfx8cfLqzrfIYd8Hk899Vs8+uivsc8++6K1tbXqMdcCRfgJYozj6X0wRhF+giAIgiCIdQUpFf70p9/nvb7ttjNx1FHH4bHHfoPzzjsLJ5xwChzHxq233ohp09bHgQceEmy72WabY+LESXjllZfx9a+fD8AI3e22m4Xnn/9ryDQPAE49dSG+/OUTcN55Z+PQQz+PSZMmoadnLf7xj5cxa9Zs7Lvv/jVdi23beOON1wEAjmPj1Vf/gd/85mHstNMu2GijjQEABx10CJYsuR/f/ObXcdppXwlc+i3LwlFHHRsca6+99sHPf/4AttnmU9h0083w5JOPY/XqVTWN68QTT8EFF3wDl112ceDS/7vfPR7a5lOf2g6trW1YtOgKnHjiyVixYiVuv/1mTJ26XpGjFmb//Q/ETTctRl9fHy644Ps1jbcWSPATxBhHKQ0wZtz6SfETBEEQBEGsEziOXbBF3Pe//0N89rMH4rrrbsH111+DH/7we+Dcwk477Yyzzz4PbW3toe1nzdoBTz/9B8yalTHnmz17Dp5//q+hdH4A2HjjTXDrrXfj1ltvxKJFlyOVSmHy5CmYNWsHbLnlVjVfy/LlH+GMM04GYCLl06ZtgGOPPR7HH39SsE1bWzsWL74ZixcvwpVXXgalJLbbbhauv/7WUEu+k076Mnp7e3DnnbeCc4ZDDz0cX/jC1rjuumuqHte8eXvi/PO/g3vuuQO///2T+OQnP4WLL74Mp5+eGdekSZNxySWX4/rrr8G3vnUeNt54U3zzmxfiZz+7u6pzdXV1Y/bsOVi1ahVmztyu6rHWCtOkAOpGSoWenqGRHkZJIhGOiRPb0ds7NHwGJcSoYFVfCh+uTAAANpnWgakTKk8fonlD1ALNG6IWaN4QtUDzhsjGdR2sXfsxJk/eANForOS2w2raR4wZ6pk3Q0MJfO5zB+KUU07Hscd+qez25ebzpEntsKzyFfoU4SeIMY6SCmAaDIwi/ARBEARBEAQxjCSTQ1i6dCkefvjnYIzhoIMOKb9TAyHBTxBjHKEUuJfSrxQJfoIgCIIgCIIYLv7973/hnHPOwHrrTcN3v3sRurq6h/X8JPgJYowjJcA4A1OegR9BEARBEARBEMPCnDlz8Ze/vDRi56e2fAQxxjERfoAxQGmqVSMIgiAIgiCI8QIJfoIY40ipwRgDA6BI7xMEQRAEQRDEuIEEP0GMYbTWUF4NP2Nk2kcQBEEQBEEQ4wkS/AQxhlFaQ2lkUvqpiJ8gCIIgCIIgxg0k+AliDKMUoLUx7QPItI8gCIIgCIIgxhMk+AliDGMi/NqL8DNIUvwEQRAEQRAEMW4YdYL/nXfewcknn4zZs2djjz32wJVXXgnHccrup7XGLbfcgr322gvbb789jj76aLzyyitFt1dK4fDDD8fWW2+NJ554ooFXQBCjB6U0tPJM+xiohp8gCIIgCGId4cknf4vTTjsBn/3snthvvz3xxS8eicsvvwS9vT0jPbSaeeut/+D2229GOp0e6aGMG0aV4O/v78eJJ54I13WxePFinHvuuViyZAkuv/zysvveeuutuPbaa3HSSSfh5ptvxtSpU3HKKafggw8+KLj9gw8+iJUrVzb6EghiVKGDCL9x6ddak+gnCIIgCIIY5fzsZ3fjkkt+gO233wEXX/xjXHzxZTjooEPx73//C2vWrB7p4dXMW2/9F3feeSsJ/mEkMtIDyObBBx/E0NAQrrvuOkyYMAEAIKXExRdfjIULF2LatGkF97NtGzfffDNOOeUUnHTSSQCAHXfcEfvvvz9uv/12XHTRRaHte3p68NOf/hTf+ta3cOGFFzbxighiZFHapPUzL6VfaUADYCM9MIIgCIIgCKIov/jFQzjggINx9tnnBq/tttseOO64E6BGWZ9l204jHm8Zd+deVxhVEf5nn30Wu+22WyD2AeCAAw6AUgrPPfdc0f1efvllJBIJHHDAAcFrsVgM++67L5599tm87RctWoRddtkFu+yyS0PHTxCjDePKb1ry+SKfIvwEQRAEQRCjm8HBAUyePKXg7zgPS7jHH/8NTjzxGOy99+743OcOwM03Xw8pZej38+bNxRtvvI5zzjkD++yzB4488hA8+ugjecd+443XcM45Z2DBgnn47Gf3xEUXfTdUQvDxx8sxb95cPP74b3DFFT/CgQfug9NOOxEA8Ne//gVf//pXcfDB+2K//fbEaaediOef/2toHJdddjEA4OCDF2DevLk48shDgt+/887bOO+8s4Jzf+9738KKFStC45s3by7uvfcu3HDDtTj00M/i4IP3q/SWjltGVYT/3XffxRFHHBF6raurC1OnTsW7775bcj8AmD59euj1LbfcEnfffTfS6TRaWszKz2uvvYZHH30Ujz76aINHTxCjD6W9kD4AMOPYT3qfIAiCIAhidLP11tvikUd+hQ033Ai77z6vqPh/8MH7cOONi3HUUcfhrLO+jmXLluGWW26AUgpf+crZoW0vuuhCHHbY4fjiF0/EH/7wJC6//BJMmTIVu+66OwAj9s8+eyF23XUPXHzxj5FOp3DrrTfiggu+gZtvvjN0rJtvvg677TYPF110aZBx8PHHH2GPPebj2GOPB+cMzz//V3zzm1/DT396I+bMmYvddpuHE088FXfffTv+938Xo729A7FYFACwcuUKnHnmadhoo43x/e9fAsexccstN+Lss0/H3Xc/gLa29uDcv/jFA/jkJ7fDBRd8H1KKht3zscqoEvwDAwPo6urKe727uxv9/f0l94vFYojH46HXu7q6oLVGf38/WlpaoJTCxRdfjJNPPhkbb7wxPvzww4aNPRIZVckSeVgWD/2fGB9wzmBZDJbFEbEsaC3NvyucrzRviFqgeUPUAs0bohZo3hDZKFW4aFFrDUe5wc+MAVKY7kXDEQiJ8SgYq66g8hvf+DYuvPCbuOKKHwEANthgI+yxx6dx9NHHYYMNNgQAJJNDuP32W3DccSdg4cIzAQA77bQrotEIFi/+CY477nh0d08Ijrn//gfh+ONPBgDssstuWL78I9x5562B4L/ppuuwzTbb4rLLrgrGO336J3DCCUfjb3/7C3bbbV5wrE98YmtccMH3Q2M+4oijg38rpbDDDnOxdOm7+PWvH8acOXMxceJEbLTRxgDMgkZ2VveSJfdDSoGf/OQ6dHV1AwBmzNgGX/rSF/D447/BkUceE2zb2dkdGuNw4Z+OseENoFkWq0trjirB32x+/vOfY82aNTj99NMbelzOGSZObC+/4Sigq6t1pIdADCOuZujosNHV2QrblbAdge4JbYhHraqOQ/OGqAWaN0Qt0LwhaoHmDQEA6bSFNWt4SCBprXHVizfgnb5lIzauLSdsjm/udGZVAnXGjBl44IFf4MUXX8ALL/wN//jHy/jFLx7E44//BjfddBtmzNgab775OlKpJBYs2BdApq5/l112xdVX23jvvaWYM2dHcG7O+5nP7B0Sjp/5zD5YvPgnYEzDdR28/vqrOPvsr4MxDT9FdIstNse0adPwn//8C5/+9PxgcW3evHl5InTVqpW46abr8eKLL2DNmjVBGek222wbbOuPJRIJi9jXXnsFO+64EyZNmpi5b1tOx1ZbzcDrr7+KY445Lnh99933QLTKZ9lGMlwLjEoxcM7R3d0WZKvXwqgS/F1dXRgcHMx7vb+/H93d3SX3cxwHtm2HovwDAwNgjKG7uxtDQ0NYtGgRzj33XLiuC9d1kUgkAADpdBqJRAIdHR01jVspjYGBZE37DheWxdHV1YqBgRSkHF1GH0Tz6O1LIpGwEbMYHCFh2xK9vUMVC36aN0Qt0LwhaoHmDVELNG+IbBzHhlIKUmoIYeaD6VA0suPSGhBCVR2RZszCzjvvjp13NhH4F174G771ra/jtttuwWWXXYWenl4AwIknHldw/48//hhCKM/TCejqmhDcFwCYMGEihBBYu7YHUkpIKXHNNf+La67537xjrVixAkKo4HPW3T0pdCylFM4//+tIJBI49dSF2GijTdDa2orbbrsJK1euCLb1xyKEDu0/MDCAT3xiRug1M8ZJ6O/vLzDu4f+8M2a+c6RUwzKnpNRQSqG/P4lUSub9vqurtaLFh1El+KdPn55Xqz84OIjVq1fn1efn7gcAS5cuxTbbbBO8/u6772LDDTdES0sLPvzwQ/T19eF//ud/8D//8z+h/b/97W9jypQpJY0ByzESk64WpFTrzFiJ+rEdCaW1+WLy/vi5roRV5R8cmjdELdC8IWqB5g1RCzRvCMAIpFwYYzhvzldCKf0AELEYRIHtm0EtKf2F2GWX3bDlllvhvfeWAgA6O00p9KWXXlWwm5mf+u/T29uDqVPXC37u6elBJBJBd/cEOI4DxhiOP/5kzJ+/V96xsksDgEx6u8+HH36A//73P/jxj6/Gpz+d2d+27YquraurK2QOmBnzWmyyyWY5r45Mvylf5A/3AlL2AlYtjCrBP3/+fNx0002hWv4nnngCnHPsscceRfebM2cOOjo68Nvf/jYQ/K7r4sknn8T8+fMBAFOnTsU999wT2m/NmjU477zzcPbZZ2P33Xdv0lURxMghpArVGwFk2kcQBEEQxPiCMYa4FQu9FolwWBi9i0Q9PWsxadLk0Gu2ncaqVSuxxRYm2Dlz5vZoaWnB6tUrseeenyl7zGeffRozZmSCo88880dsvfW2sCwLra2tmDlzO7z33lJss81Xqx6vL+wjkWjw2ooVH+P111/FJptsGrzm/95xwgsB228/G7/+9cMhHfj++8vwzjtv46CDDq16PESGUSX4jznmGNx7770488wzsXDhQqxcuRJXXnkljjnmmNCq1Yknnojly5fjqaeeAgDE43EsXLgQixcvxqRJk7yalwfQ19eHU089Ndgmtw2fb9r3iU98AnPmzBmmqySI4UMpDR4ofkBh5NPaCIIgCIIgiNKccMIx2GOPT2PnnXfDlClTsHr1Kvzyl0vQ39+HL3zhWABAZ2cnTj31DNxww2KsWrUKO+ywIyzLwvLlH+LPf34Wl156Zaj2+4knHkM8HseMGdvgD394Eq+88jKuuuqa4Pdf/erX8LWvfQU/+MF3sM8++6GzsxOrV6/Ciy++gAMPPARz5swtOt7NNtsc6603DTfddB2UUkilkrj99ptDGQUAsPnmmwMAfvWrn+PTn94LLS0t2HLLT+Coo47DY4/9BueddxZOOOEUOI6NW2+9EdOmrY8DDzykwBmJShlVgr+7uxt33303LrnkEpx55plob2/HkUceiXPPPTe0nanNCdcxnHbaadBa44477kBPTw+23XZb3H777dhkk02G8xIIYlQhpM5E+MFMWz6Q4icIgiAIghjNnHLK6XjuuT/juut+gr6+XnR3T8CWW24VtLjzOfbYL2Hq1Kl46KGf4Ze/fAiRSAQbbbQxdt/904hEwlLvoosuxU03XYc777wNEydOxLe+9d2Q8/52283CDTfchttvvxk//vHFcF0XU6dOw9y5O2HjjUtrqlgshksvvRKLFl2B73//Aqy33jSceOIpePnll/Dvf78ZbDdjxjY45ZTT8eijj+D+++/BeutNwy9+8RtMm7Y+rrvuFlx//TX44Q+/B84t7LTTzjj77PNCLfmI6mFaU7yvXqRU6OkZGulhlCQS4Zg4sR29vUNU4zaO+M/7vRBSob01Cq01ehMOZmw8AR2t0fI7g+YNURs0b4haoHlD1ALNGyIb13Wwdu3HmDx5A0SjsZLbRiJ83MyZxx//DS677GI8+ujvQ63wiOoZznlTbj5PmtRekWkfNS0liDGK0hpK68AkhnlNQ2mNjyAIgiAIgiDGByT4CWKMopSp1+chI1NGNfwEQRAEQRAEMU4gwU8QYxStNZQGWJbi16AIP0EQBEEQxHjiwAMPwV/+8hKl849TSPATxBhFKd+lP/Ma04ws+wiCIAiCIAhinECCnyDGKEprQGe15QMAastHEARBEARBEOMGEvwEMUbJNe0DADBQSj9BEARBEGMaetYhxgKNmsck+AlijKKUL/izXyXTPoIgCIIgxiaWZQEAHMce4ZEQRP3489iyInUdp769CYIYtSgNACwc4SfTPoIgCIIgxiicW2ht7UAi0QsAiMXiOc9BGZRikJKeiYjqGI55o7WG49hIJHrR2toBzuuL0ZPgJ4gxilIFvow0gxr+oRAEQRAEQQwLXV2TACAQ/cXgnEMpeioiqmM4501ra0cwn+uBBD9BjFG01siz5GfGyI8gCIIgCGIswhhDd/dkdHZOhJSi4DaWxdDd3Yb+/iRF+YmKGc55Y1mRuiP7PiT4CWKMopQ2Aj8LxljhyD9BEARBEMQYgnMOzmMFfxeJcLS0tCCVkhCCovxEZayr84ZM+4h1CqU1JKVfVYTSGgz5dWt0+wiCIAiCIAhifECCn1in6E84WLE2OdLDWCcQSiNX7zMGSE2KnyAIgiAIgiDGAyT4iXUKVyqkHDnSw1gnkFKB5wl+astHEARBEARBEOMFEvzEOoVwFVwhoUi1lkVIndeKhqGIez9BEARBEARBEGMOEvzEOoUrFZQCOapWgFQKPFfwM9BiCUEQBEEQBEGME0jwE+sUjpCQioz7KkFKDZbzCWeglH6CIAiCIAiCGC+Q4CfWGbTWkFJBKQVJaeklMd0MdF6EHwx07wiCIAiCIAhinECCn1hnkEpDau//lNJfEqU0NEwKfzaMmYUTgiAIgiAIgiDGPiT4ibpY25+G4w6Pa74v9E1KP4nWUmitoQtE+E1KvybRTxAEQRAEQRDjABL8RM1ordE/5AxbmzwpjVBlMC3niOIoBSiNfJd+Zl4nuU8QBEEQBEEQYx8S/ETNmDpxNWxt3vzzWRaDQ4K/JMqL4vP8En4AlNZPEARBEARBEOMBEvxEzfjt8YZLPEqpoAFYFofrkuAvhVQaSusCEX4GDZBTP0EQBEEQBEGMA0jwEzWjtYbUetgi/FKZdH6LMThieMoI1lWCCH+BEL/WJPgJgiAIgiAIYjxAgp+oGaWNiZ4argi/t7BgWQxCqmE777qI9lz6c2EAmfYRBEEQBEEQxDiBBD9RM8YYTkEMU4TflQqMMXDOgnICojDmLclE9//7QR/6Bm2T0k8RfoIgCIIgCIIYF5DgJ2pGaQ2lh88xXwgFzhksxrzWfFTHXwylNJgn6j9em8SDf3gb//eXpWYJQGsUjv8TBEEQBEEQBDGWIMFP1IzyQsXDFWl3hQJnAOcMUqkgxZ/IR2kNX/H3J2wAQCLlgjGQaR9BEARBEARBjBNI8BM1o5U2qfXDILy11nCFgsVNSr/WlNJfimx/g7RjDA6FUJ5LP9XwEwRBEARBEMR4gAQ/UTNKAwrDI/j9NnPcbzOnNcQwlRKsi0iRuVeB4PcWSLQGJfQTBEEQBEEQxDiABD9RM1prwKulb3bEWCnT/i9oM8eGZ6FhXUUoBebdK9v1Bb8yKf1aU0o/QRAEQRAEQYwDSPATNaO8qLvR/c1VkDJH8DPG4FKEvyhSGr8DIBPh97scAIxaGhIEQRAEQRDEOIAEP1EzvmhU2rToayZSaQitYXkqlnMG1yXBXwyhtCfuAdsRAEwqv/KzIkjvEwRBEARBEMSYhwQ/UTPCi7j7kf5mIpUpPPdFrMUZHCGbes51GSl1JsLvZu6T8T0g0z6CIAiCIAiCGA+Q4CdqRkrjmg+tM5HjJqGUDvWSsziDkIpS0wvgL8BkIvwZwW/KIBjI/oAgCIIgCIIgxj4k+ImaUcqk2KthiBhLqUJZ6JwzSEWt+Qrh+yrkuvQDnlM/LZIQBEEQBEEQxLiABD9RM0JqWJaJFjc7YiyUcZj3sRiDkgqy2eYB6yCZCL/52XZyU/oZpfQTBEEQBEEQxDiABD9RM1KZXu8s2wyuSbhCZVrywYvwa02t+QqgtIb23hugQA0/a35XBYIgCIIgCIIgRh4S/ERNaK2hlArqxJstIB2hAod+wAh+rb0UdSKEUoCCBuPmfQpF+IUx7SOXfoIgCIIgCIIY+5DgJwAAybSoanulNZQGOAM0mm/aJ3Ii/AAArSElpfTnknlvGIQMZ0GYBRIGumsEQRAEQRAEMfYhwU/AdiVW9CZhu5W3udOe95uJ8LOmRvilUkH5QAgGSukvgNKZFobZ0X2A2vIRBEEQBEEQxHiCBD8BKU2kvJoofa4xXDN1tzkXQin9gBG0LkX489BKw8/ZT7v5gp8x1vSMDIIgCIIgCIIgRh4S/ASUlxpfTbQ82xiOMUA1UXgLqaGkyovwW5zBdUnw55Kl95F2wqUaQmowAJpuG0EQBEEQBEGMeUjwE5BKG1FdRZp3tjEcY6ZtXrNQWkNqnVfDzzmDIyovQxgvSKXgp14UTOlngCTFTxAEQRAEQRBjHhL8BJTSEEp5qeAV7qM1tGcMxxmDbKLultI7Fy8Q4ReKWszlkB3hz/VlcIWf0j/84yIIgiAIgiAIYnghwU8YUzxZXU97I/g1mJfS38wIv1S6YBc5zhmUNgsCRAYlFcC8Gv68CL+X0r+OLpKkHYGUXV1HCYIgCIIgCIIYr0RGegDEyKOUhqwypV9ntXI3Ef7muvSzAq9bjMGWElIpRGntKkCojN9BvuBXYAyQ66jg7xu0oQC0xumriyAIgiAIgiDKQU/NBIQw0f1qjNuNy7sRlSZFXAUR/0ajlC4o+DlnkFp7veUJHykBxovX8DOwdTbCT10ZCIIgCIIgCKJySPATcKWChvZ6tFeG1trPGgdnpm5caQ2rCYLfERKFDss5g9aoqhRhPGAi/ObfuTX8QppWiutqDb8QGUNCgiAIgiAIgiBKQ3nQRCD0ZRWCXykd1IkzT3g3S0S6rsoz7AvwWgrWitYa/UMOlq8ZGjO96aXMZFr4Kf3+/fNd+tfVa3VldQtTBEEQBEEQBDGeoQg/ASGNoBaiCsGvNZif0u/93Cy3fFdqWMUEP6s9wp9Mu1jdl0LPoA2Lc0zuakE8ZtUx0pFHaw1VoIa/oyWCgaSbSemHbloJRrNQWnt+DuvOmAmCIAiCIAhiJCHBP85RytTvRziDqEI4C6X9En5wxqCVbkrUWGkdLEgUgjFWdV2340qsGUhjTV8aQip0tEYwlBYQSiGOdVvwm4UXZFL6HeNo39Ea9QS/SenX2vy3Dul9KKWhFMCYmWtFsz4IgiAIgiAIggBAgn/c45v1WRaHlJUb70nP7R0AGAeUFzFu+PikhtaAZRUek8UZXLcywS+VQt+gg5W9SaRsgfbWCLra4wCAwZQ7Jsz/lPKEvBWO8Le3RgH4pn2mw4Jpdjgyork/YaMlFqkqo8JvHWlxBqU1OEX6CYIgCIIgCKIkVMM/zlFeZD5iscB4r9L9/LRxzvx9Gz8+qRRk1rly4ZzlGdMVwnElli4fxLKVA9BaY1JXHC2xzHoX06wuL4DRgl9akWva1+EJflcoMMaCCH9Fx2zCG9szmMZQ2q1qH6nMopJJ7R/dizNKa7y/chApW4z0UAiCIAiCIIhxDAn+cY6J8CtELF6V8Z6fGg6YtHro5ghD5Y2vWA2/xRmEVGXPPZQW6BuyMbEjjvbWaF4WA2MYE2ZwSmlolW/a19piPurCy8zQQEUZGa5QePejPrhV+DuUQ2sNV6iqRbvSGlLrppWPNBIpFWxXUhtBgiAIgiAIYkQhwT/OUdqIJ4szT/xXJqTyo+7NMe0TqnS9Nucmu0CWWalIpQUszkocJ7+F3bqIDiL8DFrr4JpaWnyXfh1sV8nbJaQK/msUxpeh+u4K0lvMULo55SONREhvUWMMlIkQBEEQBEEQ6y4k+Mc5UplKbs6Nk1slkVPfCT4UJW9ihB+6eK22xRiUVCXr75XWGEw5iEWLT3eL8zEh+P2yDMYAR6hA1LfFTa28ifBXntKvlBHnjXxvlTLjdKrMGjCtINk6kdIvpIIQ5TNPCIIgCIIgCKKZkOAf5yilwbRfh19ZlF579fqhAL+3f6MpFyHlnEGWEYC2I2E7ErFIcYM4y2JwXNW01oLDhRGYDIwx2F46P2cMsZgf4ffMFit8r/0uCY0U2L5vRLXp7tJzJNRojl9EIxFSwxGqbOYJQRAEQRAEQTQTEvzjHKlUEOFXFUb4lZcOznMj/M0w7dO6pJE85yZaXVLwuxKuUohGSkX4mWlRuI7XXCutTYE+MvX7LTELlrfWke3SX9HxvAh/IwW/b74nqozwZ8pI2KiPnEu/FEKM7nESBEEQBEEQYxsS/OOcbLd9jcrS8pVXRx2O8Js0/0YjXFW+V7wuLdSTtijbws33MFjXW/OZtHdzDWnHOMTHYxa4J/gzLv2V1cErDYgaDPZKH1MHWRnVRMBdIcGYubzRLvhdabJFyLSPIAiCIAiCGElI8I9zhMhy268wSq88p/TsCD9nrCkGZa6URR36M7CiglRrjUTSRbRE/T7glQaoxprTjQR+9gWQMSFsiVlgzFyX312h0rR4E+FXDV3MUV4PRz+1v1KEyJg3jvbSC8dbqHLEuu8LQRAEQRAEQay7kOAf57hSZZzrWWWp0koZwciyZg/jrCnRcUeonG4A+TCOopFUx1VIOxKxEun8ALyod3OuYTgx3grmfvk1/NkRfj8TolKXez8a38j7Yo6ZKReolGCusuoyA0YC25WIWBxSqlHfUYAgCIIgCIIYu5DgH+cImSWotVczXwbf3C8c4S/fGq9afMO4Yq30fCzO4BZx2E87AkKWrt/PsO7X8EuZKYEIavijFhj3IvzBgk5lJou1GuyVOyaHmWuVRuq1V7bBGQNnbFRnYviZIlGLQ5bxlyAIgiAIgiCIZkKCfxyjtekVzr1ZwDigKhBSfv13dls+xhofHTdeASib0s85g+0WHnfKq2NnZY0AzHGcUSwkK0EUEPzxmAXGzXujs+rfK9HaUhkTwGoN9sodk3Fz/krLQKQ3Fzj3yi9Gcaa89EwOo1FujCBJ8BMEQRAEQRAjBAn+cUxupJ6x4qnx4f3yXd45A5RqbPqyVBpS6mBBohgWZ16defjcWmsMJl1EI+XFvn8cxxnFSrICpMy8n0ENf1aEH4C3MKMrUvx+JL2REXU/E0Sj8ui3L5w5Y2CsseNpNKargYnwV+tTQBAEQRAEQRCNhAT/OEYFUVMjECs13vN7vWfDGDMLAQ3UNlKaTIJyKf2mpWB+SYEjFGxHIh61KjqfxVkgktdVpMqYMNoFIvyAEcsarCLTPqkULMuYIjZKuPplGgyVl4FI5RlF8tGf0i+UglJANMKDbgQEQTSXgaSDlC1GehgEQRAEMeogwT+O8UWcHxHmjEFUIMC01n7ntwDOmOf83sgIv4JU5U37LMagpMorKbAdCUdUWr+f3Zpv9IrJcmR7Mvgp/bEoB5DJlHClAkNlbfmkBCJWY1PThfAi9ag8wi+VMQ/kjHkLPJXX/w83Umpjaum1QyDBTxDNpy9hI5FyR3oYBEEQBDHqIME/jjER/owpHuNGjFWyX67iZwzQDU5f9o9Vrv6ec1Ywkmr60OuK6vcBwLKMD0Ez2gsOB74I9q837WUrxKMcGhqWl+ggpAZ0ZfdEKhUI/oZF+L1FHMYBt8K2dUqZdoOcm5R+leVFMNoQ3oIKAEBTSj9BDAeuUHCLeLkQBEEQxHiGBP84xo/w+3qYMy9yWkagmMhqWDByL6W/sRH+yo7FOTMGcDnbm/r9yqe4xTmUUhVlOYxGAlGck9Ifi3ForWF5t8Kk9JePkCtvESXSYLd5IUy2AWes4gd03zwQ8LJJRnFtvOuqYNFFA+t85weCWBdQSsN2KaWfIAiCIHIhwT+OUSor9RiekKpAtGfXifsY13WNRmplI/Iqi0TnttRzhUTKkYhFKqvfBzJeAI3uNpCL40r0DKQbXm+qtfFkYJ7it7NS+k2E37wuhBGk5dZmzAKCRsRi0Eo1ZDHHZJWYLASLM7gV3uv8hanGLi41ElvIoLMEY1hnF5AIYl1CSg2ngd1ECIIgCGKsEBnpARAjh1ThWnyTKu1HdYvvl936zSfIDmigCHOlAqt0SUqzUAQ67Ug4rkBbPF7lWXVTIrJaa6Rsgb4hB72DNlJpgc3X70RrvHEfQaUQ8mRIey0JYzEGoTPtF32PgnLvlPayPThnVTnql8Jvrxf1Fx+kCnWKKLqf1sF4GQeUVg1dXGokjiuDxRXOGVwSIQTRVIK/Pdp8p0QsimUQBEEQhA8J/nGMH+H34byyVOlsUenDKswOqAYhVFmH/uD8HKH08LQjg5rv6misA7xSGoMpF70DaQwMOXClQltLBJbF4DS43tQ88GYJfq+GPxZhEDCRekAHbfnKmfYpBa9EwDNkbIDg970AOOOA5xkhpQYv0zrRZCWYf4/mCL+QClJpWN5gLc4gSPATRFPxv5t8D5YqErsIgiAIYsxDgn8cI3Miq36UvpwQFAVS+g2mdVqjcIVCpXrd4gxOlgHcUMqpqn7fh3M0rDVff8LGyt4UhlIuwID2lgi6ojEARhimGlxvmm3ap5QOFhRiMYakYpmUfmlS+stF7JVXIpBx1K9fuPrzy7yvDFKpihYS3KzFH8YY2Cg17ZPSLKi0xs3c46zysgWCIGrDLDYDyuvsApDiJwiCIAgfEvzjmOyoKRBO6S+FlMVSsCvr7V4JWmu4WbXQ5eCcBfWbQioM2RKxGgS/xRsXeV/Rk0TSFujqiMLi4bFYnMNxZUXp7JWSqY/PtOQDgFiEQzvZLv0KDCi7OBMsIHjvQSMEdtBej3uiXVf2gG7aDWZ+bnQ2SaMQSkEpBYubr1bOTcaIXxpBEETj8RcSldJN92AhCIIgiHUNKnQbxwgZTplnfup2iecl81CVX8MPGN/+RkVd/VrvSkWSlSWsTP2+RCxafZTH4hyOkHWLSalMandrzMoT+wAQsRikbKxfgLn1DIyxwLAvYjEwS4MhO8Kvg8WdksdTJmODMzM3GlGLrjy3fca89npKQ1QZ4QcAsNHp0i9leN4W6yBBEETj8L+rpNINLckiCIIgiLEACf5xjCtVgegyKymk/NTJQr3tzWJBY4SN8h7eKo1++w77UimkHQGtaqnfByyLQar6W6kJ6Y2/yBjMeTRc0TghmO3J4Nfvt8Qi0FpDQyPijcX1UvrLZej7nfAYY0Gkuu4x6kx7PX8OlRPu0usQYOXMhdEo+IX0jA88uFc60YhyCIIgCqM1oMy3VUULiARBEAQxniDBP07RWnumeOHXy9VGm9RJFBHijXPpl17EptKUfoszKKkgpMZQSgTp69WSfZx6kNJEoIuN3+K84dGotCOCD7Sf0h+PWlBQABh4Vg0/UFmEH4FRnlkoqJfsYwIw3RXK3GtVJNtjdKb0G9HhY3HmdRQYfWMliLGC/3fJsgDRYDNUgiAIgljXIcE/Tsk2ZCv0u6L7ZdWJ58IZg2xQxFoqDaErr3u2OIPUpg/zUNqtKZ3fP45Qqm4hLj3zqNLjb5zg11ojkXIDo0I/pT8esyCVBAPzXPoz3g3lBLPWmbaN3HObL2foWA4jfLN7QRrzyFJIpaFyslEYYxANzI5oFI4rQotoftlCo1L6U7YI3tvxiP/9QxDZaK+GP2Jx2A02QyUIgiCIdR0S/OOUoD1ariBlpevKS0X4mSeWG4HMqvWuBOZ1GEimXa9+v7apzRgDNKs/wu8JvFLjZ2hcj3ZXKNiORNS7bjtI6TcRfs4yNfyZlP5qIvyNaYWXOz8YKx+R80Ve9lzlDZxrjcR2VXCfgcz73yjB3zOQRm8i3ZBjrYus7E2ib9Ae6WEQowzfv8SyjHlrvQuTBEEQBDGWIME/TglM8XIEKWelhZTpza7BCswczuqvfQ/Gl1MLXQkMRuhKpQsa5VWKRv1meiZNvfRiBbdYw1oApl0JR6igM4Gf0t8SsyB1ToTfd+kvc3uz6+05Z8EiUT3kGkVanJUtFRCFBD/DqDPn0lrDdQt0ltDlF1cqJe3Khi0SrYvYjmxIaQkxtvDNQE2GVuMyagiCIAhiLECCf5xioqb5Keecl66p1l6dPisgZhlrnGFSXq13JXj14JXW/ReDcwanASn95UZhcRZqn1cPtiPNQoy3gJN2TFprPGpBaRVy6Xf9lP4y75XIjfA34EE6t6UjZwyOKH0PCo2TsfqzMBqNaTmIgotNjfhc+L4bjWobuS4ilYbToEUyYuygtQaYWeg13U9G13cDQRAEQYwkJPjHKdKL1uZmnDOGkkJKKVMrWag2nTE07EGrUPQ2kXLxf39eig9WJQruw7iJ8Ndav+9jcQanTiFuu7JgFkQ2Ec/5vhGR6qGUE9TvA+EafqUlGMuJ8DMWLN4UQ2bVzZsuCI2I8OcIfs4gZekU3ELnNAsQoyt1V0hlFjRyPhuMNyYbQXoLLo1oG7muIqSCM44zHIjCmM8DMyaZSo3Kch+CIAiCGClI8I9TfBGVW2Nerv2a0iHLtfC+rDGiEDB15rmR+jeX9eC1d9biuddXFNzH4gwpW9Rcv599nHpT7R2RP/6881jctO+rc5FESIWkLYN0fiCrhj9qQUGDgQdt+fz3V+f45+UipQbz9rE8wV9vhN8VKrQQwjkgy/SplznO94BJ6W+Ep0AjMa0Y8993zhncBkTlpdTeORq3sFYPtiuxqjc5bKUVWpsFqkaYRxJjC/+7zG/POtqyfwiCIAhiJCHBP04pJrD8vuHFhJQqIL58GDP6sREizBH55QaDSdf7v1Nwn1iEe7Xq9Qv+enqnZ1oelhb8Ecv4JdRbk5x2pGdUaIVeA4BYjENr5UX4zX0xpn1mu5IRfqWRewn1CP7AfC9rkcni5UsFZNZ4fZj3YD+aAnlSqjyvAaBxfgNSKdPir0FZIfVguxIfrkrg/ZUJrOlPDcs5fcNQ2YDSEmJsobyUfkP9HiwEQRAEMZYgwT9OKRaFD0R7kd9rrYvWpnPGoBtg7AagoGAeSpu6dF/459ISj2BSd7zuc1uWqQ+vNUrkCxKrTIcB0xGg/tZ8jmdUmH2/fMEfj3Jo6FANvzHtY9C6tHGfn/qfTT3vrVReh4eQ+Z4n+Evca1eqvIUHf7/R1N9eKg2m899zi5tuDPVGpYXSUAoQDci0qAdf7PclbLS1WFjVm8ZQuvBnspEoZbI6SPATuUiR8S+BbpyXTK24QmL5mqFR9f1EEARBjF9I8I9TivU+Lyfa/Rr+QrAGtW4zPezzBfNQyoiKobTb1Acpi3MopWqOEgWC3yot+AEjuEWdNclDaTcvjdyv4Y9GmbdIk1vD7xldFcnpV9qPxodfryvC7wnV7GNyziB1aS+BQtkenGVSvEcLokAmApBV6lLv50Jq8241YJGoVrLF/sTOONpaopBSYWVPsuniRnm91sstEBHjD6kzi4KcA44rRnQ8jlBIpsW47qhBEARBjB5I8I9TXCHzWvIBWZHTYin9KN5bPhBhdT7j+JHbvAi/J/i1RlMjivXWgUqvlrtcSr9/rnpc15XSSKTcPN8Cv4Y/HvMi/Iwh4tX4C6mzyi+KH1fr/Pe6nlTZwPAx65iMmQWJUscVQuXNVcYa4ynQSIoZNfotDesVqVIqMJiSmpEQ/Lli35/fXR1R9CZs9Aymm3p+pTS0V2pTa7kNMTaRMhPhtywGe4Q7WWgNuJJaSBIEQRCjAxL84xQhijjtc0CheIS/UD11sG+DIplCFhH86UzUplhaf+OoPYoqlTLjL5PSD5g6/nQd0SjblXBdhVgk3JkgqOGPsry2fOa6WEnTPhM9R56jfj0PsL43RJ6LPYpnDvj1/YXaR+pRZtrnuIWNGnkFPgUVHT8osRj+CH8xsQ+YjJiWmIWVvSmk7OZFVrXW5rupjMkjMf6QWR1nLM7gunJEjR2V0nDFyGXiEARBEEQ2JPjHKa7Mj5oCfvpx8chvdtqy40r0DGSiekaEFU/5rxSlNWROJFhrE8n2yf53c6i9DlQqDWhWNBMiG4tzOG7tbdbSjokiRSI873UAiEY5AA3Oslz6hfdwXGJxRinz0Bpy1GesrvID33St0H0pJuAK1f1nMBHf0YDSpl2exfO/UjkzZQt1dzhwTdaIVWdWSLU4JcS+T3tLFLYjsKo32bRFGP97iWN0dCkgiiOkwsre5pd5+MisBVZTJjSyi0JaawgpKaWfIAiCGBWQ4B+H+CnUBbSJZyRX3JxNqUzU9xdPv4PrfvUG1maJ/lJp4pUipQ5aLPnYnjGdT7Mj/JwDtlNbtFJIVayRQR6WxSBU7anyKUfkLdzILBf3eJTBH4zlJQEIpYKU/mLaTHmOfvkR/vpc+gtlFDDGil5/EOEvtHgyiiK90muXV8i3gfPSn6lKsV0JizNYnNfdNrJShFT4oIzY9+lqi2HtgI3+ROEuGvVi5iQAxiilf5TjuBKDQy4c0fx5asrIVFaEn3stLEdujigNCAXYI+wlQBAEQRAACf5xiSqQrh2ihJASWQ9Wq/uM0F/bn127y+oWNlJp5D6qDaXCD07FWvM1inqiqMYFvzIi3IhdV1R/z7TWSCRdL4qfIZ0lBqMRBs/qLRCjUmrPpb+8aV92NN60K1Q1R3CVym6dlYEzY3JVCOnX/Rf6pvJKSEYDQpp2eYVS+gHjfVFvS0PhHd+yjOv/cFx72pHoTzplxT4ARCIc0QjDyt4knCYsSJhsDu3Nl+FZ8CBqQ0iT8TIcC3Lay/wIavi976laPVgagfLSUWyHFqYIgiCIkYcE/zikmCleNsXS8rPNkfwoo+8IDxg9V29Kv1T5gjmRY9LX7JR+i3M4orZUe1eoguZtheCcQaraolGOULBdiVhOOr//fsQiHOBG3APIuPR7Kf0KpU37cl36g3KPGh/ii+1XyhvAGPMVLj8xv69pKA1HKg2hdVHBb3wK6vE/UFAaXoTfNwFsvpiQUnkLLpUtYXW0RjGUcrGqN1X0e0ApjZQtqv5seXrfzJcRNmUjSiOkghBqWEovlNZ+4gcA33R1ZA09/Q4itiupNR9BEAQx4kRGegDE8CN9wV/Ufa/ww5KfOum78QeCPzuax+rvjV4oQp7Mi/A3WfBbDK4wzuo8Umm83uCI4pHeXOoxYbMdCSEUOlrDH2O/fj8es4ynQk6EXyhv0aaE34J5C8M+BJwDSpi5keMRWBFFW0Hy4t4AUvkP8wUMJhlGjSmWkArIyYjIhqG+lH4hNZRU4DHzXpuIv0a0yd/gUumKs1UA8z51tkWxui8VpPa73sJU2hFIpkWwWLfptE50tEYrPrbJEPE8DKg2elQjlIYj1DBF+I2XB7cyC58M9XUUqRc/O0oqDVcqxHkNX5gEQRAE0SBI8I9DguhtCVFaKPqWnToppArqv9OOLLtvNdiOAs+phfYj/BGLQUg9DBF+BltKCKkQjVSeCKO1hlvErb04tbVZSzsiaLmXjb8A0xKzoEwjRQDhlH4j9Fkxk/6C9facMWhV+4JOofZ6AGB5D8ZSqTzTOylVoSoAAEbwj+RDfTZ+54NisDrT0HMzCIRSw7LYITwDymqIRS3YQuGj1YNIJR0kUi4cV3qijCEWsZCyRdViUHklKH5WTKH5QowOHFdAyOFpn6hUOKXfMDKtKzNj0t7fKvM5jUdJ8BMEQRAjBz0tjUP89mjFAvycMcgCNeW+yzpnLFSbmB3hN4sB9Qn+tCMCR3mfIU/grzexDcAwRPg5g1DVR6ik8joMVCH4LZ6/aFIJgykXESv/I5wd4ZdKZlL6s8YkpYn8F1ub0Tq/3t64X9eeKiukKnhfSvWpV0oXXZTgjI0at3aToVB8LCaLofaxyqwMApOdUf/nrBKEW3l5SjZdbTEkki4SKRcWB7rbY5jU3YIJHXG0tUSM/0JNgh9ZJQ2j471fF7Bd2dSWibk4rvGYGA7R7RuMZv894xzDZmxZCKHMoq/Wuq7OJgRBEATRCEjwj0P8B+2i6cdFaqqVZ6DGWNgYLruGn7P6apWFVBBK57md+6Z9G0wygn8o7Ta1NjIjqqq7FukJkWoi/JbFqxb8rlBI2xKxaP5H2H8/WqImwu9H1bPvqZAKPDDuy0ep/MWAch0cyiFk4UWmUn3qZZmFqWK1/8ONIxSsAosvPrzONHQhw5F2DT0s0VPTarC6CD9grndydyu62mNoiUXyFnpYDfNICrPgYZWYL0Rh+hM2PliVGJY2cVprOK4xdx2u8ymES9RGuuxDKfN3VOvhuQcEQRAEUQoS/OOQcg/KnJkIRS7Z7v7Z0ZN0AyP8Qhqjp0hOqq6f0j91Yiu88nMMpZsb5dc11NZLqaF04Uh2MSKcVZ3+arsSjpCIFSim9xcPWmIRSC0DR36WFbEX0nRCKNWWr9CCUD1u80Uj/CX61LtCFr2XjI+efuy2K2EVW5lA/R0OZFZ3DMDzLxgGIeGI6uZyxbDqS3+E5x/COYMYYVO2dQ3blehL2Fjdn2r6ufwsp6jFh0V0q6DULPOaxRlcV9ZtIFsr0vOh4XV0eyEIgiCIRkGCfxxSLrJWLFVaew78jIWj+uEIf31t+YTUJh0yN8LvifvO1mhg9NXstH7OWdXRGaFUaUPEAlgWN9ddRcp32hHQCgXFWNox2RDxmAWlFRhMtKsv4cLy1gdcqcBQ3LTPGPvlv16r+ZwfkS10X0r1qRei+L3kXlu+kXbBVkrDFflzNhvzuag9O8J2ZSi13rI47CYLCT8lu5YIf3mqz1CQKlPSoPXwdCkYKzier8ia3lTTW5r6i7bRqAXXVU0X3SalP5yxZnEOqTBirfmkNt9bEYsh5Q5fKQVBEARBFIIE/zikUPQ+G+MunB+NzO7Nnt1nOzsdnfH6nNNdoQCVX27gp/S3t0Yygn8YjPuq7ScuvdTrYuUSxc4jlaoqPT2ZFoF4z8XPvohHLSgtwRiDkpn6Z8DvhMCKRvilVEVT6Yu57Zci2/+h4O9ROHOgVISZM+YZSY6s4BfSLPKUEsacZ8o9aiG384PFWdNrlI25Y+FFpXqpxX8huz2jaXNIEf5KUFrDERJtLREorbGyJ9XU2nohzWJOLMKHpT2eVplOJD4WZ5DDZBpYCCk1GPfau7q1tXclCIIgiEZBgn8cUiy12odzz5E/50HNr+HnOWIj+99B1LXW1GWp8szigIxpX3trFJ1tRvAnhsG4r9ooqlSqlFl7Qbhv7lThQ7hUComUi2iR3nh2YNrHoaDBwAOTxiDCL5TXv7rw+yRl4ch6ra3wpB/hL/KNU6hPvdY6JPIKjWWk+20DmWsrLfi9qHQNYzWdH2Se4PcXGpqF9EwrS5Uq1Arj1Zf++CIKgPHXIMFfEUb4mjnY1R5D/5CNtf3ppp5PaeNS7382monfQjQbyzJlQiMR4df+wjhMhF9KMu4jCIIgRhYS/OOQUmnSQCYtPzcVM7tTm13EtM+vr69ViBizp/DYXCGDWtCOlig6W2MA0PTUVF9UVRMlMmK4FlFXeU227Si4QhU07AMyngrxKIfW5n4qaFgsY9znSlk6wl8kpZ9zBreGVHLT5q/4vCsUsTXdJFB0kYDz+toEVoLSGgNDTsm0ZH+OlFxEK5I1UwmmJjocafeN65oZqZVKQ5W5rlop5hNSDH8R0Z8/nJsOApUipBpR1/aRREgN5ZVmcM7Q3hLByt5U0zxQhNRgmgV/R5rts6G1zltjZd7C80iUfWSymYCIxYPWfARBEAQxUpDgH4e4ZSL85mEpX4AppYMWb9lp/OncGn6v1r8WUq5AJKcWOuGl81ucIRbl6PAj/M1O6bdMFLKaKJEraqt5rsbF3XYlhNQFW/IBWW35ohY0vPdMm6iqL/iFl7JftIZfFo6s8xoj/Eprz3G/uAGfm9OnXnpivlwNfzNrhBNJF8vXDGEoXbwOV1RQxsEYgwZqEiBS+p0fMu+35fWib2YE0xhQjo6Ufr9rhD8S83mpXMD3DdpY2ZuscpRjA9P5JPO91BKPQCmFlWuTTUl5d6UE88wVTZZIk70mCixOAwAbptaVuXhdAsEYC1qZklM/QRAEMZKQ4B9n+GZXuSJK6izRzr20RJW/rx+9zk3p9x+4mBfVqeUZTwWpy+Fp6UeiOlqjYIwFKf3NNu2zOIdSqiqR5ri1RUQtzmA7lZk7pdKiaNQbyGRcRGOeO78XyeeMIeKNzRUKGoVLL7K9GnLhvPpWhYAR76XqwTnLzxxQSkOXSJUfjpT+RNJFX8JGz0DxFGgpVdHSiGxqrTs3RpDhhSRfTFUTJa8WqSq5qtrwfUIqXazRXocQ5t2Datuu2a5EKi1GzLU9G6U1lq8ZGraMg0ILUp3tUfQmmpPab74DMz4sTU/pR+EWs6zOFrE1jyerfS0AMIye9qEEQRDE+IQE/zijUJq0q1ysSq2EUEZw+m3SCpn2+S85TvgBxn/45gxAjTX8UioIhXyH/izDPgCBaV+zI/wmOlO507PWGm6NfcsjFgstnBRDaY3BlINYpPhHN6jhj3IT4fdczQEG7tXwO1IGmRx551CZlNRcTGp69Wn0Zvvi+1icwc25z357r6Jt+RgDUPgaGoGQCn1DNlpbIugbtJEskgLtlMmYyaYW8VMo0m4yBqo3vqvuvKp438Y64X7pT4XHV16ZkH8L/IWnSudh2pFVZ+s0Cyk1kmkxbIK/0IKUxTla4xGs6k0hWSJ7pRbs7EVb3dw5CgCqSBkV4xiRMg4dtAn0DCYZhqU9IUEQBEEUgwT/OEMVSJMWWkBCQnlRfsYKt0nLfojJfZDyRaZfO1mL4HeFyT6I5IgnP8Lf3mKE/nBF+AEAVZnp5ddaV4plcQhVPl3ecSVst3j9PpBJ6Y9FWdCWjzHz4OnfWylM2q0qEAHLjaZmw3nhco9ylG0FWUDABWncJVLldQXHrpWhlAvbkehqi0JIjZ7BwtFQx6lskYcxVltKv+d/kEeTa5T9so9mwLx5VOl753tA+HPBCuZh+etXSntlMGpUpFYrpeFK2XQh7FNsQaqtJQJHKKzsTTbsM5TXonIYouzF2n2aLisjU8Nv/Eoy47Btas1HEARBjBwk+McZQV101gOgVAJCuVDZUZIC0bfsVm25gj8dCH7U3BtdeK7guQ+nfiTfj+z7pn2JlNv0HuwMlbuBZ2qta4jwe22kykUgbccIl2L1+1rrwLQvGuUANDjjJqUX2aZ9Cl4yRh5+v/hiEX5/0agaKhH8OmchoZKUclaHQWQ5BlOOt1DC0N4aQc+Ag1SBB/fclnnF4Aw1pfYKWbjzA+cMThMFvytr86OohMw8qmx73/k8Y9rHoCr4vADmOkx0f3SYp0mlzOLmMKWbl1qQ6m6PomcgjdX9KaTs+ksepAq3qOQMVXkt1HZOXXBx0uIcjhj+lni5JVF+9ha15iMIgiBGishID4AYXpQKPzgDpn5fKAGlsx5AWb6okyoj+LON+oDMAkA9adZCqFAUz8dP6W9riQT/97sBDKVddLbFqj9ZhXAOOG5l0Rnjwq7AeeF2eaXPY1LlXanQWmK7RMoFQ/Got5CZ9y0WBSAykTYwFjyIu9Jz7y+gOfwIVeEafkBpVXWEX5Z52PVd7KVSiHrrkMYksgys8rTwanCFRP+Qi5aYeS/jMQuJlIveQRut8czXplRGRFYk+KusOw/GIvM7VwBeBNNpnphyRHMc+oHqS3+UtwDp3wbLM0OrZB66wjOO0xgVEX5jtiiHbfGh1IKUZXG0tUTwwaoEYhELrXELXW0xtLVE0BqPFF1YLIaQ4RaVtXb1qAbpLV7mYlnMyxrT4JEmpaoUQOfM1YjF4bjGC4YXaaVKEARBEM2EBP84Q/qCP+sB0FUuFBQ0Mg9mhVrrSYlgocApEuH3qSnCLxUK5RBnm/YB5iGyozWKwaSLwWRzBb9lMdgVPrAKL2KZazpYCcxbwSjVms92JfoSDlrjxR8a7axMi2iEQQvfwdo8gOa69BdK6c9tgZZNEJmtUmQLUdj138ekaIdT+iuLgDYnUppICaQdgUmd8eC19pYIegbSmNQVR0vMfHX6AidSosTCh3NWUz/uYhHaao3rqkFrDddtXoSfFfEJKYaZFxnjOeNLUVlpiZDGHJBbDHaTo82VIL3vieFIN69kQao1bsS9KyTSjjDtThlDS9RCR2sU3R1xdLdX9h2b26KykDdHo1EahVP6GYPtLaxES3ieNHw8OXPVshiEbcpJoiT4CYIgiBGAUvrHGYWEuKMcaIRbG/ktz7IRKj+l348A2TmCv5bU0LQjUSigNJQK1/ADQGfrcDn1M7gVmOkBJqW/LltzVtoBfzDpIO0IxGPFHxrTntN/PGpBs0wbxeyHTyBjRFjMtC87QhUeotdersoFHSGLm++Z45rzZpdPCFF4DNnwMvesVgaTDiwWdjZviUdguwq9CTt4TXoCJ9dosthYpap+gaJYpN33PWjGgkehhcFGYko4Ki8NUVkdQjJU5mHgR/VHSy21XxIzHNkGQcS9gvkZjVjobIthUlcLJrTHwBiwpj+Fj9cMVbwwk9sRoFpzxVoo5jVhWQyiyV08CqFz5qrp9oKmL3wQBEEQRDFI8I8zch9+lFL44/M9+NuL6VBrPjAjuEL7ykyaty/4u9ujoZ8NtdXw266EVUDx+z3QfZd+AOhoy9TxNxOLc0hVmVO/VJW1Zyt+rvxMCR+lNHoGbMSivKSJnV+/H49a0FoHrfc4M8Z9QUq/8F3688dr3rrifeWZrr6ffDkDOMYYGFho3lRSQ845g2xw0NZ2JQaSbih136etxULPgB3Md1NCUVlWh280V81nQyldNEJreWUgzXCeNwsThbM8GkU1hovGtC/3AKwiMWe7wrSktDjSo6CWWnj31hWVLSTWQ7AgVWXWEecMrfEIOlqjcKswO8ztCFCNuWIt+N4OhdvysYpMV3sG0ljZk2zYmMxUzRmPRk3ZPQRBEATRCEjwjzNyH7ATto1337fx/gcSaTujnDhnoR7fJhqnvHZaGrbXlq/LS/VMZ/WQZygsJEthjKwKC5tc0z4g26nfqeo81WJZvple+Ye1el3NLYsXFfyJlIuhlBv4GBTDz7RoiVlQpkN10JLPmPb5Y9VBVD2XguIqi1qc8UUFreu0Rsi5XMjSZQCAyQxodITfuPOLgp0QWmIW0rZAvxflL+qgXwDOjNFcNRFHPzpaUPBbnu9BEzIcpOcF0ayUfsD/nqhsW2XaNYT355WZINqOycCIWMyY942w8BJCgXFAqub3qPcXpGrN1IhYvCrBn9sRoBpzxVrwW8UW/5oo3RZQabOQWsiMs1a01mC5p2S66eaFBEEQBFEMEvzjDJETaUmkM4I5lSXaeY6Qyu4tLGSm9tYX/KEIP0PFzvbBuISJVEZyUk+lVIEIbs8Sux3DlNIfsThcpSrq51xswaJSrBIp2n0J24vQl/7I+vcqHrMglQSDqXW2dRJKy+BhXAQu/fnvk9Ya+U+sGRgrb8KXjao0Wpx1XK1NynO5wGQzUvoHhmxErMIZDowxtMQtrOlPwxWyqO9EwbFysxBWjcjzu2oUjvCbVOFqP2uVnTdci90sKl04KpTRb1VgCOe35ItYHBGLQ0pVU6eERuIKhajFTRZFk9O8hVQVL0gVwu+eUbHgz/GbqMZcsRY8f9Gi3y0MgFsiBShlCwyl3by/i/WgVP73Z8TieWVvBEEQBDFckOAfZ7g59cCJdKYeOWlnxLMv7H2UNomanLHQg4tvmJf9GmM1pHwrBVUg9dRP52cMoRTrIMLf5JR+wEQiszMYiuG49QmkTAQy/LCYsoUx6ysT3QcyCy9+hJ8zhkF3AI+t/AX+2vN08DAuPOd3jXyXe6V0SY3AGYNbRbTKj8JVFK33BFwp48DQWDwR3ag07bQjMJgSBdP5fdriEaRsgf6EA9etPKuDB+nN1UX4RQnhrYGmiEZ/jKXKR+pGV95hQSqVJ6JM14PS89AVKlhI9OfKSDv1+yZySqmGCs2C5/IM5OqBw5RFVILthgV/NeaKtWC+q4p7fZguK8XvcSLpImWLvO/cusYEIPeeRyzzN6TZJRwEQRAEUQgS/OMMmZMm7TvgA0AqS7QbN3YVPKAopaGVebCys+rE/bZl2U72nJVOoyyEEAqygEmYP772lmhIfPiCP9HkCD9g3O791oDFMBHp4v2uK8H4BeRHIAeTDlwhEY+Wd3gOIvxRC1KbCH+f0wdAY8DtD6f0w4+Q5Qj+IjWxPsZtvsootdZlo/XG0dsT/F5ku9wCCmOoui6+FEMpAceViJW414wxxGMW1gykkXJEde+5rk6glxPeDOVrlGvBlHU0uZUZq8x0DwCUzF8wsjiDK1TJRQM3p4Zdj3Attf89EbG8xZ8mR/gdV5T93JXDshjSFaS8C69cJe/zoCt/n6vFLPYV/3xYnBfNzpJKoS9hIxLh5jgN+g5RBUq7LItDVOgFQxAEQRCNhgT/OCM3wj+UFSHPrmPkvpAKUqwzKf0Zwc8DwZ/OjfBX+fDkShU4ymeT8IR2R2s44trRajILml3DDwDRiDH7KiWspNKQuvZaWSDjXJ59HiEVegZttJRoxZdNOqjhj0Bpc08dZe6R0AL+8EwquokQ5+oloUq743PGqkqLziwWlYnWs0zEVng15LkiL/ehnDMGrRrzsK61Rl/CrqiFV3tLBEMp15RxVOCA7lPMN6EYRhCW6m7QnD7nQul6A8Nl4YxVHOEWSoHlfLaCjIkSIsoVCjqrht3iDOkKo9XNwCx+eZ91NL+G33arm5+FiFgcKUeWnbdSmrKsvPPV8PegUvwFy2Jfu5bldQkosCg0lBZI2gLtLZGqM29KIZTK++hEuPGCGensEoIgCGJ8QoJ/HKG1aXsWivDbGcFsZxvv5TiKm7Rs82AVCP6YFUSd7VD9f/V11a4onBrtL0i0ZbXkAzIR/qG0aGrLJwCIRSy4rixZxy+lqcet1g07F63D3gmDSRfJtEBrrHw6P5AprYjHLChtnPgDwa/crLZ8ynOxzhf8soz5IPceXitNT1Vam+yNCtLz/eMGKf1ZT/L/eb8Xl//sH/jn0p7MPoyFFqbqIe1IDKUFWitYXGGMIRblSNpuVRF+jer8D1wpS+puizent7xwVVER1Siq6bAgZb6IsgITxOLfNWZhK3O/IyWMMYeDbD8LVmFbwVrRWsN168s6AkyGkyvKl0IUK8tiVS4QVoP/d6nYYiLnzJgjFjj/4JADaJNurxq0aAgASiFvccryPBuakY1DEARBEOUgwT+O8A3A/OcxrXUopT+dl9JvHJ6BTE01y6rhj0etoCd8thj2271VI8Jsp/CDqT++bId+wERY/We8Zrfm4177s1KmS1IpKF2faZ9/Lsd7sDYR5zQsXnnmQHb2hYIGA4frCX5Xu2CWeU8yKf06T7hLWVqcc46qImLS8wQodw2cA1JnWsKpnH3eXT4AIRWWfTwYvMY4oLRCI0qhTcReIhqpLJuivSUKzhhiFW4PhH0KKqGccaFlMTgVGEpWiyNkXdkqlcBYvoloMXIXKgHvc1nGEM5vyedj7lfpRYJmIr1sF4sbU0iniQLQfI4qaxlZiojFIZQq65cgZf5nFjA/NyMLBfAzz4pnJFlFugS4QqJ/yEFL3DJZQg30ASm0OOWNlgQ/QRAEMSKQ4B9HBILfezqSWiKV1YrPdoxoBRC03/MfgrLNkbJr+P0If3ixwHsQq9iB2zhpF0o99U372nMM6xhjGaf+YTDu45yF2hbmIlR97a98LM5ge6UVSVtgcMjNy24oRcaln0NrFYrwAwBn5v31WwgW6sAnK0jpryYiplUBi/UCWJwFEVCl8jpZI+nNhXRONkkjIvxaa/Qm7IKt+IrBOcOEznhV73m2T0EllDOCtBhrSuTQEc136K/G60NKDZbz1vgO8qWOkbKNQ79PxOIQcuSM+6TSEF7mSjOFMODV1Mv6FyGZ90VRNsIvFQp9zi1W3lyxVpRnSli8ht+UjeQuCiVSAilHoCVmVbRwVNWYihiUMjTvPhAEQRBEKUjwjyOkVKEIjNQStp15iLMdDe09sOW2EDP/Y+Ea/li2aV9WhN8rB6hUgxnBohEpEInyU/rbW/NFb8a4r746/o/WDGFNf7rkNtEIRyLtFk1jl1JXIGnLE7HM/dVao3/IgVCqoppyH18Mx6IcGhoMDK7Ouj9cBuP1PRNyr0nkGDvmwrOEeSVUup2/kOD3gM+91UPeQkjKCWeToAGmfSlbIFVF6USt8CrETyVGkJbX2aGR5m/KW0CoVyiWgzHmZcaUHnvJjg0lhJpUKs9jwXTCkCNmnia9FTbGWFOFMGCyeIQuUFNfA4yVzyQp1hGA8+J19PWiCvVrzMJfCMhdEOtP2EGWRaO+Q3xEkZIoy2LUmo8gCIIYEZr7dEuMKgLn8yDCL5DOEvyOF+G3mBW0U8qO8PvPVaGU/qwIv19LyT1jskof8FxhIlHxAmLLT9fPTekHgM7WGIAkBmt06l/bn8ZTL32A/37Qj7aWCL5x9KyikaJYxLg9O0IVdMuXqr5+1z6WxeEKjZQt0Dtol2wPVwj/vYlFefB+uCpzfzQ3ollIL4qvw8Laz+oo6dJfZclGuTZ/wXG9SFuxXvV+hD9p5yzwNCDCn0i5cKVGpIrFlVrI9ikoZ2LoG0EWWgjzsTiHUsJLUa+8tKD0ec3CYLQBQrEUnJt6Z6U0eIlzKeW3BC3wyxItQIUwC4mt8cz9M60o2YhF+FXWSmi2oVw5f4takNJ8JzWitaJlMSTLOPUX6whgcZYx4WzwnCqj9z3CnjKm9aYb/m5tkA+IXyJV6J5bFgv9nSQIgiCI4YIE/zhCKg0FHY7wO5mHHNvNRPgNmbRtrXVgfuW34MuO8GtthHssankRk8pTvv1e44Vr+M1DZpuX0u8oB65y0R5pR0dbbSn9aVvgmVc/xov/WhU85CXTAkNpUXBhAfAi/CkB2y3cHk8UMR2sFosz2FKid9BGyhaY3BWvan8/0yKI8DMGobPuT1aEHwxQCItx5S0AlAruVttPvlSNbTbMq6WV0rQmzE3h9gV/yskRHqw+wy2lNfoSDuJVpPPXCucwJmLK9IYvhUnJ1oiVWITw09obGbEWUkNJBSva/GwHUcBDIhetTd07t/LvQylDONf7XolYOeVA3u9GAilV8A3LuTHDk1KDRxovAEVWFk+9RCPG7LBUq0zbLfwdzjmDdM1crsLuoiJUkayCMDrUijGRcuG4MsgQA1D3d0gwnqBNYP7vItyUkwipEW3C+00QBEEQxRh1Kf3vvPMOTj75ZMyePRt77LEHrrzySjhO+ZRtrTVuueUW7LXXXth+++1x9NFH45VXXglt89prr+Hkk0/GHnvsgZkzZ2KvvfbChRdeiJUrVzbpakYXMqcuWigREvyOo6B11oNwnku/eTm7hj8a4cHDjf+6HwGu1MVdSC/5vMBTkp/S3+HVsQ+5CaxMfYwBtz8rpb8ywa+Uxkv/XoXFv3oDL7y5EkprbLVxdxDp6R8qPs/8sTlFUjId0ZgUaFNzaswUYxFedSQoU8PPgrZ8rspO6c9E+OFFx7IXeZTy2i+WuRaGylNghQhHMLXWRd8zBq/EQ4Rd4rXWgeC3nbBYq8YvohDJtEDSdity56+XoGyhgvEaL4Py8yq3lWO9BF0VhiGlP9sYtOh4/DlZ4LPAuTHhK4QrFKDy97M4Kuor3wyEyiwMVtJloB7cSlsgVIDvfVCsBKFURwDjzdGc68xeiC6GZfHACFVpjb5Bp2CZVCNq+LWXwFEoY8OyTHYPGfcRBEEQw82oEvz9/f048cQT4bouFi9ejHPPPRdLlizB5ZdfXnbfW2+9Fddeey1OOukk3HzzzZg6dSpOOeUUfPDBB8E2AwMDmD59Or773e/i9ttvx1lnnYXnn38eX/7ylytaVFjXya3ztaWD7Mt2XB2Y9gFGDwYp/VkP3NlO8IyxPOM+4/GkUenzkyjiaqyUDtJI21uNKE/LNBzlYHV6FaIxc75KIvxLPx7ALb9+E48//z5StsCU7hYct+9WOHbBVpjkRdEHEqXngMVRNK3VbZDJmZ8dMZQWeUaF5fDNDwF4ESQNzjjcrAi/Yn6EHyaqhXAlQqbso9y5KhfZJlqfOeDjz7+PRUtexUdrhgpuL5WGK8P303ZkMBdtJ9wS0F9gqpWULUxLxQIR5FpZtmIQf//PqrzXfWPCSu5dMdfzfJhXP90YpKysq0K95BqDFkN5KqrQcErVwee25POJWBypERL82d8TfglLs/wEHFc1LIXe9z4oVgohZPGOAH5GUCPnqI+ZO+YaUzIVMij1sbJ8Z1K2wFDaRVuBUqlGLEhkm9vmjcNbzB2p7BKCIAhi/DKqUvoffPBBDA0N4brrrsOECRMAAFJKXHzxxVi4cCGmTZtWcD/btnHzzTfjlFNOwUknnQQA2HHHHbH//vvj9ttvx0UXXQQAmDdvHubNmxfst8suu2CDDTbAKaecgjfeeANz5sxp5uWNOLkPNIl02KjOcU3Kv48fgQMAlWVElF3DDwAtMQtpRwavm4UBVrEgNK2z8l9P2SIQo+0tUSit4CgbrVYbFBREJGGuo4xpX89AGj976i0opdEat7DX7I2w49ZTgwfv7vYYPlo9hP4hu+RxohELQ2k3L601Y67WGMHoH7taAeoIFdyvWIwBjmdYlWXap5kAEDfRrKCGPyvC74krf3Hn7/9ZjfbWGLbZtDvvfJVGxIwJYObnj9caof/xmiFsNKU9tC1jXhQsZwFlKEugaY2wlwIzWQS1YFofVufOXwn/9+y7GEi62GBqHBtOyty7ahzBhazMF4JzwG1gaz5ZjeNmHeQagxYjuyVooWMUq4NPO6LgooVpM2eyIiINXOSpBJGVCRR0GWiCEAbMwqzVoFpx/94XF/yeD0uRMhCN0t0UakVkdRQZdAcQ53HEYrHQNpZlPBuUMplFQqo8rw7OWEMi78b3pnA2ir+YK0bIP4IgCIIYv4yqCP+zzz6L3XbbLRD7AHDAAQdAKYXnnnuu6H4vv/wyEokEDjjggOC1WCyGfffdF88++2zJc/rnct3mt3YbabLNraSWQX28j+sASmU7oGeiMtmpqNku/UpnhFe2U381Jki2owo6SSfS5j1pi0dMvatyIbRAhEfQarWirdWcd6CM4H/nowEopbHB5Dacdfh22Gnb9UJCoLvdPCCWSukHjHGf66rwdSJjrtYoV/Pujhi6O2LlN8zBX3DhnMHiJlVfax2K8GuY91wpQCoJBpZXw++LJ9uV+M1zS/HQ7/+TF0VlvLhZWi4iJ1rvt4LMnX+AifqmXQmZ03c9mbNtdoSWs8r7ueeSdiRSaRF4UTQCIRQGvJKF3kR4Uc13BK80pb98fbLfW76Bgl+qSk5bN7nGoMXwDUCLRU19479c0o4saHhoWQxSqBEx7nNEbgcMXfHnqBqU10avEQ792aSLzDO/3WCx85lSnWZcZ+bvklACUuePz8+qcYREX8Iu+Fk3ZpqNqeEvlo0CeJ4TJPgJgiCIYWZUCf53330X06dPD73W1dWFqVOn4t133y25H4C8fbfcckssX74c6ZxItpQSjuPgnXfewVVXXYVPfepT2HHHHRt0FaOX7IdNqWUgmtpbzTTQCIt2nuWALWVWSn/gBG+Z1PpoONUfQMUmSMpLQy8UaRtKhdP5XeVAagmLmQe2Se1tAIBkWqLfHih6jvdWDgIAtt50QkHXe19clxP8kQiHq1SeuJJeW7RGpUAHraKqxC+paIla0MwYdkktIXVWdJxnxu5K5Zn2ZdfwZ8SVn2GhNJBMhQU3Z5UZn/kR3GyR48+7oQKlGJwzOELlpbIn0+Ftk7Yb2qdW0ZSyBVypEG2gm1j2AtRQusBCYoWGlq6bb1xYCP+eVeqZUQ7TVmy4TMWMIV/JLTRQrNc658wsuOWItUIt+XxGKrXa924IfU9o1pQIv5Amot3I1orRSPFSCD8bpfi8aazPhE/23yWtZUnBPzDkIGmLgn8DTIS/MS79pbqccM+pnyAIgiCGk1GV0j8wMICurq6817u7u9Hf319yv1gshng87Gje1dVl+pn396OlpSV4/Utf+hJefvllAMDMmTNxyy23IBKp71Y0u51XvVgWD4SNZXFAq8Btv6MtgrTtQCrAFipIJY9ELGh418ZMKmy2AVJr3IJiEvGY2d7J2teyODhnZe+L40qAAdGolZfC7j9cdrRGYVkc0hWwOA8e4tvbLNMCUAMfDq5CLGqhI9oZOobWGu+vNKn/W2zQVTBNfmKnmRsDQ27ZNHrLYnBVOCXUFlnX0OS651L4AqYlZoFxZtKdVfjhUmUJfqU1LMvcd/96OGfgnCMSseBmPQCnHYkJnZnPVyRiQaH8vPej+5Y3d5TSwYJR0hZ59zsascDAwBgycxVAKuch2REyNE8rGUshEmkXsVj+3KuHRNbiSMqWece2/M9TmfFKqIKfi1xiUQtSajDOGpKiLmHGVs898ctbypW5cIubcZfpRMAtVng8jJm5kXM/hWOKk1pikYL7WV46/XB+b7teJ4/seR2Jcijd+HaQjlDQjFU0fyolHouYxSBerFa/+JyJRiyoCu539t+PiuCZv0uaA5qpvH05Z9ApgbQjwbm5J7lEIryi8ZXD/96NFDFcjUUt0zlilD8vrGtUPW8IAjRviNpYV+fNqBL8w8Wll16KwcFBvPfee7j11ltx8skn44EHHkBHR0dNx+OcYeLE9vIbjjAfrBlCR3scne0xwHGhlJms7W0RJJISQykJblno6mwFADBuoSVuYeLEdrT1pmFFIuhsjwUR7ondrbBjQ2j32xsxHuxrS43Ortay9yWRctHamkR3eyzvwyO0eWCa0NmCrs5W9EOjM9KG9mhm8aa9LYLBIQGtLCRYLzrjreiMZUT/6r4UEikXlsWw7fSpBd2ZN1zPCLSBpBOMvxiKcfBIJHRdPGGjvS2Jid1tJfdtNnxNEgDQ1hpFe3sMrYjlRa2siIneaw3E41FY8Si6ulsxsdtct+IcHR02ujpbsXog42kgwUL3hlkWYlFe9v1NOwJt7Um0xCKIRy0MpdzAJSLlyLz7HY1GoaARcWRoTkgVfnjWPDMeHjElHxMmtFUVmbZdCRZJYL1JHWgpEPWrFUdmFicdofOu0ZFAe0e87L37qCeFCVYEnW2lyztahClL6Oxsbch1rOy30Q2GrvbqWkIWor3MMWyp0dnZiokTi392JOPo7LeLfjalBjo6W0MLUgNDDlpbk5jY1VLQMd2RQGtbbFi/t1O2QHt7C1pbIoh5GSUKHC2tjR8HT9hoa4tiYldrw7I1WlrNPGvvaM2Lkiddhc4Ot+h7pBlHS2u04uvs6ir9PezT3pcGtyLoaIugTcYQ4VbBMTiKwYpZWG9yFG0t+a1XI9EINICu7ra6Fm1ZJIL29hS6uwrP52gsCqkUOjpbC/4tIuqj0nlDENnQvCFqYV2bN6NK8Hd1dWFwcDDv9f7+fnR355uGZe/nOA5s2w5F+QcGBsAYy9vXT/2fNWsWdt99d3zmM5/BQw89hFNPPbWmcSulMTCQrGnf4YJ5NYrptAOtJPqcBAYTJt04GgFiUYahFLCmdwgD3SkAJh05mWLo6Ymjtz9p6rulCGqwbdfGoJsEg4ks9w+mMTDo7Ttko6d3CPEyzzT9CRv9AylECrhpr+0z9zQe5egdSKA3Yd7PITdTotHawjA4BCQTwFB7Gu+lP8Im7ZsGD7n/fGc1AGDjKR1IpWykCozBP3ci6WJt71DJBzHbFkglbUxqjwbR1J6BNBIJG7EG18tWS0+/uV9Ri6N/cAhpx8WQEy5nSTlpWBaDEBq9/Um0WC3o7U2Ce/W1vf1pDCXSiFtAT19mTvf0JTEwmPlyS9oCSQBrexIFBVVwPltgYCAN2RqBbXGs7c+MZyBhB/PFx3YlHFfCdRUsZFLLewbC25nxpIJzaK2xtidelXFi36CNnt4kJnbG4TiN8/BYsSYR/Lt3MJV3jcmkjTVrGdpKzDOpFPr6k6bOvUx7NaU0+hMO1qxNoL01X8xUg9Yaa3uHTFpyHTXXFudob49jaMguWbudGEqjt28I0RKt1Xr7UkgMpVHMZiGRsLG2JwEtMpkVvYM2BhJpFPNiTKUdrFwziLYGmzWWYijtom8gBSVjSHuiMplyIVwXk2vw7ChF76CNxKCNWAMzjrTW6B20sWp1DF3t4fGuWpNAKmVjoMh7lEy5cGwXPZ2xkgsQlsXR1dWKgYFURWU6vX0pSKUgJcdQMg3GGPqRzDvH0FAaQ0PAhM44hJtflmA7EkIqrF2bqEuI9yVsJIaK/y1whULKFli9ZrBgaQFRG9XOG4IAaN4QtTHa5k1XV2tF2Qaj6i/O9OnT82r1BwcHsXr16rz6/Nz9AGDp0qXYZpttgtffffddbLjhhqF0/lymTJmC9ddfH++9915dYx/1zrteqzztmUSlXRu2bR6y4zEeuJQPpZ1gAmvPiMl2JISXjprdHs1iGq4Q8KshTHszb1+tYTui7H2xHWl6NBf40Ax6tdCt8Qhs14YjXbRYraF63bYWC4CLxJDAhmiBLWykhY0YNw+ky5ab2v5NpnUU/WDGIhzRCIcrFHoH05jcVXy+WNzUsw+lXLR7kSLHe1gc6Q9+yjO2i0c5XCmgFZAW4c4DQgtTwwwN2xWIMuMa7b9Prpu5llSWUV4i5YavT2m4UsNxCvsv+DiuhBASWlmQUEikMvXtiZTIv2daQ7gKQimvzt1fjAn7KyTTbmiuuULDcRSKmIQXpC+Rhg5a5DWujrovkbnnQ4WuERq2Xfqz4S96xKK8onklpELakZnOBTUipFf7XoUpYylkkc+2j1be56fUvRAKUhQ3txNS5R0jZQuoEvtwaAwlXbiuHDa/AvM9KgGd5Tngfb86Xrp5w85li7L3vhakMN8LuW3tfFPNoufTGo5rOrlUUnbid+oohdIawlsME0JCeCakrhSBz4uP361AKw1Z4LOutYLjGn+Wet4F11WmRWGR+8Bg/i6mbYHoOpYOui5QybwhiFxo3hC1sK7Nm1H1F2f+/Pn461//ioGBjAHbE088Ac459thjj6L7zZkzBx0dHfjtb38bvOa6Lp588knMnz+/5Dk//vhjLF++HJtsskn9FzCKkSpsnuYoB7anoVriHPGYeT3bUMhvG+UKUw/rO7f7RCKA0ipj2pe9L2MoE5g04xDmIa0QvqlbR0sErnJDhn0+RvADQykFi1kQWoR6MfuGfZtNK16uwRjLOPUnShv3WZxDZtWhA77JWcndhgX/vYvHLEjtP/yGBb/UAr4/nTHRym/L5wugbEfuXPM5zjNzqhS+CaAvZvzsEMBE83O/LDkzbetyb6d/fssbeyo011Bxb3sfIRUGhlzEG+jO7zOQZf6YSss8Mz3OWMgfofD4zL2tPL24MW7vvgHecHlRsAo6LCipgBIZAIwhzxDOdgR4ibc2YnEI2RwjuWIopQEdvq++oVyjHeydJhkvMs6MZ0kWymtxWGrOBOaKDTQoND3vTQcABeW1GFVQOv9edrRF0dFWPPuFM2YM9+ocn9a61FQNOlM0wiBwPNIoY1KCIIjxxqiK8B9zzDG49957ceaZZ2LhwoVYuXIlrrzyShxzzDGYNm1asN2JJ56I5cuX46mnngIAxONxLFy4EIsXL8akSZMwY8YMPPDAA+jr6wul6f/gBz/AxIkTsd1226GjowNLly7FnXfeicmTJ+PII48c9usdTowg8ntfKyOMHfPHsyXGEfOM99J2WEj5D2laaTArI/hjUQ7NTMaAH+HPFoiVPMgDpiUfL5L+6Ldta2+NwlFOwWWBNq/DQDJlInVG5DpAxLju9yUcMAZsvF5pf4au9hjW9KdDYq0YnLPQfco2KxxJ/PemxWuXyMDgqLBQF9oNTA9dIQHtF2R4v8/qa529+JPbFq/SB+Tc36dzXL6HbIHuSCY9mHNWMNjuC/7ujgh6+gXSTnZbPmNKUGkbSMCUJNiOrKn9YTmyuz2kbAUNHVrUCnrH5zq2ZyGVglSqiqgvC1po1oOUGkor8FJquYGYhcEyix8qt5VdGMvrUpBNsZZ8wT4Wg7BNNkMjOzSUotB1ck/wC6mryk4ph+PIpizaRCwWyvwBMh0BYiXKI4KFDamB+qpOAvwOIpblff69L45Cgr8c5u9i/QsSSpm/iaUwrfnIqb9atNb4YFUCU7pb0dYyqh5dCYIgRj2j6luzu7sbd999Ny655BKceeaZaG9vx5FHHolzzz03tJ1JAQ//wTzttNOgtcYdd9yBnp4ebLvttrj99ttDkfvtt98eS5Yswf333w/HcbDBBhtg/vz5OOOMMzBx4sRhucaRwrQH1p4Ql1BKBCn9LXGOuPewls6J0kOb6I3S5kHFj2y3RC0j+KAQiZrj5Ef4yz882a5EpMiDqR/hb2+NIi2HYLH86drWah7Wk2lzbotZSMokJmIS3vei+xtMaiub6hxE+CsQ/NEIRyLtevfT9FW2RkGIP4jwRy0oLcAYg6PyI/y+EHD9yGmWUJZZ2QrZ72cyR6hzbiLx5R6QpdIhAZ9ycgR/yg3uvU+hnuv++bs7PcFvZy8umbFUJfjTLnRO679Gkb1olE4rCCUQs8KLGkIUaNGWhfSiwZVGaTkHnAK1ydUivVKKUgK7kZjofJk5JE1kuRich3ub+2UJkRKeGn6mznD2RJd+ODo0DgbRAKGZi+3Kgi0J6yVicdiuhFQq8MsIslFKnM9E+FVVn9FyKG2ykxhY0F5Uw/xNqhY/8l7v+BRQ9jNrcVBrvhoQUiOZdpFujZLgJwiCqJJR96255ZZb4q677iq5zb333pv3GmMMCxcuxMKFC4vud+SRR475SH4lSC0gtITtZAl+L8JvuyoQsowxr07SvMZZJoocj1lQUNBaIRLxBL8bFmFKZY5VCCFV0VRQrXUQ4W+NcwwoB5FSgj9lHvIiPApH2RBK4P0Vxjxt0/U78/bLxY/0ViL4YxEOx5VwhDL/Fo2tv60VO1vwwwUDDyL8rZEWpETa1PB7D+Z+v/XsKLyUGbEXEvypsJhkzETiy0b4dTjelZspkEjlm+UxxvLEWspb0OnuNHMgv/SkctGktDG58+d8I7FdGbS7BACpgLSbI/gZC4R1MYRUeeKwFBZnofPWilTaa4s4PPPZz3YoPSaFUh8vi5uIqf9dY75XNFrjZSL3OtPKcjgQbn7pD/MWVRtZay+kqrIcpHKiFkcyLeC4Cq2eI6tQKlQuVgh/PjXyOrU2mWemDMhk0mjomiL85oDlv8/KobwyqVJYFifBXwNCGp+FpO1iEor77BAEQRD5jHweMjHsCC2hoWE75sEoHs+k9NuOCiIkQZqj1EFtty8CY1GTNq51JqXfzq2rLhMx8R/MC6XDpx0ZCLhYXEMoFxbPF/ztLb7gN+eOsAiEMnX8ldTv+2Rq+O0yWyIw+DORLlMqMVw1z6XwSypiMQ6tjZh3PT+Dzqi5BzIk+P0U2MwxZHZKv5sd4c8X5trbvhS50eLcB93cBQAAmNgZQ2dWva0rZDBWX/DbBR6YdYUP62nb9ORuZv1+NApEIua6s40KAS+9WauSdduiAuGQe0zXzfcLqBYpNRoYhC0L9xYVS39PFF80BPxsk8xcFFKbXudlItycMzjO8Al+t1idu2YNjfBLaUoEqulYUSmWZUpHsjMjpDSLemUXiRp8nUqZTwjjJo3fX/TVtQp+Vn8Nf7mFDwCIcBYsdhOVI5X5XA+lREMzRQiCIMYDJPjHIVIJKKUzEf5YxrTPcVRINGiYB1W/HCCI8EctSCXBGEfE02ahGn7P8K9UGX+pB3M/nT8etQBmFihyDfuATA1/yvZTkTk0NPqTSazxWsBtsl75CL/fZqqSGn7GGDSMk7qUpVOzhxO/rj0e5UHduC/4O6Km/7XQLvz1FVdKMIaQ8BRSZUX4M2K8kDBnQEnRCgBChNOYU3ZlEf5s8eBnenAOdLRZ3rXmuvuHFy5KkUwLCKkrcguvFj9DpK2VBxHQRI7hIfNMBkvV3DtuaRO0XEyKevkFmHJIVV1mQb0wf2GwxLjN57r4MSyv5ahfQuQKZczcygkvi+WVmDQTV8rCYrCA6WA9mA4X1c2fSvEze3JLKFgli1MMZX0mtNZYviYRyhYrhr9QxMDwl9dW45HfDmH5CgGpa4+eN0Lwlyo/AUyEX8jhLScZC5jMFZOF6FQwPyqFjAAJghgPkOAfh7jKhZula+OxTEq/44ZrIJn2zaaMCPPThuNRCxLGNT9aNMJfLnJnnJULPZgnAsO+SMh1P5eWOIcfyMqu41+20nR6WG9CZQY/mRp+t6IHAM494djEh+tqCbIvYiyobXW11+kgZiL8oZR+oYLaVcA8+BRz6U96ve5zKfeA7Mqw8Zwv+P22XkMFFhJy8Rd/sr0m8gSBlyZfDq01+occRCPNeb8GAsHPAsE/lBPhN/eXYW1/quiYXVGNYZ8veuuPGjpClhTXjYYzBq100c+c3+WhXIQ/O2PClaqkU7qPX49er8irBK1N+8tCQXfOzH1vFEJqqBx/Cle5cGT57KVKYDz8Xe+6lXUE4MyUNZTCcRV6+tN55p6F0F4NP+cMq3vN4u7aHllTDb9PJUazpTAlMaWJWAxCSorwV4lZjDb/b0T5ks/K3hQ+XjPUsOMRBEGMRkjwj0Mc5cB1zVsfjzFwzgKHZdvJefhmzLgOey9lO8ELZfod+zX8UumgzRrzHuRL1il7kbhCJL2oaHtLFCmZKhjd98/T2pJTx8+i+HBlEgCw6frl0/mBTIRfSJUXhS5ELMIxlHbhCpX3cD1SZMotvAg/YxCe4O8MIvxh0z6GTITDmGAhEHzZD/Vah1vqAZ7hmqjEYT3zs3+MKRNMDWZuu79CDKaNUGnJKT3JpRLdZrsSQ2mBliak8wOZCH97G0eL3zKywKJGd0cUawdsrOxN5YldpTUcIatKyfZNFOtt9+W61S001IvxCSmemeB7QJTSkxbnUCoTPS7Xks/HCK/SkdaULbCyN1n+YGWQSkMW+Z7gnMFtoICRBcpBEmIQvU5vQ44fsVjIxNN2RUULnpyzsgsbKVtgKC0qylQxm3iZad79SyYBqWpbPOGsvJ9E2TFVkNLvL7JShL86MouguqIMkEoQUqF3MI1VfamKsvsIgiDWVUjwjzO01hDaheuYh5IWz9iqWIQ/gIWd+GNR0+udMwtWJLO9HxXmLOOcXAynhLhIpDIRflc5iPDivZzaWzKt+QAgwiNYucb88d5sWvl0fsBE+zpazTkqc+q34LpmcaBaiaWUDrWVaxTpoNyCBW35gpT+WKaGn1te6rPnyO8/XCtlHqL9lNTcOvlCTv3lTM+ECLdU8xdTpnR7gr9ASn8ufg18a5a5pJThNGjGKjMES6YFXKEQK9O1oVYGAsFvZUX486/R4hydbVGs6kmiLxGeb1JW7wuR8duoN8I/vNkqnHuZJUWGrVTGmK0kQSaSWVSqpFzD4hxCqaJzWCmNlT1JrO1P1y3OpLf4Weg6LCu/rWA9mM9F+DxCCaRkqq50d5+oZYxKfTNX05a0/Jwp1D4xl6G0i7QjKurwonVmIdoX/KmUhtC1fbdyXllnmVIImW/MWPBcrPziBxHGcU2ryYjFMZRsjDhP2qbji9IaK3qStAhDEMSYhQT/OENqCaklXNcT/LFMpB8AHEdDZUVIPBPpIBKfqeHnUFDg4GCMZ2UIyGA/VaauulRkKDuNWyhR0KHfx3fqH/IEv3QZevvMH+5NKzDs8+kKjPvKP0xELAZXGeO+iupXYcTmX177GNf+4jVcef8r+GBVouKxlUMpHTz0RqMcgPEzcHMi/ADALbOdqb3NpPQrrUP10v4Cgv8Am8yJxvvplUXHpPP9Dfya6SndrQAqTOn3ztsatxCL5i8e+GOsJDo3mHRgNbHtui/4O9ostHoLUcWyGOJRCxGL4+O1QyGPBKlqc1lnmtUV4Vdq+P0oypn2+b3Wy6aMe14UvhlasVafoXNzBqjikdbeQRtrB224QtUtBJQn+Au9pxYzZnaVlKRUgu3KvNIBoQRc5TQkrT8S4RDePZGeF0WlEX4hi3enUFpjIOlAKV1R9wRzHHMsfyEhmVI1L2pU0iKyFH6JQSXlDZbFQq1FifLYnq9JLMKRchpTEpEYMt/N3e0xDCYdrO5P1X1MgiCI0QgJ/nGG1AJSSTjec1/ci0L6tdFaA05O5FSpzEOML/hjUW6iyN7r/v4ZkcjASphxaW3S8oo5afsiqSXOzMICKz5Vg9Z8aTPuFWsdaADdHRF0tsWK7pdLpo6/MuM+pllFYmRlbxK/eW4Zrvn5q/jjyx9hIGmu7d3lAxWPrRzZKY5GFHt1+tqLOGcJfmaZbYVQnlDyI/w68FTIXkCY2Gmi8bmlDrn9z3NRyqRj+1FNrXV+Sn8FEf7MXOBgjCHqif6kk9mXs/LROVdIJFLNS+cHMnOnoy0StIUrZHjo09EWhe1IfLx2KHiANX3Nq0+tzzVgrBa/VeBwRvjL9T/3e62XH5IOxH6xzh/FKCQu045J5W+Jcgip4NYZjTUp/YUXU0yP+vrLMXwKGT4KLSC0W9IPpVIsb7yuUIFZYiXlJyYLpfgcTdsStqPQEotUbNrnr0b6JRHJlIJQlfmwFBpfPSIyszhVftuIxZB21m23eVfIYUuD9xfzLM4QjZoMk3qN+4RU6Buy0RK3wDlDR2sUa3pTGGhQ9kCjEVJh2YqBgh1qCIIgykGCf5whtICCyjj0e4I/EmHBg0rKDgsppTOt2vw/NtEoA7SJ8GvovAi/j1OkVZiQCkKh6IO5n9LfEgd4GRukQPB7Ef4Vq81qxnpTIlU9+HV3VC74AXPPHEcUfIhXSuPf7/Xinif+g5sfeRP/eGsNhNRYf1IbPrFxNwATQWwU/n2PWMykSXvlFH6EP27FEPPKIphl7q2ffppdw6+0STvOfpia7Kff5whXy5sbxR7g/ahm0OYva274Kf1JW5Q1TUtmCX7AlCyYfcPztJzhVjItYLvSdH5oAlrr4AG4sy0SRPhTtio5D7s7YugbtLGiJwntZUXoGnwhLIthMFmb2AE8s7cR6Tihi7ZUDJzYy6gof/HJFQpCFl9IzNvPCnejAMz7uKo3hZQtAsPPRqT0o8jioMXNAlu96eRAYf8HpRWUlgAYhkT95mRBlxIhIZQxS6xkkchiDMpbkClE2hEQUqElasGtQMzpTIA/WJwU0nTw0FUXWnmLhmV8Z0rh+02ULT+BKSETMuN5sy4ymHSxoic5LOaDwm81abGgI0lui9dqGUoL2E7m70E8ZkHBlPGMRkPFoZRrStJG4dgIghj9lLcvJ8YUUkkwMKRt80fDF1GMMcRjHGlbhVINTeRUBZLbj7xEI6ZGnzEGBuMMD4QFfyTC8OHqBNKuwNTutlDfcyE1lFSIxApPQT+qa8UEeIl0fiC/hv/jVUZ0TZ1iUtpjrLIof3cVrfkAY9yXdgrXCz/2t/fwj7fWADARn203m4idt10Pm6zXgTeX9eLtD/sbKvj9h5+WWAQKJlXflG8YMROzoojyCBzlgnEJwDxwmpR+7dVR62Bxx8/UiFgMEzriAPIj1ZwzCOGnKuePSfr1154Y8DMEohGOLi/zwpgBCrS3Fvdo8Bcasv0mEkkVcvJmvLyB4FBKgKGC9PAaSdkyEDMdbVEkvUyOVFpBQcFC4YUGzhm6OqJY1ZtCayziLZBULzpa4xaG0gJpR6I1Xv1Xux+FHvaOE6VM+5SfJl36EH59uJBeQ8oK3+OIxfPMKPsSDtb2p9HVHgNjDBZnSLv1eW5IryNJIUyEXzUkpd+0CUWoC4XSZv7FeRy2sk2JFK/vTz9nRqBHI1bFi0S+sWSx9zqRcmFxBm4xCFV+8clE+L2FzazPfiIpICfIkllhha/JnLfWshbfb4JVsNgUsXgg3prlJ9Js0rZEIu0iaYvg+7xZSOl3wzHzljPUXRIxmLTBWHhhtastht5BG6v7UthgcnuJvYef/iEH6QoWyAmCIApBgn+cIZR5cM0IxMxDkS/4s3tTMw5IlTFy8yO/sZhJ6efgADiikXBKPwB0tsXguBIre1IYGHIxbWIbJnbGA7M3UeLByk/1jsQUIrz0w0R2Sr8QCqt7jWCfNBlwlYNYmf19uquo4QdMrXxfwkF3R/4D2/srBwEA/5+9Pw2WJUurQ8G193b3mM5wh8ybU2VmzWIoQCBVCanAkHioBE8yQDzJkF43prFFSxiS8UP9R4Z+YkIykzWYpKcGk8ms4T14D5M1dD1KUnWBQEVVMZVABTVlVWbldOd7phh82sPXP/bg7hEec5x7M8lYRpGZ954T4RHh4b7XXutb60+893F8yzc8FR4bAK4cWgJ9Pt4h4Q/ZCsISeBBKVSngiTaIfdOB0ABil2pOMGQVO596zRgLGzedWOCgb8n4TGgfYzBu3ryNrtcdA0BF+HudCJwz9DpRSOWeR/iJKDyvV8x9Un/9PA2z4HPOKW2sfbNziXZ+v1HU6TAkkUCvawlcXti54nlNE4ANgewkBrdPJjg+6AC0PuGII4HhRGKSy40J/yr99TuH++zaUD8nF8En3UulV6rk84iEuxZpg0hwlFLj3lmKKGLhmhZFPFR+bgo/3tIG223PVkqmXwalDYw2ELWNVEPWZZXwDjKdojTF1oTfb5T0O2ZpDZ0H53Z8o+11Km0wziSSRISKSTvWMv87o7XdcJ52X0xSA6L1N084B7RcXCW7CCvnTaAK2XyzhsQREca5RFlqpLm8dMI/XTUZRxzjXK6cmTANqQwuJnLmfsA5w6AX4f5ZhoNevNZI4GWikBrDVEIv2BzdY4899liEvaX/LYbSlOBMzCj8AEIgWn1W2yv8oarNB8O59SJjDJwxJI6vTdtjk1jg2lEHRISX7w7x8u0hxpm0VsYFN2uv6iYJLQzsA5qhffdOJIwBBj2Ogz5HqVefxztaY4YfsCnf1446rTPhI6fufvP7nmiQfQC46hTzUSp3tuALBD0RrmWBoTB2QyHiEQSAxBFOxu17q1XlifUKv2clea1+cdB1hH/a0i8YpNJzN0jqjgGgquTrO6X+oGc/1/GCOX5NeuZc9XkR0+fpolnwibPzP4z5/X7PvmCf0l8UBKWXE8ZBN4bWhHFWtva1r4Ik5jgbFRvZ+hep0JeNeWvY+jm5CH68JM3VWqGMEefQbhSAiHD/PMM4k6GxA2huCmwKZZaktzPsxNKvDUFNuTQ0qg0nAqHYSXCfdVTkpV5taN1jTpNEXuowbhNxDkPLA/S0e0+n5/0nqW5vmlkC7hJqt7H0Y6W8iQpvVsKvtEGpDJKYYziRl55FoKaqJpOIo5B643aLSS5RlO33g24SwRDh7mn2hrH2TzJ7vKI2grfHHnvssQ72hP8tBDvTXUIwjqKF8PvKs2kipWrE3DsD6pZRBo4o9qF+szdIxhgGvRhXDhIM0xIv3RpacjRnoVhKHRZCSYeWWjMHPecuKAxev5sDAJ58vIOIR0j16h3afoZ/nMmVb/RJLGY2LeoLkcMW5brXEWFucFcqfwi2S0QY25Bus6MjEoAoKPzEXWifIRCzyqNdq9JM/WIniYL6Pq3w2881wu3TSet4glc1/fvjFfmuU5/9RsK8FHvAhkz6c9UTaH+e1qsNbStEu11YaYN7ZxkY2KXOpw8D4bfH579bBCAtVttEOjqIkebKNS2sj14SIcvVTMDiKtCGptvcHgoWVSrWz8lFEMIq5IXUawX2CWcfl9pglErcv8hw2I8b3+lYVKn0m6LqEG8HA5ZmUKwCpQ3YlMpsSIPc+FXE1rsmzoN/T7JCrbc5xdoVyrxQIEKw9NvRhCWEX/u8kSmFPzMwGyj8jC0eOVgGWjFvwoNzdin1rA8DhTQolcZBL0buqu0uE9aNVvtORhxSmZXCHdswnJRgbL4b42iQ4GJSvCFS+4kIZ6PCrbl24wTaY4893nrYE/63EDRpKNJW4S8d4U9mCX89DIdzwGirWvhkfQCIazyWMxYU/0VBOoJzXDnsoBNznA7zxqZBHV7xjQSb+zN1dBIeFp0vvWZv0E893kHEY5SmDGMMy9DvRCHsyyv0m2DsfjeJeet8JmMMVw/t5sKu5vhv3rdhXE9c67lWA4bCeMLfAcjUCL99P4y2Cr+vXTTO0g1UhL+biIrwt6TNd5MIEee49WAyQ9zNFFfzCn8v8YTf/nOSzf98Cq3gw/i7M4S/fp4y0JzArfvnGS7GBY4G83MCdoEqoZ+HY/LHusjFUAdjDNePu2EzZBrL1J0o4pCaVn6+OqQ2D9/Oj8WVijalf/ljcB98Z2ilSr7qua2qm5cad05Tm0cy9Z0VgkMb2lhNBCzhX5SNwDi2Th0H7Ps4/XYZspkeABDzGKUpIM3m1zegek/WrY9krD0Jf5iW4drLGQNhBcIf8kaa1490Q8LvRw42VasNwXqrVnw72vIj3iwopQaIkMQCUptGgOrlPF9zY8m2exDKDYL7SqkxSmVoUWlDZe3PN7qW7hJZoTHJ3JgWa3fI7LHHHnssw57wv4WgScM4a2ebpT9U69Vuon6BxlztmSdUUc1lz8DDBsAqO+6dROD6cXfufFwIaesyxHw5SWOMod+1N+/h2D7/U48niFgEZSTkilVUjLHaHP/mRHzkan0Oe/Pn/3Y9x//avTEA4Lkbh9BkFf7S1BV+g9g7JbhP6aeQ5j+tToVMgEQEe/M81figH0MqjZv3Jw3Sok2TfFQz/Paz8hsJixT+SW7fH8Yqop+0EX5n6Z4mxMNJiXtuHvOy0+d9ndOgXy0k+y53YNFrXBV/+NIp/vn/9vt48ebFwp/ruGyJdYmLlOtXAe4CiyoV6zPRt09S/PInX2mtcrQJ6zbDoy1EcxEYYxhnEqO0XDizu001n1RmYXq7Dx3cFjb1vfleGqpS6yMWQxmF0mx/3SHX0LFKJZ8H57OKvFQaaTHVnkHzXR8efoa/mCb8KW1k6fdPvJ2lf/UMjF2Mijwq5IUOrzOK+KXX8xUtVZNRxDci45NcIZdqaVtLN4mgtcH5OF/7OXaJcVai1AZxxEP+0R577LHHutgT/rcQNCkYYwDDUMpmLR/QnrQvOEMUccSCN8h8fU6WMRY2AHbREesX9J2EhVTeZfA2asC+pitHETizlYHrdE+vO8ffhpE7/sP+/M0KP8ffpvBLI1d2JQBWeX9wYRclz94YBEVPal/J1wGRCTP8htnPyI+Ve4Vfmdn6xW4sViLmxwcJRmmJWyeTkDZuK/mqRVpeC+0Dagr/gp56v3nSSXh4LF/LV7eRtln6pbKqLRguNazPw2cZHPSrc7bbXU/hX4QXXj9HITW+/Ppiwt/tCKSFXNvWL7WGeAQKv69Da4PW1ez7b372Dj79wn185qWTmZ/z54YyBmLFSj4PIRjOxwUG3WjuhodPpd8E3nmwaDNFcAY5p8J0HRTSzIw0+A1AoHqfdjHHLziDVLTW+y0Yg5zKs8gK26me1MZYiJGzcc+HMdZ5Nn3P2VThrz/uJiBT6wlcAZGo8iPeTPCBfT7UspuIUHl6Wc8npZ7ZWEoijrRQa7dbXIwLCL5ak0cUMRTlo/t8tDE4GxUha2DR5ugee+yxxyLsCf9bCJrsDbko7Q2DMTQWWZVVuuoNZ4zhseMuoqgi/EnMYVhVe8RrCv8uZhKrGjYsDezz8MF9APDkY0m4mQsmkOnV5/COHRHfivA7S//BIsJ/6Al/83k0adzP72Ekhys/32v3rbr/2HEX/W4MQ1Z98SpeRySAMYj915250D6/QHWp/nVylddCAD3hL+V8NYoxhisHCR5c5Lh7loHI9ibX11TpNOH3GwkLyPAoz93vLB49sZ83C+FvRIS7ZylGaYmjBZ/DLuEV/oOawu/dDOMdKPwjd04Ol4ybRILb8L81xlKIbCf4o1D4GZ9v6de1sDu/gTGczHldxDZqGeh1InQiHrIl2rCN/Vob00gYb4OtrNs+gbuQekYJVaQaOSh+jn/bzYUo4shbnm8ROGchINEjLeSMMs4Zh2rJg/GoAkGrysTDgWtryQhKb34f2lzhB2iNEAzB7UbXm43wS2XsBo0j/EnEUSi9UW7IKlCuanJ6YymObI7EOoS8kBrjbPUWE8E5SrX9RtymmOQKaaHCfcRWR765zpc99tjjjYE94X8LQRkJMAp2fjv7Xt1EvaW/KCsLaB15rarNB8MBUwr/Dnb5vRra7fKVu5S9pR+w8/seEYtRmGJlxcdb+rexKPrjbwvs8wiW/imFf1heYKguIGl1svbaXUv4n71xYK35IDBwlFSb4TcqzPAbT/g1AcyE0D4fggVUn2M3EbZGb4p0tUEIjqN+jLunKc5GBZRuEsjMnT+9FUP7rJJkX0PTiTJL+AGrrfnF+vm4xP3zHEeDeG0CuAmIKGz01Cuq/EbFok2NVeEff5XNqE4icD4uViYv2hC0C0172PAKf9sIgtaonZP2OzxO218/Y1hom5+HOOJzayE9ImGJ6ib2a+2yJRa5J2wVHW2l3mljj2/6M5RGgtVu9RGPIXWx1jWmDd1YIOLrnTOC2005v7HhvzfJVEgl5wzlghEKQz4QtMo+OD6y1xVjgMkWM+V641q+dei+vW8aerRJ/VIZ3D9P1xphK6QOFnOgauoZZ5dj61faQLec15HgkHq94L5JJlFIEzYrlkEIBmOWN0ZcFkaTEiAEdwPngFJ7hX+PPfZYH3vC/xaCNLIR2NdJpixy7r9L2W6J9DfWTiygSYHVFP4obqa7b4OQON9Zffk06NUJf0W4Ir7eHH81w7+9wr/Q0u8V/nFVoZbpDGflKRgxlGtYbl+9NwJgCb+B7aBmjIVgrukZfpq29Ls5ft1i6e8kEThjgaS3BffVkcQCScxx88EEudSNiqoww5/4Gf7FoX2adHi+tqyJaWWHueDBotS4fTJxoY+Xb+UH7CaPMXbBX7f095ylf9n7tgxEFBwEq2xG9ToCaaFmmhXmwZPNdRT+cSZ3MqrAWHOzpo56nZ0/J0dznvNoEF9aMGMUbZ7UbwzBmMXuCdvLbta2J9fhk+3rxIiIoFsUfkV6rVGnNkQRx7Wj7lobanxqY6OQGlmhZwj/skwDcmGOnLGwEdRNePi+berQ4oy5HIT1YUNP1yNjnAPFFtkQdSi9+vmjtMGDiwwv3rrAy7dHuH+er3zspTTA1LhWNxEYTlZvt1knX6StatKDs/WaDi4mBaJoNTs/YEdQ9CPKWZDK4GJSolsLF2Quq2ZTF8oee+zx1sWe8L+FUJoCHO2BfUC1AVCW1KrwlzXCb2DAawq/T9NflNK/Krwa2uvOkjWtDWTLjr6f4Y8jhmtXqkW/YAJ6jcXtTmb4fWjfggCwK+55pDKY5AqaNE6LB9Bk0BU9F7C4fJGhlMHtB7Zm67knrMJPIDvDX0/p1waJ+7obeEu/J/uWcCldBYv5RZSfHewHNX754mrQjWGMQZarhuI6PcN/4B5znMnWxaYmVTtXq3Oh47ImpsO/bOWXwZ3TCbJCNbrULxv+fOl2m9V//rizYrXPcx7yUgeVaZzJpYFmgnMQVefiMljbuVm5Yu3Fmxf4iV/4DP7N/+cPtw7s4mx+w4IPZgOqDcd5mwxC8LUq+dbBNvZrZWippV9wbpXELRby1vrczDAwcJ9rjfCH91M9/DAyMbWxkZcaUuugFtd/Tmkzl9gY4zNCEEL7kojhwG38bnpOcs42VnNtQv96DpNIsJ1Z4W89mOCF185x6/4EF+OitfVBaYPTYY4Xb17g5TsjKG1wdJAgK9Xs9XQOslLOnMudWCCXq9n601zhldujlUl0W9WkR7xGcF9eKoxSFTacV4EQtpb4UVThjTOJrFThHgxUTRL7ar499thjXewJ/1sE2thKPsH4AsLviRTNUfjtnyUxt8FwtUVkHDcX5dvA38C9AlxHWiqMW0jn49cSMAa8/ZnuzGKEga0cUnV8UBH+Tef2/Oz0IsIpBA9ugrNRgYvyHBM5wSAaQDABQxqKli+ebEgeYdCNcPWw4xR+R/ippvBDt1v63dZOfSYWqFL6u7En/PazWHVxejSwn0c9CTnU8oUZfvtPbah1salII8uN+51ZS38ppyuKCJNc4WRY4PggeShWfg9PMAb95nN6xTHPtwsSG04R91VqIzsJx8WkXEn1U4ZgzGqW+BdvXuDnf+XL0MbW2X3kN1/dasaVO2vztOpH5JRxr/B7wr9FZeamYIyBgIU283kwhlbKciNgK0u/MgbGoBFuZsg6fvjUrT7i8U7m+NeFrU+sNjbSTEGwWcW1qlmcX9cId73y14445qEhY5yqjb5viyoil8HoqiHhlTsj3Dtbnh0TCY6i1FsrtsbYKs6i1Lh7luLFW0O88PoFXr59gQcXGdJc4mxU4KVbQ3zlzhBSGVw/6uCgFyOJ7Jz6Km4gIsIkUzMbNNz29i51MhER7p+nGKblymsFpc1cR0AccxTSrPS9nGQKUunWqtx58PV/j6IKry1ckDPMHX/aY4899liEPeF/i0CRgiHdsPR3k0UKfwvhL6vQPqp1O9s/cynZevubow84a+siJ5fMPI1rxzF+4HuexLd94OrM30U8RqazlRa3fv5aKrORW4GIVkrpB6o5/rsXI5yXZ+hGPXBmcwuUq1BcBl/H9+wTB2FxQrALYRUs/TFAhNg1HgSFXwNgAJyCYS2y9nGLWmgfUCXqr2pNZ4zhaJAgcgtDIkJWNmv54kiEWcq2UDtNKtj22yz9QLODmzOGUSrRTfja1WzbwhP+elsEUG1UZAWt9HnOw2gqqO5iBeW+l0TIcrWSK0Pr1SrF6mT/7U8egnOGF147x+dfOVv6HPPAuCWm09zOdqJXi25PEEq13tzursAYUG6Q2L0yid+SWNjPcLqST0NPKfwAELMY0pQrjzrtFC4vxBjCKCsRx7PfVeEI/zy1PWSVsMoSXyf8k2wzRw13zoJN4DfMJrnE//s/fxE/+9EXlt5zImEdBdvO8dt8CcKgF+HqUQdXDxPEguEilXjlzghfev0CX7k9RCEVrh50cNCvsk38DP4kX34ulMqgVGaG8ANAEglcTBbXgQ4nJU5HhQv+W+01ywVhorGwmxXLRgmJCOfjovW4l4HR5q6PTZEVCsNUoj8VLsjdtXBv6d9jjz3WxZ7wv0VgiIK109eZzSj8buGlTbuSVc3wcxhQcy40nv25TeFnutsUfiJva5u94XU7onVhELEIypQrhVTFEQ/kdpM5/lJWc77LLOV+jv/O+TkMGSTcbjb491WtQBBfdYF9z904AACQs/Bahd9Z+nkMIkIs7PFoR/itNdAAsHO1hgDGm9WMlaXfV+htpq4WpQ5cpJdUn+uipH5lFApnzPD1doC1WfrR/LQWztVJBIhMGD94mLhwhHzQb6pHfiwlLwz0xt3gs9b8VSzLnFtVejwv1b4GYwjLEsdevHmB//1XLdl/77NX8H/58+/BB7/uSQDAf/qt1za2Js9T+E1tTtsmu1d/9yhU/kiwlTMR6tC0/L0FtlOXAfe7Uxs2mgwIzc1ZwGWbkNp6jn8juNGbvNTIS93ah875Yiu1cZtBvKbwJxELDRmT1MBs8H0LAZIbECqfNzFOJYisU23Z+RIJDmXM1t3qUhsoY8JGJ2MMnUTgeJDg+nEXg16EKwcJDvtJ6z2yE9sZ/GVuoFJqqDmEv5sI5IVq1KXWobTBvfMMnNuxp7aRg/bnnA3s8+CcAWZ5dlBeakzyKu1+HWz7vdwEk0y2uhH8DP/e0r/HHnusiz3hfwtixtJvFMTkAeJotgKr8XulV1JYIJUefEdz/Kq28992c/ZqxDoLsohFkKTWD+7bYA409MbHYql18OpBZenvR4PG3xGWK8JEhNfvVwn9gCdNdjPGb3Ak3Cr8fkNB10YF7MYOQTvVwK+rvKXfK/z9jiXRm5I6n9AfRxxRxHGSP8BEjcPmSpsKXZoyVEj2pjanfMhXVlbEr9eJQq3iw8ZwYncmDqYJvztupYBCbk5Sp6v4Vp1R7iYC55Ni6YJVG7OQk754y5J9pS3Z/6t/9p0QguNbv+4pXD/qYpxJfOx3X1/pmKbBXGrf9He6GjOZvabMC+67THg1cd3Fv5Jmmoe3YllQ3SIYIkwyOZPBYEi7NPvZA2Bga1WW7g4EpQ3yUkFp0+rG8UrmPMdD09Lvry2sUvjTzUZo7POuFyrnoV2QXX3D+3S4eJSMuefbVuEvpZ4J0qsjEnxhhkQn4ShdgOIiFFIH183Mc0Q2NX/ePeJ8VGA4KXHYi9fKLmirmqyDC2Cy5LE8gd4kxJXzzUZ5NoUhwtm4mAmytMey+fm5xx57vLWxJ/xvQRRTln6enwPlGIxMsOa3Jd/6hZW/ETWCoMDCn2+j8PsbN2NVpsA0OOdr3fAYY2BgKPWKwX0HWxD+Fe38ANDv23+mKZux3DIwKLN4EfPgIkdWaESC48nr9sHsKIYbr3AKf5fblP5A+FE9rtIGIJtE7BfQpjZT33VqfH9NS/806gn9hgzGyo4xBMI/ReCICNKUKApyx9FcqPk5/k270XcNf67UE/oBuznmSdim7gig2kjy6+y5XfRT6CYiqFuLUCqNeQ2YL966wP/+K7NkH7CL/L/0wecBAL/3pQd4+c5opeOaBsNihX/6mvJoFP7NkvplS6VYGwTnGxO/i7G1Sk+7ikyLuu8Ru1GnbbIl5uF0mON8TtUb59axMc7kTLd6HYzYXCWTTBUrW5/h96F9abYh4eeuonIDBdWHCNY3bc5Gy7NjGLCy2j0PpdJbZZYIzqFNFaw6D1mhIBZw5ijiGKWzr7koNe6dZ8GFFwmOrFRLN+7nVU3WkUQck0zO/cyGkxJ3z7Kweb0urBvh4Sn8aa4wyWXIupnF3tK/xx57rI894X8Loq7wM5mC5xdgRoMRVcppy43fL7rjmM2k+HPGQ3DfNgq/Xyx0O3xmAUNO7ePc2jnXgWBi5Tn+SuFfvRrPw4epHSwh/MoosI5V18aT2cUEZ3yp3dbP7z/z+CAEdfkZfk+YAaDjZveDpZ9UII7KBU35ICDOmlZLb7cNM/ybKvy1hH5pSihSmKgJEifITxNSTRrSqKDw1y39QLUZVFf4HyW84n44VQvHGAtOlbaxhVXhz6snr/Ubz7cMnFu617YIr0POsc02yf5xg+x7PP/EIf7Eex8HAPzyJ1/eqNaMWhaxxrjvPJ/dRLyszu9FEIJBbZDUXyq9Uhii755fV72TyuDeWYpIsBm1XJN18LThsub4S6nx0x/+PP7d//n5VmIiOENRaowz2WrnD2DzWwvsBIoLmXWfR1yz9GcZude+HqzbZDNCpc3s9fN0uLwJQQi2dbtNXuiFmyerII7Ywk1u40L5Fs3Bd2OBca5nvq8PLjKkhQoz6XHEINXy75LyVZMLXlsSCUhlULSIFBeTEq/eG0Mbs3Fri+B8o+/lphilJYyhhTk0e8K/xx57rIs94X8LIhD+BODZmVtZ2//54L62BUid8E+DMY7YbUgvm6dbhGFqF0j97uyp6QkpZ4BZM0Qn4R1M1BgX8mLpz3rCP9xght83DBwuWVxclOeIe/bxJ5meCQXiTECaxQRxen4fqBQ9bTQ0nC2fxwAZxMK+LkUKkfDVXApwqn6wT7vPWXAWFnc7U/g7EaSR0KQRsQg8lu49aL5WTRp5ocLc9mzApJ+N302l1TbQxmDscicOW3InfFJ/WzDhqvAK/zOP29GP6dT+Reh27HzuosV12RKMlRUK/8evvlgj+++aW3v3P/zJZ3DQi3EyLPBfP3N75WPzaLOp2twR2zgxfU15FJZ+P3qwDuH3tvRFdmoP4RLs103qPxlmGGey1VWkjQabc5sXPFqrsnRVnI9tAvskV60bx776rpDt8/vh5xhaK1gBuI1b+z5VCj9D3yn8hjbbYOOM2fGmNcmdb5SotwYAwOkKCn8kbJf8po0JxgWibhtU2kkEskLNdehJaVBIg3jB8yQxRyGbn/s4kzi5yHFUCwqMBIfSJgQuzoPWtsJRLOgLjSL3WFPXiPNxgVfvjkBkQt3uJhCCQW/wvdwEShucjYoZR9s09oR/jz32WBd7wv8WhCf8PWRg5QSfNffx2fJ1ABXhz1p2y4uympX0OBvZvl8OtpNqvqFT7nzYWR3GKSiCcxuEtQYiHiHhCU6K+xjLxbbj44GVnbeZ4T/sz19glKbEUF3gqNsN7+V40ny/BRPQpBaqVCGhv0b4vcJf1MYXYj/DH9ljMtAQwr5/fh7ZLnBtBdB0YB+AEIS3ucJfVfKVpgQDQ1f0IBL7eLMKvwq/k8RsRuHpuHNtVx3W28An6HOOQDjq8HP8q/ZFt8HP8L/tcftZr3NuVrb+9ufXxgR1so575xmkMjjsxwvJvn2OCN/1zc8BAD75B3dw9zRd+fgAhFGSOoisU4XzN4alH7CNAutsaGpD0ISZ2fo2cM6cnXz1DYU0V7h/nqPfjVot3ZLkzLhQ4znBdz7HX3dGtW3MCBc8Zgwt3AhZFOzmxz0AS0QBa+3mnIWmjE2u35v2nFeNElhrhh+w5Fdq2jgYzif0R1sq/EnEUSg995pauPyKRQo/YwyCseDAMcbW8BmiRqZN2DxbYpVX2tWFrrBhVj/us1HhNsRp4b14FQjOYLR5KMF9Jxc5skKFUbp5WHf9s8cee+yxJ/xvMWhNkMreLPp0gZxx/Pbk8/jt4iVILSvCv8jSH1k7JblFlw0r2o2l3y8U+i2En1yKfBzzjdSQjuiCg+N+cQ+pmk9Itprh95b+BQr/WI5QmhKdqIujA3tjH46b7xkHhyEzl/CPUxnmQ992owr8M26G36t2EY8gAIBVln4A4LFdvEhVs/y6f0wH9gFNhX+T975eyZfpFIJF4IzjwG0kjKYs2lbhd3b+zuxlKjhRHuJs5Tz4irxeb7ZPHKjGEVapvWqD0iY4K7zCn+ZqZes8YwyM2cyH02E+Q559Rdq0pd8rpFcOOgvJvsdXP38Vf+y5KzBE+KXf+EqDwBtDuPVggt/63F38wn95Eb/48ebfsxb7dr2+vpj6nNdV+Mm1lGyLSLDWzdB58Invq83wMxi3+bIKjOs0l8rMnffVRoEtIPyXMcdfbzdp25jhnCGXemlF2qIQw6al375f/v7j5/hXHXuZxfqWfkN2yI0zNjXDv9zSb6v59Mb5DVLZlP9tFX7GGDgY0qz9/C7dfX1ZVkDiEv+VNriYlDgfla3uk1U2z5TLllmGSPDgejod5njt7gicL954XxViSWPErpDmCvfOM/S70eKNMMag1Z7w77HHHuth8TbiHn/kkLvAPsaADpO4z6pFRqlzJHHH/Vybpd/+bBQ7wg+b6k7OdhvH/ue2UPidOjTdZw7YXW3BGJJItJNOMgBpgM8n272oj4ka435xD0+yJ9ER3Zmf8Zb+USqX2gmn4Qn/vNA+aSSG8gJdbp/3cCBwci4xbFX4NbRRAJ9dtHh1/4mrvYYaYC28VUBhRyQACCAGAR4+tyjWALirg3KLC2bf06Dwx7OEX7tAv3UDkPwGUie22QSRyxU46nUBTGZmsqWRVWBfC+H3oX1vBEu/JxaDlnMWqNwqaa5dDsV6Spw/pwRnuHbYCXbYYVri2tHs+duGo0GMcSZxMS7RiTmOBgmOBgkG3TiQ0ulF5iqbV9P4rj/1HF6+PcLN+xN8+DdeApHBK3fsf08Tmm98z2N4/slDANa+PZ3IbkmXr4lU4VjGmVxb4R+rEUpd4nr3sbV+bxqR4CikXvm6YPx7u+IMv6HVrcO+0/xozrXGkK2C5Av29SMeI1MpSlOgK3orPe/S46qNm7S5WiLBUZYaB0eLGzVEzfEw/V4bbQBm31v/fnm31KAvgFO50YZtePy1FX4CGQITTVdCVljFfH4Amw/MWz8bwsNXVq6igi9DJ+EYZiWeNP2Zx0sLtZJTxTaDlBil0mZLRKx1wzAWHJNi8fdY1a4Bi5DEHHmhcO9M4/V7YwjBQuXrtvC5DvMaI3YBQ4R7Z6lzVC3+XjDOtq5x3GOPPd562Cv8bzEUfn4/IqAzwEhPwt9JU1bKaUv6uSeCXBhwxu0iQ9hFKsduavnOxz78bHaBRC7IRnDWmkPFZAYxOV36HH0xgNQF7uf3WufkB90oKHKjFdPQPcZLUvrHcozSlEi4val7hX80bhJXxiwxn6fwv3rPjiU8+8RB488NjFWZfGCf6DiFxBLNmFnyyYV93LrC7/dQ/OdcJ/VJJIKCtImt39vz48QGFkbMpf87NW6Sq0YrQWlKlKX9DLot9YydeH7WxMNGIPz9OYTfbVhkud6oG9yPiRwNEgzlBQ5dMNk6hEZwjuNBgmtHCeKI43SY48VbF3jh9XPcO0uhaFaFXnYut+FokOB/+BPPAAB+7b+9jl//vVt4+fYIUhl0YoF3v+04bCDUm0AYYzM5FkTk96DCZuN1RxLXHY+QRiLT640ZtCF2Sf2rpnZbS/9i63oDKyqJShvcO8sgOEM0Ryk3ZGBocWCgYAIGZqdz/A2Fv+Vz4pzhiWu9pbWlnLMGoa/DGMwE5HnHgA/u22bsY22F33hL/+wYwipz/OtmQ9RRSr0CJV4NnVggL9WMi8UG9kkkS1wZgNt4cNVy40zO3TCMIuuGWGSVL+VqmwxxJFCUGjfvTxBFuyP7ATR7fVoEQ7TWuNnFuMTZqMDRYPlxc4aHMl6wxx57/NHCnvC/xZC7Od5uQgATGJlqEVzWCH+bSu//LIoMGLO2euH6kq2l3/3chiRMkw5K99FByww/1Qh/W6+0UYCRSy2AjDEMokOkOsX9/N5M/R1jrJbUv/pCmIhqCv+sKq+MwlBdIOFJUHkPB95+WnvPjASMsuF7cwj/ay2BfYB9DxnqhD+xq1GHxBP+SLtj8jP8lVWzbuknIozKEQyZKql/g/A5v/hJEjhniD3PvPotJeEsPwfgK/kkSvfW91ot/dtvLu0KnuAMWgL7AISU/izfrCqs7hrJdY6+21gYbUBoGGPoJAJXDju4dtgBZ27OuKVb25O1dRfPf+KPPY73vfMaHrvSw9e/6zr+x29+Dv/37/la/D/+5z+O//k73oMnrlkluf7ZccZmZteNocp14s7J68fd8LvrEKTSNUNsktxeR0jqX3HBrQ21ujrmBnKuuJg/ucgxSsuF7gtD1lFy777Cz/7SbbzwlUnrzwkmFo44rYv6NXPexswqLpdK4Z+9nitjGgGjnCPkfAwc4R+lm7t/1p2RNkSu1nR2/ORslaR+zpDLzQNRt53fD8chOIyeJaul1CgVLR3D8EgigfPR/GwJwG7QSKUXVhIW0qzUPiA4A+cMSSJC3swuwRgg9erXjnEq8cqd4Uq1jKXUuOucEKuMZXDG9oR/jz32WBt7S/9bDOXYEkWfej7UTcKfBOW0eUNRupot5RGBgzkbIYdWyln6m4vzdSG1DBV1rQo/AbGwN3bmRwnqiwmjAKMBGACL1SPGGA6iQ4zUEKIUeLxzoxFudXSQ4HRUrEX4i1KHG3HbQnyixih0jsPoqPY8swo/z4cAE0DEZzYjALtAuO1C0Z6dIvyGbEq/1Hah3REdEFW2/XiK8Ns1jLOjsup1ANbSX5oS5+l9UCHQ6whcTDZV+O3viFg3LMaJ66k3Brg3PsOV7jE449CkULi3fpGlvygf/cLHz/AfDNrPOZ/SnxdWcQXWW5AOa0GQiiT6PftBbWNZBnxlYDTXbrxq40Tb4/7VP/duHB32MBxlM1ZYP4JSJ/yMA2pqLtUHSQLVOXk8SNzMM2GcSVw9XGx/BfwGUmkt7kZBLCoSX+G1gWhp2JiH1ia4FDwMGTzI7+NKcgW9qD/z+Ms2E7JC4f5FvnTW18BmgLxyyyDNDX7j0xd48vFOuOZ4xDxBpjPrvOHbLwnqs/OjNdokpmFDDNszDWznPUPuajnrQbIHffsaxulmIzSbzEgTEQxcLZ/ys+72nrVaUj8PLqh1YIiQl7sj/IBNvR9OSjx2XI14lNIq8ZFY7fzodyPwEktHGYwhlMqg3/L3RAQp9Ur5FwBw9bCLIS7Hes/5eg6MUmkMU4lSjcGYzUGZhwfnOSaZxLUlIy7VsbBGje4ee+yxxyrYK/xvITCVo5jYROauE6Drlv7SFEE5LcumGlkn8SKE9jmhnWxYWRQ1F+fr4jzNYYx9TG/LrIOIwIVNYuaMz9gumZYAtJ3lXwGccRxEh7goz3FSPGjkAmyi8PsgsW4iZpQQTRpDeYGYxY0F6OFBpfD752daAqQhmGi12t58MAGRtU8fTy0kDGlrKzV2kWkVfh0cEZ7wM2fpV8rOwmqqCH9es/QrUih1iYvyHCK2f75JNZ9fzLKoSSos6XSbT1mBkRxCG6vElm6Gv1Xhf0NZ+u173VbJB1THnxcEvY3C34uhSaPbZe55L7eL3luid22P9e0P0wq/T273UPVNqOA6iYJ7ZlUy6YmvJgW1pcIP2BnaZXVi4bltulwDmjRykyPXs8qv4GzhZgIR4f55hqJcPBdun8eAQJik7ruuCR//3fOZ/JOYxZCmRG6WK9HLYAyFRglgO8Lvr5NtaqY2Xk2fbY4Z+DGh1Gw0QrPJjLSppfSXYfzEulFWS+pnLm1/vedVykDqxZ3t66ITC6RFU3kv5HqbJ5yz1ZR2mh/MqDRBG6yVoXNZEJyvPMYD2PVTHHFwZutzz8ft58AoLfHgIsNBP179vWUMhH013x577LEeHv2VdI+HAjIaPLuADwrvOmI/qin80hQ1S7+td/PwJD6JOBizFn6/wPEL2pDSv6HCfzq0mxEHfTFXueKu9scGXNVueESAlmBEKxN+wNpZe6KP8/IMIzUMf+4J/3C8BuFfENiXqgkync2EBB46NUopCnWJILtpwRmHpHJmgd5WxwdUKhMDR0m1Gf464Xdk28/wK0dIqBYsFshVLKCMBEA4TA4RJfb4LrL1iYGfCRWRQcSa74+f0Tdlggt5jlSnMGRWSulfZxF2WRi6nIfDOfOXXTe2kBdkQxjXxMgR+4O+DXLs9/zzXjLh31DhX4aK8NdcLX4RWzvXtTYzrpNOzIN7ZtU5fm2Ua7ww0LR9yGMk2MrzuW0EzrgwzlRPZr7bbRWEdQwnJU6H+Uq94saN94zT6vFu3i3wxa807fuMMTAwZDuw9U9y2SAi4w02Bxsg1jrDr7TNKglVsXFd4a9GaNQaNmyPTWakraXfvpf+83vyutWtT1dK6rfZEOvO8fsZ+F0S/iTmKKVGVtuQS/Pdugg8RMSQzTlHlDbQ2qys8F8mOLfODUOrkexM2vfroB/PJf3aGNw9y2CI0FmSZ1EHY1UY6B577LHHqtgT/rcKVAGmcmTaLpa7MSBJIaPqJlSaqpZvnsKfuEo87mr5OBBm5pN4O4X/dGQJf5udH7DRcoLboEDOgeaazCX0GwJb80YY8xgxT3CS3w+d1JXCv0LgkoMnINN2fkMGF+U5IldFV4cQLMycDsfOnaAVmDHgTDiS0nw/X50zv29gQGSsLdh4S3/iNkDsZ5N4dd0Rfq3sjLFus/QnAqWRYODgjOOwa90ED8bnmKj2eeA2UC3ASMTWuVBH31neVcltuJojHn4DpC20r7L0E8waveW7hlQ6uBfmnbde4SfCWpVuHl4xHfQjEBG6PXt+XybhN4Ywyatk/F0iEP6ahbltEVtPt89rm1DrEn7l1H0O1joisy4iwVGUeiZzoA2yhbBY5d2g0AXklINHcDufO72YL6XGndMJXrs3BudspVlqf/32hP/dz9rv72/+/gUmWfOakvAOUjXZOuPAO6L8tWScyo1qPAMYZt5nWwfrLP3Kfp7196PX5cFOP8pWv357cL7+jDSZaoPcK+NPXrOE/2wFhX/dbAgPqczKPfWrwm4A2c0bwH4P00IijprX4ULnOCuWh+QuQiwYskK2EmltyIaJXsJGw7oQgkGb1Ro0jCEUpQ6bMPNI/9mwwMW4WGnzrg7OGWhOtsUee+yxxzzsCf9bDD5vrZsA46nU6npoX1mSm/22CAp/LOycOOOWgTMWFP5g6d9Q4fcBN22BfX6BxzkHB4NwN70Ao8HI2/nXf/6u6EKTwUl+H9JIHB1sYOmvzVrX4dX9ebVXR272ezRR7vgpWPoNaTf3bWEM4fX7TuF/YlbhJ9iKRFlP6dc6dHF7hZ8Ju1C2tmlqJ1dJhNLkwYLvlfasMLiX3cZIVo6IRSilCTmKSTLbVe+D+7LCoCt6yHUGgGqEv83Sz9xrBgr16Kr5vLofiWrDaxpCsPB3kw0CD/15NehZhb+3oxn+RfDHyVhVybgLSCNDfkRWVu8FZ/b7XF/4K11tQpW1IEnvoFk1tNB+fxgEjyBp8+R2D1uLuFqNWqnMDBnzx6NIoTBNMhiq+RzJVdrgwUWGL9+8wM37EwjBViYImjS0JmS5fawPvtfg8WsxSkn4jSlrf8xjlKZE0TJmsA78JtTxkdvE07SVC4dzhJl4D0NU2efrCr8uAaOsndzZ+i/mWKkXPidjoapyVdgfdeNw7vV6wj/J1dJNcHtNJDtitQak0m35tVsjiTlGk9KSV6khpZnZZCpNiYmebBRE6hEJDjnnu6S0cUGIbwDCzxmMXm3kwo5mUMMRYS37FEh/VijcPcvQ68x3M85DGH/aZiNtjz32eMthT/jfYqgs/c3APsAq/J6YKA1IU1f47b8nMQPBBsPZ0BjAL3S2mavWpHEx9tbotsA+S0g9KY2FaCQpM6MBY+yRbHgjHEQHSHWK0/IER460X4xnLfXz0NZbTkQYyiE44zPqvsehC9Eaji3hZ2SspR8chnRj7vjeWYZS2oqzG1eaGwhW4XeEn2oKP+oz/O695T60z742H4IF1Dd3bPifV+S90q4kBxjH3ewOzorTpe+PD/kTgqETzarF3W5VW5fwBIo0BKKgAPvQuzqiiIWF7jr1R+tAKo2f/vDn8L9+9IW5r9GT7n6fL1yYepV/3ZnmevPDoMdBoFD/l5eLE663QUjo78ZbqYfSSEzUBGfFKW6mr+P19FWkdA6gGf7IOYNBk2Tp+iZU2aLwr0j4752n+E+/OsHrtzQKvT4BnIYNDVzNfq1aCL9X0Tl4cBR5CGaJhVSEs1GBl24N8cqdEYgI1446S+f2G89NCnlunzviQC8q8W3vvwrOgVdu5Xjpteq5/bWpLVdgHfjGiqNDjsgd6roVinUIzmY2DJx73lr63WZfEnGI/AK8tM6jA0/4N8gQ4Mzm06xDqOx11yn8boPisB+j7z6vlar5sP5meVboS1HAO4lAXmrkpbJjA4ZmLP2aNKSRW7lCFiX1W3L96Mk+4Jw3K1ZmSm2gjJnJHjjsJ2CM8Nq9Me6cTFBItVGjAGOYyTvZY4899liGPeF/i8ET/l7CGoF9AFCSRFJbT2ZFtVBrWPpR9cQzp/ATUbBZW5vhejcjZRRGrprucE4lH3ez+4ANaWqQMLfoIMYsYd4AjDEMxAAX5TkotpshpTIrjyi09ZanOkWqJnPVfaBS+IcTDWYs2QfZbmU711w9v5/ff9vjgxkiERR+xqDCDH8MEKEghZNyWFn6uV0oa21/R4fNm4rwxxGgoWcU/rww6IkeEp7gpHiwtN/cE/JOwhCxWcLSDz31rqEhPkKMXhjZaFP4bb2cPeC03E61NWSQtowovPDaBW6fpHjx1hBffPW89Xe9otnvLb6U+jn+8ZoKf1aosMj0Gx/dJAohZZdl6583nrIqDBncHN/E65NXcSt9HfeLeyh0johFOOpa5bNObuwi1iulLo/CmGoTSlZjJkHhX5FIfuGVIc7ODb78lRJ6B9V8Xo1dRviNs91OJ2nfO89w+65CzBOkKm0cjxAMmgi3HozxldtD5KXC1cMOBr3VQ708pJFIM/uGDnoAI4Vrxxzf+NWHAIBP/LeLxlhFzGOM1XgrxdZvgB32RThfV/2c2sA5m3mfjalaRUrX0hFHzGaVuHtCGJOarP/cnNv7zTqWaUMU9pn95ngnFrjqktfPVpzjz9fYvCSX0B9fAuG3LhaDLIT3zSrt2mgoI6G2yMXwj9mq8CvndnsDwLdzrKrwY86YhXX/ER5c5K3Vvaseyz60b4899lgXe8L/FkPd0j8ylqgNuCWjJSlwXgUg1eeN64Tfg1xIEWO2W71b+7t1lQpFVSXfUYvCb4xNT/bZRJHgDcLPjH++GmvYAIJH6PAuxuYs9Kevap2eDu2zHfYX9nHZ/FCeZjWfdSrYdY59HfUF1av32u389qdNVcvnZ/h5AiKCIgNjDGLuCJwj/ErbrnNjCIw3Lf0isou6SuGvCD8AJKJjU8CXzPP78yiJ0Vr71a1Z+sPvuH8XAnPDokKF5JYKf6YznJVnM0TwD79Szaf+xh/cblX5fWWeV93nwSv8k3w9gh7m97sRwO1nK5gIzzdcUeVeF+PgVtnMzl/oHBflBQQTOIgOcRQfox8NEPMEnZaUfrugrhax3rbN3WZiWSNR687w+xnq4Vhbm/sO5viB5dc4bYx9DVML/1/+r3fxa5/IkKd29KbuOmBOXZ5kCseDGEeDZCOHBRFBk0LmRPzDrr1GMq3wx7/6EFePI+SFwSd/7yL8TswTlLqYGTNYB2djS2yPBknI5ljVidEG4ez1daJFIRG/aktIYu7CTu1/++C+0QYbYsyPl6xp6Wesmb+QxBzXXG3kakn9HLlcPRhOupC/XQb2NY4n4hilBSaZhGh5DknSNmBs+X1ijLUG/RbStD7vo0N7gOQ0luUwHPYTPHalu1IOx9wj2W6Zs8cee7wFsfEVZzwe46d+6qfwd/7O38H3fu/34jOf+QwA4Pz8HP/+3/97vPLKKzs7yD12h2Dpj6uE/uuuF16SBIgqa36NSNVt3gx+fpogOLMBfgYQQsBXXK9r689liSy3d7DDlj5zQ4Bg1eKZc9bc/A+LDgZsmcTdcUR23b5zb9f2hCTTGcZqvFDdB6oRBq/wM3hlg8DBA3kH5if0A96CSiHdHwA63Cr8BgyM8TDDT8wr/PZ3tSNXQJWeHscU3BxAnfBXn22HdzBW48YxTsP/fJKw1o2Pfs3SX/1OFdg3T9n0eRPploRfk0Kp80aAWl4ofPl1S4Y4Z7j1IMVLt2czC3wIk7cQz4NXO9PcrKWgDidVLoQNnGPgTIRz89IV/g1VqExl1vUjkpnPL0n86MjU+1CzURtTbSjWiXUnFjjor27pJyJcjO35MZ5oSK23UiQ94ogvPe+0IRhtIGqv3xiyWR0ARhNbmzc9N3/tqIPjw2QrsmPc5l+a2ff4oGusAm4UhGD4tvdfBWPAl1/J8Oot+/yCCRAIucoWPfRC+JDTw0EcXC/DdPMNBN85XlfbbSK+dSSFWr6YO4Xfvl6v8I/S9T9rzqzLYh1Lvw0ObeYVJJHANV/Nt4Kl346KrJYNATjr+I4T+uvoxByTXCMtFJIWcqqdnX/b71Mk2pP6C6nfEAn9FQhyhdaHvFBhHTQPW+cSMLZSaOgee+yxh8dGd4o7d+7ge7/3e/GTP/mTuHPnDr74xS9iMrEq35UrV/DzP//z+Jmf+ZmdHuge20NrQGlH3pKK8D8WXQFgFX6QCUSqTtrrfcf1ZRDnNoTNuNnxTZP6T1xCfxyxVgs3GbLP5TYbBGdVFDQApksQ5yDGrS1+S/TFIKShz+vQbRxfbdY69ISrIQBqVbXr8CGFk1RDK29LNVU1nyPTF+MCw0kJxoBnHhvMHgPszCMRVTP8PAGIQIwQMV4di5/hN2SdAdrap42pFq1cmMYEpf9cbDK+fW9inkCacqGt31v6PdGbRnfK0g9UhL/Xci54VOfpdgtOZRQKKhubFl949RzaEB6/0sX7/9jjAIDf+Mydmd8NhHxOJZ+Hd4tkhV6L8NddI4oUBOO2SvKSg/sqS//6Cj8RYazGSHj7ZoHfULRhjrWrCavOK3KEy3atO7cHZ4giHmoC00JBL1HTNGkMR27ch4DReLb1YhP4pP5FKrB2IYR1hT4tZLB+p5lGzGJM1Hi7JPsWGLKNHWlqH/egAzDSYG5j9Mb1BF/3Xrtp+PHfPQ/f+YhFGx8PEQUL/UFfhLDHUbb5OSqEvSbVldXq3Kjm+2MBG/Bmmgr/Jg4Yzq3LYi1Lv7YbBX4WPRIcnLOg8J8NV6zmWzEbArDfn10n9NfRiQUKqaGUQTy1qWDIQMHuyi3a7F0FseD2eWrfZW3sZsYbifC35Um0Ia8l9F8m9gr/HnvssQ42uir983/+zzGZTPCLv/iL+Jmf+ZmZxcF3fMd34FOf+tRODnCP3aGQ9ubJGBAJg7GxJPt6dAzAEn5GFGaj62FonvBHMcAdDWRgEIIFOy5nLIwDtFn0FuFkaAnj4aBd0dVEiGvb5najwS7+7OpMAUzYF7cDBY8xhuMDu1i7N1yeRp+XOiwQD3s28TpVEySiu/R3ux0eGg5GqXI5BACIIJiAIltt5e38T13vI2np7TVkQjWUCin9EeBiFjnjiJ3CXlf4hXvb7IKm+txISAhePU83qY1sOHWWMQbBIozlfJLgldD679fR9z31ZWWH9VV3bZs/HsHSvyXhL00JbZqBbt7O/7XvuIZvft+T4JzhlTuj4LDw8IT/oL+YGPtgwjw3MFiH8LsQtH4CaSTYFOG/PIXfvqf9bmQzLdYggIXJUZrCNkS0oD4WVN8YpClLP7n596IW2AcAvU4USM4yW/84z1HKWi/82GxNUIDV1FhL+JuErF4TN8mMtdGbcqaeb1sY0jAgTFKn8PcMiAGovfY/+b5DHB0ITDKNX/iP9/Bff+cMt24bjAv7+a2LtMzDRt1BPwpJ+eMtCD93SmZdzTQEu7XJqkR8e9+hYOkf+OfeQOG3oGYLzBIoY+zmlPLnqj3H/Qz/Kgq/rVtrn2dvw7oVfusizNdrgyiaJfyGNCLX7rANoohDqeZGh9LW1fHGIvx8pjFiGkobW8V5yVWCjGHt6sg99tjjrY2NCP8nPvEJ/MAP/ADe/e53t5KzZ599Frdv39764PbYLXJH+LsxMKEcBIIAx7GwanFJCmRMWJA3ZvjdojuKECreiKxqzJhbgIGHMLF1ZvgbCf0H7cSJqJkSzLklsJZk25A7MO7Sv3aTXH7kSNzpOF2aXu2V2F5HIIo4cp1BaomYLQ89Y4xV1Xwj9zqIwMja8zXZ2eM/fMmS0Lc/edT6OIUuwMCgjIZ21YQdFjmF3yZxx47Am0D4bc/xE9f6jVlKwRmIy4YFn/MqKC+v2bG7vINMpyhM+3uUuuAIn/I/jW6tp95vJLRV8hERRnIYyKdX+LMNWiHqkEaCM5uYTkSYZBJfcfb9973jGo4HCb7hXdcBAL/xmeZ1zSuIbbkTdfRrOQVmDYU5ND/0IxjS4O6SfdmWfq/KdjoGF/J87mfbhkzl0GQam0V1CMGC5bX+2fm6KcBa+g0IjFfXEj/7zxgLKv+yQLj7F83jHo+xNUEBvBqrFxIArWkmc6ze0pBmNhCzrZ5vW2hHyCapC0LtGIBFYKp6niji+LN/6iqSmGGSaXzhpRS/8skL/MKHh/hf//OL+MQf3Mbd03TlzZ4HY7sZFgl7nRg4d8iq9YltsJvJrGnpN/Z9ZTVFPY4AFwIBoFL408xsbH1eS+E3TceB35C9dmg3fEephFxCFj1WJfJZvtw6vi0GvQjdpG1z2TqVYhZDGbl9NZ8xjc1mre3ndtnEeR0IYQMkF416SGWgLzFXwYMzrF3huMcee7y1sdFVKc9zXLt2be7fe3v/Hm8seIW/buc/FH10mLXeGhA0ZGWVrs1qe1ttFFUKPxjARRWsxRlH7PjtOpZ+ZSSGbq71qGV+H7CjmSLiKLRdMAuX2E+GAKPASNuDQXOWcxscOBI3TnVrinsdniAd9GJraZZjCB6tPKsXqvkmCsSF654y4EzAkMHJMMWX3Ez5N773sZnfJyJkOrWKS02pjt0MP9wwRDQ1w29npasFTFBTEwFt1MzMvVfp85r9XvAImjRS1W7rnxT2vekl7aTYbiQ0bf1thP9Loy/iF1//BXxx+Dl3jG7zodic8NvNFIUO70CZEooUPvfyGYiAp6/3wwzun/m6J8EY8KXXL3Dn1L7OvFRhge9nhuchjEMUBL3ODL8PBewJGJhQn1bNR18O4Z84hb/TBSZqMveznQYRIdXjsLE0D14BrTeBgAFqJrRvVuEHsHI13+mUlXo0IUizetXmPHhX0yI11rgk+TrqLQ2TvKrnS5c0XawLS8gIY0f4DzoGJGLrhKptOD35WAf/1+9+Et/5rdfxte8Z4OhAgAh4/V6GX/n0Tfy//r+fw0d+89WVnvPB0BL+g751aflsDn8ubQyGGUu/30kplQ8QBZi7ZoIMel0eMklGGyT1190mq0D71gDZVPh7HREI89lo+XdViNVCSH1C/7Tyvmt0YoFBS1OHdhkREY9ddeyWwX2oPkvAKvzGYKba7lHC5klg4RiRdBWGl+1M4JztFf499thjLWx0NX3Xu96F3/md35n79x/72MfwNV/zNRsf1B6Xg0K6RUgCDF0l36EYIGIizGqXuqwIf23HvXBqfxRTUPhtgBgLydIMbCPCL0mFhP55Cj8A3Elv4f/5e/8Wv/TifwQxA85t2Bwzxsf4u7n+akG4DYJKlAJjNVo4+zuuze+XpkSuM3R4u6W5DaGaLzV2NMEH8IHDkMHvfekEAPDOp49w/Wh2TEAaO4Mesxils+1GPIIAANucCAYG9ycwqCz9VHuv8tqCVZGeJfydyn5fR8I7GM15j/xoyDyFH6gF9znynoUZ/up37uV2hv6stE6HytK/HeE3ZJDwDhRpSFNWdv53Vpua14+6+JrnrwIAPuFUfj+vnMRYmrjsQ/vyDRX+QT+CoYrwHzr3yWXM8NfzKOKEgrNildn30qXOJ0vO/aSlUpGzajFtqFJxiykSBaAK7lui8J+6OjSfLTIaGSjnmNkWdYW5DdqYmavQuNbSkDoynvAEmUpdKONuYGCgJINUboY/MQCPwEjVAk4toojjuae7+OA3XcFf+4tP4n/6rmt4/zf08Pan7Iz/vErKOqSROJvYEbEDdy3zrpZtCT+DtcyH10YAuTtWsPR7hd/9jzEWNsXO0/nuFKUNfufz92acMnW3ySrw9YvV8VRulCqpf7U5/qxQSzekrHWcHsqseBv898eOnG3/fRKcNUYIlTahYvGNAsEZjDa22WYOpLLHvXUo3xLYRog31vuzxx57vLGx0d3ib/yNv4GPfOQj+Kmf+imMnY2PiPDKK6/gH//jf4zf//3fx9/8m39zl8e5xw5QlC0KP7dWbm89L02JZJHCL6zCT5bhgzGGSNj/ZoyFWfR1Zvi1UQsr+QAAjPDqxDY/fOHsS/jIV/5/YMzNWYbFBrOkHyZYO7eBJ/xZbpDJHJmen14dwtV6MXKdQZFaGtZXR1D4U9hNC0Zh4aA14Q++fA4AeP9XPd76+6VTpyMeodR+ft92/sL9fw6GKFj6XWifpgbhr9oY7DnAWfMSMV3N55HwBIXOkbUowalTcTtzZviBasZ9kcJvQxArS/YuQvu0sb3sPqH8ZJSGOf2vfXvTxfQtX/8UAOCzL5/h5CIPZLu/pJIPqMIHyxIrJT17eAt4v8cblv7DgXXllNJsnWEwjVKaoB7xpEQv6qMwRetnO43C5Cud+0mLws8YCzZVMtV5OW3pB7Cypf9saN+/tz1pN8mGYw2zI8IvRJOkTEMpwrTQN8nqCr+7pvIY0siN5ubnwSb0uxyMhFlCzAVgTAjum4frRz28610Cf/FbnwRgN1XSlhT1Ogqdh/YBPz/vCXdemqXhiovAOJrZIkQ24wQV4U8E3IYJzST1XywIXf34Z27jP/7Wq/j4f2+O6jBmP79VQEQwfoa/ZXPq6lpJ/RxK01IyVyoDpfRMmN7DgiENco0wALau5oui5kaHdfq8cez8gCX8imjhqEep9EM5bJ9tseuwz4eBQuq1RoX22GOP3WCju8X3fM/34B/+w3+In/iJn8Bf+At/AQDwd//u38V3fud34iMf+Qh+5Ed+BN/xHd+x0wPdY3tUM/wMI2MX70eiDwIQwy7QlSnQaUnar4f2eYWfMavKccZDYuwmKf25zmsK/6wK7G8M97P74c++cPYl/Nbpb0AZ7ZKZ3QEwBkYEtgNLf6/LIYR1L4wnhIkaz/3ZqsYsxkgOEa0wu1+H3+gYZnCbFoB/Ta/elMgKjaNBgve87Urr7xe6CKMWRQjs6wSnAACAMUTusYPCb3yllHucWv1iG+YRfs44ODjGU+8REa0UwBdS7D3hd3bnekr/SI7c67MLZ0/4Z+rd1oAnfjZ8UOBzL58BAJ574gBHg2bK/BPX+njP22zA5Sf/8E5QBQctlXy30tfx+Ys/bOQNeNFn1RAzqUx47wZd3qhI7MQifEbDDSzLi+BJdBJzcG6T5Dk4xnK0dJE2lmMItnyjq8pfqIgC56xm6Qf8yrnV0r9iNd+5s1E/95QlXVluUJR2jGNbRIIjK3XIqJhGqfRMgnqdOKeZDqNQAJbmhKwDZRRStz9z0POuJ/tPtkLGiWACkmU4dt+B++eLq/pSnWLiGwGcwt9JKlv9MifGwmPhrGH3NobgGb8fqXhFfwE/O/oN3JEnQRkOSf1zXDBEhM982TqnfJ2gB+Ns5Vl6Inu+MsZCpkM9VLVK6l+B8EcMUuulGTh+lvyyEvqXwVDV4EJEW1v6Y8Eha8F9pVR4A7n5AfgxHlpopc8L9VBcF5xj7SaJNwryUmOYlm/KY99jjzcz1u9ccvj7f//v43u+53vw0Y9+FK+88gqMMXjuuefwoQ99CM8+++wuj3GPHaE+w3+7ZunX2gSrd8PSXyNSgfBH1hpuiMBh7fx25NzVtG1A+EdZDuXWC4ctaecEu8C7n1vC/23P/Bl8/NZv4uXJi9Ca8GeP3lfLFeDO87k94WeM4bGrMe4+KDG84EiPxiiTsrVuzCv83a5duPei/lrP5av5himDLThkYGQtwV9+yb45f+K9j7Uu8OzcdArBLQmSdYXfGGuNhrP0O4u+D/XTmhqp8Xm9jYHNLlxChV7L3HxHdJGpCUpdIHEJ7ZJkIOSLFP55ln7/fKUuQnCcV0I94Z0eL1gHilRQkiMW4UuvnAOwYX1t+Javfwpfev0C//3FkxAG1ja//8kHH0emUzzZexpXk2tgzNZNZrlp2LoXwav7ccQRJwBqfFAwgX6fobwgDCclblztrfiKl8OTs0E3giKNLhPoiC5SnaI05dz0fWvnz+bW8dXRaWlY4LVZbWMqFXdThV8bjYux/d3HrsXode37PxxrqKPtCX83ETgfF/jyzSGuHCS4etjBQS9upJvzKWvvpEb4iezGWa8rEPEYEzUJ58q2UKSQOY5+0Ks/HgP0cvId8wSZTvHYlQ4uJiXun2d4/snD1p/1+R25Oz890WaModflmGQGw7QMrSfrQnAG6SocWbDau/fYqfDn5gEIwD01xA2y3+ig8M/JuXj17ji4dKavZ3yNFHTjno/XWgPqm1PXQlL/8g0dwTmMtq6Eg5bZeY/yEQe2SSPBULnAtk7qFxyTXKFUBkksUMg3VmBfhfmz84YIuXw4lXycMag3qcIvlUYpDbQmRJccOrnHHntU2JjwA8DTTz+9t+6/ieAJfyehRmgfESFhMUCWTHliVtYWWVVKv1WkjCHcL+/g5p3P42sPv75G+O1zrWrpV0bhbOxsy92qnq4OY4CJHkMahZjH+MCT34Rr3av4xRc/gtfyl/ApKvDBzrtDWaDtDNjNgujGNUv4T04NnnkbIVMpkqSN8NvXkHRs7dr07Psy+IBAqRlyxdAHACI8OCvx4FSDc+Ab39Nu55ckoUyJ2M1Nl1MKv++s5gy1Wj4CmIE2omFvbn7Os69hnsIP2IDATKeYqDQQ/lIXKMpmqn4but0phb9sEv6RGoWf9aGE4TzdgvBLI4NNfjIGTs81GAO+5u1XW3/+2RsHeP7JQ7xyZ4TPvGhn/ac3qaSRyNz3K3UkDrBuhSw3K6udYUykHztFrdZSwTj6PYbzi90H93nVvN/jIDcPHTP72aZqMpfwFzqHJIUuW77ZlbQo/J7MGUNuZMhZ+jdU+Md5Cekq+Y4OIlw5jJDlJYZj2sm8POcM1466KKXGyUWO02GO44ME1w67OOjHUNrMKvxT8+yTTKPXFS57o1i4obIOlJFIM6d09wBPkImLRlL/PMQsRqFzXD2KgJuLFf5c55CmrCoAaxtgvZ4n/AWA9g2DZbBhadZKHQkWwhCVNmFySzvHUm7KsNnrv5fzHDCfefEk/Hs2NRazTiga+QpJ1ycPAEkt0+NqmOFfbWRj0ItwOipw7aiLXqd9iZYXaiYYrjQlBBNr33s2gTIqbAgLJrauleTcfq6l1KBuBCn1G6qSr8J8hV8qO99fH+e4LNiMCavwr+clfPQolYFUGsoYdLBn/Hvs8bDwBjNN7XGZ8ISfJwU0LIE44D0YoDnDH3urtFV/lTbBfhVFVn8mAv778LfxW3d/B/fKe7Alz9VCp1hxrliRwnBZJZ8hXCi7OHui/zg443jv1Xfhz7/tO8DA8OXiJj6Zf6m22812Fvhz47qztJ6UiJi167dVEHlyxpIS8QoK5zQiwTDoOot26hY6ZPC5L1snxnPPJKHXehp2fr8K2JOmUvjJKBBj3jMAXk9P59oWGtTeKx+AJyJqXThWafPti56YxRirUXiPJkURPopuMn8B1/fOgVxDawpEzQf9jeSw9nqnCL80G9dClaYMGxtfec2+b88/OUC/O38Z9S1f/2Tjvw+ncifqjQ5Z7bh7blMjzeVKyown8of9BJJkg/ADVTXfroP7/IZEt8vCZghgVd9R7bOdxkRNwMFXUqiDO6OmrHIX/mncJpVHNRddT+lPGsfahgcXdtNl0OeIBMPxof2cJmPaSTWfRxILXD2y6v7FpMSLt4Z46dbQtgxM3WHTKSU5zfwcv6/nW6wCZzpbullhyEDDVIS/A5D/TJiwCv+S74v9DBmOjuzv3Tuff1yZsvO4FeGvvg8Dd84Ps83zCQS3OSb+HqSMtZPXXWSa7HmQk4Tf7PUKf1tKv1ImjO8AmMlisDPStFJwnzE1S/9ULR+A0PRxMSlX2kToJAKl1Dibkz1gx6RmreOnxQmG5bD1d3YNRXKK8KutqvkAuNBDDaUJ+g2W0O8hePUZT0Npm1XxMBR+a2Q0u4gqeugoCgVtludU7LHHHrvFRgr/V33VV620qPv85z+/ycPvcUnwKf0UuzRl3gNnHGQ0OjwGtCVAna5PQLZKW1G7wUVxlcqfG/s4mUpxwK4AqJS7lRV+UhhPXFf0nEo+A+DMEf4n+zfCn7/3yrtxejHBp0efxJfKW2CTCH968D5rXzd6Bzn9FeE/uZAQsDbXXOfo1yz7RBSIR5RIdPjRRs91NOCY5BrDlPBkzy5ov/yKJSbvfWcCTbrVZu8Vb/+dLKmm8BsDw+CsxQwclsQZGDChoHTcsPRXoxuEqGUWu7L0t680OqKLVE2Q6wz9aICLzJIuwbHQohlC+woT3AOMVdV7PrAPsK0OhkzYmFIaUFo3VLVVYMhAka0eJCK8+Ko9n9/9/GJ7/DufOsLTj/Vx64F9bQdTCn896yGvkX+fR5Dm2rpAlqgbfhPpqB83FDUPuwGk5s4obwp/Lnc6tnLRo8M7mKgxMp1iEB00fse7GpIV1elqbKi6TjBmyb5fDPrzOV9g6Z/kEsa0zzI/cKnoxwf2Zz3hH42rar5dpmlHEceVgw60MZhk1p589bDa/NOkQ53llcMI5yOFSVa9fsEEUpXiKD6eeWwiwnl5jvPyBFc713ElaXegAI4IkA4E/LBrqlwQLgBT2qR+sXhjMuEJegf2XLh/1q7wGzJI9QSk47CAr2da+E3K0RYuFM6Z3cTQBogFtLYz9rm0JF0I63ICHOH3M/zhuWcJ/wuvn6OQGp1YoJAaWaEb5wNnNqDNGAJfYi23jRLNWr6kpvIOuhGSiKNUBuejAo9dWT5+0+9GOBsWuH7YbZz3QJXQP90MIo2EMhJXkiuXmhJvyECTCZuBnAkoU0CRQsLW3+z2iCKGSaFw7IhzJ97KgHopEJzPzVd4mLkKnFlHxDpNEm8E2PWkto6dfa3gHns8VGx0Rf2hH/qhmRuK1ho3b97Exz72MbzjHe/An/tzf24nB7jH7pC7lH4VTQBj7fyAXR/FjtxJU83wS0lQRgdLdhyxMJOqDQUludAFDtyNZ93QPmUkRj6hf47CbwzhvHSEf1ARfs4Znu08i578Knw8/wJeyF9Fj3XwTdGTO1P4D/rCWrELg/Nzg/6xVXDrhD8rdFCfuh3WSspXwWGf4faJTeqnxxheeE1BacLV4wjXrzFo0oinDHxEhFRNGuRculq+jkgA0qEyMWLWoh0zgYKMVfhLO+vs4T+3OG5/Hb5Tus3SD1irOYEwURN0RBej3KnxncXKb79m6a+H/PnfGcqmclWaAklc1ROmhUQSrWdu1KRhjELEE5ycS5yPbFDUU08t/vwYY/jT77uB//BrLwNoWpgBNIIL680OVROBrQJcZr0dOSJ/0I+dotb8eTsGUlwq4a+fV/58GKvxDOEvdA5lFLrRalkCrTP8nIGMJVnamBD45s/Jbk017XcjuAwtTHKJw/4s0ThzqejHh8L90xN+u9GjSbduam0LwflM4CMA5KWEy3TD9asxzkcqJOkD1h2TOwW/3nKgSeO0OMF5eWYJtkoXE34Yp7jbxz7oGITESC7ApAYzCrSE8Mc8Rn9gN03SQmGSyZlO9kLnKHSBMrMbPb1OcyzLf6+3Ce2z5AZVoKM7NzzxiiMG6ULjcipD9olX+NNcQ00pr97O/43vfQy/+dm79ndLHSz0jMGdh8vnjIkIBraWr1CzbhTGGK4ddXDnNMPpioS/mwicDQucjws8ca05ImOt4xq9TvVZGLKjZFKXyE2Onthdpsc0NGkQaTAWA+46pknbpP4N3G0ekeAoSm0bCIjekDP8QrCK2E/dz+RDzFXwDpw3W/Cd0gbK2O+WepMd+x57vNmx0Wrnh3/4h+f+3b179/D93//9ePvb377pMe1xSfCW/pKnDcJviKzCD6fw12at81IGZ0BdtSipCGFnpSlCFY1f6KxK+EtTInXpzkdzFH6lNc6kJ/xPhD/nnEHA4J3icciBwG9OPosvFa/hG8WTtaq+7cAYw+PXE7x6K8e90xLvvdrBWI1wxVwNi/JR5mviGHrx5vO3R337PgxT2zP92Zfta/jadw9ArD1ZXJKENCWi2kLLb8R0RQcwtiaIgYXquZhHKLQEhHVBGKqyGryaGs9J6Q998gvm5ju8g7Eaoyd6oXZt0fx+/XGzXLdX8snzxs8XukA36SGJGUppLa5XBgufYgaaNDQZdJjAi6/ajIBnn0oAoWZI1zSee6aD594WgVE040yZNAh/ZYUOTQTFaiMIwzDDH8G0EH4/o3xZlv6kM+vy8A6O0jTDK1OdAi7EcxUkLQo/ZwwG1lWkawq/dxglNaWTc4ZBN8Y4kxilcwi/m5k+dhuJnvAPRxra2O9TtF2MzVrw1wkhqmOpK/wxTzBWIxSmCOeeNBIn+X0M5RD9aAADg8IUC89PQxrSKEzcuMBBR6Oa3mM2xNOopQ4ozjiiyDaIDCcK984yvGOK8Oc6txt8WXuApVf4x9nmmQk2Hb0KdFTGjpUVTuGPI96q8Hc7HILbJpJRKsMs/SSX+PLrdgPxm97zGH73i/eglL2GeMJf33xaBhNS+tFq6QeAq4ddS/hXnOO3IZ8CJ8Mc1446iGu7DlLZEbu65d27Okoqkan0Ugm/IQ0DgtAFRHYOfXADhN0k9ae5suMVD6HLfhPYxgirTvOpnaC8VA+1NYGAlc7PNxKkIiitEcccpdxtnewee+yxGDsfNrpx4wb+2l/7a/g3/+bf7Pqh99gCpTTQxt6MMuYC+7hlSARC1y3eSyPBOQsqTVpWFUFxzOEr3gpVERk7d1rVhQFYWisEOHuXLjCe2MecnoX2uJDn0KSR8BjXOlfCnwvGIGBtbe/qvg0MDKnJMYZc2jW9Dm5cs4vceyeW5JSmDKFsQD2hn200v+9x3LWLxWFKuHnKcT6x6tW7n7cbM23d4dKUkKSaCj95hb8DkIFxVv6Yi4abg3H7HilV6zxfVsvniJpSZHuqW44p5okN8VKTQOi6ywh/x/c52670+p8BzRl+oAomDH3u5foKoiZlRxvAKjv/c30oI8N7OA+5zvAtH+jhL3zL9ZmF6WSOwh82Swq7OF8Gb4Pu9yJQzULrceQI/2hS7jStuZrhx8xrS3hi7fuqOv+VUUhVulI6f3ic2I8NVUnTXlX1YVRsSuHvxNMbHnHjeKdx5ir5jhy5PhpYV4BUhEmmoHa0KbgqJq6dodcRwfae5tXGT9jgcJtEuc5wN7uNC3WBg/gQEY8QsxjKyJBj0QZNBnlO1tnDgH6HKoUfcLmmq10fO7yLQzeh9MK9W7if38NQXiBVtrFhrMaIWVy5CaYJvzvnJ1so/IC9R/lWDGMIjDerYv1nWZAEmapqs9+zz193wXz2K6cwRHj6eh/XjjuhhrZemch9gOQqM/xEdhPFzaADmBkv8kn9Zysk9Xv0OhGyQuFi3NzQK5XB9NXZuzrsZuuo9V6xK2i3uSAMAcbmQTCwrZ9TCKtY2+/7G4/sA268RJvW+fO81IgeYu4Aozcf4fdBm7HgkHOyEPbYY4/LwaVcnXq9Hl5//fXLeOg9NoSvg+KMMDFVQj8AgIDEqUWlU0iC5baQteRhBn/K5LpacOa6cDl5FJS7Qi6vjNGkUeoq3XleaF+l7t9oEBAuGBgUyFgSey2yK9N7emiV7R3Bz/HfOylDX/uo1kkeUs27m9v5AeAoEH7gD1+378V73t5HEnMwsNawrkIXNo6v9r54hT8R1nJJzNoPhTs2n9QPYd8jqc0M4e/G7W6LOGYhiCwvJMT43kzqt32PIps67taqyxT+KOKI3SbT2YUjnE4Rl3KM3BGcA2Zt/KUj0n7GPy3W3+DRpMHAcPekxDjViCOG55/ug0ALU6dtDdkktCJMozHD31D4/XeKoFdokfAbSQc9YWdmp86tA6dqS00NpXxb+PPZhwxOYzq8sjA2pX0dwu/PBx8MClQ2VWNsEjYPCn/7Oelry9oIvzEGFyN7Tng1XQgW3BjjMbU6Zi4TXuHvdXlF+LPm52br+cYYyxHuZLeR6wxH0XH47BljINiN0nmoz+8Pehyc1Wb4ARDnYGo1V0giOnj82H7nTocSF+U57mS3cTN9FTcnryLXdqNnPIfw+3Nokq1+fl4UFzPXupDK71tHwGob0bXwPhBU7bvb788Sfm/n/7p3XUdhClt5CWBSVD9jcwNoJcs0mWrDdJ7Cf23NpH7AqfyJwINh3gj7a1OSrcJv0OVdFLpoXHd2DbtZycBAgFaB8G8bhMkamyzt7/ujrqET3NbhTZ8XShtIZRA95DGEN9sMv1S2JlgIhlK9OWsF99jjzYqdE/4XXngBP/MzP7O39L/BMMm90gqMHOE/EtVsYOJS+u0spAlEKiv11Fy3W4SbSrnMdW7naUENFW6Zyq9IYTRRIJdmPei1n47nIbDvicafczBEMGFpcCOyc6339MXahH/Rjefxa3ZFOJpo5IVGh3eR6TSobBep/eegv4U9mAyOuvaYxznw8n37Pn/Nu+xnxBkPs/n1Y850CjFlu1ZB4Y9tZZSz8/uU99ht7nBH+LWvQQNCEFY3aSd7dhHqiGumAFWCtZCPLu9goidQoQpy+aXGW/jPhrLx35OJnbHtsgR9Zq2qxVRS/yaE15OKF1+x5/Lzz3QRRQwMfCGhKnSO0pSIeXtmQH2GP62lrnvykxe0VOEnokD4fT3eNOGPI45OZ7dJ/dqYsHniFfRpdEQHmc4CqciUff/WseB6Z4acblhw6r6huqV/NrSvfnxtoWyjvAwd7XXnULD1j81OqvnWgVe5ex0elOdpIpywGKUpcTe/A0OEg/io8b6ycozIUMM5Mg1DBplP6O9zMDOt8EeAKpYm9XtcPXbv85BwEB/iKD7GQXSEiCfoiB4Ej+YSfm/pz3LTyAqZB2UUzovz8P328OnoRNa5YGf47ecXdZqvo6i5r/w9xX8/HlzkuPUgBWPA+95xDYXOkbjTPC1mv0O0oqXfK9JVo0Tzu3rVJfWfjtZrK+h3I0wyGVR+m9CvEU8lwRsyIBhwJsDQbArZNTRpu8FBBEDbOX4ehfDYbeBn5EVL0j0R4W5+B/mCc/+ywVzjzXTbglQGSj2chP5wLBxvuuA7qTTAyG2crLahtscee+wGGzGUb//2b29d3I1GI4xGI3S73b2l/w0Gr/B3uqWrLgIOPOFnQMK8wm/n50JPdqFAyhHFyOa8A0BR283PdQ7uqvriiINzW1VUlBrdZP4pZgP7HLkYRHMJw3lN4Z9GRAo5OGIAT8TX8Pn8ZdxVF3YxS01lqw1aG0xyWxNzfBC3KvSdhOP4MMLFSOHeicRzT3eRao1UpeiILs4nrvWgt0UjLhn0EoOIE5RhIGJ46irh2rEj5y1dx4qUI55TPfA+pZ/FACkY2A0D//56hV9ECgqAVi0K/4LPrdvhSHODotBgXQXIHOg0mwkEj9CnPrR0Snxn+UKo3xUYTTTOLlR4HqZyjIv7AKwjJTEua8KRzWoWfH3yVpoSII6XXrOL43c/Z78PEY/sbPKcOVJPdNvOFUOmMe6hoCF1gVh0apWGtJT8THIV1Jtul2FYtC+M+j2GoiAMJyWenAr32gQTN2vNGDCY0wFuwwYJEzVGR9iNnXVHWfyGolSA0qraPHFKrid1xlAIw5omUUHhbyH8vpLvwFXyeRwfRHgNBcZjLNzUuQz4a3C3KxpEuN4yIHgEGIaYRTONB7wYgaUP0OkcOleFbN100qQxSX1SPZ+9DnJurdhG2/qMJbjmCP/ZUIbvBGMsVLkCqAj/1FiWt/QTAeO8xHF/8Wy5NBIFCkTUbbi6OXdhacY+FhOVwi/i5nc/1wX8N8FvQFxM7Gft1f13P3OMfjfCrWzinEQGk2LqPHKbT8tARFbthrXbA/MV/vNxAW3MypVzjDEkMcfJMMfxQQIiOCV5ivC7jW/GGBKXoXLVXFuYQ7IpvDMKpMCMAXOvR5GGrtXDboJYcOSlhmiZhS9NiUxNkPAE3UvMKFgGAmYJvzZQ5uEGDTJmn/fNhLzUiASH4ByltBW8y0Ix99hjj91go7vBBz7wgdaF8PHxMZ599ln8xb/4F3HlypVtj22PHcIvNuN+hhxAj3cQsyio4x2X2Dxt6S9KDVL236MYQeEva8plrnJX1Wet43FsSUguNWYLpiooUhgvCezTpDFUti+5XskHwCXOa2RuE8Ir/OdmjJIkxIJYKiLCJFcgIhz1E2SlvfnMWx/duB5bwn9a4rmnu66TfIij5BgXE/te1Ouo1gYZcBgc9hnOnED8vmc1vLVRwC6oTM3aXZpyJhmdiKoZfp4AJEEMiBgHDwq/XajzyC6YlQbIBff5gLTOEsIPuA71jgFkZmf5pxZ6ieigKC3xWjbDDzSr+QCgl3Dw/AJDp1b5zAmYqorQn6fTPdrLQGRt+ycnBllhHS3PPGEX5RGLoEwJSXKmZsqQwViNEc1R91M1sWq8HbSAhkGuJohFJ8zwa23DMLEg39HP7x/0YjBGwZ0xjUGP4+zc7CypP8zvd9jc1wgACe9i7Ah/qYuZ1P5lqAeAZqVEL/bnMDnrtlX76i6h6Rl+T/hHLZb+E1/Jd9g8j+tJ/ZJ2X823CGNn6e93OXodHloG0tw0lPFBNJs+yeQELL0PLnNEnWOkRs11mShSlcLf86+tzp4FmCxcUv/yTcrjI5t9UJSENDet17l5Cj/nDN0OR14YXKTFcsJPEoUp0GXNDTHBGaTSDUu/t89HcZP05LV7k3ddDV3OxR84wv/177oOSRKlzh3hl0inCP+qoWjGuQ6Aei3frBslEhxKG1yMS1w76k4/zFwMujHORgVGqUQnFpBao5s0P7e6YyjmCXI1RK4zHPDDlZ9nVSiyFaHMGLuzDw3BOlCm2JrwRxHHZCJx2Ju9/0hToiSJsRrjSnJ1q/G57UAzhF8p81CvJYBdi+k3UZe9r+QTgkFwBmMMlDHoLKmn3WOPPXaDjQj/P/tn/2zXx7HHJcNbR0XPB/b5Sj67eOoFwu8t/T4MTYFpN/vt7M4AGqFR1tLPnCrHEUdAUSxP6i9NidQ5D+fN758XZzAwSHiCK52p7QOjIWCg3WK2L7o44D2MTYb76hxPGmMjsWsgsvPOpdIYdGNcO+qi34nwyt0RtAHmLX9vXEvwpZcz3Dtx6rnrJB/JYSBJ/S0IP3PS1VEfOBsDvYTwjhvaqXMCnAnoqa7jUhcziwybluyOUcQACAaAYLxm6bfHyZylXxmr8DfI1RxLP1DN1meFdVEwo8CUBLXM/Rel30BYvjjrTbkAerECK8YYMpdWL/oo3GaGV2fDLPgKIZF1aNJQpPH6bbtR8PzTvaDORCxCThmkkTNz6YUpUOoCvahdTffz+wNuF/QjkyFXExx2riGObGWZUoRRXuKpBWvxKqE/XhiGZQmN2pmlfxQC+xbnUSRuw2si7Rd43cW3DwZVipCWCtccx2Wwi1hj7OZh5oPZBJux+fpkfk+k6zj1hP+g+Y2+clQRfu0Uycuo5muDD4XrdoQLlBOYpBpppmeIch1M5uDjBwARjEjAjQYQuY2W2c0BaSRSR/gPewyz89AufHXFkLVIMBwdWIfT2YWcIfzGUMgimE7pB+wGR14YjNLljopC22ucZhp1HiA4h3JuD3ufqTaDeDSt8OfwiYX+fR2mJV69O8bFpEQnFnjvs1eQ6zEkKfTc5mY9tA+ogvuWwZA/bvR+5wABAABJREFUb6vZ7s5UaB9jDNcOO7h3bpP61yH8nDPEEceDiwyPHfdsQn+Lpb/+XBwcYznCQbx7wi+NtOsAUmCw9y3OBDTZdpN1sjymkUQcEW9uCHrYz9WOVOU6b1TjPkwIwcNmk0ep9ExN32WDM/amUviVJihNiAR3GRl4U21Y7LHHmx2Paot0j4cMr/Czjg/scwn9bvHUcx3mCgZkNBJnuc0LHVSLKKor/NXirdAlCCaoHD6Be9FctU3oz4P1dLrazOOBs3M/0b8xu3tutLVS8up3b8RW5b8vz8GmZlRLqTGc2OC9p64N8MxjAxx0Y+tKEBzGzL95+uC++6elczJwAAypmiD1lVTbKPxuFvKJK/Y1ft3zDBFDqJjizCv81Xua6WzGsqm1CQSxwyOACOSCBv3758c3uPAp/Y7wu8+LcywMH6qs6dpahY1uneMH5hP+4aSYIen9qZC4HlKACEM3s3nA+9a1gGqGvxo9WY/wG9cb/dotSxaff6ZagPv3qS24L1cZDMxcFcvP7x+wDrrMSvj1RHu/qeET2+dh5Aj8Ud+2Qswj1NOW5W0R5sy7ixevPpgx1+lCJ8AiVO6MmrLKnC3abWTNS+gHgIP+fEu/n5U+mqPwD8caUqmtq8RWhSGD1DtX3DkwcI6P6eC+BnQBPrkPpiUQD9z3TUKwCKmezGSPEBEMqRDad9DFnPwzso+5Iq66jRI/blNHmuuQw+It/HX4jdBRy8bM9LHnKgMDZvJKOLcbQTIoqZWazkTzmOy4mc8w8Aq/DHb+r377VcQRR6YzcPBwPZtW+MFsG8kyGGMAVrmjgFmFH0CoBVx3jh8ABr0Io1RaJ0/LIRkXnOfRET5nZreVnUQ27JIzNypCBGa0C5PE1kGYjDFcO+rOjDz4vBo/5lK/pj5sCMZm7l15oR+qnR+w3zet3zzBd0obaF0LNqRZp8Qee+xxeVhJ2vhX/+pfrf3AjDH80A/90Nq/t8flwIf2mbgZ2EdkK468wg9Y5dgrvHmpEbkU7ag2wz9dC6WoACdr1/Qd7otUV6uwKkwm9rGP5ij8J8UDALN2fgAgp/CjptDdiK7hpeIW7uqLRihVKTVKZfDYlR6uDDqIpxSYOOKYzJmTBuwcq+DW1jocaxwfRuiIDsZyjDy3v9e22F0VzG02fMM7GJ6+xvDkFQMoAiM7Xe8Jn6+fUkahMPkM2arPJcc8du+BAGe2mo+xaoY/KPza2mTzkHrdXLgUU/PxfoFsrffkUr9zoGWAYx7h18bOotaJXHfq/euzDJT0MJo4Sz/ro3RVgiG0b4XNpTYo0ji7kBhNNAQH3vbE1Lw04zNJ10SEVE8QsfkEd1Ij/BOn9jWq+Toco4kO4yTzLKBB4R/EdoE9Z2/WB9ftivCHoMA5Cf11dEUXYznCYXy09GfbkCQMk6yZv8C5HQ0yoIaK2+Y4OQwp/bPv5fnQEp3jg+bvDXrC1n9pwijV0AcPj/Dn7hrsRzssEZbzE+yNhJg8AFM5qONGJhzhj5lV+BWpxiy9gYEmahD+u3qIXz35bfzpg6/F852nAADExMpJ/YC9/r18M8fpxewmwXji1P2eaD2f/bnUFq5Yh70nSMQigZyq2QwWYJfUbyvwXLvDtMJPZcgt8N+PrND47MunAICvf+c117SRIuYJOon9/bzQjfOI89UUVKNdJZ+q3ChtfexXfTXfcP0EfcE5BLfflTZi6W32HjGPkekUmUqRJJsr7tOw55eBALfVjmSCU4S547gMSJLOcdUB4wxjPcYVurrV+MCm8MGCPnvDugbVQ0/otw4UO1IiHrK7YBP4nIPqu2GD+/bYY4+Hgz3hf4vAK/wqalbyebUkjgQiCCholFSgE9sFpiX8FRH0i6GSmgSjpBIxdd3P2T9bZOlXJKGNxsgR/nkK/2lpVZmnDp6Y/UujAM7COAFjNYVfD2FIBc2jVBpH/Q4eP26fIY0jvjC0WgiGx64muHtS4t5JiePDyNZRyQL+njWvxmwlkAHAEAmGp64BALfqfu2gbBe1/RxLU8zM7wOVMhbxCIIA+6gIZJ+BBUs/nDKmjX1sr5InNcIvlcE4L9CJqoaGkNJfuEfnsQ3ua5njzwPhr40dEEGw2WaEaZLZTQAJQurI/YD3MXHtEF652jSlX5PC67ft7zz9RAfxlIU0YjEKU8xkJhS6QDKnjg+oWfpZB5rbDyDTVWJ2t+vmhTNtnQJz5hf9DP9hL4am+Qq/T6AfTrbrOQ/P6+fMW2ZopyGYwHFyZePn8gp/XVnlDG5O236fq9Tz2fdp4I7RECHNFQZuA4CIcD5uVvJ5MMZwfCBweqGsrf/xy+srr8OQRuY2FP11wivfad5y4SFtyX4xAXUPEGbwnbIaMY7MKJSmaMzxGzKQUqEo/Qy/wR+MT5BTgc/nLwfCDy4AXQbr+zJcdeGhvkGjjnnz+x5+g2OZwi9NCUUKA3GAlMrGd89bgBsKvyPYjDePyRJ+Z61PGISwuRmlNDgeJHj+yUNkOoU0JQbRAbqJff/zsjniwZkdd1oGW5mJoPB7db9+/ECtmm8DhR8ABr0Yp8MCg+7sd1MZNZPzEbEIYzXCUXy8s9lyTRrkXxcBxBiYds4wJmacGbuC39zqsT4445ioMXKdt460XDZ8Y4Q2BpwLm9CvqXUM4TLBOINRBGOWZ2+ayRlY3AVLHl3YoVJWIKg21AAll3+/9thjj91gJcL/hS984bKPY49Lhlf4S2EJkw9AM7BkkLvUZUUaUpe19HONmHlLPwWlcUbhRxEInO9TX0TClFEolHakETgazJ6KmjTOpQ3se3rQQvi1hmD22DURIsZwRRwiZhEkKZyVZ7iW2BlGo2lu1RwAZyFcvNv8+PU4EP73vN1tmJRdAEN0O3w7S99MRZhL9KodEwMLdv3SlCDMKsS+PaEjOgCMfRi4lH4XJecVasZdLZ+2PdJp6X63tnCx4WncLV4d4a/1yRPngIjAZD4zx09EQeHv1ubzCQQm2MwIcXdqhr/T72LoyHKHxYgRB0u/J/z+PC3L9RYOmjRu1eb3p2GT+u0cf8fZSAuTQ5FCn89fZHrC30cHLuuyUSPVq7kjFgVceTV00I+gKZs7Z+5J1jhd7BhYFX7O+mAFwr8tklpOiAdjzAalEZqW/pbvruAc/W6ENFcYZTIQ/lEqoRSBoVnJ53F8GDnCT5Bazg/u2CGkVig84feWfkf4J+nUF8GT/XwE6gzQmLxjbnbaWbiLqcBEQxpj5xiII4YO08hcpsc9eQ5FGhETdmOOlNukW/5ZXz1ySf0Xs+eZJ/xt8/tAtbHhGyDmQZJ0m4ECBDNDmAmuxxusofDDuX5sMzwhNyXgXGk2K4FjNLb//XXvugbGWGjh4IxXOSCltatH8ISfOZKyGFq78ZPa5lRpSjzI7+N657Fw/fBz+6fDzQh/JDiuHiat1W+a9MymYId3kOvchiCK1TMDFsGE4FgGe38RtvEBlvBfVvNFaUobg+pq8QBr639UhN8YO48eR9aqroxBTzxctwFn1vWyUrBkegHeo0dK+EulG5tSnLNQrbnHHntcPvYz/G8RTDIFcA3J7A05KPzGEjrOWZjtlqYMimxZmmqGP0ZI4/cKv58hl0bWZviXB6kpUkgnlQqTtIS6nZenIBh0eAdHyWz4EGkJLrhtnDJ+1p3hcZfWf9/N/9uxBdY6V+lhyfpisuTn+O+dVkpVmld21m3AjAZNq7iMglIF2AWVJ7qpSltJYFC+RdL4XUbVxk7iFX63UNYupd/PUteVCiLbmVvvow6EvyRLQJhoneNXTn0AmpZ+MrAbR2xa4a9+phMRhBAY6ipzggjoRZ3m6/TjI+V6s4znkwwnZ/bg6vP7HoIJaNKNOf6xHEMsIUcTt0HR41303ZhMVhsN8Gpnlk/1z0+hSukXlpjMuVT7804bmgkd2wQ+gHLwMAh/GMeoWfqD88PVRPrWiDnf3cOWar4HQ3vODAbtm3BXHHkdj2jnM87zMKlZ1LuB8DuHQ968TvLsDCw/t2R/ekOI81CFFrEImWrO8RsyGKf2/TzoCzBoZC7o0sDgnttAhRB29lqvds4cH9qkfqloZoNimcLvv9eTTC085wtduGwI+90z0zuCZDcmg2vLnRvkrmMH3JKZgiRY7XrV71fnwNe/87ptaFETxO77WSf8qvacnDNoQ0uD+7RpZgokEYcyChM1xoPiPpTbzK1X861C0toQR7NjE4YMDOkwbucheARNeqfz7poMDAw4YMfNeGRnGtxGjSa1MGR0ExARUjVpjK8lLjR318+1CjhnUG68BLCbUNrQylWLOzsO5jM7VjiXtMRCC+NDQFEa8Nr1WAgWaiz32GOPy8ee8L9FMMl1COxLWGQ72lGF9tleZbvIL3VRq+UzQWXzyj0RBYX/aueK/R3krgkYIfBvEeFPVYpJan+uTYUDqvn9653H25VLXYJzAc4AXVPCn3C2/nul/X2pDOJIzPR41yE4czVZ82+eN67ZBeLJuQzpsn7+dpv5fQBWJWlVZ+uEn1vbq1EoTNEaliZ1nfAbgICozCB+5X+B+ezHADCr8AGAm+E33tLvSEl984XIpurW16cNwu8uIdUcfwWv7k+HABoitIy4NkYium7sdOQI9JHowxAFEl06NbBK6bdkYFW8+PoIAPD4tXjuZg1DtbFg7fzZwgRqSySswt9DH32nqjVn+F02RmFmCU0N3qLf71vyw+ZY+jlnIWBvF0n9Y6fCbn0+rwD/fcxLHb53zM2l+o/SbwbMI/whuK9Wzffgwl7njufkgvg/r1fzXTbGbgOn2+FhhrVSvmvngZZgxQgU9WbJPgA76mOr0CIeo3T1keHXYUIQ6kFfAEYhq21q3JYPao9DVuVfAUIwXHHjEafD5u9UhL/9/fajOllu5hI0IkKuc0QsAmfcji9N/aydl66u0Z4sUK3FAwByI+EVfvv89v1++nofj13poTQFSlMgcffAjrueyZKgTH28hK1Uzaddo4Q/niQWMKRBsNeDs/LU1r8OkrCJMEx3t9FkPAlvuX/EPMFYjRZutKz3XFalZeQ2o7lw56Od6zdkwtjZrmDn98vGBnfszv26e+phgTEGEAuNDFKZZebASwHn1tmol5yfZEyVt/CIEHIOajd+wex7uKvgvkkuN95I22OPtwI2lnG+8IUv4Gd/9mfxuc99DqPRaCbhnDGGj33sY1sf4B7bw3fOs8NKLfUE2hBBcMs1/SZAaSQOakTKcD/Dbx+vcHZyALjWvYL72QNIXQSBPCj8cyz9njzljvAvC+x7vPfY7GuCsYtjLhAJCuoKANyIPOG38/+lMjjoRgt34AXn4IxDG4NojjXvcCBCp/TJucSN60lI2N6mkg9ELvlp+vgYGJmwlvDKV64zKCPRiWZnycu6pd+Fn3VHp2D5GHT7BbB3fG01w8+8pd+pKK0Kv13sNwm/I60SCA3xLXP8eS2wr1EdSHb+ENpnSLj2gJiBc7sB0XO8emh8jeQABKAX2b+w4VE6bE5ISdBGgy8bZoRdIL9yy25OPP/0fKurYFEg64XOIUmhy+ZXQeUmrxoSWBfkMhIyU4RZaa/wFwXNDbgqpQ6bZf0uQ6poxq5bx6AnkOUKF5MCTz+2ucWViJA6wr9VHsWKSJJqU9HnGXBuq/r85pdX+OeN43iFf1Qj/H5Genp+36NK6jchPDReEMS4C4xz135QG1sJM/w1ws9VBqYlqLPAgk3MKvxRhIxsErvfiDKkQyXfoG/nrL2lHwBuy5P6A4FpvTJXuXoc42xoq/mee6o6vskyhd+9zizzm1yz77UiBWVKdOJOcJFpNNcU3Fmp/bkhvcLPnMIv+oAEcpINd9Pbnk7w6usKH/x6m19Q+L54507zm4YEIC1KHLtrD2OW7BtDmFcVTkQwxjQV/pjDuGPviwHOylPELMaVzlVcPejgZJjjdFjgysH8LJB1YOBzDWavEb4+dlc1dtptZNjNZAOwBCCrHnMWhe9Tgt28NgBuU6t57bUjalY4qI+0PDQwBKKaSwXRtoN92YfA7LzeUpJLtnmJzMN3Q3hoQ1CGGo4rIRjKwkBrQrTl7UYbgzsnKR6/0sPRYHchlXvs8UcJG8k4v/Vbv4W/+lf/Kn7t134NN27cwGuvvYZnn30WN27cwK1bt9Dv9/H+979/18e6x4YopQ2V4V1Pnpo3ft/pmzjFuKQiLIJkSWEW3yv8hbMoRyzCYWJvtgUVM5b+eTP8njxNJosr+U6cQv9EbzahH1qDtAG4sDN1tXveY/EVuxgwmbX9aYN+d/GCXnBHbBdsNjPGcOOafZx7J85a7yr5tiL8rst4lvCjsXD1CkqmMxDaSaAn/F3RsTd5MHDlyFCZgoOFkC+amuEPCn9cV+Mx19JviKHU7hhEBGZkI/nbB4d1p8Y1DFk7IuOsocozxgIh6jqXyLCm8AO2atDPARamaLg2sqlk73lIyxK379qfff6Z+TONXkFVRiHVKTh4u9PEIczvsw44j9DnTuGnEuQ2Aur5B9MtAB5+fj+J+ExjQhs80Tobr5/+3Tj+ooQXW1ZJ6d8WfhyjLCvl14f2eVQkaonCX1NM/Yz08UH7d94T/jQzKMrdW5DbMHaBdb2ac8I7S4rSzgODCKwcg5jAwvEiRoAxYZ65rI3SGDJIvcLf49CkUNQcACfqHKVTsYlxML260hyC+y6mFf5qhKAN3i2i9PzvqDQSilRQcQmYccBYRdDAy6mlq8zTXuF39zUJ3aiHe/6ZBH/zf3oSX/283QhO5aSRnREJFhxIo7x6L7m77i1SUIngAiZZY/xEG6uERzxCh3dxWp5goia45pP6Nwzua4O19JvW+4H/s1RNZv5uE/jXZR0U5EZMyI6ZuGvjrr9PpS7AwHD7fok/fGFcZQW5zQy1Y0fBaqCQ75AX5qFX8tUOY7ml39Un4hESfqkMtDKIaqKL4LYKWa8QjLnK42eFQlbsMwH22GMeNiL8P/mTP4lnn30W/+k//Sf82I/9GADgB3/wB/FzP/dz+Pmf/3ncvXsX3/md37nTA91jc0ycuuQJvydPAFxwkf33jif8pgrtIyAsePyiO1d2sdKNuugJS5hKXYX2VVbd9ovvRE3AwTGa2L9vs/Qro3Be2nnTJ1oq+UIdEOeIBGtYFmMW4ZqwM/93sztgnM3U8E1DcA7BsNQeNz3HX83wb2GBNtai22rpr70u7hT+0pRzw94aM/xGwzAg8n3bqgAzVYe8n33VxtWGuc+rkTZM5N7f6n2JBKuCGaVPD7fWzjqBCJV8U2F8ROSaA/iMOtFzRL/nBCJv6T8UVrnmQqDjR09MASFsCjeA0DKwDC/dvoA2wMFA4NrxfJNTxCIoI5HrDKmqOqDnoV7JR0yg59L8CYTCzdF65bxwhL/NTu7tvof9xNr5l2RLeCv1ttV8F6l1MyQxQxRd/gI2qbuIqApZo5qn328azhvHOXBWkLrCfzZylXxzFP5upwpqG471pVWJ1eFHDrw7BrDvsz9300wDpgSTORAtU6hYsOJHPMakNsevjMLEbUIe9Blyk7vfYDjkfRCAu9LW09mk/tXPmSq4r3qvpTJVI8Ccjds45uF6MUzbn0+aEgQE0sgwSxy9HR6w1xAl7b8b2PdiIHrVZmBtbp2xSnFXRiEzOeKp0Rx/Pkzy6j5ma88Wz0gbV5vaVPgFJMlwLB3RAYFwUtzH8aF9D083qOabfwwGBDP3OpHwZGfz7pIkOBNuI5qF1ojqPkU7JeBEhEynECzCr//2GT75exe4+8AFtvLkkdn6heAoXFJ/qXRrkOJDAaPlCr/RTuV/dGTYBxvWN0Z884bS29vwlSaU2jRGu/bYHmejYv+e/hHCRlepz33uc/grf+Wv4ODgAMKtWLyl/xu+4Rvw/d///fiJn/iJ3R3lHlvhymEHX/3cIQ6OLSHx5MmD8abCL02JqEakPLzy6xX+ftRFL7IqZq7zwFcXhfZJI5FpS55Grr/56GB2oXhWnoJA6LAujpJZyx5pZYkyE7aDduqecUMcAwDuZncRCzF3BriOOBJLb56B8DuFv5rh31wRZWRsyFSrwl8RfsasIi5NOdeCLBuWfmPHLGuqO1clYrc4oZqlvzRl+LySqZR+MD5j+/UKfCarG7jt9q4Wsr6BoZPMEn7OmVPQmo/r59G7CYMijYkjLEfunBWobUy587AT0t5XuzF96dULAMDbn+4uVOz9LPFETRa+5x5jT/h5B2A2JDJx9uXcKWzewVAUhFI35689vMJ/OIjd4nkZ4bfn3nDLGf6LiftePwR1H6g+t1JWAYac2UAsFiz9zhmRWPJu7cnVAv8wKPxOtSbCxcj++9Hh/NdxJdj69c5njqdhR6qcpb+m8DPGwnudZhpc5oBWdjxm0eNxHsL2YhZD1ub4FSlkTuE/7HI7TgKgxzt4KrGjUcHWz+yM/2xDSDuuhWo+FUixt/PHMVtYS7asmq8wRSOYkjE2QxwFZyERv5TVKIKCc8SwCB1mr895bSODwxJ+Q8Y2bRg58132IbVpUTk+LCFZTKiICBRm+N3mlAvtqyvufTFArnIkXXusm1bztcHmBWDutSzhHRSm2El4nzLS2unJOy3cc4bvr0BhdvfaFCm7wY0oZEXcdfde63DhISj1YUJw+3n7Sr5HRvixmqX/USv81sHUco6ukEGwCqSyowFZqSHVo3udf9QwSsvgTtvjzY+NrlJCCAwGdgF+dHSEKIpwclLNBj777LN48cUXd3OEe2wNzhj+b3/pHZWlv6bwg1UnQVdUM/xAk/hFgoUZeH9D79YIf2EKgJyi4Z0ALZb+QudQxlYfDR3hb1P4vZ3/SnwdvG32nrS1tjKA+RCCGm6EpP676CR8pRtyHPOl9rjHXXDfcKyRF3o3ln7Sbh5yihgzNhO0w8AgjWwN7AMA5Rb+XuEHQ2XpBxCXBSI3kGqYXbQZTTCkUZbeyVGftycINqsdecKfl7W/4VE1x4+awj9j6SfEkQDnwPTm/rFL1L7SB8YuoT9mUQjYAmeB8PuNJ6/+rmLnM4bw0k27QGxL558GA4ciZQsNl1TeeYV/wDpgsDVaXuXP3Gvxln47L6waLQAePqH/qJ9AkYJYML8PVHVow3S7nXjvLOht41ZZA/76ImVl32bMOk6866iqOrM/e1Fe4LQ4DYTzwKf0OxVilEoobVPT26o+Pbz6Pxrj0rrDPQwMstx+F6azEQa14D5WjkFihVgdxkMVmmDCkiJHcKUug8I/6FEI7OvzDp6KrwOoBfdxl9S/IhE4Oohsd7amsFm7LKHfw18f2xR+IkKh89D4Yl8XnyH8nDMobefli9qi3js0Yhah65T73FSbQlapt3VymbJ/Pv1d7oQg0uY4ALCYUBnjLf1Va0AccWiSDcLPGMNBfIi4Z1//ThV+X0GoitbNG998cFaebnWuGzLQMHZjpnGfJLAwkiNcY89uwtP8SFWRs/CUnvADdmM7Vemlf4enITiDVMaNS+pGKO3Dhl5q6XeZC/pRWvrnOBhrWQjbQGkDBkBKvbAOeo/1ILUJ67g93vzYaGX33HPP4eWXXwZgbybvfOc7GwF9v/Zrv4bHHpsNWtvj0UEbjdSFN/lZR3+bYG51XVn6HWmsEbU4ZiEUyNtE+1GvofB7Vug7s9sU/lSnABjygpxa075Y9IF9V+Pr7YE4WoUX0LbUvOGS+i/UOaJ4tcVHLGYt5tPoJDyQhXsnMlj6tw7tAzCj5DIbztX4I9c1PS/ETQbC3wGMgQGDqBF+oYpqjo4RwAy0sWnUVcr07GPPKvz2n3lZ+5upOX5/o5ie4fdBgIKzmYXh+9/L8D/+8QLveYaFSr5K3WcQHOg6Fc8r/G197vNw88EEWaERx8BTjy8Plop4hFRNZizAbajP8AvOEAmOLrPPkTt1jXNWNQsUpnWhGhT+fgxp5NyEfg///RlNtiX8D1nhDzP8VJEWZoPZgsLvLf2JgCEDSRITNQqqXgjtSy3JeDC0hO6gX6Xht8F/h8djc+nVfJo0Mned6E2Nt4Tgvknh7PyrhJ3xYNNljIGj6pVPSx3W9QddFgh/r0b4z/TIKv9uDGdVhZ/zKqnf2/rHkxUJf9cT/tn3WpKEMhKCRUgzjfsnBTjjYfPSQ3Bms2hY1d8dRyxc8+qEv94Hz8BtCCBppDoNGSZ1+GtUXphGNR9o8ZiXcWn1dobfux04dEuVJmccjx3be+/ZqNgZKTZk7fw8Owcv29Xuvhgg0xlOi5ONE/t9/R/3Nv76/crdp/wGlMFuSIIfFfSbWABw70HVrOEdLg/b1i9cgGRWKhtcu2Qz+LLAGVuqaBMZV8Wjd3bOrYu81GjTXBhjIXxzu8dXiCLryNkT/t1Ba9uu8KjOmz12i40I/7d927fhl3/5l6GUven+rb/1t/DRj34UH/rQh/ChD30Iv/qrv4rv//7v3+mB7rEdzsshCAQBHsLE7Cw1q83w+8oz33FeI/wRCwsYv5jqRV30IjvDbwPIyFalxZVVt36hUEYhVRMkPMHQze8PeqI18ObUEf5ryWOtdUOkVVDEubAKdP2aNBA9DFgHAOE8VFEtBuds6bw0gBDc9+rtPDznNjVmbO5sJQtquUc/GixMJZbus0tEDMCAGDUUfiGLZpe80DDGhvZJ92NJIyiO+f9rfJa9YOmv/2hzjn+ewm8JP0fEZzdYulzi+cftgmpkHKnjtpKPcbvh0QlOlKLx+Kvc6L/46jkA4Jkn44WE0CPhCQi0JuHvgXEgFqym8FcLUn+ujEasNbjPW/MP+7FdYC+5TA/cDP8k09AbqiWGTJiDfxiVfEC1UVPKZgVbN+HBJVQp/JZIaKNgiDAsL0BEQeHXxi70Ti7s+3w0Z37fo1L4CZJ2p0i2wZAJ4y29qffWZ3+kk9I5clbYbOEcNujTkSweI9MpFCmMJ9XoQMQJKblrNeugyzu46rJN7nhbPxHYGiMNV4/dHL+r5ltZ4Xeve5LNLh6VkVCkEbEIH/n1B/iZX3wNozFBU7PGz87wW4Xf543EUWX9j1kUNgMLXVf4fdhpilIXrd/lsAlXUkPht+GBiy39Bs7SHxR+BiJtZ92ncPWgC8asS+LBaDz/DVsDgcCTAuaEMDLGMIgOcCHPcVGeb/g8ugoHNHXFtsqUEMxWEu5qjj/VKSIehY0lAEhzE0bp7IYXx1hu9l4OJyX+y3+7GVxVq8IT/qLUK6wYLg+cs+XCvdEAqFL6HwHyUodw6DoEZw23zjaPH3GOOOKNANc9NochgjZ2ZGUXYxd7PHqsvLJ74YUXwr//g3/wD/BLv/RLwWr9l//yX8aP//iP4z3veQ++6qu+Cj/2Yz+Gv/f3/t7uj3aPjXFanAMADkSvVslnd4g9oe76jnPX2ernGgFbyRdUN0dSejWFv1CVohJqjqhSjQGgMDmkkUh4gtHY2flb5velkbiQ9nivdR4Db1tLqhLM/YV/DQ1rG2N4XBwBAO7ld5e8OxaCM4DR0sW/n+N/+aZdVPY6i9XEpaip+DfL+/jl80/gRF3YBdXUDZozPjewD0Doke6I2M6XTin8UVmAwSb+AwDjClpbFVJKb+mvXxZsaN+0gtFNfKha8/mJCTDpquzmEH7AqvVxNDVCQbZq0ZOeKqF/YIPcuF3gdB2J9jZmv0GRr2Dp/+Jr5wCAZ59erTZKMIGj+HhhLZ6HX3T2eA+CcQg+a+kHgGeetH/2u7+f4XQ8mVHcvDV/0BOuX3vxc/e73J4qBAyzzeZnlZGYuEq+7RonVoc/z7QGSll9dscHncolVNYIv1HQpHAQHWCixpjoCaKIh8q+USpxMsrcYywm/GGGf6ShtZwb3HfnJN06tEiTRl7Y87zXab63QeFPJShasRrQzVB7K75VOSUKnWOc+sA+ARhC5tRvfx4+FU/N8XM+lyS2wRP+U6/wB8K/+P0OrzPXM+Fx0kgQCONU4/6phCFgODQgRzDrOOjH6CVR2AiKYoKC/XdZArHPzDB1hZ+BYFDowtY/tlw/O7V6zzpZ5c5xMg+G6pb+qr5Wz0vN5yycmzdPL+Y+7jpQ5PICjLIukTn3L8EEuqExYH2CrD3hBwcz2o6coZkpwV2TzPRYxCZQRqE0BSIeh/PM495J9Z3siA4ynaFc4zz2+JVPv46Pf+Y2/sOvv7TWph/nNmuklI8woR9wm0dLSDx5dd/MPTcuE0obKG0QtayRBGeNSuVNoI2BVPZzSCKOtNQ7GRN4q8MYAhGgtX1/93jzY2XC/93f/d343u/9Xvy7f/fvcHJygqtXrzZmq7/ne74H//pf/2v85E/+JL7v+77vUg52j83hCX+jks+rpp7wh1o+BYCCAgc0Ff6S6gq/Jfy2Sduqb0KwsPlf1FTXVKVgsM/nE/rb5mx9YF+X93AQ9WdmmAnGzrB6hZ8z+6/1hRnjeAxWzbqd3l7pPYqEJWnLbvx+jn83lXyw6ghjSE2O/zr6PdxX53gxv4mg8K9xk/YKf4fFgCEYoJGcz1UOAoX6KwhrAdZGVQp/0rwxR4JXHdgOvchVEk2vsXgEqAIgXVn6p1P6YT86IVjzpZEGYJyCCYx0lTlhYC9WjDF0o6ZttwrtW7xwOLnIcXJhwyWffXJ3PdGA74p289KsbzMjGNAXswr/B77uGNevxMgLwq//5ii0Xnh4tWnQE3PrturgnKHvlOLzDav5JMm5c+aXhbqTJC3nhLl5hT8RjkQwCB6BM45heQFDpgruy2So5LtyuJg8HznSVUpCWszObQPAC6+d46c+/Dn8H7/65bVfWx3aqIrwzyj8nggbQKzYH824s+jazyviERQp5DpvKu6kkJG39Nvr9FOJm+N3GSnExVrVfNemqvnWVfizzMwQ/sIUEEzg5t3qe5BlVuGfruYbdGNEEa/s80n19xEJRGSPrx7aZ+9v1vofsfaNiRAgWaI54sEApVa09DulMhJsYWr+lSN7DLfPhztRwpVRYL7YglRQ29tgm0YYTooHa4+y6NrYDagWJuo2G/zfEWgnzRelKaCMQsziUP3o4ZP6ASBytn6fz7AqpNL4gnN8vXp3jN/5wr2Vf9e+BzZT4lHO7/tci4Ug486NR6PwW8JPcxV+bWiraj6lKAQnJrFA+Qaf488Khbun2wdoXjbIBZYqYyD3Gyh/JLAy4f/BH/xBjMdj/It/8S/w7d/+7fiBH/gB/MIv/AJGo9FlHt8eO0Ig/LXAPkN2hp6HGX63CCav8Ndn+GsKv6kIf8QjxP73jJ2tY4yF/nC/MNOkG7PQw6DwtwT2FfcBuPn9tjo9rUFaAzWFXzBANybNGa7DWt9vje+sNLcoOAPnfKl96fqVuDGP1t8y5IxpBQPgU+M/CJ3ZI2OzDuxLWo3wE1EV2scTm9LPmin9oiysRd2rXFzDaII0ElK1KfyW8DPWtLZ6hT8rp44tisG0neOvUvqbCyIGe85Nb+QwY2xmgfvzhsJP1t3AGNDzc7ozlv7Fi8wXnLr/xOMRep0V1dQV4RWzDovAWBxq7QbcjrxkNet+FDF8x5+5hjhmuH+i8V8+fSv8nTEUFOV+j69k6QeAg579Hp1PNiT8RiLL7Wf5sCz9nFfXibSYJR/aLRQBq/DX8w66ooeJGiPVaSO472zoAg+XWPqjiAWSejGetSAXUuMjn3oFAHDrQbrxqAQA5FIF2+28Gf5JwVaz8wOoktF17U8YpClDav5BX4AZE3JbvML/RHQNDAwjk2KsM/td02pmdGgefDXf+Ujac9URscGKoX1p3lR/iQi5ziBY1CD8aWZAoLlVckHhT1w6PDg4E1VKPxUzG6Vyjp0fqGb4y9JVBPpqPqfkzgNRdXX2lv4oArBgrtsT/rOhRLqDhHlNyrn0CEzroLbPQ1/0kascJ/mDteb5G5svtet0PVMCsOfiLjYySlOCYNcTfmPpqcebLTlAFUo4kuutRb/0+gWkMmH98yufvomzNdoTCNbqHLWFCj8kcGYJ88LsIf9ZNeoTHx6UtqSxbWNECHv821TzSVf5F4mq+WfZWuBR4mSY4XSUb7XJ8TCgDYXaRLVX+P9IYOUr1Y/8yI/gYx/7GH7u534Of/2v/3W89NJL+NEf/VF88IMfxA//8A/jox/9KMo5Ks0ejx4nxRkA4FD0wp8ZWGu1X5f0nHIqoUDGNGb4owiVwm+8pd+qRl33T4kyrLFix6f8Tmuhc5SmDAuuSuGfXSieOgv+lfh6+83Up9qH8DnbHFG/lxGAYwyQ8Bilkbifncw+zhS4YOC8aRRogxAM169WhHGwrcJvFF5U9/BaWSkMY526GUkv3SwHgWqhfTGcF6JZyydzgBhip3Qxod38c3WD9ITfZzxEgkOw2vqZDLrCfq4zCj94mONvs/TbhbSdeWV86qW5jSYwAU0aE5e0fSj6IINgnaxGT8rG8S7b1fd2/meeEgvHIjaBJ/wHrAsihsh9qQ5i+93ITNFYbB0fRvhzH7DBkp/+whk+/7L9fk5yCXIW4W6HLazbqsMTrovJZpb+XOdBhX5YoX1AlROSy9lAqaIW5tSJBQpdhM9NMAHOOC7Ks0D4h5MS52N7/i+z9AO14L7RLLH81U/fDKMVhggnw82rxnytUSQY4qnNtL4ripgU66uE9XT9mMeQJJFm9j0c9CPAKGSmaelPeIzrka0svSNPAB6B0erVfIcDASHsGMZwohobDIvgXSN53lT4bWCfgkBT4Z+4kMN5hLSy9LugUSYABnR8SKaRQC04zl4b1XyFv1PlSSiqqvmEC+ObN8dvDAUl31uTo8g+3zz4cZLRiHDhXCqbwgbpGTB3XWWkwJYk1vvGgJEa4rw8W9nKbt8TCsSRyIWusmamBGdiJ0GYqUpD3oyf4X/ns3b98uCshK6RxI7oIJWTtWz9f/iVUwDAN3/NE3j+yUNIZfDhT7y88vvBmHUJPCyF/5U7I3zWHbMHZ9YltzBnQisrjjwihV8q4+5ps++Tz+XYZkNVKgOY6vGFQBhPe6MhLxXORyWkooXOoTcCbAOJsVW5e4X/jwTW3pr8xm/8Rvzoj/4oPv7xj+Onf/qn8V3f9V345Cc/iX/0j/4RPvjBD+Kf/JN/gk996lOXcax7bIFWS78BeE2q7tTSi5Upm5b+uFIs/M3cB/b1hCP8VIXYJVEzZduHk3l78sJKPhfYd8yPELfcTElrt2tdLTLFlOVca4Mo4niya2dWb45vzTzONDiYTepfYbf5xrVKKVqHIBERskLhfFzYVHkymKgJfiv9EgDgXZ1nAABjk7kl4+q78lpX6pl1axCIMTBZU0PKzFr6fTACVzAaSGCT8DlHWMAQCIwzS7QZqxYVZObO8APWJowynTvDz7gNirSZCbU/9+FCAMbavv6ICfRYx46K8CbhL9x56B0Ei+pj0lzitXuWlD/91O4Jbajk4x07Y+2+VwP33ciomPkc3/62Hr7mvZag/NInvoKTizyQzINeDPDVFwSecJ2N1yemRIRM5qGWcVvHyjoI+Qvl7Gx3sG1H1tkhqWxs1PREH6lK0XGk+fZJGpo/Dls2EqfhCf9w3GxLeO1eZe/tdezPPLjYPAV85HIVpu38AHAQ2+eVmqFcdwFYO5/8HH9am+EnLWuW/mqEpVHP5wLYVg3us0n99j5x+14Jvw5ctunpXSNFCZSqei5pSmjSuLig4AgCEF7HPIXfZz7wuArsA8iOMgHIqWwo/BGLELFo7uZZZemnxgx6NxGY5BJp3v7++A1MoNqgEhFhpnGlhivOJTEaGeQ6c801m8GQHabjYGDkthn08swJzjh6oofTYvV5fmUUGOwu7TAl/LtfFfj4Zwng3G44+BBJxhsuiU2gjEJhCsTcZtF4hf+ZJzroJAzaACfntbpZHkNqiQt5sdLzFqXGl16zGQrve+c1fPcH34444nj5zgif/uL9lY5RCO5mxy//elmUGv/bx76E//DrL+G8do23AsWSUDXjCb9p5AWtgnEmcTHZbvNGaWNHTlogOIcxgNoiFE5pg/oTJLH9zr4RSerFuLT3ujeBTd6QVfijiL2hRyT2WB0bX6k45/jWb/1W/PiP/zg+9alP4V/+y3+JP/Wn/hQ+/OEP42//7b+Nb/u2b9vlce6xBYioZumvKfwutC86u43o7DZiHlUqvi6aoX2OwBNRSEf3Cr8n/qUpgjruNwt++/N3cT7OMVbjUIekNQVl6GgqtK/UOS60XYA8phhE253CLwJra6pIMJiaqqK0JYhv6z8OAHh9vNocv+1QXn4h9sF9wGoz/FobjDOJUSoRcYYrgw6UMiCj8Yn0c5BQeCy6gm8evA8AIEmhgHazmavdDOtVVDGP7e8ZAKpJ+AE0FX4NkLL/Xbfzk0EY+YgEr/gFGfSdspa1rQVEBFVWZKBey2cM2cUpt/Y7GzbnXp+p5kKHLqH/iA/CXKgn/L0phb9K2J5/U/rS6xcgAh67kixVIzfBOCj8HYAR/D7VgfuOlKSgW1SvP/l1h7jxWIRSGvzCr70Y+rkP+wm00Su1RgB2zAQAXrk9WX+WlWQYI+C8PWTxslARLTNT5dUI7HMJ/fXkc864DbFM7Pv6yl1r6T0YrBai6ZXWyYQwUkOcFWfIZYkPf+JlAMAff/d1/LHnrgAA7p9v3pvu39vpLAsASEyORNjzf51pDGKsYd0WPII2GpPUPtZBn6E0ZXhPm4S/Cu6zXz221AZeh5/jf+22r3HkS4PLuh0enGTDrHqhPrDv5j177fL3GZ/CPt/S78hljfAzMPScwl+QbGyI9KMB+tFg/vHVUvoNVdV8UWQJSVudIOCV1abCz4SZGVeqw280pbmBlMCoHG5Mjg1sE46AtWARj8DUaidSzBNwJvCgeNC4d8yDMj4c0ODl+wxSM3zhdYI0sK4uUyn8imY38NaBNCWUsZkLpaQwbnbQF+HeW7f1A0A/HuC8PFtpA+OLr51DG8Jjx108cbWHq4cdfPs32c32j/3u6w1SPQ/9jkC/t9xJtAt87pWzEJzma1sBl5mwxNJPxjUaEdngvjVwOszxyp1RaI7ZBHmp2oOX/fEBDbfGuiikQr3JKYk5SqVba6EfJaQyOBnm6HWFHb98oxN+Y+eVYsH3hP+PCHayskuSBB/60Ifwfd/3ffjABz4AIsK9e6sHoOxxuRjJMaRRYKhmigFLtAbpAxz/1i/i+Hc/DE4aCfPz+MXUDL+9oNqOXdcp7RV+T2pM1S38jmcTMAZ8+eYQ/8svfg7//QtDRLA3ar9bHwk2swg+y+x5M2BdHJQlWN6SZKxtqGAdgrHGH2lD6CYxnulcAwDcXIPwr3JPbBL++V+jUmoMJyXSUmHQifD0YwO87cYB+t0IRMCXxy/gljoFB8e3HHw9Yh6FRevYZDYQasXFoCfAEY8g3EYBNwqs9sYwmYGhIvzg1tLv50/rQWoh44Exu6HijoORQdeF9pWqpadaxCjzikD6eXb/mDZzwRL+ego2UxLEZgP7AADkPmMAPReEN10fWZTzGxZecGrOc093ZkPwdAExub9VgnFQ+FkXArwxfsAdIcjlrJKXiBh/5v0d9LsR7p1l+OhvvwYAOOpbi/aqhP/5p7sQHBiODL5y7/5aBKLQeSClva54qJ3SSfjsZgPa8noln6tumx7F6Ik+osSSPq/CHq1g5wea1XwMDPfyO/jP/+1LeHCRo9+N8Off/yweP7bXtvvnmyn8hkw4rpkwRKPAykmw9afrmDMYt8GlNcQsQe5yGA56zLpKYL/rUe19uxFfBQdHavKwsbaqpR+okvq9BX+VDTTGWFD5h7UXmuu8Edj3zufsPWWS2b73eeFv/nrF3GhRbIfTwmZgQRJkVl+kVpuGZiZlvtcROB8VrX3nxgn82phwHWRCOyV8/nN5t0eRxpioMXKz2YZSZemHvX7x2Cr8K5LtftSHNEVoxVkERdJdOw3uD+01Qhvg5gM3Hw4/BmGr+bZJ6vfz+5zxsF7odjiiiOOJOYQ/EQkEYzgtT5aOFHg7/9e+41q43n3gq2/g2RsHKJXB//nJV1CoHKfFydwawzgSGHR3mwUzD5/5clUtnNXaaLhz3i2y9ENrGObGTNbJbDCESS6Rlwqv3x/Pdbksg6/MmweG7chvVmgbkusgOIfWtFAAeBQYpSWyQqHfsWu/N/pcvHEBJUIwm5PwBt+g2GM5tib8v/M7v4N/+k//KT74wQ/ih37oh/DpT38af+kv/SX823/7b3dxfHvsAAfxAM8fvA3viJ9oKA9EBjde+gQYCEwrCF0idpZIacrGDH/s1tBe3eeMI3GKfa8xw29vPO99Zxff/R1X8bYbA0hl8Ht/UOCXPnaCeyclhmN74zg8mCUXJ4Ul/NfjY6i4C5GfwRTNYCPSEtNbxkzw0Ats12CEOBF4qnMMBoZhOcKwXB7qIzhfaWL+cCDCou1wTiXVaGLnDK8edfDs44d4+vEBjvoJBOeIBMNEj/C7Z78LAPim/ntxJbKtAgfOhTE2+Vpzd2Wo5OvAz6+yaXtnaReWPrSPCQWlCWVbJR/ZC4Ql/LUKPdLoRNUxzSqTPFj9OwlvfMZEQGrG+PzpF+1j89rj6jLkMtQD+6qH9STat0nY/vSqz31WJQbsjfXLNy3hf+apaKYfm2nfX735Dc0T/j7vgQkExUFwhi6brearXhJHt8fwXd/yBBgDJm5RddhPKkVtBSQJx7NP2e/h514+XzkMTBqJs/IUZWGf52EF9nn4RohCmplZ5npCvyIVCEAdnPEZh81xS9UnkxPwqc3DYOkfKXR4Fyrt4w++YIn9+/94DwVGuHZsycWDDRV+TRpZ4TZIpzY3mcrBdIlB16na+RobTj4ZvbbQV2UMgv0K9RIgcySyz5uNFBETuBFfAQDcLk9sUr9afbfhqlP4g+raMpbVBj/6NMrsfcKQQWEKMCNw+769YPyxd9gNvrwwIMMaoxZ1eDWdC+VeUwQGn11iUejVP7N6laxUzdC5biKQFaqhrHoYY+3EZS1vggu99Ht79f/P3p8G25bd1Z3ob8651trtaW+fN2/2nSSUalAHCCGBkQABBuwwpmwIKqrCjyo7qoIX9cXY9cEVUR3lKiIcLleEq6gIXvm5AePnpgykjUqAQA1K9U2mlP1t8ran3d3q5pzvw5xz7bW7c/Y5eTPzCt9/REqZ5+yz9tprr2aO/xj/MVbHc/wWQ/+IhnPV+1uDxbhbo7WgIoTRs/f9AyqRTUbl8EBGXlvtogaRCGO5sTe+p798wzc6TJD0qwmVxHFqpEdVcy8YQ4bGUmi2X9+aBfUt1SbVKTvZ9sKm5zAtefHKPgBve2Cj+rkQgp/84ANESvDiq/v84Tdf4EZ6nX559O/G2sWGk0et3V7GK9fHqoU62yqlOFDSb60Fq7mW7dMrZ40sD6qs0BSFYXOlQZZrLt/sH5k1r0fmLSohxLHl7Yu2r6R4zXGqt7OMsdzaS0litx6SUkzcM+7EMsaCcKaUurwL+P8s1LFWd8888wy/+qu/ykc+8hF+4Rd+gd/+7d/m7W9/O//j//g/8id/8if83b/7d+9K+u+gkkLy1574j3h386GJn5++9S0a/bGZnSzzGsOfTzD8UZi19YuopmpWQK4u6Q/PE4FkfU3yCz/yKN/33SsksWBrt+Bf/v5NPvcVt/CeN7+/m7vO+2a0BqqBEBLbu4Gtm/GUOWJqQVW/32tjUUISq4gEyel2mOM/nOVfNlNXCMEPfmCT733XGpvrs5/DWovFcmazxZn1Nu1GNMHWSin48v5nKG3JabXKW1vj7yaw2n098g/oJSX9vhnTVEn1YFdBzu8bJEIXoMsqWQGp0Xq8YK1/5wY3by+kcB36yrTPIgWcXHX/+QdfMzMLjlSrme2BY8S+sPsZfueVf88Xb33Zu//jjRh15csww/CLMcPfrDltFyavRk/y3KLnsHpff2mbojR0WzHr6wI1ddsT1njw9NoBf0u0/BjEODIyAP60nA/CBZLTJ1UlKQVYaceeUVt+/OCR+92xeuVywU62fagZmLWW3XybVKeUmTsf3kjDPhirM8LsdL3yStIv/fzw/Fpvtyf/e2XWiV2UOaKYPP7dtnIx9AZ6A82nnt7FWKcCuXA+4kZ6nbLhzBRv7acHO2EvKGNNLe5wqlmRu/3pNDzgPyrDbw31JlU9Ik8yzqJvTQF+GMv6rxVb7po7Aiu8uTbJai47ItMKiQQjJ/cuTYE2JVvbFq0t7abkntONyos1y5wD/Tzglnt2TERuUR+LCCEhlooEt3+ZWV6VEUWiuvfrQkwwxEII4kiy08tm9sVo9/vKRFAJELONqekKPgi7vYKGatEv9smXkNVPl7E+m8a6xTkizGovz8bGMiY3+YHvb6zBWo0QkrzQ7A7HV+MrNyzWion7p0tYOB4jrK0m1SmRJx+CYV8F+DeD8a9mlE6es0IIOqrDXrHLfjFHHQg888oOxlrObrY4ue7WLtZaRnqETvZ48q3uevnCV1Ns3iQ3xZFTB0Z6xI30+msyZAz11RcnDYfrDH8ou+jeZDXGaFLrFFJHecaluXbu95FkfSWhN8x59Vb/SMBvHJm3eF2lpKju9UetRdsPc/zHuWe/HtUbFQxGBe2me85GSjAq7kxjwVDGWNdDVC6ppLjDFQl36/BaGvBfunSJf/AP/gEf//jH+Zmf+Rn+z//z/+TkyZP8yq/8SmXg95M/+ZO0pxZfd+vOrCgbcP7qlyd+Jsq8Yu0Lk02Y9lWyaQ/4g1Ef1CT9Nqvm6KUQGAypSXngAclf/NFTPPaAOze29xY49FvLrn9Ir8kOEoFstrF5iultYT2bgS7GDv2+pHRw2lpn4hIrgYoiMJrz3XPAkoB/eq78gDp/psF3PdadK4G21iKlJFLzF8Nf3/4Gt4rrKKH4/uZjEzNoXW+s2DNDt4hbsitf6BrDHwyUSvcz0VypYpSiIhtL+pVGm7FENq5J+oNLvxJjcyDw5nrW8oPvkEQKrmzBZ55dAPjjyWOjjeaWTyP43LUvYGzuHspGO+DtGxMTkXz+b4Vn+COpKtCemaw6N40dA4FQe4Ocp7xM/t1PnPBs2PR5Z8bJD8cobUpG2oGLtmyh5HheWQpqDP98ABLJiFSnfM/bzvCW+x3jdM+plnfIXb4ne9+5BlEkGAwtF2/2DmWmBmWfvXyPtuowyuaD0te7wj2mKGYZsSDpbyYRmckWNj+6UwqbtTmRfEKXUE7OdUspKjf/z3xpjxtbBXEk+OB3b9CO2qzEqzSblki5xU/wVzhKGatrx7a2/6aAYoiNGmOn/qNsPjij1xpcwRel03agbxgAv2jO/HnduM8KibB6YlsHVbetJsZ0DovkCxXUI0MP+HNbUNqSqzfcPer8mYYDbP77HKWgrZnLlFZMoxgz/Ain0KqM+47A8AM0feOwLMSM6Vy7EdEfFZUCJ5S2jl2v7p+RxHom/KAK0Xy7+yWJTMhtwWBBQ/CgMhjfSK4bBdojMfxSSCz2wONlPMOvhOLWrvNaaTcgVm4U5WZPTDQZXks0X25yCpNXnj/9qSSIJJGVQmJa1g/OzyKRDbbzrbmf6Rs1OT/AqBxyI73Oq8PL7OW7vP3xFU6fiClKy2e+MKDURRV3u2wVJmdYDo58Dk6XtZavvuAAfzAQnQH8ds5YXShjMMZQYh3gP4Jp3ygvK5JCCMH6SsL2fsbVrcHSQLrQBm0M6gBJv5Li2PP2i7afxJK8MHfE7Lm1lp39FOHvT+D+Pz8g/eNOqDDS6TyUxGuKTrxbd0Ytvbr74R/+Yf7e3/t7lGXJX//rf52nnnqK3/qt3+Lnf/7n2dzcfD338W69DnXm5c+iTEm2eoay674/UWbVYik3xQRYq2ZtPQsQovigBvh1VrHAAmcSMywGaKvptmI+/P4NfvwjJyuzrPocPIDVeWXYtyq7SOmz1xtd7HAXM9gFrbFTDv3gGgxSCLR1bFEziZxxlzWc75wF4MW9lytQvKiUdEZgB7reLlHa+Fn1OeZhO+kun7r6aQDe0X4bq3KySVZJ+iuAuCzD72faPcNvsMjweeMmouHeR5ZpNdMrpKbUbv4dpkz7LITROClqudLeze/EiuCH3uFe8LWXLc9cGi8mMg/4m1Nk616xUzE/ozLlueEzrrFgPOAQEmON8y8AVmSnajzUD2V1nuqUKBpHS46y8fdrreVf/fFLZIXm/MkO733LBnrOHDhWI4xBHPM7H/jmRIRE2YS4Nk8oxHiueJ6kHxxYKU2ORvMXP/wQ/++ffQf3nmkvBRwmthNJHrjHXYuXLxt28p2Fi+7CFGznW0ghiWTE0JukLWNAeTurYviLWYO2MIOZxJLcZFVE13TFkazM3mA+4MfkwCyoDa995VW3MH/fk6sVsBBC0I7arK64fby5d/TFu7a6ijusS/plkTpQpmI6noAfHmXzUrpz1s5n+LGGUUhTmcPwn4zWiVBktmDHDo/k1C+EqABX9X5LVDi3RqkD/IXOEYhqfv/8mebE9rKRMxmbN6ZTeIBtlWf4iRDCMWeJ8HP8RwRbjar5JGZM56JIoo2ZMe9zqRCiGjFIYumbAEsC/l5IVWmyX+wdGSQHBtmdB+48O+qIBrh70FAPFja6tW+2CwS3tt0xP7MO9zqhCC/fiidiIl9LNF9Rm9+HWcAPcOoAWT84BaI2JdvZ1sT32BvmvHzNNUIfvX+Fm+kNXh1doVfs0ZBNVuJVGirhB963gZJw+VrGS5fzhaMli2qkR2Q6Y3iMJk69Lt8csL2fEUeStz/kGxTZ5D3MckAsn7WUpsQAuV0+8cclIxTE0eRs/Gon4cbuiOu7w6VIkVIbZ9R7gImqkgJt7LFy6UttfELz5PYjJSm1vSOM+4ZZyd4gp1MzeIyUQGv7muIIX+8qS1ut+YTljk8VuFuH19Kryb/6V/8qv/mbv8lTTz3F3/gbf4P777//9dyvu/U6Vnf7Iis7FzEIdp74fmzsFoSiLKpovtxkE0Aq5EcHljLI+GEM/jMzjuWTQmKwZDarpHkA95xu8Bc+dpq/9KOnefi+8TYABvkuJQ7kdEULpL+RK4WIG9j+Fjbt4e/wE38rpfBqRudaHCcKhMQaywPd8zRVg51sj3/z0lMHyuyUdBKm1yoFs9bt0zx32k9c+iNKU3K6cZZHovtmfj/B8CMmFvUHVe4XeQ3V8GqIGsMfNyBx243yfCzp9zOwYRGRTDH8IXJo4oFqysov4aGzgvc+6v79j75hubbjjltWePl9NHkct3IXeZR4EPzM3tcZ6bQmJxY+ktCikLRlo0qTqKsgwnmamQwhRLVYH+XjhdnnvnmDl6/2iCPJT33oQazwi+MpRYYIMY8cb3FQj+SzUk3IC6WUlQljuojhFxGl1RQmdxnZrdgbhx2N4Qd4+H53TV28XDAqR3NlrXUpf8uPTATZ+Rst6Q8z/MU8wB9i+WIxv1FTqwAmhZgDQK0BXfqmznzAD3DmRMJbH5l0chdCsL7mtndz5+jGfQZTGenV1RMiH2CFAsR4hj87yj1HjpUpvsbS5whhzdxIvuqvheRM7ADE1WILsEsDfoCN1fE9vdtcbr/DuTVKLcZqMp1SFIKb22OGP+x/eJ22esbMEcZKHhsYfulm+GMlaXjAf1R2dZwYERjtyfdtNaIZ8z5tHAuW+Z8lkZzrNTFdoem91ysxxtKQDTKTLe29MX5/vy+1tABEBOVsDOhBFcuEXGcUC5hs9x24pu/NXfeep9YED5x27/nKLTnB8CuhJkx8j1L1+X2oAf7O5LUKcGNrMRBvR136RW/CdO+bL7sRnbMnmwzlTXbybRLZoBuvEsnx9jdWY97+eBeAK6/qIwF+Y41bP8mIQdl/TbP8gd1/y/0brHX8eZ1PXqd149uZ8uaJJZYCg10yjSMvDVmhJz19cM3VbjPm2taQ7f0lkh1Kg1iM9d3+e8B/HAa5KCcj+Sa36+J43+za7WVobYmjWox0JZO/c1nz0phq3ScVZPmdPYJwtw6vpVeTf/tv/22efPLJ13Nf7tYbUEIXnHn5swDcOP1WzMoJbOQeJKLMSIIhmgcf504lNBtU0tdsKpIPxvL+TI8f8AKBsYZC5yRykuZVSrC+Gs8Ar73MPdzWVAeERDE2PyNugjXY0b5j6aaQtMpHPP7N/5v1a8+ghCSJhFv9W0NLNfgLj/wESiie232R37/4hwsXIkpKlAD9GqVW2rpotul4phvDW7yw9zICwfed/n6sKStn+lD1GX5nunP4vlhrKQmS/gSMxggxBvxRExEAf5GNTfukW4wEwFd/wBs7BvpSCvCjDsJobO27++5HBA+ecZj5qS8a+qklPGeb0eSiczt3bsPvPvV2TrdOUtiCb/e/7kC3Z6iCnH9FuUg+rEXISaAe5vhzH0EV1Cgj/1C6sTPiE1+4DMBH33uBE6vNyvht9uD5JINjfufjSL4mICbkhUJAW7rrY7QAgITYwfqi0s3mzgKHUVbOLPjqde+ZJkksGKaG3S3FXrE7E7lVl/KHYzpMA8P/xkr6A8NfFHaG3cyKcRNKGwf4i1LPZYLCfq92o1k2Kcy6Gz0zpx4Av5Twofeuzx3P2Vz1bOLu0dm60pRkFcPv71lWQ5mCv9d2jiPp9yVqx6I/mmL4DwD8UJP151uAWCq/PVSI5gNYjZZjk8N3NErduZ6ZjFs33bHZWI2q0YAA+Iep8bPgcwB/MQX4idwImBpL+sOzatlqeAVGkeNN5ybPx2aiGOWT5n0O8IvaSJScf4+Zqk7bNQathf1+iRCCSETs5XtHmvvWeIPA+r1LRQhbzqQ4HFSRiChsuXCOX/v7EcAND/hPrwnu84D/Zk8yGI5NJGMRUZiiMvld+vNYTVqOJkiCeQx/UAfe3M4Xgl0pJM2oxU6+zaB06oWvvuieP/fc4xQRK9FqNTowXae8V8BoZBeqs+ZV6Wf+W6pNZjJG5fJ/O7EdbarxgycfPrFY0i9YDJaNQRuNwVJauzTgz3JNUZoJhj9UI1E0YsmVW4ND4/rSqci8eaWUcCkXxwD805F89UpiSX9UvKmy+SzX7PSyGeWcki7u8042wiu1qVSV0d1ovj8T9cau7u7Wm16nL3+VOB+QJ12unXuH6w4HwF/kNKsZfrdY+LEfOMGPfaxJM/aLqDDDXwP87dixiqlOq25uADGlLSc65wfVbu4A/3q0gjWglBqPJQKi2cXmQ+ZJ3JOtS7SG22zeep4ows3OC+leazX3rtzDjz/4UQC+dPNrfO7aFxbuRxwpzGucV7LGEs15WH72mnPlf3zjEU52Nt0DeOqB1RENBI4dHNl8Kaam1AZdAf4GGO0Y+jJI+huVpF8VGXFomASGfw7gt9ZWIwmBYbdYz/BPytZ/6B2Sza6b53zqC6YCLw01aYa3U/gFV+csHzr/vQC8OPwWw3K/2mYw7Fv1jY8qHrAG5MZKFPdGYRY8zTRaG/7lp15EG8sj967x7sec7rQwxXyJvI95nGZ/l63A8HdlE7AzYxxtf62MTLbQGE0JNRHNVV9g1ysvzIHuvkoJHrw3sPwlhS7YK3arBte0lD/U8E1j+GuAfwpgBUl/FLlrQQrJYFTOjYcK+z3PoT8t+nx6+Ay3dH+GxX7w3hYXzjX40Hs3qri56Tqx7gDzcaL5cl1U4zIVw29KNzPvr8F2kPRny3mHTFRd0j+ouZlbw/AwwJ94475yCy3EEZ363bFS0tIyvaUM/8J3lKZuXry0Jdduun0O7H61/8BwZKrG8XQFZswId3+LiEA69+sxw3+076tZi+abZzonfFpJMO+z1mJMmOH3apRILBWlKYSYkfU3VYtUjxgeAVwWpvDjc7XjLyQY43wrDimtLTe2cuf5h1joM6KtRiDIcsP+wB37U2vQbghOr7vXvHITgomkklFlvneUynRGXpvfN8ZW40Z1wL+xGhFFgqK07O4v/pyBbNjObvHC1hWu3nKf74n712mq1oERpJ1WOA/tkYz7gjeFS46Q1cjXUeu5S3ukuWa1HfPA2ZWqYTgt6ZdSLASO1hq0l/QbYSn1cmMWWeHWD4uOT7sZA5arW4O5cZXVdvKDHfohKBQco3zUOmj7SaTIcv2mxvPtDTKyQtNM5q+B72zAP/7+IykoSnOssYu7defUXcD/H1C1hrtsXnsWgFfvfz9EEUIItGeabJHWgJR7MEgpOdk6UYGDwBYGEGPL1LnCA6UtJ24I1lpnprRMmbIy7FtX3UrGPVFCIJoriKQ78+dy5ObyojKjkbh5zuBkHRbRT2w+yg9d+BAAf3jl03xj69m5uxLH8jV3hfUcwL+T7vLs9nMAfODce1DgAEgNPK9svcxjX/xndPFOxDZdDvCXFoOfB1WJo9uFqGb4RTxm+FWRTczwA5Xb8bSkP6q5zQuEa4QYzfStI44EP/oeSSOGG3vw3Kvu+DViXUk9c5PT0+47Ptc9y0Nr93O2dRaD5mu9Zyulw3Qkn7G4lO3a6RDOucBIjSX9JX/w5Ve5tj2i1Yj4ye99oHpo5SZfYNgX2N9jzvAHSb9n+MUU4O/6a2VosoWmSZGIyHRagRtjzQxwSHXKK+m3KQ6ZjX3Ey/pfujyiIVvs53uMvFpkWsoP3qE6MPxvtGmfP9/ywsm86+Au842NKGJsHiXF3K9pxRuArs8B7S8MXuDb+VW+WlyeYT0bieRHP3SyMhSdV0G+vrOfH3nmsjcag+hwjjq/ClNd92GGXxvIjqRAnTRKm2BCjWbk5dnTsXyhNtUqiYgpreaWGXqn/uU+35mTCSstePC0Qeq0Shw4qMK5laauuaOt5tXr7lyuA/5OxfC7zzOP4Q8z/Nrf82IRoYRAybFJZnpUhr8G+FlgOtfx5n3DrMRad2+qM/zRko87GMv6A2CVQiIQ9PL9pRs/xmr3nLSmprry18oBANUYy7MvDvhnv3Odf/n7N/nSN3skMmGoh3MbLKV1EaG3dtz3tdoylclhkPW/fJOJ+5sSUcWsL1uhSROUTYOR9uNxkyMxUgpOb7rrcp5xX73aqsNIj/jGy44tv+d0Qrc9v7lXr9BgGKWGolzeuC94UwghaKgGw3JwZA8AgK+84Jrjb3/4hEt7CQz/jKT/gPlqa9AY0qKkMBq95H70h/lcdr9eK+2Y/qhY6G1ijJuhj9TB23HkEEdm+A/bfhxJCvPmGfcVpeHWXkqzMb+JLoD8gGbJm1njZqa7tpX3RCjv4BGEu3V43QX8/6GUMTxw6SsILPubD7C/dr5iTbVfpYgyd2AR16WeV5WkP25hsZjeFnE5zh3O7XiRtRKvTgCLg0ronF1v2LeuVhzYjOZ0bqWau6pSI5erG+uMJDyowp/XmNv3nHkn7z3zLgB+5+Xf5+X9SzPbipU81uxhvaxlwrwN4HPXvojF8tDq/ZxpnyJS3mSpdhl2dy4SlRnr/uHXs8vNYpbaVGyXY/id1ZUMsXy1GX5VpGNJv3LHZlgB/vo+O/dnY50BoZQCazRgJpoUoVbbgo++S04Bc43wi4ytzC1gunGXbuzk5B84+34AvpVdoufPrXEkn5+ntiCnjmWQ9IfzMez3i5f7fPrr1wD48e+9v1rYBYnurGGfk3tbIZdiKedVAPxt2UIhmF5/dP3IS2qzhU7ozrivpPTHah7I+fruV/hK73O8NPr2gftz7lSDVlOS5ZbrN9y5s5vv0C97M1J+cAAnrNNbb3QsXzU3bTGYScDvF7YyqnsZ2Lkelt/1WJf3PbnKk4/PNgN7hbs37JkRojy6kVi3rVDKAfLr+/tL/521loGfbWk2ZKVQcUqS8cy1UoKmxx9HkfVbKSsW1yk/3IHptBVW52T+Hr6I4RdCVLL+a3oXZ2q4HIuZRJa/8sGSH36HxSqFyHqH3qfCuWWskyUPBpb9vkYIOHe6zvC7+/tg5ObGp4G31oawTg6AX6FcvrUQVTPwyJL+oBLKjZ9Bnz1Xgnnf3iDHWKfBEWI8fhJFYmnfjbpTf6imajHUg6Wk8MYa3xiUXN/SfPKbMd94xdAbWZe8UM6eTMZYnnt5yG/+7nX+6PO7VZPohUujao5/ntlhUBIEv4VTq+OLMAD+K1sSXQMwiUzI9GjGF+Arz9/iWxd35n6eftmfkNiH/eu01AzbfPoQ475QQghW4zUuX3b7/PB9y61JWk3pE3tgkC4/x5/qtGosxyKmMMWRRgIABqOC5y+7e82TD7trtJUESf8Uwy/EYrBsDLnWDIcl/VSjlxjbKbVhlOvxOmpBBb+ZWzujuZn3zkF/VvE2d1sc3cCu0ObQyD+JmGmQvFHVG+aMspJ2Y34XUCrhm4t3XhlrPenm/jsKngN3sCLhbh1edwH/fyAlnv80neEuWsVcf+D9GMasaekZflHmNGsu/fMq87LjTtRy4EUXCGtoKrdgy21agWUp5IGSuXrZMmfPO7NvRCuuq7/k38KY4ZdW05C1m5Jlhrn9yL0f5ImNRzHW8P974d9yY3hrclvSxZC8prKT8/u9vM/Xt74JOHYfQAmLwky8lyrcMVjX7md9k07M6S4qN6PnvjPnw6AnTfuiSUm/kgHwu4fh2KW/9rmt4Z+/9Nv82qf/d3ayHbf40RoRKJc5de9Jwfe+pTZrH4Eo3Xvcypxh35nWmer3F7rnOR2fxWL5cvYSAPvGM/zevNDMWTRU55sJDL/7/fOXBlgL73jkRBVxBw5AG1POLsatcZ9HyKUksPOqAvyihVDMvEdg+DWWwsxHdEECGxptTo0wuZ1gwLdf7hzYkJJS8JCX9b9wcUgrajMo++zk2zNSfnDSaXDH8DD55XS91sZYaNRo4wye6gZtgeEXqqwW0AIx16Sp3VS88y0rc0cSgsdCz4yw5XIjMvWSUlS56Ve3D446rJfBVI20Ojv57f5zfDZ9fqK5UUXzHQWjClkpFkIkXxILklhW0mzBWOI+rwLgv1LcQugjOPXrEkkJMoKoiciHiGIsBw/S7HopNTbX3B9k3LjpPv/pE8lEo7HbCVJq10ieGfWogcpwz4tQLtVFymos7fgMv0UJORPNF6qZOPO+vDDVcyowdSqyTmK/RK175chub/ysjWTkvG+WyLA3PsFACsnnvqV59tWIP/qG5R990vDPPtvgs98suHpj5PO0LS9dHvHbT93gk5/bYb+vaTYk7337KkK4psNg6EYZphsl1rrxBiUkN7fdd1oH/Jsr0G1CacaJCzD2Bag3EJ67vMe/+uOX+ed/8OJMrnemUzKdktQaVJUR5XSEL2PAfxjDD7C7X7C1WyAEPHjvbEzlvBJCVLL+0YilAL+2msxklbJRCIESin7RP9K98usvbWOs5Z6TbU6tu3t5kPSneTmxLSHcDPxcVaI1DIoCXbrcd12WLuXogEpzTV5okvjw5m8jURgL17eHM3LvUhu0Nocy/OEz5EcF/OXhkX9xLOkPi9f8nDpqGWPZ2k+Jo8Vr4EiKme/yTilj7ISHkxACDDPX7N36zqpjAf6vfOUrt3s/7tbrWFaXiK/9HgA3LrwLnbTBjFnT0ruHijKnGUz77Hx5ZwBYzajp5sTLAoyuZvoLe7wonkG2hcagkM6lXhwc5TJdajReiCf1haZghrkVQvDxB3+YC917yHXObz33r9jPx3+vpEBgX9uNWNgJX8Gnr38ZbQ3nu+e4sHLevQ8WKcDUAH9UAX733/0D5r5DldoQSVkxKQ2VuBlTAbKa4R9L+mWekYRRCzm57frCu6d73EpvcXO4zf/1zd9kK7+GMbqK5VtUb79f8N2PCO7ZhDMbVEzTrfQGAGfbp6vXKil4W/u7AHghv8pOuU9/iuG3MANEw3maTUn6AVY6ER989wajckims4o5DznS9RLWgLVYGcESi+zpMtZU+dlt2XJGjTMRQRExnp05xMCp8DOW2pYzfgPhbwd6/9DYyODW//KVFKslkYzJdDZXcVMZ9h2R3U/zkt1+fuAM52FVbzCN8hJdi2ALrKlUhkgodz36lx/l2uz7ERGNYWiHx1JybHiTums7/aVN1bTV1ahEqybrfLr3NZ4prvJqMW40jqP5jujU76/HyUi+sclYSzYq48t5dW/irsUb5Q6pyZd36jelj9FU/h+BzHpgLbnJ+TdX/gW/++q/nvmegqy/n+Zcv+H2+d4zkwqEwPBnucUaMQO0Up/EIcQY8Mc4s0YhxuNm6RFj4ZretC/LDFKomWi+UK2GM+/bHzrDOCHGJoKROtyhP1Rd0l8/ThaLXuJ7MLhxNWFhu+f+/sSKu0S2+4IvvST4N5/c5v/zL6/yW797g3//J9vs7JckseC9b1/l5z5+hne9daUCzpevOaA6LcM3uMQQISS3dtzxPr02vm6FENwf3Pqv5hM/l8jq/qi14d/9qVPUaWNnPDFGejRjVDrPsC9U2O+d/fJQpvSFi+697j3bWCixnldVRGS62N+gXu45M+lb1JBNUj06UkxhcOd/8uGT1c8Cw28tE3PpUjrVzFzzQmvoZynWQK4Nw+LwhmdeaBcrvOT6a6UTsTvI2Jly7S9Lg7bLbUdJQX5E6X2p3fl/0PaTSPoGxhsLVPujgv6wmIjimy7n1G9fcwT061HG4O9tdRMte0d7Dtytw+tYgP9nf/Zn+djHPsb/+r/+r1y6NCuJvlt3WFkD3RPsrJ1l5/SjABMz8kYFl/66pN8ZmU1X6P63o5aTd1uNNWUV01fYY0TxWM1O5ubr1lR3PDe0LMNvDDLtV/8pi9qDxzK3ox3JiJ955Mc50dykXwz4ref+NbmXu0VKIuXxZf3h70LnOS1TvnzzawB8z9n3VK9TwiIx1NV4Ue5VDh5E9ezo0Ad0oQ1JJKsFRUPGYFxqcpD0i7hRm+FPx13xacCfjI9538/bA6Q64w9u/jsujl72+7P41iGE4H2PSf78BxRxHEGZYo3mlo/kO9c5W71WCsGJeJ37lGMa/6T/VQwWiaTj3e2tnT0XWsGl33/meqPivd8ds1Ve4/LwIpeHF7k0fIUb2Y2KDZsoa9zTTaqFcvuDKixSBYJEtGaMJsHtezVXfEAusxKqmrXXVs/sazDz6uv9Q+WPZ04kdNuKorRcvJrSUi1W4tW5bENl2NdafiGc5iWltmx0GwzT47MUQoipOf66pD+wpgYlInecBUe6No01DGpy2v1y4BMhjlZhjn9rb77kef571wC/B7q5ySv29nJ+o3rtOJrvCDslJWAmAX8nAowziMQB/vbeqzz69D9m9dYLM5voqjabahULXNLbS0v6p9UwNmoi8gGiTHl1eJmRHrJf7M2ApHCOmbzJ1Ruzhn3gmnfKn4ppyhxvh7FBXjiWSkTVHalTjdAUfgRpuarP8Cuh5kbzwdi8rzfMXYKIEJVpn4rGCp/DGkOrHvDnha1MUwEEcik2OUj6s8ySFm786qe/V/KLf07y594pePRsSTMR5IVlt1cSRYJ3vXWFn/vxs7zrrStV1O6Fs+74X7qaell/OiHD11ZjrSHLoOcZ95Ork/sSAP/Fa5NsaqIajPSI0pR8/tkbbO2Pr50btZhL1zjtE08l+oTzeqU9C5zaTVV5dwTlwbyy1laAf1k5f6iQHOEY/vzQiL3CFDMRopGMKOzysv4bOyOubg2RQvBdD45ValEkK7Z8VAf8QmCNnQv4syJlkHvTOCsYZIePCA6zYikZfiglJa1EcX1nNJEgUGgzd/xq/jZEFbW5bJWlOdR2J44kpTYHJtu8HpUVznT3IPVBJCW6NHcka669Kqh+GkghyIq70XzfyXUswP8//U//E/fffz//2//2v/HRj36Uv/yX/zL/5J/8E3Z3d2/z7t2t21EiSjAf+2VeeOj9FTNr7Xj2yURuMSsnGP5Z6Zf2ma7gXfpN6cCSLiqGPzc5R21YirJgT7t5tfVopXpGLIv3ZTaYyKqXNWmpa3/Pf0g3oyZ/6dE/Tyduc2u0xb+7+MnKmV4JcezOq+s6y+qh+YUbXyU3BadaJ3lo7YHaCw2xEhjjP6gxKM+Gb/oFZN/4jPoDnmxlaWg2I3JdA/zWYGFs2hc1K0m/LFKiID+Q4zg8mGL4S/edvO30Yzy28TAGw+d6n+Nr2eXlAZ6PiBrme6R6hEBwpnOq+rWUEGF4MroPgFulazKsqPYYnApmjPDGc7pj069G4pirR85tshqv0Y1WaaqWi3iy0FKt2f2zxgH0wIIekf0dG/YlWOTceUIhReU5cBBLFInIAUK/sKwDfmNN5eJf2vJQ52chBA/dN5b1H1TToPSwSvOSQhvOrDu5absRzUZFHaEalVM/U5L+sUxaCok1biZTHuHaHJUDTO383tevjeHf6xmGS8ZsaasZZe6+1PLs8agYK4mu5Der6+hY0XxCIqxBGD0G/C0fyefPlZZo0Nm9gtI5K1svz93M/Q3XgHul3FraqV/oFFtXy8gIrEFmfS4NX6l+PCgnRyACw//qNcfKxpGomNpq2zUpdZpazzDXzgvfDI1iWylCzm2/xAOf+b+Idq/TjR2AdVGXy3dQ6oBfIudG81WfoxExTEs3kCUmDSYlkqLU7OznB4L+SIkKsAanfnCNv2X8B0J0517PHY/VFsRK0EwEj94j+eG3ZfzCj7T58z90kg+/b52f+/gZ3vv21Qk1FMCFc+7ku3I9Qxg1E88XGh/bO24f19qWJIZL2XUG/n52/oRTNwxSy9buuFngZthztod9/vDLV93f+zz56zvj6ygzGZnOZiJ8+8Na8sScqub4by0G/Nu7Jbu9EiXhgfPLyflDBcCfjlzE5mGNmNzkc1MaYpHQL3pLPTcDu//ovWveDX9cY6f+8fniXO7tXEn/cDgkM5pGpJCRpDdK0QeMrhlr6Q+LKS+fw6vdjMmKkpu7o+oz5oVZWiUQkgaO4gKfF+bQxkRYQ7zRc/yjrDx035Sfi78TWXM3wz+pnoiUvGM9B+7WcnUswP8TP/ET/MN/+A/5oz/6I/7W3/pbAPydv/N3+P7v/37+8//8P+f3fu/3yPPjSbvv1htTFneTNdZgozHDH4DJPFlhYLYEoop+c5nSZU3Sf3SGX5icHQ9g1lXXyRQRyz8sRpNGWjKvr5rFgazVamOFP//QjyIQfGPrWb5y6xtOGirFkRsXobSxKG8gleuCL9z4MgAfOPvdkwyrNahonAgQlaNqqbDpH1ADk2GMywxeVMZYmnFEGuTt0kXmGGpqh5ppn8xTElszNqyx/OFBb62tGP57Vs7wM499nLetO+n90/lLfHbw9eWkzcIx57ey6wCsRRs0aos6KQXCatZlh4ca56ufr05Iz+2Mn0OrUqL4mdLNhF/4qXO8660r47f285OxjGmoxgx7BIwbRSKwpUf70uuRfBbmzitKMXYOHx3A8EcypjQFqXE+GHVJv3OvrgHX/HDzuEc84L94NT1Q0hhir5aR9Aewf3a9w1o3IY4kG6tNtF5e7pdPzXeHc66oMfxlaSpQH3sFgPFsqlzg1D+v+uXkcdo3o+Vl67UKDP9+z9Are4cyfW5/DWkWIvn8XHo5ViL1zLDyqxhH8x3h/PPxa2Wpef4VB57WVyMP+McMv/IgPhntzt3MfYnz1LhS7lAUw8M9DqyFMmdiZgmwUQOd73FlOFb99WufF6DlgfwrrzqgeO50Y+59vl0B/jGTHSqYOcbJ+Gcn9q8jdU68/SoNFRPh//4I0Xx10z5gbjRfqNib9xnj7k0Vw+8l/WH+9TDn8Y05xn1KKEpTHHp/Db/f8X+7MeNXKZC25MzJBo892FloyHlyI6bZkBSl5cZ2MRPPp62b7d/ygP/0quGG3uMTvaf5474b74yU4MKm259XXh0/f4Vw6S5/+MWrZIXm3Ik2H3rHOQCu1xj+tBxhmB25GitX5u/7mUMAv7WWrz/nzsEL9zSPDGS7/jwcjFxzpTwE8I/0CDUnmaihGqQ6nYhenVfGWL72ogP873jkxMzvW8Gpvw74pcAwn+Hvj0YYC7FQNKKYUV4wGi1em2de/p5ERzdvXWknbO2n7A3c9kd5eaChXr2UdE3cozj1j/JyKc+ZOBL03sA5fmsto6xcMp1AUL7GCOjXo4y1Lqqztu5SSpAVev7oyN36jqjXZNq3ubnJX/2rf5V/+k//Kf/u3/07fumXfokXX3yRX/7lX+aDH/wg//V//V/z9NNP3659vVu3uaQQlNZA7MC6LAsSGVUd6nzq4RRYh4Zyc6FWl54VLWmqwPBnR043E0XGrnEL1o1oZewKvyTFX5/fBxB5fcEhfc764rqwcp4Pnf8eAH7/4h9yc3STSPkIumOU84ATSAVfvfUNRmXKemOVJzYfnXyh0URCjEcA8vECaLXIkUgsloFJWQT4jTVIJVCRrdysGzIC3Ay/qCT94xl+YQ2q3kn3gF9Kqge0ZQz4T3dOIIXke89+H0823gbAt9KL/D/7X1jKXAoEt1In599snJrw+xMIIqvRVvDO9qPVubcqOxN/P40JmlEw7RsvwJY1iJyo0EzxbOlRDd36FcPfAObPE0ohaAXAfwAAkUJiMGQ6c7nXNYZ/Ops7GPgdVCfWY9ZWIrSGV64sXmhWkv5DGP5psB+q245Z6zYYpvMXw7nJuTy8yNNbn+PfXvmX/LOL/4h/fvEfM/TNjzBGkue2AtKB3QdoBLdovwCRAvSSN5lePnmc9s1oadl6vVY6CiVBa9jppUvli2uryQLgrxj+yYbPZT/mUkn6jxRb7v7mK98e0RtoOi3J4w+2EcYy8g2VlmwQFW6jSdqbq3ZaVyusyDYG43wFDpPBmxJsMQP4UQnXs60JOfhgCvCHplKYqpie3w81NkszXtI/3qcq877hQTaS2N8HRJmhpKDhzWePAvhDzJy1UJQuReGg7PV2I/Lpp2M5cuQl/SFl5jAlSmXctz8+ZkootNUL1QWhjFc37Oy5v92cAvxWRYgiPbSJKYTg3ilZfz2ez1iNQHAzzO+vGPZ8g3671lC7/5R7/cVXJ0/i3p7kmRfd6z/2vgucPeGeQ9e3HRtsrXXu/GI2Ku+gGX6YdOqfBnTWWj775T2+9ZK7dz7xUGfm7w+rwPAHU8yD5vBLU5KbfMYUFdx3ajCHeri8dG2f3rCg1VA8cu/azO9bSTDuG18PQoxN1uqljWG/P0T4WNNISUqj5zrqh8oKTWHMTKTwMhVHTtV4fXtIXjjjv4Mk7fVS0qkUlgW/y0b+ASSxco2MY0jn9/qZG905QpXaUOjZWOZ5JewBkYpvYjlQP/ldRMo1J+7E/b1by9Vtc+lvNBq0Wi0ajYZjaIXgE5/4BD//8z/PX/gLf4Hnn3/+dr3V3bpNJaRAW4OMAuDPUUoQ+w71dN53YPgDuEcXICOsMTXGNVt2bMuVNZi8z54H/OtqpUp9W57hnwT8sqgtOJy1PPaQvXr/2e/m4bUH0FbzL1/4HRAl+ojgL5Rj+AFr+dNrX6y2Pz2TbXU5MfMd1UYRYl3Q9RL0vlnMuhWlJVYKK8aLQyfpt2CFY+IA4gYiStyQKRDprGLBQjRfnf0w2laS/tMdZxykEDwa38dHWm9FIblc3OCpvc8depyslNzKnUHZieTkjDw/osAKxarq8NbWgwCcTRy7EXzapv8mnG8l8+dsly7ror+CpH+ZRIR6jRn+FiDm+k5IKWj5VIGROXgBLjzImDavGk4pA3rl4YBfCMHDS8j6K9O+A2b4F4F9cDL7jdUGcRxV0sntbItPX/00//elf8VvvvKP+OT1f88z+19nO3fslba6+vdGYPhLKpBTn9OO/JhRiEBT0s2sLlMDL6Ff8YkP+zZF6KOrz6QUrPmZ6/19M/N9zKvSlDWG333GoY8eDY2tK36OP5j2HWmGH9gfCb70LXe/+8A71/xctmZo6wx/UGZZknRWGSKEqFj+i/mNQxUQwpTOB2Ea8AOvmJ2JzzcD+FuT98Dp+f3x67wiInUDGfVrPA1seuzPERGhwuhSkSGkIPHJBNkRAH8Ujb0DsgOi+UI1GxEn132ju4rlc7+zFiKpDmUsK+O+KUm/tuWhxn0BkAd1wMbK1L1HKJfisMT98T4v6798zcnqC51XDX7tn5+3gkP/imbolVWZLaqxqvtPuc96c7uoVEPWWj7/FQ+4H1jlvjMrnFprIYRjqfujgsx4d341eS7kuaGoRU3OqxPrMUpCmpmJpom1lj/5wh5f+7a7Tr/v3WvVZzxKhUZDf6Qrj5VFVdoCbcrKoX+6EpnQP0Qd9NXn3T3xbQ9uzoBZYw0yct91neGvcuyn7omDtCTNc2IVeQPFCCLNXm+4UI01ykrka0goWmnH9EcF13eG6EMi8+olPcNfLvn8PUrkXxJJ8tIwTI/W6M1yzZVbA/aOeFPOS6e6mo5lnldSjRVLd1LNY/GVdKqmO9Fz4G4tV68J8Pf7fX77t3+bX/zFX+QHf/AH+V/+l/+F8+fP8/f+3t/jj//4j/nUpz7Fr/3ar7G9vc3f/Jt/83bt8926TSVxD3OVOFAgjUYYUzm4F3ryRhcWABXgLwsHIK2pAE1hsvnxMAtK6IKe7mGwRCi6soX27vXLMrZq6BaxNkTN1ZhygsHXIaDUOfd/lNVkhd1sn09vferYDL8xrrv7je1v0Sv6dOI233XiLXNeWCIihcBJlOuAX+rcg8gwxz9/X4rS0IxVJTWMZewX2xZpdSVZF76pMzbuy4iCfFKOI71CDcoBpXXyzhNtZxwklcsQvz85zcfWPkAiIm6Vu1zKrx98PIRkywPUk43TEwsKazVK6Cqp4D3tJ/hLmz/EBQ9AjLVIBNPrhkYtq/ko7sfTlRcj/vng83y693V/jI85wy9bbjpi3gy/EFUW+uiQ1IVIRJXzeL2mDZ/6erk8+AD4L13LSLMFizwfy7dI8nsQ2A/ViBQnVhrkhabQBU9d+R2+dPOL3MpuYrGsRCs80n2MD576MKcbZ/xncuf7WNI/ZlQDgxXHopL5hlzgJFZLM/x9P0N+T+KaVj0zwhSHG1fNq401d871+4JB2T+Q/QXXvMhmJP3uewwA+1qxTWHLKpZvmHGk++efPBejDdxzOuGhC96jwlpG/n7Qlg1UrQHaWCTr93P8l8pt7CENEWEKT/5MNTCt5WLpGnsXGvcA0Csmm7H1sZF2S1ZZ9NPVqUmpYcxmwxhcq9hL+4VC+c8riwwloVkB/iNJJsZz/Jk5MJpvuqoGVW0kKlKHf5frcyT9AcAdxvBrr8RYKOlXEcLopeJGA8O/tVsw8r4J4diVpiQdwcDfJ06tGIa147qvw1iK5LSP67t41f3+hYsjrt8qUAo+8A7HWEeR5MSqO+Gv74wYlemBcv5GIokXsKVKCU5uuO/66g23PjHG8kef3+WbL7j9+tB71nnbozPzDktVOA+HI4O06kDjvsIU841hfSWyQaazheqg/UHOM6/sAvDkw7Ny/sxkRIk7vrOeKWIGpPWHGdqWVbNcIlBSMMpyhnM8V6y19EfFwmO9TDn/jYidXk5pzNIxr1XTYsk111Ej/yIluLEzXDpRxlrLjd0h+4OcYaqPNA6QF2bplINIygm1xp1SQdJfLzdKd9ep/zu5jnVl//7v/z7/5X/5X/J93/d9/K2/9bcYDAb8yq/8Cp/61Kf4B//gH/DRj36UOI5RSvEjP/Ij/Gf/2X/GM888c7v3/W4dsypTPM/wJ8lY6iZ0QeKldfmUcVCd4bfenV8oZxDXkrW/OcL9QOicXQ+a1qKuu/FbJ4tcVqEdJP3lqlvUTzD8yJAxcuh2WlGTn3r4x1BC8kr/ZZ4fHu+cNdZF8n3uqhtnee+Zd8+V+VGWKKmcCZk1RPkY1AlrWfEu9X09clnxc0prQ7sZkQXDPpVUYEaUNeDojRmrOf4irQC/UO7hX2f4g2R8o7lWGfxJIRC2BCE5HW/wePN+AJ5LD07q2LEpGkMkYjYb69MfAAWYoDYQgrYcMzHWWoScbf5IIarGVF4uz+JN143iJj0z4vnsshtvOfIMvzv32qqFFLONCXCsdPhMDvAfYOQlI0pbzhg/BaC42dh076uXy4PfWI05sR5jLTz74mDuwmXM8M8+DopSU5QHg/1Qq52E1XbCK3uXyUxGS7X4/tM/wM9c+Fl+6sJf4ntOfT8Pdh9mJXYL/yC3DpL+onAz09baGsNPBQSCciyO5NL3mJ6/t5yJTzgjNiwDc0zjPg/O9nsueu4wuXiuc1Ifsxci34YeHJ2LT9KVLQyGa/kW7cQniFpIl+xfXbxpeelmhBDwve9er64RYQ0jO5b0B4YfIBnNV4acijZoioSckuvp1YPfWBczSRQAt8pdRiYjRvGQdPfiWUn/+Bw7f6axsKnb8eficGQQiArcQt3McQ7DX+ZIISufkGVGL+pVn+M/KJpvuoJHRlxj+J17+sF/FwB/f6gpa8yZgEMbShpNkcPIN5U2utPHUoI1rkFzSDUbilOb7hlx+WpKJKLqnlPakp09/x4rkjiyDGtrgwD4EZL7T7lj9cqrKUVp+NxXXGPyux5vIZK0UiWc2XDNqevbQwZlzxmrTtVhcv5Qp0+4v331Zooxlj/40x2+9dIQIeAj79/giYePLuUP1WrKagQty+SBxn2ZzuYa9oWSwrW6F6mDnvrTS5TacO+pDudPzu5zrjNU5I7faAokCiZZ2VIbdvdHKGkIF6sUEistxmr6g9nPUJSGLNdV0+q41UwijGeCl5X0A2DtoekzocrSzJjKHVRBeXBjZ7QUeN8fFmztpXTbMfkRnfQLbQ48D+qllKAoj2ZW+EbUTCSfL2uZuE/dre+sOtaV/Tf+xt/gq1/9Kr/4i7/I7/zO7/Bbv/Vb/JW/8lfY2NiY+/onnniCn/iJn3hNO3q3bl9Zz5pK4cBpI2pgvWxWlFkN8E9J+gPDHzXdEGaIM8PS9IA/OyLDjx7P768rZ7hmDUtLwWAs6S9XXaZ0fYbfSbWXn80+1znDD174EADfHHyRG+n1I4MDa+HK6CLb2S5N1eCdp75rzmsM2BIVKZcIZ+wEww+wgmNdemZ+NJ8DQG52rsqjV0kl55d1Ob9nHYJTvyoyIp8NP2b4x7eDPc/In2huVj9zFjPjSL5HmxcAeLW4Wbk1z6ubfjRgU60TqanFmykRaGaG9OufccF4x/g8PdqivrbxChAaLNumP5H2cPif22qGv0ULoVxk3LzqeoXFyOYHjg0oEXm1xhTg9wz/ha4zNhzowxnmUIHl/9Ov7vNP/u/r/OlX99j2Ttplacm9bHaeaZ82lkasWO3OLsinSwrB5mqTq7lrAD209jAPrz5KJ5pk10JaQmD4K0l/MTYIqyTS8STgdwkacumxob4HI6uyXRlB9vQAcYwIxsDw7+6XLl/8gKQEY43Ps3b/PZb0u8/clk3uTdz96nJxw419BFn/Eqez1pY//qbb+Nvvh8218fdjtR4DfuIKDMNihl8KUalqLo4uH/jeokwrNVW9Lnqlz/nkNKvaM/S6P7HAro+N3HtmgcS6SKtzcThy8+N1X4AAroO8OWZS0i+lqGI7syPeG5pLRvNNV16Ge6g/V/EL5kMeY82GqpoMdVm/XMKpvzAF+z13bFeaZgEzK2DJEZbg1n/pWkYsYzI9ojAFpSnY2XGf79S6BARDU2f4faNaSh70gP/KtYwvfKPHYKRZ6Sje+cQqmc4qEuH0prsWr233yUw2YeQaqnLoX2DYFyrM8V+5NuL3P73N86+MEAJ+6Hs2efSBo8XwTVc9MWI0csqHecZ91lpSPSKSB98nY9mYqw567vIuz7yygxDw8e+5fy7YGpQDotgD/mmG3k76mgyzkjwrQBmkJxskAmMtcWTYHWQzTG1auDn35DUw/KHWugnr3fnjOotKSrH0fHixRCRfvYQQrLRjbu6O2B8e3AArteH69hAhBe1GRFEebf5/lJaoaLn1a5iLL8s7ywivNHYu4SalONAA+G7d2XWsK/s3fuM3+OQnP8kv//Iv89BDDx36+ieffJL//r//74/zVnfrdShjHQ4OpniRUFBz6m948D89wx/YknbU9FFxAfCPZ6ozkx06L1+VtYh8xI712fOq6/fPEi3bGTYuCgqgXHMLaDkl6YfDJf31etept/Po2iNYLJ+68f9Q7F1EDm8tvXDCwtd3vgbAu0+/w4Hwmf3WWGORUqG8q/M04F/1gLy/wLSvLA1xFNGIVY3hb1SfVdUi+UIFSX9Ul/SHGf5kfIffL3YBONkeA36JRWLRwVhPdTgTbWKB57PFIOFW6ba1KVdnJH7WlI4VX8D0ufaCmNsxr5pM+oiDz7Wt92qNipt6n6NEM2Qmq8BAU7VQLDaaDIA/tQXmAMYtyEGnFSGBFTrTOU3sUxj2pgzpFtV3PdblLQ+3iSNBf6j58jN9/vlTN/jnv3edp7/umjFKTo50hErLFCv10oxFI5Zcy9258ODKgzO/N9YQC9/88AziOJbPYj3AqiT9tYWTtW5+3/cYD63SlFU8XVe1WVGONdvXw8ON6eZUYPh39ktnbFYOZti+0pT0ix43RtfYH7n3jiKvSrB2DPhVk/OJi6e87OP5OkcA/F992bI3gFZiec9Dk7GdhcmquLqVqdveIqd+gPv8qMXF7Nri/HqrnQnqXMB/zW/nLA3hmjra6gnQHUeC1a4ijgTnz84BBMZA/xad2B3XQeriKesAKTSDgjIpFgrpr0NRZggBLT92lh7x3nCUaL7xLo/NxgJYCg7XQo5n7RfVPFm/FOrQcQJjNfs9t+2Nzvz3sFItHbV4wX8fl6+lSBtRWk2qR2gM2wHwr7nn6QTgN4HhF5xoGzotSaktX33WPZff/441GnHkTevc31UM/86I0paoOQq4ZRn+4NR/czvnhYsjpIQf/r7N8YjLa6zKuM83n+aNkJW2pLDF+Jm6oBKZzKiDilLzu5+9CMAH3nqGM5uzTYrCOK+DRhJi+aYYfskEO94fFGANJWX1TBEIDIZIWdJcM5iaac9yXamoXmtVSqwj1FHA5FEi/0IlsUJKwbWtwYHS/q29lN4wZ6UVuwQEM25AH1bGWkZZQbx0OoGfi7/DZPJlaeZyMJESjIo7z3Pgbi1XRwb8o9GI/+K/+C/49V//9ddjf+7WG1GeNQWHsyKhKqd+UeTVfPQMwx8k/VHLO/SbCqg1GUv6zbLyJFOALdj1C4b1aCXs3txZ6Hkl0z7CWqxUlN1N/xmmGH5jsUeQTAkh+OH7PkJXrTLUQ/5o/0uI/hZq/wpytO32+4AamH2uj64jELzr1Nvnv8gat3j2D0ajLSqfnNNetx7w2/kz/IU2NGJJpCT9wjPNUdMZIWJRQdIfjxfW9Rn+YM4opJf0R3XA72fuW3XAbxCOu6p+Flj+59PLCxenFeCni5qeudNjMDnvr63B/c2c0yGwQsURZbv1jffM+Jjf0j1YKnXAVZArt0SCInbzhAtO23bUrD5nNjWPP10r8VrFgocK8tq1pMtmcx1gacAfKcH3v2eDn//z5/hz37vJA+ebSAnbeyVf/Zb/DE01s9Ab6RG/d+Nf8Inrv7v0DOOr/WukekQsElbUKcrSkuYlvWHOXj9jMCppeMAfPlNQluSFdfFS1lS55vUmhPEpCFIIEPbQfQrfT4yiIWJWPeDfM8NjRfOtdiOkdKqIbCQpTEGqRxW7t51tcWV4iaujV+mXfWzhrrvg0G9MUTHvbdngXHzSKQXMiD3dr+b4B4dE8/VHlqefd6/5nsctjchQn3FIfXMoFhENfw8IW0xG+wubn+fik0QohjZjO7s59zVCl26sZwqg7ZZ99vQAieDe+BSoBm0/R1+P5hNC8OMfOcXPfPT0/BhIo0EXVfOjKCxaS0o7jtUKbJsMgL+2jAkxpG3vKXNUhn8s6bd+rnhxNF+oiUSJeKxGiZQgEnL5aL4p477SlgvVBSGqcG/fHYvNBYAfqdwIxhIqhVObCY1EkBe2cuQflAO0KdmqAL9jklM7XhtUkn4kQljuPzs+N86dTnjwXndiRyJm6BUfAfBv7+dIO9/HoT9YDvB32qoaR1IKPvrBEzxw/vaAfRhH8/WHzrhv3piIU0KUKBGRF4Z/9fs3+cyXdmfm6p15nqRf87b4o69cZbefs9pJ+IF33jN3H3KTUZqSTtNdU9MMvxRUjH2pHYMfR87nQYbRPSFwDyjXsu8NJxtBg1H+mub3X2spKSaupYNqVCwf+Vevw6T9w7Tgxu6IdjOqGgpCjI1CD6uy9A79S3gLwHguftlRhjeqtDZzGz+RkmS5PpqK927dMXXkq7vVaqGUotk8uuPp3bozyngpuBGWSCgioZyDO0CZkSwC/F6O1/agsgI3QlE/G5Y1URO6wJQFe3pS0o9gFhguqDC/r5sr2MSnDeRTAFkcjeEHaMcNvufER1BIXtU7XI80IJH9W6i9V5Hp3txFlLWWy+krANy3ci/dZMH8YJgXl8oBfmYZ/jXjZcA2n7voLLWl1XAP88t9N3d7rnMWa42TP/vFvohrDH8l6U9nGf6aGjG4wJ+YAPzWT0GPHwQPNM4Ri4ieGXKt2JrZx9wU7Hpn8pOihZwCWlYXCCW9ceHsQ8RYFrLmjdfI8Atj3LiEr5u6dyQgWDn0iwbaHOxIHElBwwOg0TE8B4Jp32qjW41Z7C0RzTexD5HgoQstPvrBE/z8nz/Hh96zzj2n3T7dO4dtvZlep7AFW9ktLvWuLPUe3959AYCH1h4gURFpoZFCsL7S4J6TXe47s8L9J93+h4VzNcOfWw9kdLXwm8jNtm6BpKRESHGokqjvj09XthBCsBYY/mNG80kpWOsGcOYW//vFPq+OrnB5cIlbHiR3oxW68QpF7j5XkPOnxdihvyUaREJxNnbmXJfzG3Qa3tn+EIz6mWctpYazG/DYPQIwE4qFcK7U5/fz5hrGM+Fx1p+3WSKhKtXBpcHL89/clI6Fn2Iyg3Hn2fgkiYyxIqLrGzvTc/zdtqoSD2a3X4DOSZQm8g3ILPMA1zc1KlAQvEfs+BwRRQbW0vGxnUdm+Btj0z6/xUNHZwL7JyUudQXAukauVILD1vKVU//+JOA31ixsNoTjsbfv3nujs+BakJFPVTj8fJdScN6PWVy+mhHLhNxkDIaaUWYQAk6sWoZMNrz3dd0bxHL/mQAw4XvfNfaWSGTiZf0O3DZiiTEwGkwBev+s7i3J8AsheMvDHbptxY/9wMljufEfVPVovkhE5HOM+0pbVMkqV65nXN/K+dq3B/zR07szz7WGajDSQ3KTc2NnxGe+7q6dH33/hWokZLrCM65ZMfyT36cQopqtHqYlaa6JI4OdNhG0FmNKmg3F/qCoZtNLbRhm+k0H/KU2h+a8G+sY92VBdb0qaf/erLTfWMuNnRFlaWg1xvenOJKMlnT4z0tDuaSZYCh7B0bzFXq+P4IKaQp35/i/I+tYV/dHP/pRnnrqqSM5V96tO6cMLmLNoFFIJ58PoLDMKqn0Ioa/FTUdw+9LCIm0ppKuL8uqCJ2xb0ZYLLGI6MimX8LbueZn80qOnCTZtFcwHvALaxC1uVUsRwb8UgpOJBvc17gX8MZ0UQPbXAEssn8dtXcFmU0yZsYYrqQvAfC2E48v3L41plJISCnAmArwl7FjJ9raVKB8etEcrr1GrLDWVoDswso9YAxGjCX9RDUwN+HSHxh+74as3OfIdUbqgfCJ5tiXQ3gvfVMD/JFQPOgduZ+bI+u/5RsHHdmiZeQM4EfnSBkhhZjbNbbWEi2Q7jU9i5fb4wF+a7Qfl3DVsynpITnJ9Ro79Ded3PyAh7yQkqbwTv0HzH7Pq9KUFJ5RW4nHDH/viIC/Xo1E8sTDHX78I6f4T/7iPXzovbP+K1vZrerfv3LrG4du01rLt3cc4H/bqUe5cGaV+890ue/sCmfW26x1ElpJxGrDje6EcyzM8GfeS8BgSPNi4ndu+17SLx1LdtjCsFe4e8OKn91fkR7wHzOaD2pz/HsFDdmkX/ZIdUpLtViN12ioZgVwhqlPP2gEh35v8CjHZnX3Bll/cZNOzal/UV3Zsjx/1bXcvv9t0jXLjJ3wnghjAy0xdugvoiZZcxVYPMcPcF/i3fpH8404HXCcPe6VnN/7ACCg65Mp+uX8BsPc8gy/sIZOaJSMLNaaCmQF2a8NyiQ7vj8I65ofgeFPD5mDn676DD9waDQfUKlR4sidl25HvLFoJA9VvK2vBm+I8TPLRfPpheMEBtfU3fWAfyHDL5RrTC/Z4Lpwzh23S1dTYhmT65xbnu3fXItJhKki+Vr+flbYssb4Cy6cljz5eJfvf886J9bHXeRgSJqZFCEEJ9bdemFvr3Y+WY3qXUX1rjHwxnLd9uHL1Pc9ucb/6+ce4N6zt5+I6tSj+WSEtuXMHH+q0+q736spNb790pA//Pwk6I9ETGFKRuWQ3/nsKxhrefzCOo/fN98Dy1rr5vdlXAHR0VSUm5SC0t8P+8PCP6FLNBrJuIlgpUTrgmaiSHPNMHWfIys0eaknG6xvcCkvnz/MBb4sDaVeLpJvXiWxU7Nd3x5OmPHt9jJ2ehkrnUkfhjiSpIVeyp2+KI0jKY6wb1KKI3kEvN5lrcWYRZJ+idZ33gjC3VqujnV1f/zjH2d7e5tf+IVf4F//63/NF77wBb7xjW/M/HO37tAyIJV0zvBCoYRCeNm3KOoM/+RDLTD8rajlIvkCyyMk6MLJyZmd/V9UohixY92CdE05h35jLQq5dJxLxfC3VkDFWJ8zPxHNB0u59E/sG4IokjygzgHwcnaVwpSAgKiJbayAKZH9m4gaY7uVbdHTeyiheGz94cVvEPLfceyvsiXSs3S5X5grU1b54UGyH0ob54Abx4qdbI9+MUAJyT2ds2BKLCDnMfwTkv7A8AdJv1sw7Pn5/bbq0Kg1CwTuITCNyx9tOFn/K9lVsqlzJsj5T0XrgEXWfm8xoAtkpNypNOcrskyOd/TKIfuFA+WvdYZ/ZAa4QEBRHeebxc7Sfx+ATFc2gYMdgxXjqLCjNBVgbNgXiYhEJWz4JkyvXC6a77BadK3t5GPFxrd2nictD27k3RzdYi/fJxKKh9YfoNuKaCTRTK5zJ3bHurROBpt4kJXnzrDPWFMtaJOkzgRbl4Qg3Tlx2CU98LLZrh+PCJL+vkkx5eKoy4OqPscfyYi1eJ1O1Jk7g5z6OdvA8I+81L6eQhGM+24U2zSaYW59QSKHsXzqG+5Dv+1+wclVgXNi12O1kTWM/PUwwfCrBmnDpSMscuoP+yMQ7Jb71VhPvYROsVPs/tCk3PTX+X3JGd8OEP66GH8Py5TQuWuE6rwy+BulFu0l7DCW9CPd8UqmDpcoMjrBM+OIgL/u0g+uoemMaBefbMGwL4qosaluJCCJ1Uw++nSFGf69fjnTxFqkLjBWk2a6aiotZPh9TTTAD6gLHjDf3CnIM9dYCHL+kxsxWM3QGyiuqDYdHx27X2tiSqv5wDvXeOKhWXWbEop+4WT962vuWG3v1fbNaESZYUe9KgZwTd9CjrYRxeDA0YTbMXs+r4Kkf+Al/drqCe8Oay2ZTivflaDUOHsyQQgH+v+oBvqFECgZ8aXnbnLxep84kvzI+y8sfP/C5BQmJxYxLc/wp9lkVJwUToYd5PyNxO1nMGgev05SmtyNFgjYG7i1WpZrN1Z4FFf921yBPT7seimOEMm3qFbbMb1hzo0d92zNC82N3RFxJGe2GytJWZql5vizojwyqIqUIJsTk/hmlbF2obJSSoG2dxn+79RaoKs7uH7+53+++venn3565vfB+ONuFN+dWcYzZbrGyhNy2sucpnTS+mngHhj+dtyCdFA5vyMl1miaqgnsky3DuHrp5u6UYZ/V1rmdL8iyHemMTJesxm2kEGOGv+VAsombKN1H5immveb/SmCPEcOVKMlJ22JVttk3Q17Or1Yz6yAgbkPWQ5Ql1jeFXx68CMDDaw9MgOXZz68JTJlSgsQzcVrFFcOvdE630WJH9+jpPudqf16UliRyDNKzO47dP9c5SyQj73ROTdJfA+2NcSxfHEBKYPiFe32Qiq9PR+gZg5RyRixxMlpjXXXZ1X1eyl7lidb91e8CEDgZr0MhJ5lVrbFaI1SMRKOxc29I9QdPWUN5TT/DPx0fuWz1cw8IZYvT8Sa9bMitYpd7rIEF51+9KoZftUAIogMWnEKJGsN/NEl/BRSjjmPGPMPfv02Af1Fte8Afy5jCFHxj+1t89+l3LHx9YPcfWLuPRM26VVtdYIsMVYxQSDSGkR7R8Od7VjjW0pn2uQVQoy4xtcItVKWLPzxsjrDvGfVg1teWDSIUJZq+HtKxGsTRHoGB4d/ZPxxAjQLDHxzn5wD+VdVhVXbYNwOyxjZwei7Dn5eWzz5r2elDM4H3PTZ5rgnjrnmsYWTHgD/yM+1l1EC0urD7Mslwd+E+N2TMWbXOVb3DpeFF3rZW8yCxFsp8xrDvUn4DgJPROm3VRBuLQrAadyA/IsNf5oBAGE275Y71KA2NIHefKjyjbkQJFpKp80CWGe3I3ec0hsIU3ujy8GpMMfyRjEn1iMLkNNR89jgoDqJIjJ9bVrgEFSUP7St12wopXfBNf6hZ9WMjArEwAs5Yw17PHY9OE5JosY+lFQpxSLMuVLulOLEes7VbcPlaxr33xmzvuPvVqc0ETK9i+NuyiRLOg2JfDzgTb2KFPHAsysn6Rwz0gJUVt8chMQRcHC3W0rdt1+wVlnZcIAe3AIFVCaZ7EhsfP2rvqFWX9INr09dVH4V1SQaRfx4Fhv9tj3Z466MdPvlZFxMI8KH3uhEHW8R87itOQfUD77yHtQMc7TOTUdqStuzQbLhzTXsmPI7GkbnGQm9YkOaa9W7CqF9gERONECkUpd/3ZqLoDQuKUjPMCsQxGfPbVVIKtDFLMfz6CJF880oIQbcdc2M3ZbeXcXN3xGBUsLk6+z0o5Yz18tJwWOZDmumlyapq+967wFi7cHzxjSxjPEZY8DkEy6cp3K07q44F+O867n9nl7UWpQTGGhohsiVuoAmA3zP8tSgkY00VjdRSDTB744WfkGAK93OWA2BC5whdzhj2lVgiIRbKtTJd0FFN9ooBa3FnkuEHbNKCtD9p3Celc5Y+YkXCIIzh0cZ5vjB6jufSSzXA78pK6Rn+Nay1XBwGOf8TB27buWC7zyiFoGHGcn7j/RSkLugGhn9q0Vxqw2rbGcFd6gc5v4tsQ7s5+8Dw1yX9FcOfZ0Re6ifCDL8sweqK4d9oTEoMrdEoyVwjokebF/j84Bmeyy5VgN9ay02/rVNqHXSEKEfe9k9USQ9SKqSUCx/01ULEGNpbVxitO9lwsxohOZ48u1cGBrjNqWidF7LL3NR7ftTiCIBfthFMKhGSGy+hetuMHnq3G9sQYwnsUI+Wfg/3erdY7MYdrC5Yj925ntuMTGcumeE217Ac+saE4L2nv5tPX/ssX735Dd596smFTNq3d12z67H1RwB3vphsgElTbD7A5mmV4d6WCT2Tkuoha97nwhgwxmWuZxXDX5P0CzcXHNQ36SGsSIhc7HpJvxCCFdVmR/fYLwd0jcbOYeYPqvUaw3+Yo/UoC5J+78UxB/ADnE9OsZ8O2ItuAqcnZviNsTxzyfL55ywjf5p/zxOCxnSiQujCWcPI1Bl+1xQqoybRivNOiA8A/AD3Jae4Otrh0uDlKcBfun+mjtnFbFLOb41r2q7JDgxgUC7J8FuN0JnLYtRlJekfjlwzo5L0+wgrKwqw0Ji6bYgio9VYdTFkOPZ1WcA/T9KvrSY/EPCHRInaRxHBYJJDvSakFKytROzslezulxXgP2icoA74N7sCexBQkBGU2dL3nAvnGmztFly6lvLI/Rvs7O4CcGpDuaSJ2vnVIOZqsUUvMPxCHDg+EImYkR0xKPqs+H78Vg3wh2dCPxWApdMUiLiFpQUYyEfI/hZ6NYZ56TevQwXAP0wNWluUiCaM+wpTUFpNUwR/D/d51ldiTmzEYOGTn3OgXwj4/ves84WvDchyy4n1hPe/9fSB7z/So2pcII5cI8la59RfAX4pKEvL/iB3zyIpXINsuhmGY/ittTQSxXYvozcsGIzKN1XOD16hYUWVeLGojpJzf1A1YkVRFly+0ePmbspKOz7gfi7I8oNJI2Mto7w8svJAKUlROuM+GR3sV/FGlDEWYxY3H4TgjhpBuFvL17EA/0//9E/f7v24W29guc65S1SPggS+5tKfqMCcjh/E9UzgloqwxiDCA1dIwNCKwkzfEoC/dIuCHW/oFgz7rAbVWOx2boHVuIMQkr1iwAkP+OsMP0xF8yGOFcOlhHPSf7h1L18cPc+Ncofdss96PVe8WkxpbqQ3GJkhsUh4aO3+xRsGNxLh5XNKShI/FqDjFsazo7LM6Sr3ufpTc9/GUEX0VPP73fN+camxwikEYFLSX83wlzVJv5+FbUiN0AV7+S4AG8n65D7rAqUUdo7k7uHGeb4weJatco/tcp/NaJWBGZHaDIFgPVrFltrln5cFRAlWa/e9SEkkBcUC0jQ8AtvPfIqTl77BrYfeBY99Dy0132ti2epVDHCbU7H7rLfKfazRiCWAYOXSL1vIqUi+7tf/AJmPyE7eh1k7hRTCNcQKHANr9dKAP5iwdeI2ZrhLJCSdqMOgHLBf7HJKnTnKx16qgpx/JVrlyZNv43PXP8+N0S2uD29ytjO7QN3N9rg5uoVA8Mj6g1ijyW5eQ+/sYrR25mFR4s4/AW2R0CNlpEecbIwXsboQlM2yckWeXISOWZ1YSYYHUKfWWvr+3hLGNcAx6ju6x74Zco8tgaM1S9a6EUI49/jByBxoKDZKfWRjAK7he5wC/Pcmp3kmfZlb9iZgGeVO2nrxJnz2WcOuv/TX2vCBJyQPnZ2+OY5BlrC2Avxt2axm+MuogVp1BoHNdI+y1EQLFpf3Nc7yudG3uZndYKRHVWKE0M78zdYaiLkpuOrNOgPg196DZSNxiG5Q9peL+zLa3dhUA4qCdsubGI40oCpZfWD4Nf6+NdUoFGWOlIqGSBjZjEyndH2T7LCaZvjBNZgynbGyoGcQTASjWspJ8EOXSiKFOPTzrwfA3yu4z1vgKhFR2AJjzYzizRn2eTl/lyotZ25J5ZRVplwKJF842+TLz/S5fC2jN9BkuUVK2FxV0LcVw9+RY7+K/ZA8IqR7H2vn7lNwqc9NxuZaAowYpoZRqp0Sxl/TPf/4Xpkw25eQtBFZDzW8he6emTGPfD2q1ZBI6U7NYapJmmPjPiVUNc8vhCDN3PECWFtx+/bI/e7+88nP7fDsi0MGQ82la+4a/Z53dw5kdbXVjMohsVcPCCFoJII0s4yyktXO+OfGGAZpQdN7hpQ6n/kOhI+aNLZEyRglBDv9jKwwldfIm1kWiz5kVisvzYGn+1FqpZOwP8ixWJJ48TM/UoJRdrCqqygMRWmrBu+yFUlBqjVFaTlgF96wMl5ls+i8vNNGEO7W8vXmtvTu1ptWwv9vMIWrAH+Z01Y1ht8/gIOcPxEJkcCxBWHeyz8NW3LM8B9m6Ch0Sgn0phz6jbULnWJLq4mEpBs1Od86wYpsIFO3Gg4Mf2Xcl4878EJ4veQRS9kSYS0t2a7MtZ7PpsysVIwwBaLMeXHgJM0Prjw4k6NeL2sNFKMxqBSQ+KzkMmmjA+DXBSt+RrJfi3LTxrgxgEixl+2zn/eQQnK+e859X9ZixXiGf14sn7CWJEzbBoY/coB/37PymzXDPgCMRqr5i4KmbHDBL/ifS90xCnL+TbWCshKUQtoSG+ZJa0xQJOWMRNviz1MpkINdWpe/6fZzuF+9J0B2TAO2wACvyjYbagWFJKdcygyvV+yTmQwBdEQHqcYSOFHmVcPJeDZVSlFdH6nJEUfwlBh4Zngl7jqGPBuwEaL5/Hd1uysY9m3EJ+jELR7bcH4Ui8z7gpz/vpXzzsvDlJCniKSJaK8hmh3H3Po1RFADpXrkZ529zVQhnLFXHgD/LIgCt+g4yLQvNzmFNzwLDD+M5/j3zWgp5/LpUqrm1H+IrD8w/O2GM04L2eXTDP+ZeBOFZGRTVNudk//i04bf+4ID+80EPvhWwc9+SPLgnN6OFXL8Waypov/qM/wmamI7a1ghUKZAD3oLeedO1OGkH+u6PLxY/VyYwuvGx/fnK8VNDIZV1WEtjGUZ51a/7s0ZC1su1ZQTxpn1oRKwmnbTmx/6/PMwk1x4hl97t/jmFOCXRYaSgqZw99H0kBjMejV8UkKWm+oZFsmYkZ4f4wVjtiv2gN96sOtmtSXqAPVSqI3KuG/Kqd+Uc4376pF8G13LS/lNfnf3M/TnjQtJBaZ0398SdeZkQhwJ0szwzAvu3rO5FuOIS1Nj+JusBiPMiuGXfs2w+PMmMqFf9ukkDVa77nmyvRcaVm7Ure8f393WbHPLNrqItIcabh/ZjPc4JYSgU5vjj6aM+0Z6VDVkwvfXbSui2jrmkfvbfPh9GwhBBfYff6jF2oaZIFOmKzc5ucknFCoNn2oyrIEuKb2XQK6raMjSZDONIikV1mqMJ0CaDcUo0xRaHyvm7naXEBw6Hz7KjhfJN6+kEJxab7F+wEgFOOO+YaYPfuaUmlIfPT3AjQwcblb4RpWxFn1Ag1JJZ2J4N5rvO6+O3U/KsoynnnqKb37zm/R6vRknWiEE/91/99+95h28W69PWWlRogb4PWsjyrzKN89tcGQW1UMpUY0JZjY3BZFwrFeQWBc2P5jR8LOge6SVQ3/bgyELC13ZS6OJRUQiY2dQZ2OX2y0VJm4iYBzNV5f0C4HjneyRpGASXeWkPtK4wKX8Bs+nV3h3+/Hag1SCNZhyxMWBk/M/svbowRsuM6wuEcmYvmjomqRf1ST9HqzUAX/pc17jWPD8tmP3z7RPkagYa9yi2LDAtE9FECVQ5jTCDTvM8Eegy2E1PrA5JelHl36MY/6N/tHmBV7Jr/FidoX3dJ7glgejJ+N1twgOD2mdAx2X9OB/JJWY2arxhkNKQue5P3XznbgZXWst7Sicp8cE/H6R2lVtpJCciNa4Ue5wK7vJasux2MYY+qOClXYycT5f8kDojFpDighVm5UMvhIAIuu7K0iI6hwfmuxIC9WQV99NulC6hslmssZlrrCb7cFy5OWRaiffBmAjOYFUgnecfBvPbH+bb25/ix+894PEUzP6IY7vUd8YsFq7sRXZmHu6tL08euQ/WxK7fN+iBG3Lai46MPzhfhKOsZIHz0YHf4OWSIiEotRu7nP1NUbzAWysRez2Snb2Su49u/h1YYa/2ZRgaoB/ShoeCcW5+CSXixs0TtxkOFzh1j4oCU8+KHjXQwIVGT7b/xqv5Nf5kbUPsBmtjjcgpZPawyzgD94gSRMZRej2GtFgl9Wyz16+UsV8TZbkvmiTW3mPS4OXeXTFp434cYx6XfRxfPclZ6rvJkRUNuKYJjEpBYOyd+joiQi+JlIisHT8y4cjjRSS3OSUWldmjWXF8E82c0WRgfANQdOfm5u+qALDb4z3SYkFkYgoTU5hCxIxy5BXkn7fnLK42FspXGPKyasPft8wKrJbc3iXQlJaPRMBBy5ffb/nDsRm2/Cl/ArX9S7fHL3E+7pvnXq1AMuE18xB5eL5Grx8JeWbz7t75KnN2KXfmLGk/95rzyFXXUJLiOYTwp+LxsCC5nCiGgghiWXM5lrMfl+zvVtw/kzDDQ8j6Pu+RXfuFIXEJh3EaBepEkxzbd6Lbmt124reQNMfas6KRmXcF6ILIzH5/c2LnXz0Afcs/4M/3aHVkLz/yXVy22NUDr3/0WzlOqvi/kK5c9QwSMfPPSlcpJ0MqT84hl9MA36cWbPx975GrOiPMqQQBypQ3qhSSlapF/MqRPLdTnPBZT53rCTDtCQr9ERkX72K0rjr7FjH8c4B/NpYZ/a4YB0eKUFemDtmBOFuLV/HAvxXrlzhF37hF7hy5Qqrq6v0ej3W1tbo9XpordnY2KDdPsze4m69qWUNSshxFnuQwpc5Tb+Y17gcYCWSiuFvqqaXxzsgvJsP6MYtWhZaIkisM+fyufDNnVR+17jF/oZaqd0kFzvFFrakq9oo/xCL0z4ZYFor7JVD1uIOxhuAyRrDH0wF3Qzj8jco6R+YxlguJKdpioTUZlzOb3JfY0y1WSF5dXiZ3OQ0ZYt7O/ccuF1benllzfwqDtLbmqRf6bySI2e2cE69MqEoNavtBkrISs5/38q9fuPGMfwIZOkl/dPmgUkbypzEL5SFd+mPE0Uv3fJNmKRyU3ebdU7gzlth/ur1nvgUbdlkaFIu5Tcqhv9UtOHGSACpImw+gvaGG4UQY9OhmeNkLEJCvH+LxrXnq5+rIsdga7F8xXKS4akKTZQQ23YqWneAP7/FQ/41aa6JlGKUlbSb49XypeErANyvTmANRDUZnxqOZ5ZlNiAs1zuROzdHtjjQbXq6hhXD3/aL6YITiUP5t8upf7q2csfwbyYnkAjuW7mXtWSVvXyfb+08z3edfEv12n4x4Er/KgCPrvsjZ3yDLWj1pyq4qIeIwkYi6Q00ReHYyzCnPQmixmMTUh68QO0Hh345aQi4GtUZ/uUYz+naWI15ifRA4z5jbCULbzUk6IxBTWo/bdB0b3KKy8UN4o2bcOkhHj8veN9jgm5LMDQpv7/3hep6ejG7Mgn48R4l1mBNQRq8VmSDyCuHbNx0pljdDaLBLmt2wLaxlMa4WNapuj86wRfzV7g6erW674gyw9buWdoaLnvDvhDnB75pq6RjRmWT1BT0yz6bjZMHH1hdAN6owY4B/yA1CCvQtpyIIwvMd3Ma8PvP3FIJlJAdYpIZpNngFrNKgjaO5U9iSSQiUjuiMAWJnAX841i+0JwC6RuAUgiS2PtNLMhYByfph0mGXwrpJc4lTP3pMM8Zjtw1stExpCP3nb+Yvcp7Ok/MMLtWKUTRh+bqwfJ/XxfONXn5SlqpKU5tJNWzZeiTde7Zukhrfw9xT0SJZmQz2iKuYiIP6nEExnpzPeblKylbwanff6d9/9kmJf21khFWJcjhlkvmUd0FL7w9VRn3jYJxnzNULI1LGmn4Zm4w7FufA/jBgf6goGg2JFY7tcNasj7XqHhQDqpmQig3ylcyrEnMXTMU2i33WmstpclRUyeOO6cM2o7HELqt6I4wiwNnYBdSL+ZVWTofhTfab0ApF3uYl4bWgr5lVuhjN00EB3/uN7LmjWzWSylBmRmKcmwa+Z1axlpu7AxZ6zQWNnL+LNWxrppf/dVfpd/v85u/+Zv83u/9HtZafu3Xfo0vfelL/Ff/1X9Fs9nk13/912/3vt6t21Bh7a2FJRKKyD9kqlg+XdCMxouawkc8BYbfAX7H/IfOs/F58k0vUc/twZJ+oUtEDfCvBymodTe+RW6xpTG0awsu6+XSUecEbW/kZ6p4wfoiz8sMjyCjthg3Ax9FfnEuebjpQPVz07J+GfPiyDG+9zQeID5E0mWzwYzxlfJRc2UyyfDHMqLhGykBxBhNxcyN5/d9k8FapzjAjh3x40n2IMj6q4WyZ/iTJGLXA8iVaA1ZBwLGON8Gv98WWL/+LKcuPl2dVFIIHmm4Y/St9BW2SieNPxmt+5gXiVTO88BaA2WJ8ABCOHeryePkVs6svvA5AIqmO09UmWGspeXPU4NdmFe9qAqdVdnRoaly0s/x38zH+fNFaeg0Y4pyLPFN9YibqWc245MYayfkm3WGX6VjZUbXg9wSTVkunywQXP1X4xbWuCjDTe9SPS867bVWprPKn+B004E0IQRPnnwbMCvrf96b9Z1rn2HVNyIO88zoeBf1tMbwAw7wG01R2ImfWxPuDe7vD8tg7hf+PPbz59Z9iKq5M7ApuszmNiMOq/U1b9y3t/icS72cXwhoNiS5SdFe5twSTfYHOUVtgXfex/MVzV3+ox/S/OA7JN2WYKvc49/u/gk3y92KXL9WbE28V/BQwZqKzRYIGsSVpN/6dA7dcaqdVrrLSjt28V5z9n9VrbCqOhgMr46uuAaVLiYapteKLQpb0hQNH7sZaswOhZGkwRJO/aLMJnwtOok7XmVp0dqx3an3flGSamSj6ccZbBhU88kE7TA2YhYz/FdHV/gnL/8Gz+x93f2tEDNz/EIILJZ8QfxnPuU34e4T44ZUIzo8mi8wwmlmqjhH3Fbm3tu29rxapClpxFT3stRmlafCRKmGO75L+p1cODuJak5uxoChsDmlb1auloZmMaqMZff1wEv6zdINzRPr7tkWnPqFKbFC0lso6a9V1HBrkP6WT3d4/SpI+vveqV8JxUiPyG1BaUukvy4qhn91MXhY7UZVcodLLUgrQqVehSnIzKzhZDCWHE7NlG+uNis5v/ZRnXKqmSekBCy2pm5qJhHJAc2oN7KUFC7LfsH1UmrjmpSvIZLvOCW8D0dxQDTfMCsnfDyOUlKJCd+QN7OMZRGnAzh1nTFQHGKu+J1Q2/spN7ZHpIcYMv5ZqWNdNZ/97Gf5uZ/7OZ588smJG0qSJPyn/+l/ygc+8IG7cv47tKxx7IMVhkTWXEk9CyzL3DH/vjMcFjl1ht9Jsd3MdTV7LSQt/9BzM/wH7YST/O3oSYd+bZ0kbZGkHxjHCDKej446G9zbOklbNRn4B8EEwy+EX4Qc4Yaq/QMziqo+waMezF7Ob1TyXIBcwKXiJgAXWg/OPGTrZY3GFiliShKt/Mx3GU3O8ANVnnW/3K9AcBIrenmfncwBvnsD4PegwgqBKIJp3+TiLUTzNcLcr9JICVEcsRec66PVya6/d08WUrqxCGM5/fKfcuLVr9Hq36he9ohvilwtttAYYhGxpjpeqStARdiygCLFmqJSOaj6gHbtk6zuXyXZuowVkpuPvse9tsi9CkFVIxr5EaPuwpx+Q8QkfkEVQMtOsUdpSorSsftr3YR2I6oeCpeHl7BYNtUqHdXG+mSJUKoG+KNsbLbYjOKKcRktOVdsra1YcMfwG5ARG77x1S/3D8wIP06FOL626tJpjCm2t598CwLB5f6rbKc71c/D/P6jGw9VP7O6OHB8Zszwu+8t8XOpReEWEuH+kfgFlGu6UWVKKyn8uPD8G01QPnTVOL5LCUFsncTfAj3dO5LSIlSYt97ZLxa+fyXnbzime1Q4wJuIGIlESkl9vbSi2qypLhbLDu74v5Jd5Xd3P8PApKypDh9bfR8AW+XehKEqUrrZd6ur86opEyJTjMdgmu571F0H+KPBLqvthNiPUkyXUBH3Rc635Ivbn+dPb32G57NL7NhRdb5dzL07f+PMFLM1jqhc8aqW0IBZWL6hUE9NiJWtFB5p6mL5Rpm7p8WJxYQGir+PlSFy1IO/4BORHRBJ91zvW1gsl4fjJu48475IRAvjNLPCJ0rUGX4v6QfH/B80+wsQx7Jikadl/fP8D7b33c82ViOMNWS1RJ0XsiuzbyAj0OXkqNsB1e1EbHjQqqSb4cdaBv68S6ygYS2qGFVNNDfH7z/0kvekzVrMpTHWNQrFWNK/kOEPFbcROkUMbh17RGeZ6k5F8ykRUZicrExdI9Kf73v7BzP806WEM6Ocd27lJqMwBZGYXCs0GvMBf72MKdCmRE6LeIV7dptjmBi/ERUrSZprrm4NnER+qgpt0ea1RfIdtyIlJnwT6uUUXUef36+2LUUVRftmlzbmcBWQPdxr4U6vQVpwbWvIKC/Rd8g4xetdxzo70zTl/HkXAdbtdhFC0OuNZazvete7+MIXvnB79vBu3dYyhHu+oVHrHIuapB/hFqYwh+GPmm4GW0gMlkhEjk0WiqatAf4D9iHMau56cFk59Bs7YX5Wr9I4w764tiC0Qwc6RHudpko409xAB4Z/StIfmO+lSxdgNHEUV4u19WiFU9E6FsuL6XhRdbG4icawqlbYjE8cyD7aMnNsxAzgdwv1LG6OXfo9Qx9kyf2i52RUSpFEkkv9VwE3v98Isn0TGhuikrYyJemvGP4w4y81m10AwZ5XXaxG6xMm8tY4OWdwnabMkB4stfevVa9bVR3OxpvVf5+K1p2DsPWsrIqc3DtP3b4GhYl08LCOn6yxnL3yJQDSC28jW3Eu47LIMMbJ54L6IT/CnK47lp4Brjm4d2SLloixWLbzLfLC0G4qWg3FWrdBXjh/hCDnvy855Y0rBaL2oJc1Sb/Kxgs5JQRNPwOclpOpC4sqN3kFbLqq6ZouUYNVq5BIDKYy9btdFQD/mtpE1ZQLK0m3Sp/46i1noJiVGa/0LgPw2PrD442UeaXemFcdD8ZG/ntreHY0z20FoISoOZ87I4SaT6h086gLgFRQw6yoNsZa75juGgRr3misVw78vehotbbiPEvywlbAfrpGnqUdR/KFCMemi0WVYuZ2dG/sAPal/AZfGT7HJ3tfpERzT3yKj6+8n/c+/zQn8xILXC+2x38onGmqMKbyRGiL2vy+jFCRu07Kjrs2VX+bKJKsdRqUxs4eR6F4KDmFQNAve3yr/y3+ePQt/tXen/D/3XqKf7v7J7yUuftPcOeHoNIC4e/hq4lT5RzK8BuNsBotYKQzZ3qnSzqeCU1T992lPsojSsYHr+XvY2XTfa/h3h+8EhYx/MYaXh26c7c+GhMAVXBbBwf4c5PNnafPZhh+QIpqzayUWEZFv0DWr8imlAXGmkpdsr6qyKZScS5m1yr1Q72sVIhieQPDC+fc8TuxHrsRGmsY+vfqWn/fBtZ90sV+LUlm2etqtauIlEBr2O+XYDRZKQnYZ/4Mf72ciZ/M+9DfOpZiZ5nqTAH+SEaUtmRkRhW7b4xlf3A0wA+QqIR+2Ztp3GY6m2gmhGpUDP9igKhtibF6zpiAG8nTR1TEvVEVRZJuK+La9pCXr+3TH002NYpS35ZIvuPu2ygr55rVOcM+uxTgt9bONPHCyMCdMMd/mN8IAMLeMSMIx6miNFy9NaTUhiRW5HfAcX8j6liA/9y5c1y/7iStURRx5swZvvzlL1e/f/7552k0bn829N26DWXdXLSQYgI8BxZYls6ZPzQDwo0pMPwt1QRdIKTrTCtERWm05BjwHxitYkpKa+gFSb+PudMWlJBz56AKGwz7aoB/sOv2vb0OOFZLBpZn2rTPOkn6smWNm4mNIjXRvHi0eQFwsv7A7r3oGZUHGvd4V+YDHkiFlxFPyOV1tTgvVAPjperKM/yBQemXDvA3EkmkJJdrcXzVfnuXfmew5OcNF0j6E79QjuKSn3y/dxk2Xj4erVVsqj8gYA1SSoQcKxJgEvADPNq4UP37Sc+aB5BTba5MHatXY/ilEBMP09Wdi7QHt7Aqov/QuypDRmGNN/6jOk+nF8WH1VjyPQb8QghO+hjEm+kNSm3othIEgm4rppFE9LOUqyPvmxCdJNxC6z2qSYZ/vMAWUtAUHuguCdKHYcZdNrw2wEIUI4xmzUeN3W5Z/7Z36F+PN1FT12KQ9X/t1jfRRvPC3ssYa9hsbnCiten30DoVxwGAv+uZ39SkWDueycxLWykpXOa0Z/hxl/HYtM8bPS4C/B5gdmUHY9y5p4STIq5Uxn2DsdndESpSgtWO+2yL5vhDIyBId0e+ARHm95USMwvHIOt/IbvMl4bfBuAtzQf4cyvv5oEXP0Nn/xoP+wXwpGzb+2pYUzH8bn4/RPI1q4aU7qwD7v4o8hGdZky3GTHMStJcU2o/ey0lJ0SHnz73k3zw1Id5a+dRzqo1YhGhMdwsd8ltSSwizsUnqj0JKq1w3gSTxH45boLNK2Fcg/Xf73+R37j8u45JNgVtL6UepdZFlOUB8HvghST2zK5u+Tlu3+hsRyEJYj7gv5Fep/DM+KDsu1l5xpLpMJYBzqm/MMVctj2rTPs84Mc3PWoGk0ESfFBVxn1TTv2lLScaDcYadvfdf2+sSDK/T4mIWZFtSjQXs+uzbxAlUI6qe+dh9dZHOpzaiHn74/642nEk34oZ3xfWPYtcB/zLNteFEGz6EZmtXWdm2k/9KEQ8Tj4A1+T6dnpxznGU2LgNox3Il29oHKW6QdI/Gkv6tdWUpqxm7HsD7b0KRdUgWKYS2SDTGWmN5bfWuvn9KTk/jAH/QTFx2hSA9RL+egkkgvKY/iVvRCWxYmOlwWBU8uKr+9zYGVaky+2M5DtqxUqSl2au8iAvDaU2S6UHDPWQ7fTWxHkcSYlesO03ukp9+DGO1Hxl2HdCWT+3v9fPWO0kzjfiO/SzHLWOBfg/8IEP8IlPfKL675/+6Z/mN37jN/jbf/tv8yu/8iv843/8j/nIRz5y23bybt2+Mj4eV8DYsA+qOW+Bm+OvGH4zxfDLxAFnqTyzL/18rKKJ+xuDoTwg8kqUBbve+KchYloeBBl9UCRfSVMllWEfjGf4hZ9LjaUibjoQJPJ0ttt/BIbfls5BftoN/IHkHBGKPT3gZrnDyGRcLRxAekCecO7MBzH8+ez8fohwswhyNcXwWzt26i/6DoR687iLAfCvjAG/H3YeR/LBRCwfjCX9Lb8w1hjiyMmm9yvAvzrRkwhGjdIzV1FtYdXqXZ9gdO5vnCP2i6CQb2+pHRcvL61nNQsxJdG2hntedez+6IF3UiRNpErGIDJ3+96olChHY/h7ZWCAOxM/P1UD/HGkKiOXSEnWuwlXBlfQVtONumzIFgaJZOyMjLUTgF+VuQO/BIY/MNujpdiowNh24s74/JUu5m09dvt62wF/YPijTaYJi4fXHqATtRmWI17Ye7ly559g942ZMaWcriDp1xgKk1ZRU3luSHAAo27MZL2kPyxEpBQoAfPGCI01DMIYhGqhrUVJtz1tJp36j8PwA2wEKfKCOf4Jht8ahh6IO8APkRAzX/+ZeGOcmoLge7pv5/2dt3Lulc+zuu1UJQ+NHOCandMWCKsrxYRz6PdRn1Fj3JCKYrS/R6r+DkLAerfBydUmSawotWWQFgwyS1GUtEl4sPsw72s/zo903sl/tPlRfnr9B/hQ9518V+thPrzy7srwDsYqrXA9jBn+gxtcwmhKW1ajQFtm4AG/ZzNH7txPi2Aw6kG2iKrGqPYeH2GUqesB/6LYsyujSS+W0CSaJ+kPBnrFAYA/zE9Pn6uRkkghD80X35jj1O8k3w5YhjJWV4B/czUi9fvUlAkPN92z4MUFsn6hS+SS/iGr3Yif/uhpHr7PN0XtOJJvtXbhbWr3QffDmJIQR5LXb1Zz/CVg6Ofu+Nfl/NZa/mD/i3y6/zWu+PG56c/mkgiO9hxYtgKAH6XONA68v4Ipqgje3Z47D9dXoiOZtwUWPqSxgI8VNXm1DqtX1ZDK9cImkjHad55m11MSQWnvXMAP7v6xvuLMDS/d7HPpRo8s12RZeah/y+tVcSQpSl15dtSrKJwCcpnv3VhNQVkp9yAw/OaOYPi1Nhx2iCPlRhAOa2LeibXbz7mxO2Kl45RLSorqHv5nvY4F+P/aX/tr/NIv/RJ57h40v/RLv8RP/dRP8dRTT/GJT3yCH//xH+dv/s2/eVt39G7dnjLWIqwlkoqoviCXETbIq8u8mmueYfhl4ufspGNtAwssJLEYNxEWRiFZCzpn1zpguV5z6DewGPAbUzE2AFaX2NSBNukZfoBWw/27wFbmTf4HR5P0lykI5R4uYnxTS2TM/Y1zADyXXubl7FUscFKtsqIjIvRCx1urC2yeIaLJh7j0LHAZtxxW8j4FwlqE1ZWkv1f2SOKIdjNmWAzZSp2sdzy/D47pGzv0EyUz0TyB4W/l48VraUsGZoTGIBF0xWQMnTMy8E7pCGQ5ZiOk0TT7Y6O7SCg+tPJOnmw9wvn4tN8tWz1EhIomTIPASbTdqIk71ms3nqOZ7aOjJqMH34m2xp1bPspQelPG4OlwUJbxvBoD/sk0kZORi3jaym7SbkTVXC5At5Vwo3QS4AvNe5EWDE5mHr5zUaRVJnpwNBepAxJCuEU5wMhkHJRVHSoAxU7UmTLCk2x447t9H394O6owRdVAWIs3Z/wolFSVQ/8Xb3yVF/ccEH1sow74y8rvYVElKq58QrK8T+IXsXlhCb3CML8NoTckKjmnQBApORMHC84fwfgIzrZsYTRESpEod88aA/702HO/gY3d2V8A+OuRfFYzCJF8sum7X5P3FXDg7m3NB1mVHT66+n4eb97HiVe/ysb1Z7HAYO2eCvDv6P0K6FVlNCPfsGvJRmXYV0bNiSZkNcffdyNRUSRZ6SScXm9xdrPNqfU2K+0YLKSjnF7fjyFJB2TWoi4PNc/zns4TnE9OTeyCtqBqDbA1f47mdj47Pv7Dgi0zwHo91cC6ZmenGQC/S33IvNZbxR74i6gafQqAPwDa0FRKF9wbLvtozVDhvJ8H+MFFms17rgVWLrDR0+dqpARKCQ5by6+vuOfCbk01InGmuHXjvrQoGQzdxja6ojoPWqLBQw0H+F8tbvp7TL0EVkjEcVlwqxniVWe1D3PCO/n3fDSfFQJxDMC/tVsgrKGfuuNfl/Pv6T4jP07wUnZ1/oZU7EYWbrOnCTgvjtD8HNRY/tIWVcMrzO/Pi+Q7rBKZOJWJV3LkJqO0JUrObqtRAX4zARrrpXXOoueLJCgA3py6crPP/mA5lUmrEbHWSbi1l/LStX2y4vhz8q+1XOIMVWRsvbJSLzSbni6nDCkmRjicMaigvAOM8Ep9eONCKUlpuCP29yg1ykqubg2IlayMKpUUaGMPbcj+WahjXTn33HMPH/vYx0gSt3htNBr8t//tf8vnP/95Pve5z/E//A//A93u6xuTcreOWdZiFZORfPibWRQc7nMaKjD8HvCbWtSRrTP8fmEjHZPVDKyKXQT4nRnejp6U8/tfzmXHrZ/BrXe77cizmip2MXO+GnGrMr0TdVm/ZWmXfouBMkPIyM+WT7Jxj3pjupfyV/l26gDgQ817MVYTi8ULHVvmTk45Nb8vPOA3jTYGMDKqxghkWVQs9KAc0GlNzu+fbG7SjieoEMCiwnz+dCQfVMerUdQAP5pd7UDwqmgReWlutVnP8IO72Uf55Pfb3p9chF1IzvDuzuMT26gAoIocgKg1IoRwQMFY59R88vKXAdi7753YKEFbTaKiqlkRmjkBQOdHBPyBzZsF/OsADM0AmUwuiiIF1/z3fV/rHrAa453jlV+EqKFj98tGG1qOgQ+AX0pRqVlGNjvUyR5qkXxJx5ll+lu2UBGb3szxdjL8O7lrIrVUm07UnsumPHnS5Xy/0rtEYQpWki5n26fHLzAaq82BDL8QDpQCjMp+NcOf5YZ8yqEf/EjIlFwyUnLuPOU4kq9RjYnEsUQqCYJJhr883sK3btw3rwLgbzcVwugKfLVV05lOLVhQvavzOD+z+WHOJSdYu/Ecpy59EYAbD7yfnTOPs6Itp/zxuV5j+a0QiDJnFMCfbI5n+KPGxPsFwK8GY+NFAIQD/51mxOZqk9Mn2pxaUQirsfrgEY1qPwwTiRXNKCbxku+D5vhFmXHLjFUAQ5MhrKHtQd8wNQioYuJkVGP4PXgxQd1VTAL+whYzs/e9Yp/9Yg+B4JxnxcMcfx1Q1SuSMakezc5aB0l/Bfgnx5ekECSRPNQYKjSRegM9ZpH991afub6155s6DUmzASM7ZvhXVcf7zFB5LEyUSqAcwjEAn9C6YvjXaozYZlEiEGiMM7MVcql7W6gTXi2zvedUXz3fS6479F+reVZczK9VSQETpWLnHfI6yNWFEDPRfC3VZiVeq16ze0gk30EVy4Tc5JWsf6RHyAXL83pDqlzQWCltgVzA8Auh/Iz/Gw9wtvdTfv3fPss//cTzh7/YV6Qkm6sNilKzPygWkkJvRAkp5krZR2m5lJwfoDTu2Jupc1hYKO4Ahr/UZuHzKVQkBVrfGSMIy5Y2hmvbA9JM022P1+CuGWu/45oXx6k378q5W29KGQsIOwP4YTzHb8uMZjBDC5J+HRiquHJmMtZ4OZqtAGpwRl4UYSSMRhjNrl/cBcM+/9sJt/NQ2hqUVJPz+0HO316f6EY2VIzxs96yNmeOENhlHbl1idUaZEQkZ2fLz0SbblbSanb0PgJ4oHEOayzxATPBNjQgpj5jYPh10qpk7uNovpyOB6UlJbE3q7o0T84PYIybEQ6Lnqn5fRhL+qMyrVjW0mr2/IJ8VbSJpoygnETbJyAIQeQZ9tBcmZ7jn33T2s1GKtC6ivgLpZQECxvXniEuhmRxh975t/r9MzRkgvDNjQrwB4b/CDP8xhr6vuFUN+0Dp+BY8z/bnZJNX+69SmYyEtlgza6B9WaEQo6l5l7OXzZXEAGABMAvBC3h3ek9oDmswgx/N+76WLTgWhezGQXAf4gD+mFlCmS6h8j77Ixc42Yj3pzIva/XZnNjHAOJk/OLieaQk+YexhK0fMMiLQaVS3+em4pBSaYYfjW1eI2VmOt+HubFgzLGWjcjqZRr3q14076BzSjL5UYrpmvDzx1fv5Xzqad3q/ztUEHS32w48DMIgF+6KDE3ViUWmpt2di5x9sU/AWDrnrezc/atlD6K8aHUvdeErF9IMGXVWJhg+ONm1ZACKP0IlOpPAf6pkiqmQUGEds2mJQD/TESlEHTEIU791kVN3tLjhsDQ5GANnYY7B4YjjUBWcloZBYZfoTy4LFuB4Xc+NE2VVC4k07FnV7wr/+nmGVakOx69YhLwTzP8sYhcescUWC6KwPDXXfonz/04XmwwGarVlCSxay5fvTl5P6sDu1u77rOsrzkZe3Dob/jmZ2D557r1qxihi7Gh61HK6mqGf60YH4MkH1X3UTfH7wH/sk79nuHvDw1ZMZ7h79b62NfLMeAvbMmVfI6sX0UIY8ZxtLe5QjRfMO4TQkyMs4R7wHEY/iDrH5QD51VRDolrEcT1Cudnni823yt07j14nNqvtX+tus9JBMbouQaUr3dd23bP3Zu7oyPJwYUQrLQTTm0031TAH0eSfjqZzlJqQ1boQ+OYq9d7Q0U9dX1IBXnx5pspam05QJwHuLWavkNMBpetm7sjtvYz1lamFLZSoI35D8Kpf6k709//+3//yBsWQvDX//pfP/Lf3a3Xt1ysmyWR0exivmL4MxIVAL+THgU5ZlPF4MGVxTp5t3fsl9hxFNKi7GNbgtXs+sVdAPzG+m3N6ZIWtiRGHWjYFyoREaO4CaPelHGfhAN8BSZKlw7gJi2k9fjUuKYDuHP70eYFvjj8FgDn4pO0ZZMROWrB57ZYyAYzcXwwBvym0XGNCcCoGKVzlC6IhKJFzIiClAGwshDwW+tMt0Kk33QkH4wl/arIiMQ6pdUUtmTPg8tV2SEq01obByhLAsMfyTHg72/cx9qtF2j1biCMrmTs86p+uonOerW9UEoJGKScuPJVAF499ySRisIHI5ERIkj6vcJgujG1TA1KJx1WCCexnthJyaZYYY8hN0bXeYKxVP3bPm/+/u79lHkJwmIMRDUmWo0c2DTtFZRqoQHho/mEEE4hA46JXWLBFeY6V5Iu6HLsfK8iTngX8qEeUJhiJq952ZL5ENW7hhWSnZFTMJzQikb/CnTWMUnLNdZq39eTJ99WqUweXX9ocoNGV5noB1VbBlO1PquB4S/mM/wGO4M3lZJzsfpMAoPAm/a5eT1lFYmIyG1JT/dZtRrE0Rbpm2sx95xOePVGzjMvDHjmhQEP3tvkHU+scPpEUjPtkwiTV+7mbdkE4/bHLbztjIqi2bvJ+ec+icCyd/Jhbl74bgBKf+4/MhjyuZU1rk0Dfqsr2XNLNoj8/c/ELerx0GOGv+b0P6+kQmlNTI7RZiHjWC9rJyMqpRR0VIudsscw34fOnD8yJcJqbumxsd/QOnPTjgd9g5FzHM9Kdw+vAD81/4DQYMMiyhziBg0Rk9qCVKe0o/Gbh/n9e1oXoPSmc8Uu6IyWVw9kaYkohi4qUCUoGVHqAYXJaajxfTUPkn7foLLMqlGSSB0KcIQQPPpAm288N+Arz/a596y7vtWUU/+tPffvG6sxwhpSD/hbPgHkwcY5/nTwTbbKPXbL/pSKzoPAfIhOjqjCNGOGf702DqaKEauqy74ZsK8HnFNr/jk/TmE5qBqJiyQcDDXbfUVv5I7Tir81W2urVIoT0Rpb5R4vZ1e5v3F2dmNCOGVfY2X2d6+xAsPfH86/b1cM/+rRAT84Y9ZBOaClWuQmpxPN/34C4C9LyMuS9tTbWWvRJq+aCGde/ixrt17g4ls+xnDtHhfLbPWbxPB73yBjGaYlndbRnllH8UZ4PSoY95XaEEfufChKQ1ka2s3lvvfCFBjszDhGJOWEUeibUcZYN/a71HH+zgH8+4OcG9sjuq0INTOm6Mx8y6XiCb6z69iAP5wQ0w+x4EZ7F/DfmeUE36ZiAyYqgMMyoxGPAX9h8gr8tYSskJtjzlTFgEsOl1gLoymspu9nTTf8Q80Y11WcJyEujGY16kxEzBgfySe963S1fSEQjQ5wczKaD7G0zNAxlI5plwISpZxzeO1qebhxL18afgvLmFExSiFN7jLIp4F9WWCLbK7EXvqZStto+4exnTDus0CbJiMK9rN9TjTWuTFyM/OzDL/GCIiDVHnO+wWGX5X5JMOvg8x9BYmGsnA6dn9MAtiUShB7wD9cPUtn71WiYkSzf5PR6uwizAlCxOSM25wHipKCU7eeRemctLXO1sZDnK39TX2GX5Uu+jEw/AfOB09VP2S0y9bMg80i2KTLS1zn1cHY6dpay3PeoO6JzUeItg2lBiPNhJO09JJ+21pHBJVGNkDjJf1Bxm5z1yA5ZF8rwB+3q4xqAAS0VUJDJGQ2p1fss9k4ccCWFpcoBhgVQdxhazj21pC2RIx6mGyEanQnRlEe33iET1/9PJFUs02nslhqwRCag6NyyEkv380LW2NMa9vwRnf1knVntFpVkv5aJJ9SAqUkUrrJ1lXV4Va5x77us2b0RP77MiWl4OMfPsnVmzlfebbHpasZL11OeelyyrlTCT0fz9VqKLTOKlDWkU1K62SqQoXn5/gzJKM97v3Wv0caTX/tPFcf+mD1Gcu47e43Q3eu7+o+I5O5c0pIrDE1SX8DFVjcZDLMvAL86QBR5thoPpOIdKM3DQQja5dbLExHVApBV7WgHF93M39hSnKdudQEX0OTgoVO4q6QYepGisK5IZQ7von1/i9SIZOmi54z2n2uuEFLJqS6mPD4KEzBtdQpkk5F92CMe5b0sl2ivcu0CgkkZGmO2ruCTdro1fPh003ca4yxaP9Yqc/wTzfTlRRgD78m3vFYi2eeH3DlesaNrZzTJxKUUBQ2r9ZVWxXgj3yTx51b4dnblA3Ox6e4XNzgxewK744en3gPqxIoRl61teR5bw3WjBn+9Xx8PKNixIo6A8VN9x1KiSiNb2gut/0TaxGDoWarL+lPSfp7ZsjQpEgE7+28hd/b+yyX8uuOCJhu1MkIwhz/Es2Go1R3KpqvXnluqibfcRh+cLL+rOwx9A3p2Ug9V3Xl0yDNWJ/qWWurMWjC3TpJ96v/H67dgxCyiu17o2unNz5v9of5kQH/m11xJBllOXk5BfjNbJNvXgUp/zxJv1KCvNR+LfzmNDa0sU5Nt8T7C8RcA8PXWrf78xtrubo1wApoJouvTX1X0u/q2WefnfjnD//wD3nsscf4+Mc/zm/91m/x9NNP8/TTT/Obv/mb/NiP/RhPPPEEf/AHf/A67/rdOk4J/08y50Ef4ttEmdOsmfaFxVIkYqKpB2ksIi9NNSCUM/XjAACmC/Y82G+KhKYHQNo6wD9tEuZ+Z+hMAde6pH+6qmi+GuAXUlKtzA4pOzXX20jUjPyqo5q8s/0Y9ydnecCb+FkZoUzp5l1ntpm5BZaaPe7SM8C22UYqv4isAH9BXmpWPBO9l+1zue9k15uNdbrxFGVmHMNfzfDPkfQTZPFA7G8BhS0r1UVXriCNdp4DONVAHWxKwTjyK24x9CB/eo6/2qVKCTL311UpIegOXCNj58wTSKGQ3shPCEEs1ZjhL4Li5OiS/l7IaJetmd8VGs5Ejh26OrxeNTRvjG6xn/eIZMSjG/fTbVifFS0mHo7BoV921itJv0oDww8d5d5zZHM3NnJIhZi11bjl0jHqYzgyYlUF475jzvHrwsWYSeeTsONZ1vXoBLLRcc0zW86Y28Uq5j9521/hF9/6c7MLU11wqCYQaAfAb1KSyF1fi2f4mQCS4BYl806pypAx8pF8yn1HQkCsFEbX5vjLIceJ5gPXXLzndIMf/dBJ/uLHTvPYA22khKs38yrDvdWUjAr3/UskDZE4xYGaNKkMde6FTxGVGaPOSa489pHJ4yglOm7RMZYTwn3vlaxfSEpySs8aOZd+d43aRpORzhj4a9bGTUxonB0k65dOmh0ri7VLzO+DHxerHyRqHiTzZ/iFKdny513406FOQVjavhehNehCjA2zlLu/xf4vjIpRSGw8VqnBGATXI8+ujV7FWE03WqFhu2z6e+3AppQqodHy95RSumaILis1TiQiRnpY3RfSmrR9LOm3fHPv63xz61vV7yIloZ5CsqBW1ZBHz7r3+vIz3pRWKLQpK+O+7T1379tY9caK1Qz/+BlZd+ufec8oQej8iLJ+S2rHjf+V2uxulI/G15Me4k9sxBFMsIKs/2ZPMvC7FST9gd0/Ga2Px+nQXM5vzO6lShCmfF1k/Z2paL56BXa/3ZQT962jVPBDykxWRf3NKylFlWqyn80qCg0GYzTSN/ODiWUw8hVSIoxBL2Eae7truw74B3d2UsC8klKgp4z7Qh79Mk1ubbUD+tbOKCwiP0v+Zs7xG2udx8wSp3AcSXqj4kijGYfVMC24eL13W5UDpY87bCUHPcO+c9QKr6WOdWf6O3/n73D//ffzd//u3+Xtb3873W6XbrfLk08+yf/8P//P3Hffffw3/81/c7v39W7dhnI+LmJmfh/GBm/OtG8M3MP8YyIbyHLM9Aocw68I5lmClt9uPj0DHt5DF2zbYNg3lt1Z45y0p++ZwbBvupM/BvwbM++hvFTR1t2IhcTa0pvPHVJFOiHxdbNZs/O272g/ykdWv5tIqCqaUAhR5UBP7G8+ospDnKog6bfNjo8as7UZ/oKiMGzEboG/l/cqOf+90+w+gHWscRXLN0/SLxXWNwJizzr19JDcM0Vd2XYZ5wHwaw2MwaaQkti79NcBf2dv/hy/NRYhYT48q+2XkjRyt8hNm6su4lAItNUooYiEqmb4A3vZ9Iv1zB6B4a8k3/MAv+VsY4VYROQ6r5IQnttx7P6Dq/cRqYhOItxxNHaiSRUk/bKzgfCmfSobM5cdD3ItkNVzq+eUsYbUj4h047Y3y6yZIEYxG76BcFzAL3TmTK5UxI7uY7E0REzDNpwJkTfjtHPGYZRUM2Df4lI4lmHXOn4kYaQzmso9bK1189owPcNvZx5WISJyesERDBm7suMi+QSVjC+O3b0qzPG/lmi+em2ux3z4/Rv85Y+f5cnHu8SRoNtWdJqSoW9AtGXDN838aIGQ1FWE8WiPVv8mFsGVx38IO2f8p/DjOPfi/r+S9QvBqAyNWeXM7EJEWdIm0yV5bfa87G4Cc4z75lQkNGYZwz5rkcgZpmvFO/X3F0Xz6YJbxn1nZ2KnUkltjraWSJYVuBmlY/m8kD4Kz+fBmygmEhK8r4UswghFaAiOgVEl52/eSyQF61JVSqeeScemfQVYESFqDa9IxuQmr8B36lMDpKT63IOyz2dvfoZ/89JTfNvfNyIlUeKQOX6dI9I93n2f29eXr6Ts7BXeDd7FFhalYd+rR9bXImAs6W+KsVLjQnKGWET0zYgb5fR37PZT1JJWDi1rGIYECFEfpHAM/+r0DD/2SG75AfBf3JJeIQFt/+gKgP+M9xV50DfY55oS+ibVsTwKDqmDGP4A+Ne8nF+UGXI4HZ15eDVUg0HZXzi/X73On6ODdPa5p632gN99z8o/x2VFRAis0W8Ow78/vg73Brf/O3ojSkKVFgLuHrDspIGxGoN140FTTXQlnbHnmwk8jbEsGy+YxJI019U9+XZUXhr2hwX90e1rBpXaNTEOUi0IMVaP/VmuYwH+z372s3zgAx9Y+PsPfOADfOYznznWDr3wwgv8x//xf8w73/lOvu/7vo9f/dVfreL/DiprLf/wH/5DPvzhD/Pkk0/ysz/7s3z5y1+eeM2nP/1pfvmXf5kf/MEf5B3veAc/9mM/xv/xf/wfFMV3XqfxtZQSCwB/YIPLrGL4C1tUsUYN0QB0zbzJbUcI4Rz7paLpgfJcSb+1oDN2TZANj2fUtLEkc0xPSmuIpKIxNZ8cAL+cw/ArH89E3bQvSqDMHPA+oKw1buFVW+DGkZv/PWixZnxEoVRy5j0sBvLh3Pl9qAH+RhulFNZQSfopMpSQbPqF/l62VwH+++YBfj8/PXbpd9+pLTNMfzyzaz3DF/boVukA44pso0TkDPW8bB+rXcKBfwgoa6v5YJ20GK66BVizf3N+HJMFJIfKtKQ1JLkDBXm84poEQrhzAGcyWfcfgLHTe34E1+ngxj3t0G+t29VWEnOm5YBHkPU/5+f3H11/GIwhUdBqJ0g5jiDDGmQA/O2NiuGPsvH5EEfKsbxAWix2LYfASoZ4OZ+OUb9uVcyGfI2AvxjhHgOCbX8ObEZr1dy7+1ws739hNNaYietnUVWA3+bEYrxoCjOydaZMiFkGRUrh883H16U2ZRVNt6LaGO2Oeeg1RdIBioqRtKMjOYofVt224gPvXOPnf+ocf+lHzyClZejZ5bZselAsUNKBwDomWt1y59hg/R7+/+z9abBt613eh/7eZjSzW83u9z6tdKSjvgEsgUxjg5FBxDi+ueLiqlsuKFyGShSTUCFlf0nKSfzBFcq4EvPBxgVXxpYLsBx0y3aCIYCREa2QQEhHR93p9zl7n92tNfsxxtvcD+87xhyzW93ZAkn3/KtUkvZaa8wxR/s+/+f5P49Ju5s23/z7I3Hu/EZZA37FrI7+i8aQNcNP1sHjSaSmit+1kfUfY9yHVMioTNqUiNCueixrVc6+G5uVEzvZaJDYduh/IL3YeAVMRIWwhm5kVudzTxXVH16E+z2N23M6Dc2nmuE3dapM7RMRzoH3nuvT4FNxMblGRxly7ehHwDqyU/Kk/j5gnADnmueaboz7wppkXkalQWv8ZNoyH/z3T/8Kd2Z3UWrhBr2tZDFEmJL9vuA1V8N3/qPPjpBC4vFYZ7hzOMd7yFJBJwvNuAbwtxh+LRSPpKERu8m8z6s0eIucFPR51xhC9uJbw9TNFWfYI3z2yE7DdeI5kSlpXbVT/6QI576XL66jNuAHeE0WDENfKG9tfO57qRBmnfl+pdU7AvAfrjj0i2qKKManTkNIZMpA7x7rx1ID/llh1sz3rLd4H+OBvUdFtUP93wiBwP2pm/ZVEczV9dUA+Gd2thbFqbVgUizeh7Pi5IZ9Nkr5ldBLUZtQqwc85s/Q+d75MMN/nEs/BIbfGBfGXe9TWeuZF4a7w/l9Uw4Y57DOHbn+VFI0So2v5ToT4M+ybA1Mt+uTn/wkWbYhDuyYOjw85Ad+4Aeoqop//I//MT/2Yz/GL/7iL/IP/sE/OPZv/9k/+2f87//7/84P/uAP8k//6T/l4sWL/NAP/RDPP/988zs///M/z2Qy4Ud/9Ef56Z/+af7aX/tr/ON//I/5H//H//HU+/rVWl44tFIkGxbkS5L+lmlfGR94mUzDS1zIKLNeNA+CGaBcjAJsYvh9cO59MTIOdQQaBGZwU6yJ8SYwVq399bbC19nmmwB/GhbzYsWlHyHwxdGsKtbgzfJso1IKHY37tpV3HqFA6hSq+XIigKkCW74J8Hu/ZNqXRvdTF+dqfVnSyRX78Tvdmt3hxjRIGR/qb2L4HV7QZFM3pn2mAluGhgY0c73R9J875gCAXdUPYx9K46s53hq8c3jnFy79tkBGvYPRHcp8hyrpIL2lM1p3Tw6S/uMlb7qaIb3DC0GRdgLDLwPDnygdFvSNpL/ARSdugPI0DH8t+VbL4xCltSRakGjJ1Qj4X5rc4KA45OXZbQSC1+09GgCis/S6OVmqmnxmOZ8g4v6r7m4L8E8boKOkaJi4iZkcyYJNo5y/q7tx8eyXFSJCsPdKJP3eIsppwyTfiYD/vN5haVRBqjCScpKKx+Ykju5dvQD8wptmEVsD/qTF8OPFGouiRGi2+BaIqtl9jSITCda7JVdnHVUBu0vRfPdf/quVQGsRnfMXgL8GxYLw8wZEe8/O7QD4h+cf27ZZTHwOPFIG5dPQTZjUUV5+Mb8vnEFFkOqyTlRJJQ1Asid06hdSozEopTcmIrTL+aDkWR3L2otmeXNfUa3m2DcO/eGevJjsNY2gqa/AVo2Uejb3TQyUl+G7ZfH2cSoJjulNikc4Fs3YSGSz75V3mdoJSmj21CUGGUhPS/ExQavFJMW8imx4bHjVz7B6ZG0eTQSTVnOq8Iv3Tukq/o8v/XuMC7FdbsucqDAFohg2yquve314/3zxuVnjB2G84eWDsO3dndBo97aiiMAhX2GFa2+ZZ4qX1sGdTqKs/2TAWHgffBWAvg/7ZrJeM3q2Y4O6w+GYuBmI0zH8uwO9NPJVy/kndsbITRGEdBwI/iJ7qo/D8Vx5c31jUgeV3n0GtDXDPyvc2rzvQYzn3B1o8A5RjMPxPUNEoD6Br8IiOtJiV5rsLkYfeyHDeEM8DwuGXyK8x5y0ibulvPenAmV3h8vX2lcD4B9Vw8YTpq5ESYrSYiIbXxoXnvUnqKCqCI1qs6EZJBB/tpL+aNp3khn64NcG8+KVXUftqqxFCBhNKybz+7Nda32gTY5YfyolmnjVr+U6E+D/3u/9Xv7tv/23/P2///d55plncM7hnOOZZ57hf/lf/hf+3b/7d3zv937vqbdbA/Kf+qmf4lu/9Vt5//vfz3//3//3/PzP/zw3b254sMcqioJ/+k//KT/0Qz/ED/7gD/Ke97yHn/zJn2Rvb4+f+ZmfaX7v7/29v9cA/W/8xm/kh3/4h/kv/8v/kl/6pV/i7t1jHIu/RiowPWoLwx8WR7IN+FsMf1oDfqlwhEg+iUQLGR1HJZ0o9qtcsW7o6CxjM+GeHSEQPJi2sru9WJvRDduxdGS2JB320whudLpmSAVAPcNfLb9ghMrwxXjjjH2zbRfnNdXi+AgBaaIx5miGXwiQSRrkzy0Q4auYub5hfl+YspEUu6yLVsumfcpVdPOEvciSjatg6LOb7rCz4kTsvWsAv2ok/fniZ1IvFmHxuGXxHNWGfbu6H8Y+dArO4E0ZZsdZMPyNnF9nYWUsRMPyb4rncz5EAR3XNE6LwLyXaR+HbOLurHeNwqOe4VdVicPR1TXgNydafHjvFzP8K4DfGE8vTVBScjUa4L04vtGw+w8NrtHRnSDv9Y4sTdjrZyTxWqnZfZP3UTJBdKJruHfBOZoA+HdEUKDctcOjAX+UQPd0b+vvnYvjK8Pq8NQdcWHKMOuqa8Afjv85vRt+HlGPkAqqxfzuUeXrOK4TSPr7sgb8FVRFI+GfzNYZfsS6QkQqgZTQXns3zRyZhxe8F0uuvDJG89WM7syXVGbKl6uEs0yiv0QvMvy12kUJ0RzTbHKHbD7EScX43MNbt1cz/L1yzvl4nmpZfxvw1woYj0AmCSBINzD8+jhJf5KjevtoKY51MXYuyFJX7/M8yUiiedt0NZrPGQo7b0xcz+td+jr6XLgKvKObh/M3nTkivsYRTftczfAnSCEQMZK1vt+6umb4w/+v5fyXs6tkOiWnQijVqH2GdoIQomH5i/pV0QJVUijm8RlYS/rbDH+ttHh05yH6SY+783v8n0//KqmWmE33sfchFtMaUCkIwaVdeOByhvfwx0+OkUhKV3IrAv7aCb5tRpiJ5YbyleQ8XZlR+ooX1mLsguxeVCdkwr1rHPr7cdloVYqNDZbUzJeOIYg134+jSgo4119cX4N8md0/p3dJIhAOsv7A8m+U9es6evD+NvKyVDbLgsnKHP+C4U9C88aGWMmzAP6T7gvAvHRrTLH1NhIzYsHqsyABQkSuwJwi2WZTjc2IG7OX1mIqt9WNw+Wm9HD65YlPvJ9V2mLNj0prSWVCfGxZBYf+kzP8NqZbSSxubY5fCO6rRP605dxJ3vKLShJxX+X3lXGkicRaz3B8f64Pa90RAbihagXv1/oc/5kA/4//+I/zV/7KX+Ff/st/yfve9z7e9ra38ba3vY33ve99fOhDH+J7vud7+PEf//FTb/ejH/0o73nPe9jb22v+7X3vex/OOT72sY9t/btPfOITjMdj3ve+9zX/lqYp733ve/noRz/a/Nu5c+fW/vZNb3oT3ntu3dqQ6/o1WE4EaedGB9hGDlk2zGmFpYgL4lyk4caJrvwidiqVVIGpajP8rlgHCM7wbBWO8+XkXMNIhPn3zc6g1rtm0VZX27BvU9euLftekqHqLMj6q9na3yw+0ESjg+XtZsnmCLDmq/mQEy6VCrLmlvGfL6dbAVDD7usUlEYqCWKRb5/4ijxVDFS+NAP/0ODa+sZix92xmOFvGH7vQxOjVinEY1QvmOuvFsYs4ly6c6FxsSJ5VmU9v78wBDzSuM8TvtcxpSNgLrMBtJxinffrgN+EhlKnHY+1yh5uqNIVVLVXQSumqz63eRbovatZAES3Znf47J3PA1HOTwS1eIQU5OlCLl4b9plOP4wfSN0cZzGLihQp2VcBqN0yh0fOj9eGff2kt1V2vp/vIIijN/aI63pDBXYvzFs477gXAX9g+FmYr0mFd9XJpO8x4eIkM4D1fe3xFNWYLKlNz8LP6wZAaGSsB/3JqEJYZvijQ3/tzyACq1+XkhKpQHvdjFYMzfi+s4F1CWcXkXwqxwGKIFeWSjY33m6U84/3H16M82woExt/upxyJc6718Z9UxGNAmXWzO8bnSGURApBLhM84RlhIsMvp8OjxzUECKVIEnWsi7FzfuPCV0ITfzlZAfzCmUZdtCN7ZDKhGxn+CSVg6UbwN51ZrAnbd1HSn8UFmtNJSAJpJc3AYmykvjeuTwPgv5heo5cJEl8gddLKkQ/3XBZPwbysJeItV3qhmbsC623DCqUtFck8buNS5yL/j8f+M5SQfP7gSzwx+vTGy0yYOaIc4SN49kIgrOHr3hQahp97ekJZSkpbcOswpttEwF9/r0wkyJXTI4XgNdnCvG+1vEoR5dEqo8Uv+8ahfxC/g9UZJu6zLqct475Jwy6fvBznB4svUDP8N0wA/Ff08tqtNsp9sbrNfM0gOIw63G/AL4Ro1CZtWb/3nsNxnOEf6PBc9e7LNloAC8Bfln5NvWGcCdeCEI1RHyxm+YN9qMC8gmZE3Tg/qO5xa/7ysaC/tAXX74XmYt3AG32Fm/bZ2jfDV0vAXCuJcY7KWKrI8qtTAP7A8IvGrb9dSgqKDYx5iFo823y/954Xb4+ZnYCJd/54r6V2pYliVpj75tZfVkF6380V98bFfWHdS+OOXY8oJcKs/9e4U/+ZAH+apvzET/wEH/nIR/ixH/sx3v/+9/P+97+fH/uxH+MjH/kI//Af/kPS9GjTkU311FNP8drXvnbp33Z2drh48SJPPfXUkX8HrP3tY489xosvvsh8vv2h+4lPfII0TXnwwQdPvb9fneXobYlhque9pVmY9sFCJpvLpAE3zSyqEGgWgL8TgW3pi7V1hHCGZ01wYa/nCyEsFBUCvXI11ozlaqKAO2J+H5YBf9VedAhA6mYcYFN5W2401tMRiG97HATTwfiHQuJrh2x/svl9V6sSZDD1crEZkmEDGyg1A71QM6zF8dU74YN8qXnR182SFYa/Bs7ZCogLUufIxtffY2WUQVU1w7/Yn+lua47frkoM1+d6N5We14C/37irx51fKFKWJP0OJWVjuFWeAPDWDu5dkS45IRfWkmpJlipAMFAp/aSHx/PSNKiLmrx57zZeCDXDbzs7qLrBU/tJxGtOAuci4L9thwFIb6ma4e+n/aBK2aDKSZMOvTizfSpZv/eIctLI+Q/tBItDC8VA9MKt0pL0B6n+CRbw1m6/SVZKSUUa54Fnfk66cou0pfhCCBCeYbkqr1TYVieuMWRUnRgVKpCqDfgFWggMvkk4GNnxqdjIU1Ub8Ms83IbxWaLCFwPvGDRy/tdu3xYL0z5dThrAv2D4Yx57y6HfJnlo6QhJV2dhjt9bfNbF6QyBR8Xn6VGVanmswsPDxrEsIQU9Ee7byYo8VjjTyPnPJ+G+6NdJFq5EOE8vAv7J3DaSfhsZ/ty1AL8Qjaln7dLfjQ2AwhXM7ZxbRRiHupRco5+CtwahU3ajn8woGmlmbYZfqJA8EZ+diUwwMa52XtWS/sX3LqJaoZ/0uNa/wnc+/BcB+Pit3+dmtcJIR3Yf56Ce2xYSnOHqpZRL5xKshc99ocB4w+3I8O/HmfdaudCznsf/4F+STZaN4h6LgP/58mWK1WeNSk7s1i9aDP8gNtiWAH81WySG2Em4rk9zT3nH+f7iPbPq0F/P79e1q/qcUzt4PM8W601mrxRim0nkK6ha1j9uAf7x1GJtELsNugJRjPFKh/NZzU812nDSagP+VfO3ypZI7wCxiOakJekXAonHsQ44T1qVK5nbGT3dZ2xGR4J+5x13izscjMLPr14K9+R4anCnSHL40y7jTDRANGsqCuEFhXFUpwSkxptADCEDObPSrNFRWv7irQnP3Rzx9IuHfP75Az733D0+99wBX7p+eGoQPCsMB+PyRLP2x41trVaqJaVxzO8DMHfeUxqLkmEdNi8No8krb9oVlT02ZlDJQHocNbb7tVBnCwyN9cY3vpE3vvGN92tfGA6H7OzsrP377u4uh4fbF7PD4ZA0Tdd8A3Z2dkL39fCQPF+PJ3vmmWf4uZ/7Of76X//r9Hq9tZ+fpvQqWv0KqwY8Seim2cbMUJ/VgL8i1xoVZUe1yVlXJUgpgzu29yRIEqVItUJWYTHdi00D4w1OONKWNH5mJ7xsw7Yeza80gMJ4j9YCrdXSjVk5S6Y0uU6W9tfMDsJ+9vc3fg/RDedSVgXWVahk0bzwaQ5mhiQs9NbKljit1+TDWapJtMB5SDblrQpIkrD/LkkQZoZU4MsK7w0i7S7n0MdSVcuwTwqyRKG1oIxNjgRDJQVOSfZ0N8SIAY/sPYRaueY8NC28+uWusg5KiWCAlySARyiBzHt4FgxZXbvJAOcEWkmkShBmjrPdAFLi/ic14E86zXGynR2qtEtSTulObjHbWygQhAgzrsc9dHVkyMtsACLM0gsRkiAyrVFKIDvRn8F7lKtQSUYqE4yzGF8em4U7sYtIvvY5dhZ2BglaSZxWCG+41r/SuGxf7l7kXG8vHuiwulu9RnTj0L/bgFXZ2cENX0aXE6wM3+m82kUgmPmKuZ3SU8ujGXVNo2x4J+uhvMWp9c+UacKO7DC2c0Z2yDW1QfmxqUyJdGVoCEnBPVuz+7sIKVBakNT3o9S40iOxyGOfc2Ecpp7jDv+9+SWqlSSXWfAJcQVZsvzdOrmMnffgo/HxW3/I7974A773sb/M2y6+GYAsU4xmyw7pEEz5PAKtF/dlXWmqMIVhV/e5ZQ4YuSkKD8dcO2cpgWmY0TqSMVHhXtA6/Hd3dJOkmmF1yvTcg0fOT7o8XP9JNeVqeh6BYOxmTPyMWUtJkMQxApt0ENKjvaCX5HSrlMJVKJXg+vvIgxskkwPYvXjk90hShWD9+lv6rqJ1zbT/Vsvw3S1MzGjpHhXecCc69F9M9pBStmb4C6TwTR77dOao4liViYC/ExuWXqfhuGZdDCGKTElBLwLS0hXcKIJZ316yz7nOLr3UIWYOqRX7WR/GMHEzvHB0UgF4CgNS6zii5UApFApcaDrURk9pEq5V5xeAfyfvo7Tk66+8jRvTm/zxrc/wicPf4trOBXbSeM+XM5SZ4LPe4v0gFYjgafP1b93hlz96hye/NOcNb0i5NwrX0oW9FCWhIKqVjEF6y+DgBarBheb4nk922FcD7tkRXyie4+2917XOjEZWgCvwKwamayVpruOdyIK5JGtG3xIzY1eHEb2Rm6KkCma1UmxsoK+V91wYLJ4TO11BQdmMml3Nzq9de6/Nr3F3MuTp8iXeMgiNsuZ5o7PQpGHzKN1Zq9/VQMl0bpvreDQJ18BuX5MIg/RVkxaBmVM/E+9ndSJLXlXhOqwZZu89Thi0EEip0C0QLm0Zj6FEC4HFgvRLI08nrdKWOGHpJH0ynTCqRtypBJfyy2uGg4fze4zdiNksHK8HLmd86bkZ1sG0qtjtbhjL/FOq+rtvPAbegfB4AYhlFj9NJUVlUFKSJurEDL8TBq0UWikKE8a72n/byROGk5Lbo3mTUlQbA2shmM4Ns9LS6xxt6tiuWWkbdv84nCJkePyc9PtAIAaMda8YA1WRiddaorWik2sOJiUXz3XOdI1CrYzwx54jpWh8vk7yPeptneY4fSXUK34STiYThsPhxvnRa9dOuPj8M6jxeMzf/tt/mwcffJAf+7Efe0XbklKwv//KGgZf7irjQjjLEs7t9NnJ1h+yxXSHGWFuvNfLyGTC1BWNTHY3y+n2clQnw1eOVCbs7naxheWOSOllGanvIAizqTJx9LqLRsvTd0In/lK6z4X+buuDDSqX7AyWmzITEyLCLuzuLDHEdyPL1zl3kcHO+vfwLiVOEZJpQ6+3aAR5n2EnB6SpQ/eWP897RzEGsi5yJc7OexgVBmMcnWz9tqkc7PQzer0Mnyt8OSftKJyEKtOo/uYFlYyLKNkb0OtlOO/pTUtslKonPuy/Szzn8z7PzW+zk/V55MLlNZmSK6EcJ8yFaub1+ns7pDsdKnJU3sVbg+p0sDu7TIFOq8PckRm7eY+ZNPT6GalM8eUcX83IOxmqE/ZJxX32eY9OZ9E0Kc89QHLjC+xMX4arjy6OjYdBL1s6D5tKF+G8uv4eWabp9zKyrmJgO+zv9uKYSYex0mANHWnp9DI6KmXq5ghtl663TVWMIkOWdJt9t9bT8XB+r0sn07gkmOO99vyDDeB/25U3NNdnWQhsv9Mcj9X9z89dYidel2b3HLObkNoZspeRpJbB1HC+2OF2dciIAy51H9m8r4R9vbx7jo6SkHSQG8xQzyd9XrT3mPnxsd+/qVlBjBoA4DCOHFzO90nTBKUV/X7WgDdDQppr9OCY4zsXeHJkHILuHLEwSSpHT+cMyzGVMvTyFbO3nQ69rqayFqUs118OsuSPvvA7fOOjb0dLTelgUizO+yQChPOdXdJEIbOEnX6+NKFTOk91MOc8O3xxDhNR0MskdE547E5RfuaYRsnx+e4AWWkG/ZxeLyNJHd2ZYf/FpwGYXXqMTu/oxa+IRqfKlOzmKZezfW4Ud7nNQZPHvtfpkU9CY1B2uuTdBEHKud0eVbrHC9M79LIMsXceDm7QKYekx9ybKtWMZoY01VubapUjfLfO8vMxs579bAAlzP2UXqeOJwQK30TyPdC7QJZpeiYcgzkleZpwfidcQ6OJacY9rAijV93IyKhOzs6gg9rZ4RDQ8R12MQ0EQulLXpqH6+da72GuXOyzI0dYG+7jC8UO+m6Iv6sSQ6+TAhbnFZ1uBnMDuYToEWB1ic6DISlAJ9f0ujnW+cV9u3eueWa8/23v49Yf3OHF0Q0++vKv8f983fvRSChuBzlB3jrvhtCB7CS85fU5f/AnI+7cK/nkp4JDf5oILl/oI7zDRvPCfmTmuvN7zDrLjex32NfxH+9+kk9MPscjgytcyVpsueqALKGTHuO7MWs8Is7Fz1KdbjN/k9mCi51dGAXAn3fz+B30kgHu1iodD5xbfP6F/ZR7BLXC+WSHvV5/7U/elDzCxydPcqO6g1EVGZqsfjf7BOYjSIHs/t3X+7sZMKWoRPPMmUYF6fn9jJ52kCioQeysglTABsLpldROP5wLayU6h51BfN84Q24UKkvIkpR8vHi/K1uFd55zpLJE5JpeLyXXp9u3MMJwmx3Roxfvh57PGZZDJuKAq92rJFE5NqkmFNWEc/1dxpPg73Ptco9uZ8R0Zimsbfb9z7I2rU1cUdBxKR5P3tVLa2aldWMqvL/XZdA9XtHsvSdzitR3yHUHV5R0ewmDFR+qc3vbscTBuMB42N3tnshYzzrP9bsz8k5K1kmOxSnTyjGYmlOdEyckKPWKMdCsMHS6U3p5EprEvZx7oxkqSdjfOdv9Y6yj052ipNy4bm9XYT29fs7+3sm/+84G/PGVXGcC/EVR8FM/9VN8+MMf5uDgYOvvffaznz3Vdnd2dhiNRmv/fnh4yO7u7oa/WPxdWZYURbHE8g+HQ4QQa39bliUf+MAHODw85Bd+4Rfodo/pbh9TznmGwy+f8dP9qMkkxhJZz2xSoVpRYXXZ2pG4LJlMChKhgaJxdlaVZzo3SFcwrgp6WjCUMyZVwXRakZsCNzPkKmVmC+6OR6QsZsi/OA7zkw8nl5nNFlKdaWnopprJimvrsJqxl/QYy+WRjOIwLARK1Wc43CLjTjpQzSiGI8ZyZwkcu8JSvHwLeT5b+ndvCuxoCkmGKDfIHK1jMinXJO4AxdxQzCsmcXNuOmV+b4ifD3GFQYrNssnOaIgGKpUzi9+/Ki0iytRdMWcyKfBVyW6cM3148CCj8fr2XDHFTgpmCnxZIIBpKZgPZ7jJHGESfDVDVorChxdyWlXUsoBd1Wc2LymMZTYrqaSAYk43ySkKi4+Szu54hAJmIl06j6PeZXp8gfTOC8yuvXPp2MyziskxzdDdcVDxjEUn/M2swrgSB8xURSnC4kUkHbwdMRuNcMluIwsfzsZMsqNnJu9Mg0S067Nm3+elRSmJrQwTE/0XnOVcnOMHeKT3CMNRnIsejvA23Aeb9t+0rksbM8jNeEg1KTDWU5Ql5+QutznkhdFLXOm/YeO+jooAhBKbMJ3NQpySWT+Itfng7ekdJtMTum4P7yFLiyccg5vzcFx26TObFSAEs1nRzPO5maE4GKLY/oLz3mGHI3Ae5Ss6nYTZrNoq2zTOk8brcFjOUWJZNmlMxWRqKI2jrCwvR7nyYTHiP33pD/mGK+9gPi2YzkrSSKAdlkGpkLqcybykm2qm0+XzVBWGeWHoxFGIu9WE6WSG96dPljmyvKecDrFR4SAryWxu6GQVk0kwCapmc7q3AuC/t//o0v20eZvgpEY6Q3V4wGV1jhvc5bnxTaZR3q0qhZuGa6dSGaPJnEwmjNQcU3lms5JxNSfPd+kC9u6ttWfvalnnMaVhbB3pBsDvPJSFoZive35478l9WBAflBMm40lgXb1nPr7LxIVnVd92KQrTMPxjM2NeVkgV3j+z+eI6quXDaYzULbxkMi7JXFjSuPmM6aTA++gDgefpYTjOF+RVvDGMx/cAj3AFVWnoiy4HfsTLkwO0DCz5aGqYzT2iqLDjKeTRlNZabhf3GMXjJoRjMp1TGcc0qrCkSZpnBsB//pr38bOf/lfcnt/m1579db5l9+tRowN80oX2eXfB9NWNZ6AT3vnGHr/2OyVfeiZ81s5AMp0VYA2j6KfSi0oDPby1dg29Rl3jmewGzxQv8csv/y7/+blvWzj6OwGzMU4NG4PXTeXGo2ZkpD8P+zH3etG4mU/IbLh/hmbCZF4hbYkbT4O57nFVzlG+5JFLCZO5J1cVfxIjUS/p/Y33RULCJb3Py+YeTw6f5xvOPU5RLGTioqhwoxHe3j+GP01Dg+PgsGietS/fjjGgXcHs8C7CeHzc37APY7w7OSN7khKE8z2bW0aTKfcYo6SidCXj8ZTO3OCsIZsu1qXSlMymBSCgNEwmUw6TCaU+nYy7tCW3pwekMmHS8ihQPuXm7DaTWcGl/DICwUvTFyncjI7sM4w+B6l29DqS6cxy/dYhlwbrzZw/rVJS0utlTCbFmpz73nzErCxDg4MJolxcx5VxzAqDkgKlJN4eL2m3zjKazFFSYqVgUpYciik+Ofn1aY3jpeGMQaZOxPKPpiU3b42QUnDz1pid/OjPunNvwnRSMDwFcV2WlpenBXtdTarPrmQZzyoOD2dgbdPMmExKnn7+Hv7q4ES+QKtVlJaDwxmdTFOVR3tGjCdz7twdo04w5qKUZGenw3A4w34FGP3t7HROpDY405Pw7/29v8dHPvIRvvM7v5Nv+IZvOBKMn6Ze+9rXrs3qj0Yjbt26tTafv/p3AE8//fTSiMFTTz3FtWvXluT8zjl+/Md/nM985jN86EMf4urVq/dl3/8sszNPUrUZhRYS6eRGc4p6blzYMshgVlx/cyTex4Wqsygft+OCcZZ1YX68IwPgn5tZ8zlFNebFOI/3UHp5aVbIGIfK1zOKS2tJ03RtX13tLJ3vbjXZEGkHX81Iyoq5Ncs+ADLDzCeoYo5oGQK6ssIZg9CdsIJdKVVH5m34mcPhPc138N7jp2N8MUWIZHv+8jzMGdq02/yOkgIRPTCEqcK/e3h79yHo7PGWC2/CbrjenLE4G/ajdgd2MsVbjzMekYI3Fm89RPOvjqkgNmV2VS88vBw463FCIJwHb7GexhxNzMMiolT50rGYDIIvQz6+ja/KZj7cOYeL0qptJUyJjIvXqe7F1IdwDWQyBSew9Qxx2oH5CF/MsG5h6Ne+3rbVKM549+Vi38vKsZfrcMp9vJ6t43J+gQud8/R0h/PpOaxxeO9wxgAr16uziDin7zv7i/2I0l05n4T7IzJi52RgHm8Vd7fuc23a11M51o4QKt14Xe4l4TMOy4OTmc44gyqnWKEh7lPt0L+vdjA2jNiE9U+9PYWdz+CI55y3FbayCKUR9Wy1c1vPu3e+AR5TV5K2AH94t3usDYucuZ1R2AUo/dj13+et596Ej9ux1lPYhSFjT3YoCr/xuQKhOdGvZ47dDF/N779hj60Ytw1PvcQ5E+Tg8Z7uH76AsiVV2mXSv7zx/K6WSbuk8yGymHA5Pw98MZqXheOTiRRZhoW4S3Iqa+mKHGs9CQnKK+a2QtXGfeN7R96bAMGrVWCM3ZjwsnDw33yf90RMGXEzXFXhUWBLbhXhWb6r+igUzjl60RtkaudY6+ikyws1nbiGWc9j/J5TKd55fFRGiaqI+yHIhKbwYR43FRlXOpdIMdiqDF4mcX/7ssuBG3FoxqQ6AP55GRr6wnm8KZtYPeE0hVuYSmklQoa0KbBx3rcjOkvP6Z10wJ8//xf5jVu/whdHn+dN4jznRUZwtG8fM4FwDmcNXmhe82CHQW/YSMd3dsJnYR2z2jm/Hi0oxlDOcStGt3++9zbuVkOGbsJvHn6S79x5V1xAS4Qx+GKOk9sbXrMyNjGQ9GIz3KgUH9+rqpzSIWvGAIduzq71OGPw4nhgIo3Bec/3/Lkw2yyAG2VYL1zS57bOFj+aXeVlc4+nZtf5Bh6PiVH170ooJth0d82E96xVG86Fuf3wOfeG4XzvdDy+nOOSvHU+JZQTbL53Xz6/rjoVoig8lTWUpiRVGZWtsLZC+GjA1prhF3i8qfAqQcRs8tIaUnG6teukmlCakjzprDwzBV3Z57A4xFmPlppRNWJH73I4MtE3WJClgm5HARV3htOvCMBknVvbj7kpwEkEnlk1Z6AWPxd4itJG34bkRN+hdBXGGqTPsN7jnKMyFVae/PtLAZWx3B3OyZLjwfW9w0AydLRkVhiK0hwpjy8KG2TwpzgnSsBoXjGZVsju2e+zojBUtv78qJxKJfeGc87vZHTz0zfN5mUwFOyk6vjv5GA+t6fCcta6r3js164zAf5f/dVf5fu+7/v4n//n//m+7sy3fdu38U/+yT9ZmuX/5V/+ZaSUfPM3f/PWv/v6r/96+v0+/9f/9X81gL+qKn7lV36Fb/u2b1v63f/pf/qf+I3f+A1+5md+hje8YTOz9rVciVLoLTd8DX6lc+BsA6TqyoWGaHTm8SH3mDBnJITA+RDVVzv1txfo16fP4fHsqX5jkNRUOzrLe+R0iO0MEAjSlX3wpoQigGSxxbQPQGRd/OQumakYuRXArzWUBl9OlwB/MGbyWxcHiQpmds77pRGDsKwUSzP6ojbssRXkm2e0oW3at2BOO5km6cdZ9eaFLUmE4t0X37HVAJCY1b5kmlezNsIHyWZj2hcW4PkS4O/Xpu0LuZgKGexCyAb6ybj4q1akgFXWp0p7JOWEzuhlpnvRWFCE2JOjSsb5faszbO3IL8B4y+7K9xVpJxzzaExWg8bV+JxN1UTyRbVEfbrz9stTCjCORCj+5lv+38sbcBbvXADfS/s/RgBOKnS+uL7raD4VmyRSiGDcFyPV7phDnLPIldx64wxVlND2dQf84SIcfKXOpWFbYzNu7sGjKsRGmcazY+SmVN4gkeypPnPr158RKjj1e2dDTN+m8i76G5zMsFUIQUfEnHQq9pUlWtmRJovcXA+MTFBP7KSD6BA95o9vf4Y37b4l+N5534wedUSCFoq5rzZ2vbUSKCT9CELnvqIsxyh/YaMx4llLONv4MNQu9dC6twTs33sGiGZ9JwQlVQT8upxyafAIEtkAPwHkYuHS75Mch2sizVKpGwVWHgG/mhxE07gjrhsR5tSLqYVNjx/nEYrGu2G1dpNFDKJ1BZI8OvSH83o+jirAwlnfYCmEI8OSZ5J5EU3z0gWblsdnnVcpAtmY9rXdyXOZUMTfu5heZaeXIVyMG5X1O2zRlBjaCTuNaV9s4Eq55PquhMJ6S1nFfYpzn7XRZqayRtbcrocHD/Hg6BFemD/DE9Mv8a1737DhaIlwPuK4lZSCt7+hz8c+EY7V7qA+xq5xqO9Xi6ZIPrnbmKjWlcqEv7jz9fz7g49xvbrFp2Zf5B3d18djpxHVGPKdrdfgNJoZdmWGjqkKVme4+BzU5QwhBAPV48COGNopu3ROnn4RTeYgPBcKV4XYUtYN+9r1aHaV3588wcvmHkMzIWlfnCoBW4CrQtzhfajapb9t2ncQI/n2uyaoW9rPEKnDGsCZk402nLCyLJr2VQ7rDcZbUoILvPMO6UPag1pJKlC2wqgQ0wluzTTuJDWuxs3ab7WkkAz0DiMzRCDoqT5CiEWKQV8tpR0cTkLazlnY2y9nee8pXYESKqTI2OX9rP/buZN7IDhvsd4272eBOJNpYp4q7o0KLu51gpn0ljLWcTApyFOFVoJZ4TDGH3krGOdOZLDcLikF3gel5OAViKWt8wi/6v+iGLmKg0l5JsBvrA/r9ROMP0gpKKovk3nvV0idyXFACMGb3/zm+70vjXneBz7wAX7rt36Lf/Nv/g3/6//6v/LX//pf5/Lly83v/cAP/ADvfe97m/+fZRk/8iM/ws/+7M/yz//5P+d3fud3+O/+u/+Og4MD/ubf/JvN7/2Tf/JP+Pmf/3n+xt/4G6Rpyh/90R81/xmPtzu3f62UADKVbH1Y05pbF1WxBvi7YUUHBKCk68USEilkYF2kpFMzrm4h93o+xiG13fkX5ZtZ4eyFJzj3nz5E97P/CS3VmkO/nx42+yrS7fLiBtBaS+XXb2KhUvx0FIyF6m2bkqMchrSSaC3WOoW1G/jSs1clwVn9iAYCtAH/Yv5JJJY6CFqYehs0LvxbKy6amsWu0gtw5kEI2fy9SMPn5a1onj3Vx8X4s+bFphJcVS6BgXqfS71y/IVoxfPdWP3RkaWmdaTdTvy6waimHcnXbCueWxkBf50o0W4wbSrrTLNwrTOjK2vRWpC2AX/dGNkUQ+djzvzKS76J5Mv76NY1Kzox4i4eM0Rwae/TR6MwWA4jk9WuaWT3tdAkRJf8LUB+kPTQBBf10WrO+YYSph6DCSflbs3u6wFSBIZN65UTJo536vfWBKByQtAsxAIIz3xFphfHO00W39V7zyiCjMvdi7zn6p8D4Hdf+jgeGyKO3ALw90XefIDecOFJKZEalJfkseEwqg4RR8V1nqW8ZRqfgQ3gF433JcKUDO6F5+LwwtHu/O0y8fpPyglaKC62wHIuMqQQjUu/zzp4D0mrSdNXHSpncZ0BXmqEd03D7ahKldzo1QNgCUkr2xaLPZUFsztgGscuhDPciiaaF/RCJZhI3ajLZhhwpgEIAEkanr8aRRKfXz5Jw2cni6SZurqtBtTV/EG6eYIvZ0sPJSElAxmeiSM7JU/Dz+b1ZoQK4LFumIpg6lebCNaM68wsHPo3VZpIXpsFUuIpc4uJ3dSkjEZ3rWP9htf0yLPwGft7MY/ee+ZR0TJoSYqz6frzBOCc3uGb+m8F4JPTz/NiGRJzloDxlpraReNKxees0ymmiUkNaS5LTv1wZOzoUq0An5djHN+O6i01y1arK/MmreKLk5XoQakR1jRqt/tRtUv/vHAY66mMayL69tN5cOdvl7r/+wALl/6i9EFZGNc4zrvWOkGuAf7a2wcfrp/TAs7SlRR2RnqEGkQKyY7epad6zbtwGJsiO/3w/5u0g9m6A/5XQpmoCFJCoYRq/n+7tBKnirCz3gZvq/gel0IeG2e4qfJUU5SWyezov53MKualpZOpMEbgHNUxLLe1/mgrjy2VaMnkuHG0Y8pYt3H53ck090bFmaL/rHVrTYRtpZSgNG7rO+5roc4E+P/SX/pL/PZv//b93hd2d3f55//8n6OU4gMf+AD/8B/+Q97//vfzd//u3136PeccdmVm5m/9rb/Ff/1f/9f87M/+LD/8wz/MjRs3+Jmf+Rkeeuih5nc+9rGPAfAzP/MzfP/3f//Sfz7zmc/c9+/zlVZC0LDvm38u8XHeLgD+xUJJocLiWdbdyZCDDeHBFbqVHoQiF8sMv3GG6/Ng2Pdwtgz4fZSK1kZQ2c0wZ9l7/jMMXn4u+gi0fj9GSB3F7gOLnHlTbcbIOsObOVQtkGiKhvHZVFIKUqUwK88dX7Nb7cWu0oHhP6arvxrLVzpD6UyTqS1q4CkWrM628uUchECZ+CKIDLz3rnEgrR+oMu3gEWQtqeSu6keCXzRrYaFTVKe/UBV4hyjrjO/1hdh0JzBLveFL8bPX1Q8bj0ML8ENkwuPurkmIaxavDC+Y+po+juGv4yUTFFkEepXxdNKVVIZAGQcGcKW8teF8rAD+GjCZzmCpoSaiukNX86aBECL7RANy7sxfXvucWWQKe7oXrgHY2otSStKPsWfHRvN5iygWcXxAi2UN++P9BkWGCoDfH5XZ7m1Ukhy9C+2qM9dnriRrSSaXAf+C4T+f7/O2C29mkPYZVxM+c/cJpJQ47xnX6o0tkXx1hZhLifU0AOXQz5HF/W36Cmcaw76uypu+XX2tpTefQnrLLNuh6G5nMVfLJHU0X3h2XE3PNz/rxIV4zfATlUNt1Ueu0vC8Bmx/L2xrfO/Yz1UxTnBThVjS7T9XWtKLwG1ShnPpTdk49LcBPwQmGcKoB9Y0UmoAlcYoPKFRccHsdfhOogb81jT3W6d5jwke7j9MqiVUsyWllCSMgUAAq3Us37xeU0sVru8WgFUiaRahdSxfM4aTbKa6tJKck30uq108nifnz2w+YCyDZa0Ff/nb9nj31+VcuVgb0/nGqLHXWsjnK9F87Xp9/hCvz0IE8UdHn2RiwztKGIPY2HwIn1M3ILsya6LerMqwOsdH2KPNjJ2o3qsB/4mj+ZzBt545TRyfPv6+eE0WzKG/EEmFRQlAIFpz5q+0slQ2a5XpzHIYgWyeCjqyWMTgNhVSA7Ye27PuR+v5WFWLaD5bN6Tj+kGuNMFlvTbAIz1rkX7H1dzOqJxZc+JfLSFClHBd9fz+ziD8W93Am0wt5gyg98td1lusWwD+wM4vH6udXsr+zsl9X5x3Sw0CiTxTs0PGhdHhMZF1h5MyLvtEZOF9ANXb9i+O5Z6W4YcQzzcp7JHbP66Kym4UmeWpYl5YRtPTXyfGuhNP8ygpMO7o0dOv9jqTxui/+q/+K/7b//a/5X/4H/4Hvv/7v59r165tlPLt7e2detuPPfYYH/zgB4/8nX/xL/7F2r8JIfiRH/kRfuRHfuRUf/f/TyWlIN8mB48ldAamxJtySU6finRNKlz/fyUEkvBAQQg68UFfRpnpi7MXsFj6IuOcWo5dtM6hZGSGvEMfLJjh/Sc+ClfeAr2FeZqLgF8eA/hFVi+KC5SQGL8ye6oUFAZXTFFJJ4BiUyKOifDJUsVkvpoz76Nja+v4CIHId46O43G2Yald1g2y5GrGXtpn6FwcFQhMoE87cb588wPVewfVFC81KrIJolZs+CjnV0kzki2FxCUZ3fi7qdB0ZU5hHGIFJMkkhzi3Kcp5zGAIkv7V113N8Ofj2whbYaUOwOs4hr+W9HcGIUKwPpRiHfDXyg5tCgwLSX/hjmb463jJvuwgZBhR8N5x8cZnkNVlqvMPtj4ENjZXvGUTqqkVCq6zg27fJ2kXLxXCWWQxxXUG6PjyvZDsccPc5XZ5i9etbG/aAIfeZqVB+7Ml7MgeB3bCsLwHvUe2/q4wJcJV+GShzqjn98/X96bw2xs0RzFV1ixG/k9Y3ThzPXMFaevWa+eae+8ZRob/fOccWmr+/NV38R+e/Q1+/+Yf8l2XHsF5vWD4ZRdnfYgX2iK3TLWkKC27qhfkwJSIaoowBX5t0X7GcoZpNEXsyrwZBaoPbfbSFwC4u//oieX8ACaqcxrAn1zgjwjbqgG/rhuZeXgOqlZvP5cJqVRUzmB6++jhbdT4Llx+zZGfq5RAItdGmiDIMfURsYZSCrqiw5AJYzPisvdMq0PmvkIg2NfL74WuzDmw4xgF5+h2FtvWSQTZYvGs8yoNDei2Si0+N+trbF9f4OJggHQl1lSN/B/C4R9ESf/EzdA63OdFC/CLqkA40zTLcpXjzAhwC0l/vG8H6WaGX0mB9IY3J9e4aQ/5/Pw53t593VpjO3yp5efPpf2cvF+0GoqOeQRL/dZCexvDX9c39t/KbXPIPTviN0ef4Lt3vwklBKKa4dNNBmqOaXy29kSKiB10q0Pagkk6JNUUVc7Y0QuG32fyxMy2cHbpHrgRAf+VI+T8dT2SXuF3+TS3y0PumSG7cjFC55VGlFPo7G9VSB1Z3oZ3rqrHzAT9juRwbBlPLbN5jOTriXU5f/PllsdB7kcpJdBaYIynqkTjXWKcQSEgsppbGX4RGvGnBZzjKpgDnraGjaQ/Av7I8E9njspXR1jB/tmU8WaJjbfeYrxZW++cplYVAlJIrDdnGmno5prDSUlRWrJ0/XwUlWU4rei2nOm9P9przPmgFjkuPnlTpYnicFIyLy39ztmi6krjNn62EII0EdwZztkfZCeS59e1rYmwqZSUlFXw5ngF3oNf0XWmM/OX//Jf5oknnuBf/+t/zfd93/fxzd/8zbznPe9Z+8+r9ZVVGkmyBdD6elY8WZge5UuAP1m6WDwLwB8k/SIYrUm1mOGPctbnJs8A8EhyaT1KzgcJkVISNb6LNCVOJcx2LiBNSfnxf4NvAR4/DUzUcQx/W/adCk21ATQJncF8GMCyNYG9PeZllkQWq41rnA+s7dozW+sjF/K1SZ0XEp/kjO2Mns7Z0V28EAu1hSkj6+y24ylTBEMerVEmvFwXgD8w/O1mhhACl+acN5Zv5AG+dfDOcG42sbtL+xwVCUm+cea3ygeUWR+Bpzu6GdQPkmOlbw1g7u4iCcfSCY8WqhkdafY9An4ZQU2uTjbDXzPAO6oDQmKtYzC/x/5Tv0f/M7+5/MtebG6uWMsmVKtmo8X+txaWQgjIwiJaxOg7qQQeGin27XKdkatngftJL1z/Rxw+KQQ7OixyX5y9cKQkTZhySXbvveduZM/PtVjWjdeAkHHsZXN5a069qO5Flcjcl2i9meF3PhgSAlzIA5v9tvNvZicdMDFTnp5+Pkj6a0NG1cXg0UKEBYStyJ5/AhkNMiHcxx7fJBzcMkOsKRDV/UtbEbZk4mvAn4WFnQxKKlFMSe6EXPi7+0cD7dWqJf014L+gdxtA35EZeN+wsD4JkYSqdV4SqclVRukrbL+e4z+e4dcqjEJsMj8Khlzbz70Sgm4ctRjbCbiK20W47vfVYK2pV8/xT32J8I5e3mLGGsCvUJGhFDqMMgipllRqAA/GGLrX9h6nk2t8VQYg12rGSinIRYZG4cX+O0UAAQAASURBVAGbhGdzURHvJwn4pZl0KSTWRrXGCsPfTzY7j2sl0bbkQXWBgexS+Iovza+v/6IQa/PvUkiUUGhZm6FaQsszMPwunuNsdnCklF4LxbfvfAOJ0Lxs7vGH088FD4Ryunnm3vtmNKUXOSInFD4+l23dgK1m7MT7aWgncQyiOnoMrS63eHZUfuHtcDk5f9RfAaHh+1B6CYDfGn5qWaYuE4Qrzyypl7N7qNGNMPIQq9cNx2Ayta35fbcu54/lpQYzW2vgvNKqZf1VJSnj/lWuiq+KmuFfneFvZlSQ+FOx6yeR82+rwxgPuNMP10y/AfyewhzdqD9J/d8ff4H/z//5ZGOi+UrLblA+nFYNsfnvW2NEQuK8awyKT1NZoigry2iLjH4yqyhKu/QelVI0niObyjrfkFenLSmDye+8PNsx8t5TVXZrs6GbayazitExYwyrVVbuxB4LSgqcc5gtpNrXQp2J4f/ABz7wFWey8WodX0oq0g2A1hcTfDGG3rlGBo4pyNIF4M9E0gC8hqlqmewoJKU3geGPbEXlSqy3vBCldg+nl1kt5yBJAsBL7gYZuNm7ws3H38Ujf/DvcXdfoPrsb5C+5TvDvjaS/v21bbWrBvyUM7oq48BM6Ky6legMX4zx1Tyy5/ZYCb7WAiWC87eODyfvQCenvx8aOX/aofQW5z2X830SqVD1eIUpQxOk/qNtDL8JcVhOSLRdlvQvMfxC4r0L4xtJBzjgHWZAGc+N8xzZQW2PINRjpquPgunOFdJbX6Q7vMFh/9qyCeC27bYYcuFBERpICrmV4VfRobtWrRTHAP5RZIAHIgchKCvPng8L2TYYDB/iNy7QvK02gtpa0r+pESXyPswOEVEyLmNj5UISfvegOsQ4szT7v2AK+2HRfMRcvJSS16YP8ETxFDeKm1yfPc+D3YfXf9F7RDVeWphOXcHcl5FlHcRl4uYRDCHV8gjMapliu6HflqrZVwBaZmxpy0OgsPPGD+RcHgGqVPz5q+/il5/9dT47/BMeyl7XjGwMVBdvQWehOZdf/zz9J36T+QNvZPy27wh/ryT48J0Brle3+LAZ8nb/Wl6b/TnUCY0Ht5b3YMuFpD8y/HV2c3bjSwjvKQcXKbKdjT5426pqZvjDNaKE4lJyjpeq23RkhjQFIp7JKk1Rzqypswa6w2E1wfYDGFYnkPRLKdBCYpzbsL9HGyMJKRrJ/MTOkGbOHRtA3aqcH6Aja8BfgHP0ssW2lY7xXiyuNZeki6ZiVKnVgP8tvQe4KC7DzsNkWmEnM1a5DhmbIgPV454dUsoJ0MW6EEwRLD6CIWobvlaRMas9LxaAfxvDD8oXeKF4c+dRfm/yBE/Mn+YN+cPLEbFCLJuvxhokCyVEaRdS9a71VJ0ddDVHmYJ0do+id2HjPkCYjf/m/tv5j6NP8JnZU1zV+zwk+kEVkazwrX7B8PddZDx12jz4TdIG/BeBoJKwgPKWoJQ64rnQ+KWEbd+q7uHx9GSHvjoZ9/tNg7dy4+5dbpkD/nj6Rb6u93j4gdRhfMOWp1buFNWY2+OnuUYHPZHY/iWQCb3uwqn/MDr073WqDXJ+mn0QtgxNjftkHgiQpzJI4ivRzJgbXwWGP15KdePPJB10NUPWawMhkN4vTP5O0Kid2xmVN3Tk6fLWnfOMJssz/N0o6bcWhvMpF18Bxe+95/c/+zLGOr50/ZA3P3ry8ahtFWbrW+AccaZ5+3YZb5YarxKJ9VXjFXDaShPJvVHBuZ182UTaew7GBVqLpWeKVoLZEaZ0znm8O5nB3abSWjCeVlzYPf3JtM5jPVsNxZWUCCE4GM3Z7Z3sHnLeUxrbjOAcV8EzKhj9fa3WmQD/3/7bf/t+78er9adQWkrSlS60dxZfzSDrgXOIJAtSclOSdxYP9gzdsN+eOB/benhpqZnHl0lt2lf6gpuzl6h8SS5SLibrIN06TzcyQ8m9APjne5eht4d653+G+/j/gfn8b6EuvgZ16bGTz/BnNeCf0tU5dzaZmdUGhPNxZMM3m4a0SyuFVmEUoWaenfdHuqVuqzZ4HlczLud7DHQH4y1KSJxKULCQA26TmQO+mIEMjrK1YdUqw4/SYWXrXQD+aVhUq9aMo/f+aIa/CMyXS7tIBC6adbVrunOVvVtfpHv4Eu7asgng5p13jaTf9XYRs2BsZ70jk+nSSxJYzPBXwTm32zD8x+SsNoA/AxEi0vLIwApnwFSgaygjN8+r23Ij4K8ZfrWhESU6O/h715vYvvqF2pU5HZEy8yV3y9tcyhf+FpNqwfDjTDBc3FJCwF464A36AT5rXuATt3+Xaw9eQ642r1wZJOutRefn5s8CsBdZVuvD+dx4Ocvo1O8tYmWB4nFLLN1JS0tJLlLmvsS2TPuSFjMxrA6A4NCftkaS3nr+TfzOSx/nsBzypcmTDeDv6x6u8o3MWk3C36vRQkkhZfCpeEBf4pt6b+VTsy8ydXN+d/pZPvXCs7xt7508Nnj8TAsxIBigeRcAK2E+3HnQInxu9tLnAZhdeX3wy94gk99WDcNfTZuO29s7j1H6itdmDzRyfqsSnJCRGV4+L7kMJndVby9sa3LvWINROMKpf4tBYl1KtqL5/BxRzbkdR0nqxle76nn/ADQ93TbDr+IMfwSITkiU1Auj0RjbSRyXElKx31XI3bwZfVpPOhEIGdI77tkhEz9FitAALcrwyPFCIVZmoqvo4p/Ga21+HOD3FoXFoHld/hCfmH6eoZ3wQvUyD7Ub4kIeO/8+j4A/j/oOp1LmSZfe8CXyyd0jAT8Eh/s3Vo/w5PxZnpw/z0PZGzYCfuF9cx0P4uunHfvXAP5ySkdkaKEw3jLyc/ZJA5g/arQtDFc1z47TyPnr6qsOf+H8O/nV23/Ap2Zf4IH0Ipda6w1RzSHbnpbTrpmd8dnDT/P54RNU3vCm/BG+qUhR4g62f5F+zfDPFgz/XsdCbRa6WlJBZRG2Wnr2vtLKorFkVQbzvUCwOHQr8UCZkqfzhD881+evvDRvGH+PQHkwuBMD/mk1OdPzcDKzTQhIPbuvlWiSNw4nBWZ3ueF9mhrPqmZ2/Lmb4/sC+AtXLH1XJdSJUoCOqspVS+/xIOl3Z3Lqh2BmN55VTOeGfmfxPJuXlvG0opsvnyutwhib2wLqvfdL76HKWK7fnvLwpf6JmgCplkwLg7Hu1OthYx3W+uY5uqk6uWI0rSgru2yyvKWsdVi3TB4cX6eLJPxqq7MNW7xaX5WlxQbX+/khorsfHdzdAiSaZUl/hkaqmuEPDHEbGCZi4eBcS6wLN+e5aQAUD+vzyA2SN++j2ZP36Aj4Z3uXSIUie/Bt6EdDbFHx8V/Cz8e4uHiXcaG6rWqG35dTMpnE2MD1zp1QKRTj6Np8/O0gBKSJxpjFts469yRqt/s0o687XEh3g1pCBIbf6dqpv/Wi2fAdvLdxEasDYK+NeZIFwy+EREgdmOKoEvCtWfhmW/i1Gf52NZL+tBPN7Nf3p5njn9wBW6JaJoAbtzmfILwLow2dPpLAghtvyTcsAmp/BmUKHL4xlyx8eaR8tHawH8gOxgVGL2st4OsRi/AhYm3B7fFgq3UW21TN36r+BsCfRyPCGCcpBWGGUgguxrn528Wtpb+pmcKdrGb4j742tRK8IXs9mUg4tCO+ePvjSxnMANIUS/FQd8whfzL7EgDv6AYXgSNHMKQKc/obGyH2RCMxqyWEWBgoygoZzabSlmKmNuy7kC8v5JRU/Plr7wLgycmncDgE0JPdEBsan1dyHpsx08Pm+tAyyP0dnjd2HuG/2P+LfGPvLXRFytRO+b07v81Hnv/XfH745Nrs5bHlLWp6F2vmFHG2tivzMC6jJHJ6SHJwE4+guPJYGIc6hTOwSbqhKetd06y7ml7ge/e+hX09aBz6XdLB+aCSWQX8mUxIhWaWdfFCIqxBxqbVUbXJqd/F3PRNBol1CQSDyNaOXYF3ljvRof/8Boa/NnNspOTZ4jNFw/CHz3M6XfZPic+9muFHQKriws+WeFOF5merpBQgF3GdYzfdbNxnlp8xZe3SX0v6XXTp3zgLHxRCqQjapURo3pAHJc5nZk+v/KYMQPkIMFAD/q6PbKlKmPfCPXKUcV+7Ho+ff6O6QyVFiOdbOb/e2Ybh34m3gm0D/qYBFaL5duq0AzcLJMJxTv0uqgDiNdoY9m0A/MZuH2t7vPcQj2UP4IH/NPojKldHNiZQTY+V1I+rEb9/+7f5ped/gc8cfqpJ97lR3cVnPcT8EDW5Qy/6SYynC9O+vX57BMnx8cmTPF/cjP8iCOqQ+2zcFyX9ZSmw3lC6Eu9tGD4RYSRNOsP/fa7Hx7uCz/SzxdogMvzOnyyar3QlMzs9m5y/dujvLZvj1uB/NDWNB8FZ6s5w8Z577ubxz7DjynmHcdUK4NdUvjozOK+Ps2QZ8Hv8maIRIaybnfOMpsvX1XhWUVlHsjKIrmRQpm5z6l+V9P/HT77Iz/3y5/iTp072LEmTMAM/L8/gpu984+e1rRIlqezxSQN1Getx9uhtrpUPxn1fq3WmltpP/dRPHfs7Qgg+8IEPnGXzr9aXoXKdcTEdkOqWiUc1B6FQu5exd58PWcr1YsmUSy79mdANq+dqhr/18FJCNbNInSYXveD5CPgfVefZ3F8KC3M5G6GKCV5IJoN9zqkMIQTJ274Le+c5/OgWxR98GCLgPOkMvy+mpHFxW3kTRhPalWT4+RAhdADEJ6gskYzao75HmZwdUTXDb9Mul7K9JitbCkEq9QbALzYvWqoCbytE2sN507zUhW4x/LKW9Le2sQHwh9m+7SXakn7J2uIfwGR9ymxAWozojW5RnF+XlxtvUQSZVi2Hd50BQkqkDPGHzvslRrfZh2Qh6ffe043f0+KwvkKJdRalndM+kBnGOJJUolvqBlnNcAQALoRcB7bO4Z1bA/yN4aBOURvMumRnB8dibEBK0YxDXNC7PGduc3t+C1q4Z9ZI+rv42fFSeaUkiUj5uu4b+N3Jp/mj6ed4rTpH2r2EywcgVDDlakyIHL81+mM8nkfTqzyahXSFhafGJsCvG6d+sSpf3RJXeFwJKchFyiF1NB/MquUZ/lGUfp/vrAOAt5x7Ix+7/gcM6/l9kUcWxTWMcw1kZZR5+zRHKRlIVOdBhmbomzqP8vrkMl8onudT5QtM7YTfu/Mxrs+e59svv3ftszeW98jZPcR8yCQ+axWSVGimLsgLs5e+CEB1/gHo9BGzSWicnfTQSYmNEl1dTrErjGzdBHBJjiP4YKwCfi0VHZUzNBNsbw89voua3MN1l83zVis49QuEMzzwuV+n6O7z0oPfsDBe3brLgl6M8Zz6gkMzpCQsgPfVOvPalW3AL+hlredeZPhTXwP+ZMmUUCR5AIX1vS1k8MHwvhl9WgX8Qojo1L8wnctTmJUsjPuEAm/CtS50cLW2i1g+7z3zGF832MLwYwq0ktReaW/KH+Uzs6e5Ud3hjjlcND/q57RfAOHVqsdcOrXSQaUUvTDzfpxxX137akBXZkxdwct+wjWr1nLrK19i4rt9EBfbVi9+3mb4IYwL3LVDhm4Gsr/ZF6BVwnuE83gVmry3okHnlZX5fe8DmMlzTb7FVes9g7dyo7rLyE35vcln+JbBO0AliGoeZf3rLPxhecCnDz/F0+MvRjtauJCe5w3yPB+bf54DO8YAOu0hZgcM4kffultSGY8Qnp3B4j11vbzFp2df4vNC8/3pd4Ysd6liHOrRo4inqQbwV6EJUtrA8CsXlDr1vP5BZE0PtWyZ9oXr3XmHPcEMeWHnVN6Qi9MHrQ/r+f3B8j3X6yruHFRMZgFgc8LxjdW6N1y8w2/cnTEvDHl2NrUALCL52s0NJRSVKzDekG5YXxxXYXTCojeMip21iQDBwf7eqODiXic0ALzn3qgg28CAayWZzgMDv+nnzgetTa2UqhspL92Z8o5VV+ENpWRoQBSlXVIcnKSMDYaBR46TSoF34XrvbU/qbG0zzOOfZkRBSiiPGHv4aq/7DviFEI3r5KuA/yunuqmmt7+DiXMq3jt8MUbuXQszxkIBJUIvAH+n9VLPhUaohYR9XdKvGmIgj3O5lS+pLCQi4UorK7ouD+HFJCA5iPP7OxexUjXbEDole/f3Mf+PP427/Uz4wyRvGhPbqmaBMQUaT65SprZYy3Sv4+q8LU88fxzip3zjog/iSBn8tqoZ37Szx85KjFMqE6xaBfx+M8NfL2KlxNu2pL89w69AyvAdG8AfmZnWLOhx8vu6SUHWjYFDm2vWv0hajOhM7lBdWHeNH1ZTlJDsJr3GsM/GSD4dwYNlQyQfNI0KaQqcd42iBKC0RSuGq7U/dor1FoGgLzIm1rHTSxvFAtDEDYb/IyHm5jZst4uxXCtNiFrObzp9sg2AV3YCoFEthl/GGMt6fvl2uWD4vfeLWWCVg5vBMTFISgi8h8fzh3hy/gwHdsynimf5RgfCTHHZLlSzZt8/Nf0C9+yIXKR8U/8tzXYcoBGbr4GoTNgkNW7iCk8p+ZSE7HgITv1Z4plVYpnhrwF/vg74lVS869I38GvXfwOAfpyVVwhUlPKp+SJuT00PMWkwskuUWsv21TrnzeYyr7v4Vj5XvsjH7/4eL0yfY1QNl+ant36fYoic3sOnHaY2XNddmYf3Ih4lBdmNAPiLq69HCoHiqLDNzWXSbgP4a5DXfMea4U9znHckW2TEfZ1zrxph+/vo8V30+B7Vxe0JDxA9TBBkwxv0D6/TP7zOnf3XYLv7R85KSinoiQyFxOJ4tghGdef0zkY5cS3pn7kCB3S0rdMyETIg8LoH4FSylIwhkk54tzR+EzICdddEl66WEIFx67cAf8Pw149fKRGVC079clnllWhJ6Uoc4XraFsvnyxlSa3wcBeipDo+mV3m6fJEnZk/zrYN3xh2SYczoKIY/qgl6TjTHYR7jHbPJ3RONaAgheCC5yBeKF3ihusMDvhuAceuamZrwLEqEJo/N5GWGv27Ahv2poy6Dcd8FhLNHh3e0Ghu3q7s4HB2RNWqLuqz3JFphjd+6ck1lwrcN3skvH/4OXyxe4MH0UmhmOhsani3AP7MzPnn3D/jS+AvNv13Jr/G2vXdw1SbI2T3+UDzD3JfcM0MuJvv4pMOAIdBhNg/nZif3KL14PtcNi9IbXihv8Uh2JTRLTTSLPOuY0ErVgH9eOkSMeAvjlmE8QlYFHjiMzZGRagF+BMKHJthJGOZJNUYJdSbvriaSr7f8vfuR4Z9NPaUt18eETlh3R8tKtudeHvP4Q3tn2xjBsK+Zq7clECIGZ94GM78z+Ls4bwNRtvKs8/jTK8halaeag3HJZFax28+Yzg3TecWgu34wpRRY77c69Tu3WNHCwoDvbquhclxJJZjMK87vngCRtyrI6E/GrJ+G4cdvWctsKaUExRHGhl/tdSZJ/5NPPrn2nyeeeIJf/dVf5Qd/8Ad561vfym//9m/f7319tV5BCSGW4jv8fIzI+8hBnPNTKki/a5d+U5K1Xvo5qgHE9cxXm9ERLRFwVy93ah/KLq/PYcNiYa5EI+ev9q+uZa/LnUukb/vuxWcdN78PUdYZ96ic0ZP5Rqd+IDQ5qtmxhn11aSXRMri819naZ2H4XZQad1cW7BAktzayUG2G328ykiunzb5770MGNTSJC947UCown2IB+GsVxLKk/+jvUkvXXd4N0XZbno3zfriuupPbjblhXcZbknh+K2cXgD+yi3mmSVS4njbFVdWmfcJ7qEqkFKRxBdg2smpXbdjXUx1EVBakiUK0ZPxLkn4ZpcvtL1gvwFcaQ7VCweSDjTOOIjYy5DyqU4QIp8F7LsQ504kZM4vsYOmKRi3TVzngj2XOlRQgwoLiz/XeBMBni+c50EGVocY3g6RUpdwxh3wqSvm/qf9W8rZM0x3ttg5is1O/i3GFp7wNhIAsMiZzVzbRfO0Z/lrSv4nhB3jj/hvoRZa4Lzt460N/K6o02udVTQ+b/50quSFzV+BVQlJOedPOm7mSB+XDM5Onjv8u1QQxuxMkxDJp5Og1W40H5X2IwAOqCw+BAKXUqQ28qxWn/nbVUZ8+7WC9I9nSyMxVsjTHX+/XUaWkRGjIWr97/uYTMaXk6JOvtKIbjfueLV8GNhv2QfAYCEJomGFQ3tDJoueKjAx/M0+eINvvi3Rd0h9ApYVyGsa4Nn43sRTNlyXhA4oIzsNNa5uYzFrOL6Mipm7SZTLbOI/svQ0N6CQoreor782d1wDwdPFic80gw5ibOFLSH75ft2l8pJSdXVxML0jmG3xrNtQD0eH+enUrqDeq2dLP5zY0Krsyb0zg2jP8tmXaBzTJFwHwr49GrZWvF/tiSc6/ej1551BaNCz8trqcnONtnccA+O3xnzCxc7zOEPNDsCXOOz57+Gn+v8//6wbsP9R9hPdd+6u89+r7uJJeRFZjSLJGcVGnBqASer1lMLXXW96f2xHwAzwVG1tIjXAGYc4uXV+tGvAXZViPNcDdhRl+ZUumUmDi+3eoZSumTwT+AH8sw7yQ85/Nf6AB/BsYfoD5fNG8OkvdjUx0zeQ+d3N81K8fW3XjRAgRGrjlqGnYnjbGsC7blvTbCjmv30PiFQF+KUPM68E4HIPRtAzr6i3vcIHYCpid84jWpVxL81cbKkdVlijGswp7Sqd74wI4P66UFszmJzsH1rpjnxVr25eCqnJHJh19Ndd9m+GXUvLQQw/xd/7O3+GRRx7h7//9v3+/Nv1q3efytgJnkLtXEDWLL1UAhhEkyqps3M8BMpJmTtLjGzfN+sZoA3olVQPoAB7RF5oIn6X9cIuFeW3YV+yH5kCysmBSj34D6oE3h32rmxSr2zMlbhYepELIhgn2xZRMhQWk3fRy02loIhxpLNT6dSXRSmLizJPcZnJ2RBWuQkUDPN1ZZw7DDH8dy1fP3cm1TPZgujhvTKhc27SvkfT7BUhVGl8/jLNNkn5/5ENhkSzQjXnym39v1g9uzb3p7TWsWjlLIjQ7usfEzheS/gj4+50EnUq0VBsZfqGShSQ3xqiltVHkFsBfR/INZJfSBYOZLJFLYHAJ8CPDwqn14grxkOusmZqGbdvOYIlpbPY3D2BUF8FkTcoYO+g9qcrYjUzWnTjHXzv0ZyoPhoi149ERJaIxgAceTC/xQHIRh+fj08/jsz5earzKsN5vlPLXZZ0/2tVWKNgUo+TMqcF+vd+dFsP/0AVIlOfSfmzguJK5i/Fz+WY5bKIUXzd4N7uyx2PZ1aVIPrUyly5bgF9rsXk5oLMgATZzXtMPWsanx186ehFgS+TkTtBFRhZxGq/FOmIOIDFThPd4qXBZAEZaiQ2Nh6PLJMtO/e1SDeAPage9hQ7NZEomEubdAGpO7NQv5ZJkfP/u0+Rb7rt2abWI5rvrAoi8sEH5FYyjZIgYBKa+AmcbZ+8a8Ge+lpcnyw3ltRn++K6qitCs2hKfJqUg9WkTzac64XkwX8JoC/f82qE/iUqS+r7tbZXzl3hrkEkaUkji9XQx2eOS3sfheXL2bPM5OHekHL6W9PfitWN1SGEponFofkJZ/9XkAgLBoZ0wxK7F801NOA5dmTcycdtqmtTXoi5n4D27EfAfmDFuS9pAu4SPzUIW8/ubDPssIb1FsP29U9c7uo9zXu9S+orfGv9RiB20JTcPv8i/u/5LfPzu71H5ivPpBb776vfyFy9/Jxey8M6S1TS8c1W6DviBLE/RcrED7fl97z23W7/7fPkyhYspK84jXqHxW7vyBvB7pFBYb8MaLpr2KVM27D7ASKsll/5g3eeOBZy1nF+vjkOesA4j4N/tbwb805mndNWZY+9qBvoNkdV/pXP8xpuGvhLWNusvgTjzPrp4jQshELZElJOwFkCcuYlQVyfXDKcVk3nFvVFBnm5fxwoR8u437+PyTTUvwn4djMrI/h9fqZaUxlKcco6/quyJpgG1EsxLcyJAXtrTyflhoYI47fv4q6W+LKZ973rXu/jN3/zNL8emX637UH42RAzOIzoLdkVIHRiFlqQ/Eap58GVSNzinXkSWn/pl5v/hH+GLCbLFWCBUI6tWQnFN7W+UsVnvUSIATh0Xm/OdSyix3DCAwIqmX//XSN7+PpI3/6XN36uaNc7MsJD1+3JKT2fsJj2G1XSzQdZpzMYE5InCWh/GV2o28YTlvWdq5qRxQSqydYMnLdRm075VlYIpgrt8BPybTftc408glF6X9K/M8B9psNea4Q8xJpsfjEXvHF4IEjMnKZYj7ypnyFXGhXQnjIZEEGZbjQ8bZ/y3xbTU6oR6UV/7TZR2czd6ZBaGfdYJOrmOHfwFyF+W9LdmaOvybqPqbNGw2N3M8EfAL51BmDIEJiBiL0FwUYaf3yluAwsJbV/34sL7+JePkvU2w+/+ud6bEAieK29yo7oTZnJ1xqemX+SeHZGJlG9sSfnbdZTDrlBBmrqqNPFmc3rBcSUFC8Dv57z7ccEPfXvJXrwlDssDALq6S75h/hZCV/5Kdpm/2n0XV9ILOAtaKxAg58tsT+3YH/5uy/4KBXhEOeXh7iNIJIfVAQfVFkDsLWp6G2HmzT0FNEZnDcMvBEnt99DdaRpHRysqNldjlFZO1n7WAP74/NNbnm1KSHo6Z9YNB1vVTv3HVKYl+SwcCyc10jvOvfzZY/9OSUFXLKu/Vg37nA8LzNK4xRy/D1Lot76+y7VLGUkSnoFZnJ/3Kl1Wm9UpHk26STCk9dV84/x+s38qjHfVDLXIw31YtAC/jwt2WDj012kQs3jfdvUWOb8NjQutNUKDb8U/vSWy/J+bP4vxLbXMEedjHsFjL27HRRBeG/dlk5MB/kwmXIyNl+vuHsJVS++cacPwZw3Dbze49EtvkbbinN5Fo5j5gjtuEmXRR5T3gMd4y8vxHttk2OdtWJArJTD2aEChhOTb+u9Eo3ipusMnpp/j1+ef41cOf4fD6oBM5nzThW/hfdf+KufSC7i6sesdohjF6FLRAvwLtYQQojHug2XAP3JTSl8hkeyqPg7Hs+VL8Q8Jsv77VFm2YPhVlPSHvQpNaWkKhi3X86GSa4Aff3y+/CuR83vvFzP8K4C/lvRPZw7rDOYMxn3e+4aBfufrAxH04u0plTk7a165arGe86a5fqWQFO7kbHe7bBwPBLh5N/gWQFBm2ONMLY+pLAmjaXcO58xLS55ufr5BeAYXxebzba2jTfHPImh33nM4Odl1q5TEWX9q476ysicC54mSVMY1qQxHbrO0pzbTVlJirT/R9r8a68sC+D/96U8vu+a+Wl8x5YspJBlqcGn5AV7PdtcMv6kQQnBODdAodluLGEeIpLPXP42fDbF3nkci44xlkB/X7upXsmskgo2A2tkQc5cc3gDA9PYpk4RUJhsXqUKnJI99I7K3xfgmzlf7Fcm6L6coobian2eguwyrySuW7OhE4mEpW/ukNXcVmUiaGX6RLwN+Px+hyhk0DH9k7OPCdel3TbFklubwi99PNjH8SQvwR4Y/snPNBNe2F7uzId6I4NKvlNwqmfJSU3TCecomt5c34x09ndFVGXtJD9lI+heLf+tdNBvb0oiJi8x6f2ozxsIdw/CLDI8Ipk/ONX8P65J+vF9qsISYvvVjU5v2bRs1ETrF1/dVPOf9Xop14cVyIcrRbxdB5jxrmMLuksLgqJJCxmmNcD729YDH84cA+IPxE3jvo5Q/zI+/p//WhkFtl4ej4+GkCvP6q6ydXY4cOmkJRDNSMHMlSIXyNswvA4cxku/cFnYfIgggmAkGpZJvWNfasM/X4Hq6WLirODayqWnlVYoox6RC8kA3HMenx19c/3DvUNO7iPkIn/VpXx9tSX/9CbXM2raarUpsURocUSaaQ26S9NemfT7NEbBxnKqursooOgO8EEhTNtfnUZVIyKMk9dZDXw/A7o0nQ+PxiFJSNJJ+ILxX1PKzzzhHqgXWOTptwI/j8YdT/sq3X8CKeoY/3BtOJ0upEmKDSz/eh2v2KH+SeB7qGXSfhmMxb691pYLYVKxqh/5Vhl9vZvh9VQQgJgVaSEzrunsovUJfdih8xZfmLyy+yxFgYB7BRz+CGxebvkU3jIid1KkfgioI4Hp1JzwXlwD/guGXGwC/V7rxm9HVFC0UD6SBLX/O3FmMU2wrF56rL5a3MFh6Mmdvg5Gj855MK1KtOMl6fFf3eVccb/qT2Zd4tnoZAbwpf4T//IH/gtcP3oAQgvHUMJpWoXlvZmGkIX6/GvDfs6PYiAnVb/Ued3uLa6qW85/TO7wuexCAL82vN8dJVLMTNdVOUlnSAvxCYVxV2zdSm/YdtgD/aMm0TyJOwDCXrmTmZmeW80/nIW5NCBiszPDXDP9kFlQGZ8m5n8wMlXEIAa+5OmCnm+C854Vbxz/HNpX3nsIWYUTI+8UYn7dIoahcdaa1o41NvBduzPnIb074v/84jAtKIc/U6FitNJFM5lVISzliLaqVpKjsxnde2+DOOtcomOCUc/wyzPGftLz3lMYdrSyMpZXEWLdVpdCuojoL4A/vnlcZ/lZ95CMf2fifn/u5n+NHf/RH+fCHP8x3fdd33e99fbXuR5kCtXu5mYOuK8znL2b46xfD9+y9i++S71ya8/UetHf4yJ75+SjM9CNx0TDmXGRJHskfQtjNkmTnPUki0fdeDLu2f5XKWzpnzaqNzYYaJLWd+gFSqbmWn6OjMoZmfaF8mkq0DCMClji/evK/nduCfZE2YHIN8JsSZU2z6FgwVYLVlY4vpsvNFN9SBDTGhr7xX6iVHAAyggblLMIGmZQgzIRtKlnOw9pZiOB0Hj9vW9Wy/ny0bEjnCedCCME5maLrJkJnsciz3i2lRKxWM8cfWfnauG9bVm7N8PfIUFqRJCrItpe+30osn1+Z5TLl+nXsfQMqdW/zjHnYwcjyR6f+fp6w002Yl5YLsgb8t/DeMzHxd5J+HCM4wWybDOaXbXusr+s+TiI0d+yQLxTP81ujT+HxPJJeWZPyL77PMX4UUoO3+BYr5L0L0YFnaPIKAR21kPSH2VK/APxlYPzOZ9uPbTC+q8+VXIrkqw37qt0AaNoz/CqyhRvlijpIgIvJmIsypEw8PX5qbbEn50PE7ACf9lh9nU7cAij56FeSFMvjKxAXaKdcXyyi0LZL+l3aiQ2c7eclVylSJU2z7SSy/nw+RHqHVQn3rryJeTpAmYL8+tEsv5CSXiur/LzeXWsuGeNIE433C+O+qS8RzjXz7CYCg9wuAP/SduIMv1xlU23VjD5tqvqy34nvLqNrhr91coSKIMAuJP11JF9ttLnBsM/joZgh4uhRomXj8B8+WzSz/J+ZP724zrbNV3vXMPx9E+6VVYb/pJJ+oAHoL5W3MVIuxfPNWoB/E8MPK7J+4OH0MgDPVbcAy5oyrVXChUjWZ8vQ+H8kvbqRTQ73tSBL5Imjsx7PH+aRNMTEXtbn+Ku738w3JY/QiUx3yAwXdHPNeF4tGl6x0dyTOZlI8XgOzEIq3s9bDH+rv3O7Cs+XC3qX12bXALhp7jK20WfHVyEF4T7U8gy/ovIGiQjeNkIiVyT9VogmJhSA+EwyR+zPzEypXHVmOf8wRvL1u2oNiPY6Yf+N8dhKnAnw3x2FZ91uLwXheOhyWEuddY7feovxJhINLryLom+HEqpx8D9thW1K/vjJsF+3hgLvwkx/mO9/ZYxyJ9Mcjks6+dFKVa0Exm427rPWN8/RebH8He+dYo4/TSTjWXXiMYAQyedPBM5lHS14DOA31p14m6vb9z4a/n0N1plc+v/u3/27W3+2v7/PD//wD7/q0P8VWAKB7O3jNwETIcNiX9eLpbiokhkdL5Er8+1qvuig+vkQJUQ0jnEoKfmLO2/gSvp6rqSXYfYym3pL3nu0FM38frV/Be/9upP+yb8gbVM6aqf+FguWq5Rr+Xmen73M2MzorxgMnrQSFaLjisLSOUUEzNyWpDJh1/pgy5bkGxehCtmoLZZi+Vg4x3tnwvx+K03B45v89aXotHrRL2XDcgmd4YRExjxvk/SiW/XmfRfxOPq0E7Z3zMN03r8AL3+OdPQy9TeovCWRupm5z+cz5oBNsoYFhwD4c739OqgBv4wsXt7M8G+R9EeGv+My8ixBKYGcLoOlJUk/RNDfevGZqommbH6lKhpgobYpTwCyPoxuI2qJuYDdfkZlPWLUQRJcvkdmxDQC/kHaC6xpC0jXC4M1EBfN32zLdT6XGe/ovI6PT5/kd8Z/gicY5H1T/60bd9HX2znqtDZsaWtx5myIKzxDo05KsYjx9BXW2xCnF7d/UIYF9DbDvrq0sBhf42bRGEXWzZjJ3iXSg5vIao6o5vgkR0kZmiTeb3gRChwKNx3y0OAh/mSSMLUTXi5ucjm7iKjmyHIc5b/pRsPPtqTfuRB3qGu/hzbgF7Cc+nF81aZ9m2b46xEdm2ShGXIE4M9kQio1ZW8XPTlAje8GM8EjKpsHIDnv7OOF5OalN/LIC39A55lPMX/4rVtHO5RgieHfZNjnXADQzrWj+YollriMjGRuF8z2JoZfrQB+b6qF6mlDiajqWQX8t4c0yUNIhTAVwpqtkv5esj6ihTUhCUYtAP+qOur12UN8YvI5hnbCPTvifEwK2VyeuV8G/LZh+M/hEehqhiqn2HS9AbFa59QOuciY+4KX/ZirVjbxfO3GVX1M3Qrgt0kH5oeNU/+D6SUEggM7ZlRN6DmH34ZFXIXF81wZcusfya5s+UWBVJLo5HDsd4Igv/8Lg69naCfsql4wXzMzxPQAki5l5clTzbmdjJdu3sPMRujWNSKE4Lze4cXqNrfNIReSPQD68TJONHRbh6Jm+C/oPXqqw9XkPC9Vd3iqeJG3dx9DVDOEq5ZSEM5aWRau+aKMkYl6B22rKNUTKFMsMfwA45giETN1kYQ429qIuS7vPcPqkGfu3GTQT84k54fW/P5g/fmotSRLBUXpmc8ls+7pjftqw769QcqN+UtcvqD5zNPw7Bnn+Ov4vFSmkThyQdnoLEqnVK7EerPVF2VbVa7i4NBz/WZUB1lBMXeoboJ3JdbbU42FrpZWkkv7nWOVpkoJTBEk8elKNJ+JSgxYyPnrOo1xX5ooJjPDvLR08+OPU5DQezr6ZN9fII5l+JttZmc5pj6mBnzt1ZkA/6/92q+t/ZsQgp2dHfr9DS+7V+srokTeQ+p93KaZzvpOjy+7eg5cqiD9Eitzj+2oKz8bEfj9ICkH6OqEq+kgyqC3vJwFKO/Qh4EBLveCQ/82V+mjKsj45WL2mmVJf7t6OudafoHn57eY2oKu2r4I3FZSClKlmHqD1id/Gc5syaVsj2R+SMHm+X0QIQu9lq23GX7vqeOWfFUEYNSKKBTeN3OCi+hC0QL8QckBgcm1SYYsZyhT4HU3Xgabv0/bsA+CFPkohDLrhZm6dHSbOnapcoZUKNLovu8mgVE0nQGFrchazY+NkXx1tQC/ZzHDP43xe+1RgMqVjdS/61PymLfVnt+HVdM+FseaeH15s8ZiNw79aQe1mk3fqtqpXxSL+0ZKwf4gxRQp+6bPHTfkTnGrmeEfpH1wy1L5YTUFIdjbYAymlWBWLN9rb+o8ypPzZxnHRfs39d+yUcofvqM/VhIYvoQI88h1NekFZ5P0ZyIJMYV4Zq6kL1WYhweG9QL6CEk/QOJKSiGWkj8AZEzCKLq7mLSDLmeo6RCzm4OARCtmhd34JpwYzSAxTHA80HmEZ6Zf5JmDJ7iWvy421URoUm1oUHrvG0l/LzL8QoJqJP3LDL9ELkDlCapm+JUpmpi4uuoRHZNkKCGPBPxSSPq6w7y7Q5eTMfzpeAH4nffcO/d6Hrr5KdRsSHrzacorj23+LCnot2b4zyer8/u+iccDFqZ98TgKF94uVQP4wzW4yvDXzz1ZrTD8rgK1xVCP2JIWMIiS/kpNSDWMZvDCbXjoIpHhD8+CRtKfLEv6+xvuzRCdahZjVEquvRYTqdnXA26ZAw7tmHNyd6vhnXO2aXwM4vesJf1eacp8h2x+SD65y+QEgF8IwQPpRb5UvMAL5i7XWvF8szoNYGmGfxmw1tF8tVN/JlOuJOd4qbrDc+YWb/Kv3f7hzvKSPaTyho7IuKTX7/X6UCkRQItCnpwVFII93XrP6hwxHyGLQyrb58JuQi9P2Msc43tzVN5beq2d17u8WN1eMu6rJf17PZp71nnX/E7dzHpt9gAvVXf4UnGdt3UeC5yEMfgzchqVsWglY+pSFPC7wJInSRKul9q0zy4z/AAT6UNMYlwHSEITvg34vfcclPf4vSdf5Pc/OefxR7v8hXd3XlkkX38z1Oh3NUVZMS9EBNN2+xjfhqoZ/p2+YmLG9PbD377w8gRr3an9UYw34VggEd6E9VRsNqpojGi84TQrRu891hs+98Vl0DycGM73MtwJkhJOUicZK1VS4hxUGxhs0zK5m6/M+deNlZNUkN17iuqEgN85nHOoE6ZkKbW+f6tlTrnN5RKvzvC364EHHlj7z7Vr114F+1/JleakFx9G5uuzcUADCBeS/ioY2EiFzfeQyeIFL1gwZ9Bi+JHNbFBcwgZgsGHBGeLsBNn4FsI7bNaj6vRQQqI3RLEdW84G9kWqrZL+du0kXa5m5zDOUNizSezSREUG7WQvwtJVJFKxl/SacYg1Ob+zETgJdAP4F0Y7vgVCqef324tdWy0WKzVTIfwCjAlJHX8ikY00U1XzOMC9/OJw3nFnPqR0pgHILrr719LvbVzLrLOLlRppK9T4AAiLi67Om8WDj4Bf9M4xjQvLGngeBfhrYy5VM/yRMfnC7Bn+1TMf5Bef/RD/7vov8es3foXfuf1bQIjL6ihNmoTrqwb4Nrqli1XAL1hIUSOLvWo+WbvAm7x39P52liX9dSVasdvvcE4s5vhrafAg7UX3+/Uxgk2llVw7F0oo3t0L5nyvya7xaLpFyk8wTJNCHD3DD+EYVIsFgK/dxM/i2yJCqkcejfvmrohz0gZjC8ZRRnsUw+/xKCwOtRzJB6hZlPTnPUx9Dlqy/kTLjfOMhbHoVDPoKDI75hH2AHh29jzWVfisF2b2t6iR5r5sGNyOzHCA9L7xEBhneUutIeIk0sllhE6lTeNWt65bYQ0qXrMmyUKCCBJfjHGz4cZtdVVGGSX9enI84E8i4J/m+8EzItFMHwzXWOfpP9r6d1IIujJHR4521aG/so5Ey+Ay3Zb0174cLoxt1IC/U0vZdRrbzfUOtkz76nMr5LHGrPVlX5v2TdyMxx8Mf//E823zTh8Y/gj40xWGf5BuaCrYsmnUQvSPEOtu87WnQYi0287wz+MzQgD9qm58LN7R8xj1mp1C1v9glPVfLxfxfN5Zpj7c6z2RIuOojdUZxjjGcVa3Nu5re0o8VMv6zZ1mRGetojHqs1XwL3kku7JZzh/nzaUUaKVQOizqz1ahUefHByQYOpnGe8dAzknyzlrsVz3Hf7cF+B+5JLi6D29/dLGvB3aMxZEI3ZzHR9IrKCSHdsxdO8RLhTBni6Az1jKamkbOrJVoHrk1yw/1f4so6Q+/UN8fw7ZTP75pNNaRfs47bhe3uFW8zIs3wrY+/8yUTzxxNsZ8m2FfXbWsfz4L5oGnlfXXQDTvOrTQ9HuOLA2A7aU7px/btPHZImriKEYctr00TuvU73CMZ4annov7Gm/T4djGNbNbRCr+aZRnTdLvojN9/e5fY/hPMcMPYSkwmZfH/yJBWeD8yX2wtJbMiqOd+k+7zXZJCeUrMH38Sq5X5Kz3/PPP86EPfYif+Imf4Cd+4if40Ic+xPPPP3+/9u3Vuo8lhETl29mNBlS0nbCrEiEFQi4yln0MnhetxaOfxRl+0ZIpSkmCwRYFdsNlZn14uHSG0bBv/womGrWlZ2D4aQHlhuHPNjP8de0nfS6n+8xsQXWGuJVUh3i+I2eeWzU1Bbu6R0dl+Mg8rgL+mgkHj66d6BsX/WgkF7+fLyZrgEO2I/zq7qZn0dCRCqTA+2B0YxtFRxEM/2BpwVU6Q6ZSJmaOi/tcM/xSECOSthj3IZhFAyl9GBZ03rtGwg0LwJ/1L5BKzdyWWO9QWyL56qqbObWJ1Gvzq+yJXrOwKdyce+Vdrs+e59nJ0wD0ZZ9UQxIBfw3w7SCASRldtFtHMypUCAvvDSx2bdhnOjtHMqkqD4zuKuAH6OYZD+Z7ANye31oA/qQXwPTKZ257zSVKbjT2fji7zP/r3F/iW/vvPJqlqWMyj7mehQzRfI1TvzOnnkFvl5SCXIRrYuYK6szqURHASiozekexlNYgsXgUxi8i+fC+cem3eQ9Tz6m35/g3GE86H2YE97opad4lr4ZcNhm5SCkwvOjHHPfqrEFqR2Thuegg8RXSVnhgnKTMok+KUiIqbE9xEIXY6NQva4d+IbFKLZ7Lplg3WozVURluEO5TNb67taFUlxoFE85Jvhef4zB/5O14IUkOb6LvvUTlLLeKw6UYVCkFUgm+pfcOvrn/9kY6X5cxnjxVoXElWJj2uTnhuW6wzjTnK4+A3+sgOXbTQ3wxXTD83uEiuBH5AJFtaXa39k8g6JA10XwPPxCeEc/chGmtnhECXNVI+rUOz8DZEbF8vpwvNRxUvEZX86rrY3Jo4zXWMLbLVZrarDRF22WGH0JKCpzOuO9acgFBAK5j4RDllLmZNMe7TgPwhIZTYVyMKvMtT4kFmK3n+F+2w6ZBsVbe4byJs/408/ar5ZxHytA0EgKyRGPMK3joqAxTVXTdmEQLfDlD2Tl7uwNWGb62cV89v93LBX/tPYrHH1g8B2o5/3m92zxnU5k0jY+n5tdB6NioPz2gmJeOPFULUqXF8s9rwN+6d9umfed1eP+MVMu4j9CEtN5icRhnuDV/mXvFXTqyy607C/D9h58e8YVnTg+gh00k3+Z3+SKaL2SmH+UnsKnq2fJO15LLnF4y4ML58J3PIutfAvP1fSdENJYMRNZpmxLWWz73pRnOwaXzCY8GOxmGY9NcJ5azNq/OUMKvpRg45+tJEACKsvZeCMfy3qg41fsp0ZLp3J7ob6zzx75z2qWVpDrGST9I8s/2fFBSUFRfmwz/mST9AP/gH/wDfu7nfm4RZxJLSskP/MAP8Hf+zt95xTv3av0pVj3bLVX4j7NgCqTUCLkwcnOxKyyWGP7wv5WUlPUCS0h2cgEGpnOPxJKlqmGfvXNIBelBAPzV/jWMt+QyO5WkqylnYj57gjdlAK5bJP11CSE4n+1isNwsDthNekeCttXSWpBqeSKGv3IGKSR7cb7TR2n3mqS/blzYtqS/qiURkREJyglflcvz+94v5laTPDJIgVVqZOFChv+4sFizaT3vOo8E/3Isn/GWHdXlWn6eIhoauawG/IENDszwhi/tYNo7T398E314k9kDjyOFbOb3Adw0AP6kf4FzyYCX5nfp6gyFPHK0o57hrxn+/bTPe7N30U1h1j/PBMvMTpmYCTM7ZW5nXPGXmuxiWIwo2O4eXlxHeIcsZ7i6CdN60XtrW02lRTUJA53+kQ0KGV3ZN7mgC6V4tLcHE7hb3sHFl39f5eBGTeSii5JviQhNkZVrNUsVWgsqa0lXpJxNNNwRFSAzxzP8Ui8ApI7mk2cb8QybE4KsieYrgoLA28awb0fvHn1fOoPyDq+CXFFndSTfFOFdMJnMBwtjuskC8IdZf7E0Pz8rLL0soddNwixsbx9nZrxGXuOz82d4qnixWcRvq2mU1XdVOO7OQ16Ge95lPbK0S+kMPcJzSCEweE6j9DVJj3Q+WmJVRQRcLs1xQCZ0c48GP0S3lqaQyQQ9uBTu/6pAlLMm0m+1RDlDxftmmu0hHSSJgrxDce1x8utP0nnmj7n3tr9AKjXG2+bcCRHeI1eTS2R6/V7xPsSdShV+rxsN/kpvqIRH24rKL5Qlnbq5qdMww29DXKTo7i3Gn6p5uEZPcH0KEZ5/nsDy37NDZGfKlf0uN+7Bk897vv51IrK0BaUJy6c0ERSuWNy3K4DfewfVrIlGhdBoknLdP6Jmhg/tZDGe1jSBFzWLIzq5SILsmIVpH8C8e3rjvkymXNB73DIHXLf3eAMXmBfhHuyIlMTVioosqM2AXEuMcQuGvwX4+6rLObXDXTvkhdl1XtvboC7yjpvmgMKH5JpNcXwQn31yEWGZJZLRK/PdpZQ5F5hCMcUXIxCQ5yk7ledgUtDrhAZqX3bIRELhK+7Z8UbvCYDbjZx/b+nfH8se4JnyJZ4qXuQbuo+HMRxb4TfcA9vK+wBwerleMhTLU8ls7ijK2ARoNYcqW1DKhZrmljlgqGXLzFIQqAVPYefcM3cZmSH9ZMBwGLaplODNj3X5k89P+M0/uEe/q7h66WSCdu99M8O/s2GGH6AXo/kmUwuoraa727ZfM/zdLo18+4FLHa6/NOaplw745rdtV7RtqsIWzfpTxBher2QTxanOEM1XVBWffyr8/dse7zO6E+6p4SQSN/g/VYZfK7kWm+ecxzlPEu+vmuHf25UhRcF5htMqmCOeoBItKatgbLrqFbBaxrpTrR8SJZnNSyrjSLbcQ6EZcLZFiZKCqrKnGrH7aqkzMfw/+7M/ywc/+EHe+9738gu/8At8/OMf5+Mf/zi/8Au/wHd913fxwQ9+kA9+8IP3eVdfrS9nCVGbufnGHR5TNJnhNQpsZr3a8tBqjjclGr2QxwpJquFcX3NurxeiOmZV05WzHhSQNID/Ksa7Mzv0e2fDwm9DzjwbJP11SSG4lO1zLhkwrKan6mJqpUi0PNEM/9QGdr/2C1hI+ldYJxfGKBACVZv2eRdBVX27ujATaqulTGkPwd0fWpF8cbFYP7ikos6llkhsbXBVFaGnsILcjXd0dMbFfJd+PHczrZuHYdjU5m6owzONc/z68GUqZ0mEWgL8C0n/Pvtpn1ylTOz86Eg+WJrhh8hK6wzhHN1yzrl0nwe6D/H4zht5x/7X8+f238NlfW7pBVFL+l3WwcfGR1vWL4RcMP51NvZK1ZJ+2zkalNaSfrXpWhSCfd0hk2kDGgSCnkoJEUthuzXID5Fe6wsEKQW9NGmkxqct74Jnx7HvSRUAedMMqcq1UYfTlJQsM/yxasC/m+4dvd/WBJgmZFi0rETy2ayHkgqiqeIywx/Adv3cqoxFCsFOP21e9jrms78mewCA54ubjax8W01akXwQFqd5Fe550x2gQ2ut+Vyl5KlJv03Gfaq+ppMODkfSPi9Sb2X5d7IdqniN6iPm+PUoMMams4PTCdb5cHyA2aPvBCC9+RSM75HJdInhD/GlcqPxvHUeJQRJosKRkSBRjfx/6itwhiouvBMUOjJtXqehSRWNyIQQC1+T6uSLc8FCaVFH8w3tlDc9FL7fE8/72EANIydVZIESLRt2P5M5yYrBLbYKSqHWs1oISJRaM6/fjQz/0E6CNWsN+FeqsLWCJM7tA67VUCiipD+dD1sS7uOrjud7oboNzjErw3t+yaFfpXiizF6FxXUN+NVKc/3hLMr65y9u/DzhHc+WQf31cHplq3GZc4FQqF9jWkkQ/swJd8Y6lE7IEoUf38XPJ4ho4DvopeSpDt4ehEbVuQjy23P8q3U7RoiuNgSupRfJRMLMF9ww98BbxCnHCCvjyJLYvGuN/rSd+oHIlIafj6Mjf4pqfClGWqIaht9DHK0cVYdMzJiB3kEJxY3b4XcunUv4pnfu8poHc5yDX/nYHQ5GJ9v3eeEaFcygtwXwN9F8YUZ+bk8uHZ/ODUU0qT2/s/AGeeBS+N8v3Joyq06+vTAuVC7WHT4CUaGakRwldDPnf9L69FP3KApPv6t4zYMddvLwtzXgD++BPz1GWSvBvFxm3533eNd26Q/viSwV9HvhGrt1ePKow0RJqhPG54VYxZMDaynDe/OobReVPdOEIYTnjHV8TUbznemQ/OIv/iLf8R3fwf/2v/1vvOMd76Df79Pv93nHO97BP/pH/4hv//Zv5+d//ufv976+Wl/OqkGhd4vZ76oMMke9YP18NHphtvzi8/MRWsrGtA8pg3O3d/R7OZf2Ouz1MsrKM5kbrPX0y0OkrXA6xQ7O4b07u0O/tUHKqZLFDP8xkv66lJBczvfpqozRKebrhIALu52tXca6TFzV7aX9xWjElhl+vG1YeKUW+d3ClAvWyrlg2MdiJhTiualZr3rBW8+Ntl36ZQD8QoBrAH+Y4V9VKzjv6dTO0rWLfdbn0EyRAjqppqjcxoWXA4pemAvVozsYMydTacPce+/w04Pw/Xr7pDLhfLoTwNExub8Nw2/K2HwI7JxNOohihCyXX07z0pIlAt1ygm0Af9ptjsNyNF8A/B4f8hc3SMRq0z7Z2z/ypSWjSZsqZs31ufR9EFztXGj+f1d3m3Ndv7kcLsxkC91cU6uVZ/Wx3borW8v5ozPbFzsbrsMmms+Wa6zxaUrJFsMfAb8XisO4gN5P1028lsoapAzJFs4tjJpqw77aXyHph+O7HM0nERqcDddwUTl2egEINL8TmwLn5A4D2cVgea64eeQuTRvAHxt8HtIi7E+VDxBCBnf8CFqVEhu9BI6qhaR/8XyrR1x82sF6T9ICgULppkmzWh2VUfX2wr6Mt7PCKgL+qn8ehcBaF8AXYTSmvPAwAjj3wpNosb6Q1VKyaR0V5vcFiRbN8Ra+Zdznw7iNiddHIjTK1oA/eBWEihtvAP/Jn+dSijg1tXDqH9kJj10VS+Z9KI3wtgX4RWO0mavOWkRrY9i3YnybJuv+EQPVRRCMCWcEkCE2gIF5jMrrRH2AU+nSu8AmedMQOs0c/wNJjOer7mCkZGrCe6qrliP5rHVYYZjLGUIIqg0MPwQQD/BidQezIUHFO8OzJoyIbHfnZ4l9hAD4tZRrIxEnrdJ4Opki6Q7w5TgAupgKo5Rgt5c2rDosZP3bAL/xlns23N+rDL8SktfEiL4vFdchqlFOU0VlmXKXG+ULSyNI64B/cTzGIo4fiKxpPA6VXGkAOZRQlLakrwdNw+VmBPyXL4TG57d/4zkunUsoSs8vf/QO88IiTIGcH7ZGDperlvP3uqppCq5Wv7tg+LXQlNG47yRVO8d3O4JOK1nh/F5CogVV5fnirRsnBtN15J5sAP9yokFt3OecwRzT8K3Le88fPhnuv7e+vocUnt3OMuAHcWpfgFdSSoVYy7ZSxDkf1LtyeYY/SWG3H+6Llw9PPiIhpcA7T1kdfy7Lyp46Pg84MpqvrNyZtgnEUaujRwa+WutMq7Tr16/zLd/yLVt//i3f8i1cv379zDv1av0ZlJDUM+J1NJ9oMfwNt+w90osFw187A8+GQdLcNklytgGcWkv2djIu7efkmcY5T28cFs1m70o9PX4mh/5QHqGSKJuM8raa4bfVsqv4hspkwpU8gLb5aV7GJ3imTOycHd2lpxay6kbSv2ba5yILL9BS4uPxXQD+mDdejNfi/JwPsldgEclXM/yNaZ+KzLVDIHHNDP98q8lJDRrqfT4/uEJPZhyYCTu9hE6eMCnMOhx2YDsDXNoJcvnh7caIC4L3Q61cqF3s95Iefd0hO8ZdtS3pdzGmMPgRyiC5nd1rwE1lLM57djtyiUGq2XyfdnC1YqAdzSdEdOffYj7pfcPwy6Mi+QCyHl4IBH49DSB8GFfzhZx1kPZj82fxG7W6JpPJEnO69DGpItGC0p5eIui9P3nihABvqnB8nDnWEM17T+UMEzPnoJxwtxw1YFcKsc7wS9XkXu8dA/i9KZBCRl+2RSRfbdhn8h6pTFCDAPhlOWuSL6QUaCGxHqaFIc80g+5ys0kridTh/qqztZ8ujn6/TVcYfghsK0DZHZBJTV/lFPEYbDJcPK42zfCreP36NCQDJFKFcyQEKL3wpFipXCb4fpzjP8K4r2b43c75xiKk/cyYveadAAxe/CId4zGrgF9v9vyw1pPnGhHfNUIKLH4RzedLwFFFBjARGtVi+JsB1Lgr4iwMvxAxaWYxSz+0ExIlePyBmuV3zbvNxMVsokXD8Hdkd63x5+tn90opJdeOhRKKvgzn9dDG5uAmwB/vk058M7sN0a5FlPVnp5jjP693yUVK5Q0v+0mTPNCRedNMsjrDeI+Qjm6WIpVnFhsz2hRLPij7akBf5lgcL05fWPu8l4tbzHxJIjRXkwtrP6/LwxJo1FqitTxTXrYnOIPnmQYpEWl/bbSuk2l2uklgQlmw9tsA/10zxOPJRbb0jqvrtVEd9Gx5g1IGQ8STdmW991hn+bWb/4Ffv/GrjKsF8FoH/LYBqCMR/q0n86ZxNtKqFVcpwFu6ukcvGSxdtzdvh3N95UI8r1rwl7/1PIOeYji2/Iffuoudz1Cjl1DD66jRDUQ5XmooHkbDvm3z+7CQ9I9nFiU11psTz/HfiUZyg75a2ncpBZcvhGf4szeHHJTbn2ftst5gXSslwFl8HHMVPkbzCYXxFntCgP6lF4fcPSzRGt742h7g2emG8z4tgnmeFPLEDYT7UVqGRm0bMDsfQH99GGvJf5IIdqPh4suH41MpYIUUzE8A+IszAH4lBbMtTv2B/beoM1L8MnqrnOXZ8pVeZzoi58+f58knn9z68yeffJJz57a7Kr9aX4HVSCLdQg5elRFILRZSDo+u6pe6QO6FGSk/H6FEa9Eq1cYXWp5pLu3lXNzv0BsHKV+1fwXrHVoqkrM49EPYP6WXZ6x11oC041h+gIHucindY2bLRjLdefqT9J74aDOrfdqyPjCH+8lgaTZ6u2mfDd9DSJQHF9MRZDtT2hRhEbmyyGsz/GILwx+ypMPYg2wz/CaYsrQZ/lpC3gD+aDiXd/d5qHuR3aTH2E3Z7WsSLZgXyw9374OE1+wGmWg2vL0Uu+fj/L7o7jUMcSI1V7Jz9JMOR1Vj2leVOBfjZARhtZ50Qk76/DDEo80N5wY5nUQsgfYFw9/BR8Av1hj+OE6xAfDLYhoijhAk3b2j91dIiGkAshXNt9iY5Eq6kILupP3YMFv8iouMbUcmW1kLIQTdPGmklKcpjz+RH0X4oGDchzMb0wsAKmcDwK8mHFQTCleRCM2lbI8d1aVyC8lsvSCtAb8VgqEL9+z5YyL5qEqk1mHGF7kWyVfmPTKZkKRdTK3kWHHqLyuLQLDXS9eaXkKIIL92NLL+69XtBnRtqkUkX7yOhUe39ieRml7SaRheKcUmAcmRtTBKa0n6o5lb08CKz/QggUi2MvxCCJKdIL8+iuHX0bDP7lwgUQopl1NKqnMPMO/vI52he/2JDYBWrJkk1vLwTCu6n/p10v/zn5G6Cu9omqRTXyKca1jipVEFnSFX1E51isdaNN8RJUQ4Xt4vovmGNjzz3hxl/cG8L+z1IpZvIenvqO46ti+niA3KNS3DqMjqaW/L+hvflpWqGf6uj+qKDYC/durPJydn+IUQXKvd+s1dpvFzejJvgKLVGdZ4VCLIdUqWSArSAI4A3ZJRCyEav4sXps+tfd5zs2Dy/HB6+Uh1kfesLeDzVJ1JdmuNI1GSvFbxaL2mvkDATi8lTxTzwi6M+8xoY7O1Nuy70DLsa9dFvRfUQd7yvLkbIiJPyGQXlWXMXYp47Q+j8gnWAb+w4X0kbcVhbN52dWeJ4a/n0b2QS+7zdc3mtgHrNXAG6OaK7/7W86SJ4Obtkv/4yRlO6EBKlGPU8EXU4XXk9A6imjGM0v9tDv2wAPxV5bFGYL09sSleLTHfG6xf+1cvhvfJnTtwr7zLxGx4566UcSao6Oq1kjOLtZN1YRQjPr9OCtB/7zOB1HrtIylpGp7FeeLJdLhuh2MbAP8pjQBfSckNDLaNJi/1tduW9Nf+C/eGZfPcOUklSjKZHf29rHMnjtdsl1bbnfqt9VhHsw44bdUjA/ZVhj/Ud3/3d/PhD3+Yn/7pn2Y6XSw2ptMpP/3TP82HP/xhvud7vue+7eSr9adQwQI3vFmTBcNfL+jq2W7nHWk0HhOdASIaYQWnfrEgJIUIMugNzJ8Qgn6uyQ7DwzDM71s0ckmCetIKbuEysPtSLVgeIRpZ/1Fz/O06nw44lwwYVVN8VdL93O/Qee7T7P+nf0Xvs/8JccLt1DUxc/q6Q7+VfuCdgQgs15yjvQ9GfPWxjEx9zUgiCHJ+W60Dfu8XjYHWDL+ojfrqUiGGSCAaoKuqOR6PaD0kjbdoEczzvDWNPFZkfVKZ8GB+gYHuYYThfD8Hvxxn4rxHS0EVAX93dGd5fj8CC7HCju8kXTrqGGOg+hrFg5mHcy2IIyUCn+TI+SHT8YheJ2F/kIE1C+m5903MYJmkzOJYxrKkP464eBdk6yvXci3nN3kXtWHBvVo+3xzNByCk4kp0Ugbop73gS9Gi+K13JGgSpY/EhnmiwrE4ra5/g4fDthIyuk1bw6ZIPuMsh+UELTWX0j0e7V7mse41Hutd5Uq+TyLVwq9gg6R/5MP1qNEbc82bXXYG7yqkToIMXC+AQa2+qLIAsLVQmG70UlgB/HjY6SaB9dtQqQq533u6z3m1g8fzTHFj6361Gf76LCTxeik7A1Kp6cgw3lI5E0CzeOWSft0A/tjIIzatkKGRe8Q1ke0FSbXaNsPvHGoU7lkzOE+ahPQW2XpmWDyHD4eIPv3MH619ntjQ2KjHAhIlSF/8AmI2pje7jXO+5dQfIkirCHrSmtkWMkrsifdr2Jem4WlOGycV9m+nFc1nveP8juDyXmDCPvdCeMaUGyT9Xd2l9RYM16cp1wElgbFWLM9kA+y0jftgIyibx+PQjd/XbfC+mddO/aeQ9AM8mCzi+YKyIoxW1JJ+p9OwTFASLRQ6EXghWsZ9K3P8MQr0hfkLS41K7z3PzQLr/8gRcaEAiHVQkGh1umSLWIUJbvft8a5NpZSk302x3tOXHVKhcTgO7Lq0uQH8yd7m3ReiYfmfKm8gnNt4XjdVWVnu2sWzZuLaDH84JssMv0DakmF8p3VVt2moGimae2hbM6mW8+/v6KahUNf+bsJ7v/kcQsAXX3T84bNJSApK+/isjj29gxpeZ3QQrt+jAH+SSNIkfIfJ1CLgxMZ9RwH+KxfD/fDybYP3cKe4fWwjYW2UoPFNCs/m+nwJThbN9/K9GV96cYgQ8KbX1esxj/CenU4E/BMTvJRwZ7qWz1IienW1Ab9zfum5XEv681Q1DP9o4hifoHFSl9bhGXmU9N7YGAd4WsCvtzv1G+tw9uySfgDhxasz/HX9N//Nf8O73vUufvInf5J3v/vdfMd3fAff8R3fwbvf/W5+8id/kne961386I/+6P3e11fry1lCBjDUYviFCTP8vU7SuH4770lmMQO4u4eIcWN+PgyZru1tar3kIt8uORuiigleSMzuZYy3pCo5lUt+Uy42FlRCO2ceaIz7TsLwQ2B4Luf79FSH4vDF8E4EhHd0nv0T9j/6Ibpf+P0FAD9qt7zDecf5dLAkJfe1U7uQkK7L/4RKGrApVgE/tFj7lc/Do8yqpH9lhr/efgT8NTAIQEEsPRCMs+gIlDbts5aKvaQXovsyxd4gpTK+yUeuGwhmNzA82fDOklS/dug/Vg6/oepEBgDK+ZLDNgAqxVQVyfyQ84OM4KNlF3EC1jTZ0HOdYHQ9w98CCFKFb2GqjfF4dSRflR/t0N/sc1RzyI3GfZKuVOymYdHUT3pgzNJnOhxJVMGEMfrNL6Qs1WRansgwZ3kfxMkZfqnx1obm04ZjM3cVO0mXx3pXuJLvs5v0yFSyMMKTGluz20AWzcdm0YX9oI4mVAPUqglau5xp7n+lJDpmdQNNJF8zwy8VNqYltJ36w8I+YdDb3rTRWjbYtWb5n9og6/fec6s6YBxd1LsyAw/S2cbQzOT9ZjQjEwmlM7HRss72HlVVzHvX5bQB1roGZUkeVPwthj+w3ttjNLOdALpUOVtWusRSkwOEdziV4Do7YY5aL18zhauorr4+yGCLCcl8svR5obGxfI0Z60m0Ii3HzT2ZllNcW9IfG0FmFfDXjR4BEAwnfbtpfQpJPwSpqPMhTrGO5hvHa/HNLfM+J2SL4V9I+rt6Jd3AlKEptqEhqOpRkZU59AXDHxfXG85X7RTeixjF6U2S/mjcN7230TdkW9UM/z074m5U2fz/2PvTmNu28ywUfN4xxmxW+zW736f1sY/7OLGd1ulICEVzk0CcXFJQBSUkJHT/8aNQCSSE+IVUPwqBoKRCSAWqK90A916lCkECMZAEkhDbaey4t499+nN293WrnXOOMd76MZo551pzNd/e55jksF/Jsr2/71trrrnmHHM87/O8z9My7VOZU6wIZyAqpGteVKp7jv9GcoQMCoUtcW9Ze188KO9jZhdQkLidbpHze2O51WZkIgmCRFxH9imGey718v28ghxocEaQ2+b4a4f+g7WfhXoud+NAr1X3sTALYA+W2FgLEoQ3FvVaMzXrkv5lc4afCFLXkXx9kUORROb3RQvfjAyKztV6szG/31VP3Mjxwx93n/OzL0icTqPTEKAycDYGiwTnM3dxbgP8wKpxn9rLuE9bHSP5ul7/2nEKKYDF0qJaZFiaJS7K7nGMUKUtY6wvglFyc0fkAb8guZdT/29/yV3rT9/OMPZNCWIGuJb1X0wqn6Ji9vYueCuKQC1yZvWZUDP8EmM/kjGdWkyqyd4KjEQJVMZszbR3bLy9NBuvJEEb09lMMNbtQR8F8IPweIY/VK/Xwz//5/8c/+gf/SN88pOfxHPPPYfnnnsOn/zkJ/GP//E/xj/7Z/8Mvd52Se7j+sNVkQVmXgOZ/VzFPZoFQ4X5895BdB/nhZP0E+rFg/Khi0TqqOT0DQCAPrgGSBff1Nth1LaxjHbO4VK2cuYB7Izm66pUKNzKj5F7GX915Umcf/dPoRpfgzAV+i98Fke/9j8jf/FzWLNZbtTcFOjLHEPVvheahn2dZmcy8c0Xjkw9NefuTNmKeIqvC45GVtG0Ck5u3ZIZul2mk6f1D8EAkmqBpFq0fs+wRU84kBaPORu0jnmgcmQiQckaw37q5h4LU7uPw3/HAJL5eWsD3nTof5gKc/zkJaQkKO5fmIE55zhQJXpYApa99NwbuvnrgYVCJQgid9cJrTL8lp2aopWS4E9jdOgf7RUlGRIZaNlhfiMkYAzeNXoKAHC9fw2wVfv6YESmWpFcm49uHnYvT6AvAfgdZ7k/ww/pojtZF2uNJwAobYWDdLDRddvNlnM83twz/JoNKtY+hxwY02CrTQbrJuAnqGYKg5/hN/kQSghnuBSi+RoMfz9TOB7l0eyvq5QfGWEgGnDd1acRDC5tiS8tvoX/39l/xr85/w1oNhAQGEhnntfzc/ZWpbCJi50kIoyVi+eTAq20gH0qMKqCbQRjAfCbNIeEiJJ+Is/wS7lR1i+THDakSXSw/MGwz4yuwHmMUJT1hyqNxigdgbwfQD4/b2VMk6DYRI2fw1r0MtnyDkiqOcC16eHcLgHmuNlMI7OdOEVHM42ELcg3JS8j6QccwAsJJKMAvK377oJ538UceO20TsNIlIiz7n21Eslnqsi6rhYRRUfoZq0y/F3AcBlGRjwL1cXwV9kQRiYQbJEtzrZ+7ub3kft4PqBuwPVFHtVjlUjc/aTIrXuSkScSpQpO/W3AL0jgSeXUBi/PX4r//vLsWwCAp9SV2DAd338B11/8bQxOXwF5vwnDzj18lZBPlIBUuJT0VmsDJQWyHex+KHe9Epg3G/cVtoqjH6uGfc06kENcVYdgML6l7+3F8BelgZAadxf34r/NdAPwZw1JP3MEqVIXOPdr4etvZvh/f8qgb0PiRWMv0dEICgz/zQ2AHwDe90yKp68aWCb8+hc62GmV4GLurvmDHYA/GPdN5w7wl7bcyfLP9QwX0SOgWz1z/Yo7/jv3SuQix4U+R9lhHBmqtEXbod8nvwBw/x09ZyQqW25l5GeLCp9/wa2XH3w+azcSmDHuu3NzMXUMPzNHxdu3o4SkWhUCL+lvKMwWpbv3epnEaOD2/9oAk3kRm5u7SgoBaxCVUF2lrXV8wSVc+sNrG9vt1K+NBZjQNVqzbwmBmADxTqqHHJh29RM/8RP4iZ/4ibfqWB7Xf+sS0jESUdLfsegyQwXw1z9oMfwuZ9k59csdbnbJaR3H51+2Jfe+VLGJhn1Mftba5fjUgP+SUvyByqEXbuNSDQ5RXX0K51eeRHrnBQy+9tuQ83MMv/IbyF/9Ms6+/2ejw288JG9Sdqt3vKZa2OTQH8y1SCj/oKk6GH7HOEcGf+U96xn+BsO/wpCSdMw1AFCaYZGP0V9eYDC/D7pWe28Ytsj9RnLTMWciwVj18aC6QJYkOBhm0JYxW1buLYQbG6jyIZLlFPbsdcjr73avGQB//+EAP9IesLiIgF8KQhhdnxcaw36GYS8Bzx54h3Lr5IdYmd8HINJh69/r8oZ9bNfGU6RvCJneGGoPZQr1xg5Yd0j6neeFxY/f/n58/ObHcJwfgB+8vNZkkCSghIsrM2yQoLvRkKWuyWN4v7l8y+wSAPZtAYdxh44No/GRj4Mk30hiyYavOglCAgUFCQ2DhS1wpgPgz7c/uBvgNW2w8KTL2rG+N66zlb3MWTY8OYiwW96ravn1QOa4mVzBm9UD/N786zBs8HJ5J27YJASeyW7hg/mzSEhBW4vMR/KZ3hgknMM4APRUBgrTOgJgF5Ww9VhiCQmd5FDVEqqco1JZlPTrJAORqBl+mbrmq1QbGWcAoNE1YDGBmJ4Ax7dbPwvz+3rkwHyWKoxRm/aFZsVA5hDj6zAXd5HNzrHg2uNBCqfEsf66DOxtqgRUwztAlXOAqMHwLwECSn9Bpf57tip1YwvuhRASJIKkX+gSl9m2CVGrLMayj1NzgQu/wU0U4fnbhC++zPjSawKVv/QSRVh4Sf9wFfCXC2yLrMyUQLGSiX3gX2Nq59BUR602a+kB0cCD3S7TPhCh6B+jP7mDbP4AxaDtq8RwI1hV5Zq/g7zeDj6RXIsydaDN8JcygxCIDD8YyFOFyqukVhl+AHg6uYYX9F28On8Z3338fQCAl2YvAgCe8YoCsMXNF34Dgg2O3/wSLEnMD27hfHwbZwdPQoj2uSUiZEpiXuz/DZeaMewlO+/3UErAM7DcAPxtP5/QABiK3s50mXdnt3Ffn+GF6h7evwfgr7TFLHFeR4IELFvMzCQ2pfIww19YIABGgpf0u5+98HKGsgRkpQCpMecKYSAujqz554w2jHungeHfPFYn2OBH3lvhF04kXj8BvvYa431PNpQ+FWFZuf8/3mLaB9Rz/LOFQSr6mOgL3Fm8iWv5deRyXQHJzLg3O0fluY1Nr3/zWoY37pV4416B9797gIvqHBfVBa7Ka2u/a9misrrh0O8Spjj4F1HtfeCM+5yjv9rgOfXZr96DsYxbV/u4ckyNxrdrJATAP5m6MUPDBvbbyPC7aD4dr6PVtItllPQrSEkY9iUmM4PFXGAyusBIjfcC1ERAUWkA3deSMez9Vi8PzgndTv3a2DWfmMuWFLS1UfFHtR7OxnCltNZ44YUX8PnPfx6z2f5ZjY/rD1l51i2ARdEB+Bk1s0n9wzbDDwFBmyWjzVKnLpdXH9127wl6qPl9AGBj6pn1Rs48gL2j+boqm50BAKa9gc9fJpQ334PTH/o/YvKhH4VNMqjpCdIHr6z9bWErZCLBQHUoXYJh34ozcJRGCxlND0V0m2525avOmVDDtiHpD/nf60C1uQGVJDAZODnlYHZvZUGoY71sMJpbPWY4s0Owi+ASgnA0zJAr6Uz7/PWwHLv3sKe1NNHOHl7SDyAaczUBPzOj0MZFKw1TiGwALhew8zM4bXVg+D3gz/z3Exn+FTkhwYPKtikYUN8Htr8fwy98c0wUHWukB9CSGVd7xyDm1hiBu6fcxkGSQOJVMZsqSySyRMbosF3FlkFyvdNeWo37xcXmaCM2a4CmsBVymaC/0pRiZtiLu6i+8VtQL30uSpWFl57nDeO+s8DwI4fYwnw4B3R3job9FKOBN7kM6oskg1RZZBCVvw6bpn37lBRt+fVzMWbrVbxYvgELi2M5xvcPPoQ/f/wT+JHRd8V5XsuMrPQRgb0RJAlI36jJRYqMEmgY16e8bDRfUjv1W8tIPCjTSQoJckaq1ro5d6Fco3DL/KkaO78Nmq47u6smww+vzGh4HpS2QiYUejKD8K+Tzs5aJmeCCCR9YwOANgZSERIlW6oC5e+RpqTfQqAK2eIB8IcxsOhV4hpnCLnwe4xeNaspcGlG84X64NPuF751h6Ct+9+JQmS9hmkNShkWqBZraSrNSjqc+nuUISHn0zHhAqvmboYNSn8ehn7Da2QKrS1KbVoTAF3GfQHoB0Ot8SD1Uve6nkxrUCQgkFESAX9FCVRCUEJGE9YsFY1rcf1Zezu9CgmBqZ7gtDzBvfk9TLXbM4QoQKlLCP9Zq3QIwQbDs1fxxMufxof+4H/H8W/+C/Re+GyryZglcm0kYlOFz9jb4NPRVUKI2IgLgP9Et9fD2rDvcOfrPZvdBoFw304w2eEeX2kDJSXeXLq90vuO3gMAmNtZlH/Xpn3s11MH3q1eYu67t+XC3UNm6b6rGfz9T0FrU3/z909KWAv0MrEdqLPBuGfx8efdPfCbX2Esy/p1Lvwl0M/cnP62GjSi+YgIIzVGYRa4s3gDc73+rFzaJe6du+fDoCc2Nm9u+Tn+MKKQixwTfdHJ8murYbl26A/S+/jMJ+n9alyMoWULs6GbrbXFZ7/imjTf/f5jMKEG/P4UHQw8wz8z8WebknfejlJCxPl5wAHv8Oy3liPY7ft7JYxNLBcSC73Y27xPKcJsufl5Y4ztHFnap4RwTYvVqrS9tCfAakkhUGnzbfNV+HbVpQD/r/3ar+Fv/I2/gb/5N/8mfuu3fgsA8KlPfQo//uM/jp/8yZ/Ez//8z+MHfuAH8Pf//t9/Ww72cb29RX6zVMfydW+WKESR9Q6iTJmXEx+sR944bcv7lAsoD6arw5vQbCGFQPqwDv3W1Ix3I2ceQJzhx0MAfp44GZ0YX8eiKTETEsVTH0Jx0z2Aw3hCs5a2xEj1kXZJ72Mk36phnwdPHvBzg6mC32yRSkEy7ZRRW7ZQgQ1qMPxr8n8h4t9LkpgMHfMznN2rRzd8BFxww97E8ANODdGTKRa+A+4iGHP0MglBQMUmGvcFwM9VEb+Th5f0e6f+svAfy3WqK804HKRIE2fgSGnfHX+DyaCiZvgBQuJn59cYfl7570aFGX70D/eSpIkwP97F8ANomShZz57747Xwslb//zORbJT0A26f0s/V3tEyll0kj1iZxS89eF90RVUKCTaVWzeaf2MqjJMBJAnYYgb9yh+g+J1fxPKX/x9Y/of/J6o/+HeQX/gU8vO7sdkHQmTHFraIkv4j5BDbZl2r5ZqZItAA/NkASsioshGB4S9mgN7fGVmItvz6mfQW+iJHQgrvz5/BTx3+EH766Ifx/t6zyFaUSpaB3N/zuj9ySgp/PEpIDFUPJVfufF1yf6Ebc/zWGkgTAH/mGgsBDPsGISW9jdF8ACBH7j7tcuoPkv7A8K/W0lYYqh4SIZ1SAEA6XQH8QrQMJSsD5MqNYzTfUxYzEBDjGi0sCmhUvlmR+evaqsSxcsxtSX+D4b9MkRBxAxqc+sO1CABXx4Trh2h9T0aUkVFqNXi1diMnWxrZUoq1tZyIYrPh3Cwi0AhV+BlnAqHvR7isTLCoXITcvNCYLjSWlcGi59bWAPgrbTBbaFgGjkYZbhz2cTBI3UxsY9b2ijqMvhp9kbnxg3BtyRRSkWsEiNRHYhI4D6kR62AgoQS3vaz/W5MX8c2Jk/M/mVyJTWXp/86oDC989OfwzY/8Odx96uOYDq6DQVDTEwy+/mn0v/7b9esq953vA5UqbaAUIUt2N2dDCSJIcmaUI9FHEo376mviMoC/J7IYP/itxTpR0KxlZdDPJF6euN/78JX3+3PFmPgGYsuln60DqqA4YqIsABNidd29NKWQL+8BfwPUNOf3t7GuYRzhO99FOB4CyxL4ra/Ur3M+c/973OPWtdtVkeGf16ktAzWCZo07yzcxqdqKilk1xcXUveY2f4DrV1IQAZOZwXSmkcoMpS1xsfJ6ADxjrxuSftPaL7jGu3Pql+TUdZuc+r/26hlmS41xP8F7nh7B+vEuACC2AANjD/gnMwtrGQz+tjL8Uraj+bThOM63bCiOUt+sCc2fydSCsb95n5JOwbRpHr40Dw/OEymwKNZBefkQMX+rJQXBWLzjovn2Bvy//uu/jr/21/4afumXfgm/8iu/gr/6V/8qfvEXfxF//a//dRwdHeEv/aW/hL/4F/8ibt26hX/yT/4J/uW//Jdv53E/rrejQpReZPi7N8TkgY6T9HvQyhaiWnq55vYFPsj59fAInOZRmqx2ZHlvLq7NARs58wAeWtLP1RLsP2f/4AkUZv1c6CPnaq1WAL9lBtgz312v7cEzVsGztd6DwHsRsK0Zfg/4keRAtv66lp0sMzRp6li+DoZfSP+cd7LayPDPH8SHs2brZsWDpC0kM2TrjumSBA7VIOaqA87d9cpBjixVqKyGPXDnKgJ+b9iHtFcf6yVrdYZfkHNWHeYKg15DWqlSAAFA+1Pgmw0mzSGJkPtYPbGSIx0kwmu7cmujKZzccyRB9hzDL7dcixGMsXHHLIJZpsXgwWvg//D/gnnwsgOVO7rPeSrjOdlVltEwP6tLs8FA5q3vNpRz6i/bxoL+XA1e/zru/n//AWb/+v+O8rP/G8zLv++iKIWKI0P59BTWG2KRcMwmANytTmFhISHQR7LRJ4PZuMSLjnVD+u+mygdIqQbgKhvC+LUiNmz2rFzVMWCZSPBzRz+Gv3D8J/D9ww9H9q/zOC2Q+g161RtBkGyN+QxU7pp1knbtjdeq8utbUs5BVRmvUq3Sej1lGyX8zql/S6No7IH67Ly1kaJy6ZokqBn+1mdkBjNHv5LA8KvZaSuzOhgJhkvSWueYDmaoxgy/LGY+9UUg86B/Dh0Z/szWgD+OLUTj2bak/zIsjQDirR6+0/v6vKW8COZ9gFMEFN7YLhM9SFUDENalU1N0qLHi55RuRnxV2RGM+855jlUWNpiaZaRig9fIBIIIV4Y5bhz1cDRKoYTAJHVrUzp7gOm8hLHA4SjFzaM+DoYZlBKQPqIueBK4z0V4wrP8QWUR1BJaZT7UxxlPShKwMBA99zzrAvwQAk97oPva4iW8WTkQ+0xyLYKqEOenVe7UdP0jnDzxEXz1+T+Jb33P/wnT9/+gO55v/R7SN77u/kYKKEGwe2zMK83oe4ny3kWAlNJ74RGu+CSV5hx/NOxLNq8BzQrqoG8Wr7v1q6OYGdYytJphUk0hSeKp4RM4TA8BABeVe88A+LVhWG0jKx1SQvJKACBcHQNcuvV1RuH+J89k1+vBnR2GfbH880AKwo9+hzuGr7zKeP3EfQ/n/hF30LOgjr1Ts+IM/6Je5x3oHwIg3F3ewWlxCmaGthpTPcFiFsYFNt9baSJw9dCte2/c82kTso9JdR4jDkNp1m1pebwfA8Mv1pIVNjn1v3niPvzzTx6CyAKNuLvgDTDICYIYlt0oA+2xb36UuqjOW2Z7UhC0ZVQeiGtro7opsOZK1eNa4TxfTDUykWOqp3uZ9yVKOOXRBqVhVT28uZ6SApW2a6C8eITXDCWFa4i804z79gb8//Sf/lM8//zz+M3f/E189rOfxc/+7M/i7/ydv4NPfOIT+MVf/EX8rb/1t/C3//bfxr/5N/8GH/jAB/ALv/ALb+dxP663oUgqNF36V+WQzAypS1Bgm/sHDph6EEiLCcjP8G+rAJDD/L5z6FcP59Afym9umznzwMNL+u2Fk2RRPsKgfwRFIuaGh6oO3fGri/vO2M1XYUvkIkV/Q7RckLKvM/y2BvtCtST9u1IBSquRkqp/LzD84DUGlKhWQUiSWKZDaJlCsEE28yye72SrPRh+ABgmPSihIgMHuNgk8gx/cnQb8OZ/dnHx0HJ+tsbH1cHN8AOQ3ghQEDDIExwO0zXgStmodeyByXeAXyDLD+JV23L2JuG+2xXmWxQzJ7snAdU77D7Wch7NIwHE8Rehy252mbyHBuBk2NZGSaFhi+Gb3wRmJ9Av/m6U/G6rREmkqdgaixOP1aLTtI7ZgdtEKJSrG5wI+Ovrq7AlclLA5/4dqgeuuUMHN6Ce/wSyH/xL6P3k/w3que8BAGTTMz8G4uXhHti9Wblr8EAOIYggNm0sjHb/2cLwV/mglQyRkILu+8bLJWX9SrVd9AWJjaaEzbLMSAt3PGU+dAx44wLticwxd2QvL+kP0XzVHNKPo1iVwRBqxVRT5bMjPlJ4Zl4Vc5SN0ZMo5++NwR1GrCVrFzXoPT9ocAQIBbIGct42qZS+sWH9/GiSSIjFBGR0PL+iWkKQAduGUz+XqDyrltl6dj2OkUlVj3OFWMKq3Pk8albclwM4kiMoSFSsW1Fs77lFSPzpTBSw9IkMuei1N1RBFbNl7ymFgJTr0XwH3rjP+QfYVtMrGPbllEL499AigZSEJBHIM4WDYYYbx32Mb990a5StcFVVuHHcw6EH+s3KU7V27YUYuevJkXsWhaZzmkMQ+8QQ6WeaLUTf7QNWTfvcORB4SjqG/1yfYqLPISDwlDqOgD8y/CsNYAaD8hzLZ78T83d9FAAw+sJ/gry47wC/FDs35uGj9dLLqwiVrJumq8Z9c7vE3C5BjZ/tqqfTGxAQOLdznBb3O3+n1BZZonDHy/mfHN5GIhMc5u49JpW7HtOkbtIWpYlKl5lXJCaVwiAHPvEBAVO58zoNX33wu/Anh5lx58Fuwz7A7UfYr7s3jwgf8E2wX/+Cy1X3iXk46JnYHNhUTUn/avVkD4oS3C/u4qR4gJmeorQlwuTwwWj793nzmtsHvXHPp3uIFBXrNdWANlXrNiU2aMn6wqgQh2g+sRHw3j119+e1ox4Mm/Y8uecOBFEdzTcN5pRvD8Nv2OC8Om/J8Ml/98HYV2sbVYohki/EJQK1MeLFRCMRKSpT7mXep6RAZS2qDU79RWUemuFXilAZ03ptYx1If2TALwma+R0Xzbc3wvrGN76BT37ykxiP3WbpL//lv4yiKPDTP/3Trc2LUgo//dM/jW9+85tv/dE+rre3wuY1RJStgBILRuKl0Eh6taGcZy6xnLgItx2b1mDOpD0LpNnE+d3LFgdmp7mR9TnzAB7KpR8A+MLJ+Wl8HT2RYqB6WKx0hW1vBJMNQGyRnN2N/16YCqOk36lYYKthH7zsDvP4yZWfmZqJC82XMKqww226tNpl1wfHehUYftTfa6iGz4EkAQjCdOA2+tm5i5IxbJCLJD4Eapf+bsCfixRDmXdLv5mRpwPQuJb11w79x+u/v6V4fgZeuM1WYPiDE3eeKhwf5C2n9lhELaZN+OtYJ7mPbFPg4HpeNh+MAmzMmmw9sPtV1ofqYPDYGqcQaXoCqAzsv9+uOX4iWTcC2KCJFCwYKvgOnLwCJTx7v0PWP8zUXl1qy7zGfLmxDsJI9TGU69c/lAL1D1vntbAaI2MdECeBwf/wf0Xvx/8npB/+P0BefzdIJhBjF9OYTk8d6PNxkGENODFuMzaWPsVCr89culOkve/F+vkXDYa/+f0oIaB7Dwn4hVhzmN+nmC0Sfzxlb4hsZXQpFQq5yKDJ7BJtrFUE/OUMQrvrg9MclrltKOUbVqRSQMqNsn5K8npMa1qDEbli2LdahakwkHk0XiUSUS0QvFBCKeEY7cpYKOUM+4Kc3w6PI5DIqjksGk79XMWGYh4Av0rcSEhoaniVWpPhvwxzJrwrO9g1dK55H4a7Va0+SBThvbf9/L5kLKcOlOWUeaDgisvFVjk/4JgkRW5z2awo6bdzkGUnBfZVeIPAXKQQvtFcCQXlXf9DEQFplsKM3Bp7bM+RdK2NcGzoasTdk+l1/OzRj+Gj/fdBmFo9QkkOCKcwICLkIoFhAzEIDH8dE1kfjERqBa6o+vq5ltxAyjJ2WWrDyVXfG4Lwzcj5e78P5ZWnQEZj/Hu/DKqWyBO5U3pbGi/nTy+vIlSyjhteBfz3PdN+IEdI9hxJTEWCp1L3LHxx2r1PLkqDUS/BS1OnhHjXwdMAgCMP+C+8cSARRdm1M390jPIU3mCuVHj3TcKtY0CyWysmTcDfkPSfTzSWhYUUwNWjLYCfrWuCN56J3/8+Qi8FTqfA73+TcT53r3nQ40gQbaog6S8r7vScyWSGXOZ4UN7HRXUGSSqC5F2Rf7eut+f4ASCXvTWWv7RlbdgHuFQfBk4m3NjPcmT45ZZovntnbh2+dph7EN98rtb/f9xzn/Vi6ub4N40IPGpVtkJpivUGBZHLrGeOzVcAWCxDJF+9loTzfO7PuxIKk+piL/UUMaHoIB2s5UcC58Gpv0loaMPQZn0vc9ki30S+TALIH4XaG/CfnJzgypV6sT4+dg+R5r81f1YUl8u/fVx/CMrPdkfTvhUplmVG6uePqV93s4XfINrlBIrEzngROT8DAJiBew3HIj7k/H5g+Bp/H3LmgRrw45KSfjvxzrjj6yAiHCQD161tLnBE0F6loM6casGwk42vRvHF1z15zT0s034EwLHYgqLbv1+wthgoNsuwxUBmDel/o4GyCvhjBKMDdCQIs76TWyYB8FtuOQ7bHQx/fY7aET1h1CAVCcSRY4xagP8SDv1cLgCVxQ0KRWMuH0mmxN7zmSF+r0pSpD56kLJ1wO+c1PQawy89g+wy3juWUeud0LktU2R//jrn+IUAWLtmlW0zDJYtpG9S8PQBZFlAkdxp9JNlTj6udxhbMdzGtlkVGyiSSIXCQTKA5Y74pQaYZm90NPCeCnJwCNFbUbGglnsns1O3ISIHEDO0N5kHcgAWCsIU3a67VgPEnQzqpu9HkoQdHLrjmF3SuE9RdJi/TCXlHIINmAhF2ltzdnZGVT0YGDSjkfapGvDPo2GfTXsgoG44EmoVhEzcWrnFuC8A9WR6Gr/vVcO+1TJsMVpZ80Rjjr953UgPoLRm9FIHGpU37DOjY8BLw3O9BNuGcR8vUXnDscyzOqxS15QMo0tCgldm+Pc1dQMcBhINH5rrfu78rj5t/d6HnyEoCVwbA3M/zzowFnT2KszZG7DzM7AuonfC5jcElJJrUys1wz9zTa3GfR6YupzS+FzQSJB4z5LV0uH79KN0XZUoiVTRmhpoJPvOC8K/jxEKWZa6BqS/jjORuHUod00KwTYqD5pVVAbvGtRN7tvqNhxADQy/A/xNhj9cNXH/TgKT7/wTML0x5OICo8/9eyi1fbqJ4aTDgzR5KDbR/Y1n+KXbswTjvnp+fz92P1SI9nxx8dLammr9HiJLCa9MXnW/P34GAHCcuefltJEUkKd+9rqoR88m/j4RZYp33yIIIlwfexNK5e8XhHE1950HOf+143Q7YIrjZvW6mqeET3zA/c3vfINx4gUx46EAVYutX1CaCCSeTZ4tupngRKToywGWpkAu8wg8d0X+BaXC2YXGYumZa8/yh7EIZm5H8gEAa/yXr6X4F//Z4suvNOT9ft2UJKFttdZMLCuD04lbh68f9aBZt5WrDdXeQYPh36YYeNTStoJmHUeBQknh5vWtdaMF4etclN4YtQX466ZMUVpkMt/bvE8pwnzRMRJrnH/BI7HxjFY0nzEW1tpW4/Nhi5j++53hB9Bi8h8l4/Bx/SGtsDA1QWZjoWbYGMkn/MwzgJZxnxJy+4bYmoa7+eEjO/TDGhc714ye8znzAOK8u5NX73/zBkl/2LQOZY5MpChWFuUwlhCM+5amRE9kG+X85p7r6Mvrz7Uz1gGAV8wHCfH/rzZfWsfqDddypgYYbrz/6uInpPs3a0EgEAMTD/hTD/gBRtIEc3GGvxvwA8BA9pCLBMvGOaqsQUIKqUggG4Dfzi8n6WdmcDnzHgJ+7QmmfdXlm4sB1FdpFk3Wgj9By++ByLPV3Qy/yYfdDv3WACqtxw9CecDf7dQvvZRfOwa2scYatnGGGgDk6eteSrtdBphIiSyTqKod1z5jzXhQW4OUFBKhMJA5eiKLcWBdVdgKqVDIgrfBqPu7peEVQEgIo2M8nhCEnNr3zIEY+jhFL91fPWRdYpNeWvgkDJuP4lhK/FmM5rsk4BcCpAB7ya5/Vk7jsUCITuVPX2Yut/hhJf3FHH3yBm5pDgbqjWZD5UNSOdPPLcZ9Yc3L55MooVdbDPsqq5EI6RRGzdfxjZ1sft6S1TuA7hu9XmIdGH4zPAZ7wJ/pOWxT0m9rSX9u3HVvVeIMsZjdOJRXRsVoWQC8g2FsFoHqeER4OTuAu1XbxPB4RPg//5jAn/iYxNzPRGeyD0HuOWjP3gCK5c4RCsABntXvPTD8BVdYcrUC+L2kX6SQkeFPnIFdR5XXHFhM735zI/AiAvJcwWzY4IamqpEplGeUJTO4mCEVyr2sVLDBH2Nljr/UBlJKfOjQMdWSBJ7MbrYbQWGGvwn42cWFNoE6pzkuPvanwVIhffAqrrz4WQiBzmNnAPOlRpZI9HsPt8dwsaaelZUDJKRgYHFuppcy7GvWk+l1JJCYmTnuFXdaPytKi14i8aC6i8pqDFQf13ruvgsM/1TXIyYBmJWliR2SC3+9KJvjhj+0d91w91UpBJbFPH6mcE28uef8PlkDahjKhnr+NuHJK4CxQDBPPxhKwJZbG4wAMPQs/7RD1h9KCYVRMkZVkkslwO7IvzyTODpw3/uXX6ifn7nsYVpdYGmWMGxclGzjOXH3QYU/eNX93ate6OSi+bx3wQbjvvvn7hoe5AqDPEFlK69fc0XWgCPDXwN+p67Rb4srfGUrGKtR2rI1NiCliICfbe3SPyuCYrI+bqUEBj3hj9eNezIsZh0pCqulpMC80GtjS8Y6yfyjAH4p20792oTmxaPjUyLsJEr+qNWlAP9rr72GL37xi/jiF7+Ir371qwCAl156Kf5b+M+rr776thzs43qby2/Eoks/M2wDaDqG3zurNxj+IOnnxQUU5NYMTLGYuNlnqWCzvjOHE2JvOdxasQGJpOVET7JmOiLDb009U7lH2YakHwASoXCQ9LFceY0A+NXpmwBblFbjQA02+hHYux7wX3tXx2dB/RAlZ7azy0ARcBvulBSSAESIXO52qA6Gn2KUlZsBnOTHYBDkchpTGKJDv67qUYEO075QiZA4SAatc1SxRi4TJEI2GP7XwX6Dv7dDfzkHpX2IfIiwq6HGDP9lH5QB8Oskj80mEQF/4yEmFOCcm9p/H5pWvWH3tWuNk0+vPjB8c6wT8Avh2BNrvGSy8b3psuXjYE9eiVLarUUuWmc1Z3ft12j9IVmxRj9ka8fvdvN1WNgKQ9mL50YNu8c1SEjQyDWYAtATRMhWAP9YDNx5D+djtXSx1ogB4JqKfp2yvXXALz1ovSzgF4KgGk79+1YA/KY/BgGda0MuE+QqhYG+lKy/Ci79psCAHSjjMOpCwjWchGj5eFCabzQLA2rA35tfuO/b2vg9af+9NauwFXKRraUTxGi+Nad+ioahqXLXXAvw9909klQLMIC+z+KemyUqz0b2dG1W5/ap7Bz2vfcJBSUDAFyiISgEwfUP3JdwzQO5qV1EI7RQvZQgBWHh/70nen4kYuj8bQaH683WjuryzlAkMRDue3Sy/sYMv2fVeiKLjWAjFUpU6z4bAMqrT4GFglxM4mhGV2Ve7t91+YX5fS0zKOlGW6Qp3TO/cW1Zv4aKRb2+MYCyshj2U1xLe/jke34SP/PcT6Ev09a9pKJLf60UsZa9QWB7bTKjK5h8+McBAKOXP4erZy+uAf4I9pXAlYPcpbY8RAlJrnHEjug6lm6/c1+fR2l/iODctxRJPBPc+ldk/WVlMRqkeMm78z978HQk2I4y9z5zM43scgBmy7I2pZ0I97PjvBf/9tZRhsyf8FfuN13W3XkLDP+u+X3Y4GC/6g1E+OEPC4TLOU+ALFMgo0FbGsVAY45/A8PfrCDn7+diZ+QfAHzn+9168rtfmuDk3LPXjVl+bdsO/dYyfv0Paun9/Qt/XQkRn0MB8JuV++3uqZfzH/WcJHyV4eea4R/3w+dxkn7Ldqc69mFqaZZIRArDGrpBxihJqIxFZawDyUHSX3hj1JVz2zTuA4BUZJiZ2c49SKJcBGBRtX9PGwtjHy1CT3mn/uZrXn7orruEcIqNd1JdCvD/g3/wD/BzP/dz+Lmf+zn8lb/yVwAAf/fv/t34b+E///Af/sO35WAf19tcAWSqeuPWAhng6H5NvQbgbzD8UoitG1bp5zlN/8BJ4tlAQSJ5SId+NgZIVh5QJBtawHrjt69TPxdzwMdohc0v4Fz3aWVu2oyOnXGUqYCLe5AkMNzgOs9VEV3qxbXnut88ynCdjDAy/LraKN8uuUIuM6gAilQWZ5BAtKYkICIvN7cQntEyIsHSy+vF6RtQQkYgbEKqgJCROYufaTlpsdgj1Yfw3yvgWOLA0NHompOA6wI82x/wM1twuXR/7824mLkB+MutTab1F7RR0m/8DD8AiKBeaPo9SAkaHrbYdqB2gVf9485rl01w524fV7hXaNERa+NVF2wMYHTre1NFmzGzJ6+4aL49OtB5KiDFZmMrBsBgrD53mRl5A8SNkp4fD1h/CLKfAxwl/WjIuInhBxDn+BMP9KRAS9JPIAyFu98E8RpAZbauCSLXz71YzkBgsJCgbLCmwJA+lUIup1uZ7q5KlbiUkQ+jAfh9Y3S1AQG4DeRY5dBsNrL8lhkTM28lJhiZwvrXy+YeNCeZjxOr3evRAvy9jckHAGKkXjJzQF3OzxwzJRWsNzxsVmU1DpL+muovvs78HKZxngW5Q0oUQcm2Q39T0p9Ucwf4wwy/XaLy60ruG6CcJDHyynm5KASJcmT5dRuobysix8eFbyAVCY6ku2ebc/zNmvtZ3pyy9jqx5z42MFyrX3vt1N+WRBc2uPTXM/xWZtBUYdb1WWWC8tpT7m/ufGvjcSTKGQiajnnbyPCrFEFIIPxrK3bXmmELm62P0C0LgzxVGPRTwFR4/vA5vPvoGShq90OlXpf0W2aQ6G6KlLfeE038nnjxNyB8jC7gvr+ZZ/avHD482AfcOIHzS/Gyfi/ff6l4AwVXEBDxGrlMvStxa+BLs29F8F5pAyUJ/SzBixfO6+dd46fj3wyTgWdXObL8dTSfO77KMKa+13VrXDfoiQhD3xR5/Sw0ZJw/xLIwOJu4e3Q3w795zTwcED72bt+cGAHhJqAdEair0XzbKs7v7zDsC/X8Mz08fSuDtcCvffo0Ms257OGiusC0mriROb+OfuHrM9yfAKny3gZzoNTsx/uMI5mIwOA1hv+un9+/ftiDhYVhu7L/6gD8Mw1iArN9y536LVuUXCIVGSzb1tiAEgJGWxSlcaOX/jDnRZjhb98zq3P8iUhRmiLGhG4qtRIBGMpYBpjWnhuXqcQ79cd4QVuPtTxqCUEb0wX+qNbetOrf+3t/7+08jsf1h6Ao5BgDblZaF+CqiHPbzAwVZ/gP679rMPy7XKsDq2b837vYr2wvt+vOYlMb1IUSIs7CutnsPnhx4Yz79gCYYX6f+gctaXxfZuiLDAtT1DP6JKAPbyJ98Aro5FX0ht+50YDQPnjJgc3B0ZqUnUP0WwT8wu1awiyqKWGs6dz4GGsxynrgpTu3rUg+ojWw6l7QGRsSZDQimw+vozc/gTp7E+r6s5Hht95lm7Jha3Fmo8Hlwv2bB8s9mWEge1j6c8QAsmBEKCTE4e1oWggSteHjtipmoLzvzpkuEBIGommfLrzB3H7XEJXL+EjgtFczVF4NQl0u0ysVWOx02D3T7NQTcq0NET5vJ8MfymrH9DfYwTC/D6kAo2FPX0O6J+5USiLPJBZLvTanDyCO1TQ77cHEJ20A/p7IMFQ5ZmaJkWhHQ1YNl3brPTrU8BibtoZifB0Gjv0tAAgpYu434MEOCdeQIvLy/UYZ7cwUk/V7LYxb6KyPRCZr7KDKhjAygTQV5OICZoMSoatSJS7FH1hm5N6hX/fHW539R0kfEPAziO3NlmaDmV2iTykWXCKFO1eFtqjSPrJi4tJC4ACTJAGJBuBvvueeTv20uEBqLXDu1kM9vLK2loQ0j1U5P+BVYCoF6RJifgocODWUEAQJgTxXTlky9w79JGD74yjpT8oZwPUM/8TOY2Ovzp9v5IWTh+r+C6I0BxfTSzH8RE4Z0WykXU+OcGomuFud4tns1trfBOa/T/la02yfUoIgfSO56TcxlgO8Xt3HuZ0DDWARJP09koi5EYmL4QtGnqsqkvLGc8jufAvpnW9i/vz3dh+H90BZFgZqZWcYAL9NcpAkCBaQXsavQFAkXLMqqz0lCgCGGYYZx4MUUmg3rgTr4haVxZyBcDWqDkm/te64NmGC+Xu/D2pyH+n9V/DEl38FL3/nn4MRCWYL7aNhs41GhfuWEMKR2Y4GjdF8r1auwXCsxg+VMHQruYqcEiztEm8sXsft3hOYLw2uHGQwVODO3L3+M+On4t84r5wDnJQnmFQXGCcHDcDvwPKLdy1mnp29cdAewRta4AGA8+UCpWZkfo4/uPMfjBTybMf52iHP/9i7Cf3MufcDcI1XvQBwuPFvLsPwn+9p2BeKiPDD332Ef/XLd3DvpMLnvzrFd31ghFSkmJoLzPUirunTucZnv+DGzH7gfRaffUFitgQeXAC3DiXAZRwjJaxH89WGfd6hny1EeK4x+3PXBvxVxagqgpUWlg3qO+LRS3s5fyYylEA7mk8StLUodZvhDxL5LG3fdOOGUz+A+Bxb6AX6arPyk8j53qyy5drUipSHLSUJy9Kg0haJEigrvY+oaq+SQqDUrgG/uof4o1p7A/6f+ZmfeTuP43H9YSinnXMLU+IAf9Nh1TZm+NuSfs/wLyZug77lLSLD7w37DBv0HtKh3xU3jO7C56hz5onIAbnFRZu53VJRzj9qm+oJEjhMh3h1ca/179XRLaQPXkFy+ib67/nBjYuDiXL+DnafbUt6G5svASyH8YqVzXpoFKQiqTe2AQR5hn9N0g+AZAK2XtLvv7Hl6Dpw9ytIzu8glSou6MaD2zXDPjZAkoN1iaDGFkQ4TAZ4ZTGHtgaKRAs0iqMnIuCn/uG6j8HaaTFgXUAe3QZJBQ5Sd2bAm/YRAK6Wsemwq2IkX5JByiQyrmFcQZUFqoZrbedr+BnxbLAB8BMiYOfGa4neyNlUbQL85GbT2dho+MXMUP7aFYe3YSf3gXIONX0ASmXr9TdVP0+wLAymCw0lybtyu78JD7TmdavZeS80vTWICAdqgPNqtvaeS1NhrPpIRYKFB/xyeLQF8Hun/tmpA/xwLHdCChVrZ1pmAZEIgFQcKQnFsSnSwZbHSL7hmswcAJRUmPfHkJMHkPPzSwH+y5oBseXI8Fe9kQPiG675vsqQkEDFGgnqz1XaCgsucCgG6JdLLLAEi743vrPgfAAUk6g6MUnm5p5JeFPTFYZfJs7czpq1yE4ALso0GwDFDIPFHLTFob8wFXKRtgw+4+uQgBhdgz19DXJyUgN+IiQJRQm5DOz+4NAdlwf8spgDxOh5wF81QG9g+KFSiPDEEQJNRSwlzstgl8fHTC9h2GKceE8QQc5M29d1dYSv4uU14z7A3TtLz/D3Kd8ITLeVlAJCOilxU3MZjPvO7QLUUEiEWL4BBwk+gYSAEgK5yLA0JQYrTfDy2jMunm96AjE7i8aVq9VLJWaLCkD7upBhTCvN/LyzgGQChIJkhvLRfOwBf6qXuLCMZWkwzBX6mQIMO+WTMYAUSAVj2uiedZn2WctIOpqUsUhg8pE/gYPf/FdIlxMM7n8Lr43fhTxTuDrOuhNbLlmCCBKAAUNhPX7vsoZ98XWlwrPJdXylfA0vzl7AsbjpZs6HOb5+/nUAwPXeVQyTNpgap2OclCe4qC7wBIAs84C/cDGxL9yZAk8CyjISNWg1KEccfJqWePEO431XAbCN8/s75fwAyFTgLeugEIQPPt24EUJ8K5vuESzsN8MfKgDOXYZ9zRr0JX7gowf4tU+f4Xe+cIFnnshxNE7QVz3Mq3ls1P3m751Da8bNQ4sPPEl48R4wWzpZ/61jAaqsVzsBihJM9ASjZAzln5P3vKT/+lEPlo1Lr4jrfWhGujdTUmCQMWYFYTI16B/YnSa8l62KnWFfj/oQK8kCTqVADoj7cRUAWHjA3zTtA+oIxItp/R0lIsHMTHHEx1sJFyUpKgdCuUjAR5PfSx/J6aL5FIrq0SP56tcmVJphDEOodwbgf4t6IY/rHVEkAM8KRZa4sVmyRoM8UBFNwJ97lrZaQFjv/rqhaobf/T0zI93D2GhjMbAafdTMmQfqOf69Jf3Rof/a2s+GsodEJC1ZbXDq75/f29q8CIZ9onN+P0hvVfgQ7v83zg13bFxLdoZZuUgc6AUakXzeAbkL8KsEgJP0uzEMRhFMti4eIOfGXGYA/Kvz+9aD0hUt6kDlSIXC1CyRkGolMIQ5fmBPOX8xBfXGtaKkESlIUtUNkWp/2W4A/DbtQUFEVo0CO1UVW83wqCqip0IX4Hdu9XDjGEK2DLekH4URXS79gNsQ6cJvjtx9ZGCR+Hg/6o0hjx3jo07eiMzgrhpkCjeOe7gyzuLc23RZYakNjGWQbM/wV1Y7wL+yQRuoHjKRrJlXBpd2F0fo7nE12gyk6cDPd88vnN+BIIAp3j+Hclj3q6TbMHLzcxrtPS/W15rQjKnyfjfgJwnjpemXduqXl3PqZ2ZkpT+e3hCycb2tVi4T9FSGogXuChRc4aoc44YmZL2rSBnQMFgUFoM8AVaSEHSSO0AWfTo6GH6h9jLuGy/nUTlQDI/WPrfzLOlvbHJSnOOvwbKUAr0siTJrFef3/XoQAH85A4GQIalBPYCEVDSr4yRrM/xNIBLUUXtEmjaltFIQmlMb1xN3HZ/o87V1YcmFj9YmZCLd0e7uLiJnrrk6nRMk/Rd2gWbax9LHifXZrw8ygUgklJDoy7T1bArFSY7q2K292Z3uKDgASBIZGblmyZj+ksOyhYKAJAJJCWL240U1w5+ZJRalhgBh2E/dbRo8SoKhHLkmNwMga2JToRnLx3BgYVtxmqN44n3ufU9eRS9NcHW8IZ71YYoAKWVcxsdyCNVoiFzWsC+WkHhOufvs5dlLKHSJ41GORAl8y8v5n23I+UMd+jn+iXfqjwx/ZVEZ4GTqGn9jY8GqvR8ZRsBf4htv+O+YbWT4d8n5wey8kDYA986SCchWrfHQ1YoM/16Sfvc7uwz7Vuu9z/bx1K0MpiHtT0QKBiMVKV56fYEXX12CCPjR91cgIXB1HOb4gbA3DhdCLntYmgXOyzMAwLLQuJi7ey9E8rlRuRrwV1zh301/F19evAgQReO+ycx5BthdnjyXrKBAICIoUihs0VrriF3Tsom7F0HSvzbD7853UFgAbo6/MMVaAsBqJUpgUejWulJq26lYfZiqtEsQqirzljj0A/45YOxescZ/VOox4H9cdQVWmevZ8SbDLxczt52RCkgb4C/JI1CVxQxE2Lghln6DbQaHtUP/ZR4ejYqGVKvRRw1QCNRAjvdm+OtIvtXKZIKR7GHeNKY7uA4mgirmyDY0FXg5BfvX7TTs85+lJeknv3303wV3zGdWVqMnU8fEdjL8ohMUhZEB8pJ/BsPmYxfpxRaZd+UGaoYfXQw/CSAw7+EciQRj1UdhKvRWxjXE0e36f+8A/GwdGyRG12omMl6jfhGOMvxLzOl6ebxOcyQNJQP5a1pW9axwVwXJOCe5M+ZbrZAckXjA35iXFt5lWRYdWdXwzSprEVzHAXcvhRl+ykcQV7zE8/Q1bx60xwOJgDSRGA1S3Dju48ZxH4fDDBIuiktineHvq2xNORAi+prGjGXDpZ0XF/HYRX/zXCvlYwfWmCEmJ/46BIZ+VOBYjZ1DN7kxF8cM1teYU3psWGMWQdI/2DAvL2B9A+myxn1KCoeV990EmBLKr6FF7sw8NzEhTkHRR2ld/OfULGDBuJEc4apmoHcElY6RQmKpKwgAo34Cm7fHK3SSQpGs4+pk0v4eZeIafltioEKzM5tdoO+TFJbDA1zoGU7LCc6qKWZ6CUEUjR07XydE83lll/ucwMGwjv6SvhmgvdKCfQNDFnNIcnvRwPIDHvD7Y2eVussgjC6RiP3mENu5LdLUjSS4vwlGfTL4n/gaih56lMGCoyt7qDC/36P0kZilNFn3hhh7hn9iF7C6BNjCsEHF7rP3TQ34lXJKrZHqQ5FE1eHRUN5wyrJ0C+BPlUSmBMqV6zuqJLK8Zvjjc9YgE6nL8w4Mv1nCGsaonyAPs8AkvUeJBoMhiSF8lnZg95kItmE4y7yfqsZcc3F/4+kdXBmlUBsSCx62lKT4/QgiHKt6FK0L8BtmLAqzg78UuC6GGMg+NFc4xx2M+gmYuZ7fP3hm7a8OU/fek6oN+Jcl8OJ9BZl4wK957dk/CI2KpMQr94ClJlhtcO9kT4afzVamftPnhLWgLetNnOG/hKT/YM8Z/lBO2n+IJCHcfVDhC1/z5ykdQ3CK3/gd9yz4yHtyXBm4ccga8NffJDVAdC57OK/OsDCLOL8/7ifIU7U+j88Wb+oTvKFP8KXFtxzg77vXvZi6e+KtNu0rGnGDkiSMbRv3CenTLfyz1LBBUfrUkXQV8LvzvSxsnG0Pz7Jd8XxKCteQaszEF5XxCRiPVlIQlpWGNgxjsT1S8pKvq5kv5dnzh70eA/7HVVcTTEWGv94sJSGarXewFtEYZP20nPoc446Fy+jIvpn+gTPsE+rRIvlIrjH8zZx5oMHwX1LSL0brgB8ADpIB4E3KAIClQuHlrnzySuffmHvOLIkObnY73VvrQG0AtqL+DHFOuYPhr6zBQLqNbYifir/P1o1odG2YhITjpZxLPwEgJVAd3gQAJOd1ZrP1AGo1ko+tBxN+/KNZ46SPnkzRX2EYqH8E+Nn7XQw/L6fOR6FhEBnHHuJ361/rUgy/uw5MkrcY4NAYklWBasucInuQ2BxraZU1ACmnkhGiDfjDfcK2+5iFrFmwKLm3SJqA3zP8fPIKEoid0XyrRQTkqcThMMPNK3080bO4IouWEsGy7ZRpA+vmlYWt0JfOpZ29nH/XuAYRxZEZOX3gH0SM7x18EN83+BCeSm/4aDknGwYbB/pDVUsn9e+osMbofLhRPi88uHwop34S2DeeN/X3jk1yGLV7rRukOQjAhZ0hFRI3k2McVhqcjWDGt0BJhh4STMsSw75CninYlUacTtM6YYOtN4+si4hASa99PlcqGO7RySuxwfXE9Q/i3f3beLp3HdfSQ6SkMJQ95HIzSIhO/VuUFC2Hfmbc5crJ1NkisUuw5WjcBwCp9x0BAJapk+N6c1LyxrPcUKltA/yFqZCJBIpUvI+EpBZQI6JGPF9b1r+IEXk5IPDQjtOqw+x2IHJICFgwpnYBgKNBFgHo+WhCI1IICUgIDFSOgco74zOLG+9ytjDnd+N3ulpubVAwun0wwjebKe3Bgt117Bt7zBaJcEZywaU/0QsMeimG/YbChuCABRvAWigAQkjnWaF9E1blbZBK7diu0nZHl5nDm2CZQOklskW3ueKjlJJt744g609IRSVGs6rKggiYLfRW0E8gPJ065cVrxYsQRLi/PMG0mkEJhSeH654REfCXZxDzB+j7UZOiNHjhjoDMPPDs2IL1/Xw4ZxUsA9+8p3DvzMAYB/B2gegYyXdZFlUI0JbRmqFn+IuSvdS7u8rSYlm4n+87w99+H4Uf+E733X3mCxc4u3Dg93e+MMF0bjDsS3z8AxncbJDAVd/XOZl6kzmilodBKlJYNjgtTiLgv3bk9iSGTVvxwxZzf/8ubAEG4aDnPsvF1ID837xVxcxYmmUL8GvWsWEIeOO+hrTIsEHpzR9XZ/jTRKDnx0cuGiy/Egmmerre4GhUogSMsSi0j1NldkTDWwDOlRKYL41z/TdvnaSfPPn5mOF/XO/MinFtHEFjc7PUNb8f/9TL+mk5A1F3nrRcXIAAWJWC056L5IN4aIYf1nhZdwfD7x3PgRrwYw9JPxfTOOtPHRFUADBQGXKZxk1VxRrFoZtJjoZ0KxXk/J3sPuDnkVVbnuoXnMDwyxWn26CQyL2sfV3Sz+ty3lDe4Ep42z4itxiUh26DLk7fqI994wy/BSUpKButmar1ZY6RWpdUExHkjfe69zh+CpuKTQUwQ4yvubit+PfCNXlWAf8lGP4YyZdmK4B/EF/LbnG/D5J10Tvs/gWrnXu8SlvNCQAgIWGD2WCXrJ+ka6Q0NgqGLWS4JvORU0kI6Wasy+WlAX+z1PQBbv7X/wW3f/sXcOVX/gmOfv1/xvgz/xrXv/rbSL/1O9CvfQm8YmLYNK8EXBLDWA3cTKAH/KJh6rmpgtxbTB7EPf6BGuIDvWddpBwYJH03ihFjNRkWMGXn/DmAOjKxvx7JF0oOQzTfxc7jXK00ERvzylcrKeoGp2Fu+Vl01VBlSCnBUPRxI7mKQVWCVQ92fBtQGZgkYCQSJTDsudeyKw3EUmVxptQ1Etffk9J8q1N/YOatb2BS/xBZNsRA5ThKR7iVH+O5wS0807++1bAsxpouLmC6ohWZW5J+zQZCKtjM3SNZuYBBbdwHAIl/PyYBIRSo6VUSG6UcEz2kLjfGdlZWYyDdaE9oYAnCmvpmE+APhn09yhyefUjGSgl3na82GsZxjn8KWBOZtJxSKNuOJgzJDGM16E7SyPrQvqGbbnHrz7wvSPNY4j4gc5L+VCgP4N1zNlxvJiSnlHNcPcjXmXaGm+FnAxAjUQrGuDEqADBNOT/7lrTfwBu2uKhmmJsO4Cgk+JoDzsmDtz4W2jVy6jNyw495XFdHnd+5sYxeppCnErPlZtDPINwi9528OHkJhS7wrfOXAABPDZ+o72O4dc+cvYFD30Scmhkwu49MuO9mWki8fF9ApO6ajPP6jRp4AzmTuOvjG29KvHnqrvsbV9Pd1y/rWtl3iWKhAD1vPQublSSExM9JT7ew/IHd72UC6R6RfF31vuf6eOJGBmOA//Tbp7j3oMDnvuzW6R/82AHcpJE7llEPSJXbSp5OARYCtLKO9dQAUz3B6yduX3D90F3DumHQBwDEjLnfM2oYaFgc5J7hn2kQxJoJ4KOUZg1jK0jfGA9+Tc33UJKgG88yYzWKqpvhB5rRfPV3lInMufXbzQ0dlxqFyPCbEAX4FoDzEC9YVAaa+S0D/KHsO4jhf0hq9XG9IyvIIq2tJf2mCfgDw3+4/qeR4Z9A4Lhzg9UVyTeUvYd36LemBlWtgxG1NBoALiHpj4Z9g6NuuTZcp/RADfFmcYK+zLAwJYbHTwEvfxGmA/AzM2wA/Nc7DPvg2PKW+WBDbUFJ5qwKjG6ZpVV+fj8LTKxekfTDApR0Mq0kZGRSBAmAXNTMYnwNIwA4eS0aAtYM/+oMvwGEZ/hXHuSSBJ7sXakjsxqVftefAb/3hzo9EuL5WE7cd5B3yMKlBFfW7TcDeK6Kve1fatO+XhsQhvEAMKQuYNNh52wyeUApNjD8bA0o7bnzLlNwNW1N9nI+BMoFxHIKM15pKgkBrJjZWFgo36yi3ggkE4jDW7AnryI7vwt75caen3y9sje+4QATnOpAzi8g5xcuIO+1r6EEQOMb6P3x/6k+RBI4Skd4eXEXlTdm7HmWNzj0iw2mYM2SBzegAajJA5Dw5pHukvNF9dUjZO1hERz6u5hlrqNDOd8M+IX3XhCLib+O9286plJsBJBrvxsBvxtR2BU/miiFY3mEK2kOVS4AkcAc3AZ7IGRAgFU47gmwdMdg8/q+ZCFhRTPm1K6bmgK7nfpX7s1gstispuHnpqJ85GJCdQGangAH7dcRy2l06Df9A1Rs0JMpdNaHLOZI9Rywxy3An3p/ESsTkHBJDhy9SrihjAqAv0IBbugCXDEz5HKOgy//NvrLC7CpIK3FgdG4rTUkG4AZ95/8Lly/6kaR7unT1hocJf0ig9MWPFxJ5Rqv4ztfQ1ZOcf/JjwJEOJADnJoLXOg5nmAbZ2VzSiIItzKBII5pIwOVIxEKpa3WGkzFjeeQnL2J9M43sXzmOzqPJVECSjpGLqR6hBl+TjI3YkQCgAUJAWYLRRKKBKo0+CYUkGSxav4HEmBTuTWHLdJMYT7TkFUdkxoqmImGnoFrzuRY2gpdnuD2+tMQb76I9ORVLN/1Xfuc9r3LSY/rb/eZ9CZ+ZPhd0d9htZgZmRIYDxI8OC8wW2oMcrV2fSw1cCsb4jg/wsnyFF87e6Ezjg8AoCvwcoKRcsoPA4tJopD1cgAWC79Vk7n7robcPPeuidynHMAFltIBttdOKEaZ7WXYFxtJl7zShQKZwo0RdSV6EGHQkzibaMzmFocbpsEuLunQ31VEhB/9nkP8q1++izfvlfgX//Y1WAaefSLHM0/0QMvz2PAjIlwdA6+fOFn/1b50o2WhyQhvNitSvHni1vrrnuGvuGo3Q5ljgxAA5lxi3KP4uVw6yFsH+CvrDPtyqke+BIkWMJdSoFjquJ5pq1H5fsaqaR8AjEcSdx4A55NmzKqAhcVSL9CTvbW/ib8ngEVZAcihDcMaC5k+OgRNpEBRauc9sIeB8X/P9Zjhf1yx3Byty0WOGcZe0s/MSJbrhn3xb4Nx33IKQd2S/iCftf7vjbXobZAN71NsTW0uuPo5fM48gEtJ+uP8/gY5f6hR0nMbHOuMSHreeZ8v7q4xojw7dTJwEhBX1mfy3C+tAJiG2iIy/KaCbQDB0mpkInVsCxoMf1Iz/BuBjGfCRFggBUCCsBwdg0kAxTSytZHhX3PBJ5D00nWZrrH8kmTn4ksq2w72dQkIATm61v33IqkfyMnlJf0hds+keQsQkpDxus+0brmChzJskSw9+N4i6Y8NM5WuM6k+mi+4ybdKCCcZbGwUDDNEUTP8QK2OUKdvPlKyTXrPsUmT7/hxnPyxv4yz7/2zePDBH8bFu74L4okPAQD44s6aYeRAuXGIiZ4jF2lsOrF3XKc9AH8Akcn01E2egFrXd5MxJSGBqnSxbEbXPgkrRdWydjTPRxvZZ5WPYaVyULHre9hSlzEaCoDf9scgYGd8lyRy7G1VOInn+DbYe0tYyzifWxz2+jjs5dGcrcnw29RJomV4tDM62TiSiQNfm1j+dBBHbwCADh6uqUREkeWXk5O1n0c5v3for6xGrhLowPDrBYzlNuD3V7xRSTQmbM/wk1ep1Qx/l+KssBWOX/866I2vIj19A9nFfajpCZLFBdJqDqkLSFPi4O7XcKwOICFQcIVzUytzwgY+p8w1Px7yZpRCoFed4va3fgNXX/sc0sUZgNq479zMALbRoT+nBCIYF6oEEATl+ZtMJBjKHhZmXdYf5viTk9c3xo8qJZAmElVD1i9Dc8E3kyX8qJhvKCQkIUlAq8Q9P4C4ZrWKhFPqWDe2pJRyj7gQydfwg+BoJupez3mFuO+8U8Fw45n42bapVx6mhHStrXAZERGey5/AcBPAIbdOJMpFA+bJOtOvrQVD4LBH+OCxU739wf0v4ZXJawCAZw/agJ+1O28y7UevkwszQ77au8vddTFsxLvRcgLoJXLpzm8pgGuHGgzCm2fuot0H8GOFtd67nPHJGjverH2M+849s3zZ+f3VGg4Uvs9L+5eFhVKET3zUP88b43QA2sZ93rMCK/vbXOQ4vXDPnWsNhr9NtljMuH6OLmyBsZf0zxcWxhJ0x57jYUtz5X1t688iSWFplrFhraTz8AlM+6ys14xV0z6gyfC3jzMRKaZ6urURnnjpPfu5+LeKjZfS+YAUlTM+fFyb6zHgf1ztktLPP7Yl/QyuGf4uwB+copcTN3fYyfA7wG8iGGAkq3L8yxRrYAMLH3LmAVzKpT8Y69EWQAoAPZFioHKcVzNkQqHfPwYNXLffrszxB3ZfHD+1UTUAZrcJ90UxTq/+LpTWrRmvyhqMZKPhsWLax9sAPznDJUIjMg5AJQhm3Jbz2k2SfvKvn2R+jn+7G/a+xcXUMbBdXgeAG+FYMe3bFb3VLOHn4TnrrzHA4VrJK905x780JdKGl0X3B3CjDoAH/KvNL3//hFnz9b9HG6RVZdwohe9AXHGbQXH6eqer9j4lFhOoyQMXzXPtWdh8CH38BM5uPQf93h9C/r3/Y4w6tNP7rb/NRIKR6sFYg3EyiEqIKOnfI4FBeiCoiplzUie0NgzMHOW8EN4Y0mgfydfelNWfyRv2pT2kSW9jt19JBR0aLw1DuX1KShd5t885zwofldcbe0+C7Y9cIQnCFGBdwoxvgXOnDJgtK5xMCgz6PRwd9jAWWTRmazH8vgEW5jZdPGTHGqBSdx9tYJSIKMr6AUA8JOAHGt/z9MHaz1Yd+m2IeIvxbm7Nbs7wZ96d3jHbVLNtIkj6nTIKDdM+7mhAF7ZC/+wOAEC/62N4/SM/jvPv/inc/ehP40vv/dN46QN/0h3D8gIStTnbXV03LhZR0p9DPILjtBCE26/9ftyuhhjOKOnnhQP8TYY/jLioDEy2pR45SPqwzGsbcNsfQ4+ugsBI77648Xj6qYxmVdZaKBMYft9EcUcd1SOShPdBsNG4rwvwk3AMKVunnlBKuK+ug+E3XpUR1hbDBgdJHz2RdnoU8MFV2DQHGQ11fnfjZ3uYkuSOw+xxz1tmHJ29jGx5BgCdoJ8BLAuDfj9DnhA+cPgeAMAr09ed8jEZ4GreVg+wLgEiCEER8E/MHOkK4C+Vu6eHVO81CHCjFzJF6pWPT9+qz6EQwNXjPRh+XcWGzqWLqGUCvVr7GPeFSL7LOvR31Qfe3ceTN9268r0fGWM48HvRRkIOAFzxXNaDC7ffITZr6+aysCgKd230hwzLFpZNW+HIjDnX53xhC+QJI5Dc8xnDstk6C3+ZKkzR1MgBCMZ9VZzjJ29QGoD3dOm+HyWpc77+YAPgT0WKwixR2M3Ei1ICZWVQaTdr/1ay8czsm3GX2wdpq/FgeR9F15jQO7AeA/7H1S4hW6wy+blxy4wkzvAfrv1ZYB55OYHyBj5rLx0Y4/6B24gQkG4w3tq3OuWq8AxWmOH3x8vTBztBv514w74Oh/7W6xPhIBlCQGCs+kiEiiBsVdYf5/evb5jfd6+4vjGP34XfZJkqzpm6+X0gazoad8TybZpzDgw/WYYI5FgAXN5J35686jLhPZBfY/jZHSORAOUjcAej9FDFDMqHGx8GLpWhPcN/KcDvmS1O+1Ar5kNhbKFvNHTHHH9pdVS6bGT4AUQjSSHXnkHheuxk+P3rNscnknDNqiwqB0I0H03uIVlpBO1bgd3XRzfBaYNZY0bPN6aCEoP9qEuzxmqAUTJAvyHRvNQMf9qLhnPJ7CQqsutfQEvSD9Zuo2V0J9gHABkN+wZb5+UTktA+mu+yxn1S+Nz0Peb4QySf7o38jPX2jaoAkJgFqsEN2PwQy0Lj5KIAgfDsjRHe9eQhenmGnCQIFJt6wRfCetO/2Fjw9+j6h1DuPtojmg8AxMHNnZ91U1EE/Otmak2H/gBOBQmYYP5WzMGMFUm/+2+rEkg4jwwKkbJRGdWQ9FdlJ1BjXUVgyM9+HPOrT6K6+hSq41tY9K9iProJKyQEWyTLSeccf+3Sn226JPcqdfoGxmd1o1h5AFxH881B1kTTvlykMZoQSeYeE43vuS/zzvhMwJn3Advj+VQiY9qOrSoI/9yxKvW59L4hLRN/L7poPrMD8LvEDesTNwhKOGARJP2tSD7rzPJAzkRUkEAuUhwkA5Rd1y0R9BXn1v9Wz/ELQd46ZjcY65++ine/+Os4+sKn4r+tgv6iMlCJwHiQAWxwlA5xq1831Z4dP73+/CvngFfNjWTN8EtBSPzj5nBoMSf3LKibZOxMMMFgmWHkTfGuXauf19eOkp3xhzGS7yFjz1hIkF6u+WOEGu7F8HvA/4gMP+D2cH/qR67gL/zUE/jI++q9DRkDbpz7aw2Gn+FHXlcUJKfnvskyIMztObStHOBvNEeIbZzhB9zaQQSMB+53pjPn0v9WGPcxO4NPtWISG8xJm079Vw5yDHL3e7PCrWerhn2hAsN/vgL4JUlYWCz0Zrf+RApUxqLU1vsGvHVsvBQ+begSTdelWeLO8g3cK+9irjfEJL/D6jHgf1ytIqFam6U4J8i2McPfxfC7zTMvLqBI7mT4NRsoUq1NyqWLgTWH/nA8PmceAMTwGHRwE2AL8/qXNr8c89ZIvtUayhzjpI+h8u7uHvA3jfuYbXToF9e65/fjh+kA/NwwUFTGRMBf+YSDvKEKWHfp543nByT9/CtDQDiwRc6dmjyYNCevgIObs0xaagpm59QbGgqU9QG2e882byr2zC1tmzEmAXiWLwB+eSnA7+Xx2WANgFFkFqs1VtCyBVkGxdGWw93H33F9h5GYjVLyEJvgS5XBob+xKcmHMeWgd34f+iFYgcDwldfqMZNg1hXGRIQ3rgyNsGYNVY7r2QF6HvCz1S6WD9iZwBDK+tdPZid1wykW1SDKm3CyqVxja5P7vj+nVT6In6Hz90iAvdLossZ9UhKUENA7rnW2FlnprpWyN4YksVvSbwsg6WEmRziZFNCGcfvqAO954gBXD3tIlAJkgowEEiHj2EmQ9Zskh/DRf/Fa7JL0kwCS3KklNlRw6odM9v4+uyo0jZIOJYVsMPwVGyRCoq8yaB81qMo5QIx+Q8mUBuZZJY6Z8vGjJDzY943S5jNslTWrrMZg8sClZfTGUIPjqDCJ4yVEKH2MZrY4rwG/Xgf8OdJOv4+9ihmDr/5W658C4B97wL/gCqUpWqZ90Ugv9c25xqKRCIlx0seyA/BHWf+DVzdmo2eJQKKcGVYc6yOCFtJF8jEA4dc5f2/mInHM5jbA7yXRLsaVIYWAIoLwpqstht8yEtmQ85NCJhLvUdAdPVh5wJ++1YDfNzn2WWVHD9zzPpmetMxkm6Bfa4vDfookTWNU4Qe8rB9Yj+Njq8G6BCln0DgW7rqY+PGSIOt/5nYFJkAwR/m+21u48UAjE4yC63hS4OaRu5duHO8DoC0uH8nXKJGAdYHX5i/irFxv/gVJ/zbTvsAsHzzCDH+zEiXwxI0VJRi3R+oOh+70lRqYLFxza9Wz6OTc3WdXDlJM9QRn5RksuAX4ta1Qol5vnTqIMPYj9tOZhWUblamPUiG+c21/E2b1G6MDQpBXCVoslu7fNxkiBsA/X9i1NIWEEsy2yPqFILBlx/Ib85aK713sn9l7RGBaTfDm4nWczWc4OxGYm9kj713/KNRjwP+42hVY5TCrF1iEYgZiZ/wSwH2zmgy/ixJaWbRMBeml0DGSjwSSh2T42efW06aRAJ8zH0o96QyK9Ct/sPk1lxMX9wUCeRfvbZUIhdv5FQyVZ5kD4D99LUZe8fkdoFwAKoU4eqL7fcPGfAUcBof3wOoqo2vAbzVykbTPX5hjj1F4duP5oSB/ZesNiVwKrCQB6XPe+fxN2DCTvcq4W+/UGwC/n+PHlhm9vSoYqG0b9WiepwD49x0n0FWc8U7y9esYfl5alsu1jPvCVhjoChSMwTrjFdvHT0K5RkrjdUTfSTX3mR23zA3A33YyEsfueutf3Ls8K6ArJCduVrS89mz9zz5iK/VuzgH0cQfgFyRwmAwbcn4PnKXqjp7sKPZgUE1P4AZY/L+HX2hFdHlZqy7dee2oYNins8FGw774cn4E57IMP7CfU78qpo5VExI6zSEg6tn6Tcekl0DvAAyF60c9vPuJA9y6MkCaNLwmZIoEhJ5MUXrAHmT9JnWAP862C4FNYz2U9DZK+oG6gSmuPrM1YnFXiejUP2mvD8yR4TfDY1RWIxEKPZnGBob0DZNeg+HPAuCXCQT886r5GUMyhletkC7WFGeFrTA6uxc/n5LKjRKw9c7wboa88Aa16eIM15QD/BdmhqV1TYSln8nNRY7mXtNFYu23JqX3XkJy9iaskDg5dEAv5NKnIkHPM7Xn+qye4RdpnOFH4hICVs1vR6oHMNaaHWZ4DNM/AFmD5N66ySzggEGeKmjN8bnCSQ5LPtmFfdNIJQipKcqveTXg72DNwndj/LwtAWkq4wx/E/Az6kztijX6MoMSErlI0ZPd0YP6qgP86uwOoB/xWdQs8tF8u7CYNThoKjXO77R+HED/0SjDoJfUjV1r8P7j52Oz7tnRk+3X1aVT4/h17yBxzd8L65oqT18j9FLgiZvuehxpCw6APxrMMaxKMfZAbW4LfOL9hOeuG3z4+XUvpPXPpp2c/WFJGqnwQvEa/uPd/4hfvfOptR9HSf8Ghr+sLBbLh4/k26uY/Zro7qWlLSAF4dj32u/7RxyZ9jEGwH90kCAVKeZmtibpn+t2A2xhCzDVgH8ydYDfbGkr7fuc11zBWEeqrRaBOiXsmjWWpXsedDn0A0Ceicj+N536AS/rtzvc+gVh6WX9DyMU2TTuoBShKHcDfssWJ8UDvLl4A2Vp8Su/usC//9Up3rg/a8UVvlPrMeB/XK1yoJMjyBT+oRnmjak36pSJRzBiDZQp11Rb0bAvycBpDs3GbVoelhWxLsZuIzD0OfPx/Z/8sPuzBy/BbtjgB1BDw+PtDHOjcll/BhpecTPl1sCevQ6glvOLK89sltfbDRvzkHUcmy86KieCY3EThAdjtdrIkDZKn93rJx7wuzlKhoEkgaR/5Jo6zNBvfNW90qqc31oEHwAATm6e5I8+xx8A87a8cr95ARBN+/aV9Ac5vxUCadJf+3lg+GVVICXVmuMvrMbQW9hS/6AbBK0ev5DuP7YJ+A/de5SLrZJqwJsEes+B6JPhKzRmsvO7l47mS09eBVkD0xvF+WnAPfQV1S7vMZ6tA/CvFs99c6h/uPdsXmgoqMkDEDWyyN3ETwtEgRRQzMFm86YzNFF0b7ibTY/RfJcH/MkeTv3Kr5mmN4YhroH4hmLrkjKu3riG5544wJPXRuhlHfeBcuNKA9mLLKfxqhGdDyDh4tncNSc2SnCjEmhDiaPbyH/sryH7+M9s/b1dRdkQnPbcqEFD1i+WUwhTRYd+zQZ9mUMJGUc9ZDGDgICCjM3NzAZ5uTNwc2qjNuDnpkrNaNiVDXplDXp+fl9eeda5zEPCsHEGVn68pOwFhv/Myck94363OsXCb2wJhASqFTFV2ApzU2Cmd5iJskX/a/8VADB76jsw77lrMjD8QEPWX160GP7AzgdfmNVrqy9z9GSyzvITofAs/zZZf5YqsE8sAdyz2zBDQnjTPgUI5Z5r1vh4XYINaSddJrnR+c7E6zKVAkoH076GCR5z9EXQ1mLgR9WICIfJoNPR3PYPYHojEFskp69v/GwPU1JS9DXYVIOLN6AajZ7k7M7a7yRK4mCYNSJ4HcgcpUP8+ef/LP78838W/ZVnk4uptfGcHXhvh6mZw7LFj3xY4P/yxwU4cefxQFuYoMhj6yTqDFiZRoZ/YZe4cUT4Ux8pMerthgJkjX/uPxxsODcz/NflNwAAE11fy6ECwz+ZacyX68+zwO470Pl2QRcbGyRfXryIXzj5FF5Yvtow7vPN/pVmU5D0Hx8kyESOwhawKzPqc9NugC1sARDhoOeuqcnMN283PMsvqnO8vngNZUeja7UqW8HCdiZgSdE27gtl2GBRuvfucugPtcm4TwoFw2bte21WIgVmiwplZXHZSL7CFLizeLPzvk+VUxWnqzGgjapshXvLu7hf3EMqM3z2c0VsWtw/cwqqd3o9BvyPq11O270m6Q/zxpuMykiqaKAml/M1uU6U83uwY6xF/ggO/bDGbTQ2StbbA8GifwBx1bEn5tUvdL/kJeT8nW9JtCbrD3L+TXF8AGqZ3CrD783p6uZLnZjA4CiljrUWy4etD2eSCmwtBLk5fM2MhCQUSYhjxzDo177i3jtfYWzZepVAI+M1H4IfddG0GiSTzcoNwJ0nbzbTlPTvI8lqRvJ1GUZGZrqcI5dplEwzM8CMfuk3+ZsM+6zxMlfZOFbZco2WaR/WN5Q2zfHHl4OFKjYw/B7wy7M7bi72EpXedfP75bVnW02hyhrkIosbhTjDPzv1MtzNFeb3uzw+NhUdeAf36Qlk3cdxcsimpB8ASenYF9abAb9n+G0+2jkutBbNd4kKs8XbKl06Osj0xj67vDu1Ila1BKU9HBwfYdjb3HB0zUhGLtM4xz9/98cx+dAfw+SJ90KSi6qLAGGD0sG9Dm2VkIrDW3urNbZVaOzISW3cF9n9wYHzIWBGT6ZQJME9b05pKiguYS3HmeTMX+s2NFuZW81Ut25yTNwAADSAt2ULYQ3E2ZvuPa4+40znhIJh6+MG3TVYRobfPb+uK6cKuatPo5y/LzLnY9L4bi0YA+ka211z9KGy178GNT2BTTIs3vXRmGPfBPzBuO/CTBoz/Fk07UPq8tNXN/eSBMZqiKLjvo2y/nsvbWw6ZkpACYEkpAEkmRvtEy7dAkL6Z7Bn+ElCCgEdfFW2+eXYeoZXCoqAPzD8DABEkN5HgOCMQkP1ZeajB9eP/e2S9Ssp1oiM1Ro9eBEAYIIqz19jW4sk2I9NPDN+Cs+Mn1r7Fa6K1rN8pJxiyIIx86oPIoqpEQfawEbAz4APjTQyqRl+49SM8M+2nYdpDeBzU0tb4TOzL+N+dbb788E1rn998vvQDfb6pGibeB4MJXqZQFkx/rdfvotX3mg3ywI4eysM+zaWtQBcU+ONyhnVvlE9wFUvBrx/wWASrbQBZsbJhfv/xwcJiAhDNUJPtZs2cw+EQ5Tp3LrvdOwB/8XUOJ3lynrMzDgtTnF3cQezaoqF3u5DBThwuyky1c3xV2uJAMZqlJU7lk0z/MDmOf7w2ttk/UoRysqi1AbykhT/XM8x09NOBYEQhOtHvY0z/EuzwJ3FGzivzjBQQ7z4ssY3XqrX2PkCWGxpVLxT6jHgf1ztCg+VpGb4mTlupLdt5gMDKYvZmmVfcMI2g4O4GORdOdr7ljVutnSTXLUBCkNFWf+rn+9+yeDQ3zCrumyJBuBnq2HvO2Alt83vW1tvnFrlF90kGCiWIMDPuiatDRCbKoKWVlThtm68jy50MiiGJYtM+M2jn+Nnv9Fdc+hn49mdhilN1nfjbY8wC8XGtBsWHUUxestGV303p7sbtIlmJF+XUiUmOszcLLFnE0urkQpVG/ZtAPxsXXJE3PxLf44axyaFhAmAZhfgZxsdu1cBP42uAUkOMhXy2fpM5MZiRnLvRfe5rrdnRQ1b9JtJEukgup1zh8t661j9PS76+897i+E1MBGELpHqOQKB5hz60d60COWujwbTtVqhgcL5cKekP+kfwAoJYhvXt31LSpdBv82pPwkMf38Mw3anQSlXS6eO2CWZ9T/PRYJUSJSswWkPxVMfhJHOF4XC/SHkxnMFmbiG3Q6VyVtRIfVETGuH++jQPzj2bJjzjpAkIFQWAUuq52BmXPWS+ms+Ls4mSaOx0WT4faOURBxvElXNihW2wmhy5gBMNozjW7lwhlZELnbOMlD4+zz12dy1cd9JBFc9kTs2uvF5LVskQuF6eoS5XnYrcIxG/+ufBgAs3vUxiKwHjg3MdYb/XE9rl/6GpD/EE3aNiwxV7mLsVt5fH1yHyQYQptpocKeki+dLUTv0G7aOyefGuJhMwNY4wA8B7UcpNgJ+P8cfnh0JGUh/fDoAfg/yhSBU7Nbe5vMuEwn6MkPRwXaWb6NxH2jLs81aDE9do3/yzEcBwJlC7ngeEsmtyjiGBcp5S3WolMSA3LVy0RETeWAsjGwCfjc+YWWKsXbnOsyQ+4PfeozuV+pIvi8uvoUvLr6JXz7/r3iz2v5cAIDfm38VD/Q5Mkpw09/HD8r23ykl8D/8sas4OlBYFBa/9OsP8Ju/dxZHp86jQ//bJOcHnKeHdQx/iN+8MLOVaD6XNBHmO2YLi6py61eIC5Qkka4QWkHSfyjdczzO8Pfc55rMtPNFbNyrzIzT8gT3i7tIRIpUZJhUFzv3WEuz3GgQK0lCW90y7gPc+4ZUvq5IvlCbnPoBIBUZClOg3CDrT5RAZQysxaUi+ZgZMz1BacvY9Ny3DBvcW97B0iwwUmNMp4z/8jtnAGpVSbEA5mb+lhgm/mGux4D/cbVLCIA4Or0Lq2GthloEwL/ZmZz8TLRYTtcZ/nlg+A9Q2Aqpn9V82GKrI/O9+XOIlrmKfOKDAAnw+Z0I7luvebGfQ/+2qp36X4F98Ip7MGSD6FTdWX4ubm2jLxyLGDPddQlJwkXDkWqbkjUl7bGzj50MP2CRKYUscdLY6M5+3GYZViX9bO3aOIWb408ebY6fTZ0ysPHAG99tmNMFgHK3uiDITG3a6wSEgc3kYo6UEq9AZSxtiaHs1aMtm+4DY1oNFwpO1qvuzh5I7GL4DW9m+IlEVGL0zu+3/Aa2lby4B1nMwVKhOl71leA4v+/egyLLbzuc+lt/+RAMv5QJKn8ue4uzeiMT9qjUBvyO4d/wYkbHhg76Bzsl/Uoo6NCknF1O1i+FgJS01ak/Ldx3a/suWi/ZkhrAVgNCQKx8x53l1wlFErnMUDY2bpa5biz4sZuN8/dBSbNljv+tKjl2DuSyAfibhn2aDRJSSIVjyJJGNF9WLmAA/ODwO/A/Hv1x3C4Dw5/4xkZ7hp+CDw2wplQDPOA/d+ydvPpMvMYymcYGjpDOA6bMx2AQpKmgyjmue7ByX59japuRgdSaPzFskQqFa9kYx8kYk2qxtknPX/ki5HIKkw2weOY7HNkazAqrelMb5NunZhLnTHORRX8dq5TzHVicr6XQ9GTmYuxW/QSIUO5y6yegl0pk/vqySQYL18gAW7euoVaiKeHUYWUE/Bucr0mAdZ20kXhVmBUS7J9p1rqoMEGE0mrkMnXvGw+fcKAGnUkqYU1TkwegPaJ49y3ndbMZpPQv3oDSBSqVY/HMh8FSQegSclczVggwa/AmsKE1WFctNaMEGtF89XmetRj+2qU/jMGxkBj6ruqiGaG2D8Nv6ki+l8o33KHB4FPnn8Eb5WbQ/3p5H19YuGvsE8MP40np7qGT4v7a7x4fJviZn7iODz3vnsNf+NoMv/ipezi9qGrDvrfAoX9jsQXYwoLieT030xjNN1sCC+3dZvzz9tTP7x+OVGeUXai5dc+mq8o97wquYMAYZgi+l1gsGCbErbLFg+I+7hf3kMkcmcyQyQxLs9wqmzdsUNqyc34fqL0+VmfWK1uhigz/Nkm/W2tXZ/gB/0xlHRuTqyWFgDWAMfZSgH9pl1iaJTKZYa4vZ7BXmCWWpkBfDWEt8B9+6wRaM25dS/HxD7nn7XzBKE3xjpf1Pwb8j6tdweyuybLqEmq5B+D3m2dazrCaqR0B/+AQha0wlL3WA/zSxablGr9+MHIN8FPah7zxPIB18z5mhp0ESf8jMPyHNx0QrhbQ3/wMAEBee9dWKa8Dzx1gwI9XxO8iAH5bYajazrLcMOyLG3xHkWw5WBcZlwiJfl/5jbaqP0dzE73K8FsTZ0djvSVz/LwxarF13CS8lFc5s0CgNi3c9qcePG8G/F6GV86QiQRKKFQ+G3eY9KL/g9gk6Qev+z8ox4C1jsOD4tBA2FSWGbLoZviBOp6vd3537+50iOMrrz7V+o61Z+lW78t95/jjDL93v9+nJAlU3kMgW5xGczX2jG/r8g2X+y45v1RI093AWZGMs++Xj+YjKKKtTv0B8Mf32NaAKBegdBDHorYVSQVIx7KOVK8Feixs3OgxrzflWq8jvFP/t4HhD4A/aczwNyP5KquRkvJz4EAqVQ34zcL1RElgIPPIbLNKnSkWod0sbf7vRjQfgJjXnJ05wBLGvAB3PcRLjBzDDyFR+kZ2ujjDWA6QUQoLi1dL97zoi3ytOcXMSEhBkMCN/AgDmeOiIcWlqkD/hd8BAMzf8z21yWfPmxVWy/jsCoD/wtaS4LQRy6dlAgkBwbZ+DjQ+x2E67HS0D7L+9O6L6w1JX4Negr5wf8s+/i/4e8SEFpVFBVMuUpSZl/Qv552jMiQ8Q+q/6xjJp/LYBLBe4SOlgLYGA9lbe52+zDtl/Zz1oUdOtRGMSd+KEpJqC4KOGp28CAA4P3oaUiXQIY5yl6xfSGdiaLrXb9alG2Nq3suCIuC/MPV1FWTjrRn+YDLrWf4Bu/M+b7CwtE+z2EfynekJzswUAoRbyRUH+i8+jTfKdQC/tAX+8/T3AQDvy5/GM9ltXCF3jZ9saBIoRfjBjx3iT/7wMfJM4MFZhf/939/Dy17i/1Y59HeWPw9Tu4D1z6KCK1hR4cAvzfcnAtSI5msa9m2r8N0cqVFM1FiyhiCLUYgknDkgbtjgQXEPJ+UD9GQ/qgUkucjr2ZYYOW0rGNaQO/bX5UoTsLQlvEXRDsDvJf2T7ueGIoXpFlk/EaCZLzXDv9BzWFhkIkdpy718DEKF5oMggU9//gL3TytkKeHHvv84RkHOFxYMxvIx4H9c/z1VlEuTqB8wVREj+YSfaewq4TdGVEzjfFmoKOnvHcAyY9RhmHapYmwHhoHhX9nIyKecrN+8+getBYkX5w6oktjLoX9TkVAQR451DRGAW+X8gJ/T72he+K58VDJUBSRJKIg1dcRqJN+2SK7GwXpiSkSDmQCCSSiIw9v1r64CfqwfMxGBeqNHm+NnbPZlCCVqST+A6NRP+wB+zwBz1uuWvKU1w69IIiWJuSmQiAQ9mdUjDlsaX2vKh8aGOB6HjzkTOyLhLJvIlK2a9gG1osQZ9+3H8NdxfM+2/r2KLOvK8fvovC6n/mY9FMNPAtrfb9msZn9dHsiKpB8A9cYbZ8plI5Iv28N0sx3Nd0njPgKSRG526mdGVvgGRN+ti9tGDFiXzghyn7nGhi9EJpKYl+5eqJHHzptTOuLHSHvfFkl/aKKq5dSZzTE3GP5jVGzQV7UJaUIKlQeOaTVvjU40peyR4W+ucwHcACDPNocUj4oNEhCEN3STV5+Nf6ZIxka1EvU4WNO4j4iirP/Nyh1/X+QAeG0zFRo8qVC4lR9D+bUEAHov/j5EtYQeHKJ44v31H+V9L27hGDU6EL2W23dOCcCAtPV5ECQgNjTCHDCWa8C4OroNm2QQ1RLJ6RudfysEQQYGPjRPfLO15VPiv55MJqiSzGWugyGWXU79wqlK/Hcd1uSqoeyyDD/j6xLku8b/MplgKPPONITqOMzxv3WAX5JTHJguIMMWoxPXSJ0cP+tGEQ59k6vDuK9VQrrnwyaljSmj4in+CRGGFAB/N8NfS/ptvadjiwG7NaGEqUc9dpgRuuNzyTwvlq6BcTu5hj8+/h48kVyDgcWnLj7TAv3MjN+Yfh4LW+BADvE9gw8CAK4obzioJ51u8aGeud3Dz/3J63jiRgZj+O136IdvfHD7nAKO5Y+y/gm58+Fn4INh39HBluNibnh+5Mi9H8mcSxAzRgN3f89mDM0a95f3cFqcoi8Ha8qwVKSY6WmneR3gmHrDZqOkH3CgvGgoPJgZmqso6d9q2ucVFtO56Xz+OVn/EtUGUK4UQev9TfssW0z1FIlIo4Jg08jAarlRgBmUSPDyG0v8wdfcM/lHv/cIw76MgH86d4kG7/R4vseA/3G1i6gGU8EVV5cR8G+X9HtAspx6EGnj34eH+rI/eGQ5f6ytTu7Sz06vAP6b7wVUCp6fwZ7UM35Bzk/DKxsjv/Y+LA/C4v/fZtgHeBl7F+APagu/EdLOOT6V7XlGAOuRfM2H/MYDdRs1t4mxkA13dvc5alm/WJvhR+drU+qioB5m0WTvcL8LpLjM7dr5Phj3UblZ5hb/NETcZcPOhIjI8LOF0AX6fkPZlxkykdSAv4Phd00WsXb9RBOxRikfzUc7JP2iqiKT0MXwi6MnACKo5ayOxdtStJwh8dd6ea09v6/ZIJPpGhO9D8PPpgJ7hv1SM/wkIhuXzk8Bdt8JMxwLsvIVnes5JhvkgkEtobPBTsO+UDGa7zIeCL5SJdbi3kJJXURApvMRQJsZfjYVIOX6PbaphPKgySATKVJKoqyfgfq63qQcapRbd97+DQ6l/Tpqb3radugfHIDZ5biHUqKW9KfVvHWEMjL8SZ093wL89XVTO/VXsGxR2Arj6blrcqT9ll+L8oalmi1EQ5pbrBn3ues7fPc9L+lfXU6aDZ6BynEzO0JlNfTiAr0XPwcAmD//fS0Zi5IS2puxBuM+QYSxrBvkOSVO4u3LCFnLzWndhDEXCfoyx2IVXAmB8rqT9ad3N7v1hwQUDmkxvlEcz3njXkuEBBPVKQtd65tM3VoWVA1edVXJBuC3ztG7Yo1EyPXnna9R0odms/a8Ka84Wf9bOccvBPkEwvXGav/iTShdQMsM1bFrlGsP+NUuwO+bVrwBwHG5WFM1CQBD4e6niXV7M2aOM/wjI+q/aczwAy7qUUVZf+GaM9V0ba/UKmtcJB9JvFi45tAz2U0okvix8cfxZAP0v+5B/1eXL+GV8i4EBH509NF4P6Sqj5Fwz+xNLH+ofk/iz/zoFXz/d44hhAOLh+O3meEnxPn9UA7wu/99/xyOcPLP5SDpP97K8Nv43fRFHg1IF+yan2MP+Kczi8oUzlwuGUJ17EVTkaGwxUZZ/zbDvlBSKJS2ik0DzRrG6oakf/Pf9zKBRLmfh2SBZkVZv+1+Tg/yBEej7T5NzVqaJQqzRObPmYDY22CvsM5PQBcSv/rb7hn/ofcM8OwT7voLgL/SDDYKpVm+o+P5HgP+x9WuaIjGkS2m5TQyJPtI+rGc+FQjPw/p2X2b9rAgwkDmSLfMs+6qfYBhM2e+9e8qhbzlGBXTMO+rHfofXs4fSjaAMg2Oonx7Y3np6GpFtUXYtLNFBuHn99vnby2SLzjzbpvhb37XABSJ1txXc46/k1XtOuak9/Bz/Na7r+8CKRScxwPg9zFQl2D4xWrMYHhtmcRREfZO/ZlIMFZ9J5cN57nrPjAbjl+oNeCqhh5o7pD0yxBtleSdUZGkUoiDmwCAbA9H6NSbSFYH18FZW2VjrEG/IzkjGK7x9GTzpjQw5CqNiou9y79+Mj8DBfMoRozkapZlhrG2069Aep8RnQ/3BvzhGk8evLZXw6j1fhscgYHasE+nfRjpDNU2Av5yAUqHe8n5ASeJJj9HnQiJvsxa7G39Pry7eRmd+t9+0M++sSOnD2qH/v4BrM8eb65pkgSMX3NUNW/1JKRndFk1os2ayojAQAPRcFLpEpYZ2urO+X3ANRliNF9jJK3J8AOIDH+onvBrLoVmFcfP0KzDZIir6QHyb3wGZDSqgxtRVh+PQRJ00mXcV69XParXVyYBIySSsNZLtZY/T0S4mo4hSWCxKuP1Tb/03svYVOTXPKNcKoIk2W74NiJww1iE8XuBzpElQmtkMKzJOsnj12bZQkk3v5+JdE11FGrgG7Gr6gV9fBtMAnJxsVNFtW8JIigQuoT3wZ3/9OApJModa3VQ+1bQPmNuHZJ+ZgPWxfra35D0T8wClhlLLmHBIGb0G89xYgZI+mg+C6tSjH3Sxdwu3ShetQTpzaypi+QzOLMLnJkJBAhPp+65U4P+6zCw+A8Xn8GXFy/iM7MvAwC+e/B+HKtxfK0KCmPrAf9y3Utp7b2J8JH3j/Dzf+YGPvknriHdYij3yOUVDxembeJ6bma44hn+BxPviWCNd+jfzfCztZizuwYGIo9rxsKWAFscBIZ/7hI+hmq0kaEnIggITHW30Wxhi7XEDqoWLZWhIgVjNbQHt4YNDNvapX/LOSaiRjRf9xiKIoXz8rxThSAEIdkSn7dacz++ED5TIlLM9X4Ge4VZQluNX//0BZaFxfGBwvd9V713U0rE5sZy4QxC38lz/I8B/+NqlxAAHFAOgD/x0ktO8q1GedTzi/pi4iT9YePTMOwzfu50V23dgIas811MsM+ZXy31VHDr/2Kcra7n9x/esC++bQMo75Tzxz/qWNzjaEXDnZgtRmqwxk6zZygjMI8M/5ZOr3fwFl4vmIm09bpuPtwdw7qkf8Mxq9TP8T/EommNn0/eo4PvIwWBBsO/1wy/A9ByC5vadOrPRIKhytGTaQ1q0163IsMaN1u9evwNyWv8pzDXXXTPuQJeWrxlfj++lleU5OfbJffAShxf18+7mgr52AF5tuCG6VrrWMP8fv9we/RcR8n+gTNgY4vMR9kxtzzQAMCrUASGKuvMNw8z/Ka326E/vvfBTSxHV9x7v/61Sx23ki7vfr7UazLfxM/v694YlhmCNgN+mApicMnzJmtfiIHKYbzPhANkjffZ0fgglbrr9dtg3BfYdDU5bRn2Vazd+EzTlIxEZPhVMUPTHV10MfyNjhp5jw9mGxugUleovMw1zHU35/fDe4Zovua6ucrwX1EHjfcF+pQ5u5QgrID7vtc23US4Jns4eP3rAIDZe79vbX2WUsKEJkVjPRvLuuGaUwIqax8D59vgxhFIJkBHDOBQ9XA9PURhytY8f3X1KQeM5+cQG8ZaRAT8GSRJr7ypDTZCEgRbNxIkhYTO90shAdCISs1hIntOkEKgsgajBvO/WqlIMJA9LFfkw6xSaB/5+Zax/OSbfKtbCrYYnbp19fTw6dgI5HwAk49cM/18B7Al0R17qkvXSF55pkgBDKjnRyctZnYRGeShsaBVBaVUcPs6hpUJRtGpv3DNczagaovBoQdXL3k5/63kakt1IUnix8Yfi6D/t2dfhIHFE8k1fCB/tvVSxhIOvUrmZP7G2rjbphoNFA7HD08U7VXWgImipP+qOgTgGgDXPE48mwKlFSBTYjJzsnYpgPFg875laRYtRVAvSPptAYAx7rtrZjI1GKjh2tqxWpnMsdCzNXBq2aK0Rduwjy3E4gSirL9fQU6dVoWxINZgMIrSHeM2ST9QG/d1RfMBQC57WJg5zsrTR2omGzaYmVkr8SARCSpbbh0HCTXTM3zt6wav3SmgJOGPf+IYasVYcdCr5/gJ9I6O53sM+B9Xu6IDOkdJv5q4zVkE9Jv+NICScg7BNs7wBwfsqj9GIhT6Wx7gAGBnp+DZg80LhTV+k7GDCW6AwmaJa885Nq2cw95zUsYo6R89OuCnJIc4crI+ceM9W383fsauBd4z8AREqf4BFG7kh2u/au5/y71f2MQytzZlneWbO2SdfDpfOZ+UD5F/78/i6Ed+vgVwncJCdMaH1XP8D2HcF6IWdzzsAESGE6gBv6h2PwB2MfwAWk79PZniWnqIXKRb5fzh+EmsR0WGyMWWcV86AAvlgMKGSDgLRlL6jOWO+f34mXyDKT+/u/3hajTSB68A6I7jcyzr+qaFiBqy/nVjJgCwfn5/p5qloxQlKPwsfW95Coa7L1Zn/DQbKBI4TEaO6V9p5gVwYfPN7MjaewuByW1n5Jm/+uW10YttlSqJKwc58kxhWRjMliYa6KW+cWF6LpJvE8PPunTX/CWz7kmlsVGUi9SNRviGiIT/7LtMO4Haqf/bMsfv1lYxPYHyDUozPIb2owlJC/BL2NyPABRzwCW/u9n/AGiVA9pr6xwJh76bgL8qsTAFMkjg1AH+5vx+qBDNJxtjAYHhV3oJUS2hSOKKOmj8TQbRkPSHxlTX901nb4LYQmcDTA7X1WREALxTv2wAsCbDn1EC8ptdVql7VLsv242r6W511XE6xpV0jEk1j+sEqxTVkWNqN7H8oZGqfYNFsjvQuE4LhTAfroSAgkAVvrs9AH9Q1tik1zDBZAj/FWQ7xv8Okj4M89raV10Jc/xvnaxfSYJZmXfvX9yBqpYwMsVkdKvl1F7L+rerr0jIziZ5jNtdfaaAIAVh6KXxEzPH3IT5fQuzQswweRUGs4vm8wx/cOpnmYGK6cbGHxkDgKOc/9ns1trvBND/VOru85xS/NDoO9camcYyrnqVzEl1Cjk72T5O8G0sshogESX94bOc6xn6GaGXut79yUwCVkfDvsNxsnUmfe4VAz3KIEigR0HSXwAgHPjlvyvqrqsSkaBivQZONWtoqyFbgN8ApnQs/0oFwK+tds2Cyn0P20z7gDopIYwzrJYggZ7s46w8xWxlPGJTMTP+y+ffwNdfrRuPS7NAaQokDcAfmhW74vlchN8CX/mG24v+wEcPcNTRMGrO8acixdzM4zjyO60eA/7H1a7WZqnN8GPXZj7txwdTUi3jTSM9GFj2hujLzfK8WGxB2QC83CDFs9ptVPfYzHY9SEhIqCc/DMC59TPbOJ/8Vkj6ASD9+M8g/difi+MDG8tnSHdmbzeiBaMZXweLzdbAeqm2vPau+LoUmjebihwzQ2AoITvZ3eTp70D/3R9dP2aSG9nDh53jZ6NbkXZbqzkXHxn+HYCfGeQBtNoWfxak1eUMggTGSR9EVDv0bxhrYWu6jz9siBuAn4jqsQB/f6yWZYskeA5sZfgd4M+mpzBbzkFy8jrIaJhsAOON+EJVViNZYVmbFdjZTcZ97Md2aLD//H4oJSTK4SEAoL88c9cOsA74rTPWOUwGGCd9THV7AxPGI2xvtDfDr0hhces9sEJCTU+gznfM2zaLgH6ucO2whxtHPQxyiapkTBcacuHWLsfwu8iyLtaGy4VTz+x73Ye39ooLwGWSp6SwNCUI5DZEHE7iDoZfSKfe+DYw/AHwq+kDSN9E1p7h78s2QJEkwGEOvFpAWeuMRa2O3DqrNAL+VpOQgkqNY2yn1I7ZPphPHWua5J1RqSGar4lRWCaovJlnFub4PWAREEiQOHbdH5nd0uAJvjF8dLvTbA5AdOpvRso1Gf4epRAe1HPiY1T95xZpfyN4EkS4nh1irPq4aNw71dUg63+p+3j8mqIT11iS/r1akn7vKSG9D0IA/Jdh+JH3YXXgQQmaLJRQyHeMePVkhkwoFCvKhtID/uTktUs18kKp0zdw/J/+GXLvtwA4hn/1pYI7/8XR05Ay+Cm42t+4TwCmAq/IB7hadqr0iAgkgJGsjfuCYd+45dCPsJj6BpYD/CMdJP3+eaFSkClAHcopAIAtcW6XODUTEAhPpzc6f02SxB8bfRw/OPwI/szhJyKT3fpMzLiSOPLogheo5vcgFqd/OEC/0ahgoloifM6JncOwxVX/yL4/EYDRODlz9/BWwz44l3kAcZ2LM/y2AJgx8qLXsmIsi/3Og6IEk+qitc/qMuxziQIWqOatdV6SjA722moYTfHa3ibpB4AbV9z19ca9zcROIhx5c1I8iI2FbfXa/Rn+4+++hv/1V1/AsnTHOddzr55qH88+BnuFWWKhq2j2+NxT3criQd99d7O5QSJSVKZEsacp4B+1egz4H1e7wuaJObLKqQc6W53J4R9CHpiky2Ut6fcMf9EbYqwG2yPqjHYGVoNjALwR4G4bLYjH43Pmu0o+6d36X/+yAzGmcsDbm3g9aonRNahnvmu3TNc733YaEDZm7KMZXwcLYE9fd8ef9upNLLMD81tN+9zPBTMSkjESa2dZ6zYQmwB/0nMg4rIsP9u9vleg/d1SnHnd3vGlahl4QsgGgOaVOKsmw986vF0MP+vuqEgpu/0kQgNtw4ypYQtV7AH4ewdA7wDEDHm+mUlK770IwM/trlyXzrAv2ciM7zLuexiH/lCSBAofzddfnMEF5PDa2IphG9ns42QEZtQu08wQizo6tMuQsasUSYgkx8LPUuevfvnSx08E5JnC1YMerl/pYTxIkAaH/oFj+JOOTGRmBqyGeIgxiOa9p4RET+ZY2rIGmmx33//h+JPetyWaT40dkyyLOZRXipjhsYvJWwF1kgQo6cfc79QswJZrwz4iQCgPdKnd2Gw4kkfTPl05s1jPtMorz3SemzCDToJAqDfAtaz/DABwXbnnRF84lUHz6wtqmU7Af+oAf3LlaSSiNltsVQDL5SJOArUZfhVVDixd00MCrlGfOAPBTRvhRCjc7B1BkYiJAeU1NxKUnLy2rvSwFsLPn2uVIBU+upAa679om6j2ZIrCj2Psw/CL2NTsw4JhLcN5/GtkpDrvnWalQmGU9LBYmZPXhzfAUkGUC8jpdnO4rup/47MQxRzDr/wGste+4j8qtcZLmu78p0fPQIq2t4c+9HPuZ3e2Nx3IqxEbc/wMBoolqEPJGIJqRnGOfxZz3g+0gW2qIsgz/CQBMIxKMF4F/CAwSYhi0nmcZEp8S7t71sn5N6suJAk8nz/ValK1X8wB3z65e/OBqCDmJxDL84dqzLxlxRZgiwsPgjNKcChd85jBmJgZro7cjX5/KgCYPQ37HHAFQqIHYiNkYV1DJ5GMXu6um31Z/kxmWJply7xP2woMbj9PWLuRDVO2fBoUKZS2hGGD0pbQlXt/6c0Rt9XNa+74zyca88XmkYy+7GNpFjgrT3YSQGcTn6SiLT73jQfQVmOmp0g6mkaJSFGaYqvB3sIssAwWSIqQJt2fqcnwC3IjMrvUA39U6zHgf1ytqlnherNE/kbdR64bgIkq6xzTMMNvB0foyR2ATpcglYFG1yDGN8DFdC3DHGxi3NLW6pidjj86ftKBE1Oh+tp/ccc+vNrNtL+dxVvAcwT8TYa/A/B7Ob+8+my9iWXb3URovrzftBEYiZA7N1b1MZv4t50V5/gfQta/z/w+gJhggKakf/v7iSLMimZImhuicgGenUZ36+DUz0Vbisa7Gl+M7qhI8iZrK9ex9PcTbQD8FrwX4Adqo8j+q1/plmcz13F8159d+7G2tpONCSW8IsBebAL89Qz/ZUuQQOkl/fnyLG4MVh9Ohi1yf36Hqodx0o+z/FTMQWzBICQd0aFsTeeMrCBCKhTOb7vRm+yNr+9nsNVVBGSJxPE4R6/yYxqDQ1jYbuWELpwsPb+cnN8dePv1hip3cmsSrtmxQ4XTOuw0x6bG6FtZKu3B+M9Kfla27I8hiJCtfB7pY+aMvxcT7aL5hG8iWukaPw57rSiZhHTg19qonBC6RCYU1Ib5/XiMYRYeDAGKz7BV474n02t4T/YkPtp/L0JkWlCkWHBrPCEUM8N4hj+78gwOVB/zjmvNhjhCs0TlZ60zkbg4PgAZEiQe8FsVGH7XqKckd2voFtPUvnSJAaXRKK2GGR7DZAOQNUhOXm/9bhMgVFIhJVX7w4QZ/tCw9s23VCYoQ9NiucP9HQ2GP6y7lkES0GQxVL29mmEj5ZoFLVAhJCo/Wpfcv5ysX8zP4/gTAAy/8KtI7r8MFdIQfPUmd6GqBYxMcdG/CSVlq/mjx1fBJCCq5XbzwNAQbiptTOVG4zqeiQRqOfVf2Hkjkm+F4Yc/ZAoz/ClGK5J+AN68bw5abdSzBYzGS9qt/c9mNzd/jh3F7I9dCBwJx/I/sDOwyiBmDyCKt8Zg8eEOzgJgXLA/j3IIIorNtnMzqxn+CwJZu18kH4C5l7XXgD+Y9vn7i01thNfhfN9V0jciZrrepxS2aEV4AohpAgCBGsoeKRQMa1S2QsUltHYX7q75fcBJ/q8cuvXozfubn5dEhL4c4Kw8w2yDyWCoi3n9Op/5yl0s9ByVrVrz+6EUqa0Ge9pqzPUcxdI9/4Z9uXEdCTP8M9+4UKRig+adVo8B/+NaLyHdypysyCw7NtKrFeb8VeGclal0c48AoAZX1+bEV4tNCcoGICEgxtdBg2Pw/Kz9IN9DquoORjSfze0fEUF68z7zyh8AeOvk/Jcqa+OM91qRWFNbdDH85p6f3w9yfnj2cA92D1JBssu9TvZtdljXTNjEHgalR6cJ0YZiv4nscqLvLCFrWi0NM6/bZVhhY8lpr82+sfXGZcETwDP85SUZfqCzyUJEgErWGlcBHG9y6rdsocrdpn0AIJ/4EABgcOebOPyNfwm1snGX0xPI5RQsJCofWdUsBm/Nrq+d+u+vxX4BgPWS/oeZ4ZdEqEaO4c/KKURVAbxuOElAbEoJIhwn7pxoNvEc6qyHrEMlwstJVCGsVi4yzA+uQvcPQUYjfeMbl/4MzUruvgjpm0V2cOBu3457i8sFqDfaW9XSrKYxHeAAYSJUDTR9ROR+a0DyUCM4D1NmeKX+3/0DaPi1h9avvVQoaA8cM72A5dqwz8jEu1V7r5LmtdJYN4P6R+gCfZGBPYjbBvgVSSfrFw58AuvGfZIkfmj0nXh3/qRzRm8cguXuBg8vzoFi5qT3h7dwmLhoUL2yLli/nmW6iDO1APB0ch0JFI5pCMUN40IS3khPAEnmmo471t7DZIhr2RhT7RrzlWf5Q4pHPJV+TbUqhSVyZmBs4/VXn7gk+uUkpKCzHpgEiG00Su0s5jodI+9DQKAyDOFn+HcSBL76MkcuEixXFBNxjv/kcoA/f+VLANxYwPLW8yC2GP3ev0M6fwBCTUQHOf/06GloonUHeSGhQwrJFvVVGIngJsOvKz++2KX+A0gIDKiW9M8j4Dew8bxZ98sQkeG3MsHYN5LmTemyUIDpMO+zBhdmghMz9XL+hwf8JhiLCsKBdOv3A30OyBQsE4jZ/f92oJ8tiC3OfcxhUCgc+P8+N9PI8D+YAFpbnE3cedzJ8Js2w9+U9FsQyJhohDfZ4HzfValIMdVTaKvB7Oba16L8rAFAYJmAillszElyiSSFWcKwieEeu+b3Q9265oD463e377uUUJCk8KB8gNJubg5MZvXPTi4KfOW1ExCoE6gT0VaDvcIWqGyJ5cL9bWDxu6rJ8ANOPVCYxV5jCH/U6jHgf1zrJSSYeW0jSp6F21YBmLgNL0d2X6c9jPLxHhJ3HSXVJCTk4S03h1k0uoOEndFt4XNsi5hWXtYff/0tcOi/dHEwqute1Gq1RTfDz6aCfeDMlmQD8LtN2W62nESCjCSe6F3b6QwbX5ot0MVkN1837QEdRkoba9/khfgGIu66AsO/C/BTAPAr8Wcc8sofgeHfFRVJHX4SAfAny+5ZNMPWG5btBvzq9gdQfvynodMe1PwMh5/+RQy++GuRrQ7sfnXlybV7J2zCtnlrUP/QN0VMTIQIxboAQmPiYQA/JCjtw/jvJV2c+g1tfU9YtiCiVlNqqHoYKcfyi0YkX6cbfhid6ahUKFgGlk86v42HkfXHzzI9xejznwIALJ76EDhcmyvvzV4+uskPYmc15qYBIJcJMkpqwG+tjybdg+GXiRs72ZAW8ZZWwzvCDI9RsUYmk85mYyIUKn/+Mj13oiV/PVvlx0+COWnj/Lp108V2Nk37ri4XXlVRR1muVojms87JND4/Sg/4A8PfLIb71TDDz8ydnyfM74uDmyCZoC8zDFUvSuvj72UhSnABJUVk+T8x+CD+wsEPIkOGxG/ajUocgHI5lq7Rke4e0SAiXEsPcZgMcFEtUF71gH/FuC8069k/f5SQsZnUbPiSTCOQUCRBQkTTxW1z/FQVtYKw14dUQGUMSBISkbSc4LdVIiSO8zHmumgZbtVz/K/vf31bg9xL+JdPfxjT7/hxlMdPQJgKV37/l5CXM5fKwYzRA9cgubjyLIDuqM7auG/HHD8BLcd6U9bXd0cpQRhSkPTPMTVB0t9g+Bv3Bwv3zDSbGH64BhIVk9ZxkDV4qXQpA7eSK8i3yPl3lbUMIYFECRwJt/Y90B7gqwwsBGh+H1TuZ/T2VhaxBZhx4cF5Dfgdw39hZjgYAIkEjAVeui9h2cnFtwFKAJj77yYA/twDfgtGAd1m+PeU9ANAKjIHbM3CGfbximEfgMmkwCunyu0zTdVSsBEIS7OAZYuqctfZrvn9UEHW/+a93fPuPdlDYZY43SLtv5g7gJ2n7lx+/qvnSLc0/FKRYrHBYG/plQyzhfvZYMv3E342m7uYRUXOuPWdKOt/DPgf11qRf6ivGpDtszkNDD955/Fg2Ff1x+jvYLIiaGr8HqU9yMPbYKPBunC/QxtM7laPxUviuxhJwAF8amz83gqH/suWA5tbQG5QW2xg+O3Jq84dPh+Chg0jNub9VBDSMTb7zjy7NzXrsT8rRWl+uTn+APj3aFIAiEOMzFxL+ndIsWvp6IqEmo2XpAbAv87wszXRRLKT4Y8Ni+4NKiU5VuOHQuMgWc7qWfTmYVkLWs78e24H/AAwePIjuPuJn8PkifcCAHqvfBGH/+V/QXL3xWjIFXK3m6XZeA+HLQw/iXh9rc7xx7jCJI/fxWVKkAChwfIvTgFw6+Gk2Xr2VTX+jnAl9efFM686H2ww7CNASnCHOV0uU/RVhjvXnwQTITm/Azm5/MwvVQVGv/dLELpEdXQLsw/8UPzZmjdCVTg29pLu/PULKgdqPasqSaKvshpoBlC2zxqgEs/ufRsYjUZT1Tn028h2rVYiZIzmS0uXNR5m+K1MnDkac7c5qZRubQ3PsGqJ5NQ5jIsrT288LyGazw2HIEr6C3/PJ+UMtHKegky5qSaTHVurCPiPHQglIhwlQ1i2rU1rYPhFucQgEyj8vDVIQFp24juuJf1O3k1xvRfpYC8TRiUkbmRHSIXC2eG1Op5vVrtkB4afk9z12UOjdeWZ5Rqa7lwFlYQOzf8tgD9EhVmVQSiFREoYy2BhkJLabfDbqOv5AQ7TPiYN2bIZXYFNcpDRuwG3r/TONyHKBUw2QHH1GVgSmHz0T0EPjyHLOd79zf8AUS7Qm95FUs1hZILZwW0A5CX/7aqac/zbiqmliuNysfUZLgQhRwYCwcJiYt25XAX8LMh5XpAAcdu0r+CqnWeuMpAu2hG3bPCtKsj51935L1PWAlIIKClwJNz1cW6mqNhfr8oZ/orZXVD1bQb9bAFrcR7OoxwC1jYk/VMQEa74sKqv3XHX5tFY7SSyAuAfeMAvSSDzz9sFNGBNjPV7cFbh1TeX+OYrC3z5hRl+/8sT/PbnzvGfP3uKr36zfU4C0z2tJqhs5R3662uGmfFvPm3wr383dUaDsC1jRkES2ke6VpHh328vGBj+k3O902iQiDCQA1yU55jobgVHkPT/4He4++W1NyssZpuPxc3xrxvsWbaYmRkSkUTWfrglMjEAfm1cLGH4Lt+J8XyPAf/jWi+h1iT9LCSQ7t6cBiZSLGdg1IZ9dnAUu5obS5cOJK40Gqh/CDG+Dl5Oorne3gx/h1las5os/38TST/vAM9BbeHPySrD35Tzt41a7Ea2uVnUdLvfu2z3rHqz5CXn+K0GhYiwPSpu8tnWDL8uYc1mFieaQ60BfgbJGjxFBUCD4eelNzMi4VzVu45/W8OiK8IwSPqLGaqu+fKqcKwDANoSIxgqEQpXBtfx5vu+Hyff/VMw/THkcoaD3/23SLxZWRfgX5gSPZntHOkQ0am/Hc0XGP+HYfcB+Cg5gXLojNDy+SnQiDkDmk2J9jEOZA9j1Y/HYDY69DNAqmWKFaovM7yrfxO3xk9h4aXe8pUvXE7izozR5z8FNTuDyQe4+K4/CQi5MaKNq4Uz69t3hGW1hPTXbP15rmdHOFD+OuEdjcRGkVCuyXpJp342lYtQvYS7driGAOfQDzDyDeufpBrwJ9Xc3X4B8KvEzarGxsbK3Kp/hkWvF7Ywd9yoRlccX7NyoWBgIEEICWw2yaF9TG2Q9cdiQDSYXUZHgwfrgB9wKpW+zLFoNEY57XlbAMZIuetHGz/yxBYWFE37rEwg4YxXYxNj19rcqJ7McD07RCFEHc/XkPWHqFPr9wKShGtErq5zwse+wTUSJEQcx9jK8PvUFPbfU5oI12i5xPx+qNDAkCSxCKoJIpRXnb9J76XP7/U6vZe/CAC4uP08zswC59UMnGS4+O6fhMkHyJfnePob/xHjey8AcHJ+QwISBNlhdhYZ/smD7U01IeLzktkC1XKrSk8Kl8gRnPpDjU3DtI/dlVSxgQkpEipB3zKkX98WLcDktCqiwbBPyjOc2EeX8wMuki9VwjUrGnn0J00QmLikCTG9tz5e8HYWO7PYCz9vf/viAd77mf8Pbk7dsZ17V/irY3ceX7rv7rejHXJ+oM3w55O7kNWiMcdfAmwxHro15P5phX/7aw/wqd88wX/+7Bk+/fkLfO4rU3z5hTl+7TNnOJ+01+lM5liYORZm7s1u67Xozv0lzvxXef+cnay/nMU9sWOzNRiMsvSRsntK+nu5xOHYXZ9v3t/N8kuhoESCk+JB5+x9kPQ/e3OEJ2+66+JL39j8/QeDvdXXKm0Ro/xmAfBvYfiVJOSZ+8xhjj/Zoh74o1yPAf/jWqvggN5k2rk32uvhG5nIYuomx/xsbzK8upNFZlOCkt4a6CMiiIMboP4heHG2HVg1y+fMRyDXUfKpDwNSOYb8ISLFHrmYt276o9piE8N/Lxj2vWv1T/eb3xWyxUztXbvivohctOKerCEbs+YZsfP9gzlZ0mCVN8UKATHmag2wN1y9AbRc+mNedZDz98bd3gXWuCbHpqjILsCfDx1wYwYv1rveKigS0v7ejZBxMsBI9XF6cIzTH/x5zN/1XZ6rBPToCuyKUmBhSiiSuJYd7nzt0BBbNe6zXsXzMPP7gGPqZdO4b3FW56v7Clntq2uQIMJxOkLqG4t6cLgGtupxC7kR1CZC4Wp2gNG7vx8AMHjjGzgrzjE3xV7Av//1TyO99xJYSEw++qfBHqha79iuGteMk/PXaqiHqVWjNMCNJoSmzU7l0Orr7SEDX6uqcGtHuT8TIkfX4pRVNTiEINFpcAc4ljyY9qlyBlDTtC+B9BLlznUuKHZkGq+jsFZumt8PlcrEGQTK2hgUaBr3tQG/Y/jD/3bz/GsNHqNhz73C4KgG/JIEjtMRSj+D635BgH2DN7NL9HOFonKNDadwI0h/HrRU9Qy/P4+kMqdw2PP77MkMigQKb/zZlPUHptcqH8lHXtLfCfg5fqZEJHtF84UmrPVNWyUFlAeEvR0qsq7qqxzX0wMsTRlVU4vnPgYmQnbnm0j+/+z92ZMk2XkfCv6+s7h7LLnW1lXV+wpiBwgSBECApCRSBCmRmivqajQzNqQ4Y/e+XJsxmY1s/gE9yPSgB0kPomSyeZoZXl2zGZNJpHSluVcSSXCRSAAkARJAN7obvXfXkpWZkbG5n3Pm4TvHlwj3cI/IqOpCI39mNDayMj08ItyPn+/7fsudFi3/6R3oo7fgQJg/+mE8EvOewDkHmwxx8sN/FUZGGI5u4eC9b/OfHD4BayxI8fQa4Ps+xC7aZAgT90HOQh3Xm54CvkmVzdmd36Q+sah5byCIUyR2RVHw942DdoDJ924WgMDInGHqeO9gfLLDjuHva7wwIXUqAtKznJ33vQlfD4/ow3PR+QHAwUFLwWkGEDiUfE/dzRaaaHoAWOOL/gczaSVnMHHznG1w4/gOhLO4ccJsr7lLMXNzXPbLtnV817cV/GyKx/ug/dkUT37zN3Djxf+cNzvGbg7A4fK+wvWrEfo9gYNdhUcuR3j8RoLnn+zjo88PcOiNAV98tVoEa6FzAzta2My9+Grx2R2PwXsUM8sbp5IkMpsCIMxSvh66UvqBYsr/9nvdBjs92UNqU9yavYfT9CRnl1jrcDrhc+olwPNP83v99itnSLMV+3dSFdNCAJiaKSwsJEmMvAFim+QiN+7LdfwaczNH6jY08H1IcVHwX2AZRPzsLk3a3SqjsvKfJoHSf8oFvy+UdBe6vMkgGrTKJJXX8w9Zi9RUWFX/qHXCL3p7SH7yv0P8xV/tFGG1fdDq4nmBbVGe8Lt0BnvkXaevLBT8BKDTZ1Td1HZCR9NEnrx3PLgzILVGFnl5wi9kIXlYUXwEcyixNC3nosH5h0/Q8MNm+aYnN+xrkLU4a0C6eTPEk5pqXBaRyOUBi7RX51xnw74yJAlcifkeTElg/MLncfy5v47pzQ9h9OEvVX7XOIupmeFqtLeUg177HvIJ/yKl/x7/+zkaZloozIb7AIDe5AhwbNoVYJ1tNPwcyB5iv8644WGluOY/LuQiS4kfC4geeR7U24VMZ3js3j2QA47mo5VFf/TOd9F/+Y8AAKOP/iSyvRJt3Vme/JXPyRpuMm5g1lcGqTg3SluCs7VxXo3H0snKdbL2JUwK6u3ArbEhV7qH46c+gfGN5zHp70KTXHLoD5BUTInDvRDy543iybZzlv0HFt+PZy4RUfEcc+zVIfZvrDxHTcpnPxcTfmA5mi/AAblDv4HlifvCNWiP3+HvPeov3Sc7qucN54rNpfVrkJhNMOhpEAiZBTI9AKmkkDYoDSVK6yDAKSky6izRiIVGLCKcXmK6djmeL1D6jY5LUYPLDC/yDdjA9kiEwjxpj+bLC/7gWyAIJB0iITvr9xdxGO3gUO/iNJ1wMsLOJUwf+ygAYPDnv1M7AMiswXF6BvUaswDctWfw+KVnsa+HLC0Jngk7h3j7Q38J1n+/Riic7d+EcYAikV8HEzPHKJvy3xHlU359vILWL3xDxxq4bM7NvJprOyA0P3dK8Xe7Xptvc0o/F9mSlM/hYNM+ANjx3hCTxcxxqUFZCuHv6+9NuEnyZHQ+Oj+/PEFIThIhCRxK79RfR/OOBiCbQozeq9DQ7xusw4mn8w9FD7F/zf50hKHg6/PYnOUT/oDD3dV7oYn3BFAQGHiJXjQ9Loz7XArAQpLDX/2pK/g//MJ1/I0vX8Mv/MUr+NkvXsJPfvYAn//UPj71Yd4HfOfV8dLzSJHG1EwqkjdjHF5+vfjcTsbgPbEx+ecpSSK1KUfj+gl/V9M+ALjudfxvd9DxBwzUEFMzxTuTt/Hm+A0czY5wbzxhFSoRSKe4cg3YHUrMU1dpWiwiEhozO80N9pxzOMtGUKTgnCso/S0F/6JxnyTJ7IHFe+P7HBcF/wWW4d3tqTxx7aAhBkoTfpNBmSzX8EcthnjBpX3VlJfiAeTBje6TsZBD3RYLtHsVwtOJHzxWa+3Ja+xDcVDOi7d3XuN/6+9D1BVbXSf865xteNB0yfdWEUCytcjyR26XCZQhhG/m+PPxE6KK9nDxfPyEX5YKfudc2LEXG0EZ5RMs5/+mmPDv1x/cmiXPi+r5Vk3W8nMKOv7ZGWzpIW5goWc+cq7jvRcwlD0cqCHOvJY127uK0cf+ArKD6obtNJtgTw9xEHU7fh7Nd3qrsuHIC/4NJ/yAL/j7u3AgKDNHlE0rBb8DT17rQPMxhKcGY3hlmYlkDUiwMWBtZGH5WCQgn/gUAKD/5rfwZP8RJFJj1uDYK09vY+dP/xcAwPjJT2B244XqS8NxxFz5UWsy3sivMYGvhdIrjMg6yG7K2ERa4Cy74Ku4si6tghICJ898Bkcf+QmksIilrqW/A6wFd56NI2dn3JcrTfhF0JM3RZr6ZiOVGEDi0mOtvgYhmk8SKtf5YjRfQJjqA2BmwAKjAwDsUUHnX7w+tVDY10NMSwV6XvDPx0i0RD+RmM0tDCkIJSppBXmcqn9NEhLQSWd2lSDCjuph3NtZiucLpn1GRVDwBb9DhX3Dvygra2gsI8zjEM23ouD362t5wk/CIZYRog0LfkECV5N99ESEM2+8NX72R2B1DDW6i+SNP8t/1ziLe+kZzswUOxRh752XAQC9pz/rmQrKR4AV99n88AZeefwLsCRwfPU5OKFgjINWxXeeOoMd1cun/NleBx0/eYmONWyE2gIS7BtRzrvfS31jImdHWFgSkCIU/JTT/Qun/sV7l+CkAs1HOJ3fwx1zAgLw+Dni+AB/N5KXIggBIuCg7NRf9zfRAGRC0X+fiy+X4TgkHcghpL/29ewUuyUd/8EQlWfT4e7qvVCIeOuLOJfiyGyWT/gnjo0rqWWf+sTNHiJNGI3NkjN+LGNMzBSqdM+8/vY0n9oDwPGZZytKmfsjEBF6so9E9vKCvyulHyiM++7cSyuJIqsgszl20hQDNYRxBrdm7+Ilz7wZ9hXGdgQtND78LH/m33ypueGuSCO1aa7jT+0cM0/nn84sfP8rn+A3YZAX/MX+QJLCxDx488j7iYuC/wLLCJuV8gSqYcJvR3crDyeSOqdYx6dHkFkKB0CV4phqkaWF7nsFxPAQcu9a61sAAu1Vrj25elBwnYy1/JMlNEJKn3VdHF9xcCxvyuqO7iflnXW4zjI9upMZWMxFTRcdv0N3wz4AIO9IHaL0/DUXNKF1CNMkWZ6YV96PPxbRklN/24QfJUpt/YtL3tAtGfftAwDi6RiZKx421rmc0r/OhD+c/2G8CyUUZg2b/kDlvxrv1bva1x13cMhrg0nzzwMoKP3nKfgVSVghkfpmXn/GOn4gFFHUoM0HrPcUMMkO4oUEBv4FNmWkKIEPbl99Lo9/kv/s1svQ0xF2VL8yfQ2g+RS7X/13IJNhfulRjJ//3PJLOwstFkydrAEJ3e0eWgGWeTS8n44snPxYKmo0Naw9vNcGU7IDMThcSrRoggyGbs7AWJO7VtdBkMilEeQs4mxWcelniZir1zkLkS+d5WdKm34fKEznnKx+tovRfJX3JcK1yhP+xXsq6PflwXIkJsBSHC0U5kGbH4xIZxOAgGFPA3BIMwctZe60nSmZNyjKjC6K+sAasVJ9FQMkMF+I5ysm/FFpwg9ey8pYWN8USWQ936yZnDb6xFAeleqlG0ogTgj7SW89I9kFxELjWnIA6yzLJaIE4+c+y+/1xT8AZhOcZVOcpGfYVX082X8EN+++x6kB/T2Ia8/w2yJCX0SV6EQhCEf7T+DFz/zv8d4TfEznUCn4nWNvitTfT2nu1P9O42cBwT4yzmTAbNLK0AmvVtbw72chvSEOJwJLrPXPpS1SwwHYzYJTf00hrWJQOsHrpy8CAK6pg7xA3RTGOkgiKH8qUgjsEz9P75lRrXEtQHDxAJTNIEbvAQ2569sA2QzHjq/HXTmAygv+USWaT0nCvp8ZxMqhH61+pox90dgXMaS/b4U16HvTvrGdA9a17lOVJDzzOH/X336lSuuXJHEQHUKXrpkXv8e/8/gl/lyPx37dlhFLH30zKpYxJMlcw9/VtA/OYNgDdgYSzgHv3u5GfxezY9BsBAFCT/awo3YxnfBnGCUW42yMSMR44ak+lCQcHWd4+1b9sYNp4cwzFmZ2hsxlFcO+fk9AytXvKUz4g4YfYPbA3M0x72o8/X2Ai4L/AsvwXfzyRqkxisxmSwVdmEj2jnzubG+33ZzKzEE64Y3nNrGRKd0DgrXcKl5J6fdsizDhLxf8t71+v67gD7nMbRCSz2Gdgj/oh1tAUnlt8OqNZ1ukXe2xQ/RW0N0Hd/gVk0bpmwGibNqXvx9drZ3C7wQXaT/hFzWNr7z7vDJtQXGBt0AnDbr3aDZBWtpUWmehZ5sV/AAb0R3qHZxl06XueKDyX4n20JfdZRQkJMg37sq0/mCYJzrEdjYhFBLpwBv3Te7lRXLmDCTJRlPBcC5q9woOa9gKzhpAe9ZGh6VADA4grj7Nr/29r2FH9QGHgoHhHNTR29j96m9CTk5gers4/cTP1EpojC/4q+eTtTY2O0Go5qYeodv9HyCDU39HHb/PBycV8fcuJdOQOyASCtb738crnguSBITUMP7ejuw4p/RbrVm37ht2Syi/96j4rMWl1fp9oDCdc84uTPj3+XDTkwqzgnurntLvTRqXKP01hn1l9GSEPdXHOJi2+QI4sJLiSKEfK6SZYWM7/3tGRhyVt7Dek47XkmolIkIkJMaXuCERdPzBtC9TUXEd18nFQtPUBjMwCZMM+LOxJi/sF7Go4QeASEsM1pF3NWBX9XEp2sVZxgkP00c/jGx4CJHOIL/zu5AQeLx3FY/3rmBH9WBeZVmOevKHK/K+noor5l2KOBvcyer9FyL5wjUwkIlv4mTI9q7AEUHOxhDTUsRwGeFQ2QzOzFsZQBxb6qqU/szAgeDCd+UcLAGCZHF9ENipvyGaj3+Hn63fG3Pj57zu/AD7ijARhM9DS4EYMRKK4OBwlDUxQQguHoKyKeTo9trmop1hM5xYH20oB/mEXziLA/A6dez14oHWfzi0IKzeO03ChJ+SnJkDAAPLnwM3XCzQchwAeOEpXhdeeWO6NFEvN5Vnc4vvvcXn/5mn+DXnGTBNwXsRYyAWGBPrUvrF+C7k2R1cv9qd1k/ZrGQaWAxYZjN+zZ2eQiQiKKEQRwLPPcnv9xsvNtwzAJTQGHtDxbPsLGfTdaXzA8safoDZA1mJPfBBwEXBf4FlhIe51PkDrTGKTOklynYoUBLvDC7apvvwetA69/NzgoRu1rm+33AcMbiy4Cd2zc0n/CEmaT6Bu+dNoBamVkEe0cmTQAiU471aYY2n03ebHlKXiKiWSLtGSJUzE/JovrRhcTZZ/rCtXGfWsvRD6crmjaI1JvzOAFKsbFhwJrqqofTvAwCiaSmaCLxpVOco+AHgMBqiL+OlnO9A5a8rjtsQXNaDcZ9Lp3mT5TwT/lDwB6f+3vQoX4YyZ6BIVPSJZYQJv9y9Vh/jZQ1Ixfz9iG4SE/XEpwEA5ntfQ09oJCJCOj1F8uofY/8rv479P/j/Qt97B04qnHz6y7nL+CKcc8vn5EzhHn8eCMka3bqG5roTfqm87rvjZtqk/HnKiHXpvb3OU/5IaMxtBkliZeyaIIImVXLqn+SmfU5Gvqh29UwJEoA31cqbK0JBNEzYywimc4ZsUYQByKI+jNQgOERlmrorIiQt3HKDZzrKZS+rXn9PD0DEevKgaQ+xdeSn/LFSUFIsMB28fKG8fqmo0IR3gBYKfdnDyf7VSjwf5ZR+XXxXDkvNJDbSLSb8idSIZQLjG6dNOv7Fgj+zfK9vqt+vnBMRLkf7GMoeTrMxMnJ499nPAAD23/oOnjACB9EOu30fv8NNGRJQXtITEAkFh+I+E35aWOr/+Yk1/zy1GTRJ7Ko++jJhWr/UMF4SpVbp+MnxmmrS1uchM/oJA0pys7Y8ki/s25yF8RN+IvI9INbxhwn/omlfwAksbmfHIABPxKt9L7rAON/E85+TkgQHh0uKn6lNtH6GL/rnZ5UEga3CGhz7gn8fMUSJcXA543M+Nlx4Pu7DRh49MK3DknHGf9MXcW62CQBD6/0e3AwAdRpMXTnU2N9VXp/frG1/+fUJrAUOh8DVPWDgl8CTMfi1iJbMENcy7TMz0PwUND/FjUN+H12M+2g+8rIsU9lzFm76CnFpCPGRZ3n9+N6b09yAbxGRiDC3c4zNGSZmgsj7EY1Kx2zDooYfCEMl94Fy6r8o+C+whCLX2IEGl+CERLxf0+G1hh9KC8Vi0NhHXq8mWwp+1lG77WyCFyFV64L8vsHa9sSBQFvNNfyeYnn7Vf7n4WWIRU8Ddj/paNpXcrtf65w70sCjDmZgNvPFw3qaZhLFd0stGv6wsXRlgz+Aiy8SHAdZNtQrOfUDpYK/rvFlDECqnfWgdG4MmL9OP5j2jSrPewsLmZv2bdYIi4TGpWgXc5vm0+npBlT+yvkGp35fZIdCBlH/XCZ0xYSf14re+CjfxBpnkIiokeJr/YQ/eAwsw3nKuva02faiVl7/EBD1OI7xpd/D1W/+Nq7/9v8Lw299BWp0BCcVpjc/hHs/9tdhdprXN4eaTHbXIv/oCG5gLHuU5FKhNb9firrrvp1JAZ2ABBcS3NR1nSQBkVCw1vqc9dVFTbngj9Nx3rSzio3s6opPADkzyjmXm/aJw0c7s4gSodgtvQwizJM6HT/lot46Rofx+n3aubKS2dGXCXZUH2Mzq5j25ecUK/R6CooA8o0Z52P5lj6HcL13/D4BYKgSpFJW4vmoMuGXq68tWTTXJUns6H6rU39B6ef1e2rnSESE+Jxu8AFaSFxLDiBJYJROEV97Frj+PCejfOM/5EV89sof8nnf+NBSgzUi7Y37+L0JIggiGP+/jbWQgqBCwe8MYqmhhMSeHsA4A+dcTuvXRx10/MHTaAUEeZMzCOx6Wv9BZmAr67Cn9EOASMISAOdgVDHhryv4rbP42pwZhNfk3rnp/ABgjUNUKia5QUK4pIJx36qCHwAITmnQ5HhJGvetkz/DV279Vm7etv7JWVhrcOoL/gNXvYcve2+EkZ3AOINnrxP+5hcFPv1ECmppqo29ad9AJHmjDgCG3hE0SCraNPwAF6HPP1lP6y/jJU/nf/66BUmBPa/6KHT8GkjHlWfhOhN+MRuBsgywBjd3+T3dOpojW+GoD5uCZqewKgbZqmdBoNIPFqbxh/saN65GcA74s+/WN3okSRhnMMpGyGwK7aUSo7M1JvwlSv9acbzfZ7go+C+wDKKc5p188ZfR+6n/HiqpMcpzxusnqzdIeGDmGeKDFkM8383eCs11ASt1ru83nKeyryqeg0lSScPvnCvi+Gr1+xzF043SL/Lov27nzJFMXYsJ8jr+lYWEbxytnZJQbub4ibxoLPjH+e9V9NTh/Xh6dMEY8BP++ZmfYvuHcr/mPrCGI9/aKJgqXm6O+ak4TU4gUdpEOgeZxwhuNuEHgP1ogKHs4cxMYJ3FZAMqfxliwanf+tjNTSP58uN6GvR8yOaT8bTY1BnrVsZBhXOhUsZ7BQTPIFG8HnSYYpNUUI99AgCQ/tn/iujtb0NYi3TnEkYf/hLu/uQvY/Sxv7Cy2A8om9J1kn90RZiqLm44XQepUA0o6q3R+MvyphgAUDwEJbudpvzSx7vFMmptOmkhkflpd5xNSgV/KaKxpjCioFl2Nr9m5SPPd3prABtEuhqKbTDuqzj1U0Gndc4tSU/sXZ+k0kDnDxBEONBDWGdhQpNiXmzqiYDLewl6siT9Ucw4WGR0kdS83qxR8PdkBE2yEs8nSi793FhovrZIRZXrZyCTPGVBNhj3LU74U2uwpwfn0u8vYqh6uJFcwhP9q3i0dwXJx34WEBL21iswb38LLpshe53d+dWTn1n6ezbuk7nHihDkrYH4XrbOgUSJ0m8NBt6bYiCTnNGSee8hdfxO47kS+YZkg19J9XeJL3Hn8GODj+JH6SqemqQlwz6GAaBJQ5CEIR6uWKmxk2v4q8/M1Gb4/538IV6evQUC8JGkXQbTBdaxKWOAELy3Oew04fdQCchMIWYFxXtiJvjDO7+Pl0cv4r/e+b3NTs5ZnFrOsVeQ2Muqa+r+bAxN3AQ8NWP2ydkh1obXeg8UyE37ZJIzlIDCQyF1GbP7bLd96nNP9kHEmvnj0+Vn2elZoXl/7jo36Hb7nqEQlhMZgUyaGyE653KJQDDtm5opXh69tDzhNly4OxXDqR521AiDnoC1wLt3mtcbMR+zFEn5IVDpcwsT/jpzvY88xwOPb708RmbqP6OQNgAUa3Ew4FuH0m9M0fj4IOKi4L/AMkgAYAdkSnYgGhz2nY+XWvrzhYlzK6Xf6/dxzpiqWpTygR82cFb26glXvnEND3FnAZu1GPZ5jmEXJ30SKGvhW8/Z1X/njegQEeXMZprm8rQuFOjR6d16alwonsv6fYTvwE9KS9PS8oQ/N6jTvdoptrMZv8+Wz5ukXvqcKdnJC5NkPstNnpy1IF88revSX4YkicvxHox1OE7H2NODjaj8AYtO/W7M+n06h36fz5ML/iwZIhMawllI30zg7Ob6a86lM7jJSeXcKv/uLAAChSaVijvTnNVTn+H7U0UQT34a7/3oX8Pbn/1FTB//KNyKNJHitWsy2XP5x/kpy03JD7AWeSTpOljnnBwqfiskBMTOJTZ0bDOfIgkpRKcoSCVkPuGP0nHucu2Chp9ffPkP89hOB/XMZ5H81H8P9eyPdXxzPppPsCFUeTmpN+5zlY3UIqMjOPTLg9UFP8BT9kREmPqIz+BiXwZ5HwMnJIT0nwOJpe+bon5nxgYAxCJCLHQlni+n9Gs29uKG5fJrAaHgL67Fnoxh/V6gdsJvTd5QsHHPe3UINhDcMvb1MG8kiMEh1LOfBwCk3/j3yL73dSCbgwaHEFeeXPpbQYSeiHOPFSGIm7PhbViwkaK/HMuJIpFQ2FV9TOy8MO47ud2criEEXDrrtD4Qkb/EHa5Hl/Fj9gACnKhQ+i0ABC01BCmuKZ0iAJDtAADzHElEQVSDlVHu0j9187yoG5sp/u3x7+Gt9BYUJP7C7mfwWO+x1nPpBCqaIoAnxVBB6b9nTvNc9lUHcVKDpif5tfbd0+/kbJzvjl7Ey6OXlv+sbWrrLE48XX9HDqAW9O3x9CxPQzguObc7EnmmfRMK074iThMAkiyFAheaE5cCrpucatCTePQRvke+8+ry+vDS97iJduOKxk7MstE9v+05yU/dSz682V1mXD6LiDX/2x8f/RG+cus/4xv3/rhyfDEf+cKdWUTCZrjOffpmHb8zoOkJnNL5a6PDhB8AnriRYNCXmM4sXn6tntWgRYRxdgZdGgzklP5Be8EvJaGXVLX/H0RcFPwXWEZpOrIS1uSbrUq++MJEktoo/dkcFA+W47S2gaCBfxhhTbtJYSjcSxsAN7qTTzVrXacDHbDrxFyq7j4H1nIB3xEkJBD14bIVD8VS7OBaCLFcYCqmExK941uI3l5+4Lu84F9wcXc+vkxIACXX/5JLfx7J1+TQbw2oi8lUMNeqvAWZywSS+SyPf1LpFOTfG8Xn87bYUX3s6wEioXA13t+Iyp+f7/ASAGLd/my0lUg+gIskAcAJh0mPdw/q9E5eNEdN+v0RSwsQD/KmT/UXgj8E/z3ppLPpk9i5jN7P/h30vvx/Q/KpX0Dv0pOYrWEYxeZdsvp5G04M2MaEn4IR5OI6nd//a074VeQ9Dla/R+d9PBbXLkp2uFE2b6aaAlzwJ764bIMiiTRo+OdjqEDZlbF/XjSscyIU/BZEAmL/+loMIkUSkgjk4O0FGcG4b5HSX76rq4wOC3vUbcIf/jaSCmnE6yHNp8tNQl+MWMUyF+k1uUtrS5R00gUHcDxfn+P5Eo7nC2sQdOwj+Vzx2S4dQFZ661pIqD7fy3Ua/pCo4kBwOsbMpEhEhGQL9PE26Bd+HJTswJ0dIf3T/xkAN/iarpG+inP2FcCFa6hNjS2o6sFvpCxVYdNPh6y3C6sTkDVc9NdBKnZP71DwM52/sHqT+XWx8PkR+Qm/gvV/YWSEvnUQ/vua2BmOslP8xvFXcNecIKEIP7v3Y3gs6paI1IbgHVA2S5eSICHQpwQRaVg43DPN5mw5fIKAmLNR24un3wYA7CveZ/7B7d/FSXpSenEDOXovj6KrP0GLE0+9Lxv2hctZz06xV4rmyyHEyueJcw4TwwV4f4HSr0rRfGOXgtbwmnrhKa7gv/PKGLbEDHDO4UXfBHjusSh//u3lE/7S70rNQwVnMJv7vQYBSvHvHs3vAgBePP1WMeW3mS/cI4T1xqkEN/f52msq+CmdcHOhdG0GKYRzLi/4hzUTfiEo1/J/88X671CThiI2/AtYx7Sv/NoXBf8FfrCQF/xtXVHHnWhZjRsTlYkktU//nFsuxLaFh3jCz1nZbQU/fxcE5IuleZsfcLT3SP3n5lzJh6EdtJbPgVsv3xtgV/w2bd0mBZCQ+R5X9PeR+Qle/1u/g+PxXdxLz3CacfyS9ZRSihem29YAQhcT0VwiULj0r3LoB+CbBh2aIA3yktBI6M8mefxToPMjHpw7vk0Q4Vp8gJvJ5Y2p/Pm5Sg0a8Cbent6C81N48hv7zc8xOJtbTH3BL0/v+A208k7ky3C5fr+Bzh8Kfq+rpgWvhjZQ1M+/26FKIIga4qNqXhoWAlTNmbdZu2/HOpDRMmNhTZ+N4ljaFxwtTQ2T8j2zUJSQVBDDy3DpcjJEGUpIJEKvdOgPECQK47f5WT4hczryE35X/z7X9SZZPEcfzWdF1al/Fij902PAlVT+gmoZHe7kFqfYqCj3v2hDIiLMFEenEdxS1Gg+4Vc83ZdBv7844VcxyjKlLujJGI4I88uPF+9BSJDUvuC3BStsETX3aORZN3UT/txXJUoAEpjbDHuqv1U6fxNIxdAf+Uv8P3zSg3r8E42/r0nx1eavBS1F7oviHKD8Z59aA02qYkbZlzF/py5FlsfzNej4hQQNL/OeqvVN8P0RLs9AFy9T+p1zcEJAkISSnI4Bx9F8AsDA8Xm/PHsLv3n8uzizU+zKAX5+/wu4rPdXvnw8vrvk9N4Eax3HVZYqfpEzFLCGjh8ABJxUoOkJ3p68jlF2Ck0RPrf7l3A5uorMpfjt9/5jzhYQk3sQ0yOIaXM8JJzFseVnLkfy8bUZGnxc8C9P+AHB62XDPTY1k5x90JNJxbRPlgr+CeadJ/wA8PiNBHFEOJsYvPVe8R3cPkpx7zSDlMBTN8I1RPmE/7jci5UaZOegbF6K5BP54O3UN03GZow3x6/zu52fgUy1cIeMcGOH16T37sxhFmn3zkHMTuGIUCk5/Wc2ndmcXdCvKfgB4HmfTnDrKF1KJwCY7dJXgzwdxRiHyZR/r2vBn+v4Lwr+C/xAIZjytG2MCRz/s+DyTiW9Pw3263OSPZzJACnvi34f8JR1rJEz/yDRxUm7PKnyNOLsrT8H0BTHB4SouZXeAGXUUM1XnvS6BaiOAVBtEZAnCmxCcQ7+Bh79578EN9iHmk/wxOvfwZVoDzuyxxuw1OffJoPlw3hKf3laWpnwr3LoD+jQsAhF2OK1SPmmwkcAOgvtN/nn0e+XEUuNXb2dppoIxn0nt2CD+/i5NfwE5Smn09KEP3MWCgK6YVodzANXFfy5gzhwrsl6T8boCZ5EdkGI56oUgNbwhGpLRQ2pqF7DT3J9TwzhnfrbWAwmK0wQF8+nv8smeaviMUng0d6VThN+SQLW37N6corcZ1xFXrveYCDX9RnWACUklJSwZCtpWWmyA0sCwhro2YilDeDegsEyoyOP4zu42fn7iISGIwGX6/irbtrBSM/KCCKEUNUxupRe27ivJyPEQuXxfABgdQzhfRdWPltq2H7xoFTwL3wXZf2+cZYz77cQx9cV8rGPQXiZhbzx4SW5VxmRUJAl4z4pS1KPBYf+ZMGbQgmJXd3H1KQFrX+VU/8670FQ/gyUeXJDKPgdLBwkpE+eiPMJf/idoS/4/2j8LaQuw1V1gJ/b+zx25OpnxeDodTz1J/8Kz/7R/4gbL/4nDO69uXIPYa0FKUCWrhshBEiwB0I3p/4SdAJKJ3jxmPdCT/afxiDp4dPDH0ckYtyd38bX7v4hu/pP7rFRXHrmHeJrT7Aayeep7pMhP1fUfIx9wZ9JZcLvm9RN7z0Y9vUogiBV0fBXCn6XrtWcVJLwzON8Pt8pmfe96M36nrjRQyKL4+36r3M6L9z4WcrpQNl0ybAvtXNMS94OL55+u6Dly2K6H7C3F6EXORgD3Lq7ENOdTUHzMaCL6E1HlD9nQoHdT4oEh0X0E4m+p9zfO2lvjATGgJLUOWawbNz3QcVFwX+BJVCpyGxC0MZCxT5/t3STxP384d9q2JfNeBJxP/T7ANbOmX/QaCuey2yL4NTvTX9q6fyAp12uEckl1Hob43XNwFTcvPFcoFyvdVwh/QTLT110jOQTfwUAoF79Gq7N5ni8fxXPDm9gz0fgLG3qiA2o8qlVTun3Gv75eCWl3+WZTB3OX0jkLszlU/AMGDk5gRISc5ttveDfJqhk3LctDT8ALuqFw3QQJvy3kTmDSGos5poHuJNg2Ffv0L9YYJN36u+q4y9DEGFfDzoX/NY5KFLViaXdzK+iCcw+qN67zlku9tY9FpF36m+h9JsUFPdrmxakYojBIVwLrb9rw0ORgPUpFeQndg6cckAhjaTm2ujyDFsF6aPhLGyF0g8SmPuGdjS5BwcHAYIg/r6Z0VGcT3DoFx30+wGKJJdluVN/9bMME37jI/kEUM/okhGzsdYo+DmeL8nj+QCmiOeNK2cb17oimq/4zGMv5xMmzRsVAeWCf2rm6IkIvTXkYucFkUD0I38d6tnPIfrYz6z83Ugo6JJxHwlml+TfuSxSGgY1TYuh6kEQYb7Hfki6acK/JoSgnNIdKP2m5PdjiUBC8oRfKDhBCKZ9ADAs3R5PRtfxM3ufXWmQGtA/5fMXzmD3zit47Fv/Hs987X/C5df+CHqyXLQbx/dyuaDjKEMB61Aq+E+W/rbhneMMKV6fslzmycHzkALoqwE+d/nHAQB/fvINvHX8LU7nVD3AmBW0/mLCvyeHUL5hOesfwApmdxwaPvcTMyqaWkKwOXUD62ucef0+eU+OkrSxXPCPbcoF8Br7sBf81PuVNyeYzy2sdfjua3xPPfdEr9K4jRSh57/Wk9Jy4qQCzc8wm/P5B/3+acqMHOE9Bt6avIHx+BYom9Tu1UnFuLHHxwiGgQFiNsqb0MUfiDxpZLRCv1/GwR5fs0fH7etZ2aG/67OmLprvg4aLgv8C9RBy9eLjC7Wg+ywveEQiL1TaDPty/f669NOuWDdn/gGheGB0LfiLCT//nCAu17vnOk9R7IyOnz2f8/ru31C6eeO5QLleC2GqVdZWXnsW8sYPAc5h/vXfKD5nn927VPCXmyNSLbn0I5vDje7wz+oo/Tbj+6DL+QtVa7IWpAJicgpNElObQgXPgXMY9t0vhGm6ufM605WBc2v4Adb8OgDzQOmfjeFmZ+it2IDaDpT+ij/EGtF8dRioBFrI3MBrFYyz0IveA851k390Rd067Wzn+LlFkO41G4qVj7+iaSEG+xzR1pHuuwqSBISK8wIF8HRkEp7S79fH2hNpeYa1oCc1UOPVX+j4j9kEjQDyCRsSon7C30G/H6CFZCmDd64XC80TkU9yOS6uyaSVGzj91gbOIoaqh6wUz2d0lDeuVj5bhOJzKF0/JDVcaFws0PrLkXxzm2G3RMl9UBCDA0Qf+8utjVVBomLcp4h9E6xx3K8WgiUdwPI9D6b190SEUZ9fR05OOqWFtEFKyttROaW/tN5ZshBCQRJfU9zEcXlT4HH/SP5I7yn8xM6noDr6fmgvkTu69iEcXfshGBlBz8e4/Naf4Jk//v/g8W/+JnonRVPD2qpDf4AS7O4eCv672Unn3POXsttwcLgSXcKO2IeSBCkFrseP4YWdHwIA/PboGxj7/Y1TEWh6Wlucp9mMp+xgSr/0lH6jE6TeQ+eSL4rnLsPU+aKW2PenSX8fJvx9EYFsBlF6bZnN0PdpDhM3933b7vvUywcaB7sKxgDffX2CN9+dYTK1iCOBx64nIDOHK+3tClp/aU0UGmRmmE/5vYdp+KlvvOypA1zW1+Dg8NLptzjWuKFsvH6J1+G33ysxkswcSEdwS74SYmnCX+fQX8bBLt9XRx0m/MGhv62JUMYFpf8CP7gImbtNKE9mS/m7AXk037Blwu/sSirduXFOLadzDm56Cpc1UME2hd84tdI8y9TU0qIp9m80b7qd61aA5gcrtPCt50xibU05kQDFg/rP0GasC99Yw7/83eqP/SwgNezd12FeY4fZEBdWvtZyOUFgo5S9DHSSb6Ct37jUUvrz+6DDRFVIz4ZZuFf8dNyN76EvYsxtCuXztx/GCX8ezRc2dPFwK67zSkjWO+oIaZiinh5V9LBlOJPBnTHDQDTpoxf9FfJovs0e6omI0FcJprZ9PbCwiOrulW1E8gXUHd9a1thvAsVFbhPyBtqKpgVFfdBgr1NEX93x0+Nb+VohfAFtkoJizFF0bKi30py07RnWgkhqQLilPfg8d+q/5/1S/Hl5CUcoWl06LcxVD2+iKxQpKBIwkaf0zxYo/aHgl9pLXYKEo4ZxEXVo4CyAKekS0yus48+iXiGpca55rQ6+EQ2SpcCUyn/dF/wmYm+Musn4w4SycZ+Q7KuTWQdFBCnY20MJWStVESSwp4eYSpk3r+Sk6zS7wGKjUVBR8C9R+p2F8R4i7JEiQT59yfqC//NnwP/u8GfwI4MPryUziqZ87mf7N/HuUz+Gl374f4s3n/tJjPZuwoHQP30X1179/fz3nXPQavk+1YpgncWO6EMTewx0Me5zzuE7M26mvRDdgDUWvUhBK4Esc/iR4Q/hUAwwQ4bfHv0x+y2oGGRmoHSydLyT9B4AIKEYkdD5hD/TPaTe96c/P8NQcBOuoPUvO86XESb8A4or030AkNm0ROmfYZU0oA5ElGvbv/PKOKfzP/N4jxMQTDXeMY/mq1gQ8LNwfsbvJ0TyBf3+QO7gid5zAIAXp6/n100dblzmdeHd22nOOhHzM16vFv8u7NucWenQX8b+rp/wn3SY8K9p2AdcmPZd4AcYrTTvXBurfL549SaRT3wCNLwM+cgLjYfI3Z7vk34fwJI2e22YOZwzcPMx7Pho7WlJI0LCQUthTvmGtjrhr43jC1h3wk8CzHtrQTjnNd2/gVBoL38Hzhiv8d8AefRW9biivwf9oZ8AAMy/8e/h5hMgL/hLjvfW8gY1n/BHBaWfqDBE9Nd2/YTfeA+A9s+EiLxfwgKlv7Qh7skI5ADtN8PiISz4F+nz59XvB4Q4MykIqW8UxmdHUE0F/+gOAMfXT1OSAaFSYHM0X9TqRN8EIsKeGuTxiSvhmCKd/8+w3m0jki+cj5+qVgtbB+pi+lV3PKkBoZolDzZjs6cWloIYHLLcZt3P2dNaQ8FPRNBC5dF8AGCkBhFBYHX86HpmpMvQfqq9GI+dG/dN7gGB9CQIFrbyfQd3furvr5W0oUhw7rsv+Gm+SOkPk1ztdfUNxoVAIQNbg+mQCI1EaBzdfAFnL3wOd575ZNF0s7b5mdXQ0JReooNKskFR8M91xO78D5DOvwnKxn2CCIIIqbHQmhvmqTcY1Q2fz0AlUELB9LmZKcfrFfyZM7g3P8W0pAMvS56XTPsca/iVZ0hJCEDyRNp6yY/I5pVEgU5wDnrGE/55zO/FCYnTS0/hjR/6Gbzyib8GIJj6zf2fuIphX0DwICAiHMruxn1vpbcxshNEpPAU9kDZBEpJDBKFbD6FmhzjJwYfhYLE2+kd/OnkJQAERxJidrK0tz32BW4w5gsu/UYlmHtJkZ4WTv0nZeM+50AN69wkTPgpquj3+TXKlP65lwast14990QfRMC7d+Z4+fVJ/jM4w/9XWhv3/BJ6sqC2cskwn/AnktffcsF/PXoMMWmM3RxvpHcbz+VwhxArh9QAt+9MCs1/nVyXBAADWNt9wr/nJ/zHXSb83SP5Asoa/nXWy+8nXBT8F6hHS5HM2tiICyO1bPqmn/oR9H76f4AID/s6hCzPTQu+Dlg3Z34JJgOpGPLq06DeHtz0BHZ8byMNcAVuodhchUDbLC2cjYZ9wAYafvY5aH1P65zzInyMy9LEzXWMtKuD8M7UNYuzevbHuDCdj5H+2f9STBvLbJKgK/Pvh+QC0yEq/S4JULK8aXfWsFa243SE1LKrOvkNIGyGKEuhhcpd+h/GCT+pqMJ22IZ+H+BIMgIw7Eewu9xUSEbHzZF8gc4/vFL7+TvnuJG1cL2SStaeepYxkAkioTFvi69D1bGd2SDbieTLEaaqlfezfiRfDl/wN9KNTcqFdEtxRlGP7/lVcZy1x88gdLWBrIXKo/kAnvCHQndlGsm63iQLUCShhIRdKGDLlH7nLDy7G8a5ChtlEzo/wMVPLCKkwbRvScNfTPhVYDE0rMm5ueIajRdBAkPVRwpg8tSnkPZ2SykZzeyxxoamXytovEDp98yFmYqwq/rnigt9EAjGfcZZCEEQEjDG5pPr1GYYyLgxZaDn2UHzHj9HxLi9sC1jbjMkC/GAVHr+LcXyOfYY0JL/tyDpo/kKSv9iEdoFMptCmhQOQFrzTJz39jGPhyAAyegWMxCIoGoM2VjKyT+/vIZx37en3wMAPBM/CkUCcn4KJYBYEdT0LmBS7MWX8dnhRwAAXx+/yMdVMWg+yaMtA068Zn1XDgBnc9O+TCf5hF/PRkU0X1Y27qN2Db+Ic4d+69dmYeboeW3/xM54PVtzver3JB67zuuEtcDuUOLqJb4HyZnKulBL6eczwczxeSRuDDG5k1P6h2oHicvwrGKzye/4z70ORITrh/xdvvvOyE/3Z/X+XCRA1oGcLSb8bQX/Dt9no7FBWuPUX8YmE/7w+tYCk9nDJQHeFh7uFfYC7x86aPjzQm3D2DCXzZn+ua2IqiaskzO/AGcyIOpB9HYhrzwJefUZUDyEG9+DnZxsThnNo7O6FfzOuYIJISTE4WOrzno92r3s6Oa8zjkvIDfuWyoA1o/5Kw7qJRE13y0JhegTPw8AyF75w/xarsQY5g0MkR+v4s9V+l3q7dbLL9Y1YSuxCMrnGgr7aDqCEirf5D+MGn4AuXEfsB39PlAUx7EWsHtc8Mejuysi+dihvzHuzBlAiiUKMun4XJPfWGoMZVKZtC29tNfzioWCn++f7U34IRWWPUpWTHxbj6dBSjUWiM5k7JDdcnzq6vhfc3zS1YaMJoUsKt23OioM5EK1XXcOUmEdTewiFEloKWBQ3czPe7twIEgzh8im7NLvU0jK012zYcEP8JQ9i3yh1kTp96Z9LOFqWJODcd+ajZe+jAE4lrSh1LgirLy2qE7e59cHPRtVitXctC/uVej8bjby0Y4P16Y7EgoaEqnLIARBgiCEgPTadOsserJ5eBHYQTNfJK874Z/bDD0RVWJBOaGB/1vmzI/CpR8k8gm/IAHyBX+gZss1DB0Dgn4/i/pwDXu3yQ4XiP3T92CdgywZG5YhCQDxNXZY0vGvwthM8fr8PQDA88njMKoHlY0hzBQ6PUGUjZFJpt4/Gz+KJ6JH4ODw9fF3fBNwwbzPuZyizw79s7zvX9bw69mIGwKoRvO5kgHd8rmGCX+csx1Ck4QA7Hgz4ambw5r1J/wA8PyTxdrIE3/ijHtrK83QQOk/qVFazfxlEMUS4uwORvN7AHjCr8wIz0r+Pt9Ib2FkliURAaHgf+vWDDQ9hZMStXrRsH47U0z4W4rznszQi3iDdnSyulFVmPZ1ry2EIPR7/Hl9UHX8FwX/BWpBbfn1ZW3spgW7zSBqOsTbxrmonTaD8JtNIgHR34O8+jRP/HUCd3YEt8FDk4sR3WkyHCQJwXxMHD7abvy1xoafVMTvpc2nwPGEcqNIMan5/Bc/K4eNrx+WOzSzN+SVpyAf/WjxA51Um0vWVDOlhUD5mi/r/Rsj+dY0YeMiZPm+CptiMRkhgQQ9xBN+oGqSJ/orWDzrHJMIggQsHLIdNvvUZ/cgGhqPhWFfvUM/S1BqDCG3MGHf1X0Y10z9S52BIAFVKfgzZkVt06BUSGamBAf7YOC2YROWiEC637ym2bQwtGw71gaGcbCZbwAWn6sigSwuIp04Q9xPNhu063wCYuUjrA1KMLXeLKwvTqi8CIgnx2weSKg0eJxzsBs49AdoqZA1mPZRqbCT4XNomroLAehk7WdUIiNooXIWi8wZIys8E4DaCX+Q/ETTcZWO7gt+GQ3zQtmZlP/PZnDjI9izOxyNuqEEZ5sQJJDIKNfRS8Wu81KQb/CJRjp/wEAmsP5ZImvc7JvgnINzlhknpTUnXPrOWgj/GZVd+p0oPCUkSUghOXnCy4o2mfAH/f68FL+8iMmQ0wh6o/fgjONluOa6kZIgwIaHwbjvVnYPr8zeajz2i7PX4eBwVR3gQO3AQkASIKbHkNN7EFGCzEsUiQifHrwAAvD6/D3cTu/ByRg0GxXNSGdyiv6uHOZ0/kzFAInShL+g9Fej+Qiw9fdXYdqX5M2VVMbIfNO3b2xeDk8x34iR9MSNBP2egBDAc6H4dxa53sgjUPrPZkCaVV8nRPXFkUQa93HmI/n2DaCyMfrqANc1P5NfnL7WeC43fMH/zhEB8zHQyN4kf5oGowmvr63TeGdxOODfPb51r3Hf55zbaMIPFFP+i4L/Aj9YaNuUlrSxHI+2XtZ9MEzD/dTvB6yVM9/w9yWQEBCDA8hrT4P6e6wRXxPO2u5aXk9NFY88BxocQj39oy1/0LIpq/uLeNg6jXN2s7gvwBcS8QCutMFwIenhPAVYyVm/DtHH/nJuMLbs0G+rTZeFmL9yYVOr3wcq90HX8609TJiSj49xCcrnjVNVgvAQoVzwr0vpdyaFm42XvrdgeGadhe3twkoFsgZuVK8b7OTQX5MAwTp1cS5ZTr+G1u+cw9jMcDQfYWrm2FG9CsXbWbNdh354yZJQxUQ8GGuegx5N0QrJg0M1LaTtOGtO2J21FZovwIVKVroPrNK+yLLAKq+Cc1LEJUlowUZiiyho/fdApcll8KFwZ0fAfMJsrP1H1n5tTaow7ZvXT/id1J4+vjqVQcSDtZkWkVAYyAQTOy8i+YBWuRhJvVS0hGapno4q90toZPT6B8XxveGkuvo05NVnIfau8706HcGO7jCr7rxyunOgbNynhYD0VPU0N+xb/SyIpYYecoNSrDHhT52BFhqJiCrzUhIEAuXTfaBk2gduiIVmDU/4uWEQWAAiTILXQOQn/Omqgn+HC/7k9D02M/TGhosgECuSrMOeHODJ6DocHP7z6dfwzcnLS79vncN3pq8DAF5I2FTSOAeKepCzU5YR9PowprgG9+QQT8dsmvn18Xe46WpmEClff84aHJsQyTeAKjn08/vkgl9lMxyAP7eRHcOExhZJlkAtPM9SmyL15q59GefNlYx0nqSgzRxJRce//rUtJeEX/+IV/Dc/fRW7Q78nrzGlTSJC7Ldvizr+mb8tY00YGS72NSSGs1MoWBhIPO8/7xdnrzcmKVzeBbQEZhnh9kS3SsvmM5N/V/0WSj/ZDAd9ft17RxOIyVHtvn42t8j8Mddx6Qc++NF8FwX/BepB1U1XGUva2FodaQu8cyfV6Xu2jLVz5j1yk62GTXpOxd50wt9x8x8YCvLgJno/83+BuvmRlj9wjTTXxj+JEsC51WYlzjJNd0NQ1Kt+D+s43Dcds4W9QckO9A/9FP/3QkSks9VM6dC4Csdrm/BzwSrWT0QAlj7nUPC78T0MM5/1nAzPVbjdT6xD6XfWwM0nsON7sKM7cPMzOGd4AlCC9FFr1k+p576RYE+WM6udNUVc4oqCH1IvT9SlqhbJGyASCruqj4mdY24zHKdnOE7PIBzhkfgATw8eweO9q6XJKJ/PfTEoVSUatS/4N53w8/Hq7/G29XAJUgNu+VpvgvOO94sT/kWXfqO0L6xbvEqEaHqEdUZfx7BwS4+PYNyX+Am/dQ5ElBeu+XR/7/pGkjVFMvcModmkssblBX8ubcDq9X7DJtNQ9ZDZDMIX/IE9snJNEssU3mBKSukMIkv5/s7SnAbdLzOEnG/4qITZdAc3IB95AeqR5yAvP85MtPG9981UK6Li2pSSoCT//9RmiEjVRvItor/L9Gg5Puk8iJjbFD0ZYSATgIp7ShAgQCCvOTdS540u6xueorQGKdKVCT+AXFveFXrmJ/xxM/ts1t+HkRrSZkhG96BU/b0opeCENn//fGnnU/hQwnHD//Xsz/EHo29WGA1vpbdwZieISOOJ+Dq/TwOoKALFQ1A8hI7k0vXxif5zIBDeSG/hVnoPTkjQ7BRwDmfzETIYEAhD2S8Z9jHDxkrN034Au/M5NCk4ACe+SQAfdbj4XQbDPgUJTbpIUdARMj/5lukMffJO/RtO+AFgZ6BwuF/aR9l5bcMzTPmPFwt+v4WNNXDqz3soB3BxH6q/Cwvg8egRJBRhbGd4w0sqFiEE4RF/O7993L7uBP1+EguoGslHBTbD4ZA/n7sTDTG+CzE9XvrMQrHeSzoccwGhQTCaXBT8F/hBAhEXjnVY1MYGl/I1OsWs30+2PvGqxaYbP5t5k63mgjRs4NfegKwVnbfmyTusP+EPGvtVk6Bz5HsDfjJYnqzajIvs80z4RbtcQz3zY4h+7G8h+uTPV/9hsYFB1YIfJQ2/aHDox5rnz++3oGDnx/cNBTu+B+cnKHV0fjcbbRR3tm2I3Sv83lXUyH4w4xOY0V24yTEcLGhwAHnlSahHnofo7y3RvQV4wm9g4ZzDbMg7B3tcU/CP7/mCXjXKLXiiXtNQFNq7iZ+PJryj+iDwZnxPDfBE/xqeHlzHteQAfZksU80J52puNYFUXFxP9vwFfyMDwmTsP9DxPZDUfG90/ZytAQkFEffZt8S/viABV57wywhSiPY19JyUfgDYTWIoCcyyRR3/PgBg5/Qt7N/5LjAdeQmHN346h34f4IhK0vyeCQ40n+b/FrTA0DHTpAkr13s27pNryysSGSESGgLE0pS8mdRW8C80M3UMaC6eBvMZZjbNWQuOBHrlwtEbjZWbdCQ41lXsXOGiP+7DbRBptw1EQkEJhcwaCCmgFUvcUmfQV3EnuVtvcAWOCOQsxLTbWp5Zgx3ZYyNJkshCUxrEX0nqDftKzzPnLASpStNRCc2pE0Sw/t5ZReufzAzOplnlG+0y4QcJTIbciO2P3quN5AOfBiSJPAlDEOGzg4/gM/0PAQD+fPoq/vPpV3Pfgm97Ovkz8c38XjPOGycqBRAQKW68mVK8xq4c4Jl8yv8ioBKO50unuDfjaNcd0YMkAVUy7AsItP5oPsqd/E8CrV8Inswv7EPKhn1EIv+cRZTkxooyK5z6J3Z+PiZqCWRSOL8mpC7D2E/tcx3/gnFfueA/sb7gF30IIaE0D8wkCTyb8Hr2nRW0/qDjf/to9Tk6IpyNeU1qM+zj95ThIBT8I4JTMcTZXU5dKGFTOj9QRPN9UCn999kt7QLft1i1WVrUxuZxPGvcJCZdK6roXBBys42f8XrStoI/GN6t27zoWiiu0bBYzJbvDB17c6f56g39uSaHcfFZhesl6p2Pfizb2RtEBHW9Jh5ysYERDPysBSRAUXnCv7/8937iuVbDQpRM1kpvuzzhd1PeSNQW/H5jtyRPeMAgnSD+wv+RNzs179+ZFBAG6tKjsLLH/gllNkVNPjhHsElMTAbjLNKdSwBehD1+Z+n4gc5Pw8vN14+rj3zkCWLElOtzYKASPJpcRiJj9FqYL9wQpO069HtU7oEwId3UpR8onPptVr3fTVq4vneBirjoN1m3vzEpIDVE1CueJ0JC+YKfiyQHqzQIlBeHTWB/DvJO+putMbHQ6Cca2dgyV9UjFDPJ7BTXX/ot4CVgPjyAu/YCzLVnYO7whnjTgl+SgNYRjI4h0xnEfALjG5Bhwg8ZsZcBsLrBG74zk651/SVCIxaabVYgAJchj0JtQFneV/7Mqb8HdzzBMJ3jHTvHjqdNu7hfid101oKi1c9bcXAT5tarcLNx1YT1AaAw7jPoxxqxCp4NFj3R7fkfqQiz3i7k+BhyfALbYsxqnQUI6MkYSghICBhnoCEheMRfMuwr1jsDCyEWCn4ZwZEDvFO/sNnKgt9Yi0RLjKcGg4SPo3MN/+rznuxcw/D4LQzO3sOpbL5mlBSYZyUGCxE+2n8GfZngd07/GN+bv4PJ8R/gc8OP5ZPlQOcHADjiBmB+PAmlgMxayNL68In+c/ju7E28md7Ce9kJrjkFmp/hnrsHgPX7QCmSr1LwD9E7u81O/cMhbmfHhXGfNw4ma+BKy1Gh348BEJDy5yzjGDb1E/5sil6P/3uMdGkQsBGc5Xvdf+//+eSreCu9g7928CXsDbjxdrzQZ6pO+Pkfh4L3ZkqwMaoDmyR+Y/KyN+8bYyiX779r+wTA4fZxy6abRGfDPgCAmeNghzfCpxMgdRpaOojxbTgh4SL+/grDvvWfgXk03we04L+Y8F+gFuXN0hIWtLG5jnTNxaqrFvTc2HCz50wK6N7qrr03vEOb4d3icaXqTu9dIa9YPrhrn8LUvQQJTh9Y9T4I55wcqoo5YO7IfR6cpwGx+H6C67+/jqsu/fUTfgou6V3R0BzLC/7JcT69anTob7ovHzDk5Scgm9IiPJ1eDC+xNGGx0GgokDUUrHPInIHxxn2ujtLvHfob9fseTYwU0r31DeUWIEngINppLfYB5MXzfUkkEapYHnzyxLmMAaXm5t/C5+NMCopa1sMSyDNAuk/4M0BH/Fyg4h5hDbmE8U0uNu3jTeXKNBLhi9Nz0L+1UOjFGiSAzBT33Ly/j1c/8vN45+pHMBvwdRqNjmC/+/uY/e7/E843qTYt+AEgEVFh3FeK5ssLfhV3ovSTUCAVr23cJ0jkPhREhCIVoWXCH5qm5R/79a03nfL5BlPSGl+VNhaZ6O1CHlyHyybtRrNbRjDuy1zGjWQlYJ2DILFWnj0NDvn/d4jmm9sMMXHzhX0ldO4jQERM8DDLE35rLaRQFbM8Lv4JcC6n9cuGBIdAsx/2NKQCpnMDkc2hfKRduoLSDxQ6/uHZLagV16dSVMuQfDq+iZ/e/VFoUngvO8K/vvc7cHC4pg6xr0qvTahE/hEBcaSQLRjT7cg+no35fvz6+DtwKgLNR7g35VF0mNxL34zKdGEUmuYpOqclp/5g3MdrUeOEn2IewvhmvYgTuDgU/KUJv5vXau/XhrMAmI1jnMVb6W1YWLyT3sFuTukvPpvMOISlLVYlSj8NIAWnK0gvW9qVg5J53+u1L395N7wGME9XrL0kcsO+1gm/Z1D0YoHEX+L3zgCoGI4ExNl7efLCuSb8ZQ2/c1CTY2A2avmr7x9cFPwXqEd4sNdtlmq0saTiztF3+RT6PtBb67CJqSAAwBqIqLfyV4gIlAwrZnStyGZc6HZteJB/oHRBl01Z08vE/UZKWZhQnrdgYXNAv8EoJQ9sfsBz6nRLBQMJT4UOm6nKhH+ZvuisYR+KNfwS8ljDhqxqZHO4E55iLE74cwd2Ga3VYHo/4EIzZGU++DLNWHsXaeMs4DeMbnKyZIxpT1oc+gGsSoAgHW2NPtkJW/CraISQ7KkC+IL/fK9B3kx1qSHiLDMz1jlWtMLxfwHOZBzTGq4b//0EDXnm88uzKPFxdFhZ6ObT6PNEMAqNgYqgo8LJOmC6cxVv3Pg03vz0/wavf+lv4d7H/hLkE58C9XitoN2rzWafHRCJsnGfL/it4cgtANCJN+1rX+8pHm7kNbOnBzjQnonnXMGCakLug1Lf0FSzESKhMPcO9WKR5Wdtp3uEhpcgdh+Bmz54E7+ejJGV9jqpy6BIVgw626B8kwhnLbxnADObYiCTPJ40ESqnuBOB4wGXIvkAS4CkRcNhxd+fc7m5X9OEPzMWShH6PY1Lw4Rvo7N7/G8qKZkD1mM6vAIHQpyeQaXjxt9TVF/wA8D16DJ+bu/z6IskN898PimazNY5CBDEglY70ss6fgD4eP9ZEAhvpbfxrh2BsjmOZvyeQiGvaib881qn/vKYnJYM94oJfwTjKPdKcCqG08sF/9ilzKI5J8gakOXG7z1zCuv3jneyY+zllP7i98N0nwjQCnliwYB6PoVCcBiSN8JrM+9LIsLQf3S3T1edKOFs2tFczxoAzCw+9EvG3ZH/fhV7Q4nRbcDMSwX/+nvVgf+bs4mBS8eQ2fhcXj8PGy4K/gvUw0/46wp+Z83ydF7p7jeGNa3a+K2CBLvbrOlGC0Inmv6SGV0LXDYDJTvdaabraFHDhH+Tgt/H0NRuoJxp3+x1eY1oYaJ/XorzhjpdNp7EckEqVd64osEBaHAIcfnJ+sZEk0a8DXVZ1VLnjvwhv3uJ0u9KpmmbGEU+SJiMPTqaCrIglVl4H0pIOMeu1HEyzBshi8Z9buQp/Q0Tfhfc6puuL6nP1yhaFzbz2vhzMFIaQH6q6qxZL/1jBUTUrxRt+eZ5TdkS6bj72uhs/lwhHVXWoUgo3Hn+R3H2wucwPrzBlH5g9Tq34hnWFZIEU6k14GrM+wAHASDVMcyNFxB/+heR/OW/g+Rn/q9IvvR/2izC1KPi1D/jhheVGn1K9zpLuCgZMDNozc1rT8bY814CsLYaY1oHoTyDaWF9y2NHT9CXPTg/4V8q+OE6+cQQCYi9a6D+wQM38YsXGmqZNYhF1BrJV4Ychgn/vdbftc5hUJo2R1JXjOyEFLWUfgsLvSAzkP7cnbNs8AdANDxLMgPEimUDvUThYDeCnHAF10bnB5iJM/WGjMnpMksrgKRY2bg7UDv4+b0v4IraxyW5m5v1AezuLySWEgAiJUBElc8J4Cn/c/mU/0VAaNxL+T0tUvqzBUo/AKb0l6L5Ktfdwr01yfgaH1CMWWahfTFvdQRERcHfL2v4t1Fcuiz327ibFfr2O9kJ9vytfDpB7o6f0/kVr3EjO/Hn3YckgiCCIkLm32vZvO/1BvO+MOVfSesngTNvTTLstaxf1oIMNzEOhvxdH5WbCXoAymYQsxOMvC/AcLD+s7afiPyRMTs+Bm0QW/kw46Lgv0A9xIrpiFt2m27KF6+Fyfj374OetRZCYlVeex2cNb5g6DBt0ElnU6RQaK6jPVwpr1h6gc0n/NAxF2J1GwBr+TM8Z8FCKmZDLpNuheVBC1F6neEsU6wXPicqRTiSVEh++n9A/OO/3HiMTUwnScW1D/ZAew0UsqWCP3wH0fq52g8c1kCsYLAEmvEi3VuQJ2s7h0REEN7Rumzc55yDbaP0h4l6Yz65ArAB62dDOMt+AucpABshFd/v1htHbWNdXYxXsxnLkNa9X6UG0H5/MnsFhYmmjCr3iBYak+EBJk99ik3ciDrQy0PBf77vuK9i6IiQKLFk3sdpNeSLqyBxI4jBwbkla0pIGB8NSn7CHwp+KxV08G4Q1NqIpajPjel0uvL3VsLx+rPqGi5YUvUMJje+hx3dQ+Jp5MteJLS6oVD+TakgD28+cBM/LRQUCWT++kydQV+u913TgAthPRk1RpwB3ExQJJCUCne18PkIKib8VdM+1uxXf1eBIDn61P9bk0u/9fr9gGEvwr7j63CVQ38ZZwNen+N7zQU/D+fdyt3jQCb4ub3P468efLHy/o1zkISKhh8AtBJQiioynICP95+FAOHt9A7esKc5hT1Q+lXmY/nUMqVfz06xI/jnqcswcUzTd0RLz7Kxn5T3wUaJ2vE171SUU/pFOkNP8H9P3Iy/tFXrVQd5FFnjt+JUKfiPshPE2uVWJCeeNBcK/kgDZ3YKBwcBgR7FzJwgQCmZ9/DK5n0vz96sPYfLe7xG3F51W5LAyC9HrRN+Z8ARrwIHvkd4NKpeMU4noNnJuTT8QhD63qvi7GTS8tvff7go+C9Qj5XTEVou/NahetvMSwK2P+2qxSYbv3UcqVXMxUsXmrWZe93/GtTYVfKKRTiXNwjWBUkNinr1usjQSDjvd6YikIyYon1eh36g9Nmsualvii8rFfx8eNG8wSVsdP6kdO35LhoDLmn4vUmgiAdojVB8n+HgmDa/AnV0bwnBfwsfTbbHGeaVgn9ywvcaCZCflC3BGk5DaMppV37afk4df2cYA1L3IZIP8PeRzAv+8yRpBJCP98obIibln6074VdRN6d+36DhSD7/d6USQAum6IbGgPA65LYJP52T0g/wRJdASBKFLFs4FnGB7xyf4zahScL5xnAx4ef7xUoNRSGhpAOlX0hQbw/O6683gevaTKphMIVmph0fYyBjxGlTwd8StbiAYOJHRDAdHe/Pi0hw/F7qmxrOOSRrNsKE1/BHk1NMbXPzdmZTxN48MUCTypuiAOvXpdfwF5R+NvqTC/syIaR3xbcFpb/mec9qGfYoyEFA3+vSz9Sw03Zk1GdZlqoxXi3OiSAgWp9ndc9ha9ikb5GtRURItEKaLR9zKPt4zssCvjL6Bhw4Oi9Q62sn/NGACYHWIM7m2BF8X56UjPto4Vk29hP+yGokWpUo/VGeWiGzaUHpt3OOq21YryidQo7e5T3kKlibfx7lgt/A4tSe5VP+QOuvOPT797PrzfjCt68XfBaejG8AAN6c38rlJWVc3g0Ff9uEn3+vTcNPNkN4U4feuO/uorReRrBphvGUP79NCn7+O37Xp7PNmLIPMz5Y7+YC28OqzZJzywW+z9/tUoSwVnM9Lei5QLKWZrgSNm116M8P72ODOun4szkzAtbZOK9DTT3PhB9o1Hq6YNR4Hvdv+Il8mDStmMB2Rq4ZXdefob7gJ9Hu+g8EpsaGDZAmXftiwb9E6be8cY/67RGK7zM4KWz1vVNH95a+wSJIQAsJsccT/rJxnwsO/YPD5qahj3hr9JwQmgvjB6XPI5cXs9s/tl/fvJv3VmQDoVD3DRFnMk5aWPfY0n/ObYwU79Af1lt+P8W1IT3zw/rpkwib/xWTbQr39zkbY7HQPNWNHKQQC1NDpvSTP8dtQpHMZT7BtI98wW6VzqMJu0q4KBkCDpuzWpzt5OFCKlq6r/K1bXYGbR36ZtkYNXiUrHuNid4uxOFNuPn0gZj4SRKIvXGfcRZyTcM+oJjwi2yOdNpsCpZag6HqF9c7+LpQohTNJ6nIeA/7Cv9ZCqp+X9JHklpnctO+Okq/MRZSEtSCu74KJoPDfZxN01ZO5+mAPVbUye3GNUAQeZ/H9e9T4yy0rr/24wYdPwB8vPcsBARGPoJuTw3Zj8lmkP48yxp+CInMe/ro2ahk3Fd26k/ztcY5h4lnDkRGYtiLcnaO0zEoCQV/oeG3sJi7tHHPLabHELNTiHT15Jkj+XgvftdwwR97L4c72XFh3HfmKf2+KcIO/XzOO7LvnyV83UkpKhyMS3IXQ9FDBoM3a2j9Vzyl/+6ITQHrME+BuelW8JcZQ2HCfzJePvYo85+rAJJ4s/V4mDh/rAcQGf6AcVHwX6AeDUWm81PGxSkSGy11LLy2Yda2Bpj+uSal32SgNof+8mvEg07Fg8vmoN7uetTeVfKKpRdwrbTLVQhSjaUHpWMzpW1QkkU89A73+vzTyPw6XXfCb+rjy7p6FDgDyBUa8VVoopmX8+RJcGOk/JLeJBA65un5Q2rcxwWFAKmWz0ZFWJSqCOLYKUUSmlRB6T95L/+9nM6/2+zQ72y2sqmWR/M9qKbJCgPB84K8kaMLVM5tFJ5SVQt1m3Kjad1zExLQcbvcyWYgGRX308J9FYpp553DQ6Hb6oMi1lv366CFQiwiQDj0Yrlg3pe7CWy94CeiXOMeTPtEmPCryBsXdm/wMq0/2ZzW71ynCT+zMxY+81KT202O4WZcKFUm/D5hYhOfGDE8hNq9BBfMDe8z+iJCZi1Sm0GTRETr3dukIsB/t/F0lLvul8HPYLckFyhH8wGABKD8sMH437XWsM/BQiNCkIAgCQcLI5tN+zLjoKSoTvgBCG+2mBxeQhIpjKer9zwzPUAWDUDOQh3X672lJK6XN2nMOYJquF6U1/HXHXYgexXzv8Khf+oPKyryCKBIJYhKxn13Mt8AyRmY/D1OzSRnqg11D0kki4JfRXAlDb+CyK+fqZmBak6Y0jFodgpHEjQ7baH9zwEhcWrHSF0GAYEnve/B3ewkN+47XprwUx7JtyMGIFDeaFLeHDScGRHhiYjZd9+bL7M3BgmQeFXY3QbjvjNPNooUGps2+fvPUji/xvUibk4A3qm/hNGcP8dhr54R0gpnMFT8gQT2wQcJFwX/BWqRF8mLD27LTpm1E/6auLFG3K9p14rXW2uyYc1aLATWpjcY3nk4T79cm92wxoSfaZfniM7Tca2ZGrZkBgaAN35Kd08pWIWwQVzXkNFZbzC1sASKZXpgLZrugw5oSo0QpQl/ramj9wzoFKH4fsIakJStzRCSEX9+pWJQkuDpvp9i0fDQ/04K5x2t8wn/Kof+DoaKVOdEfx/gAl39PnqWVKaqW5jwEwl26g8NEYeNNekU9VulE8GhP8fCPRKYHwaWN6IAT5/aNnVCbcWnYSgTZNZgkOjcvM/P8mA9rX/bBT8A6ISbgGJeNe2zUkNClCRcHQp+qUC9XbhsUx1/R7lIzfVHREX06Pge4At+lAt+awDUyKw6gEhA9neBbcSadUDsi8HUGcRS5w7660D4KX9/OsW0puhOXQYt1JJcQJKEcgRxfAvx63+GSy/9DvrjOwAKSr91FgIKoua8lIgqE35ZM3nPrEMvWvhbk0EG2cTOPvZ3YggC0kVfizKIMPcsLX1UT+sP984GA34vW6hfAyKv408bromP9Z7lewg84QcW6PwLa8s8KYz7bkT87Hlp+gbH85EAOZuvwcGhP6YEg0RBkc0LeatiWD9YEc5C2KxE658uF/POQEzv8dQ+6oOyac70WYKzfq0tDPsO1A4uq30AwB1zgl1/y4VovrJp34lnPOzKPveo/WGlIogFBm8wT3x9/l7efAogIlz284smWv/IExUGvQ4bLpvmjUAiKpz6T6vHPvWu/zuxAW3Q2BSzEYYR34ujc9idPKy4KPgv0Iw6OmSTNjbP3139wM3ds+/TtKsJJNXqrugS3HpNiTDBWFWEZXOfM72mlnedKbZbTwO5BBXx9HhxA+KjGLcBbipE29E0kzfeW3M64GyDHlVIT3ttOV6QOGxyHTfcK7RQ8C+ftMlNAjkZ4gHGyq2DvMBtuV5q8t4lCQhQnm1PJCB2WQdqvQ7UnoZIvuYJP1w7hZ5U/GA+Q5vhvkXyeZCKAJd1m3p3PWbUB2xWsLo2MKjMz62N/Fty6AdKjDF/j0hi7XFmDTNNHQC0F7oUjO3OiURGcADiSBTmfY7n+46Y1i2xfU8a6eNAaT7hzyinbmtuMISozq5MtGQIWLdZE8R1lIr5NXTptXMd/73VE/4NZWMU9dg89wGwdoJx38ykGIjNnmPkdfzD2RTzmnOe2Qw9GeVyAXPnNcy//huY/qd/jkf+4/8DN/7Lv8LON/8Tdt7+FpRNYUli3tsHAFhnIITIXfmPRzNMZ/waXPC7fIJdp+EHHLSqfg/SGyNaFcHpBEkksTPQmKW29u62jifc6T5PgvW9txs/CyVpfVWeP76U9de+EIRYSTT1IwYywScGz0GRxGOR9xoIkXw1e5Mw4dfTU9zUV3BTX4GFxe+PvulN+yzH4QEYe6+DnkjQixREVjL384bV1u/TZDotGfelWByyidkINDtjxp9nqlJTzGGIrxNFwX8od3GoeB25mx1j18+bTnzvpqzhDxP+oWc8BEq/IMHzvFJX5oraR1/ESF2Gt9LbS6dS6PjrTzVE8g3bbh9n/IClWHtyp/4FNUxoIgxjBzE7Xm/ttylocg8Dr+EfTR5ej6RNcVHwX6AZQi5vDFy9NpZCHE/bqm3u/+a3FkJ3ngI7Hxu4zkSbpALp3kodv8tmTKtcd+Oc+yl00/Cfp5lSTI8Xu/5uqxN+inpb0TRvItcAgCZzs0L323I83wBZYgh0gVR8zkvRVQWln5LFuCoPv0kgnfD9uSUN+lbd6oMpZ9uEXwhAxXAl0ypJAkqofIIGALRXdepvdegPaLsPHlRKiDH3P5VESMAGx/btFJ75OrWOgWkdaqQbZdRG/i0wxiS4EWSchQg0+i5U9i1Q+oGg45cwcOj3NLLMesouwYHPSdyPCb+nfZNzoPm0Qgtmum27c34ZFPWZWZVuaN7X5dryv7PYNA0MJnf8bv6dVAp+a/OIyY1OLe5xEy+9/8ynYNwnQIg2vC/EkCf80fQ0b2aVkVmDHcWsF+csZr///0b2yn+FPXoTZA2MijC/9ChOHv8kXnryS/jup34pd5O3znj6vkJmLJwDxqHgVxHgTM4GWKT0Z9ZBQkCr6jUlvX7f9nfzBtNOL0ISKUxny88hax2kIKQHXPCre+827mGUEmtT+sPxmyb8AJBoufK4nxw8h//usV/AZb0PAJDeoT+rGcrkBf/sFESEzw4/AgGBt9PbeHX+LnhSUJ3wD1WfIwJL920GizMzg/VNBVGO5gtO/fmbzECTYzilEco1J2PQbFQrRyNnQJaHPnnBr3axL3cgQJi7DLrH7/F0wp9h4dLvCg2/6Pk1jf9Nimo0H8B7r8cDrX+2zN4I0Xy3Gib8gdI/iNuGKxaAqTQCD/w8ZNGpPy/4+xI0G4HWYDOJ2Skom2E44PviYsJ/gR8okFye8DtrmrWxMmovQGyI5HuwBT9JidYpU4BJeXO+ZmEukp3V1FWTQSw6r3cA5RvbBzDhR9P0eIuFBAmIncs1Ds0bQm5A27WW9fCL6GgC6DpQxhshJF+PixN+Fee6/SWH/vL5AUWE4hZo/W52Bnd2F/bsDuzoDuzZEezkhH+eztZuKvBn0+3eCVPkMgYyrrhSl4373OwMCBFlw0v1rx+mnq2SAr2yEN0Wgp/AtibvtQjX7RaiMwPIR+rBzL3b/mZrdp10owLPGqs0FEXVaFV67XHmDNPD88l2uzv9Nib8WihEpJC6DL1YQgqBubFeaWXZe+I+fL9KRjCe+SDmE5Av1F2u4XdrSbhIRaDeDtwmOn5CJyYBhWaNq29o2iMf5aWi6neex/5taDgrJL+3cyQRdEUw7tNCrm3YF0A+o57OjtGXCaa2WMutsxBEeRyfO70NzCeA1Ih+5Jcw/6n/M17+4t/EyY/8Ak6e/SyO959ApgtJjIWFEhFICExnBr1YQRCxGR9pjjZtoPRn1kIrYvf7EsSYC0hTakxLSdgbMGMgW+DkG+fY1mnvCpxUEOkM0suyFqGIWoL5lmGcgxSAWNEgCh4Eq5aAcrMsn/DXpCilJUo/AOzKAT7efwYA8F/P/gypS0G+4D9L+Xf2oz4AKt23MWYmxTibwvr7WmYz9ChQ+lOO1fMQsxNQNgHKjAMVgcysvpgN0awQuGu4QXOodiFJYF/ynmIiTyAF94dHU+SeJCKa5ZKpHvU4lCl8NMSf5aIh/xMR0/pfm7+7FC8ZJvx3T+r9GcrT+FUga5g5UfqeD4f1Tv2B0j/s89ooph2n/GYOmh7DqRjDhI89nmIzmclDjIuC/wLNqJucWtNISa9z512CbxhsNBk9D9ahCXoDqbXp2joGUF9AOE9JWiuOr4yuG1fCueMOeXpc40ewxe+Mc6q3E1O2vlwDYMZCzecU9LBtbBC3ovHVAiLh4/+W75VAe12k9PO0jHL2BgnPKNlGwZ/NIPYegbz6DOTlxyF2rzLDQAg4k8Kd3V2vKDaGJS4dwE791Z89khxiWMpAzo37jt/N6fzU329uKgQKeuuEX68uRLcFex8j+TxIeAo8tWeyd4ZPKXHzCShKNjfsrJFuVGAz/h5KjJ/Fe4SIeMLuDE+ewu90mfC3wGUz2PE9bnSd3eWm1+gO//fZHdjJPQgi9FWCuc2glUQvlpjPDIh4U6hIVZzUN4VzDm46ytdeLSSsbwKK2TiP/nIq4ghLZ9du8IhkF3Bm/VjPrs3k0HxqkCwFps5iw9c5e25vH44sfTBSp76IoIVGtCGjLlD6MT7Cnu4jLTU+ZzZDTDrX79u7bwAAxMENqEc/CjW85A3puOhlpknxfRqXQftmwSw12BtG6MUKk7lh535CQelfmPCbzCGK5FJvJ0z4ywU/APRihWFP55KBAGc5Mo+kRLrnKfNNOn4Zsi66I0TyrbrttJJQkpB19HaQecG/asJ/ll9jH+09gx3Rx9jO8LXZa/m+YZQyNX4v6gFEJYf+iJMFhIKNuMintIjmm7h5sc8zM1+EJqh+NgRHAmK2nO7ADQeHiZ1hbLnJcCh51H4p0PrNScmpn93yAcBqrsCHfrpPVG2GaCWWzCWv6UMkFGHuUryT3qn82/4A0BLILHCvJogiUPoHsa3dC+VwRRMjIHfqP6s69Ycmwk6P4HQCmo9AWbuRJzdWUkDF6MXc6HAApvMPVon8wXo3F9gqmJK76NaORmp3rTvvAoL7/QOHEJ2fJ2wgtf4Gl+P2NLBEh0eu30e04cZfNEfMVLANl24VV/wIcrPBB+y70BmyPtd+Nai+oROM/Doc7zySBFL1bBjhc+fJ69ZzOOMNCosNt0h2zu0y75zle7q3C9Hfh9i5Anl4E+rq05DXX4C69jQX722xatWjQnT8bPK89xWNwlDwu/E92Ls8HaRVdH5rAFLtxUlwor/f0XzOsi/G/YSfqm4jOjNHkGU4e64Y1UK60XCtmhSk4mWZ2AJjLCLFU8PQiO6iXaf2QsLNRqDeHsTuVYj965CXHoO89Dj///2bgLFwzqEn43wNHiQaQhJAgCMHvaZLeyPmE56++ym1JAkbovnmkwVKvzftW7Pgp7jPa/wak3Dn9fWdpu/kaflLE/59f7AaOj+QJ7ecB6zjV3BrrVeboadi7Kn+xsyOQOl3kxP0oKCFyov+uU0xUAmkv5fNUSj4HwUAaFKQQsI4nshy46nYHzjroGWMzFgoKbDbj7A/jDGbGwghQSBkDbF8zjlEevmaKgr+3eo/ELA30FBaYFoSzBvrEPlYvyzX8dcX/EGGv04LyjrX6u4uJSFaoeNfhPKRd1lNgzbTPViSIDgu+sERiZ8dfgQA8Gfpm7g7Z7nZ2BeZQxlXCn6rIs++UHC+qVDV8M99gesgJ8fc4KtjEqoYyMY1XkucVx/o/LtiAO3X1UPFjRp26udfPx4XlP5UeYd+2ec0FFEt+DkGtLqWCiI8HvHz+dUFt34iwiV/qdQZ9wXK/DCxK/db5N9TGf2Y3f0duGkB8HWbswYS8P7OAWJ6svr42RRiepJ/H4IIA//1T+bb92V5P3FR8F+gGUTLKzCtiOZpMOup4EFsfuvQ1YwNWNuhP4CUN+Sr0fG7bAaKhxsXzZ38EYpf3ug18j9f9COwFrRFbfC2sRlt19V+ThRc/9s+a4dzfR6kk9qudvTxn0X8pV+FfOT56j9Yu0zXXsEo6Yx0xkaSNdd7cGonucEUvKtefSHvvQ4U93PGg3nzmwAA0ebQL2U7pT94iTyIaL773SwLhb5QW4nOBPz3r2IvbzpfogZLN+qLMG6w1qy3KqowbUJRzQVWx/hRopX1vvN2+2J4AHl4E3L/Ohf+u1cgdq6ABvtMmbcZYqEgiadcSSyRKJ4uOrKItrA2Omfh0rE31ivedyiMxWwMCvp0FTOjwKeNrANSMSgZrkfrt93j/wo5RnV9EwuTYYoWJV12Y2PIHDpm1tADoPUPVQ/XkoPaf3POtrOvokHOEounZxVav3UO/VLRmU/4D7ngV0JAQRQSF39LBBAcSGhMZhl6sUISKwz7GlISHASIAOPXR2mK7HfrYy+1Wv6emyb8AKCUxH4/QpbZvPHgnIPyPgDpAVO/myb8QrAvxzqsEwdArdDvBySRrI09rINcQekHEdI40PqLrLlHo6t4InoEDsAfnPwJnHOY2pBnz9N5UaL0wwESlEt1KJ0VLv1uDrIZO/HPTuGahmNCg7IMwjco8lM0HF9X1u8HhP++Y46xN/DRfGdAIGbMRXDoH4BHPKiwlqSoX0uDW/9rs3eWqPurjPvOQsEfF2aHtahjQhLh0JMg73od/zwDUv+rA/+xuagHmp2xLKIMm4HSCabjd/Hu8Uved6hYe0LBP559sErkD9a7ucB2sfBwb530dtn0EB68YR94WtTqol/GpnrVZKd+umANRJMRWxeIjm7T5LZC6RXJMC/CnLWFidbDiK5Reh7OTwcbJ2MtjIGtJE00OVmrGPLS48uTtDwVoDjnlYySjnDZjCMAm1g7i/Fsbcfznw266loD3buhGMzPwzMf7L23ALQY9jlvqNglqkzHWzM+rD2VcK3d7zVPembKlo0BKepzosZ5J68qam4GO1sr71lkmCkhIUF5HF0n7Xqb2alJ+Vpp2lhLze/dZGzcRxKpzUBE6PeCUz5tFMu2hNmYi3tZjZANzw2aj3NHdZE3SNaf8AOA6O2ux2xxoeHY4Z4iql9Do0H1+lyc8G+BnUYkQMnuA9Hxr8TsDG58tLIZS0QgH82H8RH2VB+ZtUitgRKy0O+nM7gTljJJX/BLklDEhawQyxN+AJBSY546HOxwc6gXK/RjjXnKJphp6bsIU/7MWChF0HL5+SMmzMu2NQU/AAx6GoNYYzLz75n8VBhAts9TYDW+x4kTCxDE5nt2HdG0c/nxVyHycoEuR1ZZKZavBos6/oAfHXwYChLvZUf47ul3MPEF/5BiviZLzBwHQJCAiQoNf79M6bccw8cSmuZ110kFmp1W7zPD8XWrCv6JnaHX5/vjpDThn1JoUvT5panKipWSmzKL19l1fQkRaUzdHO9ldyv/1mTclxmHqX/doTYr91uhibGIRaf+MN1PIkAHyghJOALE9Bg0H0FM7kKevAl5/AbevvOn+Ffv/jv8zyd/gLeo2vwMOv7J7CHd826Ii4L/As2oKTpWFX4kFFa6MQcd+/tR8OuYi/F0+WFThrMZG0htqs+OEsC5SqfaGX/Mc2jW19Kpb8M8yp+rc66UOf+QLhfrvt8Q/9R4HWtucjQh3AfnKa7WvQecKSZnpWM0MUo6wxqWBqxAnbFeI3wKR9fMeSIC6T7fIysQjPvyv1tR8DtrOmfGk+7dX0q/T/y434kAQfO+7bU1Zy2dc/JKLU79tffDwmfGxn0CUnTXrpPXkze+bjZf+f5ISM80yCBJoifjPEKt76emIJzbsI8nwjP2z9Bx5ZokP1UUswnI3+siMC4c2mUNde8rNBa6NsBzCUW3DfCiHAPw97qPjcvPofIL2EpTmeJ+dzbffYLL5kDUb23GCq/jt2d30VcJtFAYZRPEpHPjUm5yOlBvr+LtEgvWgxOBM9L9z0NcnbUCWhIGCd9HgggHOzFMxpR+QwLWf5+h4DcGiJWEWJici+kI5CycKCQmiyAi7AwiCADzzIBALHsB4HSCzEsYdM2UX0ryvblu31lgIjRF8pWhlIASbFjYBun3h0HDP5pmGE+LZ1M5mq+Mgezhk72nAQB/dPRfkDn+PIdKL1H6CQRJlKckqBKlf+4yZHYOmo3g2limKmYmQGhuleLryoZ9AZoUdn3cHvX5/I9GyOUOY+cp/WLArKeFayAkIiw2ZQQJPOZp/Ytu/Vf2/IT/uPrdhum+kkzNX7m39U2MRQQd/91TPu5pmc5fhu5BTE8hT96GOLsDl07xJ9Pv4T9M/hRz8Hf72vxW5U+G/qMfX2j4L/ADg6aCfxWlv+SsvIQHtPltgujvca70yomPN5DadMKvk2WacDZjB/ZzeRe0P9hyY7ctFPwUdPwmzfWbW9MGbxsk1hT/1dDjy5BqtYmMN4U7z3UcpvVdp8vO2qVrkoiYmrthwe+yOReJcX/l763V/PKO6+t8NhT1WhsKQcef/+9VlH5nuyco3O+1yDf7Hsiat+h6vgVQPIDYuXRuI9BgALgo3ciboXXXmJC+ScA3t/RO+ALUXbtOwjswNTShzQzU21kpDWB5E5/3QCW5G7VSAsOezs/tPHDTETNt+ntLXjgyTPhLlH4RniVdafaLUDEo7rc2wIsTtN1MEvPj17OkKtGjdRP+bRT8uuevtfuv46+DM2lxTbeszcGp350dIRYaQ8nGkDuql9OpF+n8AbHU+bUoSjn2FhaSCGkm0EuYzh8wSBS00iAn4GBKTv18nsZaxG36/RX3ShJJ7Aw1pjPDBWLpd7N9T+uv0fETEdPcOz7HQyRfF6NMpQRiLXM3+kY4l1P6M93DLDNQkioT7YLSv+xC9+HkSeyLAeZelqGFQgRew4JLv/VxmoIEMi9tlWaGiBSEL8em6Qiuy37Le5lQ6k3prAFgkMLh2HDxXi74AeCS5Psvjfj7PM797BxGLlD6+z7hdaHpIwSk4HSERTwZ4vnm71T21wdDXn7nWVGQA4V+f5D4JaxpvxWaGDWl6uHihN+bAO4sbrNJwia7cPEO5rqH/zj9c3x1+hIA4IraBwC8mS4U/EHDfzHhv8APDLzrc34D57TiFQU/LWv3chgfybdhjM15QfGAJ9ertIuGHfo33jiriD0KSpMTl815M3eeCXkX08FAp96GhldFIBVzUejNlLalDd42aKEwaEWYVjV8H8ymWHEs63PVz9MAkd5Urut0uSEGkCMUN5tkuXTK0/uW4jjEs3XyCrAGJPR6BaLy8W8rUJnwx8PVHhvOddY13/dovvzzuP8Fv0h2OqcjdAXpGKIh/nAtBAPARSaHbW6w5skDfjMoSUAK6c2jbLf7jwQQJAALCPr9Nr8WTpLg64Mj2Iq1JsSnnafgd9YAJoXYveLfc1XuIxLetIv5OJ8UirL56wavTUQQ/f3u3hzeob/rM6xpDRXBuA/Vgj+XSW2Dnaa8J8n7RetPpyDd79SMJT/1tiOmQu/qPgYqRk8Wa3JTwa+FzC8TSZR/3NZZEASMETgYxpXCrRcr9HoRjCVYZ2C9uarIUj5Wo35/OZKvCTs9jX6sQAKQJWlAGoz7jt5GVlPgKSU6kxhD5J9clB40ndMggiAgXeHeJ0wK4U8gkwnS1KIXcaJB+JzDhD+anS7/vVT4XPJs/r+H2o+gSxN+ozQECShSyPxzV2UzEFHh1G+nS8Mh6yy+dvZt/On4u5WfOxmDZiPAGY6vMxZHlov9HsXoi+rzIDQARjhBeYAfxSlSx2vB0Jv2LfojEHEqQt2W5Xp0GYokxnaKW9m9/OdSFFr7so4/OPTn0/imfZC1AAwcCXxr8ipemb2V/9OBP+7xGDCmZNjXq9tLEI6zEf7N8Vfw2vxdCAh8fvgx/PTuj4JAODFnODWFm/8gRPNdmPZd4AcFlBeP3oQlROo1FX5BR9rQrcvzqN8najipCKK3B7do4FGCM2nrxHPla5AAxTtVqqSz58+c7+A2jY7Z1J1ejojPOZv77/39adJ0gvCTp667hdC4aioYWjwBnDWsaz5PAyQUxZ3p5K42FYBUzNTcTaZZJoXo77W/D9U9vs5Zw2kUa4Az3uVKnwAaXsqnf2J3hX4/oOtEXSp+b/eJ1u9strX4yTaI4eGSMdrDgsILYuE6DQ79dd/XQgNZkgTPwdihrJNsJKyHdayzXL/f8v2U2Aex0NBC5ptj45xnHmy+MXTTU57s9/x3t7B+q1Dwz4qCPz9nV28+2gVM6+/oaL9u/J9QqFtEqaHgh7U8CtzGhJ8I1NvdSmTpJnDZnGNno34r8yxQ+t2Y8+kHMsGO7OcFv3NuyaE/QJHMje6EKCbRFg6wQKQ0+skyK2x/mIAyAescTCmazxgLJQiqpogOE37ba19fpBTYG8boRaoye0gPuOCXJ+/heHq8pAVXStTmtdchj/zr+AhOIondgcYstY398ZzOLxTOMqAXa+z0NZQQuRxgnoRovuWCHxB4RO7h8egJAMBeNPRNL5F7bxilIUGIhc5N+5SZs0ljMO6TCuXSLHMG//H0j/DHk5fwR+Nv4SgrvbaKQGYOSid+/2NxN+OR9+J0HwAuBad+c1KZhEcDLnb7IoEiCQcHqpFLaF3/HSmSBa1/wa2/MO4rxeflE36ftNLw7CdnQNbitj3F7599E791+nXM/DNkEJz6HXBvvILSD+C12bv4N8dfwbEZoS8SfHnvx/B88jgioXFVcdPtzfl7+e/nE/4LSv8FfmAQCv6cK1Y/Zcx/PWQnN3br7n8edRuot+s19g3FobOd9b+NrxH1ECiZTO9T59/0lxovjcgN07ZzW3Pjw/FmTJ5Pw3tfQWsW/M56U7eG3UJb2kTLfdAFnAawZqFZtxlWMRfMa25uXciq75JG0ZajXjlwtv49LqPWhgIJmev2V9H5na3xOlj52oop9+umEHSFM+zrcYFaL4hGh34AHJFZSMQkibzIATpE8gFeZtZA6TdzXutbJCskNTekTAZNErGIkPr71sJCBCPBDeBMBjjLiQBh3RYS5WI5mPaJ+QTk34dUpc9s0/VeJ/yddHDrd86uJ0tZtI0PP24q+HNTwO1M1Piauo/MnQbkdP64z9eWv26aEEz73Bkb/Gmh8Fj/CrT/HNz4HjA7A0hA+Al5gCKZR/NJQXAIBb8BDKHXi9GLlz/Pfj9GJDVSk8HKQCufIzOO9e41Bb8IlP5Bt4ZiL1E43K2ue7a/B6MTCGuxezZC5qqfi6TiPbTBWIeoJZJvETv9CL1YYzKrf+YGwz6jExAIewONKWaYY4bMF7mB0q/SKUfmLcIBH0s+gk8cfhw//shncjZhecIvSSASqij4sxmsddUJv8fcpvgPx/8Fr5eK0Zdmb5RekNdBMRtxfJ3jYh6oL/jDz07tGDvD4vxV3xv2iWLYVXcnKtFsfvhEoPXP3q6wLa+EaL7jZQ3/MAEckY/eq4HliMKXZ28DABwc3k45+pCIch3/0ciVKP3V58I3J6/gfz39Q6QuwzV1iL+6/+O4oot0jZsR7yveKOn4g4Z/Ohcw6xhJPuS4KPgv0IxFOmQXbaxaYXi2hWL6vKB4wBq/+YpNzjmLW9Kx12dnQDrj1zvv++6iU9/ihB/gySsJ3rB0NWF7X7Bmwd+6eW1jU7gtxEeBp3Rd3e8DpXbpGEKA4sH606x0yk2oDgV/iGfreq51TISVvy8Vrystk0Z5mScni5OuCtY0VCShQGJFk/K8cOgsL/igo9apv8GhH1huigVKv8hj+Tqsc4EmXkfpD1KrtuNIz3Dx7vwDGRcFv7MQJDem9LvZCWhwAOoVZmzkmxTB3yMUxuUVSerk3DT4QOvvtHZYu5YshSVPy2aJVQ1/iUmXG6lu6dkVjBgf9JTf0/kR9bgZK1fr+Km35xkoBm66PDW2Ybq//8iSzFCRhATHRHJEo9f8WwNYif1hr7apncQa/dhH6MmC0m+sQxLVs9tySn+vKCKNs7mBZRdYOEz2uLgaHN/K76EAITuwGD26RvJVji8Ie8MI1EDtD/r9uUyw02fvA+MMSDmYzDdTVJyzIup0/A4OidD40s0fx42+Z6KVNPyZVNCCaf2h4Jc2hTVZqeCf5f//3x3/Pt7N7kKTwke9KeB3p2/m3g0A0/qRjUHpFCDC3WzZsC8gEREGnuaf7BbnL5Iiks+fNFDz+XIqQv1G9GZ0BRICIzvJmw4AcNkb990qUfpDcT5IwNd/Q1OMnIF1Fq/6gh8A3ioV5rlT/ylKlP7i71OX4atn3wIA/FDyJP7y3mfzzzng0egqAOCd9E4uNelFYSkinI7vo6nvA8ZFwX+BZhBVJ/xE7dnWKl5tePY+F44kFai/D5ctF/wrDaTWgU74QZ/N2RQqGZ5bmxjkFSsnFusaK7Uhn35tFv30wBCmeKuc9cuwlr+fBuQb7qbPmrCd61hFq+8VjyJGsP41KR50ZzeEY2ZTULLb+XvtYqzHB8ZGBS5F7U79+sN/EfEX/zbkYx9r/qU2n5Ha116j8bIG8inHw9wse4Bgv4Qax/xVfilKw5XukQM9RBLu3S6xi7mzfN394ToxXEgqX7jxNZLIqJimOgct5EbyHpfNeXK7c7n6fAhSBv85kZBwpaaIlRoi+BiI8zV4Ke63TqH5ZN16vjbBi2CxqPMUdgjJLvYB1vhn15Ym/CpiU8IHXPC7bM7yDBK8DsV9uBVO/SRk3gRxZ0dL/57r92uanEpwNF/mDKhUnKXGIJIRer3m5ImdfgJjTO5GH02P4eAQqZrP37nCtK804T/NJhibKSYdTWNP0glweBMA0Du5hXTh2dfBcL98Up0i+RaRRBI7DdT+UPCbqIedfgTnHAgCkZSViXWY8tfp+I0DFAzHGjqXsy7LE34tfINQx3C+wSHSea63H9sZTs0Y//be7+GuOUFCEX5278fw6f4LSCjC1M2qJnNSg7IMcBkMIaf8B/r+Ig79z6l/XPwwLiL5AHA/tWZN42g+qpVFaFJ58Vx267/ke5njGTCe8R8WE34CDxVt/V7IGrxjjjFxhR/Hm+mt/Ps49BP+O6euwhoIeHt+GwYWA9HDjw4+7JvFVRzIHfREjAwG76V8DxIRBr4vcHJR8F/gBwIiUPpdbnDURrlrMuvJqbbvQyTfIsI0ZckhfYWB1FrHFxIIU1eHc3kCFAf1G7tVGrdtT/iF4nNfEcX4UCCf4nUtelv0v6FpUjP15ftgS1rTrpNw2xIjqGJAiO6O/6GQ8FThLuBGXstxg0xggwKXae+rvz9SEeTlJ1Y3z3wSyDoNKtLJ/ZnwO04seKjZMQ8SKuLmh2dydGmwkqpG1O3pAceVrZPZLuUS68yZlK+TjlKrclMoFhpKSGTWwDgLjc2+Xzcb8XQ/XrgPhY9ALZ9zif5uvfFX0Aefy6Q16vFEupXW79abvktZK5WhZIjo07+I6DP/TfUebZNZbQCR7DxQp37nI0lFaV0V8aC1UZrT+kd3l/6tybAvIMmj+Upu+JnBII7QSxruKyL04whKEO7tcgG+e/tlSAdotfz5i9kZyBo4Ilj/3vg56HBJ72Ju09ai/yybIhISw6vPAwDUe6+id/uNyu8IUZ/zvgjnUIn8Wxe7nto/nlW/F+E1/CLpQynhpRICSrKmPZxVruOfLk/4DQgKGZQKxp6OWfe+4M+kRiRUzlZyfspP82k+eb6d3cO/Pf49nNgzDEQPP7f/eVxSexAk8HTM39dL0+pn56QCZTMcuxkMLBTJCj2/jEt+8p/FRcPC6oUJP9VT+gVxNJ9pGK4EWv+r84LWrxVh3x82GPeF4nyQwK8rtnb/RmaOlzNubjwd34SEwJmd4tjwZ3+ww9fAm3d8eUJAvzTAD1KIx6NrjWsLEeGmZjZGRcfve8EXBf8FfjBQLqScAWSHzbxQ9awsm3mq7UNQ8Ed9nuwsRhKtMpBaEyIesEuwipjSf15Q0XxpBusgt7lpongIofRDXfATEV93nd3q6+nxOXx2d20Doet90AVCtcs0wmuu0reGKMiu06xsznTTLvr9AMV54ysZJtaf5yafjdSAWyNpoQGbmAbetzXJGIDUBaU/QKqqU3+HBitJ3Xxfd1znqG5tyGYsveootSozXCKhoEli7jJY2FxvvQ5cOgWEghxeXl6vhfTP3WKjWW7OWRWxZ8AWGrxEAtTfg+viaL/G67BUpj7eVD3xKaibH6n8jGNHt3ufUNRjVtz9kussIp2wJ0J5XVUx0OIlEFgPdmHC70wGe8yT0qaCPxYK1lkuzvxlZKzFsJ+AGhzsiQiJjpEogTuD68h0Dyqb4nD0BpRcvpZFbti3kz+DZjZFLDSuxge4EV/yRX/9NZRag9QaXIsP0Lv8FORjHwc5i+t/+p8g7hZU7VBMthX8xtqlyL91IATr8wUIc1N8LzTlolf0uTrNnIGEQKy44A/588Gpv864z1oBTRYEz4x1YI8O/2y2SkNCQILjRXNaf1YU/EfmFGM7xb4c4uf2Pl+i2QPPJnwdvD5/D1Nbet6rGJRNcdc79B/K3XxdufbK7+GZr/6PUPPwbzzhH4uCY5+pYsKff/p1lH4pIBqi+QCmxwsInJgz3DNFQyQ37jt2MNZh7C+Voaf0k7OgmiaCMXO86jX7z8WP4ZrmeyUwHIKGf+4fKcNewUxwzuUF/2OeedCEwEx4o8SceOYRQqINru6//zXLtnBR8F+gERQM4JwrNvNtm9cmwzPjo8wegmkXCQkaHMKl1QcUG0htYRoPPzWUmov9Lei9OznRN+i8zwPSMUj3Hm5KP8Bu051N+9Be8C9O2AK63gcdwBGVHSbz1q6kqZNUnhLfbZrl0ikoHq4lXaFcx7ziXENc4SaU/jD9PS+1fgNDRYr4Hl1cD84Nm4Hkw9HkfBhAJICoyLTv1GCVy27va2vXhVpaN102B8Ud9Pv5eRTRkYIEhjJB6k2y1CYF/+wMYnipNr2Fn7uqsv6IEgvAqchP+O1WGF0U99vlYsD6zxYVdS+23WqZ1UbQCTd0HhCtv0znD2BTSL2SaZBP+MfVgt8ev8PrbdQH9Q/q/hQq3Du+OEszA0WEfhStvC6U1uhFCqkD7l1+BgBw6e53a3tohX6/oIjPbIod1YcWEpfiXV/0Z0tFv3MOp+kYl6Id7OkhiAjRp38RdO1ZCGuw/9XfgDy9w68jyW9xWgr+NSP56pDECjtDjdnMwFqHeWah/bk737AxzkKTRKI0nLT5VDtQ+us0/MYRIkUsQ/JFMZUkHVZGkMQ+JIIEbO7UP0OvFKF3We3jZ/c+h4FcjtU7lLuwsJWIOpCE7R0UBX9Jv79z5xXo+Ri7t18BUEz4T90IRAYQGYzge2RH9L2Uobbez6P5mpaKSGjc0Gyq+2rp/C77S+fWSVHsCwEkEZCnqCwe1Fm8MX0HKTL0RYJr+jA32HvT6/iHCaBLy1KZzn87u4epm0GTwjW9Olr2ur4MAnBsRhj5eL6PPSnw85+5fVHwX+AHCEFL2FEbS57+vfig50i+eDs5u1uASIZ8nmXK4TZNBXUM0gmot7OdiXuHCb8z2dZNESnqgeLeQ1+0kJCrmyHV3169SSYBoobjbaARb4RQKMeONcIFmnrzOYtk2J2+ag1EySSsE2Tkp7MrXmMDOv1ax++ENbXGgL9Pd+HScfsvr3Mm1vg1b3uMm+93iJJT/0qH/vwPJJY6yM7xbvQ8mfDOrSW14oZX8VzryRjWWTYPW1N37rI5IDXE8LD5l5SuFOAiKe5XLvj5WbANz5bcVLat4bXm66wnlekYs7jO60sFigbd2AvnRB2dHwCvayoGVun4QzTfWZXSX6bzN60h2l975NXgk9QgUQK9aPVeS0qNREkI6XD3EmfHD47egJieLf/ugn7feYnnsJQUcSnexc3kMlJrKkX/aTbBUPVwJd7naxb8rI5/5L/FfO8aRDbH7h/+a4jxCYgIEgTTIYxonUi+Juz2I/QThfE0xWxukHizPOuHPpkz6MkIPRlDSSZsAasn/BAERda7y3vpnG84OSFBiun8ggiKCqd+bebYFzu4qg7wZHQdf3nvs0hEfQMsTPmrbv0AQLibVR36hUmh/PU/PHoNAEfvxaTh4DA4GIG8YV9CESKh/fJKtQU/AERytXP908kNAOyOf2L4erqSR/OVzPWSMI33L7S437IGr6TMAHkqvg5Rot6/k95l74qSUz8ADEsO/a/P3wUA3NRXWk1VY6FxJY/nK6b8H7RH98NRfV3g4YXwhiXW8MS6bZMlVL3++QHmUXdC1PORRLz6OBaGbWcaD94gUn9/eQOw8QEXIhLr4GztxOhcLys1kkeeevh1yFJ3KvhZZ04ri1IK5pQNBX+n+6ALQiRcy6aYC8eWItbfW22U+Dwmck0mCwlvMrTC3Os8mfN8/KTdPKz1QNiIRST6+4B126X/Pmxr3sOAcjOmQ4OVPNum8r04i9amXfUgKDcN8ui0db6bwHAxgdavcwOoOiOolcjm/NorXp8W4m0r63pgsORmnucs+KWCSHZYZlCD3DR03YJ/lRxj+VXui2xM9HbuXwJHGel0mc4PfpZQMoRboXEXfsJvRwsTfu/QLxvo/EARzefATv2pydCPFHTLfSVFhEgIRFrgRA0xGlwBwSF+69vLvxsKfm8uOLMpIqHRk9XXOIx2cCO5hNQajM0MUzMHEeFacoBooUEudITJj/wCZoN9yNkYe3/4r0GzMaQSrY9xYx2ic0z383MQhP1hBCKBXqygvZGzi/k7tM4hlhFioSEk8iI3zTX8p5Xr23nmoCBXFPyE3KHfemZOKD41SRgvP9O+KP+5/c/jJ3c/DU3Nz7Cn45sQINzJjnODPn59lxf8wbBPl5IfeqfvQaZTEFFu3Nc/OAEtGPY553yhW1/tKrlaevdUdAPX9SVkMPjt06/DOofLnnBwMuYIPcDr90ugBflPZqZ4PWX2x1Peu2BPDjEQCSws3vH/Fpz6AWCndPt1pfMH5PF8ZUPEDxguCv4LrAR5OqTrSpWVng69RM9x73skXxlEAmJ4UHT/74OpoDy4sb0CfEW8FFAq5H5AC4xanW4duuY9S1UbL9n5PugAEpIj4dqc+ltSBQDwOamofUKeTnmqusF1QrrFqd+Zc8VPck775hN+5wvBdeLD8tdOhsxkWfT1OA+c20p84wcJpKJqAd9G465jwTgfydeZ0i+qe9dszvfLOteq1CBVSE5ioaHJm2+tWQg7M+d42BXjI75uSvriUuM4f446h6252sfD5obpppF5ssHPp/Y1cF8KftIJ8ojcDeBmZ7CTe+2N1Gy2ROfPzyHqrXw2BUo/0gncvFh/Vjn0B4RoPkvOhygREiUgWvYxJBU0CUSxhLXA3Ss85U/e+POlcw2Uftvnqm1q59j1dP5FhKI/85P+q3oPO6qexRPHu3jrk38JprcDOT7G3h/+G8Q262Da56A2NOxbRBIpXN6PcbATQfiGl/VNGwJ/vloqKCkAChp+3tNJm0GW2CPGWkgpoYg9KfLnUZjwK/YNkP6e1UIhC5R+O8s9AlrPWUS55rw85T+zU8xcCgJhXy7LDggOw6PXARS0/ivXTvGhp/ma2/FeAc45QHBDpA5CipX3NRHhC8NPQJPCrewevjH5LpKIcrr9997j98kO/SUs7LdeG38PBha7coBLcjc/dmGwx4X5YYmsGF7j1IxxZE5BAG52Lvj5995Ob8OsmXr0/YKLgv8CqyEkPwCc8U7aLSDJG+66rvpDZl5F8RCQmimWJuUpzpoZ4g8KlGs1GxaiNU2oPnBY3NQ3wbL+tzVtQjQwBpzZGgsEAKAjONNS8Dvb7uivAnV0tV7VZTNQb28jmjnpeHVTxeFcTJBzNwR9026TwqHJ1+N8cA+FZ8lDBakBoZk+LmX7dV3XQF5Xu07VfG+XzUHJGvp9+PVX93KfDCUkejKuTOw6w3WIA1zwwik7+ZMKbB7Ln88WQFGveBYuIk8DWO+1uPHWwRuAf/vc0oRa6ITXlXR9Hb9zDi6dgGQENzlu/j2bAUKwUW8NuMnV3HQgFecpDCGaz01HcON7AABxcKPxtUM0n4MFCUBrQiIVZFvBLyQ0CSgJRFpgfPkZOKkgx8dQR4WRHpzLTftMfy9Paxo2FPEAF/03k0u4FO3iMF7Ogg+IhIKJ+zj+4b8CG/WgTm/j+rf+Q3vTl86n31/E7iBGogXIN1ts1IN1DkTEBT9JKClAjg0FnVBINU/Dy7T+zDoobzwIZ7zfj8gN+4yKKg1CLSSMKij9XVOFAeDZ+DEAwHenb8L6+ytM9/flsGgqLMgOAq0/TPhPcALV9xN+7+rv7/bGPcKqaL78dWQPnx2wMefXx9/B3ewk1/G/wR581Qk/0dIw4dXx9wAAT8c3Kudyw0/i38qN+4p/C5T+Nzyd/6o6bJRGLOKS3EVCETJn8F66nJjxQcBFwX+BlaAytbnDRpqIWH9YKviLSL6HbPOrE1A8gEsn3mAr3mg6+MAQmi81WNuE6oOGru/bWabAtmxeuRCpfwJ3jtPrgMXYsUa0eWcE6mg2aaSlO2842LQxbYU3Lls57ToHQ4bZNTU57V0RCv4Nz0H0dpuLnjXhPJPkYYghfajgJ+UunXiH/pbNWF0DOdeud2xaLTKjNpQ+iahXOY++jKG843ZX5NGVbc2thfWMkuJ8KxP+bU3FdcJFf53ePW+SbjDhFx0lSy0yq01BQoLi4WY6/nQK6ARi/zogFNz0tP735p411SSTCsZ9K3T8Oa3f6/iNp/PT7tVW1l4sNIzPpY+0QNTFVJYENEkICfQihbiXYPZIacoffi2dFgVrb7eRzr+Ig2gHj/ZWa6cjoaCEwrS/g+PP/BVYFaF38g6efvV36g1zgXNH8jWB5lMQuNh1OmGHfpLQQkKTQqQknLIw3tU/TZYn6MY46OAgZ0x+3VNWUPoVqdzLoGzap818pS5+EY9GV5BQhKmb5Y71dw03ZsqGfeH8znavAwAGx2+BbJZPzI+yk1xnv+sp/dYBAtS4vEoiCKLWKfgz8U08Hl2DhcNvn34dh7v8+5n/s3LB74hApUbP1Ezw1oyL9qfiasOLDfYIx+YMp2Zc0fAHSv9ra9D5w6dORIUp4AeU1v8DWh1coDPCgu3QeUJPKqpOZMx28u23DSLiB22WwZl0vZiy9wPBT6EOzlY2hT9waEqHWITzzadWL4qG422ZesrU3Q4n3uE1xeAA1D+AGx/BzWsM6FLPAtnwOiepvefA8qQqb+qd57NZyGlfG7mh4obnoBNumtR9dmvCTUf8WT9ka977DSLi3PdsBgpGjS2/v9hAXjeOjoQEu9A79oiQcjM2ycJ3mcgIiYzWm/Bnc77O22RBQqJCWYrrKP12aw1qImLjytoJf2iSrrldFN0KfrhurKtNQckKucIKuPkYon8AMTiAvPQonDNws+W1wWVTUP+g8ZlCQoF0b6WOvzDu4wl/Fzp/QCI0rLPY70eIY4GIRPs6TAKKOBb2YCfGsK8xffSHAADxu9/Naei5fj8ZAFJ5On9voyjKRWhSiEgicwZm9wpOPv1lOJI4OHkD17/727Xf2Xkj+ZoQpvtOJ4AQMM5CQUCRhBISsdA+f55/PzfuKzWBHBwixfeJsxlL8UiAPLvESF3R5kuI3LRPmVl3uwtws+Bpr2t/acrXSmHYV6QphAn/6eETSKMBhM3QP34bu3IABQkDi/cyvuYCpZ/tNFYZPgq+rVsaFESEzw0/hoQiHJlTjPZeqvx7hdJPoohrBfC9s1fg4HBJDLEnqz5YbLC3DwB4a34LOz1grw/0Yy745zbFu17f/1h8beU5GudwcjbHLOM1ajEF4IOGi4L/AqshPI1cdM8eJxVXdckPcTwVxUPO7TZpN8nC+4gmJ3p2fY5+YPX7APKJX9t0mPOeO1yHNRPEPA5smyyQlo1T8Zod2DVRD/LKkxCHj8FZA3t2t0IjdWbKdP5NN2sq4qK/zljvnNN1AH7623D8DjivK37eALRmc5YB4HW4FuLgxoWGvwa8zlJnl/xlFoxnT3Se8BNyw9Ns5v0uNvCwkJo38/7aGMoE15NLa11vzqQcc9rW6BASEEWGfJmRQPm5b9forjGeb9P4v8Dq61Twy/tD6YfX8UvVObYU8J44QkJ4ozrR34c8eBQum1bMDZnO386aEsnOynWN8gl/teCXhzdbzzVE8yWJYhp6iJVdeUICUhD3rwWBiJDtP4JssA8yGaK3uTjL9fu9gs4/WEHnXwdEhL6MOd4SQHZ4E3c//tNwIOzdeRmPvPy7S4xG6xzonJF8dRCzgs4PAMYZRFLlkh0tFaRyhXFfg1M/a/2Jm9bWAET5hN9ojah0v0oSsBEX/DKbdfe78Ahu/a/P38PUznEnFPxyecKfxjsYHbAMYOfoNW/cx7/n/MBhNzftQ85CqAMRoKXsJEHoiRifG36Mz1O8DDEsjCmrpn1etuXrhldHLwMAno4eqT1ueRJPRPgbXxT4W18SUJLwVnobFg67crDULCjDAZhMMwxilS9RN/QVEIAjc4ozs0U/n4cEFwX/BVYj0CHXyR5f2IQ4m/H07CHMuCAdg5Kdh5KBsIQmY7rg+rwlM7nvS4QJVFub3Nlujas6+URe1G6v4CefatFYYNpgmNVtY09CQe5dg7r6NKi/Dzc+hpud8fGtOxcLhITk6WSdFtVm544rXNRJr40tGCpSssNMn3m9Y3kbnEl5Mrh3nZ3/L7AMFXHzqOOUfdHAbm0qOxVrA0ufhps52yvtGSh8/RPR+pNOk3aTEwgJlKJBScicmRPnf++2SoNvjOdzDhBq7ec3p51E7ckX1jMI7pecTsd8ra1B63fzMTMDSk0pGl6C2L/O62lgQqQtdP7SOQBoZOiJUjSfcxb26E3++QqH/gCOhaQ8P112MbQkAQnWYhc/I8z8lD/Q+kUpki/Q+fstdP51kPh4ywD7yFN467mfgANh/9aLuPq9P6g8h63lYnPbW8l8wu/vscwZJKJ4n4mIAOHy7y8Y92nPBrPOQUCwvl1IL9+omvZZGUGXrnFJAk7z67FhoOtEUgw4VLs4lLuwsPj29Hs4s5P85/xmXM5ASJMhTg8eBwA27nOuSv0nhZii4r20XD5KUmcJwhPxI3jGsxGiZ/4UELx+DssFfxgsOotReor3PJ3/yaaC3xv3vZ3egXUWWhIizRfFa16//1i0ero/nRnEWkJHMjeKTESEy5498EGk9V8U/BdYjZCTKWV3g6DFTYgxD/X0WfT3QHH/odfbUkNUnDMzUG/noWyoPDCECVHbZNbadt0wAmNgoRD3+tutbkx9vnfjFMzr7ted5FE8gLz8JOSVJ+Hg4E5v8/R7zTi+pePqXn103pbiChd10mvBmXNP1Ekq0OCANebrvrw1cJNjiN2rELtXznUeH2SQ1N4kruN3tdhAdna9+yFvBtqN9fsA+Po+h+QkFAudnoVhSlsao1GPp83Sx4LBYatT8aZ4PjYH3GzNI510m/ALsZ2o07pzIMFSp3TSibnjnAVMBjE4rHjiEBHE3jWI3Wtwk1M4m8GlM1Bvv/XcSXl5T8O1Eyb87uwI7uQ9/j0VgXba1xFNErKkqZZoZ0sQCQiSIKBScE9vvABHBH38LuTp3YLS39vF1KbYUb1K0XpeaKFAEMW9QYTo6Q/j1vNfBAAcvvPnuPz6V/Pf31Yk3yJEKNx9JJ9zDpFQsJMTuOmpj+ZjJoRzQBbxGqLmrH+3xvEsIF9rjI96JghP6bdKc5HvOP5VksibeCKbQTrq7NQfEKb8fzr+LgBgKHqIBe9jZTaD9M35NB5ivPsIjNRQ6QTJ6FYe3QewYV/YPzo4Nh5cAS3FWu2JHx18BH2RgOIx9GPfARHQK/eNSICcBVmLV894uv+I2sdA1e9XLqk9xBQhdVkuSQD4Wn6zg34/yyysc9gfxoilqDTiPsi0/ouC/wKr4anNJFRnKvOSOy893PFUlOxwh/2hd7hfXoQDze6h9x+43wiU0zaeGYHlJW3wlNrK8azhDf82tabBhbxpU+zMxtMvEgJieAnq6jOg3WvcFDpvQazj+qaTNduJ3ezqaVAL2krKBpv3yfUowM7BTY5B/X2I/Ud+cM0zu0BFzPjqei0u+mk4t15xSLKg2W6q34dvAupk44g32IybBl1en6SPYS3WhejjX4b+oZ+CuPR46fe2e53VxvM5uzGTgFRD2snC8e83u04MDvi9zc7afzmdAlEC6u0s/RORgDh4BLRzGe7sHkACImmmDedQEUhHQIOOP5/wT45hbrM7uTi42WkdUSQhSWLuMggIqC4RikSQQkECFfM1F/cxv/IkACB588/zgj/r78E5u9KdfxOwcZ9EWrrOiQDx9Edx9PyPAwAuv/UnOHj963x+W4zkK4MWKP0EduiHSeGyObv1C4KUBGMtUt84DxP+zDkowRN+kGTpoOX40LJpnyABzCdwp7e44PcTfnIOilLYdaz6ATwd34QAIQN/flXDPj/d1z0476dxts8Ngp2j1yq/uyurTdBVlH7Aa/xd9+8hFho/PvwEAEBdew2Xr71S3c2GvZsrCv6n1dXG9Y0N9i4DYB1/wHvZEWYuRUwaV9VB7d86B0xTg71hhF6iQEGG4XFTc6PgrfR2a0Tk9xsudiUXWIkw6VwriqxmOvEw0+VJKoi9aw//Jr0uei5MAvQPeMEfCvTWzSXQKV5qgVILeI24jLbKpCChmFnSVERYy3Tac0y/KOpBXn4c8vCxjY+RQ0UA1VBT3XZYPCQ1O2KvOeUvkkC2sM5EfXb2XsO8z01PQLoHeXDzoWcKvd8gqSEPH+3cpGTZS6mB7Cnm3V9QgEjApVOQ5GbDpiDda75X25DNuQDu8CzNm3ylZ6i8/AT0h36i+pza8lS8Np7vPAV5h+/JWcMxqPcRpCKezGfz1rXFzScQ/YPG+5iEgjy4Dhrss+9BB9YUEfm0gIYmYjzIP2PzxjcAdKPzA0wNVyQxtykE2NCtdS9DAlIICNBSURNo/fFb34E844J/mvQRb5nODzCVXHvjvkWYpz+O0+c+BwC49ubXsPPGnwK02lBuU4hSJJ9xFoIEy3X8o14JNu8TxPF7YcIvsxnIZDDGIdL+vEKMqKtS+p2OoUITj1hMIaSG9eyZOJvBrFlfJiLCo6VJdtWwr9DvB5Rp/ftyB8K/wR1ZuoYdte5xpCDeB6xxrjeiy3huyuc3evzb+Nf3fgcvTd+AcQbwGQn35kc4mt+FgMCT6nDlXi3Q+suT+Nf9dP/R6Co3V2pwNsswSDR2+7wOc/+o4CtcLrEHjtChQfh9hIeuwvnud7+Lv/23/zY++clP4gtf+AL+wT/4B5jP22OSnHP4Z//sn+Enf/In8fGPfxx/82/+TXz961+v/M7du3fx9/7e38Pf+Bt/Ax/96EfxqU996j69iw8QPEVpLW1sXiyZ3NTmoYvk+37EQp40ADah0sl2s+G/HxE2Oa2UzY763zAlWaD0n1cjXgvVrHN1zmzluyWirVBmqUmC4Gg7UodNnfq3mATC5n2HgMlWRxB6sHM3QRzevGDadMRaTJOQvJBfcx19OMJrBZptNgMlw3Pp3jmBZrOGH/sHDLo3lpXuQEHf8rSzLp7PncMrQIZmzYr7yNmtMHPaQP199jWZnjSfimeBBLO+xmOpCPLS49y46riuUtRv9JghosK47+7rALo59Ie/jYVGajNIIijvC7MSQkCSggBgFuJn55cfh437EPOJ15YDZ0kPO6q/VTo/wJPkniiM+xYxe+ZTOHvmRwAAN9/4Q1y58xJP0beMsobfOOObKP69EkGBzRCl4vg9KzWM/yzU/IwlAKERkTMNmdIfXPqh4pzS723uoYXKo/kil24SJoFn46KRf6ls2FfS7wec7d+EI0I8uYdkNsK+5GZApeAngFoo/cnpLbzw0r9HdPxu9xN1Dv/tnVv4/L0xtHW4a07wO6M/xv909z/i6+MXMbVzvDJ+FQBwI76GmFavCTc89f6OOcHE8nr1eot+f5oaKEXY34kg/HsUgiAWZCWBPXDLNq8V3494qAr+4+Nj/PIv/zLSNMU//sf/GH/n7/wd/Mt/+S/x9//+32/923/+z/85/tE/+kf4lV/5Ffzar/0arly5gl/91V/F66+/nv/Ou+++i9/8zd/EpUuX8NGPfvR+vpUPDognDett0BRvEKzhPNLvB0O87wdQSIot4LI5G439IOv3wYs0mxo2PzGdd5vutHkNlNoyS8XZ+yJNWalztffnNTeGn8AvTzndVswMSWqewq5b8NsMpLa3zlAy9AZmq837XDaHSyeQB9dZCnCB7UMqbiCHe9GhQsHsBN802Fi/H6C0Z7hssDN3Zq3XZ+ZPUyPQRxNue8LfFM+3KaW/SzSfc9tNPmk8FwGxd5UbEHXxgwDc7AyU7Hab2qtove9Tx5XkhUUEWn9AF4f+gFhoWAdIBwihOlD62TNBkaho+PlEBKY3Xsj/p9UJjNRbp/MH9FS0kjo9efYzGD/1SQDA46//AZIVDZtNUXbpz5xlXwT+F0BIKMdeCUI67tkQ5VN+PR+zRCIv+AGQQ17wh+aZiiADa9D7MWkh82i+2M03opA/Gl3BUPSgIHFZ7+c/r5vwWxVjvMNGeDt3X8Mn+8/jiegRPLFgjrfy6nEOe9/5CnZG7+LGq7/XbpTs0T95GzuTe/iF2yP83793hB/uv4C+SDB1M3x9/B38y7P/gm+dvQgAeDp5FG3NzJ6I80SCt+a3cJyNcGLOIEC4oS8v/X5mLYxx2B/E0KpYzwSRJySXdPyePXDLXRT89w2//uu/jrOzM/yTf/JP8MUvfhG/9Eu/hL/7d/8ufv3Xfx3vvtvcSZrNZvi1X/s1/Oqv/ip+5Vd+BZ/73OfwD//hP8T+/j7+xb/4F/nvvfDCC/jd3/1d/NN/+k/xhS984UG8pe9/kI/jW3eiEuiINvO654sJ/7lBolLvh03nxVTRQ6r2SVJHx/uigVDanBG26tCfH1bq5oemsw8VRZykYpZDqSBnqcP2WDwU9+uNAVeA4876W2t8kYog+qvN+1w6hZueQOw9Ahpe2srrXqAGQrLvRiiUCOtr14Vk08pzyk5IRv7ZtqbkJMRrrsEQWkonqB6Ri4n7IENbiufb5PMOCJ4nbTKIbfqirADFQ4jBpdopPyeZGNb7348GejDua2g2hAl/+G+KO3gDeGipIIkQB7+KNtmaZ8RpiNoic3bzQ/l/p/1dxEJtnc4fEPm9YeOzmwjj5z+H+eXHQXAYvPq1rZ8D5aZ9fWTWIBYRiPPpeP1xFrF36g9U9sw3e8TsDBIEpUrXjAM/00nklH7ohHX7zgLkC35SMH5NUHbetXauQJDAz+9/Ab948CX0SskCuYZ/4ToaHQZa/2t4PL6Gn9r9YX5vCNtLt3LCr47ehvaT/d7kCMOj1zqd5+Hbf5b/99Bk+ET0GH7p4KfwpZ1P4rLag4FD6jIoUnhMX4HrcA+W4/nCdP8RfQnRgkTIOXbl3+lrDJPqv0kpmJRRY9x3gglGWXdp38OOh6rg/63f+i187nOfw/7+fv6zL3/5y7DW4itf+Urj3331q1/FaDTCl7/85fxnURThp3/6p/Fbv/Vb+c/EfXKB/UCDBKC6G/blUBFcoPSfIxv7AgWWsuYzr9+/KPgBgCf3qyZv1uc9d10HpMo/azZHpPuzMZVqRTP7Pr3mOUDRglO/zbBWbGeH4zcXOg2wxue7bw/U3wVAFZM2Zw3c9BR2dBvOpBC71yD2vw/8P76PQZ5lVm2+rfd5c6PqfPp9AJs79WfzPI6wMxYavBV4ttL9yK5fiuc7TxpAme3X+ILYOlOh8aWIOEFDJ16KU8J8Aop6HNN7P15bKr92Njn1FxP+rnT+AEWSjeVIFb5LK0+G9xIRJGzNWmuGB0gPrgMA5r0hhnK77vxlRKShRb2OvzhfwviZzwBgbwExOd3qOZQ1/NZZJMKbTZLkva81/DMBTkQoGfep2YhJrOVrmLyfEAHCF/wyZ41401FnIUnkE36VzjZW6PREXKXlA4hqJvxAoePvnb4HuchgcwCBsIrR33+FUxOMT1m59OaftE759eQYw3vMtrb+2lTpBIIEno5v4uf3voCfG3wK///27jxe8qq8E//nOed8l1rv0t1009Ao3UgLCAFFEDGtEhdwjEbHKMlMMHEj+SEaTF6JIcZ9okMmiYlJjAsaYxbGxGTyMiI6MURGZUgc4xYUoZsdbZru5u61fL/n/P4436pbdavq3qq71r39eb9evqTr1vKtut9bVc95nvM8Z8an4ZLtP46gz0ksjcD8kdpji47jm6umiCODkULU8RqL+D4YrQMSYhU1pxj8sPLoksexWQzVt5RDhw5h7969bZeVy2Xs2LEDhw4dWvR2ADpuu2/fPjzyyCOoVJY3U5kAKA2VGxn4i5KY0H/I24QN5VZL4wte9ubqkqr/gjJMJd8bSQeLd+lvfEnud6a9DlvKiFNAqzXpRdEx1aLNgDPH10FHp/7G9ILVem10ALgl9v32ut0qkqgAiQpw1Vm4egV25hjc3ITfi7n9CTC7ngS9bc+6lCOf6MRE86XQyyrpN0BUWPHcelEKCKKBK1CQ1iFmgMkEwOJ/984B6COwW4bW8Xwr3TogIkv0KHFY70VNCWKo0kkdY/pcveIz62vYb0iiYs/FItWS4e+3YV+DEQ2jDEz2HWHJMYFZFYBWvTuvzZ7xdKRxCZM7T0cpWNk418UEysBIe6f+bpKxXaiNnwJxFrl7v7l6B5DWIVkzRZclT4w282N4dQBnE19FoQRG+/GAzcZ91VnfALE1SvYpY//ZmL1XmEZiprGAtjDgT6vZmMRV6AzvHEwz4G/P8CdREZX8uK+WePzBtp9Z56AgPd9e9dRjCI88AAfB4ae8EKlo5GYeQ2Hi4UUPZ/xH3wMATI/uQT1bUDMtTXFFBCcFY7gk92Tsjvb4njx9hKc7zBgCMai4WnM838JxfH6QlcNoPuzZ/8Fo1fHV8cL8WThFxrA77j3eb7MZqm8qk5OTKJc790GOjIxgYmJi0duFYYgoai85KpfLcM5hYmICcby2c+CNGaq1kw6N/UV6OR1Ox7o3wFiMRBFSBQAKJoqghvz12QycNYDR/nueFggSqOLImp57Kzpv1pmEIVINqB5v6i5xQGBggqCvihOJ5u/POQsYAxOGkFV+vV0UAkEAiG0bGeichRgNE4ZD9fdjoxjQ0nydLSxUmIcJ5j9OVnLeuDiGhAEgaV/bGZqv06q/zyio0e1Ij9wHgYKMngRVGIVExTWbGX6i63neRBFk1vlZ2EbBBGag37Uqjfr/X43zI1eArUz2fJ/pxiKBKpYHeq+2YQAY1fVxnHOAUTCBXvX3IwBQhTKSmccgysEZPfDr3SbOw1anuj8Pa+GMRhAEK3oeg77f6NHtSKoTcPUZqKxngQpDmNLYmryeDSqXQ6IlS7C3vx5SHkejVWKwfc9AzekiMYiNQegEOgz6O8+CAEHVB6rd5q7bHXtw5Nk/A+dSFMN4ydnsy6UhKAQxJuszSz5G9YynIfzXhxE/dCeqT7oQLlp6IcIceQDBYw9g7sxndCxKK6WAbP++EwUJQqgkQWwMVGr9FJ18AbY6ichEMFrBBQpztRRpVtIf1GeQi0zbsbs477eH2PnFnTguQmuBaAUxBq5eR2gMprPKNJNWYYzAQdoXD5bBVGehnIWDIM0VO8bszYyfhnj2GErHH8T0zjObl9tsAIrRuuvvIp8ttNRP3gfs2I3Htp+JnUe+h+0PfwtzY6d2XYhVSRUjR/ze/OO7z8H4w99CNDeBIJlrf57KoFZPUJmrInYptPE9LxajoHFysK2Z3R8zJZSD9r4aiXUwRhAt+B21ikKF2SrajueUeDvMbBUjUbHj72kzfS9uNVQB/2allGBsbIXNgNZJubw+2fZEV1CtRAAU4m0j0IXN8foMM1s3qEznIGEE0QYpcoh3bFuX13a9zpuVSHQFlUoMU4y6BmTpbAIJY+TG+9sbWVdFVKsRgnIOturgECK3rbziLOFCLg0xN13wmbWWsnSX1GFNAfG2EtQQbduwOaAyW4DK+fLmRFVgRscQdXkPXM5542yMudmSr/SNlr69rVfhgiLi7aNQy5yx3vNYSiHS0SJUXGj73dDaWnje1FUZ1fpRmFKEVHKIx4rQuUHe91bvPTJRo6jWj8EMcG7XXYh4+zhMqf/jSGOHynQOuhB2vOfYGuBSg9x4aU0y0javUKkegRgFF+QRjy//PaguI6jWjyPo8nq5pA4b2uz+V/73Ncj7TRKdjuoP74bOB0jnKtDjJyHauX1Ntx/agkJlrgQVBX5EYwtXPBnV8nafjdzzxIF+r845TOsSRi1QHikh7uP7aKVSQIpJPJbUUYg63zetc5irVrErHsX20tpsc2g4KSijMlPtehxt8vtg79kFdexHKD30XaTn/XjzRzNJBbEO/T75hsljCL7xeUiawIyMwT7pqR13KceP+f+I84gKAcppDuMjRQTVClSUhy6NoFo7hrhYxBHkUNNAMlGDKvmS7yiZw0gpRqHQpXpn+nEAgNUGIyNFlOMc6ohginmksynCOI/J7Ptb6Ooo5LIGfuHKvmOE1aMAgDQuIpfv/Luqn7wPeOibKDz+MHKhai6E1OoWgdMoFqPO4HhmAsEPfeAu51yMkXIePzr9Aux47AfITT2K0cpjqHZpNFm6/04om6BWGAd2PQE4dhCYAHKuiiTX8pqlAsxa7CgFSB6HP+4+FtZPT07GA8d8wL83vxu5XPvvoVazCAKNUinqWPhoPjQEczXbcdsoClAoRj3ju83wvbjVUAX85XIZU1Ode3MmJiYwMtJ7TEq5XEatVkO1Wm3L8k9OTkJEFr3tarDWYXJyuBs7aK1QLucwOTmHNF1Gh+EB2dkakukqRBlUp+uQ2taaZ7kRXFpHMl0DdDbyJXWozto1fW3X+7xZCZcaJEkA9+ijXccq2dkZqLxB5Xh/r5edriKZrkJhDrYyDQlzqE6s/vYg5xyS2QTOVqCi+XI+V68CaYLKZBWih+e1d2kdyWwKVKcgQQw7PQMdpJg186/rSs+bpArY2Umo/NJfvm11BqIUKlM1iCxzRvqiYmAmBWb4HrbWep03dqaGZLoCsbNwlSqqExVIZWOyK3Yu8cfiZvsKDl1aB6oparMpJOn/HHL1KpLZOpDMdFS6uJofBVmZmFuT/hHOOSR1BTdxDGJCVCYqELO89yA7XUMyU4WSzgaYrl4B0hSVyQpED9YIsdVy3m+cM0hdHvbwYQAOJncy5h5f2+9xzlkkFQs3OwHVpcN/fNnVABymZuoABusTMeJKcLMTmNI1zPXxGZdM1zE3XUPV1jGV7aduSJ3F47UZlIM8cibG5GTv5qWroVZPMTtbQ1SvLPk3FZz+VBSP3Qx18JuYOu08uCBG1dZRSWo4hmmMBUV/HzZF6fbPNUvq5e5vYebks9uy0Eop5Cv+d54GMSan52DhMKdrqMzNQhUjKKkjmanCoY7qXIpKNUGlkmIGIXYAMNUZ1Gp1zHTZG6EnpxACsCbA3Ewdk7U52OkKBDW4mTkkiUYtGz9n52aRJCkq9QQ2XVloZiZ8eXstLGJurrNJ5JwpY1tYQFCbgfrR/ZgZ96P9aon/25mbrUJEkDqb7ekX5P7jXyHOob7tVEyHo0ClhrqKcXT7Gdhx5C4UD34dj+d2tD+Qs9j1wHcAAMd2nY25Sh1VFaMAwM1Mtx+bTTE7V0UczaIyVwWCZKkEPwDgJJnvfbFbb+94vpVaCqMV5mZ7j3evVBLMVRMsLIypVuuYma7i+IK/p2H7Xlwu5/qqNhiqgH/v3r0de/WnpqZw5MiRjv35C28HAPfeey+e/OT57qKHDh3C7t2717ycHwCSZON/6f1IU7sux+qcIHUCQAFOQzbJ6zPMnAUS5yBJCpdm4/hggHV4bdfrvFkZBVc8Cemjh2Cr1Y79sjZJ4QZ4vawVpKmFSx1sPYEKgzV7DVIxfs+saQn4k8R/ObECWc4YsDXinEIqBqjVICrK+nFpuC6vzXLPm1TnYJOjcOnS+xltvQ7JlSEpMHCzPxpKC88b6xTSNHvvs4BYbNhninMaKTSkXu9vy0m15rtyIxjomJ0VJFYg9dS/z7f+LPFNrdbynLdBEbb6KKBCYAWvt//dWdjEdgRzLsmC/FV6jxv0/cYVtiOdnoCYAGmQh12Hc8qaHOzUUTjTpRy9MXu8j/e9rvedpnBO9fUZlzrxNdwQ1FKLIIuuEptiMpnFWFDEydE2BDBIuxyP77/gVmXByTgDDYVqmiJYooIu3f4ExKVtMFNHEdz7bcyd8XRM16sYNQVU0hom6nMomRzyP/hXmMkjsEEEsSn0zHGoxx5GfVtrFtpCsuaNNsyhlvoO/bAKaZLCOe3/3i0gqYOBhkMNCkBF+exukFQgNkVqO49b1fwmDatDaCtIEuuHBaX+dwUrSLWPT6Q2ByOCNHGwZmX7+E3FJ05rUbFt3Fyr6bE9GDv8fRSO3Y+pUd8zIrEWBuJPC+dwvDYDJYJRpxA96Pfhz+59KtLsPgOj8MMdZ2P7Y3cjP/lDRBM/wlxpfgtw6ej9CGozSEyEiW2nw1mHetbTS1dnFhybwKUWBhaBUqhUE8R9VDoUJIdzc/tQdwnG1UjH801Th9CgecxdOQfnLFLrOvomJou8p2yO78XzhmoDwoEDB/C1r30Nk5PzI1NuueUWKKUWHaP31Kc+FcViEZ///Oebl9XrdXzxi1/EgQMH1vSYqQflZyeLDoau6dimlY3SgXNAmkCtUTfhzUxyZahS97FLgO0oo1z0vpSen4rg0sE6bA9Igrizk7VNfZfrIesALyKQMIazyXxjvVX+GxcT9u5QvhAbg255ojSgtW/mlHUY3zAm8CWwfTbuc2kNiPKD930QnXXz7pL5dmvfzFOiPBBE2fvg8t+DRAf+d9f1edgNfY+TqABV3gEpbl+35psSFbq/FqvC9b0VQLSBFkBBmp36azbBVDKLHeEITom3N0fmdX2kyhTczHHfzLQ2N3iT1RaB8lMGEtfH35QIZvf60vzc/d/2lXAOGA2K2BWP++N47AHkDvlu8tPnPAeV3X6fevzgdzvvryXgT1yKuLGI5+z8SGnl33vibDSfMkBNBbDZ+MOwx/jWxkg+G4QtI/myJpgOUFDNRoFSr8DoZTSr7WLhSD7rXMfH6fRYYzzfg/Nd9i2gumSKo/u/DbEJ6uUdqLeU7UdGoRYW8fiOMwAA2x76Vtvtxn70HwCAx3c+GS47l5LGdIOO18wv+hnlUIgDJKnt+yvA0wpPxjOKT+laHWKdW7Knhdbifxer0TBxiA3VN8krr7wShUIB11xzDb7yla/gM5/5DG644QZceeWV2LlzftXo1a9+NZ7//Oc3/x1FEa6++mp8/OMfxyc/+Uncfvvt+JVf+RU8/vjjeO1rX9v2GLfccgtuueUW3HPPPUjTtPnvhx9evMskDUhl488CjuRbLdLs0p/6Dw3uKe4gIlClxtilLmWNg3xJbpzDWeZpkMWCQYkJOkYKOmt9cDGEJMj5BYnm9IJV7pBvQkCpnt2927hscgBtXdkCsh8BuTbj6PolymQTPPrcPmLTruXbSz9OYxxhZwbJ9Tm2aiWa4/lErywgV9pXOKSdf8vO2tWb7rFMevRk6PKOpa+4SsT417T7VJYVcgP8bYhAOwUlCtZZzKU1zCZV7IzGcXI8DrPU+WXrkPJJUKUdfgTzzFHYuYmeYwcXo0QhVhHq/bzfA6jt2ockPwpVr8I88G3kdYiCiVEO8tghMUa+cysEQOWUJ6O2ax8qe54CAAgP39vM6Ddfhsp8wG+dQ9SY4S7w5642PvC3KSIVwAEItUZqpTmaT3f7rgFAstGWzoTQon1gLdIcxSsi0FnjQVWr+mA7G5zgXDYNILWoJylq2f/6EVayDv1xCc4BU7O1jtvOlnch1QFMfQ7lxw7643TzffKss76U3yrkHvALJXN7L2hbbDVGwSjBozufAgdBceJhxNNHAADx9BHkpx6FE4XjO+crr5Nscb61S3+DA6DFIYoMjFFI+ny+i3HO+ekVi1AiUAo9qyG2iqEq6R8ZGcEnP/lJvOc978E111yDQqGAV7ziFbjuuuvarmetRbrgw+P1r389nHP4+Mc/jmPHjuGss87CjTfeiD179rRd781vfnPXf7/vfe/Dy1/+8jV4Vico5eeXMvO2ypT2+x7DHF/bHiTMQZVOgj32IBDE8w2vHAYM+FUWZNjBbzuobpkUl/rAYhiZAL6PROq/zK/2a6MDQAU+i7rIfbssY7LaCw40ZJSGKA1Xr/rFnQ2uepEw5/t6LHG9xvkJs8wFKe23+nQ8jnNrnpFujudbRgDXRhs/faRbMOcGq7raElorRNaiaqzvgF9BRBCIwfFkGqEY7I7HsS0s95ekcYCK8lDFbVDJTrjKFOzMcbjqNFyaQsI8ZIBGjwUT4Xi9s4dXr2Of23sBSt+9FaX7v4to7zOazfpGvv8V2OoM6nERM2c9CwCQlrejPrITwcRhxA99D3P7njZ/X40u/WEeAj/isCl734EyQFKD0RqAQxgozFQT1II8ouoUVKVHwJ9l+J2J/PHZOgAFUUGzgk1n4/3EJlAuhVEKM5W63zsPP9EBfh0ANgHqSBGYxT9vWzP81TRFFBj/59fyluGUxuT2fRg7/H3sPvh/EM88hvtOugCqkYl3Flo0xn94N3S9iiQ/gtrO9q3VRisYozCHIia378XIYwex7eFv4eH9z8PYj+4EAExuOx1pOL99pS3D31gAQeM/fZY/CAIUrMLETB3Bit/m/GSExSilskmKDPjX1b59+/Bnf/Zni17nU5/6VMdlIoKrr74aV1999aK3veuuu1ZyeNQnEQECzohfdUoDSR1S2r6m84I3O1Uah5ubhKtMQfKj8z8YJFAQne2hT7PZxms4n1kH2fYBN/9ly7mh/TLst+oYIK3583C1z0Ud+PeOpOazjL2kiT8OBvxbmv/SnZX0h/HGB/xB3DXz3iGt+3N5mRUo0muG/Tpk+AG/RQq1lTUqFfGzzJF2KXu2qV/YO5GowJ/PfWazByKur87m/rr+eoEY5FSI3fE2jAT9VaI0S5+z910xIaS4DVIYB2qzsLMTsI//MKvw7O94AjGQ7L77WXCo7j4TuXv+DaYyjeCRHwBnXILkwe/APvRdAIKjT3kOqrDN+RyV085B8J3DiB+8M8tU++NqZPzT0FejBkr759eyyC9BDFubhQlyPlOvfRq+FjQy/NNdj7ER8COIobLPd0jWFT/7twlycCIQ55BDHdtHYkAESrJipmxMn4jg+FQFU7NLBMHWNrPntaiEJLEoRAFmqnUA7e8Zh59wMawy2PbD72L8R99DNPkoHjv7JwDESJ2FsUB8vy/Tn3riuZ3vuwLkQo3jtRRHTzkP5ccOonT8QRSOP4Ty0XsB+GZ9rZLsNVM2gUrrsFmMYJ2DKAWNFFAauTjA5GwdqXXQShDNPAarAtRz/TdhdwAgDktNuBQBtFKbaj/+cgxVST9tLXpsl//CQKtGsjJz7t9fnCgDNXISAMAlNf+lWanBRupl13dpvVnat2Ya2wfavgRK98z/MMgCflevAiZc9T24IgKJ8ktnF22SLTicYEHDichkZfSiN36bWL/nW1L3JdzLrNTxC+ZdvoSuwx5+AFD5UejRXSu+HwliuB49D060hWtRav5cXm0DlfT7642FRZyWO6nvYN8/Tgpo3VFZ5d+3C1Clbf45DlAdEioDrTTSfrc6KI3jp53j//vg/4WdPobat/4RAGCefABju56Muk1Ry17n6q4zYIMIujKF4LEH5+8nK+mvBzG0+F4CfkFNNT/XJIwBlyIQDS0KSlmIzAf8qtI94Fd1H/CLybZfOgtR2Ra4bE+/0QZpVgGk6hXEkUEcaoSBRmA0jFFZwA/kI/+3slgiOqhNQ+BgRaNmYggEWos/NzoOUOHIE56OB/c/D6kOUZg9ilO/+b8QHr4XqUtRevReYG4SNszj2ElP7Pp4YVZtUM2NYmrb6QCAU+7+Z4hzmC3tRLW4ve36Thuk2fuhqc+X9TvrG0CKTQHRiAONfGRQraVQSRVP+O7NOP3b/4Dc5OHeT34B6xw0lH/+SzBKYYtX9DPgp7UjJlr1meUnPGUAE/kMEy1K4hJUcRvc3GTWLEcN9CVZJCvpT2o+GF/L4LvRHKjtS+D6fKlfFh1ATJbhX2658hL6yaK6NMm2bfCjbKsTHWaB7sb/rsX4RnRuiaDNT1MpLn+BQlSP5pVuU53zvglnt79lGd73uDUkQdxff5IBNLc39RvwK9/8Mq8jFMyA3ycaW7l6Ldbo0H8uJL1HoS0UKoMAGvU+GxpaZzF58hlwUQFudgKV224E6lWosVMQ7D+AUVPA9qiMmWTOl2prg+puv5e8sScdmM/w14MQRhSMZH0zRM+fm0oDzpf7B6LhxDd6S7Jy/N4l/X4Pvwqzz8i2Pfw+4NeikIbzAf9iolAjMgrVRfa2B1m1QT0qop44RIFGHPqeAb3MjO3Bvee9FNP57dBJDeV//zxGfnAHivdlTfj2Ph3Q3RdjAqOgxU80OnrKef55ZOf2sZPP7rg+0H0ffwoHpRSUS7JzE8jnAlgA4ewElEuhXIpT7/onRLPHej+ZFs46/2vs4/03MAI7RNOQ1sLm+cQgIog2vjyUDfuWJCJQ5ZOAMIarTGcl+gO+5ZkASOtZt9613cPfWua5rIqEdSQikCAPQNYs4G/sb120c26aDLRPlDYvMWHW4XoI/iaaW1qWyNI6t7Lzc7HnOmTTOxalDLpHHG5zPY9VIiZc/ZJ+Z33HtT7/PqQx7WI5QY5N/IJvj0VwEYHERT+hok9KFGId9tepH8BcWkMuzMOccYm/oDoD6ADhhS+HKF8FtCMcRckUMJn4wLKyxwegwZH7oeamfACe7eGvhREiFfrg0C5IEDS2LoggUiGcWBitkESLZ/gbJf2q2W/Jzn8PEQVYH/Db7DNUlgj4RQT5XIAk6f2ZGGQj+epxEUlqUYwNjBbfA2CRz9IkKuKuM16AyVN9g8OxB+6Enj4GmAi5fRcjpyLMpdWO2xmtEBiFJHWo5scxlXX/r0XF5iSAjsfq0qnfWUA1p4L41z2XLXBgbn7qkk5rOPV7X2w+z8Wkzvk/iT4WR7USLLoqsgWceO+0RJuZCBAX122E0GYnQQQ9sst/QVlGll504L8U6HBNy4gla+zVzPoszDAMIQljn6lYo5JcP85rYdXDQo59Qk4U2T7+oVgE66NTv7O+4eSKzs+ez3VjJxUMTBssLFVoZqSH4fe53nSw+rGFc/Dd3QYo6RdB//NPWx7KJr7ScJHPxOUsdOV0hMT2twBRs3WMBkWEpz8dyALq8LwroIrbmtcJlMbOaBRGNObSGtLiGGrjp0AAxA/eCSQ1X0IOoG6C+Q79Wel9I/BsLPg7myJWAayziAMN5PzWyqWa9jUbLDvnR1SqxsjNBRn+PvplxKGGFun5OjUy/NWwCK0UokhDK4FWsmQXeqcUJs54JiYvuBxp1j/InH4hdJjHeFhCrXUUb/NJAnGkm3PuH33C0zEzshuHn/iMnudiEnbJ8FsHEwaQ/Ejzb0MpQSEXwMz54H5qbA8quVEE9Tns+f4XoXuMQ2w+HwsYrfua4uoXBbZ2Tf8m+sQgIsmP+QCW+iaFMUhhbP5DdhDZAsGaZbFbiInmsz5Zhn9o9/AD/ktrEK9dbwMT+qC/xz5Q/8VDuH//RNEogx2CvwkRgYS996UDAJK6rxBawcjIRs+WjvLvQZqzDQHfZ0O3P49sn/QwL2quGe0rHlZ17ncjK93vwnSj/ftyjiFNl9xWKEHsg+QB9vFHfTZwrNk6AhWgZPKQIEL8rKsQXvTT0E+4oOO6BRNjR1BGJa3COYfKaT6DHT90ZzNQdyaAUwZh473Fpe3fF1RW4WcTBNrAAYgjg7DsG8ip6kzXio3GWD7JKjKb4zQbGX5noaHhstdyqQw/4PfMx5FGrd799xZmHfrnTBFxpBFoDaUUtPIZ714aPxEBKiedjocufgnc+f8JwdmXNV/HSAXNnggLj8nBwQGox2U8eNYLMTO2p+N6DY3GfabWHrCbLt3085FGnFVoVPPb8NBZL0A9LCKsTGLP9/831CLbRlLrYPrYvw/4xQVga4f8m+cTg4h8ST8zmgMRpaFHdrV36+/3tlr75kTr8Jq37XO1dr4z+ZASE0KCaM2qTURpYJFmX7BJ18ZRtDVJ60zsISBBbtGybJfWIEFuZX8fjfLWhWXXDpsrw6+Mfx6twYJtVDFtouexSqQlgFw1A5b0+xbwankl/dJHZZWJlrePXxnMJIsHvrNpFWWTQ5S996vRk2FOOadnxcFIWESkQlRsDbWTnggb5aFqc4ge/A8AgA1ycPAVAQDgrG1fSG6876Rpc5pAFChEpRKcKAgAVe2cK9/Yw69bMvyijD9O7XsFKFHNgL+fDD8EyMUG1tquwWkjw18JCshFfu++iM90L7qLxAECgShB6lK43AjME85vVuBEKkDZ5DFnO3+foRFfqdBndcZ8SX9L0z7Xfa+9MRq5xC/M1KMikrCAB856ARITIZ45ilN+8M/NKo0uT6nrIkI3WgEaakuP5jvx3mmJ6IQjcRF6ZOcybqj9B/96BBm6pbGOS31jvI3uRr6YIPLTItZwMUTCfDa7uIs08cE+F8BODCrbMzwsfxMmAODgarPdG7ClCVRcXNljNLKBLV+kXdb4a7UnY6ypBT1KAGTbloakJ8N600EW8K/iPn7nsn35AzTtU7K8DL/DkpU2ohQkKgyU4Y91iN3xOByAqaQzgAZ8sz44GWiqQKgMtoVlVNIanChUTjkLABA9kAX8UQ660bAP8CX9LZ/5zdGSLoVRGkZpJNn5a+Pejfsk69KvG9sbWsdpKgOXlfTbsP8MP+D3tptAIenSvC/IMvxpvuS3HTQuDxYPZi0cFPw4wNRZGCg/saBFOShAgI7mfVprBFqQpP2dS92a9kFcto++U1hrbFPwr3U9N4KHnvwCpMqgMPlDnHzPbT0Wrlwzc78UJZKtrfrnEM4+jtMeu2egSRPDbhN9YhARrTOl57+crTVtAOe/0Dtr/R7hISbKQI2evKZ7cBedX24TX/Z/IgYMJyKl/ZfwIQl0Jcz7pqAA3Nwk7PRR2LlJuHol258OYKVbgaSx17dLoDwsCx99EJUFTK0BbqOKSU68v1/Rxi9WrnaGf5CRlZKNnRsww+8byuq+Km0kKgz8HEeDIvbktiOAwUR9pmPbw1xaQ16HyOvBGhePBAXEKsScraGy52w4SDMznAZx1qE/Oxet7Ril2RgtaUTDQCPN/iZttqinqgsa9znXLDfXWQk7gObnlWgDWOsDzcZ4vz4Dfq0V8qFBbUHzPkkTmOw+VHEUxsy/Vxoli5arO+f8TgOID/iVgV7wXlvQEfJdmveJAHFokPYb8C9o2udv5asLuhwYTNYUcUbNv46V4nY8vP8nYEWhfOw+7Lzvji6PJNB9/j0opaAka2xoLU75wZfwhMcOInzs3r5uvxkMxycnEdEQEuVLxtejjFiU3+cKm/r/GZaq+3L9LnuY4UfyNZsh0daXlfQPTcBvQuhtp0GffCbMridBbzst60yewM0c940+Vzg+tdlotDUoa4z2GpLXoV8SRAv28Kc+87+JFi5WVRDBpauX4XfO+s+PPjWrAQbN8GfNKPvpnSImAkR3r4BZRMnkcWp+B3IqwuP1mbZxaY1mfQuD0aWEymA8y/KncRH1HfMd5JMwghED07xP57fzLXwuWUY+0AZJI+CPemT4bQrJjns+wz8/lcI3BPY/bzQ4lFpnF/xe8pH/TtKatW+U86cqQJzPt11fL9WUzgIQv5c9cSniLhUcShTGejTvC0Ldd0+KhRl+6xw0BN2q76U2B7EpHAQVE7c9g9mR3fjhGQfgAIwd/j5ykz9q/sw5v+aq+tzDL1k3f2uB0SM/QFSZRE2HqG97Ql+33ww21ycGEdF6UsqXjK9HozClATFZFswNzV7lDWVC/8Wy2z5+ZxevAKAtRUSgosLQ9WwQZSBxEaq8A+akvTAnnwm98wzosd2rs91EG7+nuMFZDNSNfUhIELdVKvgAdbh+l+tJTAz0OYKuL85B+mx616S69IdYSppmTRj7+HwKouZo20HldYQ9+R0YCfJ4vDaD1FlUW5r1LcdIUEAuy/LPZc37ACANfUO6+cUn6aw8adlyF6vQl/QDSLMMv14wmq/Rod8BLe8DLQt1ar7Bom4sGvSZ4QeAKDSIjEItmf/9Ncr5a1ERUbYg4JzDY9VJJJJAID3XdyxcVjgksM4h7PG32at53/w+/qWD/kaGX9kEKq3DWefbeXR5T9NZh34bFaBNgDRtP1+ntp2Ox0/aDwDY8eA3mgtYqfPVE/1m+AEg0Aqo17D9oW8CAB7cthduHRo2r5fN9YlBRLSeghxUecf6NErUxmcVbJotTTPghw4gJujYx9/MJHD//glFjZ4MWem++DUmJoTKj0AVt61K9rpzZrsbrBv7sFC6PcFo7dAt3qwnMcHqtgRv3R/eL9V/Vnb+YbKtVH0sOIkOIGEOboDGfa0iFeCUeDu2hWVM1mcxm7Q36xtUa5a/tu1UpNlYvXoQIW5bLHGdr2XLZIVIBc3XbX4Pf3vAr7IO/W2vVet0DdHN4FRH/j2t5x5+51D43leQv+v25m1EgHwuQJK0Zviz/fu5cnPveuIsjCgkLoFW0rOxnl9GlObbysL9+w2RCjBiCh3N+4zWCIyg3kfjPqcDpNnv0NRmkTrn+012KelXc5P++HKlnpMGjp76Y7CikZ86jPzEI/4xrPOTXPvcw++fg2D7Y9+Hqc+hFhXxw0UmDWxGDPiJiHoQEd+Ybl0ey1cTOJtkTZFOvL2tC/nxZ7nOTv02ZYd+OiH4xcYFJf3+2/GGHdOydPytWh/0nqhW+71rQaO5fshyMvw29dUJ/T5GVFxR47NAGezOjWNHOIJQmYGa9XUzGhT8PnSXYPYpz4bd9UTM7DwdgZ7PiEOkozeMn6ygAJvCiG72123u4e+V4W+tQmudrqFUs2JAsoy31Ktdfx/RD+9G7v5vI3/vv0NPHmlenos0tAiSLMgOsmNwhXLzOr48P4TL3jJ6juazvvzdOQcBEEjvc6kU5Dua94kAUaiRJv2W9TdG883C70ZRXdcwGxn+NF9CYLpPGkjCAh7f+WQA81n+1AEaMlDAH6Q17DrsGzk+tuepcJusimopW+vZEBFtYmIi/+VIKTajy0jYZfyZTXwFBAN+2upEtWeCnR2sG/uQaIwZbe7nPsEXNX1ZvPYLvKtl0EUgZQbfw+8sJOi/skqCGBAMXEnQSovGrngcp+Z2oKBX1rclUAbjYQmVtIb69tNQe9bLkEa5+QDXpdkEgy4ZfmUAmyBQGkoUUmdbAv72PfyNkXyNxp0ua7Y5n+2f/7vWWfd5QRb0t0oT5H/wf5v/jB++a/65aI041qjVsl4BFR8cozDSvE7iEhilIeJgtO65vuMcoMU37NNK98zwA72b94Wh6ft0SrK+BaY+C2sdTI9zVzVK+nMlBEb1XLA4esq5sMogN/MYiscfgLNoa1rYj9EHvwlj66jkxzG5be9At90MNtcnBhHRFiYm9PvVRbOkvyHrltz2hTFNIDpknwPa+hYGHptxLB+QBUwLRtFttuewmpTxPVtWq3HfMho5ijaDZ/jhBlpolSAG1PL28bdSIiiZXNdZ7YMaaWT50xpS5zP2bR36oToXT5TxWX6bwojvYJ+6dL6kvzrT9lo2MvzNxp2ufSuOXwDzDWm1NkizahdVay/rz933LejKNFz2PhD98Afzf0MC5OMAFg4OQJgF/DbfkuG3FqEYGNHQyvXcY2+dH2GXOgsN1TMAB/xe+9GwiPqChfhAS7Zo0Mc+/maGfw4WDqZHc71mhj8uwZjeixBpkMOxXWcDALY/9O+w1g4U8Ku5KZQe9tn9R0+7cPNtmerDCfxuS0Q0ZHTQaBd7Qme/WokJfbDQkglzab3Z2ZhoS+sI+O3mXAxUxgc5rUHCifwe1+zZskoZ/pYO8H0bMKhxNvWj/waprDLZtIpl7uNfC40s/1xaQ92mPqPdOBedzcrtF5T0i2Rb7lIYUQhEI3EWNsrDiUCcg6rOzd+g0XG/UdLfGKfZeJyWKQlKFGy2MNC6j1+qs8gd+gYAYPqcZyONClD1KsJH72teJw4UjFGo1tLmvHqbmw/4Bb7RXiAGUHbRSguddegPREMvMS4zryMYUW1Bf2A0tAGSdOlFpNYMPyDQPUrvWzP8jev0egrHdj8FqQ4Rzx7H6PH7YAY4v/N3/yvEWUwVd2GqfHLft9tMGPATEQ2LrOy1Uf5K8F8YF3bqdxYSrmzkGdFm0JoJBBp7jDffVzdpjHKzaVbefGJvW/I9W6KBR9a1cmkdrjYLOzvhLxj09ZT5feR9sen8eMx+H0IEEhXg0uEJ+AFgJCgibyJM1ecQSsvMeWt7fv5KEAM2gYggUiESmwKiYKOs63zrPv6spF+ZBSP5mnv4dRbw+1F/NlsYaO3Un7/nX6HSOurlHaju3o/q7jMBAFFLWb/WCoXQoD43C5M1t200I/Sd6hViHSLSIVLlev6+HfzvKnUWkVp6y0asQuR0jGpL8z4RIA5NWyPBXhqd+nVtzvco7lZR4Nx8hj9XhlECs1jjQRPh2MnnAAB2H/523+tZeuoookf8a/rIqU8deJfLZrH5PjWIiLaoxr5O6GBVOnxvBaJ0NrN6QUko9+/TiUDprKN39iXXWV9avAmJifyeddvIop7YX0F9ANl/wO/qFdi5Cdjpo7DTR+Fqft+45MvQ2/YMXvU06OtvE/8ZNeD4P4nyg/cKWGOB0tgWliAA4tbPkqyCptvnr5iw+TxiFTSb1tmos3FfYw9/c2G6keFfOJYvC/hdI8OflfTrqWOIH/weAGDmyZcCIqie4hvThY/dD6nONh8rFxmUna8usGHOj0IEULcJjGgEYpBXISBu0dF8SgDrLKI+3l9EBCNBHvWF4/mC/iY/tDXtg+/S3/EY9QrEJnAAbK4IrdXijQcBHN91NhITIVedROnRu5c8DgAo/OD/QgBUdu5Dtbi9ry0Jm9GJ/W5LRDRMlPElkxw310bCfLP01WVZJnbopxNCIxPYyGq5LiPDNgsT+qZozmdGN+3zWCU+gOxvD71LE7jaLCQuQW/bA71zH8yu/dAn74fZcTpU+aTB3xNFBhsNaFNfcTVgc0AJIt+gcOG0lQ02EhQxEhYQtSxgOJf2rmDQppkhLwQxAqVRTevdG/dlzfda9/C3NduUrJLPNjL8/nqNDH/hrq9B4FDdeTqS8d0AgLQ4hvrITohziB75QfOhotBgBP52aa69Q3+kAxilEerA7yjIsvgdnGv+Xk2fFRw5HUGL9pUOmdAoiAjsEkFzI8Nv6rPQUNBd9vDrxki+qOA/8wUIe3Tqb7AmxNGTzwUAlO/7xpILaubYIwiP3A8ngtkzL160seFmx4CfiGhYaJNl+RnwtxITzWeI0qxDPxdF6EQg2n8Rd43u9m7TNqtsjuFrZPhP8IC/NYBcUlqDBDH09idAlU+Cyo9CwtzKtkUMmOF3aTIfwA7CRBAdAkNW1h8ojVML21EKWiojrPXH2oWvrFFwziKvY2wLyphJK0ibjftaMvxZwK+ChRn+rGmfSHvlTladIbUKgiMPIHzsAThRmDnzkrZjqJ6yHwAQP/z95meiCFByPuNvc/NjhBOXIq+i7LkaBFrDKQvbrXGfAOIcAFm0Q3+rWIXIqRBVO199FxgFY2TJffxJ9pqb2qxf++tSUdG6f7/1/pdaTHhsx37UTQ6mMoX4oe/1vqJzKNx1OwCgcurZsIVRGC3dX58tgAE/EdGQaOzr3Kxf6NeKmBAQ/0ULtu4Dh01a1kw0CFEqG5/W+AK9OffwA8ieB7LRgvqE3sMPIMvIZ+9rS3BJHQjzq/qaNTLO/Ty+PwjrF18HfRylgSgPN0SN+xqKQQ5h2xYFO78wtZAO2iZNjIclFHSMSpjtv2/J8Hfv0q/btwpo03ztG9sxVG0Ohbu+BgConPYU2MJo2yFUTz4DTmmY6WPQk481L1fNefXzGX7ngDCr+gjFIFQGqqVYaCEnFlr6D/iVCMpBAbWWsn4RQRwY1JfYx5829vDbBNrVu+7hn9+/Px/wa62W3DKQKo3Du32WP3fw/7X3/2lI6ogf/A8EE4fhtMHsvgvn73/Re9+8+I2JiGiIqOL4sr5UbWmNTv1pHS5NoOIyexzQiUMbuHplPhk86Lz1IeH3f6vlZ4q3GpWNKkyTpSuWbAKVZZJX7/GV37idNVHsyzIXo1VURDp1dFm3XVcOvV8Lrf3/0gTQAQJlcFI0iqNZsK5b9vCrxuJGdp47ZzsW8qUl4Feh/91GP7oHkiawQdQMQtsOL4hRO+l0RD+6B/Ej38fMyA7/2LO+/L1R0m+dgxJBKP4xjdKIdACoOaT19s9O5wCBwIqDFtV3wA8ABRNlIwpts/FhFGhMzS6+uGN1gFQZaJsgSipdG+x1y/Ab7Xsf+FqEHvdtgcmd+5E+eid0ZRrxA99FfftpMBOHETx+GGbiMPTUMUgW2s898cfgsr8tLb17HGx2m/NTg4hoi2qUalILHfisS5oANmWHfjqhiAlb9qIOPm99aGQ9SpDW2YMDmN/CtcQ+Yx8UCrDaC8GiAKi+Guq5rCR92b+3IPKB2rBvkBb03GoiykBUML+9BkDJ5BEXtgNoz/CrZoa/MZbPdTbb1EGzckeyTv+SZaNn910I1+NzrpI174seubt57iwMjhPnG/aFLY+ZVxGgHNyCHLaFg4LAwsKIhhng/SVWIWIVoNKyXcNoAfpoD9HYxx+lla4/75bhN0qgpXenfgCw1sEEQXPBpHjX1zD21ZtQ+u6tiB+6E2bqKAQOaVzE3J6zMXv6U+cfUwkgWzPiZ4afiIiGmohAgjxs7Zi/gMECnUB8E8/sC664geenD43GFJJqfdmZ4q2kOaqw3j3gaUrrgAnmg8fVO4Bmp/gl2dQv2Czz9yYm8r1pkloz6z2UHBbvLRGEcNkoOcCXtY+Wd/n/rkxn6XKBSrJ97aZlD/+C+xWlm4stKgt+ASDNj6By2lN6HkJ9+6lIowJ0dQbhkftRO+n0tvF1AFC3KQIxbdn6UAcQJYBbmOH34/qsswjVYBOClCiMmAIeqR5Do/7EaAWjFNLU+ox8D2mQByqTiNO57vfdJcOvtfJFFtbB9Lhrlx1D9ZT9yN3/bZjpY3DaoD5yEpKRnUhGdyIZ2QnbpWJGlADN3P/WwndcIiIaehLmgKnEd+tlwz46kYiaT5ctVnI85ERpiAr8U+CiHQCfAbbVmcV79yX1+YB5VR+8EfD3Ed6kSVbSvtyAP4SEMVx1dmi3c7hsa8NifRLExHCufWtCrrANswDEWbjqLBDlWzL8LXv4F96v0s26dInmg8+Z/ZcsvuggCtXdZyJ/778jevj7qI/uahtfB/iGfSNBoS14D8Ug0ApV2PaS+KwtiIVrm1jQr7yJoWrSLOv3Ab8gcW7RILOeLXIEtTl0LDk5N9+XoGXygAgQaI1KLe0ZwToHKCWA0pi4+GVQ1Rmk+dGuW6Gcc22vkVaAxtZs3Lc5PzWIiOjEYsIs+2KY4acTi9Lz5dAivtnaZhWE2d7xTfwcVpEE8dIl/WkNEhVWv2+JKH8u9RPw2xSigs6y9EEeLio2x6sOpcb0iEX+vro19BOl/XMDUJs9BuvsfIa/WZXhOhcSWhbydPkkzI3uwtwp+1E76fQlD7XRrT88cj+Cxw/7w4+LzYUC5xxi1b5AFCqDSBlAHNKWgNY65wcIKLRtAehXToeIVThf1i9AEGikSzbuy3ofJJ0ZfqlXodL6/PNqfR7BEp36xUFnfysuiJAWx7u+38ylVRyrTWM2rTYvU6Ky4QkM+ImIiNadmBAwjbGFDPjpBNIo/XVuPiu7SYmJ/HM4wTv0N+lg6dF8zq1JXxdpBLf9TAmwK2+0KGEMOLdkl/UN49Klz83GpImFF2fd8XVlGrX6bLMovPmaCTqDzpbH0TrA4QtfhMfPeXZff99pcRz1kZMgziF36P8BAGyWCXfZeL1gQfBuRCMOAliVwrbsgXcAFATifHO/QSlRKJt8W7f+yCzd7b4eNDL8s533OeebENoo31FVslin/kYDQqV7v4bOOUzWZ5E6i21hGdV0fqygVgItQLoFi/oZ8BMR0fAzgf9yHMTs0E8nFFHaBws2RTMVt0mJDvzfMgN+TxsA0juAsanfxrTa+/cbWvaRL8rZFTdLlSD27+EtAdZQaWT4Fyvp136ygltQlSGxD7ZLSYpKo1u/qJbF6c6/W8kW75yz0FC+cd4AiyHVrHlfMPEogPnmdolLYZTuyNaLCIomB4hrG83nHODEQSs9UIf+VgUTQ7I+AACae/cXezb1IMvwdwn4mz0J4lLHz4zq3RQwzaYT6B7fEVJn8Xh9BpEy2JM7CWNhwU8oaLzuAmit+2prsdls3k8NIiI6YYgyEBNDWpobEZ0QlPbd7W2SZSA38Ve3rEJnU29LWEXSGM3Xq9Q9qfkFkjUM+PvqnO/cyiurTAgJwuEN+J2FiF58QU03fl8LAv4su16oJyg2ItEgal+cXhiENhbysr3vShTSzt3sAHzZ/VxabVsYqp58BlzLsaZZlUHdpTCiEUhneX6kAj/htqVk3Q+BGHwkX6ucjnxZv/W/W2Ma3fR7h/x1kwX81W4Z/vaGfc655pYBo5UfBdilU7+zFqKzPfwL1GyCifoMRoICTsvtRMnkEKsIoTKo2flz0ujFj3uz4jsuERFtCqq0DWrBfj6iLU/5IMSlCTb1WD5kC3c69KXR5IPoLgFkg0vrkCC3or3zixFllszwN4PMFU5WEFGQqAiXLD6jfcM460clLlZBpgJfcbNggaYR8OvKNMbgF0batkB0a7bZGItoLUQEgdLNDHkr6ywm6jOo27QZUAOAC2LUds7v92+O5LMpciqE6vI8QmX847QG/M4BykHL8jP8WhTKpoBatpijtc666fdeTKplr49aLMOfPac5W8N0UkHNJtBa+T+ZLkF5CsBAOp77bFrFbFLFzmgUe3LbEWWLV4HSyOu4bTuC0UtvR9iMNu+nBhERnVBUfrStmzHRCUG0329tU0Bt7oAfJvT/41g+T2m/zaFXhj+tr+0ipwmXbqRnEx8Ir8Kig4T5/sYAbgCfHV68ikGUyl6z7hl+NzeJcqN9fBbQ9my22WhemS2oBDAdJf2ps3i85rPSY0ER1bR9saSSlfUD893sU2eRN90rQkJlEOkAqcwfvwPgxCIacCTfQgUTA1l5vAgQGoN0kX6UVeOr9VRSA5L2qo+FGf5qWkfJ5FGzdX/fWne9b5f6Pf6tfTEm67OwzuHU3HbsisahFyxqlEyMtOWcVKrHfoFNbhN/ahARERFtbaKUz4inSbbvd/N+dRMTwmx/wqKjz04kIgIEEVyX6KWZWe8RvK0GlXV299UjPWR9BFajWaqEOf98K1Mrvq9V59K+nqOYsHMPf0vAj6SaXS/7vTnnF+oWbsURnU1J8MFmoDRsS0l/YlNM1GcwHpZwSrytOWavNTitb9uDpDAKa0KkpXE/Zg7oWs6P7PJIG6QtbekcALfMkXyt8jpErAJUrV+U8N30ey/upBLAZotIakFZv86a9qW5MlJnoUQQqwD17HXv1anfOodAz7/OdZtCAJwab8d4WOq6oBHrEEYUkuy+tQggWy/i37yfGkREREQnAm2ae/jZtHJrERMDrkvAndZ9v4O12r8PAFHel9l3KatusonPfK/CIo2EOejxU+Gcg6vOrPj+VpVzS2b4ge6jFJsBf2USrl6Zvx6QBfSdC3XSzPBnje6Ubu6uqNsEk8kstodl7I63IVAGeR0hp6L58XcAoBQmLn45jv/4z8IFPlOtRbV16LfTj8HVs0UIERSDCM659pJ4Wd5IvlZaNEpBHtVs8SjQatFMuXUOSdaTR7WeC85BZY0Pba6ESlpDToXZgoff4tCrU7+Dg27p0F+1NcQqRMn0nnIRqRCRClHNtkuIEkhzzsLWwYCfiIiIaIiJCbNMITPjW0232e4AgLTuf2bC7j9fjccWBVUcA5J670kBadrZgG4FVH4UevwUuLQOV+ucwb5huo3O60YHWDhLURrd5NMEbva4/+/GQk1W0t+1MkeZZsCvRUHgm8tNJxXsjEZxcrytOSpPicJoUGjbbw4ALozhIh84Jy5FIKYZvDvrRw22LugUgghOu/nRfFlVwHL377cqaL/IYZ3LGvcppL3OKzikXQJ+Saq+zB9AmiuiZhOMmALyOkIkAWo2WaRTv0AtyPCXs8qIXpQISiaHeva6GuUvG9rxkcvEgJ+IiIhoiIkJs4CEAf+Wo4OumVCX1CBRcc0nGkhc9MFpVore5UB8FcIqUsVtUKO74epzzYz4UOjn7yu7TmtAKDoAsuDVTh7xlzUz/K53wK8NnJ0P+B2A2aSCndEYdkZj0AtuUzA5BEp3BP0NdZci0uH87WySnV+2ebyxCaFFkGQZfgsLoxTMKkz/yOsIkTKo2jqMVn4nUtqrrF9go0bAP78g0dy/H+aQKN+RvxDEMEqjoHPZfWeLCa3NB7P/byT4G1sB8nrpCpm8ifzWBueglNrMu6Z62oJPiYiIiGgLyfbuc+/71tNrtjuchURrP4ZUTASVH+ld1u8WqUJYAVXeATV6Mlx1ZsM79zvnfMTYx9+X6ADQyu/5b728UdY/+ai/oKWkX3qM0xQVtGX4czrEyfE27IxGobpEnbEKUNS59rL+FmnWob/Jpv49w4TNBZ1QAuQCg3rWN8LCQSsN02Pf/yCMysr6bR0i0rO5XvPwsia8rRn+1g79jXL+WPmgvRDEsM5Ba5116p9fTHDOQUGaI/mqto5IBYj10hUysQoRKYOaTaBEoLfgrikG/ERERETDTOnsf+xuv+Woxmz3+axtoxRb1rBhXyvJj8w/bov5kXyrH/CLCNTITqiRXXCVKbi0vvSN1oqzfmJCP6ldpQExWBjJqmbjvgkAC5v2qa737RdSfNCaUxFOzW3H9rDcswRdRDASFJC2ZOzbngZcc+QcAN9rwISQqNDcxx8og9gEqCOFX+ewMErDrFJau2zy0BBUbR1h0L2k32bbCGycZfgr8wF/a4f+WppgNCw2x+zFKoRR2m9d0BqtU/+sdX7wQXbdWpqgZPIdVRLd+B4Jsd/HL36s4FbDgJ+IiIhomCntA0COs9t6tPG/19YAMq0DJpjfB77GJCr4aoKFe+r9nLM1O+9EFNToyVDlk+DmJuCWGhG4Vpz1VTT9LKjpAKJ1xzjDRoa/+e/Wpn299sfLfGM7EUFex0v2SsjrGLEKULHtCyS+YZ9ua9jnbNqs4GgcrxJB3kRIbQoHB+scctp0rShYjqLJYXs4gtmk6vfT9wj4lQhcM8M/X13SyPDX4wIC7QPxhkgF2T5+v5iQtET81jmIQktDP9fsKdDvcadZ1YbZgil+BvxEREREQ0yUBrTGwmZhtPmJ+NnurcGuS2qQIO6ra/yqHIPSkPwYXLJgP32a+mz2GlaWiFJQYydDitvhZh/v3NqwHmwj4F86LBIRwEQ9R/M1ZQG/W6zZphr8bzpQGuWggOqCsv7EpjCi2kfy2RQSRJAw7/sFZFsnikEMKxbWOTixiNTqNobcFpZRMnlU3BxEpGOEnrMOSgMu7izpb2T4K1EeBR0hbhkX6Bvs5X3jPt3+u7IW0EpBxDc+DJVBro9y/oacDqHFVw/4+95a77UM+ImIiIiGWaOcfxUaa9HwEbNg1JutQ6Liuh6DypUBHbbvp7eJz2av8cKDKAM9fgqkMA43e3z9g35n/Zi8PjvVi4l6juZr/rulS3/PCgkRLDq7roeSyUFEkLbMuU9cilCFCFoXFwT+dxfEPujP9vHHJoCCILUOThziVf79GqWxMxpFZAxSlXQ07ksBaAiQ8+d4e4Z/EgBQjfIom84O+3kTQuD32beOz7PW+VGAACq2hrzOtVU7LCVSIWIVoJrWoZRAba14nwE/ERER0VATBVGme6dv2vQkCJvN2wD4UWnh6nbGX1IQQ3KltuZ9zqaAWb2RfIsRHUCPnwrJj/qg3/Xq7r4GXAoo44P+PnT8vtA7w+/38PcIPJUGljECLq8j5FTU1ryv7hLkWzLavhGhZL0JBCo/2lzMyRu/F75aTyEiCNZgz3rBxNgZj8GqBPUFAb/fKaLmu/QnNb+NBYCam86e5EjXkvxYRQiVhlUplEizU7/DfCm+dQ6lIDfQ8SoRFE0edZtCr8P5vt74yUFEREQ0zJQBtMkygrTl6KBZQezSut/Xv04N+xoaQSFsOh9spwkkHCxwWtExmBB62x5IbhRuZv2Cfmet//vqlzIdFd8S99jDj94ZfsmmbyxcPFjy4UVhNCi0jedzziFqKX/3UbVqbguRMJdNg0gQ6QChNqjaGjSkfRvAKhoPSxgLi5hK2ydAWOez8c6EcNlro6qzkHoVKqtCiArb2xsQZgKlkdc5JEjbOvU750v6azZBoHT7tII++RF+LtvdsbXeaxnwExEREQ0xUWpd93TT+hJlACgf4CZ1iA6BdQ74AUDikg8Ma429/A5iVnd/95LHYCLobadC4pLf0z9g9ntZFiu770ZpwLVn5nuX9KP3Ql2W4R804Ad8k7kgGyVnnfNj8FoD/mb/hSx7H+b9MdWrfqZ9EKKa1qGVRrBGTRm1KJycG4N2GhU7X43gHKC1ACLzWf7qbHP/fhJEKOdGet5v0cSwsO2d+sVBK0HN1hGrqH3xo085HSJQBinSdalqWU8M+ImIiIiGnB4/FZJ1taYtRgc+MEsTuLQGRIW+y8tXk2jjS+rrLd36N2AUpASxz/RH+ay8f42DfmuBARq8ic76abQE6mLC+TJ+ADDZfwt6b8VZZoYfAGIdoqhjzKVVP6ZOTPue9QX9F0Qp/7vNMuilIEaCFKFSMH32LliOcpTHqCmhYmu+C75N4LPoWfl9o1N/ZabZoT/Nldq68y8UZw32tHG+D4Hz+/lFCeo2wUiQX1bAHiiDgo6RINlyxVQM+ImIiIiINkpjNJ9NAZtCZVnPjaByZV/6nVT9/u8NGgUpYQ5622mQMAc3t8aZfoEPjvultP9fr8Z9yrS/br0CfpVNBrDL27owEhRgnUPdJghEI2gJ3H3/hbAt8G0sGDpnkQv8Pv5QB33Nql+u0AjGghIKksdM5RikNgOIwEgj4G9k+GeaGX7JjSBcZKEpVgEiFcCKhYNDmo35E/GjCQfpzr+QH89n2bSPiIiIiIhWhx+7GPj9+9nYtw0T5SFREW5uyge1G7iNRMK8D/pNBDc3sXYP5NB3h34AWYO/RQL+oOX352SRDL/2+/iX2asgr2PEKsBMWkFeL2iuaFM//aH14cK8P7Z6FTkdIhSNeBlbNlxtFq5llN5itFIIjUEZeYSiMGsTCBxEL8jwV2ehsg79ujC26H0qUSiZHFKkAATOWogG6kgRqQDxCsYMxtovhGy1CHmLPR0iIiIios3F76+uADpoafi2AcchCqo4Nr+vfYMy/M3jiQrQ207zVQe12aVvsCxufq97P8fUyPC77gF/4/fnfK15z3GaIuK3TCyzeiFQGuWgAAVBrBcsEjnrpwm0Pp42UHEZrl5BHAQIVTDwSD7nrA/465W+xieKCHKhhqnVsS3agVSAGTuNuq3DOdcS8M8A2aJOUNi+5P3mdQyTxeX1FDAQ1G0dZZOHWkHFQqN6IBcFKMQbe+6vJgb8REREREQbSII4y8pGG5pVBwCJi0CYz0rCNz5UkLgIVdoOV5tb+soDcs4CIj6IH4QJOwJetSDgB5y/78VeQ21WNI2gZHIo6hyCbsffpSxe4iLgLCJtkDchokE79FdnIVHBN1XsM8sfGQWpV1Es7MIusw3bdQlQwPH6NOYCf66r6izUrC/pD5bI8ANArAPEJoTVKZIkhSj/OudXWB3TqB4ItUDrjT/3V8vWeSZERERERJuRDgCtIXFxwzuEi4mg8iMdJeEbSRXGfJC92kG/s9le+sECfjFRx957yWeBapifv29ZpKQfWQPAFQT8eR1hLCwhVvOBbnMRo8vCkUR+IUfbOnbF4ygG/feLcM7B1atQpR1Qpe1AWu9rsSJwNVgTIY1GECLCDl3CvsLJOC13EhAV/ZUq0wgqfgFB8qNL3meoAuRNBCcWqXOAShEq0/Y6LFdex90XUDaxrVOrQERERES0GWkDmHhd594vRo3s3OhDaCNBDFUYh5344eq+Rtb6/fsDTkUQHXQE6nr3WTBTR2BOOdtf4BwAtWjAD2WW3bQP8BnpHdGCEXY2nW8suPC4TQSJCnBzUyjnYsThAKFgbRYS5fzWBaUgcQmozgBxadGbaVcFCuOoI4CDQk45RDpApAOUxp6AOoBgbgqSVUxIvvdIvlYlk4cyxyEAUklRMj0qHQYU6xDhoJUPQ44ZfiIiIiKiDSTKQMLcus+970VMODTH0qCK44AO4eqVvm/jarOL7zVvZuEHDBS1gd+gP09MiPCc50GN7m65b4XFZryJMvBdA1dRI+DvsTVE5UcAm2C8FCPXZ8Dvs/tzkOI2f24oA1XaBpdUF83yu6SKIAyh86OopxYpDAI9/3xNnG2DaPyOglzfPSxiFSJU2rdTUA6FVapICZVBToVQ2Dqt+hnwExERERFtpCDyZdJDkuEfRhLmoApjfe8dd7U5H5BWJntfydr5JnyDUBpLBurOAUoWrx5Qiy8ILItN/VaBHs9JwrzvHZDW+7/PegUwMVRLub3kR3xPgEV+H642A8mPIlcqoZ5YpCpE0PpyBHFbY0gpjHbcRy+xDpELQtRVHZEOkFvYuHAFTg5HUAqKq3Z/G40BPxERERHRBhJRUIWxoWiSN8x8lt/AJdVFr+ds4oPNwjhgXc8sv3PWj9kbMOhuLBIsWj1grf99LlrSr5fdpb8XZxPARL2fUxD7oH+gSokZqOK4nyaR8Vn+HXBJrWuW39nED0AojCEXGlgLOKXbZtyLiN8akFG5/sr5AUCLQjnII5UUBRMhUqvX7FKLgtrgXhqrie8qREREREQ09CQq9JXld7MTkOI26LHdkDgP9BrpZ9PljR7Uxgfyi46m8yX9iy7irMUCT2PaQ6+HFIHKj8Altb7uztWrgA5948SF95Ub8Y0Aq52vr6vOQOIyJC4iDHy1gYOGXlDx0Brw99Owr9VIlMdoLsa2JfoInOgY8BMRERER0aagCuOAUj0DVleZBsIYemQXRAdQxW29KwKchehl9CpQGtB68YDfuSW3CjQqAFYymq/b4y7Vf0HCvH8NbbL03dVmfPVJl+0moo0fmVhv38vvnAXSuq8KEIUwUDBaQXR7hh/IRgU2/nuAkn4AyJsIJxXKKx7Ht9Ux4CciIiIios0hKkByY3C16Y4fubQOl9agR05uBqgSlwATdW/25xzEDF4KLsr4sv7FGtY5u3RvAKX9Pv8VdOrvPDgsXbUQ5iFhDq6yRKVEUgOU6prdbz5cfhQS5YDWkYm1OUhU8B39AYRGIzACZQJo3b7A0Zbhz40uftwLRCrAKfE25Fdx//5WxICfiIiIiIg2BRGBKo0DkLbGc85ZuLlJqNIOSEuAKoFvNue6lPU7LJ2F70mHS0wAcH5RYDFK+QkBq5Th94G0yrr/9yZKQY3sAoyBnTnWu8dBbcYH4VGh933pAFLcDlefg8v6Ebj6HKQw7psHAlBKkI8CKG2gdPsowrY9/ANm+AEg6jGNgOYx4CciIiIiok1DoiIkN+LL9zNubgoSF6BGdnY0rGvMdl9Ywi6QZe+jFxMtUdLvGwIufifad+lfrZL+JUbytVL5UZgdeyG5Mtzs8Y5tDy7Nmu4Vx5dsaqgKo36bQG3WV1KYqK2jPwDkYgNtNLTWgJt/3dpK+ns07XPp0lsPqDcG/EREREREtGn4LP92AA4uTXyQKQ5qdHfX/esSFSFREa6judzyM/xigiUCddfMcPeksqZ+qxXwp4nvLaD7e04S5qC3PxFq5GS46kz7Akp1GpIrtwXkPe/HhJDiNp/lr85AFdo7+gNALtQo5mOI1t0z/EHctU+AS6pwM8f6HsdInRjwExERERHRpiJxI8s/CVeZgSrvhMr2jHdcVymo0jYgqc+Xndusi/5yS/qVgd8w34PDktUDIiobzbd6GX5RwZIl/W3HoA3U2G7oHafDCWBnjvqtEi6FKm3re1SkKowBQQxoDZXvzNSX8iFO2TmSPd/5DL8aOwVSGIc59dzud5wmkFzJ92do7RNAfVvGHAoiIiIiIqKNI+KD+HRuAlIYgSrvWPz6cQkIIz9/3uR9h36llz8aTxv4qH6xB+3jvrWBq1cXWzrom7MpJBh86oCIQApjkCBCevwRuOljvhlf3H0Bpet9mBCqtMMH5Yvs+YcO2p6vBDHi51/bc9uAsykkzEEVtsEefwgQgQTxAM+OGPATEREREdGmI3EZamSnHxu3VKM6E0Llx2AnDwO5vG9UJ7L8kn6ls9F2ae8qAbV0wC8qaFYdrJhLIGb5wbCEeejtT4SNCpAwB+nj+Fup0g6/kLLInn8xEZydaL9ssR4BNoWYyC/ouBT2+CO+MmOJ0YM0jwE/ERERERFtOqIU9NgpfV9f5Udgpx71TeCs8U3zVlLS3+yw3+M++szwr1pJP7CsMYNtt9cGevTk5d1WKSy1Y9wf3wDP11lIEPq+DSM7AWthJ34E5MoQdujvC/fwExERERHR1hflIVHJN6hz1jfNW/ZYPp/h79ap3znnS8/7CPh9Y79VCvgdlp4MsNGW83pnz0lEQY3ugpS3w81NLD4WkZoY8BMRERER0ZYnoqCK476bvU0gegVl4aJ9sN4t6HTWbxdYYpydvx+1ZCuAfjib+gWMpSYDbLQBAv7GwglanpMoDT16ip8KMPs4g/4+MOAnIiIiIqITgsRFSJiDrcwCZvnBsYgAOuwecDrnA/l+SvqVXrTZf99s6jPhQx7wSzbdoK++BY1FjAVVC6IN9NgpkPwI3OxxX62xSpxNVtTbYRgx4CciIiIiohOCnxk/5gPOFe4BFxMukuFXfTXtW60MPxrNA9WQ72vPmh22jubrySY9FzHEhNDjeyBRAajOrNrhubkpSG7ET3XYIhjwExERERHRCUPlRqDjwoqbvvlO8V2i9UYpej97+JUGpM+M92JsAuhg4M76605p3+zQ9pGVby5idK9akCCCKp8El9RWJcvv0joggCrvGP7XcQBb55kQEREREREtQaI8dHF0+Q37GpT2wf1CzvqGfX2V9GfX6xGwOmdhZyeWDGidTSFB1M9Rbyyl/evex957Z1PARIuP+cuPQOLVyfK7yiQkP76lsvsAA34iIiIiIjqBiAjCHadB8qMru6NsP3qHATL8EL14wD83BYgDanOL34+zkCBe+vE2mM/Y6z5L+lOIWXwRQ5SBKmVZ/hU08HNJFVAGurRt0QWGzYgBPxERERERnVBEmxWXbYs2WTn+wmDd+i7+fXXpzxYGupS4u7QOuBSSG4WrLxXwY/hH8jXoAK6fkn5ns20Ti/NZfj9ucblcZQqqMA6Ji8u+j2HFgJ+IiIiIiGhQjWz1gsyysxbQfW4XUNovPHTJ8LvKFKQwBl3aDmjjFwC68Pv/3dB36G/o2eyw44ro6zmJ0lDlHUBaX1aW39XmABNBlbYPfNvNgAE/ERERERHRoJTxe/AXBpnO9T/WTbrv4Xf1KqA0dGkHEBUgYdEHpt24FNDaVxxsAj5rv0RPAucASN+LGJIbgeRG4CrTAx2Lcw6uNgNV3AYJcwPddrNgwE9ERERERDSoXg3onO2YHd+LSBbULgz4q9NQxe2QuAgRgSqOAUm9ezd/mwJiNk9Jfz+LITYFlOr/dVQKqrwdsCmcTfo/ltosEMRQpW3932aTYcBPREREREQ0IBEBTNhZjj9Ihh8AlG7rA+Cqs0AQtQWhEheBIASSauft0xSi9aYp6e874Bcz0HOSuAzJl/vO8jtn4WoVqNKOJZsDbmYM+ImIiIiIiJZBdNBl37gbaOSf6KDZtM8HoXM+CG3pui8m8sFsl+Z9ziaACf0owE1AsukGXasVGmy2iDFA1YIoBVXaATgLl/aR5a/OQuI8VHG878fYjDbHWUFERERERDRkJIi7j5gbIPgWHfiqAACozkByha5BqMqNAtZ2TgXoY3zdUFHa9z5YZDTf/CLGYCPyJFeC5EfhKlOLXs85C5dUoMon+dd/C2PAT0REREREtBxdM/kyUMAPpQABnE3hkhpUqXsQKnEBEuWBhc37nN18Ab/orqMIm2wKMXHvn/cgoprd9hebauDmprItACMDP8Zmw4CfiIiIiIhoOZQGFlami/NBfL9EA87BzU36mfL50e5XUwaSH+ss6+9zfN3Q6NXssJWzWTf/wUlcghRG4ao+y+/SBK42Czs7ATt9FG7mGKA01MhJfTcF3My2/jMkIiIiIiJaA6IMIALn7PweeofBM/ywgChfYr7IYoHKlWAnDVxa9/0DBhxfNwxEab9Qstg++xUsYogIVGk70jkf4PuRhSEkX4aKikAQ+Z4IwSaqiliBzXNmEBERERERDZNG8GpTQCu/v15ksAZ6ogDRkOI4JC4tft0wBwmLcLVZSC4YeHzd0NABXL2Kbjv0nXOAW9kihkRF6PE9gCgf2JtooEaKW8kmOzOIiIiIiIiGhDZZwG8BDd98T9RAJf2iNCQuQZd2LNmkTkRBFceQPjrhA2Ob+E72myjDDwBiwi7TDTLOL56sZBFDRCDFbUtf8QSwuc4MIiIiIiKiYbFwP3qW4R+opD/MQ4+fCglzfV1doiIQhEBS9c3tlBlofN0w8PvzezTtS1NATI+GiDQoNu0jIiIiIiJaBhEF6GB+xFwjwz/IWD6RvoN9AJAgguTLcLU5nyVfxvi6DbdYMG9TiNabrmphWDHgJyIiIiIiWqa28vTlZPiXQeVGAFggrUOCwcfXbbjFAn7XWMRgqLoa+CoSEREREREtlw7bMvwyYIZ/OSQuQoKcD/hNsKaPtSaUBiDZlIF2Lk0g5sTooL8eGPATEREREREtk5jAj+IDsgy/WnS03qo8pjKQwpgve9ebL+D3o/nU/EJJK2ezPf60GhjwExERERERLZfSaM6Xc27dms2pXBkSFTffSD7ANxmUbLrBQiKbchFjWDHgJyIiIiIiWiYfcAucs3DOrl93+TAPVd4BhJt0D79S89MNMs45Xy3BDv2rZhMuBxEREREREQ2JZvBq/R7+dcq4b+ZZ89IYZ5guKOl3KaAVhBn+VcMMPxERERER0XIp7efG29Tv4Wd2uj+6ZbpBg039a8nXcNUw4CciIiIiIloubXyTPucDfuH8+L6ICf0CSas0hWjtmxHSqmDAT0REREREtEwiyjeZa2SrOT++Lz7g71bSH/jXlFYFX0kiIiIiIqIVEBPBWeu79a/xSL4to0vZvrMpJNiETQiHGM9GIiIiIiKilTDM8A+s2z59m/rMP60ano1EREREREQr4LvKZyPlRDb6cDYHpeHHGbqWCwVYpykHJwoG/ERERERERCvR2mSOGf6+SGOcYbaP3wf+jg37VhnPRiIiIiIiopVQ2mf2RbHhXL+UBkQDNuvU71JAa045WGV8NYmIiIiIiFZAlJlv1semff1pZPgbvQ9s6hcAWNK/qng2EhERERERrUQjWw2V/T8tRZTxZf0uy/Db1Gf3meFfVQz4iYiIiIiIVqIRvIqwad8gdADXmuHXAbdErDK+mkRERERERCsgSvlSdBGW9A9ATNjM8DuO5FsTPBuJiIiIiIhWKgh9dpoZ6r6JiZpd+uEsJIg39oC2IJ6NREREREREKyQmApRmSfoglAZc9t8ObNi3Bng2EhERERERrZBow4B1UKq1waFjw741wICfiIiIiIhopUwECXMbfRSbS9bo0NnEV0cw4F91fEWJiIiIiIhWSOXKQK680YexqYjSvslhUvfBPyskVh0z/ERERERERLT+lAZEw6W1LPhnwL/aGPATERERERHR+mtm+GuACf14Q1pVfEWJiIiIiIho/YmGiAbSOsSEG300WxIDfiIiIiIiIlp3IgKYwP93EG/w0WxNDPiJiIiIiIhoQ4gO2LBvDTHgJyIiIiIiog0hJvIBP0fyrQkG/ERERERERLQxlAZ06Lv006pjwE9EREREREQbQxvfsE8HG30kWxIDfiIiIiIiItoYSgMm5B7+NcJXlYiIiIiIiDaERAXoUQ1RzEWvBQb8REREREREtCFEFBDmN/owtiwuoxARERERERFtQQz4iYiIiIiIiLYgBvxEREREREREWxADfiIiIiIiIqItaOgC/oMHD+IXfuEXcP755+PSSy/FDTfcgFqttuTtnHP4yEc+guc85zk477zz8KpXvQrf/OY3O653+PBhXHvttbjgggtw0UUX4Td/8zcxPT29Bs+EiIiIiIiIaOMMVcA/MTGBV7/61ajX6/jgBz+I6667Dp/+9Kfx/ve/f8nbfvSjH8Uf/uEf4ud//ufx4Q9/GDt27MBrXvMaPPjgg83r1Ot1vO51r8N9992H3/3d38U73/lOfOUrX8Gv/MqvrOXTIiIiIiIiIlp3QzWW76abbsLMzAz+6I/+CKOjowCANE3xrne9C1dffTV27tzZ9XbVahUf/vCH8ZrXvAY///M/DwB42tOehssvvxw33ngj3vnOdwIAvvCFL+Duu+/GzTffjL179wIAyuUyXvva1+Lb3/42zjvvvLV+ikRERERERETrYqgy/LfddhsuueSSZrAPAFdccQWstfjqV7/a83bf+MY3MD09jSuuuKJ5WRiGeP7zn4/bbrut7f7379/fDPYB4NJLL8Xo6Ci+/OUvr+6TISIiIiIiItpAQxXwHzp0qC0YB3wGfseOHTh06NCitwPQcdt9+/bhkUceQaVS6Xn/IoLTTz990fsnIiIiIiIi2myGqqR/cnIS5XK54/KRkRFMTEwserswDBFFUdvl5XIZzjlMTEwgjmNMTk6iVCoNfP/9MGao1k46aK3a/p+oHzxvaDl43tBy8Lyh5eB5Q8vB84aWY7OeN0MV8G9WSgnGxgobfRh9KZdzG30ItAnxvKHl4HlDy8HzhpaD5w0tB88bWo7Ndt4MVcBfLpcxNTXVcfnExARGRkYWvV2tVkO1Wm3L8k9OTkJEmrctl8tdR/BNTEzg5JNPXvZxW+swOTm77NuvB60VyuUcJifnkKZ2ow+HNgmeN7QcPG9oOXje0HLwvKHl4HlDyzFs5025nOur2mCoAv69e/d27KWfmprCkSNHOvbeL7wdANx777148pOf3Lz80KFD2L17N+I4bl7vBz/4QdttnXO49957cemll67o2JNk43/p/UhTu2mOlYYHzxtaDp43tBw8b2g5eN7QcvC8oeXYbOfNUG1AOHDgAL72ta9hcnKyedktt9wCpdSiAflTn/pUFItFfP7zn29eVq/X8cUvfhEHDhxou//vf//7uO+++5qX3X777Xj88cfx7Gc/e3WfDBEREREREdEGGqqA/8orr0ShUMA111yDr3zlK/jMZz6DG264AVdeeSV27tzZvN6rX/1qPP/5z2/+O4oiXH311fj4xz+OT37yk7j99tvxK7/yK3j88cfx2te+tnm9F77whXjSk56Ea6+9FrfeeituvvlmXH/99XjOc56D8847b12fKxEREREREdFaGqqS/pGREXzyk5/Ee97zHlxzzTUoFAp4xStegeuuu67tetZapGnadtnrX/96OOfw8Y9/HMeOHcNZZ52FG2+8EXv27GleJwgCfOxjH8N73/tevOUtb4ExBs9//vNx/fXXr8vzIyIiIiIiIlov4pxzG30Qm12aWhw7NrPRh7EoYxTGxgo4fnxmU+05oY3F84aWg+cNLQfPG1oOnje0HDxvaDmG7bwZHy/01bRvqEr6iYiIiIiIiGh1MOAnIiIiIiIi2oIY8BMRERERERFtQQz4iYiIiIiIiLYgBvxEREREREREWxADfiIiIiIiIqItiAE/ERERERER0RYkzjm30Qex2TnnYO3wv4xaK6Tpxs+MpM2F5w0tB88bWg6eN7QcPG9oOXje0HIM03mjlEBElrweA34iIiIiIiKiLYgl/URERERERERbEAN+IiIiIiIioi2IAT8RERERERHRFsSAn4iIiIiIiGgLYsBPREREREREtAUx4CciIiIiIiLaghjwExEREREREW1BDPiJiIiIiIiItiAG/ERERERERERbEAN+IiIiIiIioi2IAT8RERERERHRFsSAn4iIiIiIiGgLYsBPREREREREtAUx4N/iDh48iF/4hV/A+eefj0svvRQ33HADarXaRh8WDYnPf/7z+KVf+iUcOHAA559/Pl760pfib//2b+Gca7ve3/zN3+CFL3whzj33XLzkJS/BrbfeukFHTMNoZmYGBw4cwP79+/Gd73yn7Wc8d6ibv//7v8dP/dRP4dxzz8XFF1+M173udahUKs2f//M//zNe8pKX4Nxzz8ULX/hCfOYzn9nAo6Vh8KUvfQk//dM/jQsuuADPetaz8OY3vxkPPvhgx/X4nnPiuv/++/H2t78dL33pS3H22WfjxS9+cdfr9XOOTE1N4frrr8dFF12ECy64AG9605vw6KOPrvVToA2w1HkzPT2ND37wg3jFK16BCy+8EM985jPxi7/4i7jrrrs67mtYzxsG/FvYxMQEXv3qV6Ner+ODH/wgrrvuOnz605/G+9///o0+NBoSf/Znf4ZcLoe3vvWt+NCHPoQDBw7gt37rt/DHf/zHzet87nOfw2/91m/hiiuuwEc/+lGcf/75eOMb34hvfvObG3fgNFT+5E/+BGmadlzOc4e6+dCHPoT3vOc9eNGLXoQbb7wR7373u3Hqqac2z6Gvf/3reOMb34jzzz8fH/3oR3HFFVfgN3/zN3HLLbds8JHTRrnjjjvwxje+EWeccQb++I//GNdffz2+//3v4zWveU3bQhHfc05sd999N7785S/jCU94Avbt29f1Ov2eI7/8y7+Mr371q3jnO9+J//E//gfuvfdevP71r0eSJOvwTGg9LXXePPLII/if//N/4tJLL8UHPvABvOc978HU1BRe9apX4eDBg23XHdrzxtGW9ad/+qfu/PPPd8ePH29edtNNN7mzzjrL/ehHP9q4A6OhcfTo0Y7L3va2t7mnPvWpLk1T55xzL3jBC9xb3vKWtuu86lWvcq973evW5RhpuN1zzz3u/PPPd3/913/tzjzzTPftb3+7+TOeO7TQwYMH3dlnn+3+5V/+ped1XvOa17hXvepVbZe95S1vcVdcccVaHx4Nqd/6rd9yl112mbPWNi+7/fbb3Zlnnun+7d/+rXkZ33NObI3vLc459+u//uvuP/2n/9RxnX7OkW984xvuzDPPdP/n//yf5mUHDx50+/fvd5/73OfW4MhpIy113szMzLjZ2dm2y6anp91FF13k3v3udzcvG+bzhhn+Ley2227DJZdcgtHR0eZlV1xxBay1+OpXv7pxB0ZDY3x8vOOys846C9PT05idncWDDz6I++67D1dccUXbdV70ohfh9ttv5/YQwnvf+15ceeWVOP3009su57lD3fzd3/0dTj31VDz72c/u+vNarYY77rgDl19+edvlL3rRi3Dw4EE89NBD63GYNGSSJEGhUICINC8rlUoA0NyCxvccUmrxsKbfc+S2225DuVzGpZde2rzO3r17cdZZZ+G2225b/QOnDbXUeZPP55HL5douKxQKOO2009rK9Yf5vGHAv4UdOnQIe/fubbusXC5jx44dOHTo0AYdFQ27//f//h927tyJYrHYPE8WBnP79u1DvV7vun+SThy33HILfvCDH+Caa67p+BnPHermW9/6Fs4880z8yZ/8CS655BI85SlPwZVXXolvfetbAIAHHngA9Xq947OrUWbJz64T08tf/nIcPHgQf/mXf4mpqSk8+OCD+L3f+z2cffbZeOpTnwqA7zm0tH7PkUOHDuH0009vW2ACfPDG9yACgMnJSdx9991tn1XDfN4w4N/CJicnUS6XOy4fGRnBxMTEBhwRDbuvf/3ruPnmm/Ga17wGAJrnycLzqPFvnkcnrrm5Obz//e/Hddddh2Kx2PFznjvUzZEjR/CVr3wF//AP/4B3vOMd+OM//mOICF7zmtfg6NGjPG+oqwsvvBB/9Ed/hN/93d/FhRdeiOc973k4evQoPvrRj0JrDYDvObS0fs+RycnJZgVJK35/pobf+Z3fgYjgZ37mZ5qXDfN5w4CfiAAAP/rRj3Ddddfh4osvxlVXXbXRh0ND7kMf+hC2bduG//yf//NGHwptIs45zM7O4g/+4A9w+eWX49nPfjY+9KEPwTmHv/iLv9jow6Mh9Y1vfAO/9mu/hle+8pX45Cc/iT/4gz+AtRZveMMb2pr2ERGttc985jP49Kc/jbe//e3YtWvXRh9OXxjwb2HlchlTU1Mdl09MTGBkZGQDjoiG1eTkJF7/+tdjdHQUH/zgB5v7mRrnycLzaHJysu3ndGJ5+OGH8fGPfxxvetObMDU1hcnJSczOzgIAZmdnMTMzw3OHuiqXyxgdHcWTn/zk5mWjo6M4++yzcc899/C8oa7e+9734hnPeAbe+ta34hnPeAYuv/xyfOQjH8Gdd96Jf/iHfwDAzytaWr/nSLlcxvT0dMft+f2ZvvzlL+Ptb387/r//7//Dy172srafDfN5w4B/C+u2Z2RqagpHjhzp2B9JJ65KpYKrr74aU1NT+NjHPtZWjtQ4TxaeR4cOHUIQBNizZ8+6HisNh4ceegj1eh1veMMb8PSnPx1Pf/rT8Yu/+IsAgKuuugq/8Au/wHOHujrjjDN6/qxareK0005DEARdzxsA/Ow6QR08eLBtkQgAdu3ahbGxMTzwwAMA+HlFS+v3HNm7dy/uvffeZkPIhnvvvZfvQSewb37zm3jzm9+Mn/qpn8Kb3/zmjp8P83nDgH8LO3DgAL72ta81Vy4B32RLKdXWQZJOXEmS4Jd/+Zdx6NAhfOxjH8POnTvbfr5nzx488YlP7Jh/ffPNN+OSSy5BGIbrebg0JM466yz8+Z//edv/fuM3fgMA8K53vQvveMc7eO5QV8997nPx+OOP43vf+17zsuPHj+M//uM/cM455yAMQ1x88cX4whe+0Ha7m2++Gfv27cOpp5663odMQ2D37t2488472y57+OGHcfz4cZxyyikA+HlFS+v3HDlw4AAmJiZw++23N69z77334s4778SBAwfW9ZhpONxzzz24+uqr8YxnPAPvete7ul5nmM8bs6GPTmvqyiuvxKc+9Slcc801uPrqq3H48GHccMMNuPLKKzsCOzoxvetd78Ktt96Kt771rZiensY3v/nN5s/OPvtshGGIa6+9Fr/6q7+K0047DRdffDFuvvlmfPvb3+Z+2xNYuVzGxRdf3PVn55xzDs455xwA4LlDHZ73vOfh3HPPxZve9CZcd911iKIIH/nIRxCGIX72Z38WAPBLv/RLuOqqq/DOd74TV1xxBe644w784z/+I37/939/g4+eNsqVV16J3/7t38Z73/teXHbZZXj88cebfURaR6zxPefENjc3hy9/+csA/ILQ9PR0M7i/6KKLMD4+3tc5csEFF+BZz3oWrr/+evz6r/86oijC7//+72P//v14wQtesCHPjdbOUueNcw6vfe1rEUURXv3qV+O73/1u87bFYrFZuTbM5424hXUHtKUcPHgQ73nPe/Dv//7vKBQKeOlLX4rrrruOK90EALjsssvw8MMPd/3Zl770pWY27W/+5m/w0Y9+FI888ghOP/10vOUtb8Fzn/vc9TxUGnJ33HEHrrrqKvzt3/4tzj333OblPHdooWPHjuF973sfbr31VtTrdVx44YX4jd/4jbZy/y996Uv4wAc+gHvvvRe7d+/GG97wBrziFa/YwKOmjeScw0033YS//uu/xoMPPohCoYDzzz8f1113XXNkYwPfc05cDz30EH7iJ36i68/+/M//vLlQ3c85MjU1hfe973343//7fyNJEjzrWc/C2972NibMtqClzhsAPZtZX3TRRfjUpz7V/PewnjcM+ImIiIiIiIi2IO7hJyIiIiIiItqCGPATERERERERbUEM+ImIiIiIiIi2IAb8RERERERERFsQA34iIiIiIiKiLYgBPxEREREREdEWxICfiIiIiIiIaAtiwE9ERESr6u/+7u+wf/9+fOc739noQyEiIjqhMeAnIiLaxBrBdev/LrnkEvzcz/0cvvzlLy/7fv/0T/8U//RP/7SKR9q/D37wg9i/fz+e+cxnYm5uruPnl112Ga6++uoNODIiIqLNhQE/ERHRFvCmN70JN9xwA/77f//veN3rXofjx4/jDW94A2699dZl3d+HP/zhDQv4G44ePYq//uu/3tBjICIi2szMRh8AERERrdyBAwdw7rnnNv/9ile8Apdeein+8R//Ec997nM38MiW76yzzsKNN96In/3Zn0Ucxxt9OERERJsOM/xERERbULlcRhRFMKZ9bf/GG2/ElVdeiYsvvhjnnXceXv7yl+OWW25pu87+/fsxOzuLv//7v29uE3jrW9/a/Pnhw4dx/fXX41nPehae8pSn4LLLLsM73vEO1Gq1tvup1Wp43/veh2c84xk4//zzcc011+DYsWN9P4drrrkGjz322JJZ/jvuuAP79+/HHXfc0Xb5Qw89hP379+Pv/u7vmpe99a1vxQUXXIBHHnkEV199NS644AL8+I//OP7yL/8SAHDXXXfhqquuwvnnn4/nPve5+OxnP9v38RIREQ0bZviJiIi2gOnp6WYwffToUXzqU5/C7OwsXvKSl7Rd78///M9x2WWX4Sd/8idRr9fxuc99Dm9+85vx4Q9/GM95znMAADfccAPe9ra34bzzzsMrX/lKAMBpp50GwAf7r3jFKzA1NYVXvvKV2Lt3Lw4fPowvfOELqFQqCMOw+Vjvfe97US6X8cY3vhEPP/wwPvnJT+Ld7343PvCBD/T1nJ72tKfhGc94Bj72sY/hZ37mZ1Yty5+mKV7/+tfjwgsvxK/+6q/is5/9LN797ncjl8vh93//9/GTP/mTeMELXoCbbroJv/7rv47zzz8fe/bsWZXHJiIiWk8M+ImIiLaAn//5n2/7dxiG+O3f/m1ceumlbZd/4QtfaAuc/8t/+S94+ctfjk984hPNgP+lL30p3vnOd2LPnj146Utf2nb73/u938Njjz2GT3/6021bCN785jfDOdd23dHRUXz84x+HiAAArLX41Kc+hampKZRKpb6e1xvf+Eb81//6X3HTTTd1PMflqlareMlLXtJs/PeTP/mT+PEf/3Fcf/31+L3f+z286EUvAgA885nPxBVXXIH/9b/+F6699tpVeWwiIqL1xJJ+IiKiLeDtb387PvGJT+ATn/gEfud3fgcXX3wx3va2t+GLX/xi2/Vag/2JiQlMTU3haU97Gu68884lH8Nai3/6p3/Cc5/73LZgv6ER2De88pWvbLvswgsvRJqmePjhh/t+Xk9/+tNx8cUX42Mf+xgqlUrft1vKT//0Tzf/u1wu4/TTT0cul8MVV1zRvHzv3r0ol8t48MEHV+1xiYiI1hMz/ERERFvAeeed1xaEv/jFL8ZP/dRP4d3vfjee85znNEvtb731VnzoQx/C9773vbY99wuD9W6OHTuG6elpPOlJT+rrmHbv3t3273K5DACYnJzs6/YN11577apm+aMowvj4eNtlpVIJu3bt6ngdSqXSwMdLREQ0LJjhJyIi2oKUUrj44otx5MgR3H///QCAr3/96/ilX/olRFGEd7zjHfjIRz6CT3ziE3jxi1/cUY6/WsfQzaCP9fSnPx0XXXRRzyx/r8UKa23Xy7XWA12+Fq8NERHRemCGn4iIaItK0xQAMDs7C8Dv34+iCDfeeGNbc73PfOYzfd3f+Pg4isUi7r777tU/2CVce+21+Lmf+zncdNNNHT9rVA5MTU21XT7I1gEiIqKtiBl+IiKiLaher+OrX/0qgiDAvn37APgMtog0FwIAP7ruS1/6Usft8/l8Rym7UgrPe97zcOutt+I73/lOx23WMhN+0UUXNbP81Wq17WennHIKtNb4t3/7t7bLlxrntxz1eh0HDx7Eo48+uur3TUREtNqY4SciItoCbrvtNhw6dAiA32v/2c9+Fvfddx/e8IY3oFgsAgCe/exn4xOf+ARe97rX4cUvfjGOHj2Kv/qrv8Jpp52Gu+66q+3+zjnnHNx+++34xCc+gZNOOgmnnnoqfuzHfgxvectb8NWvfhU/93M/h1e+8pXYt28fjhw5gltuuQV/9Vd/1cy2r4U3vvGNuOqqqzouL5VKuPzyy/EXf/EXEBHs2bMH//Iv/4KjR4+u+jEcPnwYL3rRi/Cyl70M73//+1f9/omIiFYTA34iIqIt4A//8A+b/x1FEfbu3Yt3vvOduPLKK5uXX3LJJfhv/+2/4aMf/Sh++7d/G6eeeip+9Vd/FQ8//HBHwP/Wt74Vb3/72/GBD3wAlUoFL3vZy/BjP/Zj2LlzJz796U/jD/7gD/DZz34W09PT2LlzJw4cONA2AWAtXHzxxbjooovwr//6rx0/e9vb3oYkSXDTTTchDENcfvnl+LVf+zW8+MUvXtNjIiIiGmbi2ImGiIiIiIiIaMvhHn4iIiIiIiKiLYgBPxEREREREdEWxICfiIiIiIiIaAtiwE9ERERERES0BTHgJyIiIiIiItqCGPATERERERERbUEM+ImIiIiIiIi2IAb8RERERERERFsQA34iIiIiIiKiLYgBPxEREREREdEWxICfiIiIiIiIaAtiwE9ERERERES0BTHgJyIiIiIiItqC/n9bz+qBtRDWPAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBIAAALGCAYAAAD4J7LFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd7wU1d0/8M85s7u338sFAVFBBQULHRQpYkMj1kSxxgaoaCyJxiRqEn+WWKIGjVhR7AqS+PgYxRhLoiYm+sRgjTEqVQVpF27bMjPnnN8fU3Zm6+ze3dv4vn8vf3nu3tmZ2d25l3u+8y1MKaVACCGEEEIIIYQQEgDv6hMghBBCCCGEEEJIz0GBBEIIIYQQQgghhARGgQRCCCGEEEIIIYQERoEEQgghhBBCCCGEBEaBBEIIIYQQQgghhARGgQRCCCGEEEIIIYQERoEEQgghhBBCCCGEBEaBBEIIIYQQQgghhARGgQRCCCGEEEIIIYQERoEEQgghpIe68sorceihhxb13AULFmDEiBElPqPtw7vvvosRI0bg3XffLel+O/J5EkIIIZ0p1NUnQAghhPQ2QRfojz/+OCZNmlTms+l+rrzySjz33HPu15qmoX///hg/fjwuuugi7LHHHl14diSfeDyO66+/Hh999BHWr18PKSUGDx6ME088EaeffjrC4XBXnyIhhJAyo0ACIYQQUmK33nqr7+vnn38eb7/9dtrjw4YN69BxbrjhBiilinruhRdeiPPPP79Dx++ISCSCX/3qVwAAIQTWrl2LJUuW4K9//SuWLVuGgQMHdtm5dZWOfJ6dKR6P48svv8T06dOx8847g3OO999/HzfffDM++ugj/OY3v+nqUySEEFJmFEgghBBCSuz444/3ff3hhx/i7bffTns8VSwWQ1VVVeDjdOTObygUQijUdX8GhEKhtPdj7NixmDdvHt58802cfPLJXXRmnS8ajaK6urrH3Mnv06cPli5d6nvstNNOQ11dHZ588klceeWV6N+/fxedHSGEkM5APRIIIYSQLnDmmWfimGOOwSeffILvf//7GDNmDObPnw8AeO2113D++edj2rRpGDlyJGbMmIF77rkHQgjfPlJr6r/++muMGDECixYtwjPPPIMZM2Zg5MiROPHEE/HRRx/5npupR8KIESNw/fXX47XXXsMxxxyDkSNH4uijj8Zbb72Vdv7vvvsuTjjhBIwaNQozZszAkiVLOtx3YYcddgBglTp4ffXVV7j00kux//77Y8yYMTj55JPxxhtv+Lb5n//5H4wYMQJff/112nmm9jNw3vsvv/wSZ555JsaMGYMDDzwQDz74YNo5ffvtt/jBD36AsWPHYvLkybjpppug63radu+99x4uvfRSHHzwwRg5ciQOOugg3HTTTYjH477trrzySowbNw5r167Feeedh3HjxuGKK65wv5faI0FKiUcffRRHH300Ro0ahSlTpuCaa65Bc3Ozb7uPP/4Yc+fOxaRJkzB69GgceuihuOqqqzK9za6bb74ZkyZN8mVB3HDDDRgxYgQef/xx97HNmzdjxIgRePrpp3Pub+eddwYAtLS05NyOEEJIz0cZCYQQQkgX2bZtG8477zwcffTROO6449CvXz8AwHPPPYfq6mrMnj0b1dXVeOedd3DXXXehra0NP/vZz/Lu98UXX0R7eztOOeUUMMbw0EMP4ZJLLsFrr72W9673v/71L7zyyis4/fTTUVNTgyeeeAKXXnop/vKXv6CxsREA8Omnn+Lcc89F//79cckll0BKiXvuuQd9+/Yt6PU3NTUBsBbLX331FW6//Xb06dMHhxxyiLvN5s2bceqppyIWi+HMM89EY2MjnnvuOVx44YW46667cPjhhxd0TEdzczPOPfdcHH744Zg5cyb+9Kc/4fbbb8fw4cNx0EEHAbBS+M8++2ysX78eZ555JgYMGIDnn38e77zzTtr+Xn75ZcTjcZx22mno06cPPvroIzz55JP49ttvcdddd/m2NU0Tc+fOxYQJE/Czn/0MlZWVWc/zmmuuwXPPPYcTTjgBZ555Jr7++ms89dRT+PTTT7F48WKEw2Fs2bIFc+fORWNjI84//3zU19fj66+/xquvvprzPZg4cSIeffRRfPHFFxg+fDgAKyDCOcd7772Hs846y30MAPbbbz/f83VdR1tbGxKJBD755BM8/PDD2HnnnbHrrrvmefcJIYT0dBRIIIQQQrrIpk2bcN111+HUU0/1Pf6b3/zGt7g87bTTcM0112Dx4sW47LLLEIlEcu533bp1eOWVV9DQ0AAA2H333fGDH/wAf/vb33yL9ExWrFiBl156CUOGDAEATJo0CccffzyWLVuGM844AwBw1113QdM0LF682O1lMHPmTBx11FGBX3s0GsXkyZN9jw0cOBAPP/ywLyCxcOFCbN68GU899RQmTpwIADjppJNw3HHH4eabb8Zhhx0GzgtPsNy4cSN+/etf47vf/S4AYNasWTj00EPx7LPPuoGEZ555BqtXr8add96JmTNnAgBOPvnkjCUqV1xxhe8zO+WUU7Drrrti/vz5WLduHXbaaSf3e7qu48gjj8SPf/zjnOf43nvv4Xe/+x1uv/12HHvsse7jkyZNwrnnnouXX34Zxx57LN5//300Nzdj0aJFGDVqlLvdZZddlnP/EyZMcI8zfPhwtLa24vPPP8cRRxzhBg+c7/fp0yetCearr76Kyy+/3P165MiRuOmmm7q0ZIYQQkjnoNIGQgghpItEIhGccMIJaY97F6RtbW1oamrCxIkTEYvFsHLlyrz7Peqoo9wgAgB3Af7VV1/lfe6UKVPcIAIA7LXXXqitrXWfK4TAP/7xDxx22GG+hoi77rorDjzwwLz7d1RUVOCRRx7BI488gkWLFuH6669HdXU1zj//fKxatcrd7s0338To0aPd1wAANTU1OOWUU/DNN9/gyy+/DHxMr+rqal9AIBKJYNSoUb736K233kL//v1x5JFHuo9VVVVl7N/g/cyi0Siampowbtw4KKXw6aefpm1/2mmn5T3Hl19+GXV1dZg6dSqamprc//bdd19UV1e75Rp1dXUAgDfeeAOGYQR49Za+ffti6NChbtBg+fLl0DQNc+fOxebNm7F69WoAVpbK+PHjwRjzPX/SpEl45JFH8Nvf/hannnoqwuEwYrFY4OMTQgjpuShkTAghhHSRgQMHZswu+OKLL3DnnXfinXfeQVtbm+97ra2tefc7aNAg39dOUCFI7Xrqc53nO8/dsmUL4vF4xvT1QlLaNU3DlClTfI8ddNBBOOKIIzB//nwsWLAAgJVdMWbMmLTnDx061P2+k5ZfiB133DFtYdzQ0ID//ve/7tfffPMNdt1117Ttdt9997T9rVu3DnfddRf+/Oc/p/UvSP0MQ6EQdtxxx7znuGbNGrS2tqZlbji2bNkCANh///3xne98B3fffTceffRR7L///pgxYwaOPfbYvNkrEydOxJtvvgnAyjwYOXIkRo0ahT59+uC9997DDjvsgM8++wzHHHNM2nN32GEHt6/FkUceifvvvx+zZ8/GK6+8Qs0WCSGkl6NAAiGEENJFMtXGt7S04IwzzkBtbS0uvfRSDBkyBBUVFfj3v/+N22+/HVLKvPtNbVboCDJasCPP7agdd9wRu+++O/75z38W/NzUxb4j2/uV7XUWQwiB2bNnu30Xhg4diurqamzYsAFXXnll2jlEIpFA5RhSSvTr1w+33357xu87JSCMMdx111344IMP8Je//AV//etfcfXVV+ORRx7BM888g5qamqzHmDBhApYuXYqvvvoK7733HiZMmADGGMaPH49//etfGDBgAKSUvoyQbL7zne/gjjvuwOuvv55WrkMIIaR3oUACIYQQ0o383//9H7Zt24a7777b19wudRpBV+nXrx8qKiqwZs2atO9leqxQQghEo1H365122slX6uBwSjyc3gP19fUA0jM2vvnmm6LPZeedd8bnn38OpZQvUJF6Pp9//jlWr17t67kAAG+//XbRxwaAIUOG4B//+AfGjx+fsyGjY+zYsRg7diwuu+wyvPDCC7jiiivw0ksv4aSTTsr6HKdPwttvv42PP/4Y559/PgCrseLixYsxYMAAVFdXY9999817/EQiASBY1gwhhJCejXokEEIIId2Ic6famwGg63re0XudxSlJeP3117Fhwwb38TVr1uCvf/1rh/a9atUqrFq1CnvttZf72EEHHYSPPvoI77//vvtYNBrF0qVLsfPOO7sNAJ2+Dt5sBiEEli5dWvT5TJ8+HRs3bsTLL7/sPhaLxdL2mekzU0r5RigWY+bMmRBC4N577037nmmabrlJc3NzWsbI3nvvDQAZR1V6DR48GAMHDsSjjz4K0zQxfvx4AFbJw9q1a/Hyyy9jzJgxvgaKTU1NGTNUfve73wGwmi4SQgjp3SgjgRBCCOlGxo0bh4aGBlx55ZU488wzwRjD888/3ymlBUFdfPHF+Nvf/obTTjsNp512GqSUePLJJ7HnnnviP//5T6B9mKaJ559/HoC16P7666+xZMkSSClx0UUXududf/75WLZsGc477zyceeaZaGhowP/+7//i66+/xoIFC9xF/J577omxY8di/vz5aG5uRkNDA1566SWYpln06zz55JPx1FNP4Wc/+xn+/e9/o3///nj++efTsgOGDh2KIUOG4Ne//jU2bNiA2tpa/OlPfwrUkyKX/fffH6eccgoeeOAB/Oc//8HUqVMRDoexevVqvPzyy/j5z3+OI488Es899xwWL16MGTNmYMiQIWhvb8fSpUtRW1uL6dOn5z3OxIkTsWzZMgwfPtztp7HPPvuguroaq1ev9k2MAIA//OEPWLJkCWbMmIHBgwejvb0df/vb3/D222/jkEMOydrTgRBCSO9BgQRCCCGkG2lsbMT999+PX//617jzzjtRX1+P4447DpMnT8bcuXO7+vQAWHecH3zwQdx666347W9/i0GDBuHSSy/FypUrA02VAKw75T/96U/dr2trazFq1CjcdtttvoXoDjvsgCVLluC2227Dk08+iUQigREjRuD+++/HwQcf7Nvn7bffjmuuuQYLFy5EfX09Zs2ahUmTJmH27NlFvc6qqio8+uijuOGGG/Dkk0+isrISxx57LKZPn45zzz3X3S4cDuP+++/Hr371KzzwwAOoqKjA4Ycfju9///sZR0UW4vrrr8fIkSOxZMkS3HHHHdA0DTvvvDOOO+44N3tg//33x8cff4yXXnoJmzdvRl1dHUaPHo3bb78dgwcPznuMCRMmYNmyZW6ZA2A1hBw7diz+/ve/+x53tn///fexbNkybN68GaFQCLvvvjuuuuoqd0QoIYSQ3o2p7nSLgxBCCCE91g9+8AN8+eWXeOWVV7r6VAghhBBSRtQjgRBCCCEFi8fjvq9Xr16Nt956C/vvv38XnREhhBBCOguVNhBCCCGkYDNmzMD3vvc9DB48GN988w2WLFmCcDjsS/knhBBCSO9EgQRCCCGEFOzAAw/EsmXLsGnTJkQiEYwdOxaXX345dtttt64+NUIIIYSUGfVIIIQQQgghhBBCSGDUI4EQQgghhBBCCCGBUSCBEEIIIYQQQgghgVEggRBCCCGEEEIIIYFRs8VuTCkFKbt/CwvOWY84T9K90HVDikHXDSkGXTekWHTtkGLQdUOK0V2uG84ZGGN5t6NAQjcmpUJTU3tXn0ZOoRBHY2MNWlqiME3Z1adDegi6bkgx6LohxaDrhhSLrh1SDLpuSDG603XTt28NNC1/IIFKGwghhBBCCCGEEBIYBRIIIYQQQgghhBASGAUSCCGEEEIIIYQQEhgFEgghhBBCCCGEEBIYBRIIIYQQQgghhBASGE1tIIQQQgghhJAApJQQwszxfYZ4XIOuJyBE14/yIz1DZ103mhYC56XJJaBAAiGEEEIIIYTkoJRCS0sTYrG2vNtu3swhJY1+JIXprOumqqoW9fV9wVj+EY+5UCCBEEIIIYQQQnJwggi1tY2IRCpyLsI0jVE2AilYua8bpRR0PYG2tq0AgIaGfh3aHwUSCCGEEEIIISQLKYUbRKitrc+7fSjEYZqUkUAK0xnXTSRSAQBoa9uKurrGDpU5ULNFQgghhBBCCMlCCAEguQgjpCdzruNcvT6CoEACIYQQQgghhOTR0ZpyQrqDUl3HFEgghBBCCCGEEEJIYBRIIIQQQgghhJDtwI03Xoszzzw54/d++9vfYNasYzv5jDpm2rSJvv+OPfYI/PSnl2HFii+7+tQyWrr0aUybNrGrT6MkqNkiIYQQQgghhJAeadasUzBjxpEAFDZu3IgnnngYl19+EZ588veoq6vr6tPrtSiQQAghhBBCCCGkW0ok4qioqMz6/QEDdsTIkaPcrwcPHoLZs0/HJ598iMmTp3XGKXY6XdcRCoU6NHWho6i0gRBCCCGEEEKIz0svvYBp0ybik08+xqWXXoDDDpuKWbOOxYsvPu/bzimX+Mc/3saZZ56MQw+dgjlzzsAnn3yccZ9nn30qDj10Cr773Zl44IF73KkY/mN+hB/96AeYMWMa7rnntwWdd3V1NQDANP1TCd58888455zTceihU3D88UdiwYL5SCQSacfetm2b73nnnHM6brzx2rTXu3z5e5g9+3TMmDEN5513Fj777D++57W3t+GGG67B4YdPxzHHzMC99/4Wpil828RiMcyf/2ucdtoJOOigKZg161jcdttNaGtr8203a9axmD//13jqqcdw4onH4LDDpuLjjz/EtGkT8c9/vuPbVgiB7353Ju69t7D3rVCUkUAIIYQQQgghJKNrr70axx9/Ar7//bPx+uuv4JZbbsAOO/THAQdMcbfZsmUL5s//NebMOR91dXV48snH8OMfX4wlS55DY2NfAMCSJU/ivvsW4OSTT8fFF/8Iq1evxsKF90JKiQsvvMR3zOuu+wWOO+57OOusOTmzEQBAKekGDTZt2oj77rsLffr0wbhxyV4Ef/vbm/jFL36Gww47AhdccDHWrl2NBx64Bxs2fItf/erWgt+TpqYt+O1vb8f3v38Oamtr8cADd+Pqq6/A0qXPIxSyltg333w93n33HVxwwcXYaaed8Nxzv8cXX/zJt594PA4pJc4//wfo168f1q9fj8cffxhXXfVjLFjwgG/bN9/8M3bZZQh++MMrwDnHXnvtjX32GYkXX/wD9tvvAHe7d9/9BzZv3oSjjz6+4NdVCAokEEIIIYQQQkiBlFLQDZn2uJAKppn+eKlFwrxTRlIeeeTROPPM2QCASZMmY926b/DIIw/6AgktLc244YZbMGHCfgCAsWMn4IQTjsYzzzyNCy64GNFoOxYtWojTTz8L8+ZdBADYb78DEA6HsGDBHTj99DPR0NDH3d/xx5+AM844J9D53XffAtx33wL36/r6Btx0022ora11H3v44YXYd99RuPbaGwEABxwwBRUVlbjttpuwYsWXGDZsj4Lek5aWFixYsBBDhw4DAFRWVuLSSy/Av//9CcaMGYtVq1bizTf/gp/97Bc45hhrQb///pNx6qkn+PbT2NiIK664CgAQCnHE4zoGDdoJP/jBuVi7dg2GDNnV3dY0Tdx++12oqqpyHzvuuO9i/vzb0NLSgvr6egDAsmXPY9So0dh1190Kek2FokACIYQQQgghhBRAKYWbn1yOL79p7rJz2GOXBlz1/fFlDyZMn36w7+uDDjoU99xzJ4QQ0DQNAFBbW+sGEZyvJ07cH59++gkA4OOPP0IsFsUhhxzmKzmYOHESEokEVq5cgXHjJriPT5kSvLfBSSedhu98ZyYAYOvWJjz33O9x5ZU/xt13L8Qee+yJaDSKL774HBdd9EPf8w477AjcdttN+OijDwoOJOywQ383iAAAu+8+FACwadMGAMBnn30KpRSmTz/E3UbTNEyffhCeeeZp375efnkZnnnmKXz99VeIxWLu4199tdYXSBg3boIviGC9hu/grrvuwKuvvowTTzwZ27Ztw9tv/9UNTpQTBRIIIYQQQgghpFDlTwYoOU3TIGXmbAkphZuW7+WUJjj69u0L0zTR3LwNffv2AwD06dOY9ry+fftizZpVAIDm5m0AgDlzzsh47I0bN6Qcs1/uF+LRv/8A7LXXPu7XEybsjxNOOAqPPvogfvWrW9HW1gqllHuujtraWkQiEbS0FB4M8mY7AEAoFAZgNUEEgM2bNyMUCrlZAo7U9/LNN/+CX/3q/+G4476HCy+8GDU19diyZTOuvvoK6Hoi5bnp70lVVRVmzDgCy5Y9jxNPPBmvvPISwuEIDj308IJfU6EokEAIIYQQQgghBWCM4arvj89Y2hAK8W5b2tCnTyO2bNmS8XubN29CY2N6QGDr1ib07z/A/bqpqQmhUMhXirBt29a05zU1NaFfvx0AAHV11oL6xhtvw8CBA9O2HTRoJ9/XHcmyiEQiGDRoZ6xatRIAUFtbB8YYtm5t8m3X1tYGXddRX9/gPg8ATNPwbdfa2lLwOeywww4wTdNXcgAg7Rz+8pfXsOeew/HTn/7cvW7ef/9fGfeZ7S057rjv4Q9/eA5ffPE5li17AYceOsNtOFlONLWBEEIIIYQQQgrEGENFROuy/4pZbI8dOx5tba344IPlvsfb29uwfPm/MGbM+LTnvPXWG76v33zzzxgxYm+3rAGwFuX/+tc/fV+/997/YZ99RgIARo4cjcrKSmzatAF77bVP2n/eoERHJRIJrFv3tbvP6upq7LnncLzxxuu+7f7851cBAKNHjwUA9O9vBThWr17lbrN69aq0bIkgnAyJt976i/uYEAJvvfVm2rk62QyOV155ueBj7bnncPz2t7djxYovcPTRxxV8vsWgjARCCCGEEEII2Q7sv/8BGDNmHH7+85/gnHPOw9Chw7B58yY8/fTj0DSOWbNOTXvOyy8vQ0VFBYYP3wuvv/4KPvhgOW677U7fNvX1Dbjllht8UxuUUjj55NMAAHV1dZg79wLce+8CbNy4EePGTYCmaVi37mv89a9v4cYbb0VlZe7pDNls3PitO2py27at+J//+R2am5vx3e+e6G4zZ875uOqqK3D99b/EEUfMxNq1a7Bw4T04+OBD3f4I++47EgMGDMSCBfMxb97FaG9vw5NPPoaGhoaCz2n33Ydi+vRDcNdd86HrOgYNGoTnnvt9WrbDfvtNwvz5v8ajjz6E0aPH4O23/4p//ev/Cj7escd+D/Pn/xpDhuzqBkbKjQIJhBBCCCGEELId4JzjttvuxEMP3Y8lS57E5s2bUFtbi/Hj98OvfnUrdthhh7TnXHvtjbj//rvxyCMPobGxET/96c8xebK/GWK/fv1w4YWX4t57f4tvvvkau+8+FPPnL/D1JTjttDPQv39/PPPMU3j22WcQCoWw8867YMqUAzP2Zgjq979/Br///TMArDKG3XbbHTfddLuvSeS0aQfhhhtuwSOPPISrrvox6uvrcdxx38O8eRe724RCIdx00+34zW9uxi9/+TPssstgXHLJ5bj77juLOq+rrroGd9xxK+677y5EIhEceeQxGDt2Au6997fuNscffwLWrfsGv//9M3j66Sew//4H4P/9vxsxb945BR1r+vRDMH/+rzstGwEAmFJKddrRSEGEkGhqau/q08gpFOJobKzB1q3tnVILRnoHum5IMei6IcWg64YUi64d4jAMHVu2rEe/foMQDkfybt9ZPRLK7aWXXsBNN12HF198DX369Mm63Y03XovPPvsUTzyxtPNOrhfqyHXz4ovP47bbbsL//M8yty9FNvmu5759a6Bp+TsgUEYCIYQQQgghhBDSw6xfvw5ff70Wjz22CIcddkTeIEIpUSCBEFI0ISW+bYphYGMVQgEil4QQQgghhJDSePjhhXj11ZcxcuRoXHzxjzr12FTa0I1RaQPp7mIJE+s2t2OnHWpQVRE8LknXDSkGXTekGHTdkGLRtUMc22tpA+lcnXXdlKq0gW4hEkKKJqSCKSQoHEkIIYQQQsj2gwIJpFtqiepoixn5NyRdSggJIRUUKJJACCGEEELI9oICCaRbams3EI1TIKG7szISFGUkEEIIIYQQsh2hZoukWxJKgkmKc3V3ppAwpQS1WiGEEEIIIWT7QYEE0i0JocAYNanp7nRTAJIyEgghhBBCCNmeUCCBdEtCKjDBuvo0SB4JQ0IqUEYCIYQQQggh2xEKJJBuSUgFThkJ3ZpSCoYhoQBIiiMQQgghhBCy3aAidNItSak6dXFqmALrt7RD0p31wIRUEEpRNgIhhBBCSA+xaNEDOPzwA7v6NErixhuvxbRpE93/ZsyYhrPPPg0vvvi/XX1qGbW2tmLatIl46aUXuvpUSoIyEki3I5WCVAqiEyMJCUMiGjdhmhKRsNZpx+3JhFAQwvqMKJhACCGEEEI620477YxrrvkVACAWa8ebb76BW275FSorqzBjxne6+Ox6NwokkG5H2gEEaU8DYKz8vRKUUjBMCVMoRMJlP1yvYEoJKSU4Z5TJQQghhBBCSi6RiKOiojLr9ysqKjBy5Cj36/32OwD//vdHePPNv/TqQEK+96UzUGkD6XaUsmrurSZ+nXdMUyqYgvoyBCWEVX7CWed9ToQQQgghpLxWrPgSl19+MWbMmIbvfOcg/OIXP8W3337rfv/mm6/HD35wrvv1tm3bcOCB++Hcc89yH4tGozjooEn4859fcx9bvXoVrrzycnznOwdhxoxp+MlPfohvvvnad+xp0ybiiScexb333oXjjvsOjjnmiILPv7q6BqZp+h779tv1+MUvfuoe+/LLL8aKFV+mHfvpp5/wPbZ06dOYNm2i+/Xy5e9h2rSJ+Oc/38G11/4chx8+HSeeeAyeeuqxtPP4wx+ew6xZx+Kww6bihz+8EN9881XaNn/844u48MK5mDnzUBx++EG4+OLz8emnn/i2ccpRPv30E8ybNxuHHjoFzz77O8yZcwauu+4Xafu89967cPzxR0IIkf/N6gDKSCDdjrLr7hWz7nRzdE5GgmkKCiQUQDiRHsZAcQRCCCGEbG+UUoCpZ3icQ5md8DdlKFLyzN0NG77FRRedh5133gW//OUN0PUEFi68D5dccj4ee2wxqqtrMHbseLz66stIJBKoqKjAhx8uRzgcwRdf/BfRaDuqq2vwyScfQQiBsWPHAQC++eZrXHDBHAwdOgxXX30tOGd4/PGH8cMfXoinn34WkUjEPYff/34x9tlnFK688pcQwsx2qi4naBCLxfDmm3/Gxx9/iF/84jr3+9FoOy65ZB4YY7jiiqsQiVTg8ccfxkUXnYfHHluMgQN3LPh9uu22m/Gd7xyFm266DX/96xu4774FGDZsTxxwwBQAwNtv/xW33nojjjrqWBx22BH473//g1/+8sq0/Xz77XoceeTR2HnnXSClwJ/+9EdcfPH5ePTRxRgyZFd3O8MwcN11v8DJJ5+OefMuQn19A6qrq7BgwR1oa2tDbW0tAEAIgT/96SXMnHkMNK285doUSCDdjlQKyl6jdlbtvVSAISgjoRCmkLBiPNRwkRBCCCHbF6UUon+4EXLDl/k3LhNt4J6oOu7qkgYTli59GkKYuOOOu1Ff3wAAGD58L5xxxkl46aUXMGvWqRgzZhx0Xcenn36CceMm4IMP3sf06Qfjn/98Bx999CEOOGAKPvhgOQYPHoK+ffsBAB555EHU19fjjjvuQUVFBQBg5MgxOPnk4/Hii8/jhBNOcs+hrq4BN910W6DXtWrVShx88AG+x0499QwcccRM9+tly17At9+uxxNPLMVuu+0OABg3bjxOPPEYLF26GJdcclnB79PBBx+KuXPnAQAmTtwf//jH23jjjdfdQMJjjy3CmDHjcPXV/w8AMGnSZOi6jkcffci3n9mzz3P/b86B8eP3w3/+82/88Y8vYt68i9zvmaaJ88//AQ47LJmhMWjQINx995149dWX8b3vzQIA/OMfb2PLls04+ujjCn5NhaLSBtLtOAGEzpzc4GRBJIzypgD1JoYpwRgDY6xTG2MSQgghhHQHrBOyZjvbhx9+gPHjJ7pBBADYddfdsMcee+Kjjz4EYDU4HDBgID788H37OcsxbtwEjB49Dh98sNx+7H2MHTve3cc///kOpk2bDk3TYJomTNNEXV0dhg8fgc8++9R3DgccMCVwcGTnnXfBQw89joceehx3370Q5513IZ599hk88siDntf0PoYOHeYGEQCgvr4BEydOwkcffVDYG2Tbb79k8IIxhl133Q0bN24EYGUF/Pe//8H06Qf7nnPwwYel7Wf16lW46qorcOyxR2DKlIk4+OADsHbtGnz11Zq0bSdPnub7uqamFoceejiWLfuD+9hLL72AMWPGYfDgIUW9rkJQRgLpdqS9qGdINl7sjGNKqaAblJEQlG4IaJxZAR9J7xshhBBCth+MMVQdd3XG0oZQiMPsoaUNra0t2HPP4WmPNzb2Q0tLs/v12LHj8cEHy9He3oYvv/wCY8eORzwewxtvvA5d1/Gf//wbxx77XXf7bdu2YenSxVi6dHH6ywj5O5337ds38PlGIhHstdc+vvPaurUJjz/+ME488WTU1zegtbUVjY3p++zbty9WrVoR+FhedXV1vq/D4TBaW1sBANu2bYUQIu2Yqa8rGm3H5ZdfjD59+uCSSy7DTjvthFAojFtu+RV03X9dVVZWorq6Ou08jjvue7jggjn48ssv0K/fDvj73/+Kn/7050W9pkJRIIF0O1azRQV0YhM/p5QiYQhIqcB574swl5puSmic2dkjXX02hBBCCCGdizEGhCvSHw9xMNYz/ziqr6/H1q1NaY9v3boFgwcna/bHjBmHu+++A++//y80NPTBrrvuhlgshvvuW4Dly9+DrusYM2acZ78NmDx5qq+EwZG+QO7Y3+G77ro7DMPAV199hX33bUB9fT3Wrk2/w9/U1IS6unr360gkAtM0fNs4wYFC9OnTCE3T0t7Hpib/15988jE2btyAX//6Duy553A3ANXe3gZggG/bbAGjkSNHY/fdh2LZsj9g4MCBiEQqcMghMwo+52JQaQPpdqRSgNMjoZPa+CmlwLiVAUF9EvITUsIU1uhHxhj1SCCEEEII6QVGjx6Lf/3rn2hpaXEfW7t2NVas+BKjR49xHxs7djxisRiWLHnKDRjsuedwVFRU4MknH8WAAQMxaNBO7vYTJ+6PVatWYM89R2Cvvfbx/TdkyG4lfQ0rV1pZBn369HFf08qVX2Lt2tXuNi0tLXjvvf/D6NFj3cf69x+ANWtW+fb1z3++W/DxNU3D8OF74a233vA9/sYbr/u+TiTiAKxsBsfHH3+I9evXFXS8Y4/9Hl599Y948cU/4LDDDkdVVVXB51wMykgg3Y6SCooBsMsNOoMpFUIah2kvkCPh8nY57emEsD6bSJjDZJ1XgkIIIYQQQjpGCIm//OW1tMf33nskTj75dCxb9gIuv/xinHXWHOh6Ag8+eB8GDtwRRx11rLvtrrvuhsbGvvjgg+X40Y+uAGAtoEeNGoN33vm7r9khAMydOw/nnnsWLr/8Ehx33PfQt29fNDVtwfvvL8eYMWNx+OFHFvVaEokEPvnkYwCArifw4Yfv44UXnsN++03CzjvvAgA4+uhjsXTp0/jJT36E88670J3aoGkaTj75NHdfBx98GH73u8XYa699MWTIrnjllZewadPGos7r7LPn4Morf4ybbrrOndrwpz+95Ntm331HoaqqGvPn/xpnnHEOmpo2YeHC+9G//4Ase83syCOPwv33L8C2bdtw5ZW/LOp8i0GBBNLtWGtSK32ns250SykR4gxKAqagRXE+plAQUkHjDAys05piEkIIIYSQjtH1RMZRhL/85fX4zneOwt13L8Q999yJ66//BTjXsN9+++OSSy5HdXWNb/sxY8bhjTdex5gxyaaKY8eOxzvv/N1X1gAAu+wyGA8++BgefPA+zJ9/C2KxGPr12wFjxozDsGF7Fv1a1q37BhdcMBuAdWd/4MBBOO20M3Hmmee421RX12DBggewYMF83HrrTZBSYNSoMbjnngd9ox/POedcbN3ahEceeRCcMxx33Ak46aQRuPvuOws+r2nTDsIVV1yFxx9/GK+99gr22WdfXHfdTTj//OR59e3bDzfccAvuuedOXHnljzFkyBD85CdX46mnHivoWPX1DRg7djw2btyIkSNHFXyuxWKKcpK7LSEkmprau/o0cgqFOBoba7B1a3vJmso0tcSx+tsWMDDsvlM9+tSm156V2toNrdjaloAQErvtWI++9ZVlP2ZP1hrV8cXX29BYV4H2uIlISMPwwX0CP78c1w3p/ei6IcWg64YUi64d4jAMHVu2rEe/foMQDkfybt9pzRZJr1LsddPe3obvfvcozJlzPk477Yy82+e7nvv2rYGm5e+AQBkJpNuxpjYAgOq0jAQhlZ0DwahHQgCmUIBi9vhHKm0ghBBCCCGkM0Wj7Vi1ahWee+53YIzh6KOPzf+kEqJAAul2rIENTmlDJ41/lAqMARq3JjeQ3ISUbkNdBgYFe2RniUcQEUIIIYQQQtJ99tl/cOmlF2DAgIH4+c+vRX19Q6cenwIJpNuxRj9aAYTOutMtpLUI1jhDXKdAQj5W2pX12TCWHJ9JcQRCCCGEEELKb/z4ifjb397rsuPT+EfS7Qjh3Nlm6KwiAzcjQWMwTEmp+nnopoTG7WIQO3ggqd0KIYQQQggh2wUKJJBuR0gJxqwFquyEfgVSKSgocDsjQUgFg/ok5JQwBDRu/fpgYG5GAiGEEEIIIaT3o0AC6XakBDizuiTITljPK7u5IwMQ0jiElBAUSMhKKgVTSHBPRoLVy4IiCYQQQgghhGwPenwgYcWKFZg9ezbGjh2LqVOn4tZbb4Wu63mfp5TCwoULcfDBB2P06NE45ZRT8MEHH/i2+eijjzB79mxMnToVI0eOxMEHH4yrr74aGzZs8G23YMECjBgxIu2/xYsXl/Klbje8GQlClX9Bn6zvZ+CcQUrAELQozkYIBSGtMhDAzhxR1n+EEEIIIYSQ3q9HN1tsbm7G2Wefjd122w0LFizAhg0bcMsttyAej+Oaa67J+dwHH3wQd911F6644gqMGDECTz31FObMmYPnn38egwcPBgC0tLRg6NChOOmkk9CvXz989dVXuPfee/Hxxx/j2WefRSSSnLtZWVmJxx57zHcMZz+kMNYoRmusoOiEBb2VkeCdOKAoIyEHU0hIIaGFrV8fnT1hgxBCCCGEENK1enQgYcmSJWhvb8fdd9+NPn36AACEELjuuuswb948DBw4MOPzEokEHnjgAcyZMwfnnHMOAGDChAk48sgjsWjRIlx77bUAgGnTpmHatGnu8yZNmoRBgwZhzpw5+OSTTzB+/Hj3e5xzjB07thwvc7sjpQLjAJNWUKH8x7PupjPPOEOTAglZCalgKuXLSIBdHkIIIYQQQgjp/Xp0acNbb72FyZMnu0EEAJg5cyaklHj77bezPm/58uVoa2vDzJkz3ccikQgOP/xwvPXWWzmP6RzLMIwOnTvJTCkFqayMBM5Y5wQS7NoGJyOBc9AIyByEkP4MDgZIKMpIIIQQQgjpAV555Y8477yz8J3vHIQjjjgI3//+LNxyyw3YurWpq0+taF988V8sWvQA4vF4V5/KdqNHBxJWrlyJoUOH+h6rr69H//79sXLlypzPA5D23GHDhmHdunVpF6AQArquY8WKFbjtttuw7777YsKECb5t4vE4DjjgAOyzzz446qijsHTp0o68tO2WtO9sc2dqQycEEpSy2gQ662JN40gYFEjIRkgFppj7tTu1oQvPiRBCCCGE5PfUU4/hhhuuwejR43DddTfjuutuwtFHH4fPPvsPNm/e1NWnV7QvvvgcjzzyIAUSOlGPLm1oaWlBfX192uMNDQ1obm7O+bxIJIKKigrf4/X19VBKobm5GZWVle7jZ5xxBpYvXw4AGDlyJBYuXIhQKPnWDRkyBFdccQX22WcfJBIJvPDCC/jlL3+J1tZWzJ07t0OvMRTq3rEeTeO+/+0wAXDOoGkcTCkwAFyzshPKRdMYGGMIaRo4Z4iENSsrgsMdcUiSFKz3zPnMOVfQuNWoMuj1WvLrhmwX6LohxaDrhhSLrh3ikDL436FuwibrnqOxf//7ZzBz5jG45JLL3McmT56K008/C7IzxqUVIJGIo6KiMv+GveDYXXHdaFrwv90z6dGBhM5y4403orW1FWvWrMGDDz6I2bNnY/HixaitrQUAHH/88b7tDz74YBiGgfvuuw9nnXUWwuFwUcflnKGxsabD598Z6uurSrIf3RCoqYmiIhyCVApCSjQ0VCNUxn/EtYiOmpoYGuorwRhDZaVATDdRW1eFygj9iKRqiZuor69CfV3yl6sugYaGajTUVuR4ZrpSXTdk+0LXDSkGXTekWHTtkHhcw+bNvKCFV3cNQLW2tqB///5ZXof/sRdf/AMWL34SX321Fg0NDTjqqGNx/vkXQtM09/u/+tW1eOihR3HffXfjk08+QWNjI+bOPQ/HHvtd374+/vhD3H//Pfj3vz+BpoUwdeo0/OhHV6Bv374AgHXr1uGEE47BL35xLT766EO88caf0b9/fzz11FK8/fZfsWTJ0/jyy8+RSOjYbbfdcd558zB58lT3PG666ToAwDHHzAAA7LjjIPzv/y4DAHz55RdYsOAOfPjhB9C0EPbffxJ++MPLseOOg9zzO+CA8fjBDy5BS0sLXnrpRcTjMfz5z3/r8PtdqM64bqRk4JyjoaHad/O8UD16lVRfX4/W1ta0x5ubm9HQ0JDzebquI5FI+LISWlpawBhLe65TAjFmzBhMmTIFhxxyCJ555pmc2QYzZ87En/70J6xduxbDhg0r9KUBsNL6W1qiRT23s2gaR319FVpaYiWZdJDQBVpa46iqCEFKBcMUaGpqR7iMmRkt7Tpa2+OIWL8TIaRCS7uOzZvbUFNVXBCoN9u0pR3RmIEQS4ZL29oS2Lq1HdIwA+2j1NcN2T7QdUOKQdcNKRZdO8Sh6wlIKSGEgmnmvhYYs64dq6dUJ51gAUaM2BvPPfcsdtxxJ0yZMg39+u2QcbslS57EffctwMknn46LL/4RVq9ejYUL74VpClx44SUAkiXIv/jFVTj++BNw+uln4/XXX8GNN16PxsYdcMABUwAAn3zyES65ZB4OOGAqrrvuZsTjMTz44H34yU8uwwMPPAIA7s/YffctwOTJ03DttTdCSgnTlPj6668xZcqBOPXUM8A5wzvv/B2XX34pfvvb+zB+/ERMmjQVZ589F489tgi/+c0C1NTUIhIJwzQlNmz4FhdccC523nkX/PKXN0DXE1i48D5ceOF5eOyxxaiuTt60feaZp7HPPqNw5ZW/hBBm3s+6lDrzuhFCQUqJ5uYoYrH0cu76+qpAAY0eHUgYOnRoWi+E1tZWbNq0Ka3/QerzAGDVqlXYa6+93MdXrlyJnXbaKWdkZocddsCOO+6INWvWdPDsg+nMC7gjhJAlOVfdEBCmhAxbDf1MoWAYAuUrbAAMQ0AI6fsjwTQl4rpARVgr45F7HqUUYnETLGVEpvOLvtBroFTXDdm+0HVDikHXDSkWXTsk2zhypRR0md6APaQYzE4YYR7hYc/48mB+/OOf4eqrf4Jf//pXAIBBg3bG1KkH4pRTTsegQTsBAKLRdixatBCnn34W5s27CACw334HIBwOYcGCO3D66WeioaGPu88jjzwaZ545GwAwadJkrFv3DR555EE3kHD//Xdjr732xk033eae79Che+Css07BP/7xN0yenJySt8ceI3Dllb/0nfOJJ57i/t9SSowbNxGrVq3EH/7wHMaPn4jGxkbsvPMuAKxAibcR/9KlT0MIE3fccTfq662bxcOH74UzzjgJL730AmbNOtXdtq6uwXeOnckJHnRm8ClIYCyXHh1ImD59Ou6//35fr4SXX34ZnHNMnTo16/PGjx+P2tpa/PGPf3QDCYZh4JVXXsH06dNzHnP9+vVYt24dBg8enHO7l156CfX19RgyZEiBr2r7ppSChAJnDNIapmBNVSgjqayGgf4TAd19yEBIBaGsngheCtbnRQghhBCyPVBKYf7ye7GyuXNuLmYytGE3XD7+woIWvkOH7oEnnliK9957F//3f+/igw/+hd//fgleeukF3HPPQuy55wh8/PFHiMWiOOSQw2CayWzTiRMnIZFIYOXKFRg3Ltl4fvr0g33HOOigQ3HPPXdCCAHDMPDxxx/ioot+CCGSd78HDx6CAQMG4j//+dQXSJgyJX0Nt3HjBixceC/ee+//sGXLZndS2IgRe+d9vR9++AHGj5/oBhEAYNddd8Mee+yJjz760BdIOOCAKV0SROipenQg4dRTT8UTTzyBiy66CPPmzcOGDRtw66234tRTT8XAgQPd7c4++2ysW7cOr776KgCgoqIC8+bNw4IFC9C3b18MHz4cixcvxrZt23zlCtdccw0aGxsxatQo1NbWYtWqVXjkkUfQr18/zJo1y93uhBNOwHe/+10MHToU8XgcL7zwAl555RVcffXVRfdH2F5JZS/smdNsRBUUmTOFhGFKVFUEv7StX0b+gzAG6CZNbkglhIIQCpGQP1OD0fhHQgghhGx3euaiMxwOY/Lkae4C/t13/4Gf/vRHeOSRh3DTTbehuXkbAGDOnDMyPn/jxg2+rxsb+/q+7tu3L0zTRHPzNgghIITAXXfNx113zQ+wr36+r6WUuPLKy9HW1oZzz52HnXcejKqqKjz00P3YsOHbvK+1tbUFe+45PO3xxsZ+aGnxN+d3+jWQYHp0IKGhoQGPPfYYbrjhBlx00UWoqanBrFmzcNlll/m2s2qa/IvC8847D0opPPzww2hqasLee++NRYsW+TINRo8ejaVLl+Lpp5+GrusYNGgQpk+fjgsuuACNjY3udkOGDMGjjz6KzZs3gzGG4cOH47bbbsNxxx1X3jegF1LKSkNgjLmBhEIyElradbTFDQwZUFfAMYHUfwi4xqAblJGQSkgJKSU0nvKrQ7FuWQdICCGEEFIOjDFcPv7CzKUNWvctbchk0qTJGDZsT6xZswoAUFdnZXrfeONtvpuzDqcEwrF1axP69x/gft3U1IRQKISGhj7QdR2MMZx55uy0zAUAvhIJIDm9wPH111/h88//i5tvvh0HHph8fiKRCPTa6uvrsXVrU9rjW7duweDBu6Y82jMDQ12lRwcSAGDYsGF49NFHc27zxBNPpD3GGMO8efMwb968rM+bNWuWL/MgmzvvvDPvNiQYqZK5AYxZZQ2FLFClKrzWR2bISNA4Q1ynjIRUplCQypoo4qUoI4EQQggh2xnGGCq0SNrjoRCHhu55Q6qpaQv69vXf9U8k4ti4cQN2393qIzdy5GhUVlZi06YNOOigQ/Lu86233sDw4cm+c2+++WeMGLE3NE1DVVUVRo4chTVrVmGvvX5Q8Pk6AYNQKJnl/e236/Hxxx9i8OBkCbnzfV33BxhGjx6LP/zhOV8p/Nq1q7FixZc4+mi66dsRPT6QQHoXpRSYshapVoSVuR1hg5AKMAoMJFgLYP/COMQZTCEhpITGu+f4nq4gnMYVKRgYKIxACCGEENK9nXXWqZg69UDsv/9k7LDDDti0aSOefXYpmpu34aSTTgMA1NXVYe7cC3DvvQuwceNGjBs3AZqmYd26r/HXv76FG2+81dec/uWXl6GiogLDh++F119/BR98sBy33Xan+/0f/OCH+OEPL8Q111yFww47AnV1ddi0aSP++c93cdRRx2L8+IlZz3fXXXfDgAEDcf/9d0NKiVgsikWLHvBlQADAbrvtBgD4n//5HQ488GBUVlZi2LA9cPLJp2PZshdw+eUX46yz5kDXE3jwwfswcOCOOOqoY0v3xm6HKJBAuhUraOBdkhZ2p1sICWmXQ/CAqV5SqrQ0Kk1j0BMSplDopmOAu4QpZOasL0YZCYQQQggh3d2cOefj7bf/irvvvgPbtm1FQ0MfDBu2pztK0XHaaWegf//+eOaZp/Dss88gFAph5513wZQpByIU8i8hr732Rtx//9145JGH0NjYiJ/+9Oe+BoqjRo3Bvfc+hEWLHsDNN18HwzDQv/9ATJy4H3bZJXcD+0gkghtvvBXz5/8av/zllRgwYCDOPnsOli9/D5999qm73fDhe2HOnPPx4ovP4+mnH8eAAQPx+9+/gIEDd8Tddy/EPffcieuv/wU417Dffvvjkksu941+JIVjiv7677aEkGhqau/q08gpFOJobKzB1q3tJRmNtKU5jjUbWtG3vsL6uiWBoYPq0VhXEej5X21sRWvUwPDBfRAKGAFYt6kdG7dF0cdzDCkVWtp17Dm4D2oqqWGmY92WdmxoiqZ9HltbExjUtxo79gv2C7nU143D+XVGHXd7p3JdN6R3o+uGFIuuHeIwDB1btqxHv36DEA6nlzKkCoX4dnHNvPTSC7jppuvw4ouv+UYukuJ01nWT73ru27cGWoB1FN1rJd1K6gQFBhSYkaCQJfs++3OUTMtI4JxBKNUpjXJ6El0XaaMfHbIb/Hu5tTWBTdtiXX0ahBBCCCGE9GpU2kC6FakUmCd3vtCpDUKqgp9jlTakL46ZYttFNLkQuikzBhIYswIyXU03BU3bIIQQQgghpMwoI4F0K0IqXw0+A0MBvRZhCgklVUENGs0MPRIAa3FsCJrc4BBSwhQybWIDYJUSdIeMBFPIgpttEkIIIYSQwh111LH429/eo7KG7RQFEkhZrd/Sjmg8fb5uNkJKfy+/Apr4OU0WJQocGSn9WRAOrjEkdFqUOoSwAjQZMxJQWAlKuQihKJBACCGEEEJImVEggZSNUgrRuIlEAanmUgLMs1BljEEE7FMgpRVAUAqFlzZk+EnQOEPCoIwEhykURLZAAgNENwgkmMIKJonukB5BCCGEEEJIL0WBBFI2Qiqr1KDAHgfeZSpnCLwoVErZwYTgPRKcbTNlJIQ4gykkLUptQlrvRcbSBrCCyknKxTAlZIGlLYQQQgghQXSH7EtCOqpU1zEFEkjZWIGEwhZ1Uipw5s9ICPp8KQGprP8N+vPhZDBk6pGgaQymUDBN+kcDsO72Q7HMjSkZunzxLqVd2iJp2gYhhBBCSkfTNACArie6+EwI6TjnOta0js1doKkNpGykVBBCFpTyLlIaHzJmNUMMdDyV7KcQOPigFBSszIdUGucQ0oQpJSqgBdpfbyakRIbEDQDW51RodLMtqsMUpcv2EHZpiyxwagchhBBCSC6ca6iqqkVb21YAQCRSkfHGikPK4KW5hDjKfd0opaDrCbS1bUVVVS0471hOAQUSSNkIqWAqBRHwjr5VmiBTAgnBMxKEfUe6kEWtUsrOSMjQbJEzSKVoBKTNeh8yv6+MMShYi3ie4x9Wr682tkGP69ixb3Xg5+Ri9UawMhIElTYQQgghpITq6/sCgBtMyIVzDkmlsaRAnXXdVFXVutdzR1AggZSNkApSKBgB7zpbd5P9i/pCUuZ9GQmBJz1YwYRsC1kORmnyNt2UGRstAlaigvNeZqwTSaGUNV1h49YYIhrHDn2qOnx+0joBCNX1ZRaEEEII6V0YY2ho6Ie6ukYIYWbdTtMYGhqq0dwcpawEElhnXTeaFupwJoKDAgmkbISQ1h39gJG1TGUGnDE3VT3fXWslreczxhB0HamUgsoy/hEAFBQMkyY3AIBuCmjZfvGwZL+JIJQddGAMWLclioqIhrrqSIfOTyoFoZTVoJP+4SaEEEJIGXDOwXn2v1lCIY7KykrEYoKyWklgPfG6oWaLpGyc7vlBF3XOQtTXbBHJRWfe4ynYAQEFWUAWhBV8yPx9TeMFja/sraSdQZBpYgNglzYUEEhwskeqK8NQSmLd5vYOj9p0eiQwsG4xipIQQgghhJDeigIJpGxMOyNByGAjIJ2O+6k9EoIuUJ10ds5Y4Bp5ZS9oszXMCXHW4QVubyCEgpBW2lUmDAA8pSX5eD/r+poI2mIG1m9p79CoTevzV2AcPSaSSwghhBBCSE9EgQRSNoaQ0DQrEBBkYa/siIG3zMBpnBik5l3a6QWMBw8kSAVI5MhI4AymkCWdLtATmUJCCgktyxvllJMUM3aTMYY+tRFsaY5j07ZY0efoBpI4g0GBBEIIIYQQQsqGAgmkbHRTIsQ5pAx2p1pKu8zAc1UWskC1xhMqMFj9GYKQTvAiywJZ0zhMEbw8o7dyJnDky0gI3ORSOv0wrP1pGkdtVRjfNkWxra24Gc3SLm3gDNt94IcQQgghhJByokACKRvTlAhpViAgSMa6gj2+0ZORwO0mCUEWqKaQ4IxZpQ2Bxz8CyNJoEbAyEoSUgSdPdLWWqF70QjwXIWTOEhDGsg2GzEzZkxW8u6uIaNA4w7rN7YglsndDzsYZ/anZGQlByywIIYQQQgghhaFAAikLISWEVAhpHEqpgKUNyU7+DmZPbQiyKBTCKmtgPHjXfuV0W8yCc2adfw8IJLTFDHy1sQ3bWssQSJAKTGUPuFi9LArrkZApMFFXHUFcF1i/ub3grALTVG4gSRaQHUEIIYQQQggpDAUSSFk4ExtCGocIuKizatyZb3HJmNXDIEjLA1NKcGZ17Q8afLA2ybcd6/YZCbGEia83taE1qpflXE0hcyVuuBkJhYzdzDbSs09tBFvbEmiNGgWdoyEkGGfgnBU0LYQQQgghhBBSGAokkLIwhRVI0Li1wgzSLNFa+Pu3Y/YKNUggQgjrDjdndup8AcGLPGfWracAJHSBrza2IRY3UV8ddssQSkk3BXiO3xaFZiTkKinhnIEV0efACSS5gYSgUQ1CCCGEEEJIQSiQQMpCKgWhFLjV5CDYol4BKsPiUkHlbbZoTXaweiQwzuwa/PznqZSCypORENI44nr3HAFpmAJfb2pDW0xHn7qItYgOOCWjEAlDWkGhnFjgqQ1BAkuFlpOYpqTSBkIIIYQQQjoBBRJIWQhhd9C3F59BMxJYhs2YYnmfby0cYZc2IHBpgzX6MfcCWeMMCaP7BRJMIfHNpnZsa0ugT22FnY3B3LKSUlFKwQgQSMgfkkmSGbJPvDReWDmJtPtwcKe0oQzBFEIIIYQQQoiFAgmkLIRMLiqdDv35yGzZASx/UEBKK6OBcWsxrWSwO9KZyilSaRqDKRWicbPbTAKQUmH9lnZsaYmjT23EDdiUI61fSG92SXZMsQKaLQK5Skq4PXkhqNRxklDBG24SQgghhBBCCkOBBFIWQkp3meikmucjVbbsgPwp81JZd+E5Axi3G/8FWIc6fRVyiYQ0JBImvvymGau/bUFTSxyJLix1kErh26YoNm6NoaEmAk1L/hg7oy9LmdYvhNW4UMvVJAEAGAKXNuQLOHBWeCDBO06SsWDBK0IIIYQQQkjhQl19AqR3ktLT7YBZzRfzP0ciW3ZAvoWxlAqwxwm6UxsCJNoLKZEnjgDOGfo2VEI3BFqiBppadFSEOWqrwmiorUBNZQiRsJb3WKWypTmGDU1R1FWHEQr5F/fc7g9R6owEqSQ4z/caC2m26GSCZG+4KOzgQL5MCOcclWdbBUB0k+wRQgghhBBCehsKJJCy0E3hLtB5wA78UmTLSAhQ2uAZJ2gtpoP1CZAyf48ERySsIRLWoJSCbkpsa09gS2scNRUh7D6oARWR8gcTYgkTG7fGURHh2YMXAUtJgkr2n8jfbDFoJoSQuTNBOGcwzWTfg3xSx0kyBphG9520QQghhBBCSE9GpQ2kLExT+er2g3TgF8oa35eKMatHQS7S7onAPGkQQdbSUmY+Zi6MMVSENfSprUDfugpEEwLxTmjGqJTCpm0xJAwT1ZXhnNuWNJAgrSaY+QMuKl+7CZeQEjxXjwRmZSSIIPUpcLImkp8/L7BZIyGEEEIIISQ4CiSQstBN6QYSGGMwApU2ZL5LbdW7514UOs37mKfZXqCpDQpgORa0+TDG7KkG5Q8ktLTraGqJo646knfbUpY2WBMwgmzJEHTpLiRylpRonEEqGTgg4jRbdD5/jbFAWTCEEEIIIYSQwlEggZScNYovOS6Q24GAfAt7U6qMi0vGGESedXragpMFK20QWY5ZCE1jiCbMju0kD1NIbNgaA+MM4VDuH1vGUdK78VIqZJzLmSZ4jwQpJViOVBCnWWLQgEjqKXIOGKboNlM2CCGEEEII6U0okEBKzuqgn6ypt6Y25G+YmG2CAg+QkZC+YMxfr2/1UcjfbDGfsMYRS5R3NGRTSxytUR11VblLGgC7J0UBEw/yCZoVwOxyhED7FLkzEpzrIOixhfSnOAS95gghhBBCCCGFo0ACKTkh/E3yGLcXdXnWtjJbRgJY3g781oLTs43KP4pQqVwjJ4MLhzgMUxY0rrAQVoPFGKorQ4EaD5a6P0DQxThD/oCPw5QyQPPG4CUaqZtxzqyMhgAlNYQQQgghhJDCUCCBlFxyXKD1NWdOlkL2RZ1M6brvxRjyLgilUv5eByx/oz5ngdzRjISQxmEICb0MgQSlFDZujUI3JKoqgg1Z4YyVNCPBNHNPWHAwlj9448g3tcHeY+BAgin8mSVuIKGEvSIIIYQQQgghFgokkJIT0mqS5y1tcMbzZeOUBWRaWjoNDXOVDphC+Z7MGYPM01dB2VkLHc1I4HbGRTkyEprbdTS1JlBfk7+kwXs+Ik/gphCmlIEyIRhjebNOgOABHCuAFDDDwfRP3+DMymKh0gZCCCGEEEJKjwIJpOScBayzQGeMuRkH2Z9jL+ozLFgZs1LXc60JTeFfSDJmjZPMxQludDAhAYD1g5QwSttw0TAlNm6NQeMMoTwNFn3nwhiUKt3khtT3Npsg0zUAe8JCluwTL84QOMvDFP5gB+f2e0ClDYQQQgghhJQcBRJIyaUuYN1FXY6Fba5FPWcMCrlr9YWQvswCa9JDvmaLpclIAKzJDbF4aQMJW1piVoPF6uDZCEAZMhKyNMHMJMghlcreD8OrkF4PGc+xhMEUQgghhBBCSBIFEkjJCakAlbpKVFA5AwnZF/WMAUrmKW2Q/jvcPMAEAWkftARxBIRDHDFd5O3LEFQ0bmLTtjiqK0MFBzo4twIzpVhEO5MtgjRGDDq1QSoFpZA/I4EH6/Wg7HGjaftjwac+9CS6IWCWsJkmIYQQQgghhaJAAik5Q0iw1Csrz91hqZx09/TvOaUNudaEQii3uaPznHyLWqUUJPKn2AcR0jhMU0I3SrPAa2qNwSigwaKXFUSRJekPYJWkIHBpQ5ARmEopKOTPBHGCQfmCAULagYkMv83yTfvoib5takdzm97Vp0EIIYQQQrZjFEggJWcYGZrz2X0SsnGaKWbOSLDGAWRbUEppl0WklDZIKXMubKWbBZHnBQUQ0hhMqUrWcDGWEIiEi/vxZHYpSCkyEqz3NnPvirTjIn9TTMA7djP3/pwmlvmyPJR9baQGhBgDzBIFdroLU0i0xcySZb4QQgghhBBSDAokkJLL1pwv17pWKkAi8+KSMUBCZW22mClVnrtZDMUFLwrl7EM384yKCEDaAQlNK/68mCpNWr+UyLhIz3jMAE0xAW/2Se59aizYCEcnayF1f1oBPRZ6irgukDAEzF5YskEIIYQQQnoOCiSQklJKwTAFNJ7h7nCORZ3VryBzurszhSBbUCCZkeA9HnP7LmQ/VyDzwMnicAbE9Y43XDSEhCkUQh0IJFgZCR1fROcqOUnlbGIVLuQ4N2X1vAiUkWCPEs15jtIqUUktp+GMwRAdD+x0JwldwDBkoN4RhBBCCCGElAsFEkhJCenU1PtXiZxZkxWyseIImReMVlAge8q8VFYjR+4rbUimvGdjBSZKd2c3FOKIxju+cDWFhJQSWqai/4C4fTe/o0SGspFsggRvAHv8IwvQI4Fb5TD57r5LlTlrgnPANHOXt/Q07XEDppS9LtOCEEIIIYT0LBRIICXlpKKn9khgjMHMMY5RSgWWMzuAZS9tkEi7I80ZC1DaAGQeOFmcsMZhmLLDfRJMU0Ko9PewEIyhJP0a3LKRID0SmBWWyd8jQRUUvwnSbBFgaYEJ5xroLSMghZRoixmIhHje0aaEEEIIIYSUEwUSSEkJaWcH8PRFXa7SBpUnO4AhR2mDSs+CcDIScpc2lDKMAIRCViq90cE+CYaQeYIq+XHOShJIsEZ2Blu0ulkgeXskFFBQovJnVkiZOZfFKo3IP/Whp0joAropUBkJlWwqh6M9bmDj1mjJ9kcIIYQQQno3CiSQkhJSwVQqrUcC58h5F9VaFGVfXuYKCkiZ3l/BKYfItdiSOcoliqFx606x3sEFvG7KDk+SsPoDdDyQIGQh2QNOaUOAjIQCXl/e0gaZOSDkBBJ6S0ZCXBeQQiEUYm45R6nohpXtQAghhBBCSBAUSCAlJTIs6gF7HGOOngX52xVkvzOdqdeBNUEg991oaz1bypwEa3+60bGMhETCTAvEFMoK3HS8P4AsYD4mYwDyZIG4+wyI8dxNOgFAZCmV4IxBqN4TSGiPG+CcWc1HS5xpIaWCKUobWCOEEEIIIb0XBRJIScks8/+cyQvZFnXWXeocixiWo9lihn1agYzsfRUAZ5Fc2oWTFmKIxouf3KCUQsLo2OhHoHT9AQp5er4xnd595pvs4OCc5Z1QIIRMm9jgPFeV+M59V5FSWf0RwrwsmRZSKZhC9pqgCyGEEEIIKS8KJJCSEkJmqVd3ehlkXqiYMt9kAIZsy0mZ7S54nmaLIu8xCxfWOGK6WXT9uimsBWKoAxMbgNL1BzBF8DILBqvbYv7xj/kaaybxAE0j851jb1gcx+2xj5GwZgeJcpftFMrJ3ukNQRdCCCGEEFJ+FEggJWXKzIs6licdW+RZDDIGyCwp7jJDKYUlz/hHKUtc2ACEQwyGqWAYxfUnMIWEECXKSCjBXWshJIJWWVgZCfnHPwoRPIDDee4mnYAVfEkd/ejVGxbHCUPAEAohjQcq2ymUMO1AApU2EEIIIYSQACiQQErKMGXGUYH57qJKmS0YYGHIfmc5axCC5SltkADrYC+CVCGNwxRWd/1iGELClOnNKgvFeWnuWps5Fv1KKfzuLyvw5CufW1kG1tiGvMcUWYJNmWiMQUgFIbMHE0yR+ZrzHq+ni8VNOEkqjDEolDZAYkoJmSfwRgghhBBCiCPU1SdAehfTlBkXwfnuokqZ+843Y9kDCVlT2/OUNmTr9t8RzqK72NGLpikB1fGSCyuQ0PG0flPIrHf7E7rAf9ZsBQC0x03UVoUBu7whF1lASYnVI8G6brQMYU+lVM6sCc4A0+zZi2OpFFpjOiKh5BvASvDZegk7W6g3lIEQQgghhJDyo4wEUlK6mXnh6d5FzbJOEXnq5hnLPrVBZEttZ7nvjls9ErJ+u2iMMcSLnNxgyuBTEvIqQaNBIRSytWtoiSbHBSYbIubv/G8WEMDhjEHmaAJoZV0ga7CD89KMwexKCV0gYfdHcFg/S6Wd2iBlYc01CSGEEELI9osCCaRknDua2dPMcwcDnM7732xqw9OvfYFN22LJZ+bISMgWEGCMQYjObbYIACGNIRorbnJDQjezLtyL0ZFAglMzn+09aonq7v+dXKyzvItRmfMa8XNKNLIGEuzFb7YSFc5Y0WUm3YXVH0Eg7M1IyBFYK4YpJCR6Rz8JQgghhBBSfhRIICUjpH13OMuijiHzQkXZdfVORsIHX27Bl18345OVTe423K6VzyRbjTxnuevjZZkyEsIaR8IUeZsEZhLXRYcnNnh1JFVdSGsaRra7/a3tyUCC+1pV/oyEQkpK8pVoOJMGsmck2JNEenATwVjCBE95x1gJSzacXhq5mqESQgghhBDi1eMDCStWrMDs2bMxduxYTJ06Fbfeeit0Xc/7PKUUFi5ciIMPPhijR4/GKaecgg8++MC3zUcffYTZs2dj6tSpGDlyJA4++GBcffXV2LBhQ9r+li9fjlNOOQWjR4/GIYccgoULF/boxUsxhJRWLXu21bmyShjSHlbWf87TdLssQPeUBzBm9VFI5SyCspVTZMtIkEpBIXe3/2KFQxymKaEXOLlBSAnD7PjEBgfjKCqY4XDf2wClDcmeEHkaXDpBo0KaSeYo0bCCHSp7j4QS9YroKkoptEYNhMP+D4FzBrNETSSlHTCSUmX8+SSEEEIIISRVj2622NzcjLPPPhu77bYbFixYgA0bNuCWW25BPB7HNddck/O5Dz74IO666y5cccUVGDFiBJ566inMmTMHzz//PAYPHgwAaGlpwdChQ3HSSSehX79++Oqrr3Dvvffi448/xrPPPotIJAIAWLNmDebOnYupU6fiRz/6Ef773//i9ttvh6ZpmDt3btnfh+7CujsswXmWy4qpjCMcrUU93ACEswDXPQ0LGbMWhKlBA2cRlGmxm6scQinnbnvAF1cATeMwpYRhChTyI2aaCqZQqKooTXyPsw4GEqR1lzpbaUNr1JuRYL3Pyv5/2Tjve6Fve66AkFDZSyU4YzDsABe0jJt0a7ohEdcFKiMpgQSGkvV+UAp2JlHHrhdCCCGEELL96NGBhCVLlqC9vR133303+vTpAwAQQuC6667DvHnzMHDgwIzPSyQSeOCBBzBnzhycc845AIAJEybgyCOPxKJFi3DttdcCAKZNm4Zp06a5z5s0aRIGDRqEOXPm4JNPPsH48eMBAIsWLUJjYyPmz5+PSCSCyZMno6mpCffffz/OPPNMN+DQ25l5Shuy3UVVdlo1s+/EOzXtqRkJzl1T7rljr+xJEKEMLf1zlUO4WRDliCTAWijrBU5uMKWEkBJatkBMgThnBZ+DV65sDyAlI8FegLI8IzeT2ScFvO8scyYLYGcq5Ngf5wyqB08jiBtWiUw45L8mOGOeBpcd40xT0TiDoEACIYQQQggJoEeXNrz11luYPHmyG0QAgJkzZ0JKibfffjvr85YvX462tjbMnDnTfSwSieDwww/HW2+9lfOYzrEMI7mIeuutt3DYYYf5AgZHHXUUWlpa8P777xf4qnouZ1GXjbX4Sd9A2ndEWYCMhNT1pNtsL2Npg1UOkanERNm1/OXokQAAGmeIJQpruGia0i4lKM1JdXSxmWy2mPn7vh4JnuPkKumReUoRMmE5Miukyn3NaZxB5GjW2N3FEtbvmdTrm3Nm9yTp+OuS9g+WpvGSBScIIYQQQkjv1qMDCStXrsTQoUN9j9XX16N///5YuXJlzucBSHvusGHDsG7dOsTjcd/jQgjouo4VK1bgtttuw7777osJEyYAAKLRKNavX5+2r6FDh4IxlvM8eptcExKA7BkCzkLG7ZGQISOBs2RTRt9zVfaFabbgg3VMJwBhNeN79I+f4U/vrs3zCoMLhThiCbOgPhmGkDlHYBbKXWwWuYh24kLZpzZ4xj+6C/3cx1Mqe+AnG84ZjCz9JvK9NsZYScZgdpW2qIlwKFMjUXucaglel1IKElZGgpHnZ5gQQgghhBCgh5c2tLS0oL6+Pu3xhoYGNDc353xeJBJBRUWF7/H6+noopdDc3IzKykr38TPOOAPLly8HAIwcORILFy5EyE41bm1tdZ/rFYlEUFVVlfM8ggiFunesR7NLCjSNg3FA05j7WKpQiEMh/TVpJgfjDKEQh8a527jPENLdl1UyoaBpzPd8ZjAwxhAKaWl38kMhDUJIcI2llT5Y+7aet7k5jrUb2vDNpnYcOXnXkjRgrIiEoBsCCvCN7ctFqtzvX6Gc1++8t4ViDAhxnvF8DFP6Mi5MaX1WoZCW83iGPWHD+Ty0ABMqwlmuG+scGXie94xzVvR70JV0Q0AXAlUV4bTXFwopCF2U5HUxzsAZQySiAcy6BssxFrUUvL9vCAmKrhtSLLp2SDHouiHF6InXTY8OJHSWG2+8Ea2trVizZg0efPBBzJ49G4sXL0ZtbW1Zj8s5Q2NjTVmPUSr19VXYFjVRV2eivq4q4zZa2Lrc6huqoXkW/aGojpqaKBrqK63meHYgwRTK3ZcQEiyqo6GhGtWVYfe5PJxAdU0UfRqq045XoQskDBMNDdWIhP2d9iIxA9VNMTRUR9ActRbEQiqAa6ivrUjbV6GkVNjaGkd1bSXqqoP1yNjUpqNPQ3VJjg8AlYZALGGivr4KlRWF/6gbYKht1TN+npu3xfwPcIb6uiqYiqGurjLrdRuOGaiuiaHWfo01NflfKw+FoHGGPn2q0xa4UVOirt3Ies0BQEIo1NZWorEx/Rrpzra1JlBRGUbf+qq04JZpSrTGDNTXV/l+HorBQiHU1MRQUxWBkBL1DdUZe450J/X12T9vQrKh64YUi64dUgy6bkgxetJ106MDCfX19W5GgFdzczMaGhpyPk/XdSQSCV9WQktLCxhjac91yhbGjBmDKVOm4JBDDsEzzzyDuXPnoq6uDgDSzkPXdcRisZznkY+UCi0t0aKf3xk0jaO+vgotLTFsbmpDNKYjnGUNEtcFhJBoamrzLVRaozpaW+Pu8xJ2SUM8YaKl1VqwSqnQ2qajqakdiarkwmlbWwLt7QlUZBiZ6Nw1b2pqR0XEH0hojxlobYmDS4ltLclF8dffNoMPrCvqvUjV0hrHxk2tMOsr826rlMKmzW1WjwRVmjp1U0i0xUxsaWpHdWXhP+rbtsbQ2hZDJMPnuW5ji+/rtmgCLa0xtLcnsFUD6rMcry1moK3V2mddbSXa2xMQecYYOiUiW5oq0jIYmpra0R5NIJJjIkN7WwJNW9sRZj0rbX/j1ihaWxOIZKjbkVKhpT3956EY29oSaG1LQEkJ3RDY0tSGSKh7jrjw/r6hxpAkKLpuSLHo2iHFoOuGFKM7XTf19VWBMiN6dCBh6NChaT0IWltbsWnTprSeBanPA4BVq1Zhr732ch9fuXIldtppJ19ZQ6oddtgBO+64I9asWQMAqK6uxqBBg9LOY9WqVVBK5TyPIHpK8zMhJOIJE5Aq68WvpIRhSui6ADxrH8OQEPbzhJTuKMGEId19KaVgCgHDlL73xDAkhMh8TCUlhGktjrSUxZhhSphCQEr7vG1NzXHsvENpskCUVIjGDNQHyEgwTAndkAiHStg5XykYpoBuCESKSH9P6CZklve2uS3h+1o3TAhhjVk0dJH1utUNAVMot3eEkDL/61UKhiGRSAhEUtbMCV0AKvs1Zz1dIZHIfk7d1dbWBLjdwyMT0xRIGAIV4Y4t+g1DWmNZpYJpWD+fvIS9OspBCNnjPk/S9ei6IcWia4cUg64bUoyedN107/zVPKZPn46///3vaGlJ3h19+eWXwTnH1KlTsz5v/PjxqK2txR//+Ef3McMw8Morr2D69Ok5j7l+/XqsW7cOgwcP9p3H66+/7pvk8NJLL6G+vh7jxo0r5qX1ONZCX+acOMBZ5lF83s773qZ6uincBSdjDAwsrblcrmZzVrNFlbHhofU8qxbc8Pywbk1ZIHdEKMTQHnBygymsBXWohOMonUaDxU4sMGX2z9PbaBGA+x6yHKMaAXv8Y64xCxlwbn3umV6HKbKPp/Q+3xAi5zbdjWFKxBMCkWzpPTZVgmaL0u46yjmDzNMskxBCCCGEEKCHZySceuqpeOKJJ3DRRRdh3rx52LBhA2699VaceuqpGDhwoLvd2WefjXXr1uHVV18FAFRUVGDevHlYsGAB+vbti+HDh2Px4sXYtm0b5s6d6z7vmmuuQWNjI0aNGoXa2lqsWrUKjzzyCPr164dZs2a5282dOxcvvPACfvzjH+O0007D559/jkWLFuGyyy7zjYTszaxRdECuLBhnoZK6sLe+tB7TfWMErUkQIbtrvcrw3Fzj/xizvp9pXaSUche03mM2t+npGxcppHEkdAEhZd6mgoawsjJKNfrR0ZHO/kIg6yLdO/oRSE5tYGB5xz8yVdhr5Mwa4Zhp1KFhSrA84VDOmO8z7gniuomEKdCnIvfvj1KMtZRusM4Z+dnhXRJCCCGEkF6uRwcSGhoa8Nhjj+GGG27ARRddhJqaGsyaNQuXXXaZbzspJUTKHcnzzjsPSik8/PDDaGpqwt57741Fixb5Mg1Gjx6NpUuX4umnn4au6xg0aBCmT5+OCy64AI2Nje52u+66KxYtWoRbbrkF559/Pvr27YtLL70Uc+bMKe8b0I1YpQkqZwp9toWKkx0A+Ec+AlZWgtOVXoGlPVdICWSpfc+WxQDYIwjtYxpm8pjbSpiRENY4onETuiFRVZF7tWua0h6BWeKUcqXy9iDIek5CItvpOBkJ1ZUaonHhjg20PuNcp6Oyfl7ZcM7coJKXdS0Fy0gQQkKV4/0tE6tkAzkDS6pEYy2tQIL13iiUJjhBCCGEEEJ6tx4dSACAYcOG4dFHH825zRNPPJH2GGMM8+bNw7x587I+b9asWb7Mg1zGjx+PpUuXBtq2NxJ23XuuRZ21iGNpCxXv4jL1zrFuSFTbLSuYQtrdblPInMfMlMXgHjNDRsK2EmYkaBqDIaweDVV5piaYQiLrqr0DOMscSAkiV6lKS9R6nxrqQojGk/0HnGBRNtZHUcTrzFCiIaSCUkjrf5GKc0BIa/tQhqac3VFbzICW51y5XbrTUcL0BliKv14IIYQQQsj2o0f3SCDdh5BWo8QgqflpfQ4AZM9I8JQ6ID29XQiA5TqmQpbShuQxvT0Smtv1ki2kGGPgjKE9lr9PQlwXOctCij8H/+sLSqrcd/tb7YyEulqr0Z/pNgRkGT8n736LkiFAIZWyy0FyP9UJpvSUBbJSCglD5A16MAaYZgkCCUrC+RFiKE2WAyGEEEII6d0okEBKQkir40De1PEMWQXSk0KfnpGQDCxYzRP9uzNlchGUCctyR156MhK8C20pFVpjRtr2xaqIcDRH8484jOsi0JiVQnHOPIv84JwSlEwfp5QKrXZGQn2tdc6GSGYkeN7aNCrXN/NIbeIopQICljZkavLZXQn7XPNlWjDO3Pe9I0zhL/nI1SyTEEIIIYQQgAIJpESkVMES1ln6gk54nqsbKYEEX2BBQaYsyEWerv25SxtYhmOUtk9CRURDQheIJbJPDbBGXpZ2YoODs+IWm1IqKJn5vW2PG1B2kKG62vq+6emRoJA988CUxfUpYAwwU64NqRREgL4HGreaNfakQIIp8gcSOENRQaJU0vM5sxLtkxBCCCGE9G4USCAlkdoIL+e2qcEAqTwZCSmlDakZCZ5vK2UFFnItJBky15FLzzFTU/+3tZYukKBxDiEVYjnGQJqmvXAsQ/0+51Yjx1yTFDJxpl1kCiQ4jRZrq8LQNGu/yR4JzM46ybJfmb2BYy5ahrvvTo+EfOU0jLGSNSbsDEJISJW/TKjYbJNUpkhOvuDMOj4hhBBCCCG5UCCBlISZZ0Hv4Cx98SM8d6lzZSRwZtVzO5KL3RwHZNZd8FRSJlv+OVMbnEVzKRsuAkAkzNHSrmddzFujH/OPiCwGt8tBCu1NICUgVebRis7ox9rqMDRuBxKcjATYozWzHE+IAOUvGViZFf4gkxUYCPa6etI0AlMqSIm81wNnVuPSjgRInF4YzgQTzpkbFCKEEEIIISQbCiSQktDN3L0KHIwzpKwHfdkBeTMSPIsma7Gbu9kiy3KHVaj0vgz9GioAAM0lLG0AgIqwhva4iYSRubzBtEcTBmlUWSjOrfeskIwRIFhGQl11CMzqtegGhxizPpNcGQnFvMxMmRWFLKAZ0jNhuishVKDwCHcyLTrQ08AK+iSDcYwxd5QnIYQQQggh2VAggZSEaQab2MCZlb3gJTw12rkyElhKdoFUyq7vznU8hkzrR+FpMGfYx+zfpwpA6TMSwiEOw8zeJ8FaIJf0kC5nYkGhd+OtRoaZswecRou1VSFwbr13yYwEq9titqWw8Nz9LgTnVmaFkP5AQtD3rSdNIxBCZo/EeHCenFxRrNRgnJXlUHgpDCGEEEII2b5QIIGUhBE4kJCeOu2tmzfyZCR476w7Xftz9kjIELgA7AVtSo+EZCChtBkJjDFwztwFeCpdBHvvimEtwLOPY8xGKpW1asAZ/VhTrbl9HVKbLWY7nBXAKehUAGQe4ShV8H0VOwazKxgBrwfGrGkUHS5t8ATjOLc+u55SBkIIIYQQQroGBRJIhwmnxj9Ij4SUha2TQp/aIyHTOEjGkLaQlHnG/6UGH9znevsy2MGLAXYgobldL/nd68qIhraYkbE5XiJh5u3QX6xMd/KDkFIBLPNzWuweCTVVGrhd2iBMJ5DAck7KUAGmLGTilmh4Xodp5h/96H1+Twkk6EbwoJwoIkjklRqMcwI2lJFAiCUaN7C1hA14CSGEkN6CAgmkw0x7gRfsLqqVSu0s1KW0kuBTAwc1lWHra09GArcXqW4QQqq8d6U5y5zSnmlqQ2N9BTi36s5bsmQPFKsibI2BjKZMb1BKIWEIhMowscFzlIIDI7m2dzIrqqs4Qk4gQSYzS6y6/QxnYT9ebEZC6ghHQ8ic/TF8z88w9aG70k0RKLDkXKsdyR5QSkEiGZApthSGkN4qlhBoK/G/B4QQQkhvQIEE0mFCyEBj+AA7GOBJx1Z2Y75kRoIVOKitCllfezMS3O2dbAbr0dylDcxN33aolE71zjEqwhr61EQAlL5PAudWECQaN3yPm0LClICmlfdHsdBAgshyR1op5TZbtAIJyfN2FurZpjZIZQWNgmYReHFu1Ux4X4dZQONGzph9nXbvBbJUCoYpC8hQ6Whpgz+4wzggO7hPQnoTpVTGyT+EEELI9o4CCaTDhD0VIMgCMXUcobQXnTxrRoInkGDfgXVaHgRZ7Dg1+97072Twwvoj0clICIc4+tRZkxu2lSGVNRLS0NJu+M7FMBWEkAiVqbQBAKBYwXeYhZm5BCGhC/f9qqxUCIe8gQRhP4dlbK+glIKSxfVIAAAJpJQ2yAJKGwDRA2r/hZDWtIwCroeO9kjwNtV0e1F077eJkE4jlcpYkkYIIYRs7yiQQDpMCDs9OkhpAwekkm4wwF1c2tkBTrPF2io7kOBpvsiQDDw4z83HyYDwjQ1UyXIK7x+IkRBHn1onI6H0gYSKiIZ4wkRCT74mU8rAZSHFYjzzCMxcTJm5Tt/JRqiq0KC4gMa1jKM7M300qXe/C+Ud4ehMKwj6vvWUlH1TKEhRSEZCxwIJSip4u2o6gaDu/j4R0lmKGZ9LCCGEbA8okEA6TEiZrS9fmtSMBGc4gLsYtTMQaqoyZCQw5mYTAM4CKveBmXM8zzraSr23zsVbOhEOcTTUWhkJzSUubXD2bwiJmKdPgjXBorgGhEFxhoL7Axgic9mA0zuirjoCqUxwxt3JDcmJG1lKGwJM2cjFO8LR6a0RNCNB4x2fcNAZhFQwlSookJCtDCWITD9CCj1nVCbpWlZGV+axtr2FlPD15iGEEEKIhQIJpMOEUHmW80mMMTBvs8WUTv7Owt7JSPD+kcrtJgnesggnkyH78fzPsZ4H+5iAYQcqQhoHY8zNSNjqyUgQSqBZ31aS+vqQxtypB4CTEVHORovFTSywxjSmn5cz+rGuOgyhFDiY2yjSOYYCy5iRoJRVf190RgKzJjUAcEdBBt0X5wym6v4ZCU4fh6DBlkzjVAvhnV7i8AZsCMmlLWZg1betWUfb9gZCSV9vHkIIIYRYKJBAOsy0u/UHpVIyEryTF5LNFjNnJHhLG0yh8q7BecpzrGNaGQkMyYyEiF3r3yclI0EphabEFmzVm2DIjv+xXBHR0B433QBJXBcoc59Fa7FZQGquUgpSZu4/4ARBaqtCUJBgjCcDCcJ6TSxbRoInE6QYnDO3fEJIqyQmaGkDs5tldPtAglRgKvj7w3lhn20qq8wn/fkdyXLoiRK6QFvMyL8h8RFSoaVNx9oNbb4AaW8iJXyZcIQQQgixUCCBdJhhiKx3UBMiAalS7pgy5ctIcCYvKKWSExQqrU19PRKY1XDPWQuaWdLvfYdKeQ6QnPzAWDLjIewGEqyMhJaoDiElmo1mbNO3wpAGhOp4Cm9FWINuCEQTnkBCmSMJ1mJTBk7NlcpqtpfpvXXuPNZWhyCV9Jc2uOUT2TISVEF321NxxnyTIaQK1uDTPT66/512U8iCElRS+3wUKtM1wVjhPTV6um1tCWzaFuvq0+hxpLR+BoWUWLuhFc1l6C3T1YSUdnC1e//uIIQQQjobBRJIhyWyjKtz7ubHRDTte+74R0+Rtjf9noXiANIzEuDJZhBC5l2Upj4H8JdTuBkJYetHobYqbNXTK2BDSzOaEpsR4REoqJIEEpzzbY8b1ujHck9sgN1wUgVfRDtd+1mG83JKG9xAAjwZCXl6JCh7XGexOE+OcBRS+TJZgvA2a+yudFOAF/Bb2QkSFStTCQvvYHCiJ2qLGUjoJqWvF8gZi1hfY/2OXLuxrSyNaruSsH8f0qVBCCGE+FEggXSYYYiMKeamMmEoPT0jAd7xj1ZNPQB/48OIHSyQynd3VEG5f9CZgVPblR2wsL9SVpaClZGQHP0IwO6TYJU3fLV1ExQUKjQrPaIUgQQAiEQ4Wtt1GKaEKVQnZCTY72PgQELyTmMqJ325popD2U0iNc36nhsIUgyZlqFWT4vieUc4Os0WC8lu6Am1/wmjsIkN1t3g4u+WCpme1cM62Hehp9ENgVjChJDoUJnI9sgUEsz+9VVXHQEDsHZDG7aWYXxuV3GaxFKzRUIIIcSPAgmkQ6SyRmNlDSRIIy2QYC1UkiMcnWc6/REiIQ6uJf9o8wYYGJi7aBJC5S1tAKxAhXedJe1REYwxTyBBc7/fUGv1Z9jakkC1VuMet1SBhMqwhphuotUunyhk4VgMbpeNBB1h5mRsZC5tsDISaqo0t9FlarNFsOwZCR254+sd4SgVAk8KcTDmL5XpbpRSMIzMYzezcbJNiu39kDEjgTMY29GCOq4L6KaAsDOESHCm6b9ea6vD4Bz4akMrmlriXXhmpeGUY0lPAJsQQgghFgokkA7L9veVKQ0YyoBMuT/NOYNpp5h7GyEmyww0gEs3xVv33R1Vbr2qTKm3N4XEPz/bmPYHLEtZwHr/IExttqiUQmWVXWqRCLv754xDL0GzRQDQNA4hFKIJK5W6kIVjMThnEAXcURMZ3lvAWjRE7dGV1VXJXx1OjwTnM2WMZbxDbj1W/Gv1jnAUUqKgugb7PNtjJtrjhTXVSxiiU2q/hVQQBY5+dLJNir1bKjJknlgBG7ndpPnHEiaUQo+Y6tHdGGZ6RkttVRhaiOGrjW3Y0tyzgwlWM2B/g2BCCCGEWCiQQMrGkAakFBDSfxeYM3ia5sG9s+3NSJCQCIf8j1uY3QwwfQLA519twx/fWYvX//WN/0SYP/Vb2RkJQHqzxVazBeFKK2DQ1u4dPanBkKXr6h4Oceim7JS7XIVOLHDf25QVQqvd1T6kMYTCyX2l9khgADJUs1jve6FpBB7eEY7FrPdqq8KIJQRWrbfuluZbKCul0NyWwOr1Lfhmc3vBIzQLJYSVNVJoaQM60AjOm5qe3Ke1eNpeFk5tMcPqkaIUZSQUyBSZM2hqKsPQNIYNW6M9+j21ppokMxMIIYQQkkSBBFI2cRG3OuUjvbTBSbOXnsWlkx0QDnMoJRFyAgneBZxzdyhDsz0n7T59jBvzN1v0NHh0mjlGQhxRM4ot8U2otyc3tHoCCRo4hBIZ+z0UoyKiIZ7I3FuiHAqZWOBtgOnl9Eeor45AQLgBIDcjwf5MGbNmr6ey8xUKPXWXNyBiisJGjjrP71MXAaCwdkMr1jdFszZfNIXE+qYoVn3bgljChGmWP+1dSAmpJLQCui0yZmWbFHMn3Zl8wVI+E86tjJLu3k+iFJz+CJGwBqBjjSu3N0LKjBktjkiId6h/R3fgjH2k8Y+EEEJIOgokkLKQSsKQOjSmZchISKZOe2u0DSPZ+NAKJFjb+zIS7Pp7qawGit4/YuO6SN8e9sI2pdmis6B17jJrGsOWxCZIKPSrqwLgDyRwpkEpAVOZRb4jfpEQR1w33bv55VbIxAIhVcZ6FWf0Y111GEIKcPtWdnqPBIZMh5JFLP5TOQERM0NKdVC1VWFUVYawbnM7vtrQhkTK9dIeN7D621as29yOqooQGmojMKXyjLcsD1MoSJmeCZILtyeMFJM9kMzqSdkns3qKbA9p/lZ/BGmXNqntqslkRznTXbJl0HC7FKknX0dOJkJH+7sQQgghvVGoq0+A9E6mNCCUQJiHIVIW397UaW/XeKcRXiTEoJBcoPqaLTIGU1oLLgnlS8t2AgmpC0MrkOCZ/JAhC0ILWRkUtaE6sBrrsfaYsFLNNQbOOISSkCVquMgYQ7/6ik7LSAAKGP+oVMb+Ay12xkd9TQSmMsGyBBKs6QjpCzIhOza1AQBgXzPZUqqDqghrCNUybGmJQzcldtqhBtWVITS1xPHtFisdu29d8vNRqvyLTGFPoihUsdMopLR+DrWUYBbjViCwm0/KLIlYwgTc6SMcCWM7eNElIqSCFBI8nPnPCCsg1bNLApxgmwSKKqcihBBCejPKSCBlYSgTQgmEWAgS/sZtnFt3PJ30aScjQfdkJEhPRoLhCQwwBggh7T4J/h4JCd0KWKQuBqxSiuTX3hR7p64/pMEdZ1hVwd3FVXvM+j5nVt+GUk1uAKymi4WML+wIzuBOysgn2x/MrXZpQ211GFIJcPvXh/NeGfabzFjmfQipOpyR4ExuMDNMGwDSs1Fy0TSOvvUViMYNrF7fgjXftmLthjZwDvSp8wd5OGNln/gghAQrIpSgUFz6eLbpHM57vD30SGiLGW5/FI2ztCAkyc5p8pktoGf9HujpGQnW/8d6eECEEEIIKQcKJJCyMKVhL8ytoIC3T4LT1V9K/+LSWaiFQgwKmXskMDttXsrkCEdHttIGnikjwV6wOXfRQyHm1oozxlBXY42DbGnzZ1OUMpDQmayRfsHutmbrP+BkJNRWWcEhJ4gTcnskeKY2ZPij2xs0KpYzwtHKZPHv679rt+KWp97HPz/bWMD+GPrUVYBxYFtrAvU1YVRXhtO24xpDQi/v3WpdyKLfn+IyEqzyoNRjWl+zHr0ADEI3BGK6sPsjACFu9UgIWgK0vXOanmYPJFhhsZ58GTmjH8G2n+ajhBBCSFAUSCBlkZAJcHAwMOuOqaf5HmfWH2jCrp9Ny0gIWwuZTD0SOLPS5q0mcX5xezunGZ+DMf+iyNuXwQlShDT/vpxAgndyA0MPDiQw5mYM5CNE5v4DLVEnIyFk3clOyUhwMh4Yy7ywLUlGAmdI6MKeKuH/3lcb263/3dBW8H5rKsNorK9ASMv8KzHEGeK6Wda7koZRfLmGWcTi11kkZWqWV0hzzp4qrgvohnBHv2oas3939O7XXSoyQKkSQ+ZRsD2FtMc/cjBqtkgIIYSkoEACKTmlFBIiAY2HwOwmVd7qb6u0wUqLlRkyEsKac6fbedwTFIDVpV5K/z4BIKEnF8p6WjmEJ5Agk3fc3WaLIf+fxHU1VhSjNeoNJPCSjoDsTJwDpikDLYSzlQ04UzFqqqwsk9QeCW5GAjKPS8vV4T0ozpndlDB9X3G7tKU9XvrPSNOs3hzlvEufMERBox8dnBU3bcBZJGX6SIrtu9CTePsjAIDGuTWJgCY3BCKlCrS47snXkbLHNVh9Q3ru6yCEEELKgQIJpOSEEjCVgQ8/iWHxi5vR1m76MhIYs+7uuDW2KRkJTkmDW9rg6XnAuBUUcJpgecU9gQRvnwSn6Zfzh6CU8GQkJHskeDkZCa2e0gaNaT03kGB34g/yx7Ap0ssGpFRocwIJ1RoUVNrUhuT4R+tYqUeSsuNTG9zPMkMgIZawPstovDSTNbxCGocwZXIyRYlJO4umqEACZ4H7X/iOqdLLg1wKEL184eTtjwBY76OQoIyEgMyAAYKefB1Je8JPalYbIYQQQiiQQMrAVAaEFFjzjY5YXGLTVhNKpS7AFISQUApueqyTeRAOMQAKTjNwb5M7BubJZEi9I509IwFI3hmTnkkRzshJrim3RwLgyUhIGQFpqvKmt5cL58xtbpmPECqtbKA9bljlJAyoqvB/U/MEEpSn5MT7PjnNMTvaI0FzGnWmTOwAnDvMQHsZAgkaZ2UdASmkzDlKLxde5CJHyWSvkFRWwK733plP7Y/gUqqo7I7tkSlk2s9gKsbQo99Pp58OY5kn0RBCCCHbMwokkJIzpQkFhXjC+sNL15Wv2WJyOyurINkjwVq0axoAcITsu4W+jARmddLWTf/dbaWUm9oO+EdAunfI7TWTVHCDBm5pg6bcVH0AqK22MxKiyX1yxiGVgKlKv1AtN6cTf74Fp9OtP3XB3+o2WgwD3F9W4mSOmEK5ky/sZue+/QKZ0+gLeh08Oe0jPSPB+lyi8dIHe5h94ZVrBKQp7FF6RQQSGEdRmRLO3dZMeA9fAOaT2h/B4YyXJfmZZv7rlbOeHZBS3oyEntkehxBCCCkbCiSQkjOkASklErr1B7lu+JstAtYfaFZGgrdHgr2oD1sL37A7tcGbFWAtUs2UQIJhSt/C1V/akFwgA6mTIuy6fk2BexZV9bVWICEak25/Be5MoOiBDRedvhT5AgnCDu6kLtJb7NGPddURCCV8y08nI8EqOZFusMe7mFduPX4HeyQwp3kbS9tXzM5IkUr5slNKpsheBEEIqWAqVXRGgpOlU4hczfIYY2ULmnQHVtAxPWDGOaAbPS9Q2BWMLE1ZvXr6deT8DrN6hvTc10EIIYSUAwUSSMklZAK6nkwZ1vX0xoiM2U3zPItLw8lI4FaZQThbRoJdT+5d7KYuHPWUjAQ4DRqV8tXqJzMSpC8joSLC3TvtTlYChxVI6ImTG4IGEpxeEqmlDU5GQn11GEIKMM+vDm+PBOdzVnYpg3e/Sil34bFxawz/9+9vC07J59xqtpnpWU5GAlCu8ob066xUhJBWU7ciAi2cJ3uOFEKq9J9L7z6NXtwroDXq74/g0DjzBSFJdoEyEnjPzvBI/t5iPXqMJSGEEFIOFEggJSWVREImYCSSf2AaBtIyEhiz7mghQ0YCD1mL+nDYDiSY6WUKMuWueeoCL5HSI0FC2XfJk3fGlVLuvlN7JDDGUFftHwFppeyrHhlIcOS7ay2lgsrQf8IZ/VhfE4GpTF/QJeTJSHBLG1LK75Wy92u/xy/+fTUWv/pfvP7e1wWdvxUUSk/IN4W/EWK0DJMbQhovWyDBFApQxWVrOD0SCs1IyFX+YWV+BJvy0dNk7Y8Aa3KDbohe+bpLSUgZaAqLU9rQU99PZZfBMVZ4oI4QQgjp7SiQQErKVCaENKHryT8wM5U2cDuzwD+1wc5ICFlzuyNZMhJg3yXyNvry9kfw7ss6VnJigVPe4Pxh6Px9q2npfxTX1aY3XATQuwMJyv+ZOJyMhLrqMIQ03IkNgLe0AclSFc97DdilDkj2SGizAxNvf7wen63ZWtiLcHbmEU/4P5OyZCRoDIaQZSlvEFJma1eQF2dOBkhhC51sYz6dfQad8tHTZOuPAFifMU1uyM8qFcvfHLSQaTHdkVQKYMlmiz01IEIIIYSUAwUSSEmZ0oBQAolE8jFDR1qDQubUdQNpGQmaBn9GQobsgtTFbnpGgn/cpLOwdbISGGO+O9ghDb50fQBuRkJre/LcGThM2XNrqIM3W/Q/7mQk1FWHISB9/SRSSxvspAF/s0Un+OOO3Uy+98//bTW2tMQDvwYFpE9sSAkklWUEJC/fCMiEIdLKSYIKWraSSsjsNe6FTPnoabL1RwDsqSBlChb1Jk4GTL6MBOZMWSng7VRKoakl3i0+A2FnZ6U27CWEEEIIBRJIiTkBA2diA2BlJAjpX+hbdd3KrQtXSrmZB6GQlQLvZiSY3saJzBMMSO7PW8qQ6WtnYevcuWWe/XLOAJ7eCLCuxgkkJPelMQ5Dlj5tvrPk66Au3cyBlIwEu9libXUIQvn7SfgzEiQYrM/TW3+v7LuSbtDI/nz61lcgYQj8/i8rYJjBMj3qqsOorQr5HvP2RwCscZWlpmkMpizPIlM3ZVGNFgG4pSSFLvpFzowEa+HUG9O5s/VHAJwxn7JXvu5SsoJMQaY2FB6QElJhW1uibGVEhXD66bgjhCmSQAghhLgokEBKShc6AIZY3B9IkCkZCc4kBefPMuGZqqBp/tIGI6VxolLpd8NyNVu0n2k3W/RkJNjbhEMMUknwlB+H2hqntME7AlKDofQemeJqNdDLE0iwJyJ4KaXQYpc21FRpQMp7FdKc7ay73FbWSKbxjywtaHTSIXugpjKEDVtjWPaPtYHe10hYQzjkr2+PpZQ2lCMjweqRwUqe9q6UgmEUH0iwdlL4IidXjTvjVl+TfHeSTSGxcVusxyyw3P4IofT+CICTvVS+6Ry9hemUpQUY/1ho2Y0QVjPd7nBNSQk3I8H5t4MQQgghFgokkJJKyDhCTPMt7HRdQcBfX+qkijLl9EfwZB1w646388e+IVLvaLG0UYK5ShusZ6jkH7T2nXFnUe3cnUy9O1ufISOBMw6hJCR63kJD4/lHsUmp0n4pJAzhpvPXVGkQSvp6JDilDQCgC+GWkvjHPya7L5pCugGkfg2VOPGgoWAM+GjFFiz/fHNRry09I6E85ScMyBuMKZSQCiLAoiyfQjMSTCHTSlgc7p3kPCunaMJEU3M87f3vruKG3R8hnP2fPgVFgYQ8gl5rxZTdCKmsiT7dICvEGZHKkCzPIoQQQoiFAgmkZIQSMKQBjYfSMhKElL5Ud2dkHZj1mDM9IaQxMHv8o7erum/xZpcoeNddCTuQUJGhrwKQTK1XSkHCuhPrlDaEtcyrKScjIRaXME07WwIcSkmIHtgnIaRxxHSRc5Hk9JHwamm3shEqIxq4BihI34QLzfP+OYEKq7zBu19AIT1oFA5x7DaoHoeO3xkA8PK7a7Fuc3vBr83pkeDcYS9HaQNgj4As8aJZCAUhVMcyElhhizW3xCdbRgKzlk/59mkYEq0xoywZIOVgBRxzj9nknJWlD0ZvImWwKSNu2U0BC3CpFExTdotAgtUjobjXQQghhPR2FEggJWNKA6Y0oTHNF0hQCjBM6ZvcwN1xWv7FZTjE3Rp9TUsm2fsDA+mLIGdqQ221tfhP7ZHgHRvp9Fcw3J4M3BfkcFREGMIh6xhtUWehqkEo0S0nN2zYGsWS17/EqvUtGb8fCVuj7XLVHgsh3eCOo9Uz+lEqkdZDgTHmNgp0AkIS6RkJ7mdpL9IiYe4u/KeM3BEjBveBkAq/+8uKgu9wOxkwjXUVAMpT2gAAWhlGQAopIaWEVmy3RWc/BdxFdwJGuWIXCvnvPMd0A6YQ2NaW6BF3a1vb9az9ERwaZxlKo4iXWcAin6GwbBkhVbfpU+E0W+TutKCuPiNCCCGk+6BAAikZQxqQkFYgIaVmPaH7ywG4nf7upLs7C1DvH/mMMYTsnnrehouw6+y9qeDO4s4JJKQvBBSkPc/cmR7g3HV0ggWpGGNpDRetOnnV7QIJW1sTeOqVL/D5V9vwz882ZtxG4xxC5r6jbmZooNbiGf0oU7IRHMnJDXZGgrICNw5vWrDz2VR4Mk4YYzh+2m5orKtAc7uO595aWdDC1HlN/RoqAQDtsfJkJIS4VT9fytR3U1ij9DpS2sDtJoFBSWkH1HIcM98CUCmFaFygKhJCLG52i+Z4ueTrj+DQOEsrjSJ+ppBpk1OyUSisTEFKBVMWFhgrF+nJSKDSBkIIIcSPAgmkZExluh37vRkJgBVIUJ6MBMYYhOePsmRGgn9hEwqlp8MjQ/aAU9pQU21d0qkLAc6sNG3rkM4IQk85RYbFMQDUuQ0X/Yuk7hRIaI8ZeOqVz9FmL55z3Y0PhRjaYnrW7wuBtAZ8bkZCdcSXVeLllDckS1D8n5FUcN9jJyjkDSQAQGVFCCcdMgwhjeHLb1rw+Vfbsp5nKieDYQc7kBBNmGX5oz+kcZiitDX0QmbKhykMZ8wtvwlCKmeEao6N8qRym0JCNyWqKkMwhOz25Q1B+iMAdi8RISECBGZ0Q2DD1uh2t8A0zeyjQzMpLCNBQgpZ8l4khZL25BnOmNtAthskSRBCCCHdBgUSSMnERRyccST0ZAqoc0c/rgvIlB4JUibLEwwzOUHBu6hPZiR4F+5O+yvPse1AQlWV9XhaaQNn9p3fZBaEk5GghZAjkOBkJCQXSQys2wQSdENg8WtfoKk14WYF5FrQVYQ52uMiaw14pgZ8Lfbox7rqsD3GM3tGQvJzYunNFpk/IyESTr8zvGPfauy9ayMAYFNzLOvrSBWzP/9+9RX28dIbcJaCpjGYQpR0coMpJFgHQwmc5Z/I4SWlgpK5ewUwjpwBk4QhYZgCYY0jHOJobk8UdM65RONmoIV8UAldoKkljnz9EQDnM1aBPuP2uIltrYntrqeCIfKPfvQSBQRanOk6osTTUQql7FIGBrgNZKlHAiGEEJJEgQRSEkop6DIBjYUQTzgLRYaqSrv5oa7S7mZLe3oCkD0jIZwhI4ExpN0BdBaN1VXO/lICCbBmgitv0z/7j/+QBrAsebq1GTISOOPQZfa7+p1FCImlf1mBdVuiqK4I4XsHDgWQO5AQCWl2infmbcwMC4RWu7ShviYCQxkZRwY6gQQnIATmv5stRHIB52YkRDKnmFdXWu95czSa9XWkcjISaqrCbqZDOcobnBGQpVw4GkLmXdzmw7n1Hge9M66U1cci12E5yx1I0A1hTfngDJURDe1x0+1V0hFSKazb3OY2+eyolnYdq79twZbmOBpqInm31ziHlDJQan1cNxFNmP7Sq+2AaQYPJHDGIArIltFNAQXV5RkJ3lHBFkY9EgghhBAPCiSQkjCVCWE3WozaZQ1VlRoqItYlZhjwlTYAADx/pOludkBqRkLKAhVAJMTTGqY5GQhORkLq+DBul1J4m/55MxJ4loyE+gwZCZxpMGR5avCDUkrh+bdXY+W6FoRDHKfN2AO7DKgBYE0wyJZK7Ixjy9QnIZnunrm0oa46AqEEeIZfG5lKG7x/dAuZTIXO1CPBq8Je67XGgwdrnEBCVUUINXYgor1MIwmZKu0ISMOQHZvYAHtcYwF3TK1t08tYvBhjOe/KJwzhPj8cshp5lqK8QTcEognhXnfFklJhQ1MUq9e3IGEI9K2vgKbl/yfP+hlBoIyEtpgBw5TbVXNGYTdCzHXteDFeWLaMaVrBKSFkl5aMJPvpOA+kB7AJIYSQ7RkFEkhJmMqAqQRCLIR4wg4kVHC3Hlk3lK/ZImDd4XYWfW6/gpB1x9/hBAy8GQk1VWHUp9xZdO6EVlUlH/OWNzD7jq2v6Z99TE1D1jvCtXYgoaXNdIMJGjiEEln7BZSbUgqv/PNrfLKyCZwxnHTwMOzcv9a9k2+l9efISghzN8vAS0prcZle2mA3W6wKQSgzY/ZGMiPBeU/8pQ3eMpbk1IbMgQQets49GjMCv8dOc8+qipD7PkRj5QkkcA1IlODOuyNhiA41WgSsxZpUVhPFIKSVmtOhMYjRuOkG+qwpK6zDi3/AKpkwTYFWe5Fe1D50gbUbWvH1pjZEwhz1NZECsz7y98EwTIGEIa3A3HYUSHB+TwTPSEBBjUANIRHSuD1lp+sW7s6Un+RlQ1MbCCGEEC8KJJCSMKUJZdcfR+P2oq6SuxkJmUobKiIaQpo/UJBaZuCUNqT2PPAdW0j37mGkAu4oQu9z3Du2UrkZD4a3tCHLj0J9bQiMAQldYfGLG/D8a5vw2YoEojEDpuqa5nL/+PcGvPvpBgDAcdN2wx67NACwXmMkbL229lzlDWENsYSZ9p46dfPeO42mKRG17+zX1oQglfQFehxaamkD/HfHnXnsQO6MBKEEeNhuGpmQgTI/pFTJjJQKDTWVYQBAe7xMkxtKOAJSSmvBWpKMBBm8O76SyV4h2ffplAOlb2cKibhh9UdwVEY0tMXMDt+d1w0BCSsYEC0iq6S5Xceqb1uwpSWOPrURVFaEijgLlnfEYcKQ0E2B6gprasX2QtjXmRYwMGM1Ag0WSFBKQQiJkFbY9VwO0p4VnMyQY116PoQQQkh3Q4EEUhKG1N0/uOJOaUNFsrRBN9IDCV5udkBK40MnIyFhZv9DPeFZ1GmaQNhp0OjtqwDrTr2QyaZ/huFptpjlj+JImGPGlL7YaYCVAbFhi4533m/Fs8tasPiVFXj/i805xymW2n9Wb8Vr730NADh84i4YPayf+7120Y6InajRHM3eqDAS4tBNmbYYdgIt3kBCm70Y17gVpFAq4PhH5h//KDJkJGTqkRAzo+AR6/2MJySMAL0ovNkXVZFkRkKuYEpHhOw79aVoBiiktBZlHQ0kcHsRFnChIz3TS7Lu0/4MM90V1g0J05S+EqOKsIa4YRa1+PeKxk2EQ1axUaHBoM3NMaxe3wK9gFKGTDjPn3US101AWj9PCUOUdJJHd2Yt8AvokcCDl90IO9vByUgIej2Xg5204465VKDxj4QQQohXMbdqCEmTkHFozLqc3DTzSu5plqhyTjowPBkJPEOPhFx3OZ0FcUWYA4whFGJI6CqltIFBmsrX2M7bbDFT3b9j912qsPsuVWiPCaxcG8OXa6PY1GRgzbftWPNtO/78rxAuPnFU1pr/UonrJv747loAwKR9BmDyyB3d70kl0aI3o7KCo61doDWePZDgvP5o3PA1n5NSWQ34PG+Ft2RAwfp+zowEN5Bg3c327ju1sWam0oZ2sx3VFdbjiYQK1NTSOceKsAYJgapKzX595QkkaBqHnrAmX2iRjsVinV4eHS1tcHqABO6RIFW+hARwbo2UtAId/u/ppoAppW+hzhgDZ9Z40T61FYW+BPe8ogkDYY1DaQqt7TpkY3Wg90dIiS3NcWicobY6XNTxHRpnKSNn00XjJrgGhEIc7TEThindDKvezJR2L5WA1yxjgJDWZ8u13M+R0gqGhUMMcSG6NAPACRw4gVPGGLaPUBEhhBASTO//q4eUnVAChjIQYtYCLuY2W+SIeJot5gok6Gbm7ACnx0Ku0gbnjnQkwsHAEA6nl0NwlkybdXbvpOHzHD0SvGqqNIwaUYvvHT4ARx9RjSlj+qEibHWrX78l+ISBYr35/jq0xQz0q6/AYRN28X0vKqJoN9s8Ew/iOffl9Enw9TGwa4K9GQlu74kKDdLuC5Ep6JLMSEg2tHTiCCqliaPzvqcGXnSpI2q2ob7KWoQKAbQk2nO+DsDbaFFDi9EMhKwxhNGylTYwmFKWZASkkAqm6nhGgjWeDsFLGzzjOHPt07r7nP493RBgKv2cKyMaWtqNou/OJwwBw1QIhzgq7RKcoBkO7TET0bjp/gx0hMY5dFNkDcxIqdAeNxAJcYQ0DlNuPw0XC13cc8agApYpCLu8KsS5G1ToKkr5JwsByhccJYQQQrZ3FEggHWZKA0IKaNzOSMg0tUHPnZHg/BEeCvn7FSSbLeYIJBjOuEluPyc9i4HB+WM2w6QITWVM18+lvpZjwr4N2G3HOgDAxq3lDSR82xTF/322EQBw5AFDfHc+nWwEzjgq7bv5rfFEzlKSirBV5+8Ntjh3qZkvkGAv+iOa2ywzU9DFDSSYyu2V4SwcpGceO5DMSEgNJMRFDIYyURWpgGZ/qyWWgClzLySdUZaVkRDazXaEwtb+y1XawBgDJEoyAtIU0qrD7uD4RwBAAangQTIXOLeurUz79DZa9KoIa4jrxU9v0E0J066R1zQOIZUbKMqnJZqwz7vj76WmMQhpNWjNJGEIGIZEOGRdqAzYbkZAWj/Xwd9jt39HgGtOKgVhZzsoAF0YR7DPl7k/m4wxyO0jVhSYUl3bx4IQQkjXokAC6TBDmpBKQHMyEtx0eG6VGwDQDUDmaE7olhmkTG2IOIEEM/tfcE6PhEjYGh2ZDCR4eiRwQCLz+MdQiGVM18+FgcOQBgY0WmMiNjRlLyXoKKUUXnpnDZQC9tmtEcN2avB938lGqNSqUFVhvY5o3ERCJrLuMxzSYArhflaAvQhN+ZvQ6f9QFQnlDExonh4JUllZH87CIXUeu/NZenskKKXQarQgxEJgjKHKDohEY0bePgluaUOEw5A6whXSfQ/KhqEkNfFCKCDDnf1iBf2j3pT+4IWVNeJ/Pdl6JFjlB2bGNH7OrZBcW5HZIFbwL3lukTBHc5uetzZdNwSa2wz3uukojTNIIbN+xrohYMhkjwiNs8ABj54u0++JXDhnkAiYkSCsoCPnDKyADJtyUNIKijoYA0QXTerprlradazbkj9rjBBCSO9EgQTSYaY0fDeovBkJkYhdZqBLu+FW9j/MgfTsgExBgVTOXfNw2ApCOJkJ3iZ8nDE7VRWe0gYnIyHwS/XsT4MhDQzsawcStpY2kKCLhDux4MMvt+Drje0IhziO2G+wbztvNoLGNFTagYR4QkIX2QMJ1mtgvm7zmdLdnfe2MqJBKun7w9rLuTsthJ2RAOaOSpPSP4890/jHhIwjLuKo4FZZg/M6YgkJQ+VelDoLuIoIYCgDYTcjoTylDYB1tz7XiM2ghJQoRTKCI2iPBCEkvDfuoyKKLYnNvm2ylUvopoAplK/RoldFhKO5LVFUM8r2mOHru1AZ0RBNmHmnZLTFDMR0M2MDz2Jo3Clfyfwa4rpIawobS5hdOq6wsxhCopC4q9UvJViZgi9IwVhJGpoWy+rLm/yMrcyKLjudbkk3JdpjxnZx3RNCCElHgQTSYQmRcOvmTVPBMK0/KqoquG9qg1AyeyDBkx3gvVMadjIacqQNpwYSMvVIYIxBKWdBm9JssYiSao1pMJWJ/n2sQMKmbbGSdvTektiCb2PrsS3a7k5pOGjsTqj3NEcE/NkIAFDpjtu0GhfmEg5ztMb0ZAlChj/0Y24gIQShRNYSkGRGgtWkDCyZZp8M4PiDQt7ShqgZhVDJ8piqSvt1JIC4yN3vwfn8QxEFDg0Vdp+/aMIsW5f1EC/NCMiEIQpalOXCuBUgCEIIf0aCVCJjY0uF9HIJ3UiWH2RSEbHKG7zZLkE4mQ7ekZLhkAbDlDnv9iulsLU1gUiIl6ZEBE4QhWXtg9EWM9wgJ2BNGdBNWZJyl+7ONP1BqHysz4QFKlNI/R3UpRkJyj8i1Woa2fs/30IYhtxurntCCCHpenwgYcWKFZg9ezbGjh2LqVOn4tZbb4Wu5+/0rpTCwoULcfDBB2P06NE45ZRT8MEHH/i2+fvf/47LLrsMhx56KMaMGYOjjjoKDz30EAzDf6fzyiuvxIgRI9L+e+utt0r5UrslpRTiIp5W1qBxIBxmbiBBSkCY2e9oJ3sk+P9CzdTvIFUykMDAmeaWQyQM/+JDwVrUcjcjwT5mnk7imXDGIZVAQ20IIc0aB7i1NXcGQFCmNBGXcbSbrfjTe6sQTZjo36cSk/YZ4NtOKolmfaubjQAAlZXJQEJCxnP2F6gIa0jown3/RIZFt3PXvbLCCpxkKwGxS8Xt1GTl3oW0ztOqbUh9351AglACbWYrIjwZJHEyEgydIy7iOQMCziJTC0lEeBgV9nOVQsGL2aA0rTQjIHVTdrjRooOx5NSMfIRUvkwIqSSkEmnvc6b0ct0QvoBcKo1zKKXQFsv/e9grYQiYpnR/ft39aVYKdTaxhEB7zEBVRWmHECmojIEZw5SIG8KXkREOcRim2C4aLhoi+OhHh0KwoIDwNFNhzApMdxVvORZg9dnpyuaP3VHMMGEKCiQQQsj2qkePf2xubsbZZ5+N3XbbDQsWLMCGDRtwyy23IB6P45prrsn53AcffBB33XUXrrjiCowYMQJPPfUU5syZg+effx6DB1vp40uWLEE8Hsell16KQYMG4cMPP8SCBQuwYsUK3Hzzzb79DR48GLfffrvvsWHDhpX2BXdD1ogs6TZIdMoaKis1MMYQDll/ECoFxI0AGQkpmclOIMHI8QelM+89HFLg4FknPTDF3EaAQPLOuJahaVw+nHFIKaGYwIA+VVi3JYoNW2PoW19Z8L5S6VKHKQ0kWqvx35VbAACH7bcjNO5fYEXNdkTNKGpCte5jlZHk6ERTWn0SQjzzj3lI4zCERFy3Ot0LM31x6AQZqiIaTGlmzUjwTW2ABIPmjk9zpjakvu8R+1zjIoaESPheh1PrrutW6YyhDESYPxvD4QQSQmGJMI9AaAKRMINuWJ31S9HFP9PrjSUkTFNBy3xaeSmlYBiiZIEEzljW5oCphFS+6RwKdsYQJDT4fwhT05ZjuulmoGQTCWtobtMxoLHad5xcdFPClCpt35URazKKYQqEMpRTtEZ1GEKiPkupRbE4Z9AzBBIShhUw8I5Oda7t7WFBZZqFBxI4ggUSTM9UHc5Z4MBYOSiV3iOBGgsmSaWsXiFCbRfXPSGEkHQ9OpCwZMkStLe34+6770afPn0AAEIIXHfddZg3bx4GDhyY8XmJRAIPPPAA5syZg3POOQcAMGHCBBx55JFYtGgRrr32WgDAtddei759+7rPmzRpEqSUuPPOO/GTn/zE973KykqMHTu2HC+zR3HuAFfbd4UZY4iEGRK6QkIXbuf/VMlFvf9xJ0MhSGlDyO2RYC9QU+8OMuVmJHhrdiPFZCSAWx3tlcCARjuQ0BTF3rs2FryvVIbUIZTE3//VAgDYbXAYFX3aEBM1qLJLGKSSaDa2gTPuyxJwSgLiCev9Sog4akI1WY+lcYa2mIG+9ZUwZfoCwWm2aJU2JLJmJDiLP29GgtNkUSpAAp4eCf6MhHazHQz+JpvJXg8KpjKhS92XseAVcz9/ZWdnhFBZYQUSytVwUeMcpjRhCIkKFFeXL6SCUChdICHgwkspZfdm8JY2SCh7vKeT3QKkl0soZb2n2fojOCojGtpjJmIJEzWV4UDnn0hptOioCGvYFtcRTQhUpexLSIltbQk3gFZKGmfQM5Sv6IaAlCrtZ4UxVpJyl+7M+b0ZNDjkUCpzxlMqw0j+DuIMMLuyRwIAb/OfTOVx2zMhJIQEpJBulhkhhJDtS48ubXjrrbcwefJkN4gAADNnzoSUEm+//XbW5y1fvhxtbW2YOXOm+1gkEsHhhx/uK0fwBgoce++9N5RS2LRpU2leRC+TzEhIXlpunwTdyl5IJaVym5pF0kob7BT3gD0SGJibkZCaZuydHuDdn9OHoRCMMfsursCAxmoAwMYSNVyMmVGsWi2xaauBcJhh6ti+MISODbFvETOtMZNONkKVVu17rtMjwRQKEBqiZnvOsoCKiIa2mAEhpZWynPL3ccwd/2gFTliWXxkhN5BgTcdw/s6WdjaCd6ykt0eCIQ20m22IaP5MDm9AhIHBELlS2+3JEnZqe4hpqKiwjlWuhoucd3wEpBAKQqi0TJOiz4lZf9zn6wvhjOP0ftZCCXuqif/1pJZL6KZVEx3OMLHBK6RxmKKwQE40pdFi8hzszzKa/lm2x0xE42bJyxoAK5CQmtUEANGEkTH4E9JYWRt8dgdCSkhV+IhNxq0FZz6m53cQ5wxmF97pts43JSPB/jeEWP/GCCERCfOylZARQgjp3np0IGHlypUYOnSo77H6+nr0798fK1euzPk8AGnPHTZsGNatW4d4PHtzt+XLlyMSiWCXXXbxPb5mzRpMmDABI0eOxAknnIDXXnut0JfTK3gnNjgq3FKDzFMbfIv6lDudTmmDaaisC6S4d/wjYxmbLQKwJwlYi1znrjhj6NBCTihR0skNQglsi0Xx4SfWNbjfyHrUVIdQG66DKQ1siH+LdrMtYzYCYPeJsB8SZgi61HNOPYiEOXTD6pOQ2oAPAOIJ4W4nIfNmJJgpUxvc/+w/yK27WMrdZ8yMwpAGwsx/p9kpbYgnrDvkMZH9vXUCCTUV1j440xCxkxfKOwJSdWgEpCklpCysR0I0buKzNVsz1u5nG9eYSko7oOY5rrCzEVIzhjjzNxw0TCvglC8jAbB+HoOMbrTOyWq0mNofwVER4WiOpk+CaIlafUkKXdgGoXGrJt77GUul0B4zMwYfwyGr4WIpxoJ2V0JaYxy1Au/IB+3fYQpvRgJzj9cVpEzpkcDsXg8USQBgfZ5CKlSENcT18jW2JYQQ0n316NKGlpYW1NfXpz3e0NCA5ubmnM+LRCKocNq72+rr66GUQnNzMyor02vdV69ejccffxynnnoqamqS6eJ77703Ro0ahT322AOtra1YvHgxLrroIvz2t7/FkUce2YFXiIw1wd2JsscFcsahaQxx3fpjsaZKcxeXTvM70wSYxtLuOjoNARmz6ua9NdJOirv1BxwyLjSczINIxDoH5668YUjfsbQQA+MMoZCGqJ5stBgJa3lrvjMJSQ2SSQzqZ12DW1sTMO0/rIqlm3F8/N8odENhh8YwRo2odf+wbtDq0W60YYu+GYbUURupzZBizFBZwRGNSUjBIZmACQNVWubeDZrGAWZapSPMWgx53zMnGFNVyZHgQFjTMi4inCwQKa3RiBrn1hSGEINmWJ+5Zne2d4RDHFHRhogWSrvOa6qd5p0SFaEIhDIApqDx/8/enwdbkt3Vwejae2fmme5YY3f1KLVESwJjEDayEEhGgB4y71kY44cc8YjGyNCB27KtsIiwTeAAQ/hjiOcQLQwYRWMkWZYwnjA2CKFP4gGSECDUAs2iu9VTdVXdqjucKTP3+P7Ye+dwTp7xnjtUda6Ijr5178l5OPu39vqtNX5uPZGw3m6460icIkZhmKrKWe5VIAgYlNZLP6OEEIAShAvcLx/8xDN49EvX8Xde/QJ8zYvPl/cnZBBCuXt88j4pR6YFhWtNqC3GCUXpfNl9M9n6lCsig1Ezkwp0WhHiVEIog3Zz+ufjVMLAttBUXa92K0S3L5D6FihmCbB+LNFph0dyjcOIIU0VCMnPZ8IllDZoNsb3sxEF6McS2pz+9/ayIJIAxN5rixBgYcDsctPuS+3fQQyMUft8KQ3KCIJDXl9/rRa6T2j5GQkCBiOU3Z9b9PouCsoIGlEAIRUMGZ8IuBWw1L1T43mP+r6psQxuxvvmpiYSjhP9fh9vfvObceedd+Itb3lL6W8PPPBA6d+vfe1r8cY3vhEPP/zwoYgESgm2tyf3t58GSOXiAVsBOq0mfFDC5noDnbYtXjutEEAKYxg67QgbzVZpHYnMZ6jX2i10wrzoLc5yhFGAjbXxgjh1xenGeoROu4n1NbuMUAYb6/m2pCYwBNhsR9k2w5Cg02qhGSxukmiERCOguH19AxudCN0BxzDVOH9mbfbCE6CSBAddezx/7a9sY32tfK46aGIgBuiQBlpBq2oV6LQCDGMOwF4T1tTYaFd/FgAUCAyl6HQaYISi5cwJjTGInZHlme0W9kyAtbBVqUpY6/gISaDTaaBNW4hTic3NNlgosN5NsbHegoJVWjBGoCCgA4nt5iZCWlYknFG5ImGj08FADtDssLFj1sZkipQzW2102nbfN9ZCAAJSl++BVcJQirARLv2Makqx1mnMvX/GGDxx2fpmDLkeW45LhTiR2NhoT5X6x6lEZy1GpxlmA/9dE0CwAO1OhI0oXy8NAlBKsLXVBiEEvVRjbb059z5f2x+Chmz2OeomaDRDnN1qT/yIMkNQR2BsbLTANcDCAOe3WkfSs660wX4/xdp6E2ttK3HZ6yWImhHObjYrtynNEK1OA9srMF09jaD9FO32ENubk69T9YIMrcb0+4ALhXZniEYQoBExNIVCnEqsb7TQjFYzVNnYmP9dsDsQEJpgY72R7V/M7TttVftzMyPVwFonxZn1Jg4GHJ21FtZa8/mh3IxY5N6pUcOjvm9qLIOb6b65qb8NNzY20Ov1xn5/cHCAzc3NqctxzpGmaUmV0O12QQgZW5ZzjoceeggHBwf4tV/7NbTb0wdRlFK87nWvw8/+7M8iSZJKdcM80Nqg2x0utexxwSsSklhiYBL0+lZGz6jGYOiLRvuZwVDgoDcAE+Xzsbs/dJ8DkoQDojx7GQQEUhrs7PdAKuSTsetLNkZhMEygtf13kip0e7kkvj9MoZQBNQp7B26bFIgTDrUE+ZcqAY4e1s0Q57ea6A44HntmD9tryw+mrg130XVEQrNhsnNYBoMGMODVLTiRa+3YO0iwvkmxw3fRlOsT2xJ4KnEtthL0MGQQ7vxzqbIUgFSkGPIUQdSoXIePRBXSoNePoWiIOJXY2xugH0v0egkiCuzu2+sRBQwDMcAgjkHDEByjfhb2HChl0O2liE2CG+YAGyN+i3Eqsp5lpQQGQ5fg4W6hvW5cugdWiSSViIcprq+HS7XH3NiL0e+naMyphtntJjhwMYj73WTsuJTW6A0EdncHU5MqholEtxvDKJlFNfYGMYYyRZfG1mzEIU6tZPnGbgOMUly5doCUK3TnPFzJJb78zD4iMr394NreEP1BMvVcpKnAs1e7uO1sB91ujCee2UeaCvT6R2d81+0muH6jD5E28v3sJ2hMEFgMhgl2rvdA1K3ZM77fSxe6Zz0GiUASU+ztDSZ+JuES3W6CViNAmlJIpTGIJXZ3B4f2wGCMYmOjhW43rmwLqsL+wRD9oQB17T5C6uydVhMJwLXrPcRDjgEj6PbsfS/Wqr8fbmYsc+/UqFHfNzWWwWm6bzY2WnMpI27qb8MXvvCFY14IvV4POzs7Y/4Ho8sBwBNPPIGXvOQl2e8ff/xxXLp0qVT4a63x1re+FZ/5zGfwnve8B7fffvuKj2I6TtJsai5QNxNtNJQyGCbenC+PovM+BzwFhJJjD4dPBggCQCsChTJZEDoiIU4E1Fp5Wa1NJncOGXXmdXnSQ8lxXtuYKq0MEjfTzhhgFJnLUXwURlNIIyGUxIWtFh57tosrN4ZLP/zKKPTSIQZDu/xai80d51eEN7ccJgrURIjlELGI0WTVDGdACfZjgYBSBMxk+z+MLTlACECgoLSeuD9+clYpA6kUDDSU1BBCQziXe6V01oYQBRQ90QMjQeU6KSEZgTQYKpAGMBQxOmy99Ln9gS2mnXI6W5cvPHpDfmQvYwKDhGskiUJjiQjI2PUVz7t/Xo0AAMNEjC1njIFQGlyoiV4DAFxkm4bRLvLRaCilILWClBKK6uJKIaRx6QUaw0QhYGTufY4Cgu6AY7+fYqM9+SR1+ykopq83ZAT9oUCcSvSGHN1eilYzONIvW601Uq6y9/BBL81MLatAQNAbCJxZP+Xv7SVhEyv0wufcaANhFDhXEwklzhWEVGhFtqXBvq8VUq5mmnvOC6X03N+pXCj7jLhjNdouK4RGQG/N67sIhrEEYLJzmiQScs6ElpsRi9w7NWp41PdNjWVwM903N08TRgVe/epX46Mf/Si63XyA/f73vx+UUrzqVa+auNzLX/5yrK2t4bd/+7ez3wkh8IEPfACvfvWrS5/98R//cXz4wx/GL/zCL+D++++fa7+01nj/+9+PF7/4xUurEW5WVJot+tQGYaP8RuGND4OAVMqFPRGRyvFli4aKDRcBlxk0yrJRFyUEWtv+cOHIh0nbnAcMFMZFQF48Y1UqV/eWV5BwzdHtcxhY6X+rudzjmUcnWqNCDY1UpRM/TymB0dbMsjjG907czSgo5akXsc/3sJveKKc2GNvrbFMAXFyaP0aRmzcqLUtRg6NoueOIE4WABkhUMmbo1YstkeDvMQ8/I3+UZouM0iztYhlwrhbqM3/qaq6+Gqbjx0WcG5yaYU43mqJhYKBhXTGVGTEodc+M1vY5FUplkazzgFEKGKA3mJy6obTGMFUz+6vDgEFIO0vdG/K5TR8PB5KZJ0qlEfPpJE3ICIapuGUN+ZQ2gFkiLpda89Vp96Y3VvSvY7/MSZktWvPZ/N8+/vFWvbaLQBuDVKjMu4JRgkQcobFtjRo1atQ4lbipFQlvfOMb8e53vxsPPfQQHnzwQVy9ehU/8zM/gze+8Y24ePFi9rkHHngAly9fxu/+7u8CABqNBh588EG8/e1vx5kzZ/AVX/EVeO9734v9/X286U1vypb7pV/6Jbzvfe/Dm970JkRRhEcffTT724te9CKsra3h2Wefxb/4F/8C3/Ed34F77rkHBwcHeO9734tPf/rTePvb335s5+I0QGuDJPVEQkX8o8BYoWJ/7xUFAK3gtmyxoJBWDFSSzDTRGgEC5TjHVKhsdtrPhBXjHxmzs4gzYRQwUvRSwqCMgtISF7btbP+1vXjpnHGhOboDe4wbHbY0wZETCfbc+NSDTWxNXCYMKBKusNHJZ5S8aqMVMXfdyvujjcbvPPd/oI3Cd1x4IwBLJCit8tQGuOLBLerNFsOAQhmXAjFhXN5sUPQGCnGqcYYEkC6BIiL5zHY3mUAkuGs+OEIiwRY6yyU3pEKBS71Q2sCTV/vZz5Pi1gxmF15GGxRPujYaMBqUsLFUFUqd2kgbcKGh1eIpJ80Gw/6A48K2sqZ7I+DCMu/t1uyvI8YI9vsJ9nopmtHypqbzgtKcrLTXTGG9PXnWNQwo4tTOWjeOYf+OG0JpTOiQmgpKMDOBwf+t9N6bI4XkKJARoCUiAdCo4x8Bq5TU2mQmuwGjmRqxRo0aNWo8f3BTEwmbm5t45zvfiZ/4iZ/AQw89hE6ng+/+7u8eM0O0Uszyl9wP/MAPwBiDX/mVX8Hu7i5e+tKX4pFHHsFdd92VfeYjH/kIAOCRRx7BI488Ulr+Xe96F17xileg0+lgbW0Nv/iLv4gbN24gDEN81Vd9Fd7xjnfgm77pm47oyE8nfGIDgCw5AciLPMGr4x99cckmqAP8DGhVprsnEsKQZCQEoy6qywCJEBmR0GqwrPjw2wwCTPQOyKAF2OAGVOccQPNHhhACAzuLe26zA0oIEq7QGwpsdBbXuscqxtAJGtbXln80s5l8R+qENEKiYkgtEdDq9XaagW1hKJz/2J3bZsMSCXSESEhVAq6t0kEhVzxIrd35N24WUmcDciH89aJOqTC5kPbHkSQaAQmQmBhCC0TUnlttdE4kNMrX0BNZCVdLEzvzwJj524+0NugnAt1Biv2+QMolNue8T3pDjr1efo6TCkUCYCVms4gEbQBTOO/7/RT/83e6eNF9IbZeWl5vMVIyFXKUS5oLzYhht5eiH0tsr1cRCQpC67mc+ZtRgN6QY5hIrB+DsRujJCM6U66g9HQiJWAUSklwqW5JIkFKjWWSNql7IU8jBSapFU5CkWCMfU7K8Y/kxIiN0wapDKTWaDnyPggIhLLRp4dN2KhRo0aNGjcPbmoiAQDuu+8+/Oqv/urUz7z73e8e+x0hBA8++CAefPDBhZYbxdbWFn7xF39x5ueeD0gSbxJISzOt3vyPCwMNPVbYebl7EFSrAzKPBTFesKVu1jwMSUYIEEIQBgRc5F4I/vdZQevaKeaJfSRaWUWCUah6ZJSxEs+zmw3s7Ce4ujdcmEhQRiGRMYYDuz8ba8sXIV6RkDoiISABBq7on0QkMEaxPtLDnvK8tUFqOUa4xCo3+zM0J3m4VO76EmhjoFQ+IPcEThQQKChQEk6c4Ws28whIT9oIzQFY53euOYbOaHNUkZDFhhprGNg+ot7deSS9CZfoDwV2eykGiQCMbf3pbDTmJjiecmqERsiQClXZ2gDY453l92GMASl85OmrffQGGk89I/Hyl4y3NsDJy4eJzFpYFgEhxPpw9BNsrUVjx5xwBTKnXL4RUsSJBMF088ZVgVEKLpVNB0nVzCLay9+r3lW3AoRaTEXjQYj1oZnV2jC+4PRljgqeLBh9PA1MrUiAbfPRBVItYBScSwhZEwk1atSo8XxC/cavsTJ4aWNrZHa46JGgjYZGeZCdqQMYqVQHZESCnKxIiMKyssCTFwkXlfuaS+znbGvQsjIxgoBk7RoXt51Pwu7iKQFCcwgtMBjYbWx0luf4mo28AAfseTEwU30SquCNEZsRgzISZOTaJDpPjVDIzzMveFnYHud8FjMnjShgzFQ1SK6s8C0aARKZn1uu00wF0xwhEigl2T3QjRc77kXAGEFaUOIY1zvcHXJcP4jx1NUevvTMAZ682gMXtnVke6OBZhQspJJ40vkjvOhOmyiTcFU5U0tZTq5NgtYGRSYhdkQI5wa6ovXIwDrWJ3y2j8EktBoBekOZPa9FDBMxt+8CIQSbnQbWl1D8LAPGCJS2M/H9RMx1/ISSjIS71SAXbMfxyPwOpikSJrQInYRzdZUiAQCIISfm2XCaYNu58vPAKIF0ZsY1atSoUeP5g5tekVDj9CD3RyjPpmdEAre92NroksleUZFQBT94n+aREIblAZ/1SdATZ4uLHgkzYQxgdGVzLCUUXFsjuQvbLeAJ65OwKLjm0NDoDezxbByitaFotugRkBBDNcCW2Z67gE0yRQKDgh7zr0gKigRl7Gy1VMXBpHHmZLnSpEjgzBqOt0aOIyABUp1CGZX5Pgjn4TeqSABsewMXCr04xW3ba3Md86IIGEUqFK4fxEi4xCCW4FJDSA1j7P3VagRT++rnwVNXrCLh/ru28JkndgHY6zMa8xgGFMNETm3n0CMtJdxdZ+5aj7T3rnAgxqoqpNRTYyWnIQoZekOB3pCXovyUtgaGixAUzUYAzsdTK44CjBKkSiFOJVKh0Ahn72fIKAZpNYF5M0Nrqw6gS7cJTfdIqFI7UEqWNjM9DHKT2JFjJWbM8PX5CEskjLd91ERCjRo1ajy/UCsSaqwMwyyxoXxbeUMmqQChNcyIT4Io+BVUYZpHQiqqiYQoIx+qZwbzbc7X2kC0jb8bBSUMUtui4eIZa7i4THJDohIQQ9DtW+Jj/RCtDb4AT7nOBr0hDcFVCmHmL3B8W0gjotBGjRUQRSJBaJG1iQjnR2KQO7WTTJEw/3nPlBXuvgpoAKEFhBZQRiGWMYQg2T6OouWW7x2hIiEMKAaxwFNXeri+n0AqjUZIsb0e4exmA1trDTTCw/XKx6nEtX17ru+5rZM9T3GF8iBkFFzqjLCpgiyYXwJAInIiwcdBjkIoDamNVZIsiUbIsN/npWLSGy0effrCcrAzrRqDxMq259nPILC+CrdaUaW0hjaHaymZRiRIqcdSTCix5ORxw9gQkwoyjtStDbDfq6MdDIQCaYVqsEaNGjVq3Lo4naO3GjclfErAaGtDVCjy07SitcGTAROKy9wjYVprw6giwbU2TFAkFNspZsIoQKtKRQIDhTQK2uisteH6QbKQk782GrGKoWUAIe021g/R2uCLamOQye4DEkAYCb5Ae4O/no3IGyNOViRIk/fPS+Vn85wiQeuCR8J0P4wiMsNEp0jwUZZCc6Qqte0gonzMRXhlRj+eHD14WASM4vx2C2c2m9hab6DTChGFyyduVMH7I5zZaKCH6whDe4/EFYkUYUAhpa58VjyUKhvmeUWCcT+PRn0S6m/9w1VQrSZDPxHWJ8IhXcBo8SRgZ1oJuJzftDMMKIRSmQ/LrQKfusCWvLdnRTkKNa52oJQslYpyWGjHJIwfah3/CNjv3VHT0YCRrB2uRo0aNWo8P3A6R281bkrkioSRmMRCvzoXemwgVkxtqELukTA+oPSz5tGI5DhbZkKvsphBXhRBlAKBAamYqaWEwRgFZWwsXDNiMMaSCfOCaw6hOOKh3ZdOiy5laufBGMmJFFeEE0JAQZCo+fcrLpA0o3J3AIgL6xJawCf7SWlNNQmILT4MxhQJjE33RwDGPRIASz6kKkWqUhgYcG7vpWlEQu8IiYTjwJNXrD/CmbPAQPYQRfZkVikSrNlftTGph1LlgjgtfDbh44oEQqyCZ3S2eFEwSkEM0B3k1yPlar741ROEgYGU86sxGKXQ2kxVhZw2xKlEP56uVtLatr4sq0iwCSATkhlcjOpYawOxxNdxtxMYY6BR1cZBnvetDdp5IYwaFQeMIp3g3VKjRo0aNW5N1ERCjZUh8WaLzfHbyhf6qUtuKMLPnkYTiQRv1jg+oPSmZqOFZOi2l0yYmc3jH+d4BLTIta4joMQqEoTmIIRYnwQs5pPAdQoNjf7QqREO4Y/gMeovAACMhiUVwSxkJE1EoTFOJJQVCXlrg3QDf23sDKYBsgG5VySwYHavdbOgSPDXPXDHEKuh9UxwiotqjwTLbAwSftMO/oUWeOzKHgDg4rkA6+FmZixZJFiKoBSIJ5iMAuVWE6Dc/pNUKIYoIUjF8kaLRTQbDPsDns3WDxNxKNLsOEApQSpV1i41F8zNZbjYHXBc2R1OfU68ImFpsQ2xJGMVtLZpCGOKBBc/etzJDTprbSj/npCTiaM8TRBKQ2kzRiyOe+TUqFGjRo1bHTWRUGNl8L3so60NQF7oCY4xj4TcgK/6dvSqASH1mOzaz5qPmqBFma/CdLPFuVIbtJpqtgggm+nPkxvm90lIVAIKim7fGS0eoq3BwxebRSKBgkK5Noy59quQiFE1a1wkElLFs4JQKQMDkykSTIUigTINSqZ7B3iPBK1t4gfgWzQEUp0gpGGW2tCIxvcvUzQkCtLcfJLbgRzg6d6zuL5nZ/DvuWgNI6OMSKg+JuvbICcWhaOGeUX1Ahdm7PmklICvikiImI3DjCWkWtxo8STAKEGSyoWIhCC4uWTeCbeGklOVLNpHIi6pSHB+E5PWrbTBiFoelBJHMhy/IqGqlYXg+EmNRRCnEmrCOV4VlNJQarwdKWAUUqnKdKUaNWrUqHFr4nSP4GrcVIgnpDYAeaHnIyCL8IPXSQVFEHoiYXzZoiFgEWGmgJhutjiziDGORPA/V+0fDTGQfeuTkBkuzjfzr41GomIENETPGS1uHMJo0aPZLEdAApb00K4NYx4krhAKJwQOlBQJSmStKdIRCT4DvjiLmXkkMMxsbQgYyYgeP/sekABSS2vuiFyRMBr/COSKhjjVmSHmzYL9dA9X4su4vDOEMcBam2HNEUy+ZWM4IRkgDCjEBMNFYwxUwbMCKLc2pHz8GWOUWGn/CnwMCCEIKMFBP8kMCRea6T8BeDUVW+D4A0YRc3lTzF4bY5BwiZSrynYZj8MeCyWYmMCgnK9KpSLBkQzHCctbjBMmhJxeIkFpjcs3BugPj/ZdJ5SpNN2skxtq1KhR4/mH0z2Cq3HTwBiDeFprQyECcqy1QY4nL/gZISBXDfje+yKSTJFQLr69J0M6YYYt2+ZMIkED0DCUgUyY6YlohFSl4DpduLVBaA6hBUIaojtwiQ1HpEiwZoUGek4iwas9gmA8Bs0YU/JbEEaMmC3aYlUp7UzLHBnkPRKC2UQCUDBcTHKvBwBO7WDVCsCk1AZ/DsxNp0joyR4IKPZ27X19+/ko+5u/tkXTwiLCgIKrasNFbbyEPP8dLxEJ489nqxHg/HZzZQaSrUaA7lDiYJBCab1QgX4SaEYBzm42F1rGkjnmppidlUpDKFusD+PJz4ktoJe/ByghUBMSGLQxUMZUxj/qGbGRRwHr5TC+TeKIjdOIQWzjZ4+a6LDv9Oq/EUJuinu+Ro0aNWqsBqd7BFfjpoGUgJ9sqmxtCL3PAYHS5YGGL2SiICcD+rHAwLnS+2J/uiKhTCQUfRUq4+zmVCQQra3JImETFQk+TSBRCS5stQr7P3tmiGsOZRQYYej51oaVKBLGiQQCa5o4jyJB6Ty+jgbj/ghc81LBKYzMPRIKLSjaABpFRYInEgzoHK+fZiNXFXi0gw7aQSdTI1BaHSfp4x/T1ICrm8dwURsN7e6JKzs2ZeO2843s71ks5gTpPCEE0KZSpq5dhw6hE1obOCqfl8NE/o0iChmkVI4EPN3+CMvC9otPj+E8LRBSQyqFdpOhF/OJhbJUenl/BNj70kZIjq9faQNUxC16T4KTUCSYSYqEU+q30htyxKk88lQJLtXE+4AxkqX91KhRo0aNWx81kVBjJfCFXhiQSgNDP2MsK8wWRaZIyJfT2sYG+nUCTpEwUuR4Q7PmGJGQ+ypUFUZ+gD9TVm3stLehk4kEwEruB7KPMKDYXrdF3zyqhEQlIKBQyqA/tOtfhdlirkgoJB4QAoPxc1i5XwWjOBrKqUaLACB1QZGgrdEiIV5ZUjBbFN5scU5FgiuaR5UVjDCkaZ7YUDVb7kmIlBsM5fwmkycNZRQ0NIwmuHbDEiBlRcJ0IgGwREGV4aI3wZykSOAVrQ1HgShkGMSn32hxWXiZ97QYztMCoQy0tkqRhKuMnB37nCzHhi4KSidHQE4iL+w7yxKSxwkfX1u1P5NUFScJITUOBtzF7R7t/qVcg054bgNGkPCjJzNq1KhRo8bpQE0k1FgJ0swfofqWylobBEqKBGNMwWwxH5z4/Pbi70dbG4wxWetCNCJt960NooK4ABbxSNCwU2U019FXIHTtDUJzXHTtDVd3pxev2mjEKkZIA/SGdvAeBKRS0bEofBHtzQiLmEeR4AmIRkhhYMaMEceIBCMLZos2Ms9HERZNy7K0DDafaVuzYJg4immJDcVlAaCf8Lm9IU4aVpGgcWNPQWmr8Nlcz8mlVqZImHw8YUAxTNSYSZ02BkbnrSpS6dJtzcV898dh0WowDBIx1pJ0K4FQTCzKTxNE5ltCrQHmhPtKVMQzLgLvd1BV6Co9OeKRTCAfjhK2EK5WJJzG1oZBIpBwhSikE5MxVoVUqIlRsPYeMpA3gRKnRo0aNWocHjWRUGMlSBI7ePFFzigarrDn3EAV+tVtP737TKG1oeh15RUOUpYTH4TU+bJheWDj1Q1V7RDGmPlbG7KiirjkhuoBUkhDSC2R6KTgkzA9uUFoAaE5QhLmbQ0dtpJe9MwfICnvLwGB1LOLm7jQMmKMGmtDiEeIBKHz+EflPRIA2Ctpf/L544BVJMx1HBUtGh7JDCKBUpKZfA5TMddxnwZol6xxdccqCm47H5XuCX9MyZR4wSig4EKNGZ9p7VpN3CkbLXTt83n0RAJjFBe2W2MtSbcSJpE5pw2c5y0LQUDRG1a3AUm5AiLBoHK2WuvJcbAGOPIkgrFtVlskgMCruk7XNe0OOCixz9WkZIxVQGkNqTSCqUSCnmiqWaNGjRo1bi3UREKNlcAXdc0JioQs/tEpBPzgumjMVCzqray0bLaoTT57ZrdpfyYEWRGbr6ugSBgp/mVhkDOztcEPyghx+zN5AMkow1AMcPGMi4Cc0drAdWr9EWiArktsWEVbAzBZkUAJgzCzvRuSQsuIMuMeCYm2RoshsZJ7ZYpEglckABr5vF5xcDlX7CaKs+/jA9NZigQg9xMYJnKu4z4NULAeE1eu+7aGRunvjSz+cUqrDXOGi6NEgnGO68STESdDJADLxwjeLAgZBZe69L45jYh5riZqhBSDVFYQUGYsNnRREOrUNhUz+kJO9l84CYNDY2zqzCgoQaayOi1IhUJ3wNFqBFOTMVYBKQ2kMmPftx6U2sjfaTGiNWrUqFHj1kFNJNRYCXJFwnQiwcfL+XYDP+AYjQO00utyawMAJCIvBn2xG4VkrCiJSoqEEXPHwiC5aNJXOetlnCGcJxKmDCBDGiHWMc5s2rzEnf146gA4VWkmMe8WFAmrQHNCAU4JhZgjCjFrbYh8a0O1R0KHrQOY0NoAO+rOSCOREz/BnIeZtzZMJhKqoh89vKIhTc1NEwGpjYLRwFVHJNxW8EcA8nPCRXVRBjhzRGPGevS1KZvaVRMJ8lQVSjcrwoCCZ6aSpxNKa6RCZdGejZBVxkAqXR35twhyRcL438QUtQMhOHK5/iikNpVEV96uday7MxWDWCARtq1hWjLGKiC1tkkrdPrQsVYk1KhRo8bzAzWRUGMlSDKPhAmtDZlHgikZ/nlFAgtyMsAY+xnv/E8pgU+IS0VRkWAHu1E0PuDLfRXGe76zCMJCn74QCvs9PlZAESVhKAVAQIyZ2NoAACGx7Q2tlkYY2F7R3V5a+VmhBfqyh4jaIrHnoh83VqxIkNKUBuEM1Jr5zTDUy9Mwql8RvrVhLbBEgtCj8Y/ebBHwhFDRC4OR+ZiEvLVhmkfC5OImK7o5Adc3R3KDNhr7BwpCGkQhyYgpj6hgSjpa8BVByLiDutH5cwUAibDL+zOYcpM9fzUOB0vm5IawpxF+htk/u/59GCejRIKe2n4wD7wBZVUCg1B64ropJcdemGqtK/NEcgPZ0/F8GGOw308RBtZwdloyxiogpV33NEIpYATJFCPYGjVq1Khx66AmEmqsBMkss8WCR0KxUPGKhHCkfiaEZLP1QO6TUFQk+CKqWFh5hAXPhFRUKxKKs+LKzbaNyZCNtJpcVxWTKQM0PwhPTYLzW9N9Err8AKlOEVErW191a4NVadifizOihFAYo2bK14tqj8q/Z0TCBgCrSPByV11obShKhDP1SUBA5khsAKrjHz3maW3wChme2oSM01IATIPQAjvX7bHddi4aG7RTSrLrMkwmD9jDgKKfiNIx66L5CPLr3G57wsXMRTTVmA+MEfTj06uEEUpDap0pEgDb7uUTADy0tuTvJJO9RTCqojHGQCmNSZPclOBI+/6roHU5ItXDJatO8909ViRcoR9LtJzXCKV+/46ISFCm9L1chYBRxGmtaqpRo0aN5wNqIqHGSpCk87U2CGkgtRpTJBRbDLzjP0jei+oVBqnICyc/61FV7AasWEiXB/JiwjYDRsqyW6MBJQFQSybMUCQAQEQbGMoBLmw3AVQnN6QqRVfso0VbTipr0B2strWBEJL7JIxEJyqjx9o9RuFJmjAEqtzLPZGwHlpFgoEGZXY7Stmiw0e35YoE7w5P5op+BHKFS5KOu7rPRyTY5TknUFpAmtM/Uya1xM4NRySM+CN45CaSk1UWVlpf7tE3xpRav/3ztN62BJaBNd+rSjqpsTiigGKYylPrk+ANa8tmnhQJVyUCVrm0hUPbWlQUubPaJiglx54CoLWZoEiwhPJpMVscxAJCKkQu/YQSAjMhGWMVsN+d09edJTecwpjMGjVq1KixWtREQo2VYN7WBsAWKj59QYhxdYDRKDgkWGREgsxnOoaOIKgqJAkh2TKJGOkDzxQJhS0YgFEKXRz8uOjHgeEYqtR+aEaBFdIQXHOc2bSFWZXhYlfsQxiJiNkiMUl11n6w3lmNIgEoJDcUiARKrOfBTEWCk8QHIcAqiv5EWbPFjXAj/yW1yyht5fkEcEWK/XOuSMBYCsQkeP8DY3LiwCMjEqbEZXoyJU0NpFE3hU+C0ALXrtt79vYRfwQPf88P0snHEzIKIVUWkQq4Iq7AJHhFQqtJs+ch4aaUjlJjeUShTc8YVUWdFgipxgrmMGAQUpXMPH1hugqDzNEi3EdCTmxtICQjMo4LylSTJtZA1pwKjwRtDPb6aUmRl0VsHtEOFv00JiFgVtk3athZo0aNGjVuPdREQo1DwRgDMtxF6szwWqGsnLWnlGQKAC6Qmy36or5CkUDdbD2QEwneYwHIlQbRhCx6nwIxHFMkVGzTWEWCKu670diVB/gfBx/Bb+7/YWZUNw1+pn1jw657tLUhVjG6oosWa2e/80aLnTab6Ia9DKoUCQDmIxK4JxLGjRaBXJGwEbbB3GuEMEckKHd9SXlmL1eCYG5FAmO5jH/0OFJuL8Y8ZotJapMQTntygzYae12OlFtn9HPb1URCnkYx+XgotbOTRcNFbcrSZF/ghiHNyImE29yIGocHoxRKm1PrkxCnqvKdQynBIMnVLlW+BkuB2DaGIjxJMFGR4AwOj1MFoNQEs0U4s8VT8HzEqcQgEWg1cvKZUEt0HBXpknA1s72FMXvP14aLNWrUqHHroyYSahwSBirpw3u+rfOrYAfPgPV3QNMuwIcZsdAIfXKDzlsbfCFTKuqtVB7IWw3CLIUhXzZ2g/NGhUcCkLc8pGIeIgFglJR6X1MR40ODT0NCITYpBjoFmWOmNqAhWmt2m/t9nhURxhgcpHswRiOkuYFeZrS4orYGD19sjhbgwLgB5SiSQmvDqHpAFFoE1sMGQmIHsoTa3yll1+9j28YVCfO3NgC5smI0uSFZIP4xTjUICFKVYiD7iOUQiUrANYfQAsqoU9HTq4zClR1771w8G00klvwxD6coEgDb5100XJTalKQ+/vmLwrwVpvh81jg8GCUYTCF8TgrGGCSF6MciGiFDdyCyJBtLJBye5KSUjPkdaGOgzBRFArXbXxmZMQcmtXF435fjjqOsQm/IoZQpKQRyRcLqtyeVhtSTox+LMMaUoppr1KhRo8atidXpqGs8bxG7YAJKgKgRAUaCpAf40/3H8JfyKv7WxW9Hp3UBUUQwiAFRUBUUnfw9Hu//Jf5k76P4G9uvwT3hPQDyol+IvH87TxaoHtjkvgq2Z98Xrxl5wcZVEF5yoI3GH+z+AfomyT4zMAk6cxRYEY2ggiHW2gH6Q4nnbgxw7+0bGKoherKHdkGNAKzeaNFjklEhAYXU070CMrPFwICOJCx4NQIFQ5MFCAlDYgDjWxu8RwKsRNjPYOUeCZhp2FU6jibDQV+NHcciZotxohHRBvb4Lvb4rmudoaCEZsaeAQnQCdbRDlqIaGMlMu5FoY3Gleu26JzU1gDkKox4hjt6yGip/UEpjeKEYm6qSbPniHPUrQ0rRBRS9GMxddb9JOD72Kuk6o2IojcQiFOFtRaFUvrw/giwhe5olKPStlVgmiIBx1i8a2cGXPWO8u+Kk+YcldY46HM0o/K72b6zyJGQLlJpKGUQzZHdSyk5tSqcGjVq1KixOtSKhBqHRsLtgKsVAYQFQNCEidbwmNpBYgRupNcBFAwXBcYUCUFBVXAtfQ4GGtf5tex3WWtDQZGQFoqgKmQqBlF2oU8ziX2+nO/l94PHR/f+FM+lVxGAYp3awr9vkpmtDYA1NNTQuOO8NVz8y2e70EbjgO+DgIDRMmHgWxtWFf3oMam1gRE6U+LvC1RW0drg/REatAlGCEJPNFC7zswjwRl/jSoSWLBYr3Xu9VAwf1N5rOVURUIzn2UPSYSNcBMb4SbWgg20gw4atIGAhKCEWW+C9AqeHT6D5+LL6IoDiGP2VNBG4aBrj/PcmXDi57wvxHAWkRBQcKGz2UE705qfe39NooDkEa3c1GaLK0QUMgihS+kppwHCGXFWKRJsS0ZuaMtlmYBaFt7voAilpreMUUqgzPEpEmy8IyYer8HJxz8OEolhKjPFVREGR5PaIJVxCR+zb4SQ0Znvpho1atSocfOjJhJqHBpekdAqGMwnmiPW9g+psv/3LQicmzEiISoMTlK3HDdJNvPjiQQpcyO4ZCaRkPsqFFMKuDNfLKogLAhAgSf6j+EzB38BAPjG5v24GJ4BAPR1auMg50BAAtx+u92vLz2zj4HsYyD7aAedsc8eXWvDeAEO2AjIeRUJYTjuZ+AVCZZIMBmRYIhvbTCuNcXYWE1SViSMn/f5jqOoSPBqBEImR1QCZf+EpGDWaD04KBgNENIQEY3QCtrYDLcQ0QZiNcSV+Dk8M3wKV5MrGMrqGM9VQ0EjTuxNv9aaTCzNrUgIKHjBcFGqsmS7yiOh+HzWODwCRiGUPnWGi0JpKG3AJpjnhQFBd8izz65CTUEoxkz4ZhW9xHskHBuRYIvxSWSnATmS1oFF0B8I145XYTR8ROdKKm0jkOcggQNGMqKqRo0aNWrcuqiJhBqHRlxQJHjsyW72M3fEQB4BiazH3qsDwgIZwDXPlvPDIW+cKGQ+W5opEia0NkRB3spQnGGtaqcwxiAICPryAB+7/ocAgK/qvBgvCM+jQ1sAgIHhM+Mfs23TBs6ft4Xuzn6CZ/ZugBFW6Q3gWxuOTZEACmXURJ8E2zs9+dzGjkhoshYoMQjdMfnWBqn8BKOpVCQECxIJPgmk6JHgiYQopFMHtpTmM+1JMt+1C2iATrCG9WADjAQ44AfYSa/N9JVYBbgUSF2Uaqc9+fXcyIiE6ftEqe2Z9oSdGnHHzxQJYUGRIGoiYdWglCBOTtcM7awe9kbIMEwVuFCQcjVEAiUEeqRNQc0zu3+MZovGlN9boyAnrEiQSmN/kI61NRRxFOdKKj13S0fAKKSskxtq1KhR41ZHTSTUODRyRUI+8tpTvexnrzCICj3YSttBrC9kwqBIJKTZ//2AKMgUCXlbRCryYrIKnigQEqU0Bl7R2gAQKAh8bO/DUEbituYlvLx1PwyhWGOWSOjrBETPX4yyUOP2c7a94fHLfTTdeoqQymAQ23Wur1iRUBX/CACUMBijJhaLxd7WsEJd7xUJTdqyigTY/dZwrQ3KqUaILVxJpkhYkkioOA5PJDQnkEizlp8HhBBENEKbtaG0PBYioedmgBmd3rKRkSMziATAklmJUM4kTpeIl6IiITdbzIm+GqtBFFD0Yn7ikvgiOJ/uexCFFEIoDBI5RkAtC5/AUGxTkEpjHu/V4/NIsP9NPlxyrAkSoxjEAilXaFW0NQCoTMZYBfgCZBJjBLJObqhRo0aNWx41kVDj0JipSFBlRQIXgPaKhIrUhiKRgNHWBmfkp43OzfZmtDYU2yHs9r3ZYtEjQeP3nvsQBqqHNlvDqy98M6hRACFYc4qEvkmBBYpJRhjuuM1W4leu6Eo1Qn+Qt1n4Qm5V8DNW40QChTJ6YmHs0zAYIwjY+GA10dYjwSsSIvca0cT34VvihhBgcy1Ew8VzZm0swWLH6X0OirPv8yQ2eLQqll8EjLCpCo5V4mBgiYR2i01VWiySsBAFDINY2Jngkd7vKkWC4LPjQWsshiikSMXpam+IJyQ2eBBCYAD0Y27vm1UoEijcfVggEuYpUMkKIyhnwBhjJfyTDGHtn08MBwMOkMmtF5SSIyng0zmiHz28cbGsFQk1atSocUujJhJqHBpVHgm7FYqERmZ+aKCgYYzJ1AGRKzaNMVlrQ6rTbAbPKxakBDRsESyE/dvE1obC9oqtDV5uGRZ66z8/+BSeHjwNRhi+fus1aNAGoCVAKDpOSTDQCYyevxAIaYSLF+3PV3bkmFs5UDZaXHVKgC/AE65LM6GUUBhMLhaTLFaTgFWQH16R0GJNEK0QEa9IyGexlbTO5+1mmBUJWUvJBOJnEjJFQUVrQ2MO8mVSesW8sAWVgZrhK7EK+J70Tmu6OsUX/fMQCd5wkQsrTSaFYoD7ZygoeiSg5ClS4/CwPgnq1DjZa22QClWZ2FBEFFIME2kTJ1bwfvIGrEV1gZjLyPFoZtmroLX3SJjwAXJyrQ1Ka/RjMbWtgRJiDSxXCGNse9Q80Y9FnCbi7Cgglc4I8ho1atR4PqImEmocGl6R0HaKBG0M9mWBSHAJAVHJzM0WmiJTJDiiwEhn1OdaG3TZz0BKA6UVuBTw48rZrQ3lojmPIXTO93KALw4/DQD4pttejU12BoDOohw61LYnKGikOpl7OiokIdprCp0WhVIGl6+lY5/Joh9X3NYA5IZ8xgApH9/nScWij9WMIgJSQSR4j4RO2Aa0zMwWFfKEA6nKKhCgqEhYtLXBeSRUtDbMpUhwy8/rkVAFAnIss/T9Ya5ImIai3whXsw0XhVRIuII2pjTPKioUCamwRN1pkuHf7PCxgTE/HS0j1gjPzHTgb4QMKbdtUPPORk9D5pFgyq0NsxQJRzXLXgWfyjCJ2CXEyvZPAkrZ9Ipp14ISAjlnC97c29UuKrTC3HESAkZnmsHe7OgOOJ67MTjp3ahRo0aNE0NNJNQ4NEY9EnpqAFU0N9QCMDrPqRfW1V8bnc1SZ8aIulxsp8b+Oyx4JEgjS9FSk1z7/cy3lLknA2CJheI6+7IPAFgP1/GSrfvhLMIBKIBQMMLQolZu0VcJMGc0HiEEW41t3H3JKhqeei4Z+0x3cDRGi4BtTfDHWBU9N1GRkPq+eQJW8YrwioT1qANohdDFWUoj4MeZQmqYkUw3PkIazYuiaaSfyfTEyKS2ltLyzcMpEjxmJV0cFtpo9If2HM1SJBTv+WHCp37WxudZgsgUZpaFVBkZF4Y0I57SNCf6aqwOYUDQG4pTQdAIpV2U3/TnJwwohDIuNvTw26XUEgm+TUFrM5f/AiUEcsWz7JNgjH3DTzRbJMgI7uOGdNdimjKAUlSq3w4DITWUWoxMaoQM/ViiHx9vhO5xQmmDfixPjdKoRo0aNY4bNZFQ49BIRjwSvNGiL0JT44iEQvyjMbbdYNTJ30dFevh/F80WlVFIuFM5hGTizFE0Qj54iBHTP09eNFnTztARAmI0iDbwLmA+uaGvhws3yN59uyUhnrqcjBURvay1YfWKBKBQhI/NxpOJhXGmSAitMePY370iodF2RIL1gZBaZANcqQz0KJHg21iCxY616B3hlQhpunhrwzzGhJPACIMwRzsgVkZhGDsiYUpiA+DTKOy5HvDZ+0VhySQNkxnbFWXHYUCyc2kVQ5PNOGssh8jN7h+lk/1uN8kMO6dBSNfmMgc7wCig1XyfnRfGEQlK67n8FyglxxYlqF3+IyEE+70U7/ztz+MLT+9nfyeE4IR4BEitZxIvpCIZ47BQ2kBqvVBrQyNi0FrjuRuDWzYGUhuDOC1PbNSoUaPG8wk1kVDjUNDGIHbjVu+RsOuMFi+E2wAKREJmtmjVCMboMb+CMUWCsrP4WeuDskXOMPVEwuRb2K9TCANVIBLy1gZPXnjzwAYYpSAU0FraqEdXdXnDxcECrQ0ely42wCjQHyrsdcsDDq9IWO+sXpEAFIpoPhIBSSiEri5AvdliGJIxg0hlVOZh0WEtwGhEzO670CI7p0rpMdIkN/ZbjEgoFs1eVbCQ2eIhPRIA6ysh9NG67mujMHCEzyxFApAf+zCZTSQEAcmKR1+ExI6ACAJiz7F7lgxcBOScypsa8yEKKLjUleqgVWGvl2K3O658GoWQapKV4BjW2iHW2it8PxVSG5TzS5hHkVD1TjkKWB7BbudLzxzgyat9PPrF69nfCY7P+HEUShnn3zA98nY0GeOwEFIDZjJpPwkbnQjdAce1/Xhl+3KaoKT1eRrMUIWtCsYYHAz4iaaG1KhRo0YRNZFQ41AYxhLGVCsSbgvPArDeAkqJ3CNB5MkLmQGfVySMEAnc8NLfpbTL5kTC5IFN0aCx2PM92tqQKruNZtAEowQBodDKD/btZ9Yyw8UYZMGZ2jCguHQhVyV4GGMKioSjIRKqjAoBWxhLUy2zzj0SMEYkeNKFgGAtiGC0QcTshRcmJxKkxnhrw0gby2LHUU6gOG6PBOqSG46yuFZGI46XIBLS2USClaiXZ6Gz6+yegyAg2Yxjkqoxj4sahwMhBMYYJEdkzuYNFHuxnGlyl3CFGV0NGQJG0Wys7v1kgKwQ0trM5b9AiY1kPI4CXmsDYrxBrCr9H/CtDSdFJGiQGS1H1CVcrLLYVEoDZPH1UUqw1g5xbW+YJdLMgtYGveHpikqdBKntvdsdiGNRXSRc4fp+XLdS1KhR49SgJhJqHAreZT4KcgMoH/14IdjOIrS4TvIZTwNwaTOmvUTUF/18pLWBe0WCVxdIO1M6FHa70wrJqLiM0VkRKEdaG1IXZ9gKmmABAaEEWpa/qPPWhsUVCQBw1yVr2Ph0wSchTqzhGSHAWvuoWhtcEc01oAQIt8ZQ0wrj3CNhfH3eaDGiTeuHYDQiaomEYmuDVigVosaYTH0yTUUyCVmEY2L3zRMJzTmIhKr4yEXBQKGNPtLkBqUlhrG9t2aZLQK52mQeRYI3XCySO6lw0aMFMi7zSeB1a8NRIAxoZqi5angDxSSVGEzpSzdOjj3LH+GoYFsDyoqE4kS3MQa76Y1S6xWldpnDFJfPXe9jvzdueDsKuw27HU9+8kI7CiXkxBQJXOmZqgDqCKtVkh1czN7uJDRCG2V75cZgZsKBVBrPXu/j6Wv9Q72vjwtKaTQbAVKujqW9IRUKqaiNcGvUqHF6UBMJNQ6F7sAOWFuRG3hpgb62xeZ2sIEGsdVoqhM74+nN+DjARf7Fm7UZzFAkKGX7apPU9/FPaW0ICvGPOi+MvCIhGFFBNFkTFARRUFQkWOStDSnmNVss4u7bLZFw5TrPimDf1tBpsYVjteZF0aiQiiFosg8AoKAwRlcaLnrpdZXaw/sjNGkTdpdzRYLUstDaUFYk2BQH+3OwYGrD6HEARUXC7HV5VUbKlx9ce+LlKJMbhlxmxNoiioTBHIoERims32h+vvLrnD9D/nwmvG5tOApEIUV8RD4JQmkorREwgu5gcsEslXPgPzEiAVnqgX8ei0WqMgqJiiF0TrhQRz4cpoAfxCJT4UyDfU95Etp9Z4j8ep2kIkEINVO9kXkkrLDYTIScmfAxDRvtEP1Y4Nr+cGIRzIXC09f6uLYXI07lXNfqpCFdgoYx8xG6h0XCrdrohG6/GjVq1BhDTSTUOBS6Tq7YdETCvmtraNMmmjRC5Iz4vNKg2N6QSjtQoBRZIT3qkcCNN1vMb1UpTSbdndra4P5mAOs8bjS01pn7d8i8CsIeQyuwxX4YUOuRUEDHtTb0zXKKhI21AFsbAYwBnrliVQlHbbQI5AV4nCpAcUBLwBhQQqGMroyAjLPWhqrEBu8n0QIjxnkk5K0NfpBre3nz81SUBi8zIB2NgFyktaH4mWRJnwRf6BwlkeCLv2aDzkUsefVAksq5ZqgIAYqq6KpnqGi4WM96rR5RwLJZxVVDSA2jgXYzQC+eXIhZ5YI+VGHocXV3iH4ye5a/CEpyVVgVMaChoYwsEVmUEmgcbpY94aqkLJgEY0wm4xeZIqHY2rD6Qn1epGKONpAVeyQYY8DnIDCmgRCCjU6Inf0E+/1xRU6cSjx1tY/dboKt9QiMkpsi7UEpA0rsd+VB/+i9C3pDYduBaiahRo0apwQ1kVDjUOgN7Ze9JxJ2pSUSttk6AGSKBN+ikBku8pwMKM5QZykNxPbkctd2wGgex5UKlRWSVcWuR1hcr7Ayfqn12My4b21oBtbHIAwZIAVMITPbKxJSIyeaFM6CVyX4GMhu/2iNFoHyTD4RiSskNSihbsA+ubWhKloxUySwFgg0YAwazKU2GJmna6hyIeqNFhmb7dBeeRzN3OtBawMuXPzjHEQCpWRM0bAsjpJI8D3E86gRgPzYE67nUg+0WwHazXzdiahSJPjnE7Ui4QhAKYHRmDrbaoztEV+0WJCujz0KGbhQGMQTiARlnf/ZIRUJNw4S/If/9Vn80v/8DK7tD+dejlJrnAhUz+xroyBHUkO8CmDZ4lhpS57MowSxnxhRJBSW82+v4y7m/DHM9/5cXbEplYHUOPT9EgYMASO4sjss9fj3Y4GnrvbQHXJsr1vD40bE0I8F1EnFY8wB7XwoCCFohgwJV5lS8iggpEIqbMpJbbZYo0aN04KaSKhxKByMKBL2lPVH2A42AOREgjc09MWpEDmRUCr4nSJhs7EJIFcoEEKyzwlpwP2M9JTWhtFltFFZX3hxu6OKBEYIoGSW2AAAEQ0ROnJjKPuzTksl7s58ElIYY7LWhqMyWgSK8Y8KMBJwxb9HlSLBS969v0IR3iOhHbSs6RdBltogjQR1iyhVLkT9jF64RFsDUExeUBkpAcxHJABFZcZhBqZkaRJpHvjYvnZrvmPyx56m1S0qY58PGVoF07w0S+fIt9ccMUR9PkBIhf/7E8/g6u78xfBhEDBMLPK1MbiyN8RT1/oLz8imQmbpB2FAsd9PK1UlQqplRFVj2HFO/MNE413v/wKu7s13/gghEE4VVmVQZ71IRokEazG4bHEslSUhuJid/KC1Ru6R4M0WC/viZvyPu5ZT7hjmVQasjkjQ0Gq2EmIerLVCDBOBK7sDaJdA8OTVHuJUYns9ykiSKKTgQh1pwslhoY3V3FFCEAQUSukj9UlIuAIX8kRba2rUqFFjFDWRUONQ8IoE75Gw5xQJZ5wiwRvx+Vn/KPKRjEDCy/4HQE4cbHsiweSD4TyFwSB1M9LTWhuAvL1BCjtAzdopSD4z7smLVmgL/YDCzraPPB6ZT4IcTN3mJNx2LkIUEiSpxs6uONbWhiTVIEraxAnj59zIBI8Ee46aFTGNXpHQCdo+Jy1rXzEwCJgzUVOoVCQs449QPI441Vn0YxiSudUNRSJiWUyLzFwF/LM0ryKhGO25TNGftTYUrklRMaT06R3ErxJ/8vkdfOQvruDDn3z2WLYXhQyDZHy2VWmN564PcHlngGEiS3L6eRCnKvM9aDUYBomsLMQ416Ar+OYvFk3DROFd7/8CLl+f/W60fge2oBcVM+zaaCiMG8ESg6V7w6XSUK69bZaqQau8lcl7I9joVOfnAFdEHjOTIJVVGczT9mTMaokEn05wWBBCsNmJsNtN8dz1AZ680oPWGlvrjZJPBqMUWptMHXcaobWBKRiFBgHNWj2PApb4Jfb5qRUJNWrUOCVYejjR7/fxy7/8y3jTm96E7/zO78Sf//mfAwD29/fxH//jf8STTz65sp2scXqReSSEtnD00Y/bwWhrgy3Ws0JFAIkr6qtaG7YbW/ZzBc+ELAJS5YXptNYGu0xOPmijM9fooIK88IoESgwYMdAjSetZcoNaTpFAKcGdt7n2hsvJsbQ2tAqpDZZEQBZfSSpm2I0xiF3x0ahQJGREQtR2I24gpPn+k8Aek1blNoAsIWBZRUIzj3BMUzuImiexwaM5IQZzEVDCIMzRxJIpozCI7flatLUh5aZSWTILfEZrg8LpHcSvEl++Yt9Ze3M4+q8CUUDBpSrJu4XUeOZaH8/tDrHRCREwkqmu5oHSVrbvi8wwYBBSVaY3xIc0zvMYJPaZvnQ7xbkzAeJU4d2/80U8fW36+7EY5SilzlQUHhrWu2WUyDLA0lJ3O5uvs1n9qZ81OisOi0oE395gYzyPX5EgtSVBRs9XFVZZbEplYECWTm0YRRBQRBHF5RtDMAast6PKzzFGMpXWaYT1yUB2PRoRwzCZHb26LAaJzMyqa0FCjRo1TguWIhKuXLmC7/zO78TDDz+MK1eu4Atf+AIGAzsTsbW1hfe9731497vfvdIdrXE6kREJDYOBjiGMBAXBBlsDADSoT21wRIJvbeD5IC0sGCnmioQt++9C4ZYlN8i8R35WlKBXLHBpi7XRglYbDeGSIdqBJQoCokExTiSsscMpEgDg7tutD8Pjz8QYuqL2OBQJQgJCU6tGcOeTElqKWLOf09lMVisaJzgSpyzpBG0YrQBQUELA3KuEBnYQpTRKs+SHJRKKppGLGC16eCLiMK0N3qDyKHwStNEYLkkkcG6W2qe8tWE8/vH5okjQ2uCpq5ZIOOgfT3Y9YxRKmUwtkAqFZ3Z6uH6QYGstynrJF5FJSzmexBCFFHsj7Q1aG6RcrSSxYehIiq31AK95VQN3nG8hFQrv+cAX8aQjZ6pAKYE2LhJWjUv1tbGz/9KUj98nNywD6XwhlLGkwjRonReHopJIAHACZovWwBbzFfTE3hOrgFTatrGtEJ1miLMbDXSaFRnDDo2QYZjKyvaX0wCt7T3sOyCjgCKVCsNk9e0NSmsMEoEoZLa14ZSekxo1ajz/sNRo4md+5mcwGAzwP//n/8S73/3uscHXt37rt+JjH/vYSnawxulG35sthiZra9hka2Du2zVTJLgor0ahB9vLRsseCfZzZ5rbbrk0GzwGvk1BEgg30TaztcGRFMoRCV4u7FMgihFjTWaLfEoMKDSUqVYkDNTyvdR3OcPF/a4rrEOyUEG8KKKQZLNrsXbEgCvwKaGQRpSeX1/cEGIHRqPwioS1qG37F3xPNrHFL2F2ea1GiQTvkbDcsRYjHH17wiLnLW/xOExrA4M2aqnZ/1nQRmEY2/PVbi/W2sD5cn4GqVf1FBUJfp0CUObo+n1PC57bHWbqJi51SSVwlKCUYJgK51bfw243xfZ6IyvwQ2ZVC/MWUcLJz4tKg1YUIE4k4gIhYRMbzGoUCW69rQZDFDL8P16zjXtvXweXGu/53S/h8cvdyuWIIwSkUwmMtjZILa36YPQ5O0Rx7L0FtIvInAatc0WCKLSXeOKbEpsgcdytDUrpuWUQlBKIFRWbQuiVqRGKmNWWFoU24eS0+iT45A5POhFi2w4GyepVFCm3iqMooC4+tSYSatSocTqw1Kj+Ix/5CL73e78XL3rRiyq/YO666y4899xzh965GqcfL7//HC5saZxd19gdMVoEgIg4jwQjbFRggUjgoqxIUFpmxct2c9OtwWQRkP5zVIeQjkiYVUxmHgnSDlCz1gZW9kcISADmnAKJMQgogTHVioT+IYiEVpPh/Jl8FmajExzJIM2DEJLHBAoGwGStDZQwKFPuRfaDtigE6EgjtTEmi3/sRB1n3uiIBFiSgjJ7/UbNFnNFwnJEQvE6H/Tk2O9mwRMRz15Ns5aSecCFxp/8RRePPx2DgmaO8quGMjojEhZVJEgFcLl40V8Z/5i1S9gkiFs9AnJ05nz/CHuci2iEFP2hdavvDQXObDRKhVXAKKScL2UAyKMfi++SIKDgSpdMG3PCYXWKhFaTocEaEIjx3d98L150xwak0njvB7+ELz1zMLYcpU4JpnRp9t9DGgkCAj2qSDhEcSxcC8U8ho3a2LYvoNza4Elo4lozjltezudObHARmysqNrk8XPTjsqCUOJ+E00loWp+M8jPXjBi6A7FyFUUqFKSySSuEEKjTya3UqFHjeYilRhNJkuDMmTMT/+7bHGrc+vh7r70Pb/gGCcbGjRaBQmuDEQAMGqE3sTIQstyykGbqAIJ22ELolk1kWvqcUmT+1oYgJxKUkeCqnB7gPRkatJkvZBSCgIz10maKBB1P3eYs+PQG4GjbGjxaDXusiWK20dgTCaDWfKxQGMc8V0qMItUJjJO4rkUtQCkQRzYEmSLBLi/HWhvGZfSLoBjheHBQVrfMg3vvbKHZoOj2Ff7H717DM1eSmctcvZ7iv/3ONXzysz38wZ/uAbCn7ygUCVwKpO7278yZ2lBUm/SS2ccztk1P5FWlNjiVw60eATlKJBwcE5EQhQzdWCJJFbbXozEykTECqc38RIIabcSyaIYM+4V8+yrCYVn0nYS72WQISQihBRRJ8f9+7Ytw/11bUNrg/3xs3CvJ9u8DUrqe/5HbXRnp1D9lpQ0l1SkP8yAVEoza2dyZHgkFA71Sa4PIPRJwAmaLQsxveEgJmdnCMS9ScTJEAmCJ5+4p9Ukw2gAjLR+NkCHlqqQCWgXiRGbPySpJoho1atQ4LJYiEu677z78yZ/8ycS/f/CDH8TLXvaypXeqxs2J0ehHoBD/qAWgdcnMTY54JHh/hIhGYJRm5od+FjyLaxQ6IyFGWxtizkszcL5IkhJQ0FlB680W/TYbrq0BAKAVGKNjKlKf2jDUyaGi8e6+PScS1o8w+tGj6bysYk7sdFrBI0GNSPUzRUI0PnD01yEiDYSUAqbY2uCOg/rWBgNTmNH2aRnLKhKAXFWw3/VEwvyD206L4btedwHnz4RIucFv//4NPPq5XmUxoLXBJz7Txf/60HX0Bq6PnZvMm2G0d3sV6Ll7ltH5CRJCSEakDdPF0yQyw9KK1IbUEwm3cASk9UewxoBba/Yh6faPp2gJGMXZjQibFSQC4ItVzE0kpDyPXi2i1WAYpiLr255EOCyDYWLvuXaDgRACRhh6ogdGCf6f33APAOuhM6oAyI5N2fdDUZFgjPX7YIQ508UCkUDJ0kQCF86I0gByCpFgjBlpbSgqEorbJseuSEiFmluRQAiB0vrQPg7KGTyeFJEQhRRxqkotJqcF9vqXzwulBAYGg2R16T7GGPQTkX13khWSRDVq1KhxWCw1qn/ggQfwW7/1W/jlX/5l9Pt2IGaMwZNPPokf/uEfxqOPPorv+77vW+V+1jjlUEahq6wSxSc2AEDDxT9yI0BKrQ05GeBnqTNDRtoAAUHLmR9m7Qeu4BnE+YCuqEi4kV7Hf3/2Pfj0wSez33nyQUgX/yjKSRFpBZFgtHKy/vKXdYs2QJ3t1FAul9wAAOe2Q7Sadr83jjCxwaMZ2uPIWjcdcUAJhUHZqM/LSBsVSo/Y+SM0WROUuHhH54WRJTdQO4Dy8Y9ewcAr/DAWPg53zg4Gi6c2AMBam+H/9drzuP8FbRgD/PGfd/HBj+5m+wYAvYHEb374Oj7x6R6MAV50Tyu7Vt2+AsW4QeUqcDCw92G7xRaaLfYqjUEqF54hrVL1eCLBGPt3s2KTtXlxPdnJiKujwpXdIVKh0AgZXnznFoDjUyQANuJuGgjF3J4NcaoQVKzPGzv2Y3tcSWrVY4eFMQZD5zfSbthnP6INJCqG0BzNQuJLZY+7I0mUMaXi2JMHjAa2qEdRkWBVYosaLiqtIZWdzSeUQIrJZIRxLQvex6GoXigXs8erSLCeEgsoEqhrvzgk2yFdysW8BMaq0QgZuFBZktBpgtamkpSLQtvesCozTi40Eq4yzyJKkMWn1qhRo8ZJY6kq5g1veAMuX76Mn/u5n8Pb3vY2AMA//If/0M4uUIq3vOUt+NZv/dZV7meNU46uHsIAaJAILZIX5ZFTJAgoaK3QiJxCgeey3UxpoLwiwS7fdoqENFMkuKIpzn0Oipna15Ir0NC4Ia7k2/eKBGFgTK5ICFl5myVFgrQyWLieWr8FQgg6tImejjGQPayFufJiERBC8PKXreNzjw1wzx3N2QscEq3QnueYA4ZQkBE3flWpSJhstNhkLWtGqTXg2k+iTJGQeyQYFImEckvJUsfhihNtfNzW4jxowAhe/de3cP5MhI9+ch9PPJNgv7uD133jWVy7wfGHf7YPIQzCkOAbX76FF9/bxm9+eAdxwnHQk1jbpJlx6Crh5budOY0WPbwqI0kllFEIyPyv9MzstKDqCQL7TCllM9xPQpEgtURf9sEIQ5Mt9nxoo0HmjKrzsY/33LaGrXVLeB70jycCch4EjGStRtMglS2UJxkoNiOGgz7H+a0W4lSuxB8hFSorUttNe8+FNESshohVjM2ogSik4EIj5jL7zOh+Y6TH3CY2aDAagms50tpg2z0WLWyVMlCuv5xRknkdVMEXf4Rg7HNpkYA45vhHqWyazqxWPg97rlwCzyGIIx+byVbBPi0BQuwMf5JKbEyIiTwpaFNNszZDGwOZpKryvl8UiVBQSiMM7LqIaw3SxoAdob9SjRo1asyDpd9yP/RDP4Q3vOEN+MAHPoAnn3wSWmvcfffdeN3rXoe77rprlftY4ybAvs7VCMWBoScSACDVMRqRM1/kGkL6zPNqdcCoIsF/bjAcN4kDgKEzQUxNPpMZFjwSvMEXkKc2+HWXChYtQBmz6gNjSseTEQmiB7TmOzdV+MoXr+ErX7y2/ArmhVFoBgoAs4oEQjJFAmBJkuJg3Uvkq4p0TyS0g5YbRRs7PQIgcIoEQ5xHgnI0gjEAAdKRtIxl0GyUr3cjXG4kTwjBy17UwdmtAL/70V3sdSV+/f1X4dtOL56N8M1/Yxsbru1kcy3Ac9c4DvoSd5MoS7qYp1j1Mu1Z6LmZ8HmNFj28KiNNtWtRme+VLqSEV4mPFifNiGAQ25jAWUSCMgo90cVmuLUy01CuOYTmGKoBtsz2Quu9kV4HYHCucWHmck9mRMI6NjuOSDhGRcIshIw6k7Xp5oiWSDAZ0TaKZsPOkFoTOLMSImGQeGVXru4CrGltX/awEW6iFQXggleb5RH77I4+wdooaBhEhMGMtTYASiweuyiVjX0MKAGlZKRFoQzjCAJCSEZ+epQNTcmxzgh7ZcAiHglaHz6i0pIR44aYx4kwoOgNBS5sn9guVMKmf4yf3yCgEEpjmIqVEAmpUDDIv288oaa1bYWrUaNGjZPEod5yly5dqlsYagAADnxbQ8FoEbBfehEJwI0EVylaBel0krhYxxGPhAb1RMKoIsG3NlTPmsdymK3HF3p+tlVI27M/avDot9kM7DYNDKClJRKYndGhhZm+NdYG5B4Gh2htOE4QJdAKNACGmBtnOV4kEiiEzvs5/QxoNZFgr0M7aNt1lFobLGFkSN7agII0eRWKhPYIcTAlgnwuXDzXwHd92wV88KO7uHKdgxDg5V+5jq996XppxtMTCt2+BCVNSDPf7L8yCtfiqzjTOFtWvIzAGJP5eixKJPjrlHANtYAxYlIokkavSSOiGMQaKQfMjHWmKkFPHKDJWgurByZBaA5lFFKVQmiOaMq5K0IZhYEcgOsUAYmw3ZhceRT9Ee69bR19Yd9fp4lICBjFMJEQcjqRYCMdFQJWfT8ySmG0bZ+RSqMZHb648Z4Loz4lDdpAohKkOkGrwXAwQBbXOgrHMZZgfTlsCxFAxlobrIfB4q0N2sVMMkogpXuvVxTlxkX6EYwTDmnhmTFYfD8OA+tVsEBqA7URlYfdR6XsrPtRJgvNQhQyxKnM2pBOC7SaTLCEAUV3wHFu8xCzDQ79IS89/zY15PjNPmvUqFGjCjWfWWMlOHCKhDPBuNy/4SIguU4QBLnT/DAZSW1Q5aI+IxJGFAlJagd4o338XpEgDM8M8fxsqxB2QOQNHoPRbfrUBqNhtLZEAgHUyJd1ltwgb5JkEi3RCu0A2Hok0JwEgPVJKBIJfvawWTFg8x4JnbBtBzHW/h1A3trgFQlKG+iC/ne0jWUaPr3/Kfzak+/GHt8t/b4VlA2sGuF4kauULarmRbvF8B1/8xxe/de38J3feh5f95UbY4P1zXVHJPQkKGFjSReTwFWKRMcZWTUJGhqDoc72ZxE0Grk54jz75BFzey4DRsaO16+TCzNTkSC0QKySmce4CFKdIiABpJHZsz/XciqxxANtYI/fmEr2Ff0R2msSKbOpHL2hcDONJ495kxus+md6O0ezYUkJpa3E/7DwRoujKiFGAyijEMsYTeedUNWe4UmB0T22ZFh+LGbEbFEbMzN1YRRSmayFwq4DE69xUZEgRrwUuMiPg4Aca56JPYb5WnYAV2xqc2hDSKX08fZwVCAKKITU1V4bJwipNcgEYqcR2faGVBxun6XSiLkqqcYoITArUJvUqFGjxiqw1NTES17ykrm+0D73uc8ts/oaNxmMMXlrw4giAQAiGgIaSGUKQggaEUWSasRxtTqg4WY2fWsDz8wWywPgscQGRyQAQCJShI2wYLao3f+dCoKV2ymajrSAVoDWoEGIgOkxeesas/vUv2kUCTxLbbCtDXBqTKtSoISVpPo+tmpqa0PYKrVHAEDkLOM1vEeCycwWtdEQonytJ0EZhc8c/Dm45vhy/3Fs+5hZo9CiKYoNv002PkgbphJaG2wuEKvJGMFLXtiZ+HevSDhwZouWSJAAps+UCyPs7KxKsT5FPaGNxtCpbOaNfvTIWhu4b22YD9PiOEeTG6auR6cQWmAoBtgIN+fe/iRoo5GoGCENHUkRY31OLxKvmGmyJoZygOvpdYQkrFQ0+LaGOy40sct30G4G1qBO26SB7fWj9y6ZhXmTG4TSvlNgIppRgIM+r1JiLwXf2uDNPosIaYSe7KEZ2WcwqVAk2ASGPGbRwxid+ar4d4cHIcSaIS6qSFA6kz4wSqBdK0hYMfrRjkmo8kgo/Zsc74ywUvl5mQd2fDYeYbwohJpfBXFUIM6rKE5F1oJ0GqCUxqRTEwUU/VggTuWhVBQJV+BClY6bUDi1ydKrrVGjRo2VYSki4aGHHhojEpRSePbZZ/HBD34QL3jBC/DN3/zNK9nBGqcfieE2lQHAVjBOJPgISK7tQL8REiRpPtExmqDgi/pJigSP0daGocyJhFgNsY61PFpSVM+MZ60Nvtgwru+RUmt2lo4qEtp2WwXS4rTAGIOryXM42ziH0KVlEJFks4Yxhx2FGJnpirMISGgwsGzWp1nRb+2JhLWwPaZLDsmoR4IrBFwqhPemmBX/+MzwqczMcCe9lv2eiARtJlAkEhoVREKVXPqw2HCkRMq1TTIg883+JyqBMRqxGk71VNBGZUkky7Y2iDmK/iJ8GsAoGQfk5ATnZdf8URhjkKgEIY0Q6wRSy8wrY1kILSC0sAohSjCUw7l8JrTR6Ms+Atdi02Jt9GUP19PruNi6bWx5b7S4fVbDwLbrrLW76PYVrhwcnAoiAZgvuWGeJAZKiZVhr0gZnhEJzfHnuUEbGMpBNotapUggxM62jhapquTfQsafM4OFi2NRiIykhEBNUTXYpAhLJIiRqMlUlkmN44zgW6agNzh8agMXJ08kALYw7w4ELm7P501zHJB68r4QYp+3fsyxtTZfa1YVUq6ciXm+HVowW6xRo0aNk8ZSo743v/nNE/927do1fM/3fA/uvffeZfepxk2GPTc7v846CEYG7FIbRK61wbcRWAKg2KNNS39vsXJrgycgxoiEgtxPaA5pChJ9t0yUeSRYN3fpFQkT2imM1k6yTxEyOjYLlCkS1GBuw73jwue6n8Yndv8YL1q/H688941WNaBEPjMoAAMK6tsSABtnaERWrCVTCkzf2rAWdezUbeHU+PhHBe+RYM0YfYSbGDnvk/BY70vZzzfSHWijQQkF5X20onyDATUIIVBVYpkVX5IwoGg3KYaJxkFPorVRUeCMwM+sN1jTFsdGZM/BKKRWiF2bz8KpDVlrA0otKrOQiHLrT2mdGZEAKD35OIURUFqgxZquLz5dAZFg/REYDUAMxUD2karU+nJMQapT68HiPkcIQSdYQ1/2EKYhzjXOZ8+q1gZPXrVEwvlzDO3AqlHW2oElErr7+Apzbi6TzKPGPMkNCVdztStsrq9uNnfgPD1a0fg58rGyLHBpMVMUCaM95j51A5hAJABLxJzq7PxQalUNk4gE7VobaEVrgyio0wiZ3B5xFFimoCc4PJGQCjW3weNRIgopEq6QCrUSj49VQCkzUZEAWPJjEB8uKniYirFnxCuVaiKhRo0apwEr90i4cOEC3vjGN+IXfuEXVr3qGqcU+84v4AwblyAPhgKB46uy1oURJcG4OmCktcFw97nJrQ1FNQIAJNKRDwWzRQIyNjOemy06UyStYBtqAcqs4VcRHeeloIxCqo82534RCC3w6f1PAQCeGTxpSQ4lQYxE0zlHGwNwaX8gnkhwigQ/YPdEwug1srPPXpHQgTEKRV1y5GaCFfLUBoBY53XojMCpktJ7xCrG5fgZu1+gkEbiQOwDSgBiiGYrL4QaIQDFM0Ik2094CfRqB1mZT0Jf2vtoRtEutYDUEg3ahDIqixmtwjDhmUy13VwutYELA6nnH7TmhNFkIkGI6YoEqQWkUQic4siboh4GXPPsifMF6TzrTWRiVTWF4p8SijbrYI/vYp/vZ79/+voBuNAIA+DOs/k7a61jl93vp+jx7qGPZRUoJjdUQSqbRDMp+vGoMPAeCRPu14hGIIG9H6tSG3w8IR25/aSRoM7A1b+bRrGoImGsGDbGtjtUwDgTO0LIWEtJsbWBEHKs0vKlCvpDFptaG0ilTwWREAYUQqlT45PgEzGmTSQwZltLJj2782xjEIsJkZ8GZoVmnz5etEaNGjUWxZGYLbZaLTzzzDNHseoapxB7yioStkfaGgwAQgkiuELDSdZHvxhH4x9HWxt8CsNoEVosduORVoMkS3qwn7FCg4Iigdli08voW6XWBgs7Ni9rEhhhaLmZ5dNkuPiF7mez85foxBoVaglohSBg8G2asSD2GAtmiwCy/nqflT5KJAgjsqJyrdkClMwSG4C8tUGNeiQYA20UfHLaNI+EJ/qPwcDgbHQOF5q3AQB2kmugMgZRHI1mkHEXzQjuOEYHlnaWc5F+4nlQTm5g2X0zCVxbw087Q2+mfv5gaP/WbFCwBQvCRqENoajImYXUKRKqiJ1mwSNhGjkhtMhiyQIaYiAHhyZwYjUEK0TGBiTEQPanrtcYg6HqV6ZoBDRAgzad+eIAXHN89pkrAIDbzzdKs7xrTg2SxAT7Yn8hhcdRIWAUUuqJPglCaiipEYxW5EcMTyRMIr4i2gBzJq+TzBarFAlSy1yRQKjzIslBKCaSAFWoLIbJZDLC3maO2B4jEootEoA+JiZh2YJ+0XM1Cpt2MX/k5FGCEAIKgmFVlOgJQBv7DTMtFpM51c2yLTCpUOBCIwoqnjGDQxtpFnFld3iqEmtq1Khx82Dlo48vfvGLePe73123NjyPsO9aG7ZHFAna9faFTpGQamuMMFGRoMp+BS2nTDDQEEaMyeKLhMSoZ0Gi49K6AcAolhW0QUAgNM8KzpLZogNjBAx0bFZnjdj9Oy0RkEJzfObgLwDYmUAAeC65DKLyQig3XHTnY2QmXxkFpXPlwCjZ49UIAQns9dEKRbWGN1v0A3/jBjoGBkKqbPZumkfC433b1nDf+otxrnEeAHA9vQbC+zAkACEUXpTQCAmI1iCF63UtvooPXv8feC55euWzK7nhogRzBc604rY4sx6QMPNJqELXEQmL+iMAZWNEZfTcPgmZR0LF9chSGzimtnCkOnUxfUBIQgjNZxIs0yC1BNe81B4R0Qhcc4gp6+WaI1UpIlrdi9xgDRgA19Md7CTX8Ow1ey9fulD+vCcS4hhIdYKDgorhpDAruUEqDan1wgTUYeHjH9sVXiqALfy8h011awOgZJVHQkGR4Fobis9NlXfBNPiZ1uJ2CCET12G35f10VLZNwLYXZOsAGUv0OSr4Y1iYSFjwXI1v10yMyTwJRCFFb8BPhaRfa6sImNbZyCiF1vb5XAapUBBaj5lMAwAIWel33CAWh7pXatSo8fzFUs1mr33tayslXb1eD71eD81m89haGx577DH85E/+JD75yU+i0+ngDW94A/7ZP/tniKLp/aDGGLzjHe/Af/7P/xm7u7t46Utfin/5L/8lvuZrvib7zEc/+lH8+q//Oj71qU/hxo0buOOOO/Bd3/VdeOCBBxCGZRv2D33oQ3jb296GJ554ApcuXcIP/uAP4u/+3b97FId8qqC0woFyiQ2jigRtwAhB5KXPRgLQY9njjBHr7O9mVFvOryBkYR4Dp1I0g7KzfrG1IR5pbfByaEoJAmZnBqBDaG39GcKAZK0JDAyRy2A3SsLza5RQEGaPA4WBeoc2saN7pya54fPdz4HrFBvhJl68fj8+sfvHeG74DL6anodxBX4rAnqxM1xs29aGfBhizQN9pBsw7pHgiYSm84iAUiAFRULkij+JfMbIxtIZJDJf7yQJ9h7fxR7fBQXFvZ0XWqPFA+B6cg2E3QHj7olmBAxT19pgVIn4+ULvsxjqAZ5M/hL3rt2zMmM5oBgBqbKkC2VU5Sw4YNs0/Mx6QMNMoRCS8fiGnEhYnNf16gGlACEllFFZITYNPrWhygujqHIw0JVeIMbYlgNf9Ac0wFAOwHWKRkVKwjwQmtt2kCA3OgxogKEaINVpZfoCYIt+aSTadHLyRtuZL8Ymxs4NO2C+fQKR0B8qtNgGeuIAa+F61mp1EpiV3CCkzqINjxN+Zrg1pRVnrRECiLMkmCLCgGF7I0JUcLTXjggj7v1LCIUuGMECTskwI8WiCKWtsWKxCKd03P8g3wfAjCgSmg2COCmTOYTg2MwWq45hHtBDGkIqbSxJdWqIBIY4kUi5Qqtxsj4J2thozWmKBB81Kpe8BkkqQadYB6+KULFkpCnFmz7fkAqFgBGwY1Z21ahxK2Cpt/HXf/3XVw5cNjc3cdddd+E7vuM7sLW1ddh9m4mDgwM88MADuPfee/H2t78dV69exU/91E8hSRL863/9r6cu+453vAMPP/ww3vrWt+L+++/He97zHnz/938/fuM3fgN33XUXAOB973sfkiTBP/kn/wS33347PvWpT+Htb387HnvsMfxf/9f/la3rT//0T/GP//E/xnd/93fjX/2rf4U/+qM/wo/8yI+g0+ng27/924/0HJw0rg2vQ8MgAMMabZX+ZowBZciKJ25sT3tRkRAGNhu72AfdLBQSzaCJvugj1QnWorXS+oupDV6REJEGuEkzs0XAyrelMuBCZ4PQICCZP0JEG/n9rHPJPqMEjADKmNKD0qGnR5HANcdnnRrhr2x9Dc5EZ/EJ/DGupVchG8Os0M0VCTZTvahIIKAQWiBNvRcFGZuF8q0i7aAFAw2g7JEQOo8EWZjBVsomCfjZb0pRmjk96CeQUiFkNDNZvLN9NxqsmSkSDuQBUpkgCm2RWFQkwABES3s4xuBKfNkuI3ZXnvHukxsO+nbGVGsbARlUvELtzHpuPBiQAImKwTXPzlMRvYGTiS+hSAhDAkKsAiROlWtRmZI16eBnV0OvPFEcVKbQjfWCysEWdsVCLjtGIyG1QEBzwpYSiqEazh3XOLZPTiE0SoRQ0KkxkEMxmGmMSAjBeriB67scQgwQhgRnt8rnyXsk9IcKIQmRGqtKaDQvTizUvZnoURozTktukEpj6rToEcAYkykSWhXxjx7eFC+ZYBY5aprn7zXvuUFAYBy54M8vpQRigcJMKg01UgwzQsaiHT2MMSCZIsG1eVUSCaTkp3CU8MewqDKATlFezLtd4PhJqkkIA4qu0khOA5Gg3b0ys+6c7McxC714XIVZXO8qiQTlxkfPVzx3fYDNtQa215dP2KhR4/mKpd7GP/VTP7Xq/VgK73vf+zAYDPDzP//zGXGhlMKP//iP48EHH8TFixcrl0vTFP/hP/wHfP/3fz++7/u+DwDwdV/3dfj2b/92PPLII/ixH/sxAMCP/diP4YzPsQfwile8AlprvO1tb8MP//APZ3/7xV/8RXz1V381/s2/+TcAgL/xN/4Gnn76aTz88MO3PJHwbP85AMAm7YwNODSsPDVXJAhLJIRlIgHI0xMCEoLRfFDeZI5IUCkIIQgDkiUANIqKBEckbEVncC19DqlrbQCAKCCIYQ0XM9M/RtBVOZGQEf9SgnhWmgCMMShRHnSuOcPFoyQSlJZgczjgf6H72UyNcG/nhSAgaLE2YjXEjryB25uXAADNiAAwSDiQVZ4OlDAILcBTW9COKkaAPLGhHdjoR6M1SOE6+dQGAQVGDZQmUMp6FSTCrnfUH0EbZ/oXajwxeAwA8MK1F9n9ZS2sB+voyR52EOMOt0zLHUczcsfh+tj3+G5GHg3VAIlM0QinO/0vAt/akKQakgOa6omy/9GZdeI8G7hK0RlR1Rhj0HcO+IsmNvh1NyKKJLWEjZqztaGYzsE1xx/v/P/wwvACLjX+askjQWtVKuTyY7RGi82CIiOkEWIZzxXXWIViq0QRIY3yGMiRvwstEOs4izudhcs79pm//Vw0VpittZyqRhqk3KAVttF1qoTR6ya1RKyG6IkeDDRub90xlxJkGUxLbki4whyBDStFKvJWpaqYWA9f7FW1NlRBuzaGx55M0O0P8fKv6kDDwBTuaUoItK5WyVRBaQMYUvqsTYzQtvVuLDXCmsQCOZHg43OlI0YpofbV4xIejrrOlmr8GOYBPaxHgsrPxWkBpQSDhJ94wWcVCeP3zzhsa9Ki4EIhFbqk2CmCEgIlV0UkGChtfVhOWxLVcUAqjYRLrOnZBHyNGjXGcVPreH7/938fr3zlK0vqh9e//vXQWuMjH/nIxOX+7M/+DP1+H69//euz30VRhG/7tm/D7//+72e/K5IIHi996UthjMHOzg4AgHOOj3/842OEwd/6W38Ljz322C1vOvls3xqXbbJxWbHRrlc280iQIMaUlASjiQ0RbZQilbxPgm9DKDL0JY8E19qwHdprVlQ4+FlXzjX8uCoISGZOGNFGNvsFUzYRjCjBfV/8Hdz5uQ9kxfcaswXqUREJnzn4C7z3yXdlSoNJKKoRvnrra90Al+BSy5bdz/Ld7Fj8TH7sW80LRbDv+R9wW9BG0fhrwbc2tIKWn45B8fXRLJAeQWhPslYGWmvEGZGQf97KQoGNdoQnDp60UYm0iUvtO7PPnIvOAgB2dG5qeWHT/W0DMJSBSHtAzyWXS/u7z3crz9myiEKKVtPuf29gz90kIqFqZj0gQUbGFKGhMYzt+VrGIwEomiPmppmzwLPWBorLw2fwRPwUPj18rORhYlM+yoWchzd2JCOqFOH8ChaFj8sMKhQb09abqgRSV7eMVOHyNXu/jLY1APad4GfY+0NrlEkJxT7fhTbaJZck2E1v4Nnh07gSP4ehHCBRyVQPh8MicMkNVXGDCVcIjplJ8GqEgE2Pc/Ukg5ri8VCEhiXn/ujRHh79XB8HPZWpFDwote+OeZMbpNJjxquM2sSFqh7z4iTvKJEgpMk8SFzHybH09103vgABAABJREFU6ys9fgzzgBArrV+2l14odcpoBKARUvSG4sQTBrQxjkSafoYoBdIZ8a1VSIWCEKrSwwawJtbLei+MQjlFgnQtNM83cKHBRZ1aUaPGsphLkfDzP//zC6+YEIKHHnpo4eUWweOPPz7mQ7CxsYHz58/j8ccfn7ocALzwhS8s/f6+++7DO9/5TiRJgmazui/2z/7szxBFEe680xY8Tz31FIQQlevy2/KfvRVx2REJWxX9ydrYGQSvSOCQMFqhUcge90ZCWVFPGqUvZ9/mkGYpDFZdAJQLXq9IONM4C/RRimb0ZMUwyb94g4CCpyPkhVbWQInl+xepGOv9qwAAqgR0EGURkEdFJDzR/0sYGHxi94+hjMJf2fqays9ZNQLHRriJezovyH5/e+sOPNb/Ei6rPfgZpby1ATCElkwKiYtZGyTV8ZwACtGPbZeWoEdaGwqxe6ECUgatCBQU0gpFgp34I9jshHjuypcBAC9Ye2FpJvs828ATAHbkQfa7r34BwYsuEXSaBJDMRkMajefiZ0v7uy92cQ9W+9xtrAWIE46DvsSF9clEQtXMekBDpDqF1LJkJqiNxjC261mWSCh6GkwzRyztY9baQAppHykAjSBgYMz6LiSproyATFUKGOAP/3QfnTbD175svRTX2A4WU4MILSC0QJOOv3eL611Hub3JtjTNN1urtcEVp0gYNVr0WGszxKlGf6hwbhtosTYGso99vgeuUgzVENJIRLSBtWAdhBB0xQG45mgckZdCyCiGiQQXutRK4KMfj9toceCIhOaUtgbAt635thuJMJiuGlHGS6ztgD5NgaiNkoGoj42cNx1ESj2mGKCUQAm7rVFD/KLZovdI8ASilMYRdUGhtWGu3TgUZIUp5Tyg1Kr31JKGiUKOx3OeNKKQYRhLJFyh3Ty59gYbvTj74jNKxtI/5kHK1dR4SUoOpzYpQjh1jnIJE1UhEbcyhFTgMjearlGjxmK4qYmEbreLjY3xvtnNzU0cHBxULJEvF0URGo3yYHJjYwPGGBwcHFQSCV/+8pfxrne9C2984xvR6djC2W9ndD/8v6ftxzyodOw9RdhN9gAA22ytcrDCGEGj4KYuIdBq5gPKKCTWmdy4aEjWQBAQMHfc7dD6LqQ6BWPEqRBssdRq2rg8G/9miYQL7XPADUBBQROJkIYZ4ZCk+WxSFBIIt80GixAEFFRLgBogYCDuWBo6nwUNjICkDaw7RUKq02wbq0KqUhvd6PDo3iegofC1Z76uNKjgiuOzB58GAHzNmZcjLHz739G5A9gBdvUAKThatIF2w7U2COcmTfICJCQMSkskzmypGY3HEHqPhLWoA0oAQwASsGyfgoAhAIOEQhDY62O7jXVmNhW6aw24VAdCYKjEs/HTAIC7mvfl29UKtxH7DO7IfRDiZ38I1n2NGgSAEpBa4FpiCa272vfg6eGTOJB7Ky+wttYDXL3O0RsqXGIUChJsZDZYGw1uEjTCqLT9Bg0xkByaSDCW3/8CBsPYnp/1tWCpfW66QkdIAMSM7VMVstnWiKILS/SkRlpPUUbQjCgGsYaQBoSS0jqNMeAmQa9H8dnHegCAl97XQafN0DAREhOD0sWk2FpLgBhEYfWz1DARYj3MpMSMUiitkOoYrZFzPQm7BwJcGEQhwYWz460NALC2FmBnT2AYa5fawtBAiBt8BwFlaIWtEhEEAExTSIi5zvsyoJSgn1ovkOL3gVAaxgCNKDiybVfBt8U0m7PiSgmiiCBNDbjUM/eRaIAXEjf9vUcosmUDAwhlfz/Pd6Mytvj0JmqMUoQhQ8wVQCu+X929zhjNPAK8d4nWgHHPV2AMlFKgbL79OAykNggDuvA1zvZxznM1CqWBMGTHem/NAmMU/VjCwBzb2Mgff/E8EEpA2exrEoXMGmWyxd6HsbATLpPWzxgFyGrGhwZOLUhQ/Uzc4tBw6qIV31NV981hoY1Bfyiw3g6fdy0ozxccxX1z1JiLSPj85z9/1Ptx6tHv9/HmN78Zd955J97ylrccyzYpJdjenuxEfhrwXV/5evzeX/webmtuo9UqzzhJA7TbEbQBwkEAYSRYoLC1mZsyNhsBOu0mzNAN2sImNjbamaRvq7MGXAcUEei0m07NIEAJsLneAiEEiUwySfcdZy4ieDaA1BI0MuhEzWzmwisMw4BgrdOCPrC/6DQ62NhsAxzg/QC01cpe0iHNR7btwEC0IrTCNUQHAbiR0IFAp1lOqzgMrnWd50S0iZed+Up87MpH8ed7j4IFBK+87Ruy/frc1b8A1ym2G9v4ygsvLcnoOybCuWAD12UX17GPr2jdhTObCkCK/QHQbEUAY0DbxWsaAwgFqd35aIfotMtEWgpLJJzf3MJ6JwQfhGCd/DNcaoQ0gNQKQUO58xyi1Q6zdAd/rQErm01ThS8Pn4AyCudbZ3Fh7QLCMLR9oWkfzcYaGKHgRoCHHFvhyHk2AZBIXDc3oIxCi7XxkrP34+nhk+irg7FjOCzOnWniC08MMRgarLU7iBjFxnrZYDSRCUJJ0QrGC06VpohaFBvNfBkVC6TcEgnnz7SnuuBPwlo7BJAAJrDrX2vNXMb7jGysN3HgZny5EWg3A5CwiVYzwCDmAGHodCKsR/k6ueKIFMUwzvf18jWJr3lZB5FmSGWKZoctlN7AhwO0TIROo/qa+fWGLXv/dzoNGC4QSGA92pjLn+Bzj1lVzZ23tbA+4Ryd2YzwxNMxEo7s/ulg+n1EhAZlGutrzSMb3HFN0Oo0sL2dKz1oP0WrHWJ7o3Wsg0qpLdG51g5mPmPNBkWaKlDGxp6VUagkAQqeG8ZQtFsR2p0IGw27rNIG6KdY32hjrTWbwL2yn2CTUHQ69rup02mgA0tFr6+3sLlWvke7icRGorGx3oRXOm+sNwCngwuiABtrLQipMQwFNjfbR27899xegi3KsN6ZzwfEQyqN7pBjY7OFdnMxsltrg8b1IaJGiM4c5/k4kSqDVqdZehaOAxsb+f0rQLDWTWfe01EUQiiN9Y1WieyfBqU02PUhzmwH6Ey4bpRZkmEV48MbfY4zWx1IpbC21sLW88xwcD+WaLUiNFvRkYy3i/fNYdGPBXa6Kc63Gws/0zVuLqzyvjlqnKz17SGxsbGBXq839vuDgwNsbm5OXY5zjjRNS6qEbrcLQsjYspxzPPTQQzg4OMCv/dqvod3Ov8D8Z0f3o9vtlv6+DLQ26HaHsz94gviqrZfhoPM0RKoQx+U+4SSWaAQUKZeISAhhJPaHPay3cu8JSg0GwwS92LYJMBOi30syZpg5A5x+OsRgmIBSO7qLIophbNUCe6kd2EakAZlqtFgTPd3Hbn8frBmBELtMt2f3L2AEg2GCfmrPLdUB+r0YJh1CDRJQk98TrN/NfhaDAWK2DiiJDm2Cqz52ejfQ0Ksb0Dy5/xQA4ELzNty/9jLocwYfv/4xfHLnk0h4iq8/90oILfDJnU8CsEkNo+cdUuB2toXrsosv95/DXfQiznQMKAEOBgZX9xQ2Ogn0IMm8tIY8zXr/mbsmRQy5PVeBDtHrxVDDFBS5WkMqm9wBAIRaQmIYC/QHCfou3pCSfL1KASyg+ORlq6r4K+dfilbIsLPXx3q7gWC4B8o1zgVbuCp28VRvB43W+ACHpAKPu7aGC9HtWKf2edvnu+gNhis1wPObv7GfIk0aSIzEBgalbfRED/1hDBqFSFHujU2Fwo7cAxN58XV5195ftpWAYzBcvCBk7pnoDyQOBn2smXEvhlF4dY7WEkNhr62GwX6/i6gBRG6M0u0JHPSHMGH+VTGUQ3QHQ1y9lrdRfP7xLl58rz1BXT7AdewvlN5wbbALoTUGKpn4mS4fYpcc4PbtCxgMUuwM9zBMOQI1nz/BE89Yr40LZ8Ox+9uj4Wq1vYN04mdGIbTCQCdYN72VqpOKGAwS7OwwhAU59W43Qa+fIjrmeL7rB/Y8hiFmniMfL3p9b4jzm9MLlG46RPcgv5bdfophbNDFEJTbZY0x6HVT7O72IdrTC2utDXb3hzAAGAw6nQYGgxRKa/T7KW7sDqBHIu/2DmL0hwkCarI4XEJU1qJxY7+PyESQSqMfS+ztDZAcIZGgtcHewdAF7czXtlRcttfnuLE7QLogGSCkxkE3BmMUSp6uWMDhkOPaTg8ROR4pOmMUGxstdLtx1k6wvxejP0jQmKGEElIjTiV2rvfnJpyGicSNvSHWWgHUhEjGYSpBANy40V+qbaWI67sDcKmRCoUbu32YU3a9jxLGGFzd6SFNBXb3h9jdbayMlK26bw6L3pDj6k4fIQHObJxcLHGNo8NR3DfLYmOjNZcy4qYmEl74wheOeSH0ej3s7OyMeRaMLgcATzzxBF7ykpdkv3/88cdx6dKlUluD1hpvfetb8ZnPfAbvec97cPvtt5fWdffddyMMQzz++OP4pm/6ptK6ittaFotkZp8EDHEFCcyYWY2GBoFtp49IiAFiJDLBVuG+ZMxmXSfOSC0kDWijIZMEAEHTtUUkKnH9e/YlH4V5Rnaf24Ftk7ZgYB3/e6KPoYihQpMZgnlTuyBw25R2EByRyBoDCmnlq4XjCNOcyCEitcdoDDqkgT300eN9qObqBjRXhlaRcCG6ACUVvmL9ZYCh+PiNj+BzB5+F1HbmnWuOzXALd7XuLWWFG2NARIrb6Qb+AsCz/DqU0ggowYUt4Moe8NQN4GVNDaUkQLxs12Tu6mEwnj8eF8wWlZTQ2pTOk9Ymi0KkzK5HCmPl504KHbB8vVIbDEQfz/afAwHBS7fuRyuIkKQS3W6CbRlDEZoRCdfELu5r3IFREK1xObbn7Fx4GzaCDQQkgDQS+8kBNqOtw1yOEtZdPOBBT8JoCmkEuBSl4jERCbQ2lfnt1AQYiiGElBn5sN+z92CnxZwT/uL3km/d4akBlwJSqqmDIWMMhPNIYBRIZV68xSIGC9YzI9M01ZBSQtH8PZRKW4xd383VOs9eTTGMFRoRhdEEfT5Am5b9DCZBaolEJmAkmJ57r/NnXSiJLu+BYcYyflFt8Nw1+4657Vw0cRnvU9EbyLnWCwDEMHA5RCIS0CNqMKbEDiKlzGcphomAUcvHyy2L3sDeL62IzTxHnkjox+nM/UwlR5zk6xsmGkYTCCmhWL6sVBpxItGKpg9fhFTgQiMKSGZUqbTOzOVSLiFlucAW3PrkKKUzQ9KAUgQBgRAGw4RDrWn7GWkN8cIjlKByocC5QhTSpa6zdMchJ7j/T0LKJThXaDfJiQ9mR0Hhn4Xj3S+l8vjoVEjoOZ49AoNU2O/Aee+TJJUQQoG0gonrN1pDant/HMZsVSqb9kMpoN3Pp33MuUoIqRCnCgEjkNIe/6rNa4v3zWGRcoVhItEdpNiYQaTWuLmxyvvmqLE0kfD5z38e/+k//Sd89rOfRa/Xgx5xkCWE4IMf/OChd3AaXv3qV+OXfumXSl4J73//+0Epxate9aqJy7385S/H2toafvu3fzsjEoQQ+MAHPoBXv/rVpc/++I//OD784Q/jkUcewf333z+2riiK8IpXvAK/8zu/gwceeCD7/W/91m/hvvvuu6WNFqfBDwcZoyAUaPgISBXbJIeQgAuTpzZkUYyRdZse7AOEohVaUodrb7ZoX/KlxAbnj9BkbVAA7cAOtn1ff5SZLeYFrV2nMxf0EmyjMFrIMZ4TCVS6wokQrBG7zCoNF7nm2OU3AACXBAVNe9DNTXzFxkvACMVHr/8BvtT7QvZ5n9TgYYxBbyDAeIyLdAMMFEOd4ED1sRWs446zBFf2DJ69QfGyO4TLLitsn7vc9BGzRaVl5tK/FnQAPq6SIQQIfNY7szMaSgEGBj6yPSiZLRo81v8iAOAFG3djLbKSwnObLXAukAxSNJsRzgdbAIAdsV95zhKjsCvt386FtyMMGM42z+JqfBV7/MZKiQQfARknGloSKKKgjEKIvBiJ1RCMVL9WAxoglkNwzdF0xnxdp9ZY1mgR8NGeQCqMNawzCsGEfQAAqVSWXhKFFMLkhIB/DhvFCMgRs8VUpSCG4MaBS/lwz/JTlxO8+N42Ihoh9nGNc8RAjsZlTkJII8RqCKklUpWCqxStOU0dvT9CGBCc2548O7vmIjj7g9mzv0oZfOiPdnFuO8J9LzbgmqONo2lFKyY3+H7/lGvQYzZaBHKzxdaU6EePpmtFG6Ri5meVURAFcUmaalASQpryDCmlBMkckZJSGWilQSsJB5N5IJT3wWTmjN5HJAwoQmaJBK7sdgmxvdVHbfSunJM+W3rWeZzgnwdSGSiznEnjUSNgBEJqSKWPPbHEQyvMEf3ofH1M9b02Cfaz06+ZNx3V2gCH4C6lsh5GLed3JE4ZaXTUsCaLCs2I2ffFIc/nUUO5fewOBOSZk7v/a9QoYqm78OMf/zj+3t/7e/i93/s9XLhwAU8//TTuuusuXLhwAZcvX0a73cZf/+t/fdX7OgZvevjQQw/hD//wD/Hf/tt/w8/8zM/gjW98Iy5evJh97oEHHsC3fdu3Zf9uNBp48MEH8Su/8it45zvfiY997GP45//8n2N/fx9vetObss/90i/9Et73vvfhe7/3exFFER599NHsv34/LyB/6Id+CI8++ih+7Md+DB//+Mfx8MMP43//7/+NN7/5zUd+Dk4rjDGgoGDUOndHrrDhTobsCxVPJKSFop6CAJIDInd/93/3n29UJDY0qe0VbmVEQuyWsZ/1REI4khThizqj1VgoOC0SCT5+jtAjIRJ24udgYLBGmlhTAoTnsYf3rX8FvvH83wRxlf9muFVKajDGoB8LNBsMRKVgLMRFF4V5WVwHANx5zi777K4PQS+6odPMRK1I0gC5GoGCosEiGK0xmi9OCEHorjEpEgnGZG7IxfhHozX+8sASCV957qXZ7xshw/mNEDAKUlOcD7YBAHuqB2HGJZeXtTUz3Qq30aBNUEJwvmVjI3fT1UZANiKaOdX3BwYG5ZQEoQW45ghpdRHPCIOGLkUF9hyR0D4EkdAoKBKMqU5ZKCIuxJGFAcmeSSBPR/HHyTmgCpJqH4E4HFJIacCYNVoEgC8/6543GoJrnpESszAal3nQk3jimfH2DL/eRCVIVAwNPRdRwYXGJz5tW89uO19tsujhiYRhomfOtj97LcUTzyT4s892QQzNiMujQMgopLQxZYC7DlwiOIFCb+hIAZ9mMA3+3oznIRK0QMLzc55wDQJSuv8A+x7pJ2JmcoPSBlLryiLcJhqMPyda50753m0/Cmj2vZPwQuypOfr4R6k0lF4utcFjGSJBaQN9aokE+yzMEyl6VJBaZ4bMszGu8JsGLlX2PT9xjS7a87C3n1TGkZPEJkzwxdpnbnYIqaG0NVnUN0H8pSf3uFDZeK1GjZPGUoqEhx9+GHfddRf+y3/5L+Cc4xu+4Rvw4IMP4pWvfCU+9alP4Qd+4Afw1re+ddX7OobNzU28853vxE/8xE/goYceQqfTwXd/93ePmSFqraFU+aH7gR/4ARhj8Cu/8ivY3d3FS1/6UjzyyCO46667ss985CMfAQA88sgjeOSRR0rLv+td78IrXvEKAMBf+2t/DW9/+9vxtre9Df/1v/5XXLp0CT/5kz+J17/+9Udx2DcFtJvZCSgBBbKcd68saEQUvYHKisuiOsAYDaMlYAxaxBYpqUphjEEY5q0NHkOZEwmUIiMffAHsl1EjM+O+0Gn5mVApgZGeeprkRALLJOAEHbpaIoGIGDvdxwAAF8NtmHANUKmNN2T23L1g7T4wwvAX+5/C1535+pJ8fZAIhAHDeivEwY0UCAJcCs/hsriOy3wHL2u9ABe3bPZ7zIHdPrC1qbN5DwKamf6NKhISd81agTN10wpVuWBekZARCdq2vPiWy7Bwza4mVzCQfTRYhBdvldt/2iFBHFL0lUEnbKJNmxjqBDfkAW4Lz5Y+e1na1JDbW5dAYAdY51vnAKCUfrEqbKwxJKnGQV/i3JqBKpAbQtsEiWYw2SSHwBac3j+gO7SFyWEUCZl6QFhiQ8+IgExd323AXEFVIDay59CtUwhTmhGWxqpTDg7svXJmM8QL72rhU5/v4+krKaS0gzID2640j2JgNC7zQx/bxc6ewOtffRZ33Z6rFHwMZCISDOQAAZnd9319l+ODH9tFt2/73L/yRdPbLZoNmkVfDmKVqVCqcO2GPW9KAcMBRcSSuVUYi4IxAqkNhNJowRYAUpkTmZHyhGxzDmPQplMtFMmrKhhjoKDBC9xTmmoQQscUCVFAwYWCkNoas06AnwWuavOZFMtniQT7c1GRYD17FFJRINVw9PGPUhnALOb4X4QxSxIJSs8oZU8Oo8/CSUApjfk5FgOh5i/6klTNTKGhxD4zhyWylIt+pJ5IuEmk1KsCl5aspIRAmdNPJEhh04S0i9Sdx3C2Ro2jxlJEwmc/+1m8+c1vxtraWhZv6Fsb/upf/av4nu/5Hvzcz/0cXvOa16xuTyfgvvvuw6/+6q9O/cy73/3usd8RQvDggw/iwQcfXGi5SfiWb/kWfMu3fMvcn7/loW37vY2Bo4h8a4PmgDHjioRiUa+km87WaLvZXQ0FaSSabrmirDZXJLRBCUEnLCsSRmfYAxcZmSkSPJGgRZYw4FFWJOSzamsu7/7QRIJRoEkXNN7DFWHbGm6LzgMsAEkTEMVhWP5lcXfnXtzdube0imEiwAjFxe0WoAV6RsGQEJei88Dw87gidqGMlUTfvg08fR145gbB1qX8SzOgAYTwRMJo9KM9j56ggZYYVyQgVyTQoiJB50RCobXhy0NLmrz07FeMz+BraWM9pf38+WALT/Ir2BH7JSLBGIPL0pIFtzcuAsT2/F/sOCJBHAWREODaDYFuX+I8yrP1QnMYVBcuHiENEKs4m00dDF1SxmFaGxq5n8GoSqIKiSvqQvdc+BhUIFckZCoHjtL6pBaQWmJ/3+7/2a0Q57ZDdNoMg6HCs1cT3HNHCwEJMFQDbJmtqedDG41ExQicz4SQGtf37XP2xDNxiUgArCqhJ3tIdIKITu4RNcbgM385wB89egCtrdLgW155BhfPTe8rJYRgrR3goCfRH85HJADAQdegsyYgtABjqycS/Ay497aQyvb6N2b4BBwFhllrwyKKhOlEgoaGMhoJzwuZhGtQUGho6/3ik3QCin4ikQo1lUiws8DV9x6ltie6uF5fmBHY7weRKRJYTj6L/DuAGDJTFXFYKG2f6WVByHKqCaknn7uThr1e5kT7h2VBuTILjNFMSTQLxlhPhVlEglUkHJ5IEEpn6gdKCaSy7RKnUYlyFIgTCRYQUEqWJt2OE1yqTGHVHXCc37p5nP1r3LpYajqDMYZOx84Ub2xsIAgC3LhxI/v7XXfdhccee2w1e1jjpoSCAYX9wmOUIIIdwKdaANA46/qUz2x6pYIr6mnTFqpGAVojMMhmK7lO8RUvaOPlX7mOr35JPrNY9EgghKAd2oLXS42LBSxgFQnSiGyA1mJN+7MeUSQYA1owW2QFCfgaGtm2tVluQENkCta7Cjq4Bk6A68rJr8Oz8IM4IqfLpRMuYQxw4UwLnWYIpiWoUTCEYZuto0kiSNi0ACBvb3hml5VaGyIawY+RoxFFQm606Io6JSsHUZ5IQKG1QRmVeSQUr8MNvgMAuP/Mi8bWY5QAJSSb7fPtDf4YPLp6gIFOQEFwMbTkASEEFzrn3X4PM4JqVdh0heVBT4ISVvIXiFU8czY6JCGka4HQ0Bg4A9BOewWKBK5dMTT9fkyEb2HxXiEFIkFXeCQU1ifcc3PDFfvntm2e9b132HvjiWfdM0cjcJWUzk8VhCMm/L1zY09k1/2py8lYoRbRCFxyKC3H4jWzY+AaH/zoLj76Z5ZEuOdSE9/1ugszSQSP3CdhcvFrjCkRCfsHaqxtZdUgFEjdwySUhjxU7/xyMCY3ZW3OQySEnkiYTm4pY4njNM2vt1UkEOiRdh2rijIzizM7C1xdGDBCMv8BD22swoAQpwRwCAJS8PLRhXtyOf+BRSClHu22WwiUkKy1bBFwIReYcT8ZJOLkpN1KmbnPD6OkpGSZhkxpVKH4K8IWvoe//ywZY7L91HoxP4ebGdoYxKlA6EgbA5x6RYJQts2pETHEqZz7vqpR4yixFJFw991348tf/jIA+6X+whe+sGSs+Hu/93s4d+7cSnawxs0JYwBKKQixX3rekC41VpHwiq/ewP/nb9+GSxcbMMZkxUwrbGZtDaAEUDwzQ0xUgmaD4a991UZppjCW1kugFbRACSmYLZZbGzzCgGQFJgVFSBmgte39L3yBE5mCFGacacHdvkVCUBAYGAxl7mWwCGh8A4QPYBrr2NFDGBi0aRNr1O6/YSEIH5YK/iK8vPfCVhvrLVskEW1joTTss3kpss/hZVe433HWnovL+xS6ILc0xoB7RcKIgiOR9jx2wo4lXIwaawEBgIC6YjhTJFijPuUGskHBI8Ffm41offzARArCAsDFe50PtwBYw8ViYXmZW++HC2wDgbHHSylBizXQYZZoWnV7g7/vun0JCpoVjtpopDqdKbdn1CZKCM2hjMqSRNqt5SXqvuhXGtCKzFQkpE6REIXUzrzqvNj3z0XukWCvoScTUpWCgGaqgbNb9r679w57zz75rE2tsMkZaqZPgtAc0kgwRwpc38v3ZZjo0r8Bq5zhmk8kEXZ2Of77B67hiWcSUAq88ms28bpvPDNX0euREQnDyedxvyez5wUAbuwLEJCVE1dFBIwgdmoAXwCsKqpsXnCh4X2V51IkNLy3wKzWBqdISMuKBGIIYPQYOUYpQcynk1RcVPsj+OVHiQRjbDFBCYGQ+bUPGMkUCanISQ1SIDuPCqnQc8VvTQKhyxnocSehPq0IAzpT5XJU0M4/Ym5FgvPjmKfo90qjec69weHNPlORG/aximfiVoaQGqLQHkZwuhUJ2pl2UkJse5fUSE7oGahRo4ilvqFe85rX4P/8n/8D6TTL/+Af/AN84AMfwOte9zq87nWvw4c+9CF8z/d8z0p3tMbNBaORGYGxghEfNwIwdqbJG8wJZ7YGAE3WyMwMCA0AHqPh2gj8bGkR2uhsxrxNOyAUWWuD/3wUlG/zgJHcvJE2bGSbtgqI4iNRVCPYHU0hlfUVIJSgzazyYaCWIBKMAqSAYREAiqu+rSE8kw9QWAiiOIgan+UU0kZKnd9qYWPNFq8GBoT3gSCAn8C7FNrZeW+4eG4DaIaAUAQ7e/mXULEoGvVI8Oe3E7QBY2wxXxhESVe4ZoqEQmuD0mqstUEZlcnpfVpDdlqgAcVBg7xQPBtsgoAgNikGOjfh88d0iW3BaKti8E7a25E1mtzjN7BKbK4XiATCILWENtolD4iJBW4R1BWcSivEiVMkHKK1IQxIxn9xXlYYVCFXJFAoo0rS6VGPhJTbIs72g1ujRcFptt9ntuzx3n4+QiMiSLnGles8u4f9vTMJXPOSgHpnt7zvTz47rsjZamxlz17ps5dj/Mb/vYPeQGG9w/C3X3sef+X+tYWL7bXObCLh2nW7n17VcWNfIKBhqW1l1SgmN8xjyHYU6Mfc7UuZGJwET0oWWxaqoIyGgUaSlgt7KV208AiREIYUg1hOPddWBly9j372dTQ617/afK84pY4Id4WdlDoj6vwzcZQoSpmXASXWGHAR+LaO0yxvDxhFytWJFH7amIxwmgeLzPQvpjQihz7+hMtsW5Zc088bRYIlEsrJB2rBZ+U4obWB1nAG5vbtP6iJhBqnAHMTCV/84hezn//RP/pH+I3f+A1Q9yX9d/7O38FP//RP48UvfjFe8pKX4N/+23+LH/zBH1z93ta4aaBNLs+jjCDKFAkSZGTw5Yt6BoaIBTBK2Blv93PTKRLSClf0VCW2gAZBi7VAQdCJfGtDXDJo9AgCkhVMEWnYh8BHP9LJREKoBaQyGMQCCdfoOOXAUj4JWgFQgJvFv+L6+S8WzQSJJTiILBMoUmkMU4kzm01srTfygkIkthWCRVCuOLzdSf6vywOk2hZ4l9wmnr2WfwmlbqDPGBmbDcmIhKiVEy5OkSCNwo20B6FllsxhiB1oK219FUZbG7wagRKaXdsMSsEoBeoKcgNr4ngmsOaEOy7qURudeUpcCs8AUtgvVze4O9u0B3lUioRBrKEVgTY2AlJoMbfRHqMhYjVEP+HZ7G57DuO6SSCE5KoESe0zMaXASblPLyFjpEOqy6kqnBsYraCNHjNa3FwPMrNUSgnuuWSfhy8/49MbbFzjNIWEjcvMVRw7ToHwwrucwuHy+DNPCa0kBz7x6R60Bu52rQwXzi6Xsz2PIuGqa2t40T32XTOMNSSnkJrPbOdYFsXkhnkM2RbBPC0xANBP7LHNq/BoFPw7pq3feiSY7D3kwTnGWhsAey641BPN4fSMYtgXTcXCQZvcbNH7I3g+05MmQtpkFAsyIx/lcNDaHsPhiITFEgMAn3Zx/G0ziyBgBFKZE0lu0NrAFEw5Z8HP9Ms5rsMiSiNicCgiyyaC5NfZ+rCQ55UiwSpn/fFjqTag44JSVi3ih6hRRNEb8FOtoqjx/MDcRMLf/tt/G9/5nd+JRx55BDdu3MD29nZGJADAG97wBvz7f//v8fDDD+O7vuu7jmRna9w8MECWcW5TG+yILHWKhCJ4QR1AGAVkCkIZQANASzSp91cYVyR4f4QGbYIyZlMbnEeCgW2ZCEdmzsKAZhLkiEbWXEs5X4YKIsG4Yj8yAredaePcVguNMEALVimxHx8s/IVOtAJRtpVCGpUVyLcFZ0qfM5SBiHxW1xhLZJxZb+LsRtNGZTroNAbRCpSFmeS2w5rYcjL/51zhnfkk7BQUCW4A3wjHBzDea6ITtp3+V2eKBGU0GCHQMJlpoim0NjRZqxD/WJ6l7oTt8QGT88cgLLAESeaTsAXAtjcAwHW5D2EkIhLiTLBl2yEogZ9cOHdEyQ3NBs3MKAcDA2U0lJFIVVq6FtMQkABCc+z17f3VatBDF4XNLGWBWkPEiqhMj7SgSBjt6ffPZ9MdozYAl7bIzI0W7b1ybrvcxnHvnfZ5+PKzlsiIaIREJrgSX86SVYqQWpbaFITQ2O/a/X75y2zLy419gf5w9qzL7r7A9T0BSoG/+fVbY6qaRbDWtvvTH0xRJDgi4c6LDaw7BcPBgYF0pNJRIHOrl3ouQ7ZFcMD3sZvOVu/0k3LryyxkhJQwkHryddRGgRduRR8tmXIbszqmSAhodh6qYAfdmHiO/HtH67IiAc5s0RMUAfMGj/b/QtoWDLcE9BHO3ipt5fCHIhIcYbKIKZ9SVqlxuokECqn1Um0bh4V23gTzKhJ8G808ypCFlEbkcB4JyvkxlFpnCJ43ioRUyFIBxJZsAzou2Oc4J0cbIUPC1cy2sRo1jhpzj7YefPBB9Pt9/OzP/ixe+9rX4nu/93vx67/+6+j1eke5fzVuYmRftJTkqQ1GwozkgheLeqqVjTykzBb1WqPpHN2rFAk+saHF2ln8X0SDLG4yUXEpKhIoKxJC0gAIYOS4HNwTCaq9CQAgkiMIKNZaIc5utXChbQv0oR4uHpvkFRCguC73oaHRJA1ssLLUHywAZOKSEmw0VCMKcGa9WRrIGGgg6YOwEIySEleTtTc4n4Q7nU/C1b18Rid1xmVVBZhXEKxF7Xy/nSJBGwNGmC0cHVmknSLBz8CIjEhwxmuuqOyEI8cKWEJH2yLJRzIB44aLvq3h9vAsKGWAlpaccV+y550iYV/sL22GOQleldAb2JlSaZSbWZ/PQT8gAYSR2B/Y+7l9iLYGD3/dJLcqETmlmE0LZoujs+ep4QBshKMPH0i4goEuGC3ae/HsVplIuPNiA4wR9IcKN/YFKKFYC9cRyxjPxc/ierJTKiZtO4hE4M6b913otCjObIW46BQFT1WoEkbxxS/be+ru25tZ5OCy8IqE3lBVEoRcaOwe2OO4cDbKzsPugT0/R2W4aGcMDeJUrjT60RiDgepjqIYzCdFBbK9Ra04FTdFvJU4n35PaaPA0T43xCh2vUDAjz7AnAibl3kulodWM2fyR2VfvkUAIINwz4r0R/P+lNJk6ghKCo1RCS2UOTSQ4X8qFCk5LYOiJbSFFDGJx5O0dVfD+FCejSLDtNhU2QZUghFgjvzkUCSnX2QTMzPWCHCq1QSiryCnfX8djtiikRndwdMa08yBOZIlopIQsFNN53FC6TGAFjEIqPdPItkaNo8bcI5G3vOUt+OAHP4j3vve9+Pt//+/j8ccfx4/+6I/iVa96Fd785jfjAx/4ADg/2RdDjVMEg6yooyRPbTAwUGNy6rzNgEDDKGVl/QAAglYWHVmhSJA+saEFSnLyosmc4aJObEZyYdwbFjwSIhrZyXURAyOFIPFEwpotYolI4af6CaHY9i0UegC14JcvKTiKX3VtDSV/BA8WgigBolJoNwNzdqM5prIAT2BkAgQNlzOcDzC84eKz4jqMMdhoA2tNA22AKzv2WqTcfn40scEen/dI6GSzdjmRoMEIhYFBRMtEghohEoKR1oZOON7n7qMlCaF2E55IcIaLN2QXyqjMaPFSdB6gAYxWYFCZKmCrsQlGAmij0BUH49s5BIqGiwQEXKUQRmQRhrNg+xtJNtO+SGJDomI8PXhyjBzJPQ3sv+dRJIQhzVob/HlLjYSvjkaTG7jiIKBZYsMokRAEFHfdZltVvvyMLf49mRDRCLv8Bp6Ln0Vf9EoGq9TdSzu7LgnijH1X3OOSIKp8EorQ2uBLjki4/wUV99SC8NdDqXGpfXE/19oM7RbLzsONfQFGAsRyui/EYUAowTCVkEpnHjSHRapTJCqB1GImCeJbG1pzkjWsYFTYTyevW2mVJTY0Gyy797z54mhrA2B55uGEHmGlDaSZUYQTH3NooZ3/CyEFRUJQViRIZdUTgC3S1YpJyiKk0pD6cF4FlBAYvdjMtVT2u2HWdp+51sf/99c+hfd//Kml9+8wILCGw8cNG7s4v0cCABCYmWMEYwwSLud/rkfu30WhlFWqFK8zo2TuqMrDYJAIXNuLT0yWr7VBzFVpHEUpskjY0whPehbHiAEj6A3ruqvGyWLhKY2v/dqvxY/+6I/iD/7gD/COd7wDr3/96/HRj34U//Sf/lO86lWvwo/8yI/gYx/72FHsa42bCQTwZC8FwAjNYhxHlQWl1gatrXTeVf6EBWj6ImeaIoG2S1+ITWaLkCy5ofCFEQQkc5MPaQQKDSO5TQoogKbWRFF1HJFgtPM2AEAINpxHwlANFu5DheZZMX6lYLQ4DgrAgMgUg0RivR1ivT1esGoe2yKcMatIKBjoXQzPgIJgoGP09BCEENx5xg4Wnr1mz8Ok1gZtdHZ9OmHbHr8xWcS4hgEjFNqMEwlS2YH5xNaGqEKRIK0/BqWklIG+TttokAgaGlfFbtYKcik8BxAKoxUCkg+AGKPYYPa6rbq9oRgBCVhFTXFmfR4wwtBzxnWdORMbnhk+hf/1zH/H7137IJ7o/2Xpb1kvuruOvMKg08N/JgpJVjh2iCUAuBHZPT5quJioGEaz7LjPbo/fh/feaZ+JJ54tF9MhjbAebEBogSvxc9hJryFWcUnGe33P7st5t957Ltln+NlrKcSUwe3TzyWIU41Wg+Ku25sTPzcvAkYyaX1Ve4Nva/AeDJkiYd/GWKY6nZmccZh98w7wh3HzLyKWMaSRUEbZ6z8FQ++R0Jx/216VMJyiSFBQ4MKRwA2atU6kXFs39YqCPQoohomonJVVSts2hSnFHiWALNxXxvi0m3ym25ss+hYHJfN9IWS62Z2QCjv7y5tvKm0AQ+bql58E6vZxodYGbTICdxqeuma9gZ547mRUqYyRE0lu0E66ssh1KZJTk+C9KeZVGlGChScwipDKjLVRMErB5dGTM1LZtqTj2FYVuFRjqi5KCLQ5vRGQ2r0PimiEDINUzlTmGGOw30+fN20rNY4XS49EKKX4pm/6Jvz0T/80Pvaxj+Hf/bt/h1e84hX4zd/8TXz/938/XvOa16xyP2vcRPB1plckwLnMNmi1siBrbSARCCSAvAcfLEALTuZaQST46MUGbYFRCsOHUP3dXJHglvFFLGCJhJIKQgs7QhwlErgthlR7E8Z94ZKsBYJgI7CFxED2F3b7JYrDEAplNK4JK9cvGS0WYFgINeyDEoLtkZYGwMl+ky5IYIvB0b+HJMCF0BbVeQyk/dvlq/Y8+NaGUUVC8Zy3gqYbYBZ8GYzODAbDjEhwHgnSlMyLstYG3ypR0drg/TEIARhIFm9FCMl8Ev4ifgwGBuu0jXXWBmAztVlh1pISgs3waIiEjVJyA4WGTTVYZGAZ0BC9gVMkzGhtkFrij69/FB+++rtItb0eByMqi2ah6GckQKInz+L7WbwwyBUJ6y4ZxSAn9poFw0WhBYQR6DqjxXaTVhpE3nOpCUKAvQOZEQ4ehBC0gw6arIU9vou+6CEsqDhGFQlbGwHWOwxaA89cnRyr+AWnRnjRPe2VOc1PM1z0Rou+9eKMIxL2ugIUwVwz+8vCy1lXNWlmjMFQ9RESeyyz4joHLn5ynuhHD+8pMo1IEFogdZu2PiTFtAda6a8QBhRcmspZaanGB92joJSUCpligZi6qBlvshgWzBZzImH6jHBvKLDbTZYevEulgUPezpSSrKd/1dvd79sLtttNT8TtPmQE/3/23jxWluyuD/98zzlV1cvd33vz3ixvdnvGxjN4MIvBYTPgYLwgEIhEYnFQlCA5imSJPwIiERBCCISgGKSERPzBT1mISSQTE8Bgg7HBgPd9wbPP29/dby9VdbbfH+ecquru6vX2fbNwP9LYM+/d211dXV19vp/zWdJ8cnPHScAaC2C+53Q7/ZOHZqkMtJq9dpMWCNIcfL5SFRnAQlXlibeRGGRSzW8JXRKkcjWbompt8O0aL9Twwrp7TRxx5LlGf0pOwkE3x5XtLnrpaZ7CKZaPpWxpxHGMN7zhDfj+7/9+fP3Xfz2stbhx48YyHvoUL0IYa8FApSKBnHQ68RaFfIIigYUd7wAm0PCDap21ISgSGqwJwQkm7QDpgRt6USoS4opXN6oSCSzx20xlg0Lx1F6RYJIWbOQW2kz6YyDCilc9KKugKJt9QWONe07i2FH70DBIKCpCEUd+nCLkaR8bTUIrGd31tjKFlRngiQSqGaaGayDvOuOOdXtPIs10sUs9nJHQq2RQMGKVbAf/3BYQPmwxZCRolIqEYGsgQum5LzIXhqofrSnzMQAwzgbWOcHeEEIjg2XD/e4gkcAZYeOEiIT1FR+u19FgxCFNPlNbQxWCBLp9d54mZSTs5bv4gyu/hy8ffREAsBa5vI5w3QdUBy/hj2ncrnhBGkVUBAM2KIIIhJ23spTNDa6mURmF/QP3u3VqhPA7d9zm7Q2X6yX+ggmsiXXEPHGfP7jcgUA8BEUCERWqhLr2BsBlhoQMhZcvwdYQMI5IsNaOKBJW2xxR5Pzyh0cuN+OkAheFb24ALWexG2wNCYvBiU+t6+wtQiT4n+2m9eSKa4xQRUZCs6JISDPjs1JGr2XBGbQ2tVJsbczUVH3OBneJHY/gjiEMfWHQCBYHrUvb0DRFQqcv0c8WH5ZCgv9xEFRd88xGUpmZSNH9jns/jbXYO5xMQJ0EHKl265sbFuARwBmNDQYNmK/60TdyHGPozaQZUTVxTtBmtjyH4yDPFZSy/hq/9ZBqlPwPRMILVZGgpBnJ5WBefdqfQBDkUuP6bg+H3XzqNXiKUyyCYxMJH/3oR/Gv/tW/wute9zq8/e1vx8c//nG8+c1vxn/+z/95Gcd3ihchrLUgXkr/GLkFTTyGSAiVczHFgJGVfAQAjKEZGh/qFAkFkdACIwtkHVgl0QpND0GRUJHsC86KnTdHJMjaHZgQtmiSNmwY0kMVIzEIy7CVbAAAduXN2XeeiupHVql9rMlH8Mg0IRHARlL/BWezLnyPEQCA1zzOWeEG0EPtyJFWg2Gz7Y73yo0cuc9IqIajAaXio1APVGwNQFh4M5/S74kEcgvgKpEgRCnRDcPK6rC1QSuXj+GJBMEHF+q3+cDFgDuiCpFAHNyWgwoRYcNbRU6sArKnYbWrUBQ0Wz5CACOGPHPnuk6RQL1dfHH3k/iDy7+HA7mPJm/iO87/fTyy8WoA5fsSULUhcCagJwQu5gWRULY2RBQhYYO70sMZCRYWu2OCFqu412cbhJyEOrhQ1Li4Jrb3ytyBapDfPXc6ZdGzV9Laoe3xZ/owxjVITDqmeRGaG46GrA1HXe2GW1a2VhARzqyXOQkEViihlg3BCanUY+XPXdWtvU+OQ6r7rraUCQgWFYTROPRSdz7mCbScZm2wsL76MWQksIHrmcBqMz+I3G573eI4kxrTsgIZIxfK6K8ray3IqxiCUiGqyUgIJBHR+BBDqQyO+hJS24U953WD3rwogv7mGI5yqWcaZvePSvJg++BkrvdJCOqcW520b4zFVJZqCGUF5PhjVWq6HacKOmbDQib1SB4DJ4LR5kQl8NZaZNLlf6TP02CbSj1ynkO480mrMRaFHBMeGwuOw15eu5FlrcWN/R46fYlmwouw3FOcYpmY3dRbwRe/+EW85z3vwR/+4R/i2rVrYIzhm77pm/CWt7wF3/md34lWa3k7Q6d4YUM9+xlcePoTOErWYTbvhkxWYazrWA71oEQ0QCQMKwvyqjpA5a76sYLWhPrH0ADQoCa4zlz7gjVo+t8JEu+qtSEShCwtn5NqghZhdKE+MEkL1tsYSJbWBliDB9fvwUdu7ONa9hwutu/FLKMMGQ0yBlbwStBiva1BW8eQb7RisJoBwVoNpEeFrQEo1zhVE0LL5zl0g+SdGO7aUtjrMly+npXD5YgiwQ2sbeGGfqsVqvzj1pOfRNMSug8+hohXXj3T0JqXXuPK+Q+76SMZCSZUcLr3nzOndAg4660N8K/rwgCRwMCNS80nuBrIjXireL5Up0VuxgisAcu7gM5hmpuYFsfdSBiiiCClRb9HEC07INGfFT2vSBgmEvq6jw/vfhBXvPLizuZFfNO5b0aDN3Gtf8X97pAiofCUZ85qon0NYVLzmvOKIiFYGyLGkZgIXfSLQTTsJEvpwu4IhB0/8J/djMe+rnvvbOIvP3GA6zs5en09UyvF9m7uH3fwPN5+LkYcEdLM4OZujjvOD76e0Nbw8nuX+52z0g6KhMEBNqgRzm5GAxLkrY0I17Zz7OxL3HUxdnkScwwFs4KIsNIUiEX9Od3P98DBcL55+9TnttaiqzoFCSZIINMpZKWScxhpFoiEeawN3tLkZejDx6WtawWphi024kFFghmjrhGC1cp1czk9pNApEiy0MWCMeyGcVyQURALzzxMyEpx6AihT8+teUz9TyHINhiAhnx+50rWk8PyYrJwYRjYDkeA81yVxe/MgxcMLH99iCLaNW69IsPMrEjghzwy0thjz0fWWkvlyF4wffOcJfgzPpWoGU84Jyp7srrzytZNxxCfupJ8k+qkasDUAfnffnrwaY1HkSte+z0nM0M800lyjOaRYPejmuLmfYrUVQRuLXqZ8U8dy8nVOcQpgDiLhueeew3ve8x78v//3//Dkk0/CWotHHnkEP/7jP443velN2NqqC4o7xUsd+UffjbPbz+AsADzzUaiogW77LPrt2xCxu6HWz4FIgFiFSNBjMhJYDDIKGNoVb0RuCFZWQRsFHrz41hREQcyaYCotGgXaXqZdZ22o1j8mEGAmB4nhoEU3oFhisFEC460NpSKBAFg8uHYvPnLj07iaXYJUCs14ho+UVYCXm15XpSKhDmmm0W4ItFoRkPdgrQZVFBs2T2FlDmqulsfOXCtAlUlo+4FSWoXcSMTEcNeWwWefA65cT7Hqd9mDnzmgWygSvO3CqHKxoxXOPP1Z95wXHwLYevmLXEHpqBK0WJ7/8J6sJUPWBqPgTcruMYezHpjAJl/Fnj7CGbFRZG4A7n2C1a5xgHEwRoh5hDZfRVcfYS/fxe3NO0ZPsM7B+3ug9NCfPAHTWB/9uQqICOsrAtt7Ekddg3s3Nib+fB2UKndgh1sbPrbzV7gid8DB8Jqtr8PL176qGFRantAJbSUB1R1cwA05dbu41pY7pFHEIKUjBmJE7nzq8vPYqFgbpJFglmP3oL6xoYp2i+PcVoSbuxLPXEnxigdqsjCGcNMTFOe2BgkKxgh3XWjgyef6eOZKOkAk7OxLbO9JMAY8eE9z6nPMg9Ux1obrQ7aGgGpzQ0RtSOOaPGIaT7gsilaj/tw78ihH3yis6z6aYjK5EmwNDZ+PwXz7irQSdWdTG42+b1FozhO2GK7NTENbPRJKaq0P86woEhpDigTjf4YNkXwRZ+im0tWi+aHIDZd66mKZEcFoF7oWiaAu8IoEOUgkFIoEBb9r6awT1oYK3KH7pg+lFBFbqJ7NGDcgz+qXnwTC7PWP2hhoY6eSMN1UDexab++fXFPJNNxqIkGb+a1FnDEYo6CMQYJ6JiHN9VzvN6Oy2nPWysgA7Yf54fYVV6s5vWHiOFDa5RM0Io5MatdAs6Tg2FmfP5MaUd1zvkDDFo11apa6z2UkOA67coRICJYGzghxxKG0Qa+vkEszlzXtFKeYhpmvpu/6ru/CO9/5Tiil8Pa3vx3vfe978bu/+7v4kR/5kVMS4e8wGq//x9i+8BA6rS1YYhAyxfr+JVy4/AlsfOTd2PrA/weeHoFQIRKsdDkBHtWhnqwZUQckolHsrFdVCWFnm4EhoRiUd0E8BvEITf9dUBe2yHllWIJw5AUfXJyXtoYWQFRYG1hQJDDXpnBH6yxaoonc5LiZXZvpnJFPxd9Vh1BWIyaBTb428nPSM9Cr7RhMxK7RQA6SMDbr+mTLitePQgJxJeiQRHH+uyYFiOGODQUi5/Xf8wPiSEaCJxJW40AkaFBYzGfl4pHlKRhjEJ6bJKahK9aGcP6lkcWAu9oYtTZUd3rqsh6CcuNifNvgX5AAs8bXR7pBmlE1J2Fn8OetAcsOwQ+vgtID2LgFyyNQf7ckiyagWgG5CIJEnHNCPNSUsZu5Y/22xkN4ReOegd3OJnfDobKDgX6BAErz0HFfL6+3KN+TamtDzASSELhnBq0NLmwxR6fr/LORIKytTFYZ3OstCU9fmm3ACIqEc1ujQ/K4nIS/fcp9Ru++ozGX1H4WjMtIuDEUtBhQNjdIcOKQVp1Y4OI4KCOhjHKVp+pwamZLql1bA6+oD9gEW0aaq9AMOmfYYpnfUZd1oOGJhEBSVMMWgyLB/8wwYuEyI6r2Bq0ttMHUXXXGqFB8AY5ks0OKhKBEEIW1wcLCvQ7mbQPDp9lYi8NujiRiiDihn9U3S0yCNr6ZYxnhodaRHzM9r3bnY9rzVm0NALDzPFgbAPce3urmBqPnq34Egnpi8m53mo9aDSaB/GMuEjapjPE706PPR/Z42QtTn9vXmiYxh1LmlhNBUhkoNYa8mGBXej7hmlfG39MYo4EMmqqlIbR8Cc6gjDnNSTjF0jGzIuGHf/iH8da3vhWPPvroSR7PKV5kYJt34Nq9jyHLFFaiJhrdHfC961hPt9E+uAImM0QHN8DiOxB54X9unf0gSMgDOZCQALMaw+ZWJmLEiJBBIjMZWhjclW3yJpiWIEhArALWouU5srr6R8Z00UueMD6QL1D8TJVIAEprg6paG5yM/oGN+/DZ7S/ganYJD+De6SfNe2xD7eNtYmu0iQFuN25jLUES+SHJGliZgWJ/TEbBZh2QGBxqiAjEwgKjfNw2ayDXEl3TxyZWkQjg3AbHjT2Nbr/0zVcRrA2rUUkkFNL/vNwV5zKDBRARd0QBV9BZKaMfrn7kJJCIBLkqPXtW5gOBl3Wy3sdaL8cZsY77ktsHzxcxMKtgtSpsHhFnWBObuIxnB3MSdA7e2wNlh7BcwCar7jwJDsqOwPo70CvnB7M6hrC+GiogF/tS7vaCrYGNyqL9OVrnLVDeAeKVgiiKWISIIkgr0VM9rMfuva/W5VlrIUggN9mI7FoZA+0Pudra4DISgmLIWxuqRIKV2D9w/721EU2Vzd93VwMf/ewhLt/IkOVmhKCqIs8NDjruoIatDQBw8fayCeKwo9BuuV2jx59x199DS7Y1AKW1oZ8aXxNGUMoWWQ7DioTNdXc99DODfmpAgpDrHO2FzIOLQRoJA4OmaKMrO8ii9aK9ZhjB1hANZXsIFiHV/drd/463gwlORZvBLCivo3oiIeRvBCKhkbDiPhQUCdba4p5dBecEqQ1yWe7GaeN2PJNo8skvpMx+cHDVj57wHLJkhd1LqSy00bDWgIjBGjsyyKWZQpprtJsCxjg/uFSmvI/PAKXtgMriOCA2e01geN5pO+PB1tBuCHRThe2D9ESsPNMQcYY017f0uZUxtST3dIzPSAhZD3MrEsx8QZrF8/lmhtrr65jZC1Of2zeqCE5QxiJXBs1k+u8tC1I51c24cz0r6XYrobWF1haxqD/mJHKqBH3G2RYOujm2vaVh8HPhmk6AW3jCT/GSx8yrgZ/5mZ85JRFOMRGWCfRXz+Paba/AjVd+J+TZuwAATKZgrGxtqCoSrLVluBsJADVDPWP+7zCwWxYUCU3RAjO5S+3nHOACrUrTg7FmYNdXM7cIYmCItR7pUgYGGxsAwEbDYYvuUGEMXrZxPwDgWnYJSk8fLEnlsIwXtoYLNbaGLNdoxByrzWrugIDNOsV/2rzvFApi8EuBMfKy28EvxLaXMPeKakCLu84NLm6HB77C2hCvuFYFW/FxyvK94DIDAaUigbvzEIaDsKMXiJ0Ga46e9aF8jGrWQ0DMIjzYuGugJcHCDwBEhSIBALggrPGgSNitqBCugDKnQoBookq22LgFyjpgweowBmFHflFFQmhsGLY1hJpFAGjE6yDZB+nBne2GVyVUcxLC+2aMG3Y4CWijiscK6FcC7wYUCSTKz+dw/aMEVsQq9vb9sD9DqOHGWoStdQFjgCee7U382TCcr7Z5rbKgkTBcOOsG99AE8dyVFP3MSTQv3j4m++IYSGJWLDQD6bO9l8NaJ+tfGXrfIsEKcmnHqxKmNSAsG9JIEAgRi6CtxpE8Gvuzubc1hNaMAEECyqjaoM6Ol+vPk48AlGqZTKI268BYNwjWKRKksrCGHNlQo0ggcjaurLKrqbQLb5xpKKvIuN39MigS/H1rqLXBWi/NhvGNCBgZ5HqZ8tVyDIIzSD3/rqs2FmrMjvG8mCeUT/ud6mk77qH68b7b18DItV8c9m59kJvgzO0w30Jfu9YGi70tNLYuNFQ/ijm86+S9NYvsoCtdBosOgzEM1KIuGy4LwhY2CnmLd8hzpcs1wxCIXDvCCw3aODvVOGIxiRlyqdHPdGFpYN7SUEUkCN3+aQXkKZaLU6PMKU4EnAg2cgt8ylMwokKRkBkJ8kOusqrYaWqw8Ts2SVAzVKwNYZBq8RaY7ALCDzgENCsL5EynRWsD52XAXMxicJ2BatKPxioSqtYCsgAM7l29CEECfdPFTroz/FCD8BWHBmxi0KIyBiutaCC1m0QMKzNYP1g6WwMbCWgiEBhoZP+u5Xcnu2HAscCdZwdvAdWMBGttofpYj1edIsLYQpFAQ4oEECDCgM88kZCHnT0fuBZaNnhzYJFsjYY1ckCRELIepkk3rVeGMEY+DNLBKRI2AAAH+T7Q3QY7ug7AwiZr9YoD4rAiAevvuRDOMVg/prWhOzZo0Z0fAYaINQCjQKokbKy1SMi9j9XmBsFdwCTgmxuIQ9U0N2RFrZ3vDK9pbQgtKtXchZjFxcA/rvpxGC+/zymHggVhHG7u1QctVlHYGy67c/El/5gvu7e1lF3bYRDRSE5C1dZQtwit5iS4BoRsbAXnSSAzGZi/phu8gY48HMmjCUh1CmXVSKii8I0feY0to9N3fzZPPgIwqGwZp0jQigrbhGttoOK2lufOTlBnbQDckN/tlcertfGBvzNcF1QqErS24xUJlZ1Apd0xE+oHucNuXig2GCNYY4vMhVmhtAEsLWWXnRHNPGiH3eJpzxuIhK21BFtr7rv2+chJENw1b9xKebwyi6kfGANyWf99EeT+8ykSyrDPeSGVHpvz4KoqT+585rIMDeSMkI45JyeFNFdjiSDGaK4WELvg+Z8Xweo0juDjjEEbF/LqLA2qsDRUEQmn4LnVdpJTvLRxSiScYvmwAHEG44kEJlNwhpJIqCgSAjHAwCC0AdUw8oxRMeQMKBKCtYE1IEwGEuWNk4moIB9Skw6EZoXnjFgCZiWIj95wKYQtehuBKRQJQwtsaxHxCPeuXwQAXOo9O+XcaAAGe7aL3CpEJLAlRvMRABrdneARoKUnEyRs1gVFNRI1AjhnGF53B0VC2dwAnN9k4JVZtmptyEwKA7cAXo1X3HZ3RZFAQ4oEEBVEAgk3dKbp4II8KBKavDlIgBjlbRMVIoHIL5ZqTk8FoSWEiAOVfANGhAa1EVEEA4PDzmXYqOlVCBPAE6de6O/692sUISOh09MLpTyPJRL8Nd2ixO3Y8AiUHRWfF20MWtwN6P2KIoGIBivz/LkdDlzMcve+RP59DlV2MYsqrSo5YC2ShIrHs9ZiZ99d+7PWLL7sniaIgBu7EnuH43crb+7WBy1WcbevlLxyI8P+ocQzXpmw7LaGKoabG8YFLQZshZyEAwlBAtLI2oH8JGCsQWayIsgwYjGkVTiSo8oaay066mjE1lD5idrj7i6sSKhmbYxeB9pq9H1jQ7BNEFHF3uAsWrrG2gC4xXE/1y4ED44YGLfbOgyicnDQxpRiq6BIqBAC4XYslVNHEMNIRkImNXqpQhIP3scWIhKWxI85ImFGRYI2RU7EJARrw8ZKgrPr7rP5fFRAcs6gjb2lFZCLKhImDehKW5cTPVdrA3xrw/zHMqlalDOClObEBuRUlqGSrnXl1ioSeqkea83ic3xWAGDnML0l+SCB7Jx0fUSCsN/JsL2fYq0tan82FhxS6dOchFMsFadEwimWDyIwADb2igSZgnGGyC9yc6sAvygsGxsSCKvAalQJRCiC4LJKWn1QJDQRgVkNViESSERo+IVyqtPC2iA4FdLtmCKQ1bVEAsuDIsHXHnpFAqsG8VkUA16wN1xOn5t8aowGGY3r+gAAcJvYHPEiG2vBQKNJzD5U0eZ9WNl3QzOvH2rqBvD2cAUkCIIZXDjrSRIa3HkLO94JayDiHO49qyoSqkRCCqLS2sC9tSGkvA9nJDR4c4Bdt9oTCQPWBpf1MJJmNgx/SCQ4oPJiIcyYIyI2hWu02GUSGFNrN/KQweLQ36t9/maDQQjnsT7qzr+j0vOZFMNEQqGy8cQZeAxSaWGpkcqiHY1aG4CyrjFIxAEa2ZEOvd3h85DbUP8YoRE+Y1YCMIW1wRhg/1Ahyx1hs7k+G5HQbPDCdjBJlbA9gyJhYzXC+qqzSvzRB6/DGPfzWzOSGotgOHDxxk59PkLAmY3S2lA0INwiIkEZ6RptKkRcgzVwpA5HSIFxtoYATlGtLSPULA4nvU9DQSTI8USCrDQ2FMcfruc8WA/GEwlSmaKxZJ4hnPmhCXDX+bAioVoRF+5hRrtjLuofK4N3P1PIlEZcGVQ4J/TmDAR0w8xyBjnmMxJmGQyVNphllg1hixurCc48j0RCwKIVm/MiZBIsokhwA7qufR+k0nM/pvv5+ao9AzI5PthxOIR0mTDWqXNCo0rkrSm3aoc8PFdtYwPcZ0Wq+veoDv1M3RJFhTFOKTQJScxx2M3BGCEa0zHKmLte5iU2T3GKSTglEk6xVITbLzEqFQl5CoZqa4MqhrNiqGexG+pr7Q2lIiGvLHD7ftBtGQYQG8g6IC5KRYLuFzuwkaBKJkPkDAB1Kohha0NQJMihwcB/2T6wfh8A4EDtoqs6GAujAWtwOd8GUF/76Oqc6hN6icdA3oVNO24oHvPdItioJaBUJLhzaImBjMad591rS+LB4L9uYR1pu8VloUjwu3QVIoGFjAQ/yHBRn5EwSCRUX7T/Mq78Wch6mJZ4HhQJjAtYrV37A9zNTaR72PLBQrumO+FRhsFg4xZY/wAkR4fgUAEJAAdz2hv6qS526FtjrA2tUBtIHLCmOAalTFHFWbU2ABiozAOcTD0bSuB3QUsu7d7YMvwuZhFiVg1DdR7zsN66fMN9ZjbXxEj/9iQ8dJ/7/HzlmV7tgjfLDQ590OIkRQJQ2hsuXXOv6eX3nZwaAagQCV2NTk+j29cgqm+WAEqlxv6hgtYWDGystWAcrLVQRiHX2Vw7gtIqaKsHiISYJ5BGojOUlTDO1hAgmAvqVGbwui4UCQtaG7QGUpWPvC5lFPLcXVMDRMLQ9TzW2sAZtDGFrzuTuu6WXgtOVPyeMeVOc6lIKK/1sIspFWAQ6h/tAM/Y7UtwGrQGBDnxPANfLpeTjwCUpPIszRGTdqoDjLHY7wZFQoxzG46gfr4qIIlckOetgPHv97ytDUApP6+zmaS5xkINiDO+r1UobaD0+OuLM1aE+y0bWhvXqFLJHpFa3zIiyOVpmLHfYfN8VgD3voWK65PEuGyNKpKIo90QtZaGKogR0gUqaU9xinFYiEj49Kc/vezjOMVLBNZacLgBpKpIIEaI4QYFDQPtff6FzYBicDu4Ix1ABDT87ll1MCoUCcbVM1YXb4xYRZHQx4WzMe64LcYrH2yX5IXlI2qA4ventjYAIAbrF9vtqIXbWxcAAM91nxl7fsgo3FCHuCxvggDcHZ8f+RltLTi5kMkR8AhWSdisV7QT1B4/p5H9rLbPSOhpl7DtAiM17va7xsOVfj1PiLR423t9jSOA/GlmasjaAIsohC0Kd17CF1awlgRrQ2vIXmC1HM16IIATmyrdtIBXcHBnRbA+Vb23gyjdxWaogFSTAxRHwCJYAlhvp2jaqKIIXJyhucFai0vXUrzvw7v47++5hr0DNfAYAaVdp3xvLU9AWQewGsZatIVvLRlWJAwNXq6GUA4MhEFaG0VsYLc8oqhU/RjlyIuKXeLKdfeZmdXWEHD37Q0kMUOvb3D5+uhQfdPXPq62+cRmB6AkEgDH/T149xSLyjFRVSSEfISt9WigAaaKdpMjiZ1KZe9QQjCBvu6jI4/Kf1QH3co/R/IQ+/kebqTXcbl3Cc/1nsFzvWdwuX95wLoyDSELY3hXM2ENHMqDQgkw3dZQBi4Oqym6hSJhvmVDHJV5B/1MjbQvaKuQ+aeqPnZVYWOBKXkTVJBkuZp9CGfMSZmDRDxksgzX1gJA5IcPrRz5MbwjrI3BQTcfCTgTnEFpO1eAXVbZtT0uQk2gmWHWzpWubcupotOXhV97rRU/r9YGwKlG5lV8LAqnSLAzqTaGwRlB+yF+GGmupxI4taD5wxa1tlB6fBgpZwTjQzeXDalcuGlQQ3DG3A75LVMkaJ9FMU6R4D7Ps5AoxlincLgFthqlDMYsVQfQSOotDVVEgqGTyluS7XCKvxtYqJzqh37oh3DPPffgrW99K9761rfi4sWLyz6uU7xIYYx1MnMMKhKICALcLdRgkekMTVSsDRSBrKklEgAg8RL+rKpICESC5QCPBnahiFBItZ21geHN334OAPCJXa9IAMNAQECAtSNEghFBkVANW6SB1dmDG/fjau8anus9i4fXv6r2dVgt8bH8aQDAA8ld2PCy+4GfMQCPeP1ihXMgUwAIiMfvyNato1tekaCgkVuFhBhgDbY2Inzfd50baRAIQYst0fbv26BkmOXluXD1j7ZQJDDuFnYj1gb/mG3v8y+gctR9U3JGmLb+tgZgEblrx2hHtPQOwXq7sFEbG/65d9X4FPuxiFqg9Ai8twe9ctvAXxUVkOMUCdYg3d3BF6/F+NJTfRx1yxdydjPCq162MjKYF+QYqzQRiAiUdWHTHgRvYD1x10xf1RMJqZeJCxLIdQZlZWE5KRQJURk6KsBAxAt/fQ4FazSIu8fspQZXvCLhzOZk1cAwOCc8eHcTn3+8i799ujfSsBACHKepEQDg/NkYSUzIcot772zWNjwsEyvtMgejGrQ4DkSErY0IV2/k2NmX2NxooKOOcKXfL+57AEb+HbAgMDDi4MQhKEJf95DpDC3RHvt8VWQmq22fiVmMI3WIjjzCZrJV2BoS1qh5FIdgy8hNjibKe0zfe5nnzUgIeQdZbpDmekA5Ya2FhkGe1VgbKsQYA00kEiJB6KaqSIGflUhw9xc3jGnjBkQDU+wyDioSgrWBKtkjZdhaP3Pe47X2UKWmDwTMlUFjho+PsW5AmSd4bxIYucFw2sAZBqNpz7vngxbX2hEYo4JI6KYK/UwVNZy3ChFnyJX2O82LkS9SOYXJtN831sJOCL2bBM4JqsYyEBQC46wGk2AXUSR4koCPUSQxTzzNEtDZSyW0sVhtzfa94J57tHbyVhEJuTITXU8FkTADOSO1fy3eNnSS9aNSjW9smBexYMikRj5nJe0pTjEOC93xf+VXfgXvec978J/+03/Cb/zGb+Crv/qr8b3f+7144xvfiI2NjSUf4ileTLDWEQmMVVobpLM2kK+ATG2OXPfRRKlIiCkCo9Hqx4BmoUhwP6+MKgahFsVghIGFNBGhwRNAA+nQzl5BXlhWH7QoM0dqoGptqMlIAA2E8b1863586MqHcT29htzkiNnol+vl9DKu6wNwMDzWennta9XGIp6woKGoCRcMMPZHakMrBXEkFCGzEl3TR4LEWQqsrR3ketpJ59uRH2aMGbDtcjlMJKDIwRiufxzOSGjF5W6yhQVUBqpZ2HBO0Nm01gaUu2gE2P4hbP8QlLRAqcS6Jy1Sm6FvsoHd/unw17Hsufe6Ih1fG2pusNai09O4uStxczfHzZ0MV7clbMghiAgvu7uFhx9o4eyYgbywNgwMeu69VOkh4pUWms3V4meNNYWqJqTpd3xmQxgIlVGAP+y8yEhgxS51RAJZrlEV2+Q6RRI1i8Eul+49mKX6cRgvv6+Fzz/exdOX+8hyM6A8CIqEcXaBKhgjvOKBNj7zpQ4eeWhl7uOYF6UiQU0NWgw4s14SCQ9RG+vRxkLPLY1TM2zO8LPWWmQ6rbUqEBFiluBQHmA1WitsDe0pWSEMrFBuAc5W0PfqonkzEgB4AghIMzVACGirXVBkkZHAK79TKhKIxGQigTNkuRvktcXMNXqMEbR0g5wxodKxrBOMajIStCFor/KxKLNoepmCMXZESeBq+lBkMUxD6LlPovmH4rqBhnkLxrSBUxsDY4F4CpFQzUcAgDjiWGtFOOxJbB+kuHjbyX82qxCcoZcqSLU4kXB1t4tWInB2fbLKyRjAwM60OzyMUNeoh3awlTZQyqDVmH85TjOEEQ9DKafAmTiYzpiRsHeUQSozO5GgnKqxeo1yRkhvkaKkn6mJJCMjlw8xCznjbBoGnHFoY+ey/M2LWZRCsyISDJ2+Qib1KZFwiqVgISLhLW95C97ylrdgd3cXf/AHf4Df//3fx8/93M/hF3/xF/HN3/zNeOtb34rXv/71iOP5dq9O8eKHgRt7GBGMtzYwlfsyQouYRUh1jtxbFAqbAcREX2uDhXyFHLB6oCaP8QbIySAKEBESHy6YDu3cltYGVpvJwDI3QJsoKRQSNigStHKrCcbcc5rKLnNjC2vROg7lAS73nsN9Kw8Mnhuj8PHOFwEAr2jeW1gNhmHtlC+luqaGIYz7emizJjLtiIQtnnhiwNT+Rtd78FeEXxjaQUXCMJEAWAh/vgKREL6Po4i5rvjC2lDZadUKVteHXnJW7t6Ow+CiiMH2D0DxCjjjAJPglmONt3Gou9hVh7gzPjfx8UbAOEj5MEg+SiTc3M3xh3++jZt7shJ0WOL8FsfDD67i/ovNsbL4gKK1YWjH2IoEtt9Dc8NgNW4Dflc71SlawpFdgZzY2avaMAYT+EtrQ1n9GBP3vl8XiCqtQqZTJMCI3WDW6scqzm5G2FwX2DtQePK5Pl7xQPneB0XCOGJlGK999Tq+5etvg5T5iXh4qwhBmFqX1Y+3nZ38+oPCZHd/fEvFLBAsQmZSSCMRscnPqayCMhKihrgEgIQlOJKHOJJH6OnORFtDQMQipLpfEFXa6uLanleRAITrSCPLrRvC/cfIwDUgZHWKhErYolMkjB82oojhqCfRS10+RTzlcxbAGRXEQQjR01oVQrM6RYJSzp7namdtUQF32MkHWm+qIAZk+WzWhlDPttKcf3l2M72OlWh14P7qdpinD4ZKWxhtwOLJzxsaGzZXyu+hsxtNRyTs9285kcA5QfnmhkXMTlIZHHUlxAzsQLDALKJIcBit4pRq/urH4tEIMHNK65WeodWEMLW9wFjrbC6+AnWWHXMXhDr4c0Iw9DN14rv61lr0MzW2sQHwG2AWMyoSnAXCMG8vOaGZ3FoLpZenSAjnOM81cLIxQ6f4O4JjmfC2trbwwz/8w/id3/kd/PEf/zF+4id+Ak8++STe8Y534O/9vb+Hf/kv/yU+9rGPLetYT/EigDUA59ztDEdJMQIK5aS3SVEx54bQEHwYg7vBfAya3C1aUpODlCwl4BQDLB5hmYmqKobBEKiggkggwMTooqm0NZSLMc3LnytyEogw3LF43+q9AOprIJ/qPI5900VMAo80Hxz7WkEAW3BnpYA/H6M5CW5A7enUWwnM2FaEEOa3FruFoTUa4ZZhrR0gEphyAX1BQg8+uOgXwknpgz96Jaos+bwnv87WMgsLb2GL95+SNqixCgjh6iPdK8QWdxWbO+pgfm+gt7CQGRwENry1IcstnruW+Z1TNzi/4oEWvuWxJv7ha1N83zc38dB97akkAlCxNgxXVPrqzwYkOONoeKKh6qMPrQc7B7KQMXMSA4F/WUWREAiGCKIgY4Y/n1UiYaU1PcegDkRU1DRW2xvSTBd2j0mNDcOPNW5YWzY4J7Qa4Xp3u+ohYHMcApGws388D2pEUW1OQR2UkVBWF9aUYRARIh7jSB1MbGuoItRXBtWKNgqpH/abc4YtAoPNDVVlgbEGxprysT15QLKPxPMiWWZAnswYd045YzDaqQLcLuHsGQnGlOGKBCBT5b2rOnSEz6/WqASVuiE9kxq9TI3d4ROc0M1mI5d6aX3exTRII5GadKTylYhmksBrY6GsnXru9r21YX2lJK6CveHm85CT4M6TdbvdC6CfKWS5QjZD+r6x1okBFx54LaQe/B5R2sKCFnpMImcXmAdSa4AmXwtENLVJwSmADKSaPf+jLgj1VjU3KG1mU61YzERSa+3sQrNaIRaF9k0hS4pMAQBwhluWK3KKlz6WZmZLkgTNZhNJkhTM4vvf/3787//9v/HKV74S/+7f/Ts8+OCE4ekULwkMsPXEYKMEJDNwlYGhUTQ3hGE+DDOJ5SA+/nIMRIKEhtVZZec2hgGr/RJuBPJhKLm+zGXgtTsLw/kIPZ2hK/s4yyMwLUEqc0GSnkiw1hQkyAPr9+HTu5/G5d5zA15gZRQ+tf9JAMCjzQeQjNlltD7w67jsM2cugLBg+a3F6s5TWPUL3a5xRAJZO0KGuOOwhbVhxRMJ0KrYTTBGgenBhTGTfURBkcAGFxaRoEKNEFGMqKI+KKsfa74pGc3Qgkbl+zgQlOECK5U22BSreDq/ik/0voxP9v4WMUVIyDUVxBQhYRHOiQ3cl9xRY30IhMvgeWo1OV776jXsHSic3YxwbivG1kZUqElYdgh+KKeExJWQJi+GgGFFgrEA8QiR6oHRGTR5C6npo6e6OJOcBeACC+OIkEuL3QOJs5sxOLkE/rCzHHZFI0GQ1r1/sb9GiQgJxeigX7SjVImDRdQIAS+7p4WPfOYQ13dy7B9KbKxFhRphfWUxguJWYKXN0Uvd+37bmXjqYn9jPQKRI5e6fVPYI+YFUZklMy0nQVoJi8m7eaEK0sJOtTUAAGcCWmtIkyPhCVJZ7tIvrkgA8hwjRIKFKdUODQZYDZbuo+mVNkGRYKyFgQEfs/VH5DzQ1mK++6d1Q4a1AHFCVllgV2cOUQlbhDUFKWqty0dQyiBu139GwrA0zcdvrMVRTy5ElkkjkenRtg3AESTTMhKUHpWd16FWkfACqIDMFqy066QSmTTI5HSvuzUWx6nl5JwhH7K4SG2mzfVjwYig53zZWT69mYMzmloRmEkNqV0N6qz5H2muR2xHgjN0U4VcmZGg0mUi95+/WSwkswRYSmV8y8NsVohFoX3446wqq1kQCY5uKmdWkpziFJNwrCuz0+ng//yf/4O3ve1teP3rX4//8B/+A+688068853vxF/8xV/gQx/6EH7t134Nu7u7+Kmf+qllHfMpXsCw1g7IQUNOApMpiFUqIHUOWFOxGdBERUIIWwSATHaK3fIWa7jnrLkZht331GQDWQaBxBCsURszwPKSSMiNQq4V2qJZNjfIUpFgrR3Y0b9r5XYkrAFpJa6n14o///LhF9DTPbQpwcPN+8a+Tm1dkNMiwUtVEAarE9v7l3Dn43+O8/s3AJQVkLC2yIOoIjdZseBfCRkJVhfvkc0rKo8iCyMrFAm2hkgIu+cJawx+eZnxCxZONL0T3rr8jToIRrAGuDu+UIRvWlhkNseh6WJb7eOKvImnsiv4SPcLeNfu+/G+g4/iqewK1AABQKCaBfqjD63iW79+E1/1shXcdiYetKQY486Znm0nMuRHROCIhmTqUhtQnCCyGUhnaPJAcpU7/ERU7OyHIV0Qh7a6SPUP1oa40toQk3DNF0Tl59P/XXVoXCQfIaDV5Lh4wQ0ef/u0O+abu97WMEPQ4vOFlVa56JyWjwC4YTMoVY5tbyAx0sxRh1zntUGLVbjMmCZafFTLmmYGf/nx/aKStPgdlIGcnb4P5uQ0k7JmGIFIkBIDVhtjNSwwaJswGjAaSewrgr0iwcKMrYAEnOrJ7UrPqzgKRIJ1igRd5rpUh8oBa4MnkEPY4lEvn7hjKASDmmHXNcs10gnKhklwRGSpIqnCYnq6v9bTu+qBwYyEVPexl+2VRMLzVAEpuJPHzwtjLI66OZKYuYFtWiDl8XgEcKIRwiPL1biM6alYRJGQzRBGyhlNDUDsZQoMs+d/jAvzDOGOJ61IyKXxrtTptg49U1WqhhDu2E9UkaDdPWaZA38kGKQ0C5NvpzhFFQspEt73vvfhPe95Dz7wgQ8gyzI88sgj+Omf/ml8z/d8DzY3B+Ohvvu7vxuHh4f4+Z//+aUc8Cle2BjuWM5FhCYArjIgAmJUsg5gy7BFDCoSDmUPjAgrXuItiBAjQg6JTB6hr10Cf4u33G5czSIu7CxLaGiZgsduIC7IC0pqmxFY6hbvOm6io/o4n2ygqzJoEYFnLnDR3X4ZYL0s3++SRYLjjsZFPNX7Ci51n8EdzTuR6QyfO/g0AOCx5J6i2aD2/BkDxnHsxG7GyOUC+tCK5pEjEDazDGiLQpEAW29tCPkIMSWIg3pA67JZwZMtiJuguAUrUzDZL3a3wQYXdZFgOPKDcoM1B867HdPYAJQEgcVkPmHcLlLwB2+KVfzQ1ne6xgojkVuJzErkxv1/32R4Jr+GHXWAS/IGLskbiEjg3vgCHmjchQs2GiCjZoKR7sBrCIg69Coqm2EoZbHSTEA2A/I+Wj5AMhBqAWc3Y1y5kRdEAiMOZRWklYiRVMIWCf1gbSDhCCVesTZ4Fc+yFAkA8PL72nj2aoavPN3H175qDTf3fNDiMR/3JFFVFExqbKhiayPC3qHCzr7E3XeMb0eYhohFyE02NSchM+lYW0MVdeGvAPCFJ7r4/ONdHHYV3vgtZ4s/5yQ8+XcGHS+3X0SNAAwSCdVB18CAQANEAlkNGIVG5D7Tae7UNNZYP7zXIxLMDyPz3jvdgBMyEqT/jFQJcff4nkjQFhYG2hoQcWRSo9OXSOLx93XBGZSvuWtOcJakuYbUFmsLkDWpSV3jwxg7zDQiQWo9tdZQG4PDnnv8jZUYXXmIju5gc91VH+93ckhlFiKbjgPBGdJcz73DmuYKaa7RbkTIfDbFRMWIu0gWPk7OnWWgepxprhcOiXSKhNmHWG1ma4gItajOJjR6bC5YWLoaYWVmyv8ILQd1IaIM8NaSeYKQ50Mu9Uy3BiLMZJMJlZ3a6LkrOOeB9i0bi+dyjEJwgtQGudS3vGXlFC89LHQF/bN/9s9w++23421vexu+93u/F/fff//En3/44Yfxlre8ZaEDPMWLD+EL0lgD7YMBucpAERAXoYkSMKawGSSWDcjSnXe2fEwip2bIrUSm++irQCQ4oqHuJptw4SSxsMjkEVpxG8qUqeERb9QuCsgPyT0RYTNawW3JBi6bHZhCkeA95wQ/iJdfOoIz3NW6B0/1voLnes/i6+w34nMHn0ZucmyKNTwgzk88dyFx/LihQ1TkA/gQs+4OAGAjzwEIl5EQvlVrFufB1tDkbefgsMa3FvjHz92gSXHLEQnYAckUEfN5CnXWBq9iSFhz8PWprDb0EnDOBgY2WXJK43OOqgs0IkIEgYgLtGtiuR5tPYh91cGT2SU8kV1B1/TxlewSvpJdwkVxBt/R/MYxzzLmsLSEZcxpoa0ZS5YE9Ku5H0OwsEgiDhIxkB6g7Qm2/tCOdalIyIvXTKBC7pxXFAmHVSKB3EchGrIeDRAJx1AkAMDddzSQxIRuX+PKjQzbLwpFQnllzVJRCbjz9MSzfewcW5EQIdUpcpOPJRJce40cW+U2C/YP3HFeveECLAOJGTGB3OSQRqLriYTmMYmEYG0IVhtjDbS2kCpkJHDA5iCj0RDuWs1y1xZjKnaCOsSCYz/N5l5wM+b94NbVPwav/HDgbUEkKOdpdyQILwapamZAHUI15SR008nKhnEw1mD7qIvr24T2XWqgzaX8mSlEgjJTn/uwK11LDiO0Ghx7/S5ynUE0NRoxR5pr7BymuLB1a1PcIkHoZ07xMYnQGUYvU9DaII4idDM1gyLBHk+RwAi5bwmJGS99+wvuNpOv9pw1qFApC6Xt1M8xZ4RMus9mHceR+93sJGKAxUz5H6HlQNRYWDkn9NOT9ez3MzVTs0JxP5iAQMgEZcdJEgnhsZcZRBnWBWmusb60Rz3F31UstPr47d/+bXzDN3zDzD//6KOP4tFHH13kqU7xYgOVHcvKapclAGdt4E0qBxUrAZTWhsRysAkZCQj+bev61cNObJM1AFMfVMQ5Q0IJ+jZFKo/QwoViQCIAguo9z6G1gTdWcC7ZAieOmEXQwh17Gbbov2GHBvF71u7Ch7c5erqLS71n8aXDLwAAXtN6CDRBjQAARltES/CLE7kUfmXcAjkQCVtZBqCFrukXqeNkzcjaqDy/LUcMWb9YCRkI0pECFDdBvsqRywxR0ymShokEIQj9fiASGoWnyhoDaDk2SYhRadGoGxBs+YNjfn++dd+GWMHXiIfxWOshXFe7+Ep6CU9kl3BZ7cLOaFFwB2adIoFFKPIVphAJQcbeGiISjLUgEKKIATyBzTpY8bvLw9L3s1sh7E8Vu14EKsNNfY2ja20IGQkCAIGham1wP9/w12IS08J+/wDBCQ/c3cIXHu/iM1/uoNObL2jx+UBo5thcEzPnOCyruYG8dSrXGdpjchKUVdBGIRGL7+TtH7kFvNIW17Zz3Hnek78kkOq+JxK81WWBoEXAXT+Au/6s1VBWIaYYyihkgZclp5SBtE6R4F+StYBSBEt2orUhBCfGc5IdnPnKNwQiocwRqUJUFAmAs2UQi2GMnSmXgXNCPx8/LGljcNiVC9sa/uwvD7C7b9BKBO5s6wEigRFBqcl3wlxOT4YPQYsbKzGklZAmh4ZGbjKc3Wjg0o0utvdvPZHgFB8KUhskc8TnH3ZzCOGJezO9qUAbMzWocBI4IxdqqS3iyFc/artQpSrgc4B9kOYswcTKuJrTacQjZwRTOc5hpLJsFrHWXTvTlChS27HWAsEZ+gsoSmaFtRZpPiORQNOvA6WdDcZ9P9KJhy2eBISggiA+xSmOg7lXBf1+H//8n/9z/NZv/dZJHM8pXsQIt7vwPSCNBiK3oKA8BeOstDYYCaNVUekVER9QnQ3fOmnIv903bke8xRK3m1rz5cOoItWWR4OZDORC0eo+AOSJhPXVC0i8rD9ivFQkVImEGmtAO05wLr4DAPAXN/8cxmqcb1zAnWwNmEYkAEuThXKfDyBkD0K587UhfQo7jFOFWNQqEoK1ocFbboC3xnn+/RmrKhIQl+9x7BcohoZaGzgVGQCNqiLBuOpHjJFmM0ZFuUQdrLVgoHE8AmjBqGMiwoXoDF638gjIq1p6qlt7ruoPTAPWwjIBsqOND3XoV8mxCpQ2EIIQca/asRarnmwYtjasrwhEwsld9w/9zioTyHQKY0uPdiwqrQ0UAT6sr/x8+rrDMzEuXkjw2CtXl7IjEtobLl3zye+r4pa1MCyCuy4k+JqvWsU3f+3GzL8TiISDjpo6vE2DYJNzEpRxQYvDu8+zwlqLg6Pys3rpWhmWx4jBwg2pnX5QJCw28JSKBAttDYxXhSmrkPu1bCNxAx0ZDbIGguli4Z/lxvn8p3z+zqwnWGnOR0wxRjDaFkG3uW9tGLU2eHuGcsSesQYEIJUG8Qwkk/Pxj2+eSHONXOqFgkev7nawu+/OzWFXjQS8EnNS5nGw1kIqXStjr6LIR1hJkOkU2moklKCrOji7FgIXb31OQmimmMdnn0mNXqoKBYOdofnB6ONUP7prLUjVATeQKmNmGnBrHy80csz4spW2LodpBmtD9TiH0c9k0V4hBEFqDTmluUEpM5bVj4SrxTypnAQ3+GPq9Q24dZNUZmLrjtIGWjvbB5FTW5wUlJktu2RexMLZgaaRJqc4xTTM/Y3VbDbBOUejsbj38xQvTVi/cxq+pJTVoMRbD2QKRtWMBIXMB/4RCDHxwmUQQq+qt3EGlKSAleh5QsCl29vaC9n9jhu4Ut0HjCzqJhOKXCDh0O9Io4rWhnbrTPHngji0JxJY1drgw7aqiATD7clFfw7cKvlrNr4GBDuVSMASQ3U4d/kAQY0AOAlSw5/Hrul7e8boF2awNrR4yw3p1qdM+WNj0g8c3toQ/izyhIAlgzD9C+6uibQIW2wWr9Fq5YZuPi6J3SsSxqxAgmV13OLuuBnQjBjafrDvmN5cRAJZDTBRhC5OQyBaWkOtEUoDieDldcE4Vr0yZNjaMBi46MgATsLlJBg5pEgowxbD78b+85IZF4YqBOGN33oWjz60OtvrnoJzWxE21sTAf7+QwRjha1+1hgvnZt/xbzYYGgmDtcDuwfF2fKo5CXVwZNDiZEWvbwpbAVASPAGcOFKdFkF2x81IyHNnTwiDrrYauX/K4rG9XYy0RuL/LGQoTLI2AIvJf7lPXrd2WJEwnC5fWhsAQBuXKZBmCo0ZVARlc0P9+9XPnIpolmFnGJ97cq/49yw3BUEfMG2XtRy0pikSfD7CaoK+6oGTC4bNTY6NNX/feZ6aGwiY2jRQRT9TyJQu0vAZI+RThiqpzdhg35mOkQgWVFwDUhnALC5bD2q9WVsDlDKgGYZS1/REY6/VTk8h8hkmnDEYn/8xCZMyOARnUFrPXCM5L8rBfxZFwvQmBqVDJaPbxJhE0h0XSptpYsaFEEUMudJzfWZOcYo6LHR5vuENb8B73/veY/Vkn+Klh1D9GIY6Yy2sl72TTMGY86gDztqQ61IdAC6KvIJQZebm1+APQzHkHJGC8gvKEKhY+wXFCAmVFZCkJbIwzFIECzsQvmOsQSc7Ale+x7uxUvwdJwZTWBsqi+2aHX0hGO5oXixoirtb9+JctAVyur6x58/6F3LcxobimJmrkEsqRAIArCDI4n1OQs2QW7Ri8BUv+9QD8nzmV/8UN0FJSSTEVckkH5QIh0E5YY3y/TLKd17Wv2Yif+7H3WqsC9ocuw6rhDUuihWfdN/RvZmUBQDce20MijjuGQiIMmxxqPrRWDQqvl/iAivW/Xdu8pG6txCKeNMHLnLiUEYhVVlRFVZtbYhIOAKQUHw+MytxvLNWDyIqVAmAC4d8qYGIlmZvEBT5HIT6AL1MZ+AzBC2OQ7A1hCF+Z1+il5bXuCCB1KTop2bg5+ZFIBLS3A/h1u3Ma6uQ+ZdW+LbD9WxVYa3Jck8kzErkzQHm5eau6aaiSJiQkcCIOXtGxME5QcygIpu2c9vp5eALqNGMMfjyM0fFf2e5HVEkMKKJRILbfbYzEAnuvr/aFuibPiIWQzABZRTW19yxP19EAufO8z0rOv0cnEpbJGeEfMrvu9C7Yx0mCLbYwVb6eFYJRuRDSGd7jFkCNQMsbK0iIZcaqdSDVY12hrrI3ICNUV6E9+CkFAnaWChrZwqxZt7WMSnEsqquYIxmCmdcFHIGy9Ei4IxB67LJ6RSnWBQLrQre9KY3YXd3Fz/6oz+K//t//y8+/vGP4/Of//zIP6f4OwYThjoqv9gir0jIU3BWZiRkViEPyfAkAIjiC9p4qS4jVu5EV6wNu7rjHpoEBNwQVLdLQD5XAQD6VoFUhlyFYTZ2g34gL6zFgexh0/iPBONFrSHgFAnwwZFF/WPAsCKBM7SiJu5u3Y8Ga+Cxra/z7Q56oiKhkOkv6UsjEDqNISJh1Q+LXdOHJeaG3iEUfn3e9vJJOzDwcxmIhNZARoJgrNR5sMH08zRYG3gTBYOjpwcsBYtGHcIu4rhzxhnAQcciPVeZe30d3Z+9uaE4YHJkxyzWBj1qbbC+rkKIynXDBGIA3OsthqXv5/xwXjY3uGu6m5UL/Dgi5CZUREbFEBUUJZmRs6sv5sTL7m0Vi9kXcmPDcRCIhOMGLoYFdiBdqzDWIDfHIxIOjtzx3XYmLpQslyuqBMEiKCMLRUBzwYyEQAjk0i3AtdEwMDDWIvfkQsPbJsgoWCKXk+CzFdLMFHaCZSP4wa1Xl4Wd1WFrQ/hvqQwIjkhIIo7N1dnUKpN2bqXS6Ka6NtF+Gp66foBur3xMKd35rSKQJeN2WZ0iYZaMBPfdt9J2GSvh+5wRQ2vFHcPOQXqi4XPjIDghzdVM93qlXR5FdRjm3FUzTpa0zxZqOAlEpfIhzdWxvu+JufXSrNaGScP8yGNTfXtBKt0udlwhvYQg9KaEJU6rnSQipCe0O650CFOdUZEwpQq0SsgwIsg5mjPmRa70TPkXi4ARJua2nOIUs2ChFciP/MiPFP/+sY99bOTvQ4LsF7/4xcWP7BQvOoSwKsYI2moIxiESFxJGMnU99d7aIKHR90RCTALESmtDCJcLsj3u5/1ACuz7xoY2azj1whiPPEMp40+hQCpF7ofZoG4Iv5cbhZgJnPOhzNQY9IRz4rA+0KzISAgYWtwyIiQRw2vWXofWbcKpK7LD6efPWFf9uCQiIZArgUgwxMGsxqrfze6a1N0BhmSw1toiI6EVtZ2IYmgXrUokhIwEnrv3WIBDQoG4gpVuJ89Yg9S/3w3eKM67VTmmlWgHi0YdQmrDqEnFnwO4jAV3bhc7r4UiwaQzD9dUVQn4oWgSrLXoBWsDL4kEpXWZjxDABARZNFgTXdNBX3WxFq0Vf10ELu7JgfCqQCRw7pOpKxkJ7nOLMofEnhyR0G5yfMNXr2H/UOH82ZeeIgFwFZAAsHNMawPg7j093cUmtgb+XBoJZRUabHGbYcjR2FgV2FoX2N6TeO5aipd51QgnDm01+oFIWDAjIWQIWAtozSCthLEG1mpkWSAS/DWulbMEWRTWhsxXQCq7/EVv8IOHJoawKzpOkSC9IsFYNXNafgFLtURCP9fIpMZmY/7Pw2ef2PGvw4mgcglIO3jdFaF8Y+6DgWSYNWyx0SgVHICrFlVJBsGdHH6/k2Fr7dbaXyPOitC/eIrVJPXne71dnm/OCMoPkOMyC8wSFAlV5UOaa4gFc3yAIMOf3sgRMG2YHzhOzmqv1SzXI9e9C0tUY0ORXajk5HYKcYLNDU6NM9vrDpXRk85plZAJ949xr/04sNapV05CkQA4+1a3L+e/j53iFBUsRCT823/7b5d9HKd4CcAU1YWAMhoROETivNUsTwcCEwHgSLnhOoGArexkW7ideefKNwA4GAENP/wruC/hJmsUHvm6QdKRD97aAAnoHLl0A3LMIjBPVgAufJATR5R3kAOgZGXgsTixQqFQZCQAZQXkEBoxR6cnB0IFp32RaU+aLOKRrQMjglApIl9n2V89h/bhNawaApgnEkJgZAW5yQuPbYu3HCFhSxuItbY8B0k1IyEDMYIgAWlVxdrAkJnMWUkQwhb9Y8l0apNFsGi4XzBodLaRrpwFyPnQibGxp5a5/shjKRJWvCLhyKYgo2cT/FeUC5YYaIryQlpZnPPmAJHgrqUBSaYn1pqUoIvOiCJhfUVACJfSftBR2FyLwEngyNfahXDDIJcXnkjgjBVknYKG0QqMn0yv97IyF16oOLNeWhuOu0hzOQmuhrFaA6mshLb6eNWPRyWRsLYq8KkvdnD5ejZwzAQaHfbnhOAEzl0IqMwB2ch9naMdfGyfj2AZB2BKRULuqhaHd9qXgfJ1ujDHkIEw2trgXrvS7vtJW1sQ2bOCi/phyf3Z/NeJ1gZfftZ9jz5wsYmvPNOHzG1BEgYwIkhjnFKg5nartZn6KpQyOOp5FVNzsJI0YjEydYTN1Rg39zPcPEhvOZEgOEMvVchnIBJ6qRxpCBCMIZcufE7UdB4aY/1643gDl6tW1NDGkR6zyO3HwWUZzEYkhMrCWa2TnKjIC6niqJeP5IcU9Zuyvn5T61A7Of59EZwhm3D+jwOnrJhtDeCIhMltCVVChpEjoI6zWTEO2lhoi9oKzmUgihgyX0caieMmSp3i7yoWWoF83/d937KP4xQvAVgDcB/Ao6xGiyeIfCgnycwNj55MyK3EkXIWhRi8qBUEfNUfCEC5E00owxYDWiyZ7JGvWBtSI0FaDbQ2oEJAWGshGIfN3DFV8xEA92XBQ97DgCKBYGsWt5HgA7FgpHLYKQSB0UAc81mJ86lgBLR6uwCArLEG6cmRdW0dkaD7ANhITkEIWoxZgpgJMBCM0cX3sIGtKBKaBZHAZeZSnP1KlZiChQv266sQtNgAIw5i/rxpNTZoMYD7xRIAnHv24zhz9XO4ev/rcHDby901J8afMEYEN5IsjgFFwhRlQQBpCRsSkhhzVZATEM5PDBdeFqCNQSOu2aVkDM3Q3DBEJDDmPPrXt3Ns70psrkUQxJH6XItIOKtH2LUMnwXOyjBUAMhNigbqawdPMRmb6wKcE3Lp2jM21xe3cAiKkOoUuRkc3sYFMM6D0NiwviZw21bsalpTg519WeRXRBQdm0gAXAVkr2+hJIOyGtoqp1Tyj90MRAIMQAJkFRL/ctPMgCgaCRFcGiw5FxLK5PjR1oYyI4GIwXoiZ57GjMjL76u7l9ZaHNYMZ7Pg8csHyHKDZoNw312OSMhz9/1rrCmOLXjp64YjY60fGCd/8Rx0vYJJMDAhEbEy6yQM1xtrAjf3M+wcpMDFuV/OsRDsG7uHKVoNMXZ32FqLg24+0hbDOUGZ8WGYLpDz+IrBUAGZ5doP18edEi3sDFYSVQzzsz0f5y5Xo3qtSmXQz/XIuXNhiS68so5IkNo1QEwiPSNPBEm1fCIhkwZ8nse0GJuRMEzIMAYYFZQsyzja6nO5rIZ4SU1ew4g4QzfNkclTIuFWIpMaWlu0GotvAryQ8MLt3TrFiw7GlmFNyhgXGhd7awMshMoA2IIQOPJZBzEJoOJzDwsgIqqk9RMSNjhQtVij8MjX7RJUVQx969LNA5GQIBogHwwsBDHYNBAJozumPNQcVsMWiTkGYAiCM7iNfJ8toOX06kdrES2xCo8xQqvv0ryz9hkYb81Y9wvlnklR1mOUo3YRtMjaxZevNbogGow14KqSkeDDFrnKXW1beJ28zEgI+QhN3gQj/7RaDQQ4jgOFBYDR2Lj5Ffc4RzfccU0LUCKnWDiOSn/FL5i7NnNWjFlgVCVYk5VhlWMQyAAXHhqUOe66rhswGBdo+6F/uAISwGhzAxPIvJw2iVjRJgIAHMJbG5gn37y9ocaXf4rZwBjh/Bl3Hq/enPGaGYNxOQmZycCntcBMgFIWR113TWysOuLjjnPuflltb2A2QcjpWzQjASgDF6UEjNWQvroyBCk6RYLGttzHM2obMLZQJGS5AQODweRatoVBAIYUCcMBikHuXq1/tHPeWISXi1dD5XJp0M80khmaH4bxGW9ruO9iUpA8mbQwZrACMsi1h89dN5V49toRru30BgJd67DnbQ1rbQHjFXwDr41FaK+4x9/ev/UVkACw3o6xfZAWNZV1SHONfqZHXq/b3bdjQymNt38cVwHOvf0jzTWUMcdXIFqMDyOuQGkDM8fzOWJmcKDOpLOExKLu3LlgwHHPbadYZzh3BMtJBC7OY+kIGJfzoZQjZMK6I5B0J5ELorX7zC7bMhHAmPM8ZXOElJ7i+Djs5tg9en5CaU8CC9MhWZbhve99L77whS/g6OgIZijthYjwi7/4i8c+wFO8uBCYZAuLmAsILpDzCExLP3xGiFkEGOAwNCj4QaaQu8NCMNdhrnzMPBEhYaOKhOB8qyMSgvwbAFKTwxAr5NyFIqEyHAvGYFOXvzCsSAAAEYgEOahIqBsQI84gGHOSMWZ90OLkL3CniljeFwYjoNl3ioS0fQbkj3NdaqDprA1uSawHrAshH6HBW+UXmCmP31hdWBsobg2GUsoMItQJMrd7GAkqGhsarAkw1+xhlXQEhZh8G2IAQMDK/qWCwIhTJ+e1GB+0WBwTI8hjfMe3WFIMMV3VQWvaL1jjQySrigQ18RoINY4tqqgRtJO91u3OMB6h5Qf+4QpIoAwx3K40N4R05ihiRdCiyxdhYHDnkeA+G5mVRZ7IKRbDhXMJrtzIcW07wysfPJ6yg5NAT3exYTeLMNtMp8cLWuwEqwsVQ+hdFxp49mqGS9cyvPoVjkwNQYuc15Nas6JKJGijIa0EgYr8hUbCQcbgT3ufQ8/m+MH216ERnymOgYhgrAtp5Mcudh1EI+awsDBWFsFp0ZiMBACw2uUp6Dm1ToIzdP2uayAO+rmC1BqrU+6Dw8hyja9cOgAAvOzeNmJeVmxqa2CsBjzZGPKGgiIhyzV2DlJsH/ShjcVqK5raPBGG83aLagmsmCKsrLp7xs0pzQ3SSBzJQ6zHG8ciw4YhBEMcMVzb7aHVEGjEo+e0n7nzv9auUwmNb7cw1u38H3eoc6GbCv1cA2b699dU+HDAaVDaQs9RL80ZIdPay95D64qCHXPMxDB2IJ0lo8BVY2LpFZDGOHJoLiKBnNW0DsoEQsZdW4wRlJ0czrgoXJvKyWUkAO74e5nEGdxaK9LfZUh5QoT484SFViGXL1/Gj/7oj+Ly5ctYW1vD0dER1tfXcXR0BK01Njc30WpNXW6f4iUGCze8BilcRMINYFECpiWYzkCIix3Pnglhi7E3MoSh3oJDwLWGuy91IowQCU3WcFJDotpdAqqoGAwMJBfIfL5CTGEXNhy7BQevKBJGiQQWBUVCXlgBimrEIQhBRfBUDA2yGpZPkTeHXeElgYjQqhAJYfje8ESIgUEKhdZQhWWwNjRYq9ztNxXpa56WS4K4CWIcNmqAZAqu08LaUGQk8FKRkPBmQfxYM0hgjH0dzF0da9tPFH8Wp24B7a65yQ/A2fiwxllARFhhTRyaLjqqg9aU9o1Cnh1knL4Zg4yBHfP2BmtDlUhQ2iKOeO0Cn0SEdvgcqVEi4WyluSH43aVnU+KoDFqMiQMgEDFwBjD/mTkyPWRjKgdfyGD9A1jOYePRz++txgUfJHntmIoEoMxJUFYhoshlahiFiC2eYRFsDRtroiBU77rgHu/adgap3ABRNDYcU4IdiIQ8d/fbUFtafXxtMvSsO19dk6Hhb5lBkaB9SOMyh08AhcS0o7KKImE4I6H8b6UBy+3cLRLBf13dde31lc/rmW9Y+OIze1DaYm2VcNtmUlR05tIrK6xGuDrCkCaVwc39Hm7sp+hnCqutaGYlRGhsaLYxYL8K4ExgxX/stvfTidkg+/ke9vJdEAibyVbtzyyKdkNg9zDD9d0eLp5fHfl+6PTlWDcd0fgKQmN8oPQxv6LLa0DjONWPBWbMSFDKgOwceR41A3KnJ8fK9yPO0M3q7Va5MjMpORg5smKZcEoMO2LHmIRxjRWA+/MqIVPkVJwAkRAe8ySDEKPIWUpOIizyFPXoS3VidpXnAwu9kl/+5V9Gp9PBu971LvzRH/0RrLX4tV/7NXzyk5/ET/7kT6LRaOC3fuu3ln2sp3gRgJjzvwriiJjzKRq/Yy1kCobBwEXALZIZqAzz84oEwUSZkUBu5zSq7MC1WAOwABvjfSMCIs6LwTaFRublnlFxDMGnisGMhKROkeAzEmBBWoYXjLruJQIhiQWUMa4VwUyW8Lt5ennVjwDAdY4kcwqLtLUF7a0Nscq9hN4HLlpbqBWAUirf5K1SIaG1CzUEgNzvNomkzLYI50ZmpbWBhbBFKnbNG8xbGwiwSo4Jtxh6HQyIVI6VveeKPxMyBfM2g6lEwhL8livcV0CaXu37XQUZ7c5neL/DNTLB3z1obXBQ2o5d5DPG0ArWBj1qbdhYE+DcybDDzrPR7niiKpEAl47v1AjuM1g0N+jnT3rH+nvAvNYKa0HZIdgMDSlzwSiQHCVrpuH8mRhEQKen0ekdb3EsSEAZhdxbs5RRUFYfa6DeP3T3sI3V8n68viqw0uIwBrh6w10j/cyH2w4RCcYafPjmB/HE0d/O9HyBSAhWBuuT0dNCkcCQVVQwqZVoCHf/LxQJmH94nwfWmqKgZjhskYgKYjX46M2sdbAVMACZDz41xuKonxetFvPgs086W8M9FyMXZFxpxgj2kUEQbu738cz1DggWZ9aSuewUobGh2bSV789BbKw6y2AmNbr9+mu+r3o4lAfgJLCf7xYk87JARFhvx9g9zEYsDlIZHPUlGmNeN2c0dlfdJflP/76ZDT6cbxmPRa66cxqqlYUzPaxXPmmv0FDaoJepsUGWQrhGkjpFR57PZi0QgqGXjv9MSWWwe5jOtTHgqk2nWCCHwBiNJZSUtiOEjMXkcMZFcRKPOYxYuMDF/ISqN08xCGst5EvsXC+0wv7rv/5r/MN/+A/x6KOPDuygxnGMf/yP/zFe+9rXntoa/g6C4AKhldWIiCMi7mqyYjccuVR/jBAJMcVlDyPcF7YgDkG8QiT43dLKjm3LKxLGfT+Rq3NAw++e9E2GzIad2HigtaFQREzKSBAJjL/eKbQWOLO/b5cYRCPmMNqCws77hK13bY1rWVgikSCO3EIzj9swUaMgErjK0PZNBF2T+aT08gursDZQC8SZf21lRkIYqkI2AuBCF8NjR17oRDxYG1BUfSas4fo4dA4j06l2D8C9L5sHz4BZg7S1CRW55woKC5pyzhjNmtc8HiFwsav7oGnDg9VDxBG5nacJi5/C2uCJBJePgLGsNZEn0uAW5sMyOcaoaA7Y3pX+sNz7EovS2hAR958htyNKrAw1DXkitxxGgdJDMDknkWFykJGASgG9PDUFk31HbMw5NEYRw1lfA3lcVULYkQq5FSHj4jg7VaGxYX21JGeJqFAlXLrmzn/Y6W4M5SNc61/BE52v4CM7fzVT8GMSBQ+/JxJgUHWJNRKGVJVDZWYVGlGQ4vuMBFuq1E4CxprCE15XAVhUQMoyJ2Fe8ErNXZprpPn8+QhHvRxPX3Mk8QN3N4vjDcecSzuQkQAAsXAp/FurCVqNaO5rJxAJKy029ncbUYKVlnufbx6MEgTWWuzn+7DWoC3a0FZjN9tdOjlUtTj0s5LQ6GcKWa7HDsOhUaEOxrhu6OXsDtOAz/44YER1osgR5NLM3SpAlko7jNTI5WjQYkAkGKTSIwOp9WGes7zWiDPIoQyRgH6m8Mz1I1zZ6c3l6VfGQM9J2jDCWItLnZKEcDKKBG2sC4I9QbigTIN8TL7FKZYLR2w930exXCxEJKRpijvvvBMAsLKyAiLC0dFR8fePPfYYPv7xjy/nCE/x4kAY+DlBGY0GS4ovXFsZMkGDyfAAEFHikvk9CO7LkdFgsRZVguAAt3s7qfua/O8H8qFnUigbrA2jCykOFIoE1GUkEIcV7rGK5gZiZaDi8M8Lv+AyaurOu6sOwlIWFsXzH20DAHpNJx0NRAJTGdp+CA32kjprQ5O3wOHCeGxlMCavSAjkAQCgqIDse1sKSmsD00iVuz+08hzx0SXom89Ad/ZBYnpvOmOErb0nAQCHZx9A3lhzj5seArBTb2K0BLtIUQFp+tMHyuJcDly9jlAag2BtCIoE7T2dkzzp7cj57g0MMjM6dJ/dKu0NAIqFQhyzirVB+M+QVyUQEPnPZ/48KRJIZyCdg+So0mLy70nAaJDWoCUSCdA5SKYgNX9LwgUfXnjcwEXA5ST0dc/nI2SY6gmagoPD0tpQxV0X3L0hBC5WFQNVBBWNsgqXes9Ofb4khAFmxiWzWA2Zu9cQR06NlVbyPlIoNCL33FLZQgi06NCZ67ywU4yDthrK/8iwtQGoNDdoV0g7PKzPgkgw9HMNYyzSXC1Ud/f5p3ZhLXDuDMfmaqliSnw4pczLeteA1VaMtXa8sOotWBs2VsffsyOKsLrqHn+7JiehqzroqCM0hbt3tcQKOuoIB/n+Qsc0Ce1mhDRXuLHXKzYkuqn7DI87ByHwr26IdI+xnGGRkZP7L6OdgJhrm5iGdEZVwOCDlwN1lmu3sz/m+9RlP1jkQySANhbKOJXpNAhOkFq7Yb2Co16OZ64f4bCTFxWds0L7z+o8BBD3ioQ6H/u4BohxmQrHgdTm2FaaaXDnZXzI6CmWC6VNofJ5qWChS/T222/H9evXAQBCCJw/fx6f+tSnir9//PHHkSQn0z9+ihcmjHWKAUZud71ZHRD9DjKXqdtlHVEkJAM3eed7ZyO1WoyRUy/AtTFw//fjvhyDiqHhAxcPKhLwyIqRxQSTaUmIJKPhaIJY0XxQKBJA7ndqvsgjzlzVU56XVYBjYKz7Il6mF04c3gQA9FousKxUJOTFbnbXpABKa4O1trQ2sLb7ErNBUeGrxHyNYCAPAFQqIFOIQDj4sMVEHSGVjqBpGl/tGSXg7Y2ZiATeP8RK5wYsgMOz9xdEQshJmHbKluGmrlZATiIEAIz/+wlDTKlIcJ8VpS0EZxMXmkLESDApJ2GwuSFkJESitDYEq1AgETjIhaHi+VMkkFLuHKpsam3m4O+lcOoPAsvntyJMelwyErRAi8WFcz5z4Obxz2XEIuQ6g7QSmU4hJlSpTYO1tlAkbKwOPs6d5xMQOcVCp6sqGQaDn6RqW8iTncenPmfiq4Ez6Vp5lFXI/KwbbBNp5TpOrUTCSjl2aYmYfxFmrcX13vWpA6u2ulQk1BAJ1eYG5smQeeF2AC1ypb1ff/57/mefdNk399wlinBboBpoSUupBw3IpUbPqyg2VsaHshER1lbdMWzvDxIJ2mrs5XvgxAtLDiOGhDVOxOIAAGvtGDuHGfYOMxhrcdjNC2VMHThz701d9V9QJCwDrhpW1ape5gUjTB1MlDaQ2sz9fIyhUGh0+nI6EWFphEiQykCr2cIOOWfQFTLCWlfn+cy1I2S5wuZaDNj5mh2UNk4FOQcYkbey1BEJekQ5OilT4TiQ8mSDFkuMDxk9xXKhjYV6CQUtAgsSCa997Wvx/ve/v/jv7/u+78Nv//Zv42d+5mfw0z/90/gf/+N/4Nu//duXdpCneOHD+hCiIB+rZhmU/nmXkRCxYUVChCpZ7SwSDBxs4PbPKmqGph+EpzHNTsXghtUDXzfpVA2l2sH6wD+W+kVs3Cq9/wPPz2CLXf2gSPBEQp0igZP78pQZMIWNN9oiWnJ3sjh0ioRuY9M9Rzh2q7FC1YwEFLvo0ge6AS4YkZH/O2uKiT1IzqlCJIT3mMm09M+G+sc4Qt9LsWOxBkQNEBMz+zUbV50Hu7N6O1TcLomE/uFsuRK+jeA4t+5CkWDTqRkJdYSBZazM1Rj+O2uL3d0Wd9e1NhaNhE/cdBY8RjPUm9Y0N5ytNDdYa0tFQsSQ22BtEAOBlYyz4jP2fIUtkurC8AikVan8mQZrQHkPlgtYFgGyN5G4mRlGAVq6+4ycf9AJgYt7h+VAvigECUir0Fc9SCvLLJIF0E+NqzEkYG1lkEhIYobbtsoayL73LA8rEqrX3NX+5aKZZRwKRULuwhKVkQicZMOTFGlFWZNaBYIuhuM0M65ZYQFrQ2Yy9GQPvRobUBVVRULd/TiQC0p5MmSBa8yF8LrKx05fzm1r2N7v4+pOD4yAi3eJge+/gWYMq5aWDB7UCFEEtJLJocGba+7aGbY2HOaH6KseGrw58OcJT07O4sAZkojh2l4P+0eZs5FMqLnkjKCNG7qHYYLfbAngjCGXS6h+hFvjqCmyeqkM1AIKCM4cMWCMRTeVYy0hxc8LQq8/+D2ntHE1lzOSGOSP1xiL63s9PHv9CETA+orfcKL5hl4pzdwbNIy5Joxhu4LSprYBYlKmwnGgtBlQ654UeIUwOsXJwikSXlpEwkJbGv/kn/wTfPazn0We54jjGD/xEz+BGzdu4L3vfS8YY3jzm9+Mn/qpn1r2sZ7iBQxjAIoAQwaCGKLKbhmL3e4+kymIEWI7uBAREEP+NSpsCQQU6c+MldaGViWUbtIc6X7HEwnKEQkxRQMEhIEFAwP5Xcy6fITiyCKvSFAhI8FV+5m0A7ayiaoZgzOGRkSQSkGIyYsvAxyrWm0EWoJ39gAAvdYWEgCGCVgikLVY9fUBXd0HYhRESNerNmKWICK3SLV53w1UPupaFNWP5YKQ4hYsnH1lWJHABZD5wTWheBqnMghr0bjiiITdzfsBAHlzHYCzNgQVzCSENgJj7cJfyqtekdCzObTJJ4rKSUvY4Rfpr5M6SJMXO5tNv8i2sCNd3cNgEUMLMfbRHdgdDthccwRdLi2OuhpSla0NnWprgy3tIVWyLrPSE0i3MF3YKEDlAI8AlYFUChtPr04kLUFGwooGQAyUdUA6gz3Grn3xuFrBiqbLXjCqbOOYAc0Gx/qqwMGRwvXtDPfc2Zz+S+OOhVwgZl/3oY1GIhav69r3tobVNq9d4N95IcH1nRyXrmdFN/xw2GKvQiRYWDzTeRIPr3/V2OdshLDFrKpIcOeykTDA2iJLBfDXn1FI4gbSzCDNDVbbi1kberKLnHJIY5CbDAmvP3faqiJIsd7a4Ad1ZUHEoCcEqI5DkBIf9XKkUmOjPV2VVUVQI9x5wWUdVDFIJGhoqwcUC4uimo8wDWfWEwBdbFeIhNzkOJB7iHkyojQEqhaHFjaTzWMfbxXtZoTdgwy7hxn0FBsJ8w0/dTv8domKhGbCIXiylN1mp0iYfGC5cjkBixAJUmqkuUIuDdrNyddSxBn6+WADgNLO5z/rMM8ZoZtKZ0vZ76M9VOPJOSGdIyMhk2puSwfzlZpKW0SVl6y1+7NhddakTIVFYa2FVHq+9dKC4IzNdU5PsThOrQ0ed9xxB/7+3//7iGP3BZgkCf7Nv/k3+OhHP4q/+Zu/wS/90i9hZWXUY36KlzCsBQdBWwNBHHFlR58Sv1udpxCMCg82AETgPuTND/XW7ZJx39LAiMH6b28GQpPcAnCNt4vnnbRLwCqKhEM/JCcshvW+8PCcjAiUub+vq34sD9g9P4WUMMZAUQJ7dAOmszMSutiOCEYroEbhMIA5+p1ngTjaAcFCR01IX1sJImg/fKwadzwuI4EK33+QyLd4y70vZGH7RyBeLnaZf+1VRQJLQkZCChHCFoV7TMvdIpSBECOa63WKg+vgvQMYJrC7fhEACkVCkh6CaHKIJeC0J8T8QnBBNCgG97fLnpzSCmBUzfDNXIVmjRQ6DGQxBASL/NU+XWnBCGgUzQ2jigTOK4GLe7JQJAy0NlDkPUBekVD5fGZGDmRn3AqQzp1ygwtYLhy5N8MxkM4AHWo53WuhecMa6x7XSF/pEnlSYX6Lwu0hJ2F7OTkJ0koYmNqBbFbUBS1WcdEHLl6+nqI3Jmwx5HpcaNwBAHiq+wQmIS7CFi0ERYhZgtyfEqd2MEgrdprUKsACDe/7d9YGBj1LslwFxhp01BEaogFt9VjLjrWukrJQJNRZGwpFgiOfNRbrAydyYXvWzHfft9bic085IuHei9Gg8g+DFZvGmoWsF3XYOXTv9erKdFLCEQlAp6eKULyDfB+5yZGMqSstLA5yF+kJZLOsr0TYO0prq3SHQT4IcRjamJGQPdc8Mv89koim7u7P81jGju6eVzGcOTArGCNoC3RTVdjtJiESBKlsQT4CfsCeo+ZSCIZOT+LGXh9rrXiARAAAwWYnEqx1Nol57UOBUBq2NkhtoE29ImHZRII2FtqOz/NYJjinQgVyipNFrsyx6shfiHjpFFme4nmF9TWMymrEPBqsJYsq1gZGA4ufhMWOrQ6PA+c9JW9tCF+SgJvN7o3uxGvbr8KjrQfdL3jSYRwYQ+EjV3BfPkHVEG7QFi6Bm9LpRAIFIkFVFqNRAxQ1YQ9vwhxsD3h4Y2HBYaHN+GO0ALDsxgZva8hXzw78ufaZBGv+EHsmhQGBvFy/51UbLdF2gZcqh5Up4G0Rxhpw5Rd6AxkJjthxGQmDrQ3aEwkNljgLyRyqgMSrEbpn7oHh7n2TjVWnftA5uMmmD9yMAIZjyXyJqMxJkEfjGxisdoTB8K2VMQC61hZR5iPEQFBOgDBt84gYKyw+dUQCAJzdcufs5m6O3GckDLY2iOL1AW43KPxZoUi4hSAlyzwOFoFMPlNOAsl0wD5keeSIweMOUjr3vAQDYGe3WlRw4exycxKkzkFTyLNp2D8arX6s4txWjDgiZLnFzr772ZGMBH/NvWL9q0AgbGc3cSgPxj5no2JtICK0xQqyzF2TzYYj2vq2PL+uYUcXAYJp5pptNOZ7T/u6h1SnaPAGOPHaPBHAfQ/IygA5KWxRaut91IsN64IT+rmaW4V26WYXe0cZIsFw+wWCYPWKhDy3/tiWYO8BsNtx6oL19mRlXTiGRhICF/vo6z6O5CGavDlxVzrhCbRR2M12lm5x4Jxhay3Bamv68QO2dvBWxox8d3VVB1f6l9FRnaXZSOYFkVtDTBpO8tws5MrgjEFri25fzrQz7vI/NPLK+ZNy9LxNQiPm0NZiczWp/XxwTpC6vmZyGCHocW5FAiMYO1q/qLWpDfhm5EI6lzmIh8ebOyBzAThLz2ng4q1A/hJUfsykefuN3/iNuR+YiPD2t7997t87xYsT1rqbkbKqSJ4PCMGFgUiotjYkLAZgC3m6sQZEDNzLeBlcdzjgrqmIIjzcuKf66BO/IJ21YfB4EhY58iBYG6xx5EVQJCTjiQQ2rEgIEBEIbdjODozVYGvnQEwgZhaRIOTGBmfACIrBcZmNDT5oMV8ZJhLcuVhTxlUWwaKPHC2/4Cy9+i0A5KoeK7YGYy1EoUgYtDYAruIz1D9yoSEYwOMM6IdGgjlGIKORXP0KAKB7/mXFQs0yARW3EeVdNLNDEJ2d9ChgRODAsUvjVlgTB7qDju7hPAxqYxyNr8ocWuCDGMhYkNWwQ60lYWe35ZUz1lgQn064MAANChWQ9Q0HZzdjAL0BRUIcMUhvTnd5FqW1gVeaUTIrQdYuS807E0j1YcMHhQlA9sBUDsMnhPdaDci+y0YI4BFI9kEqh40WtBNYC5IpLHfXs2XCfR4aG3N5pUNzw81d6XzKx7AwCRLomg7iMTu7s+IgBC2u1S8BGCPceT7BU5fK3eFqRoKxpgjH24rP4vbmHbjSv4ynOk/gqze/pvYxgyJBKRdmxzkNNEKQtUgruRypv/6qigQCnzuXoKM6XnTDELEIqe5DGTUSVmmsGRggBSfsZjv40+t/jEc3HsPL1x4eCFskMFivDpkXEWc47Emsr8xna/jck67S94G72uACI6qUQCRk0sJitAJyUeweuetgtT2bTWJjTeDaTYlr+x3wtoGxGhGbblE6SYtDXdL+uJ/LaqrwtMZI1bC0Ekf5AVLVx2q8hs1oE/Gke9UJgJFrbTDGjk0W7mZyoQwmzgjGGKT5+NrHKsizGtUqwb5Uc61tOGNYn2D3EYwhzxXkDJkP2gdnTrMJ1sKOVjpKbWpXMC4jwbqaySUN/lo7ImEeEmZRcE7QmSNnlqWUOUU9XopZFAsTCUW13xALSkSFp/2USPi7A2stBHcsbjK0QGNhyMxTMKAM44NXB/gAHSDkFcBlFpAnEvzuhPvKKK+34t9mtDYExBQNqCAMrFuQFdaGSRkJQV1Rs7soBIhWYLt7MEaDrd8GshqNmKMnLTBmM6QcHJcnEAqKBLnmhuxgAAhEgtA5mlEDPZOiayVa/hx3K40NDAbIuiBRLowMDFjISEhGrQ1cZoi8GqXZ1PiBb2e45HcZm57QmdUrGd98Fkxm0EkL2Zm7gIPynOfNdUR5F43saPpMR2733h4zDGmVtwAJdEzfqQ5qmCGyGmQs7PACh7hvvxhvbQjBicHew6ZsAREBDd4CFGozEoDB5oYwI0URQfoatJgJkNFYvfRZ2PP3AGK1aFXRMFAmB8ctWhgbBagUO6aPnXQHL0sugog5tUEy4TOpJMgo2Kjie/fZD6TSYxAJ2qkhgoKKR4D2TRJ89gFwtc3RbjJ0+wY3diXuuG3x80lEWBWroGPeK0JGwjhrA+BqIKtEQjUjIdX9QsnV4A3c136gIBIe3Xis9jMeR+WfZdKgxTn6gUiI3ecjrSgSpFXQWqMRVRUJYq7hODc5eqpb5ElELEJfpshMNkokwED5HJFQh3otvYK+7uHZ3tN4+drDZf2jD1s01iy0e57EHG1rEc9JKn3lklN83H93A8Dod1CpSHCkyzKIBGMNDjrufrG6MtuQsbkW4dpNiSu7h1g7b9ES00kEIFgcEuzLXTRFE40xWRYnCcGodrHvFAnlf1tr8fhzR1jZiNCImjjI9tFTXWxEm1iL1wdVmScIp9ocr0hQ2vihe/6BNOzM51Kj2ZiNRCJGhaXFWItc6qWESgZw7sIlpTaYdmdXJlgRFssJGc6ecM0Mo+fZZSos1xpgrIU2t6a1wVV3otbSc4rlQWnjK1RP/j29lZjp0/2lL31p4J8///M/x8tf/nK86U1vwu/+7u/iYx/7GD72sY/hXe96F77ne74HDz/8MD7wgQ+c8KGf4oWEajhiNIZIIGvAjQQjViSOh6GlSkwxMCerB4GIFYoEMAJs+QG01oIwOWyRUFoZAhyxUKogrLUQxGHTI/c7E6wNLOzCqzEyZc5BzTXY9BBm/xpsniKOo6LcoQ7aWnAaX2M5N4wGP3I7V2b9HBioIPzKCsgM7SCLN7kb4qxFz+dINHgL3GQgXdoaimOtaW0oFAmVsEVlFVoJoe89yU6RYKdFGhRIrnwZAJDd/rIRkqXISciOZnoswWjs+Z8Vobmho/vjKx4DWTBmEUkTrQ3BPgJwYlMJEsYILdYaeIxhbK27wMUsLyvN4oiKjvkIEdaPrmLj8b9C+8t/CUYEYaNi1yU3M/iVlyRDdhkEEh/qfR4f7nwWz+U3ygaGCQMR6az2nFvGQXl3/AdvpuMp1ThgwjVJjGnfGPs4RDi/RHsDZ+JYpKPSLnwTGK1+rOKuC+XnnnMakPoX5BdvghHDxfa94CRwpA6xk2/XPh5jVJAJocqxUCQ0GKzRRbtLQGZzJJ6zSXMDAoPB7MN7X/UgjUTM3IOE85bV+PCNNcj9ABkIg8xnYgT1RTUjgUCuQ2JBj3y7Ec2VJm+MxUHXfW5X1/TI9yyAwgbi1BvLqYDMTY6jbgjnnG0g21zzBOZBClape5wFCW9AGYW9E2hxmAXc+9310L1aq8H0/y8+s4c//NBNfPRTrop1LV4HA8fN9Aau9i6je4vsDozcGmbcUy3a2FDAWkhjZrbhRJyhm7nrTmsDbbBUtSX5xdQsdYtK21orwqzQQyc1zXXteWTMZ5Is09qgzdRWsuXi1Npw0ghhnX8niYRh/NzP/Rzuuece/Pt//+/xyCOPYGVlBSsrK3j00Ufxq7/6q7j77rvx8z//88s+1lO8gEEEaDIQTCAeWuCQSGA8I82180AHlUDCBqXVTh3gghaJyA34ISPBp10HWAv/s+Vz9XWGfdmpHNeoIsE956AKghODTd3vTSISeBysDRMGAsZAzXXYvAubdRDFEYQgSF0/DBkNCD656m8e8M4uyBqYKIFprIKo3K0wA0SCG4y71ldAwhQ7203WAlc9bw+vSJqNLhQJqFgbiopPAA2/AJN++BsgEmZMbyaZIr7xNAAgu+OhQlIa3v1AJDTSKcGHHoKxYwfchIyEI9MfOzyT0QNk1whqiITg2Q6KDWMw06KPCAUZlJqsdveRcyoW9QGRYEXYoiCByBNDLO2CkdtRKuwNU8IF9/rX0Dt46vhZBHBBi5nJse9rWi/l1wEuQEZOzCYg2YcljutyF39y8BHsKO/T5zFIZyC9WMghGQl3xYX3wlGlpOYPgysCF28+P5WaVRx6W0MckcsmGIPVtigUC82EDXxugx2n6XeaIxbhYutuAMBTncfHPmYhvS+IBF08vtRpEawbcjpSK9Hwt+/MZyQYq2caMK21OJKHI60FgkXoqu7IkGdsWfsXPn+ZJ9JCAOBgawN5b/qtkap2+tJ/5wE81hA0KnErqjJzp5hYBpFw2O9C+odZbc1GCGxtuGO7eiOH6s+SSzCItljBkTrEYT4+c+OkwLkLWwzqlABl7MBaY/fQ3RsvXZUFSZvwBCvRKjKT4UrvMnayelJtmSjCFsd8v0ltXE7AosO839SZFUK4ykinhHANGMvMfwrHNFNGgjagSd/Hk56CjTYxZFLXDoGh5WGZIXra2GUtCWfE8gMjTzGIQiGz5Kr35xsLvZq//uu/xmtf+9qxf//a174Wf/VXf7XwQZ3ixQdnjXONDcMLN84YjJcdC5UCVKoE3JBfCVu0FrzScCCIFR5UKv6n/Fka+sPcKOjKIpOYy1pIRuwUgyqIiBhs5omECRkJ3Dcg0DhFQuWEUGMdxAR43EQjEkX93jCMtYhm8B/OipCPoFbPgnHmCgT8KalTJHRt5n7A2pJIoAa46oFFQzJslYECsVNVJDAO44McG3633sBAWzNIJJCd6aYTX3sCZA3Uyhb02llwBvCKsiIQCXE2G5HAOB3b618oEmwGGufTNrZIqP5c70l8tPOFysBCgB1d2Pf9bmfLy3ittbVBb8MgEBIWFYu8/pgQuWBvANzmOuflTmVEMYQnFUim7rpFINuAfEKCel/18IfX/gh/uP9hF8h5TJDs44YpLRqX5E1HMRozngyw2qmDuMCnen+Ly/Im3n/4MXfNMQFoPXXwlybH5/c/MxoUqHIMs3vzNElUceGc+xzd2MlPLBn76ct9vPt9N4ogxXGoNjZMI/WCKqExUv3o3qcWb4Kku37vX3EBuE93nhw76DcqRIK1diAjIez6RyTQ8vemzEiEhsOgSLDWzpRLkOo+Up2OVD1GFEGavFDlBBgYaP+xFjWKhOrnMtzLCVR7LNZa9FQPB/n+0nalD70aod0SMNC1u/xVawMjDmXlsZ7fWourB+5z0UjYzN9TF87GOH82hlLABz96MPcxMGKIWYI9uVurHjlJOJm3gaqQvtrYwrIbkObuYlEKuFpRGjFiaIsVRCxGV3eXrqoYfjzG3PfiuPuKlMYJARfc2V5fiebK8og4g1QauTR+cFpuIxUwewWka4xY7DkYo5H2iXGETCAVl6pIMHbypsSSwdlL07//QoLyjQ0vMUHCYkRCkiT41Kc+NfbvP/nJTyJJbm3gzCmebxA0GTRZPBIOw8Bg/EAaZPFhUIm9IiF8sgwMROWyFIwXLC/zz1MghLtXPpXWAtwvNoufJqDByi/CEPBYZiQYcK394DCakWC1gtm/CmtUUf/IZklvJwBxA2AMjUSMXUxZ4EQaG9TaOV/hiMIeUiUSWtwrEowjB3KdQvpBt2kYuJEDtgYAQO67wXkE4oM7TdarEhqqHGSU1UPWhsnhmAEN39aQ3fkQ4H4LxMrwo0AkRP3DmaTryzi9QZHQtznUuJ0+KwEQciPxsd4X8fn0KWz7HXLLWK0svh+GMj88WViIGU4SYwTihJZXMoTGjWGc2yrfpxCYVVgbSDiVEFyGCScn2Y69imeSIuFmdgMaGj2bYye9NvV4J8ITAjds+Rp6JsW+PoLlHCTrMyBIOcVBRsA1uVv83gcOPwFjjbM3jPldAFBG4c+u/wk+sfdRfOD6+8pFurVO6cCHpNw8Bpl8bnvD1rpAHLlArtCCsGx8/itd3NiR+MyX6q+DgEAkTLI1BDx4dwtEbjCsoqiJpQSsvwtYjdubdyJhDaQmxdX+ldrHiwsiwfpwMvfnjYSVKgdK0PDXXwqFRuQ+306R4HIJ7AzDWVd1YWFHBm7BBJRVhdogwFpT5oh4wiD1P2NhkZu8zEioeImHB7tU93Eju44rvUvYzXegltSccNhzn9mVJnf3w5p7RKlIcCo7bfWxchJSk2L30N3zV9uz2xMYI3z7N2xCCMLVmzk+++XJ12QdGt7isHuLLQ6u8tAOvsfGFgrIgH5evq/PXB4lOwQJaKOW9v4DwKefvIoPfvGJEaWJU8bU/06m9Ggb8RzgjM1FBHDOoI1FrrSzHwwRMMuAYIR+Nv28ZlLP1DZRB0aDigSljQuJHfOAVBPOeBxIbY71vs0LztjMtZonjeerAeWkobRdWCHzQsZCl+lb3vIWvOc978Ev/MIv4Omnn/YhIwZPP/00/vW//tf4/d//fbzlLW9Z9rGe4gUM4s4v2hSjzDUjKhQJXGcgEDa5GwS3+JpfFLmfNcOKBPBC7uom/zJF3ngyYPBLygUnhsGZwQ2hjUpzg8tlqKogABF2VHkEDL8Go7wJTpf1j8OtDVOQCAJnbIx0bPyX0yIoFAlr50Dk/Pbh+60+IyEFrC2S/2MWI5KZk18NLQCCpaPa2FDAh9olOi92yaVVRRJ7IyTNT2sj6B0i2rsKC5ePAIxWOMpkFRYEZhRYNn5QLI57Cec3oajI9ujm9UoI0hKWMWyr/eLPbqhd/5ccxZanR9i5BFBUOQIEmsnaQK65gYXmhvq8CNfc4BALgra62EWNEIEHRYI1YFqDqMwumbQbuJvvFP9+uXdp6vFOfC3KDec3tTuv4dN5Kb/pGjBUVlsDGeoiL+fbsLBoswYiEriudvGR7hdcKKLKgJrB31iDD938M1z3JMiB3MfjRy6XA1a5f4Z96MTdfWCK5WPkOImKYfzaCdkbDjvu2nrquf5ISFgVB4e++nFtuuT8/NkYP/zWC3jtq9cH/nygslTnIK3AiOHe9n3uGMbYG6rWhqBG4JwQCYbMP2aDxQXRnEKiIbwNwvv+LQzUlOFYGYWOOhpot6guThlYoQQKMLYMWywVCeX1n+p+JSMh3McJ2iuwMp3hZnoDV3qXcZjvI+ENSCORm+PnYgDAYde9b40mjc0cCIoPl/jOFq6nDOirHo567vdnzUcIWFsR+EZ/3Xzks4fYnYFAs9biiWd7ePqyV2mJNjrqCIdyNuXZskCWBjz4xu/4V7+60gqR8OzVdGT44eTCLseSznNiv3+E93zoMj74kQN00uH7Mo0dYvuZWiho8Tgg6+0Nxk79vl8EIXBxmhQ/l2ZhP7prYqgSCS78cNy5tHBWimVBylsTtBjAuXu9J6WYmxWdvsRzN+cnHl8MkH599VLDQqvrn/zJn8Sb3/xm/Lf/9t/wxje+EY888ggeeeQRvPGNb8R//+//Hd/zPd+Dn/zJn1z2sdbiiSeewD/6R/8Ir371q/G6170Ov/zLv4w8n75Qs9biv/yX/4Jv+7Zvw6OPPoof+qEfGlFZ7O7u4hd+4Rfwgz/4g3jVq16Fxx57rPax/sW/+Bd46KGHRv754Ac/uIyX+KIAgyMMIhpdbDAQjM8W4DIDA+FrWg/jBzZfjwvRGVfzGIIPYSEqHUacsWLDOdgUApNg/GMPfzDDrpX/D1jYIUWCU0FUf49lbhFLjZVR9txoN1BYWygSuMrnCnETnCOO+EgqrrVuaGLL+qK3BuLQDXjaNzZwVp6zQCSwqrXBpIA16Pod7RZvgcle0VAx8Dpyv4Cp2BoKeHJB6Ky4DpRV6FuvSKBkajgmACRejZBu3QHj8yqYH5qLr2nGkMXu73h3uo+W4/gRFESEVR9u2FE1C1trHVFAHDfUXvHH12UgEshJ4isL+9zkxVAfFCLheKcfj7vWm74Csifrv3y31qPiWo8iNiDpZsQLRQLgrgtipfUomzAE7WQ3i3+/nF93hNuCIJ3DGI2bnoB5WXKXe1x5w6lfdH1OAqkuLOd4Nr8OALg/uRPfsvJqAMCX0mfwFXnNtToMDf7WWvzV9odwqfcsOHE8sOIIq0/tfQK5VxyQriESAIDY5IyUMQj2hqvbyxksq9DaouMHvkxaXL4yPoS0am2YBc0GH1nQFjWxFLv3xQ9L93l7w7O9Z2r9+XVEQmiD6Cs3PDZZRZFgFRpCF7/j4GoZJ5Fcfd1DbvIiZPFLT3Txzv/vSVy+7n4nZjH6qjdQJamtRlD2Rv5+XL3+U90v/jxYGxi54NKddBtXes9hL99FxCKsRuuImAstnZYzMiuCIqHZsIiG62U9oqj8PlS5y29YlEjQVqOjjpD23QPOo0gIePj+Fu6+PYExwJ/9zd5EgssYiw9/4gDv/6s9/Mlf7iLNnH0jYjH28t2lncdZQISBTCNj3AZGVZFQ3b096mrsHQze/8I6YhmKhL7u4wtXrhQbAt108LNFtn4XVxuDbExA4EmCC0I/VchytbAiYBIEZ9DKDAz6wzDWqSIW3aThPnsihG4qbUbsLVUwopFwxuNAaQN+C6dOzgjat2E8n+hnCt2+fEnmNeTSnMjn4fnGQi8pjmP8yq/8Ct797nfjHe94B37gB34AP/ADP4B3vOMdePe7341f/dVfRRzP14+8CA4ODvBjP/ZjkFLi13/91/GOd7wD73rXu/BLv/RLU3/3v/7X/4p3vvOdeNvb3obf/M3fxLlz5/DjP/7jeO6554qfuX79Ov7gD/4AZ86cwate9aqJj3fx4kX8r//1vwb+GUc8vCRhLQRjtUnSRFTsVnOZFhPdCm+6QZowoA7gRkFf/TKs3+UqHif8TIVJqA7g4YvUDZwhoLFOkeByGapMAs/cIrY2H8EagAvAmlKRYI0jGGYFAc2Ej9wctXUBYsv6wuDdfVeFxwV02+0GcV7uVuiasMWeyWAq+Qht1gBpCSZGF6tF9WMNkRCsDULmBRnUNxmkX0g1WFxL/AxD7Ljd7aPb7in/kFwdYlXhmnoLCu/uT35AoGAvjt3c4If9jurW+OQ9SUAMN2R5TDfknrs2iQPQA9dN2NlNSIBz4YklzEwscUZF20N/TAWkEITNNfe5jKNKPgK4CzSt5A8InQ0oEsbtplprsZuVioQdfYR0jEpjFpDsYw8plNUQxPGq1gMAgOtyD7lRqA05NApQGTRxXJaO1LgYn8fF5Dxe3XLEwF91Podt0wHLy/wIay0+uvvXeLLzOAiEb77t9Xjt2b+HtWgdmUnxuf1PV6wLo+/DLE0SdagqEpYt3TzsqoFr+4mnjmqJHWstDuawNoxDca9ABDKqyIw5m5zDqliFtgrP9Z4Z+b1qq0A1HwHWIPXXWoPFBfGbWVUoEqwFcmmxIlaR6j6up9eLXIXh13gkj8CJF4v+py/3IaXFc1fdcwgWjagFtNXFKRPC+c4HFAkmLcIWi5pIMPR0F9v5TXASWIvWEVVIa0ECfd1byvsdMhLiph14jiqIqLAvZdIeKwwy1X1kOkPX31bmVSSE4/mWr9tEEjPs7Et84gv1BJdSFu/78C4+/7h7MmuBKze8ko03oIzEXrZzyywOjBPyij/eGK9IqKyYg588zOjPXKkjtgj5gmGvAanu40Z6Hde3y8ep2irc09RnJEhloLS95URCxAn9TLqWgxOYnDgrKyDH4biNEYxR8b4DweYw/rGIAKmWYw2w1kKqxW0Zi4BzgjZmqaqKRdBLFaScTBK9WJFJ/ZILWgSAxVcSAB5++GE8/PDDyzqWufE7v/M76Ha7+I3f+A1sbGwAALTW+Lmf+zn803/6T3H+/Pna38uyDL/5m7+JH//xH8fb3vY2AMBrXvMafPd3fzd+67d+Cz/7sz8LAHjooYfw4Q9/GADw67/+6/jyl7889lgajQZe/epXL+ulveigmUHERa0iAUCxWx12PAMXYDEYmEgAosc/iuyJv0H0qu8Cv/ex4tZN5BQI4ety2LNovK3BKRLCjpH7naoiIYZAirITmgCQl8cP5yMAgDUaEJFXJMQIxV+QLuRtVsQRLxKWw3EbY8F4+WVHKkfrSx9GcuMpHD723VCbt8/8+ADADsqgxbDq4aw8ZyWRkKNBsX8lFn2bFbuMbUQwNLoL6X5vgrWhokgQJAALHBn3mAIczHIY78GfBN7bBwCkK5uo0hWCEWRlrZQlawCugPmfn/iYzCtjYMGPoU1YCYoE4wP3qitLo11bBnHcrCgSUpvjQHexIVogZUDGwPrNvaJGj2IArCCWhnNGxoExQgNekTCGSACcvWH3QCGKysaGiLgj7qqKBJmCoVVaG8YQCX3dQ2pSEIBV3sah7uJa7zLubWzNdNwD8PkIN41TVJwTG1jjbayxNg5NF1flNu7hGz7ksLwAXCODwjXqQ1qFJiU4JzYAAF/dfBl21AGey2/gT/tfwJvFKuLWFsAEPrP/SXz58AsAgG869y1F28Brtr4ef3b9T/DFw8/jYX4b1sa9B1yAZB+kJGw0+y7tua0YnLnKw4MjNZO1YFYEciDiFlITnrph8a1Hu2BrZweu0X5qkPsP0doxiIRAgDUhYBkKkoeIcN/Kg/jM/ifxVOeJIoAxoBq22PeNDYFICMqlBiVF809qJQQUBI+gtEWWGySxwIpYRUd1cL1/Deca59ES5Z0iNxn6uoeksAoBXa/W6KXu/wNBneoULd88oa0uMhIEJ0grK0Y6tyvcHApbTHjD1dxSu3anUrAIuc4grSxyRxZFIBLWW5MfpxETstydY9HCwoqEruqCAHS6wdowvyIBAFpNjm/+2g2878O7+NQXj3D37Q2cr2RupJnGez+0i+s7ORgDzmxEuLkrcfl6hvsvuu+UlmjjUB2ipdpYi9bHPdXSwNlgmJ+xLmyxel/O/N/ffUcDT11K8eyVFI+9cnD9IIiPZHHMg1SnuJFeR65z7O1V/jwfUiSAahsDHJGgIeZYpywDkWDoZwbCmqVWPwbMUgGptIXRBjxe7LWHJgZtLCIAuTITN0EYo5Gmj0WhjYW2S6wEnwEuZBQjqtlbCWMsepmE1I5IaN6iqL1cakSCjVWbLAPGWEjlrDZjCtxetDg2NdLtdnH16lVcuXJl5J+Txgc/+EF84zd+Y0EiAMAb3/hGGGPwl3/5l2N/7xOf+AQ6nQ7e+MY3Fn8WxzG+67u+a8COwF6KGpSTAlnEJBCx+sVGGDyZTJ3C2xZMwkCDAgCwwxsAALP97MAXN8FJF8LvuoaH8u+1NeDEXLijNQO/EyogIxLeW04Dx1G1NozAGBDzigQikA+OtHJ0N2wSkoghEjTAohvjbuBEhGjnMjb+8n+heekLYHkfjctfmuvxAcAcXAXg8hECGFGxIA71j8xqcGuKgL+uySq7jByWxyPeRmMtRFAkJBOsDSorsgQOK75nl2cx+fitzCH8e2Fb61CV3XvOysWStYFImM3aEMIa7TH9f4UiwfRd1WP1OYwBjMG+7UFaBQGO28QmgJCTwPwgXFEkVELrAHd8xDGzN5LzUm3T04ODdhV33Oau/7W2KKwNsSd7eMXqQDIF5wwxApFQb+EJtWYbrI274wsAgMvpYjkJpHKQkbhp3G7lOX/O7ozdNRxyEsjkA1kHzupgC1vDxfi24j5CRPjmlVdjjbfRtRn+vPtpWNXHlw4+j8/sfxIA8HVbrx0YdO9sXsSFxh0wVuMTR5+DHXMvA3F3L5hTas054bYzXpWwPX6X8sr1DF94fLSecBJCpePdZw1Wm4DShGcvdcCywR3gYGtYbfOFfdPKqOIaakG4e4XOCwXEfStOTXK1f3kkhyCusTY4IkEXWSpNFhfWhsy6Cs4k8eGH/neICKvRKpRVuJ5eQ7dCovVUD9pqiIo6rtP3REK//OwJEgM1kNrqQiwkBBuxTqSqkpGgA1HNELN47AJUkIC0aqQhYhEcdN31ttFuTPy5qn2EsFgFpDQSXdVFxJIyI2FlMSIBAO6/2MSD9zgF4p/9zW6x23jYUfi992/j+k6OOCK86VvPFsP4levl+efEEbMYO9kO8ltgceDMVeEFWbsxFgaD65SgSHjwHvddeH0nRz/VQ48jII1ciMzJdOZJhAxt3sb1nfIa6g0HDZKrpxyGVMarPm+tMVtwBqU1tLEnNwwTTdy1di0Lx8tIcNYGH/Cc11c/Fj9PtDRbgPZKiFk3FJaH6bkTJ4lMakhpirDOWwFjLS5vd9FNlxeKWgd3PznBz8PziIUm5SzL8Ku/+qv4xm/8Rnzt134tXv/61+M7vuM7Rv45aTz55JO4//77B/5sbW0N586dw5NPPjnx9wCM/O4DDzyAK1euIB0JspmOZ555Bq95zWvwqle9Ct///d+P973vfXM/xosZhgyawwn/VXgpvNvxLL3uocIx3C8tAPI7zGb/ChiR38V3bPCgmmFw4DLWgIP5ysjKziVV6yYj5zP0doqgYigVCXXVjxYgViaFe3sD5qy8IyI0YzHAWmtjkZBB+4t/gfWP/h54/6gY9qPtZ+fS4kuj0Dh0fvx87Uz5vNVzxASsP9nDFZDdUEOICJaLkS8xAwMeQiZrrA3B7iBUCuHFTke+kaDJkoI0mjQk2+5O8fg8aRe2CAADkjADizwQCTMoEhjzRMIxJcaFIkGno9J2qwEY3PQtDWejdVyI3A59kZNgMUBAVL3mgKMYOOZQJBAVIZY9k47NKXjwnhbe8u1n8XWPrJWKBHhFgqoqEjIwciGMgKvfQ0293a4nEs6IVdwZuYH/Sn4Tds42A8DlI8Aa3PD5COeiDQDAXfFtAIDL8iasDzkMzSqwAMkeDHE8lzvi8WIyqECLWYTXr34tIhK4pg/wvht/io/u/jUA4NGNx/Dw+lcNHgcRXrP19QCAp+Q13NDjA58s8aL2cB6EnIRxgYuf/0oHv/+BbfzFx/dxc3f2c3ngKx832oQH73DXzlduRKD+zsBxFraGteOrEThxRBpItQCUKuwga9E6zsRnYWHxTGfwe7gxJiOBjBkIZU1YyEhw11+jaCMYvBbbYgXWGtxIr6Ejj6CtxpE6LLIRAL/L1Xe/F/4fACIWFzWQ1lpoqwZaG4bVOKnuF60Ns8puydepHnf41dqg03fv3Upr8ntXJRI4LUYkpLoPaXLonBffV9Oedxpe9zUbaDc5Djsaf/PpQ9zczfF777uJgyOFlRbH937HOdx+W4I7ziUgAg46Gp1eeT9r8CaUkdjNdk481V1w5xcPhJExFhh6ypDZsbkucGbD3S+DdSZg0cDFXGe4kV5DplO0xSr2DzVkRY6XysHHY1Qf9JdL/TwMoyVx4cIJT2ZDbloFpNIWsPXtJrPAEQll9aeTpU8gEph7D5ZxbQZLxa0fOul5JRJyqaGMRSQY8vzWHIfWzkZy0laKQEyehELn+cZC3ww/+7M/i3e/+934zu/8TrzmNa/B+vrJS83qcHh4iLW1tZE/X19fx8HB+F3Kw8NDxHE8UlG5trbmPKQHB2g0JrP+VbziFa/AI488ggcffBBHR0f4n//zf+Ltb387/uN//I/47u/+7tlfUA2EeGGrIsLAngiBdpSM/ZCIhpOPMplCcA6pjR/uGDh8SrYFBCyo5947mx5ByD4E487WwJnLEmDkfpcIgrPyZmssBBdo8hi9PHV/Ltzfb7ENEAhnow0nHecA5xwgA8EYKO/AAuDN1ZHXQJyBBIeVzjvJooYLetT53Km6zUaEo77ywZFAq7eNe7/8YUR995qzi69E/+Wvxfqf/TZ42kXU24NZPTP5QT0OZYoLHTewpqubiP2xCc5ACBVOBC0a7ryaDG3eBNQeepDoeRvCqmiDiEEIGlR8GKc2AADeaI2cJ97wRILOINg6oEtrQ4s3AEYQ1i0AgtrH/X9FoeGJBL56FqtRA/uyWxyDW5C4995oIG8FIuEQHBaTDIWMheDO43Var3kJdcemYLBA9RyQBWMMN7N9AMBt0RYuRFv4TP8J3JB7RV0jyLr/B5D589NmcXFcUcRn/rIRnKFFZdYFswrER6XPnBPuut3d03TmFqExE+5zVfHwcpUhEqwY5DIr3UscOp7d3BEJZ8UGLiRbEMSRWomD/AbOrNw107EHkMkgyeLQk07n4y0wRrg9OQMOhp5JcWA7OMN4IaFnVgFGYpsy9EwKQRx3JudGFs1b8Sq+Ze3VeP/Bx3BNumN+xfpX4bEzX1O7wDzXOouXtR/AV7pP4KP9v8WbG+fqF6JRApgMgJ7L3nTHbQk++YUjXNvOBt5jay0+8plDfOLzpYJg71Di9ttm03YeBiJhlePsOsMnn9B4ZptBSYs43YWJLgBcFM0Om2vRwguazFfAtnjTKb+EQJr20LAS8BWpD6w9iJ3tbTzVfQJftVXmCzUbblc7l7YYxJpNDkYWKbzKgSdFK0FmpWsm8dkKUo4uxFb5Cnqqh215A+vYgLQ5VqKV4lroVXaJe2k5DHAeIc17UMjR4G54DRxfFBGkHSISTFoM6Vp7q90M95LYxkhNv/jOWgTb3aMiT2ilXW87C2j48EopLSIhYKDmem5rLXqmi5gLdDru+73dZMVrXxStJsfrv3ET7/nTbXzh8S7+9qkelLY4sxHhTd92Fu2We8+bTY5zWxFu7Ehcu5njoftLC9AqW0FPdZEjRYu3j3U8E0GEfp4D5Ahs6dWPgcx2MmV3bpoJx713NbCzL/Hs1RSveLA8Lg6B1FgYMjN7o5VR2M5vIrcZ1pM1EBFu7A4Sj8NeayE4QKPrxVwbxDF/XnzZnLu2qGgO+9c8iCMOZczYNTKRC308zmtn3JH65O2hcTT+XArB3cYY8+tS/3MLPX/ujj+K+C1Vkzjro33e5g7t12dxxJDr8e/tMqFMaBc54XnL75jGkQDj7vNb93zHum6eJyxEJPzJn/wJfvAHfxA///M/v+zjeVHix37sxwb++/Wvfz3+wT/4B3jnO995LCKBMcLm5gl+WS4BUkkQCCutBFtrK1ir884DSDc2IOEGldZKjH6q0WwIUO4Y85V2A8poGKkGQuxa+R5WVleQMAHBBJq+AiuJOZQB2u0E7bbfzc01VqMm2lETnW4f7SSBsUCzK9FEjH+08j1IWASlAaE5VlYSKKvADAOXfSgA7a0zaKwNvgaFBHy1Bc0yiLUmsmYL+QEQkUKjPZ+JK0oi9HINThZnn/sk1p7+pEspaLShvvYNoNvvQwuAPXcX6PozaB9ehblwx9THzY3Cep6DVA7LOOyZLbS9wYw4x0FPotl058lGDUD20WIGG0kbyICMKfS8ImFjZROJEWi3EzQr/kKmCJHfdWytb6A1dJ705iZ6AITO0eAxIFEMh6tRE43ELQjb7UaRT9FslotEYw1E7n4+2TqP2zbW0TvK0G542T9jOEoVms0YuTQw0SYs4yCj0aYMaG+gI1MYGKxFo4qJlZ5CrgyayeI7a+eSdWDP7ZRGsUXcqhKOPSCPsO3DHy+2z+GOxlnQgSNUTKTRphiICPC/l8MNK2tJC81mDA3CWjtGe8bryjKGjX4b6AEaBpFQSFpTSNCeXwCLGHHMB4iE2Eq0VxK004Z7OVBoNyNgSG20Kx3hc8fqOaw0GrjYuA1P9a/iRn4Vd7cGffETYRTQNXhaeNm2WMFmu1QF3dU8h2f613Hd7ODO9j0AJGA0mhGAiHAldcTZ3c3zWG3V33sebt6NI9vBRw6/hIfXX4Zvv/vbRhZn3VRCKo2NlQZed+6r8VTvadxU+7hsb+JlrRpixAog6wAJAfHspPP9d8cg2sZhR8NagZW2gDEWf/wXN/C5v3UkwvqqwMGRwlHXoj3tvfQ47Lp75vkzMW7fYjizlmLn0OK5o1W8qtUDzBHQPl/83G1nmzM/9jC0b0VajVqIY4GVlSZsJNHNM6xuJWBEeEi8HB/Z/mvsZNtoNuMik2Bj3RNouUWweW+sJmg3yasPgI3WCjiY/5zlaEQMK00OQMJYXnvcbTTQUz2kpoN2q4HVimJq/6hUZPRTg2YjKQZxLXKwWKPditHQEUJfSrsZA2JwtzO3GdYr97wkTgqrxiTEhiPXGZptgbiG5JsFX7npLGsrLYHVlfrrPGClHQPow1iG1VYbyii0V+IBq8ckpCoFKY3N5jp2dxxxt7EWL3y9VPHQ/Q1cuibxyS8cQGmLe+5o4q3fefsISXHvXW3c2NnHtR2Fr3nV4POaTIInFmtjPu/LgrKE9koDa6sN3NjrodmKsbbqSdtKa8LmehMPP8Dx8c8d4dK1FI1kcENF8hSNFsdaY7bj7eQdkFK4EJck5vb+4MaYscDKSlKGUTOOVkMMrBe1sYi2e9iMIncPn4DD3Kl4GuL473GAiASyXGNtdXmPWUUUR9DGYGW1WYSgVtHNDVZWZPGeLYJMAyurTay0IrRaPbQaUe1zAUCSaGRSYW29haRCnqytLfD8nKPV7mN9rcZCepJgHEnCn7e5Y7uTY9OfP20N1taaJz5Qd3o5Gs0+mq3kRF+3JoaVdoK11Sa0JaytNSc+30LXzfOEhVbURIRXvvKVyz6WubG2toajo9EU4IODg4kqibW1NeR5jizLBlQJh4eHIKJjKywYY3jDG96AX/mVX0GapnOpG6owxuLwsDf9B59HGGgX2Cct0q4E0nq5b2p8jn/WR54ppKkEs8al+nKGbjeDNBrY3R34vf7VZ5GKByGhEHOBNHO98UZzpKlC2sshvCqiI1M04hi9PEO/l6OrMlhYpJmEtRZJxJFBIdcGVlt0uxmUVdAwUF2XON83MfLD8jVYa2B7ORjlMJ0UDH0Yv1ubd7vQ3fklq0YbbD7xYazfcBkIvfMPIn/kW2HjBuAfL9m6C63rz8BefhLdOyc3hgDAXt7B+Z199x9r59BNJRIvzc1yjTxX6DoxBxR3wnXV6yL25MJ2foTc2wiYjJFphX5PwsjKbp7K0PLtFqkWUIeD73Wq3Jcn5SlIey+xl/9HNkK/n4Nxhn4vA2MMzWaEfl/CeB9qT2fYPHQLJpWsQ/Y0+v0cHZWCiJDmCmmqEDEXfAQAurUO0dlFtn3j/2fvz2Ns2Q7zPvS3hqraQ89nvDN5OUikSEq2QjoaLEeUIhu2n94z7ViC8RIHyEAgROLkj8COASMIEsBBDNgQ7MCAnDh0BD9LenqA8hA/KZJlR0pMxTItWxRH8ZKXdzhT9zk97qGGNbw/1qratcfe3afPvZdX5zMo39Pdu6p27dpVa33rGzCiy1EZAsJUOr8KUpaGUWlCMMVjIBUJpa84OH3IjpyEa4nBkCofc2TihNBvYgvPrt7i0JzyrbMHvE/u4PwIr8MA/TR62FMbzs94ZOgm4fuwDsaFwZa+OaaHpw/ZUfMqrTaGeZSmO0U5HE9FT5rRkCI3UEYpuSsZDEaIdCLXHJkRIxNet+E2GI9LntHXeZV7fOv0dT40uoDlp8pR4yFvFiFJ7LreYTyeEBvPqBu8xgNeHd7jQ/olpBmRbRXkgzMoDN8YhSye59TNqdfN4iOd9/MBv0vaf5bReP7cHg/KEPQqQeSWj2Uv8Nv5t/jc4e9yW1xrMj9qOO94fXiXb5x8hWc2X+I7t9d/Hl7bSXh4VPHNr73Gi89v8KufL3ntbmjL+KGPh3yIX/+tI/Yf5QzXOJem8pyNYt6ANuS54P3PCB6der70muF9N1PE8QGuEjw6Cu+91/FrbXsRjmImSYcs3Mc7hs1uRnE24t7+CVv9DlIkIasGx8HpIRtJIIdctN7kxUS2LoXjdDCmjPcKUQblEYTcm0Geo1V4/emgWHHcEu8kUiiGrYaPh4fT96mHh6Nm9dtYz8P8GFV1GY5ziug9995yMg7fza7sMXYjRtWIophcOydnY3rd81dbQ4vEiIf+pDkPF0FhC958GL4fva4893OTMlwLZ8OS8bgkdwVHYkCm1iMnj4pDTsdDtjPNw8Owr15HXPp6mcX3fqTPcFzR60g+8bFtjCkxM46sW9fC0PS1OyMGw/EU8WeM50H5kMT0plqdrhrDQc6jR0OUDzLz8ajkNBIEj+K4TEooypLNnqfXkYxyxyuvnfD87cmYr6gMj8wJulpvYnBcnjIcl+iWHebOvXANX9tJeHRcMRhVHJ8OG3JoOK4oC8nR0eQzLkrL0fGILFPY2RPcgveeO8N7ZLrDjc7NNc/OelACTs8ubgFbB8Y6hmPDwcOzhYsD+48GjMclp49xiQyGYw6PNOOR5vhkhHfZUqtIZRzjwvDo0YBuplFKsrXV5fR0fOEmhMPTnOGgIHuLZfDjwjAaeR5tZY+l3LwMrHM8ODgDIbBGMi4MDw4Wf7ZXidNhyenpmEQ4Nh5TdbUKj45GDIY5mRKcDQtSBUfd+ff2ONfNVWNdIudSn9CP/MiP8LnPfY6f/MmfvMzLrwwvv/zyXBbC2dkZBwcHc/kHs68DePXVV6daJ775zW/y7LPPXnri/ySwKpX2nQAvQvuBRqK8Wt4TrcNDVFiDdAZr/aRaRwX23DhLNpyukLOH9/DPvZ8K2zQBGOfRzuN8CECqw3Aq65AocMHfWP8cPwmvgTCR94T4gcpZhPdQB/yl/an34K3Be4n3KrzOeny9OlsWk31cAJ1EsnESJkBvPPdx9If+IIlW0NpWce0FeoA+vIutSlDLVxRKZ8ALegch7E7uPo9CkZuKROoQtOiih1IKTDx+Ueb0eoE0O7DhvCcoJCqETLWChiCcK1mGwY3X3bnP2sXPWJkCxfQAu0OK9R7RbLMOsXLNPkZVye1RJAb711Beh/dhK1KZxPm/j9eKQyOw/UAkiMEx5d7zCB+CJStr5waZEoE1HqcfNyehy6GtOCtP2WydA1UV3I8kwpbqk5LgnOeW3uPQnHK/fMR7OrtQlVjjQAhGMWwxk53wffC+uV7XgXceF0MzS1sxLE+mjmkRiqhA0ELNBQaKcoz3vmlfcXhKU6DV5J54MA7NINuyh/ShIeUZfR2AfXPMuBiQ6vWYfVnmOGPZjy0X19XOVI1Znb/woDoid4aud2AKfDHkxBUcmTMEgueSGwvrz9pIVA8/OsHq/tT3yXsfQjgFmMqgixEfzt7DV8v7DNyYLw1f5aOxjnJgR/xe/gZfz99oWgbeLO7zcv+DjRz/PNy+nvLwqOLVOxW/88oxD04VWsGPfN8eLz3X5cHDsN3Dk2r5/bSFo+MwUE+1J1Ue5+B9t+GffQ3efOgZFJKeTnFnDzkbhM9xq6/X2vYiDKqYe0KC9cGipVTKTtdRSTg+y9nqp/R0n4E547Q8oyvD9ZDEgbH3cBZtFmkiGJUhj0Ii0bHSpCYixq4ki9/Zce5WHrckVKjalqG93k/z76Fp5P/Sa4ZmwLAcYoylin8qJYxiBs6G2mbsRuR2jHMhP6Eynrxwa8v9nXOMqzFdefEVxrPijJNB+M72uyuesRFpXDHNCwdOYoyhMhWa81tCnHecFKcowvVxNgwnpN87f7/rQgrBv/GJ3ebfi7Z7YzdBytC2cXRi2G41jCgSxtWIcTWmo57cqp1znqI0sUbQheC9OLAf5OE7miayOf4XnunwtVdHvPrGmGduTCb0wkvGZowxdi2Z+qAYIvxku6PcchKv4eduZTw6rsLigKkQcZDvvaes7FQmwrgw5JWlm6mVExLjDLktKGzJltpZW7nytiO+53FhSBZMdsa5CeONx5iMeQd5VM0a6/DOT91bZo+nip9B+3isdRcexxelfXuqGL2nrAIhkj0hS8oyjHJDUVh6XY3AU5TLP9urRFGGz2w0Nk90vjXKqzC2sw5n3bnXxWWum7cLl/qE/qP/6D/izTff5K/8lb/CF7/4RQ4PDzk+Pp7735PGD/3QD/G5z32O09PJ5POXf/mXkVLyAz/wA0tf9wf/4B9kY2ODX/qlX2p+VlUVv/Irv8IP/dAPPfZxOef45V/+ZT7wgQ+8o0iJJwYJHZWsXB2QutuE/GlTzlQ4hv923pPGVSC5E+T8/uQeWqhJnaMUk9AjAbO3OoVECTm1yjr1GmJIIzFs0XuSsqRJAsxmJkAuVPwJPRmEiRi2KM3yFdBVSLUgiwPn090XFp4329/FdjYQzpIc3lu5vZEp2JEZ4v7XAUie/yiZSALBANHjNwkanFRATsIWazVCX3VhJgCzhnMOWQdMLrCwyDScO4EnmXnW1mGLy9h8420IGYy2ALlxjUQoMpkEpQqtCkcfiBGpJLa3E343PKFwFanUaKEaJcTU8SmxbAhwITTNDaalhvIOrGHfTjcPANxMwn8/qI6I1RFACGVqWhvqibq4WMCSlAKBaNo3Rma0NHCxxqS1IZkKWgQQZYEUAuUVMj4eihmyoW5suNZSPmyqHluqj8dzf/TG2scvTI4VgocxoLI+V4u2e7d6GBoT8jMwJW/YQD7c1LtT9a5LoTOEyZHFNFlpjCPRKtTGGgPeoFXG9/a+A4AvjF/hm8Vd/tHJP+cXjv4JXxi/wtgXdESKRmK95ag8XLTHhagDF7/+QPPgVJFpz//teyveu1eAt+zGWsjR2DU5Aqtwehrl5/2JD367L7ixHe6v37zvQWUcjxUeSBT05HjKQnYR1GGLPRK8iLk1SqOE5caWZrOXcjos6euw+j40k9BKpQT1uHDcam0oTKvdJQbsdprARUMnfrx1QONFMBhP3wvamQntGkiPa4IFEy2bsMVNHcjWyldYZybNDReoetMiYWQu1sQBoUni1JxSjMNx9tdQQEy1NsTGnnVbAwqbk9sxaVQv1LWZ6+z3KqG1bCoi7zyYDzB0OMbmahQSyyAlTZifNX6KBBgXExKsxkvPhXvwa3fzqc9ZCY3xBuNX35chfN6FK6ZqtPdjw8vulmajP8kYca3PNLYhTpGp6zY2VL5qmlhy+2TUA08CqyogrXMYe/nGhhqh0jFM6M776s62PDwOKuve8qYNCJlLbwuBAZTGhgUiJdeq97wqWOuams8nGTRZlI9/Pb5TcSnq8cd+7McA+PKXv8wv/MIvLP27r3zlK5c7qjXxkz/5k/zMz/wMn/nMZ/j0pz/NgwcP+O/+u/+On/zJn+TWrUmC95//83+eu3fv8qu/+qsAZFnGpz/9af7m3/yb7O3t8cEPfpB/8A/+AcfHx/x7/96/N7WPX/7lXwbglVdewVrb/PujH/0ozz33HHfu3OEv/aW/xJ/4E3+Cl156iZOTE/7BP/gHfPGLX+Rv/s2/+UTf/zsBAugkik21mjCRUlLpDF3laJODD5PO0NoQvlwOjx6FQb567sO447v48Sm6LBjHwZsgPDDDrbrFQkQoESZAQohm21JMlx80D1cBHk+ax8aG7iZidlLvLULKsIJZ76pFJFzmtpOZMdI7nJD4rL/w5nJqxqR7z7B19+ukD1+nuvHiwm2VzqCEYPdoH0yB6G6hrr3AZnHKveKQPvONBa5NJMys6PRkNwYGzQ9AvCubxgGxoLVBKoVRCdJWpDMP067M8G7u42qQ25IN6xExzFH09xBC0FMdBnFw065wdJGUsP0wyFejY0pXcT3ZZmQLKmdI5fQKnBTThNJlsdk0N4xCU0OsAwTHgY0TYr3T/P0tHZobjuwppbdk3oOzlFS4eAV1ZScemphq2TgPUgRypRsrIMdujLAGv2JVqYrEQCI0eiZNvG5VEVKQyYSxKyhdTpteOyyCIuHaTJ/7c8kNTu2Qu6M7vLj1nZwLb6HKOaEMdZlCsaM25/7s+eQmX7avcqc84OWNG2DDdfhGFY7jxZm2huUQ+KSDKE4R6UajLKqsI00UlQVnS4S1eK14OXuOL+ff4pE54TfO/mWzlWeSa3xH5yVeTG/ya8f/jDv2iIN8n+vZjWU7nsLt6xPSY7MLf+Ljit2ORQz2EWZE1tmj35UMx46j04rb11dL0k9Ow0Rjuz993bz/GcHBiefrdz0feQmO8wxw7PQd+uwePuvjsm180o11OOth0jSS4L0MF2HcdYLh1u4OAkhPw72lTSQIIUhTyTif3Dk7meLwLGyzKybnJhMpI3JyX9GJX+V1iJVZ1JPh5vjH09vQQmN8RUgsD99CrURT/9jXmwgkHkfuchItGMOFqt60TKhcSeUrUrF+TsLIDMPkPs6Za0vGKmRpnUMxqUBel0ioazRrdc1w/PYQCQDP3cy4t19yd7/gw++fJvi1SBjZATt+54lNuJSUTcWjcW7q2ZXHgI8smXxvnruVoSScDS3Hp4bd7XDRKqHI7RjjTdOGswyVKzGuotdSdN2PtY+3rqekySRI07ZGH1IIjPdTBEZRGdY5M8ZVeDwCydAO2Ujm78HvWCypgDQ2TAx18nir2VIEQqbUbm2p/3nKuHVgzPr7u0pIKXBuUm/7ViIvDbSuWCEFebXefetxUAe/G+ux1qOfwK3O+VBnqVYEgn8741JEwmc+85m3hS2bxfb2Nn/v7/09/uv/+r/mM5/5DP1+nz/zZ/4M/9l/9p9N/Z1zDmunL8j/4D/4D/De83f/7t/l8PCQD33oQ/yP/+P/yAsvvDD1d3/hL/yFhf/+q3/1r/KpT32Kfr/PxsYGf/tv/20ePXpEkiR85CMf4e/8nb/DH/7Df/gJvOt3FoQQXNvq0a1WPyAlEpdmwRNtCohSV89kcum9J2kUCc8gNq7hB4/onD3iZGev2Z+PLxSIqdcKAUpIpJBBxo5DExKup1aCPE0KvfOe7DRMSOT2M/MH7hzoFKRqJqG1IkGbisKHiq2LQMdWiiLdQCea2ae990HiXl1/Ee5+neTh8hXekSnYSzdQd38LB6jnP4IQkq5OEUUkUxBTlZttRUJHpGGVP765vgyNFIJ59UBta0CqcE5mIJDYtIMcV2QzOQRdmeHt8saE0hmeiSFuoreDiEn4XZU2571NiHjvUZIpRYL3nr7uAJ5H1bwPPkkkSSIY5oZepucUF4vgCX5u4xwb3STkAkTy5cyNwvWhFHiLd7apfmyvrPdUh03Z48yN2HenvOD7COcY+WhrEAlKaqz3KCYrtushnJNuUwFZIFyFZzmxV8VQu1QkqEgqOKmRziCqHGKjSCYSxhSUdnrl77AMQYvXZtQDz6U3+Er+Le4W96cIwqVHbiqEM+y7WsWxs1Cx8lx6gy/nr3Kn2seLj4HJKTDcj5WaL6TrEgmAyhDFKTI/xW6Eib+xjt3NDoNRiTdlZB0FQsAn+h/mfzv5ZyRC8f7O83yw8yLbauJzv6m2uGOPeFjsA9+1eJ8z6HXgw887Tkfwye/R9DsCyPBKI4oh0uTsbnQZjuH4xKwmErzj9DRMgrdnuL33PyP4za967h/BYOw5jgn8uxsKn/agHKGK4YUJhXGcbPZkgkcFRQKAVPhyTNLf49Zej53jLd4oYFBN5xh1WkSCEJAlQREANFWm4b8TsFB4Q6bD319GkVBPhjuZJC/clCIBQg1kGdUHtcpAa9EocTKZ0VEdxjbYG7S6jCJBk/sxpSunqilXwXvPaXWCEpphzP/YWItImCgSaphzVEoQVsOHZjB1fA2RsMZ+rxrP3syAM+48KObuJ6lMKWxB6cq1sx8uCqXCJNU5P7dCPC6jIqFlbUm05NlbGW/cK3jtbt4QCVJIPD5UQJ5jxShdiY+V1DUeREXC7etpo4CoFigSglV0sq28sM21ugqVq5AIUpUxMkMqV5HI820wjwPvfSBWHnM/yyogazuKUo933YYJpqMozNqryVdBJFTGLV10efJ4sivzyzDMzdT1qpVolD9PEmXlSLTEOYdxjmxO5/z4CNcjTX3wuw2XIhL+4//4P77q47g03ve+9/HZz3525d/8zM/8zNzPhBB8+tOf5tOf/vTK137ta19b+fudnR3+9t/+2+ce57sVAkEqNNk5DwQpBC7pACcoU0JrLFVPLp23qDjJFv095M4z2MEjktOH+J3d+Ldxoo1HxsE+hMT62tYghUSI4N1GhH3P3tpVo4Jw6NMg1Za78+0I3luEToJSQQi8dy1rQ4W9BJFQv8ci21xY/1J5QyIV27e/C/+Ff4weHiFGp/jedIheo0Ygxd3/PQD08x8FgkQ4lYrSGTKVoJTCRna3TSQIEWTxAxcr3WQH78NqzCzBoeLkXKTdhZNEKcAlGYzPyKyb8p10ZEaBXzhRLF3IQOiMDoPBZGNSd5lKjRSyOc81IeLxwdqQ7YR9j89ICKvoRllcOf8wzxLFje0uh2cFw7wKgUgrntbWe8a5iatAMqxwSMGGqhUJOcJbPAnCOY7NGQZLIjTbMyvrN5M9zooR+9URL+geeDuxNYgUhMRbj1DL7R+LUJMrtSJh6Euwqy03VbQ2JFKjYv1k1d0gGx4jqgIlHAJBFldO29aGsR037R57elqRcDsJdY1Dl3NSPGSns3qFXrgSWuRL2w7Sxq1kD41i5AoO7Rm97gZvjA/weHbUBlsXrIHzSRdRniKqzajOEXRSRV5KyjLHy8mFeyvZ48/u/QiJUAszEG4ku1C+xkH+YO39C1vxb3xnGdpT2p+1UPhsE0zBXqfgTRIOT1f3zwtbcTIMxMf2zGnY6Aqe2YN7h/DKPc9xmP+zsxH2RbqB9zYSCiNcfxfXXV01672fKBK8BjFR0AiV4E2B9xatFLc29/jdExi0FAkwPfnqpBIhPOM4kW8TCfX1N6biehIGtpdTJITX3L7R4VtvjhjPKhKkZmSGCCGo2oqEMpAbmeyQyUAkjO2YJGbBVBcgEur7ZWkL0OsFLo7tmJEZ0dN9hjE7Zi1rQzZNJEihGvJw5f7MiMIVbOrwnHHON4TP26FIuHktDYRO6Tg8NlzbnYwxtNSM7JDC5U+OSJCCogoSeWumSfB68pok0/fql57t8Ma9gtfv5nzPh1pBvAgqd/5nEO61k21a63l4WCsSsobYqcy0XaWWgtcWUOc9eWnWIhLGdowUikQk5HZMbsdPnEgY2RGn1Qm3O8881qKkliGEeZZoMjaQKo+7AixFyNsqFtTOLsPjWhu891TGvm0yeMFilceThLGOorRNvgsEm0VRWpx7vMru81CakGlRGvfElBjGepx1qPTbJH/kgnh36iye4i2DEIIX+9fDyvEKSCHDJBOCtSE+LD2TQZbMBwgfMwl6201Ogj49aKwJ9Q2lkd9TkxAOKQKRoIRAMVEhhA7gVoBi2zfoQZ/sh23vLFYkCJXGDlgZXhyJBGXK0KN+QchIJJjOFnrBDbJ0ho5K2ervIXafC3/74JU5f+3I5GwnfdL9V8EZxMY1xPZtIEwSu6pDGQeQUojmHLaJBIC+nKyS9FUnOEYWHFdNJLDA1gBBkeDiuem4ySAnESG3wOMXyvbHtmRDdVGj4HmXm9eb36UyIRU65D2IkItQn3IF+LSLUwkCT388JpMJaZT1L/Ijp4nixnaHzV7KuDRUZrF0rjCWcWHZ6CZc3+4GQUpc7tmorQ0uD/J8AG/Zj4GV1xesrN9q5yTgEd62JOIpxOyH0E2//m1ZivAN6NYZCb6YC1CcRZ2RkIgUFes8TTdMbgQgqwohgmIBaLziAIcxH2Fb9qZ8vBDCG28lQTl0b/T6ucce1A+yCVq8kews/DstFLeTMMF9s9yHpMNrta3hImqEGjIB55D5SZOPkGpFqiRURVDctNCR6dIgxRvZdQQwtENGcaX+PAgbCBSWhTPqjN3NcP0cn5xHJBQcx2KfWWsDBFUCwNfveo6G4fuw0/67mlBQClGOpz1gC1C6spnAdNEIoSYrZyoBayBmx2xnYUI6nCES2gGFnUyCc+QxuLLbWg2vMxIKb+jUioQLEgnO+UaBUCs7ZhUJAIlMgpc9DqATLZrrPpMZ3XiPzG1+qYwECPaGi+QkDMwZghDWdxFlQC23L8qo3BKyIQ9XYWiHjS0QYJTXHnvodt76oaKUgmduxJyE/fl7mhKKQTWY+/lVQSmBdY7Khp759i09rxUJM9L5F58J9+EHj0ryYnKdKaHmsmZm4b0PRFXLlvbwqMS68D3Z2lAtRcK0ykSK8Pyory0TJ0X6HHmb9ZbKlWihEUKghGL4BM9pDeMqSluslRuxCkoJjJvPJTDWnXsvW2v7UuB8WFTQaz6XHzdfwNbWzbeJSJCSxtLzVqGsbJjQJ20iIdgNniSp4XxQX4Rz/XjBnKtgbFA7PM1IaOFv/a2/de7fCCH4zGc+c5nNP8W3GdZhlCUiSGcBaYqQdQCAb9isOh9B9HcRQjYTe3k6We2TLQIAMdm39R5tLe5L/wj53EcQqWw8hGH7k2P03tM8E0yFGAaJdE1cTMG7ELQoVUw0mlckXBQqvk+/sUOyIBm3cpYbcR/J7fdTHb3J9tED3nhuyHbSRwoR1QiS3WQTe+eLQFAjtD+LDd3hOMqKdQwCggmRIGsiQXUgPs/7stvkD0ydBu9bioTFRIIUIlRYAh1rqO2gteweL2ZFDtHG4dhOevhBkMy3FQlKSDoq5dSM6KoUJSRlfc6lACFw/R3k6QEbRaiJTIRGy9BDPFvbB6FeZ2+rg1aSk0GJdZZOrIv0HkZRxnh9K6PfTYNlRsow6WRibSgxVCZHJ32EmxAJNxesrNc5CQfmOLRXODsJrYsrr84Tg4YWnt7FEIGk64ja2lCCqUJmwxKlTL0ylqDRNZGQZLiYb6FMgZDJhEhoWRse1fkISyomn0tvcrd6yJ3xXT7E9y4/bldBNSYHTm2YgC9TJAA8n97gzWqfN8t9rP+OQCgAL6S3l+9jBYIq4QxDh6y/RaIlWphwXHJ9hUMiM3Zln0M35KDY5yX93vNfZIr5JNMZ7G0ngOfoHCLBjEeMYlXnzoLDft9twf/5Zc/DU5p73qK/Q6jw3r0FsXxYUF+zmUhRKKQQk3uFlOAs3laIpMtuJ6zIjuxwasWw0yYSOhLhHXlU0XTEPJGQe0NHG0BjTPCxrrs6OG5Nhm9ci9+R8fwguavDPc1EUkupyXWfqS6Z7kBBWK2NRMJFFAkAiUioXLFWTkJpC4bVGZnqkBeT99BbY0LfJmrKyiO1wnqL9XYpIVa6kpEZNiGLMB20+HZZWZ+7GawCdx/kfOw7ppUcwd5wMbvIRaCkxDmoqhCM234mjmNGQjqjSNjo66ai8fV7BR98T7iulNCUvmwWPBYhhB5WpC1VTm1ruHUthJC2MxLaRIIQYVJUz6dLEwiQXmf1EL9yFdZbkrgQlMqMsR09sXNao3QlpSvXyo1YBa0kZWmojJsiTYyLA8THhBQCF23R2TnnEsLk/yLZKYtQN46dRwI9KbSzQd4qFJXD2WkFiVYSYytKY8kW1HlfBWxUrgTljnhilg5jQwrJOyES4EngyomEdsjdUyLhKWqI1iRTVTmCiX+/HlTrKN8U/TDpqokEMT5DlTmkG5GA8K3V27B95x3bb34F+8pv4Q/vkPxrf4K8DgacnRQTiA2AztlhWPXpbiE6SySnUoVJWVQkiKRe0S8vSSQERUK6ew0xQySEcwJZfLDLm++Hr/zvdA7vsik7nFSBTBiZnL10k66x5PuhAlU9/5GpbXVk2tgCZGvgPVEkhEFKr6VI6MkO3vg5pYTDo6uYYbCgsaH5u1qR0OqtrmX34Od8f7mr6MiUnupgIpEgN6bl1X3d4SiuktSESMjHiCuDvW306UHT+JFITYKi8ha9xO8mBGxvpKRacjjIGeaGVAvyytHrJOxspFP1R6kOMjsICotMpBS+ZFAN2OleA2caImHRyvqW6tMRKbkvOXADbtm9xtpQr8I6x6XCoZQUdGMmQu5LvKtCc8MSlVC9OqlFgo4TOKdTXJIFIsEWCDEhEsoFioTZoMUazyU3+OfAg/KAypbNAHUK3qFGhwhTcCCDTWJL9lc2LzyX3oThl9ivjvjm6B7GW7oy47pefBznol71Gx3T29sBQGERzs0pEs7DDbUdiIR8n5f65xAJ3iGqMX5FnSvA7ka40w1zT1mUpNmi82g5OSkATSeBLJkfpHQzwfPX4Y0DGv/0rAUCAKURZXluUGetuuiqDOfFglBWga8K6MBWGogE6y25y+lGAi5NJ3/fzUK+SO7DddhdYG0ofEWqfZNMX5SO3ppS+3ZY4GY/vK9RvvieHZK747tQtglCzWSnpUgYtxQJF7v3K6EYe0tpi3MnaUMzpPKGruxzNIr36Y5aa5VSKYHWAmN8OFdaYny1kkjI7ZjKVnSSyb397QxarPHsrXA93Dso5yTOWiSM/ZjC5k9w0uspqiCvbl/n9bNgVpEA8OKznUAk3M1bRIKidGEFfhmJVE+su2JC1LeDFsP+4rVnoWxZ2MKxicafXxkXwo3PuV6Mm74uEpk0WSBPlkgosNi1ciNWQcmgSKiso72VsjJcRa5d3cTgYC3yUgrx2E0DdS3627V63c4GeatUEXlp5rh1EcOxn6Qiwcb68TSRT1SJYazjajrD3pm41Fftq1/96tz/vvzlL/Orv/qr/Lv/7r/LRz7yET73uc9d9bE+xbc74kq2qorIoNcWhXAHaaofN2KwYtJpSIXsLK5WxwfmpMJxknXQPXgt/PfRHbTzzUCwqXqICBJ7pra7UI0QdtgiEoIiobY2iMsQCd43ioS6caCNylu01HTiREPuPgtJF0zBc3nOlu5xVA5QQrKXbmLvfTlMTrZvT1kCADoqjTWQFe0GzClrg/dNBSSEsEWPR8w8NJ13DfGwTJEANLWQnVY1ZjM5WNApmduSraSPFgI/CMoQMUMkpDJpiKe6wrEd0ln2woSlDrFUQpKpdGEF5Cy6Hc3NnS6dTGMM7G5m3NjuzHUoayWnlJKbTQVk+CyLasiZDyuYi1bWhRBNAOO+OwVXtawN4fx479FaoA/v0v/qPwV7vqcWwoM/9fEcAWObI5b4cZ13VFFOmgiNin/nVdKQQKG5QTREQt6SRT9aErRYY1v1Y2CnZ398Z+HfyOIMkZ/isz4H1TGw3NZQo10D+bmj3wVCyOLjMPxOd9HViMyFz015Q7w7XGg79ef6sDg/J0HYKnw25xAJWSLox6/N8cOzhX8jTMnJIFzjC8mBiNreAKElYrFvOtSSLrtuaoxb16wXMpK5k+0JlUAxxuNJlKYbbUBte0NnJiMB7xhHC9Z02GKtSKgQwjVEyUUCFwejiSWgnhCPcrvQXtD2x1oRrnklFFrpRrGQ23yiSLign7a+Vs+TuFeu4rQ6aVamJ7aG9YdrE3uDi2SyXdrcULqSo+KQRCZT36e3M2ixxrWdhCwVVMZzcDhtzxBCIJHNffTJIE6q/IQE9943E45FRMJLz4b76Bv3c2y8RpQIqhCz4vtV2iI0E4mJfbMdtDi7v7yy09ZKT6M6XHdVvHIVszpBJTSDanDhqtJ1EewUBufsWrkRq7CsJvAimQarIKO1Abem8laKC98XZlHFoMi3y9qgZMiFeFxlxUUwHE9qddsQQlAusZ9eBazzuGg5UFJQVk/mPVfV21Pn+VbhyrQzUkpeeOEF/uJf/Iu89NJL/Df/zX9zVZt+incJ6pVsafIwkY/KlfrrVTc21OQBTAIQO4PDJjwRfJR6tgIB8xH6OA7kvSM7e4iND0IpZiVFolHOdM5WBS3WGQs65DY0ioRIJNgqrGBeALIYIpzBC4nrzNcslXGFvvafCyFRN18O/33wLZ7rXmc33WAn2aCnOtg3JraGWSgh2dAdCmdChWVEXf8ovUU422QkJEI3lYmzNwbnPbpubViDSOjZliKhNTmYCkRyFoFgU3fxw+NA0kiN6E7L5jMZrAqVtzHrIU716oF57e8fHrX2mWLX/GwyM+Y9936b5/0BO/1scT6Emg6fbHISTLhm96swwd5RG0uDR+v8gAfmBFw1USSoFpEgBP2v/zO63/oduq9/ca3jl9Hi0aubG3yBsIu9p21PaoJGxVUtq1Nc2iISlCClViSU4B25HTeD9r0l1gYhBM+lIWTx7mi+bUSYHDE+DCvyQrFvjoHVtoYazyc3AZo60EvlI7RgvUBqjS5P8N4ibYFQ+sID6BtZIPAeFY/Or9lzVZAGLMtHaGE33h6OD4fhdTMQpuRkFC7KRfkINV6+NWkCWWhrmGzx3KDOdvWjRaDEjBVHabwtQ1YC0E/Cd7NNJKSz1gY3USS0VSltRYJwviEgLpKTUE+GN3qKfi/cU50L+QGzaGceGMK9LpUZAuglLUVCPJkXzUiAmJNgR0uvMecdh8UjcpeT1UTC6OLKgHYFZN0asOja9N5zVB5SuILOzMrwZL9vX5SWECK2N8Cd/flrM5UpYzNaq5XiMpCSGObXtlFaiip8frPWBoAbewndTFJVnvuRCKhfuyoTYGzHU4qRs6FlnDukhOu7UaEoRTNBLksz/ZkK3ygSxrlBrZEQn9scOXMvymRGHi0jTwLWGZy3JLF543ExO9n03lNVVxlW6KcytlYhTMJdQ+hcBoNxFWygb9PEUysZWgbeIiKhMo6isqQLeheVEozzJ9fcYO0kj0JJSWnsY312y1BU67d+fDviiTwhPv7xj/Prv/7rT2LTT/FtjHolW5Z5lKn6RlkAkMSV+lqRABN7Q+f0EIcLcnYfltfbX8zewzemePX0+H6jQpAw8xjw8Wee7GxVPoINIwmpwkRchNUzdGtifM7AexZ10KLrbrJIe2ecZUN1ph4i6tb7w2v2v0EqNS90r3O7s4sbn+AeBRWGen5x9VxPd8JKfutnTmp83L4yBXt6C4HgWi0T92IuFNHimnDGVdaG+jPutuoXJ0TC9HGMbUlPZ/RU1spH2AuETQuJ0KRCUzkTjitWf9aTo7wTq0TjNgBSpc9/+HtP9uaX2fk/f5b+67/D9d/9FVSLjGhDydpUE7DRKBKG4C0HZbiOVk2I65yEfXuCd26yultbS4RAKIkch0lXdudrawVG1a0kTeCiKxdOPGFiawiNJ7IJW3Q6DS0CEJsbJkRC4SvAc1iE87sluw3htAjPxQn/3fzu9C+8RY4OA8mhOzjveRiJhJtLFA5tPJ9OWiC0UDyTrG4YOA/GenS3jzJj/Pg0ZLdIdeH6rk3ZJxMJDtdYP5ZBmPUHznsb4Tt4dOaQxXwAmqiGHOfhSzBb/dhGmghejKdud2P5YMZLde7xjVpNIx41PzhSGpzBx+tqQ88TCZ2ZsEXvLHlUJExsUC1FQiSy2pPjddGehGslmm0sClys2tWPTdBiB+Et/Ujs5i6/dEYC1DkJ5dIWhZPymJPqmA292TwDalXFOtWPNWabGyBM4GZxZk45LU/oq/7cxOWdoEgAGiLh7oMFlb4ypXIVhcvnfncV0DEnIci8w88cjiquXC5SJAgheCGqEl67O27/ZsqO0IZxhtKV6NZ9tVYjXN9JplZra/KimKmA9FGR4NdsbHDeUboCPRuaKzXGG3I7XvLKx4PxgQBJZdrkRjwOpBIz13mwKD1uY0ONiwQfhtDLy1dAGus4GRQhhPZtQq3CeFxlxbooKktlLMmCBjOtZFTePCF1TOtzCuGqNCqiq4L3ntJcjULmnYoncrV+8YtfvFDy+FN8+8OXOb4c493yFTmZRSKhyhEQjQdBZeCdW6xIiBP87OxR9MYTmHc/vbq9cRBWP0U3TIbVYUtWXasYmn+GFVxf5qQ1ebGksSH08cWBVIjuR0gFOgxytakudJOr8xFsb35Ft16l6sz4yuXN94XDObqDL4aoWEVn3/xS+P21F5G9nYX768g0BA9OzjYIgdV180TBhuryZ3Z/mB/d+njzurlciXbYYtZr/dzhzh42n7uvFQnVAmvDjIiysBXbuh8aPZbkI9TH0tcdKm9QTBwSAoH1DtMP793nZ/hoqQi1kWLpIEWOz9j6/P/K5hf/d6Qp8VIjnGXjC/8oJOrPQMug8KgfPI0iwY4Q1kxW1ldI9Pf0FhpF6Q3H9pSxnVRu1lB4ZBkma3pwiDpbPTGFSTBmbVEZUi2dENarTKnQeGgUCS5J8DH7Q5Y5Ugp0m0hw7tygxRrPJNcQCE7tkLPyZHKc42NEMcBngfg5sWdU3qCFYkfNq3NmUddAAjyf3lzq914Xxjk6WYJQKX50jMSCTi48aBFCcFOF+87KGkjvEeUIr9aLJtqNkS2HI4XIT6bVArYCW3AyCudglbUB4Ps/JPnwC4KPvXfFYEaosN0Vqoqa/OqLNCgSZgdHdZBB/B5uREXCYIkioZtJCjtq7s3LFAneezrxV5exNtST8DpbYVHgYq0wSJRoJqapzNDlGRt5eE7k1ZAkNkyYyl44GV4JhfEm1EDOYGSGHJWHZLIzdW1fZkJfBy7WE6xwr5x+z6UtOCweoWWCWpCL8U7ISAB4LuYkPHhYzKlAakXj2DyZSW9oBXBTYaHWW8oVigRotTccTL6zWqilhEflSoyrpib1TdDi9el6y5q8KCo7Za0UcRJrrKNao7GhDlpcFEisRcKZOXsi9oZalaGExjrz2M0N7QpICO/f2qtLyN/sJmx01wuElLLOWrnceRvlhrywdN72msAn12Awi7Ky2CV5DE+6uSG8x2g/kgJn3ZUHLlrnMW9j5sVbgUtdrb/4i7+48Oenp6d8/vOf51d+5Vf4t/6tf+txjuspvk0ghCTZvYXMPTYfQX6KD7N8hE5BJeH/Z7JaLaoCKWQMIImzwmKIdDa8rjUprif4Oh8gijEirt563woENBXdo3sAJB/+Ycp/8YvIo7vUPYFCirCfGOTro0WimaR1txHZgpG4mygSwsGoRlYvkg7elCTWhDDDNSc1algTCcvzEbIZ/7TsbiG2buJP97EH32xsDPbN4BWfDVlsI5UJmUgYUYTmjDggsjpFV+NJBWRb1iqYiyi03i1ubbAmBPvZCqRCpuE8pjZH0cXi6MqsaeiojaYhBVs2taGLGhva6Kg0yEtVkPzVIW+lq0jSjZAjUY3xw0PE9u2mctJ4S9pWOHhP540v0/va55C2wkvF6AOfoLj9fnY+9/Mkpwf0vvEvGH3gE9OfgZSTCkipJooEN8bZgocrGhuabQjJjWSXe9VDXisPmgyPruw0JJlyFaJFZHTufI3h1o0lWwyo1SM1ITH05WRCOHNd1oqEBIX3TDISdNaQQKLKUVKQxkFtUCQ4Dmsi4Zw8g1Qm3NQ7PDBH3B29znekH0WUQ+T4OKoewucxsTXM12UughKKF7NbfLO4y8vZkkyTNRFNS6HyMe3iR6cIAVrrS60030j3eMM85CC/D3xs8R+5CnwV6ifXwN5mUMEcDiXCjJDFGa4Xvh/ChmDEk1H4/uyssDYAbPUEf+Sj55xjpYP1xBr8ApkptMIWSfBCLh4cSYUvc+hNAhdXKRJyUzdBJFOJ9p14njye0hs6l1EkzEzCex3F0YlhvCBwsR5Aai2axoZUpKhq0JChuS9I7BmQYfIR6nSMTzdx3fVCP4OvX1DYgo1kQp5VruJh8TCo5NT0xPFS1oaktoHU9j45JVWvLRSVq9hMFhODl9nvk8D2pqbXlYzGjgePyoZYqJHIlKEdsuv3HptcnIWSIcld6TDRsQQVwIRIWDxZ39oIx1ETWWFbupm8zx5n6Uo8fur6fzATtFijXQHZViQIAc46KuMw1tJbFNDagvFVCH90PQ6OS67vTjIyMhXsDYXL5ywvj4sqqpXauRGPE+yolWwqIOuJp/HrN7uch4s0Bkgh8M5fWpFwFoNV3658hBoiZoO8FcgLu/T9aiUZ5qGVYza36ipQ2Ul2QQjudJcmgZbBWIc1bq3Wj29XXOqd/aW/9JeW/m53d5f/8D/8D582Nvw+QrJ9E+36+KIEU+CrqE4oBvhyBLZCZP2JtcEUyJafTwqQw+Owse5OWPGPqAMX/fAQdbaP3XkPIWxxEpioH74eSIjeNur5j8Lv/P8QpiQZHEO2FVoC69cEGiDUBJ6EiZHcXaBGgKA+UKo5HiE1vl4BaAILDcY75qfei9EELS4iEpwhizL+udfdfD/mdB/74Bvo5z+KGzzCHd8DIdDPLbY1QHiwbeouJ+UIIWQMjRLTgYvtt1z/3wWtDbKKqylta0PMNWhImyz8TpuSVCSMfREmuNGOUM8XXWxwUPFDdIOYVbExHRhZI4sKA4+LsvzwsC1NxV6yidy4hjt6Ezd4hNy+jRaKJNohmtyH0SkbX/wnpFGtUu3cZvCRH8ZuhMn/4MN/hK3f+RW63/wXlDdexOxMqgWlDH5w42IFZK1IcDnHxQEWRyo022pJ80fErUgkfMuEa68jEqTSmPi56HI6OCy793WG3/F9K5sE6qFnve8jN0R4u3BCWIdbpUIHe1Bc5fZJhqjrWascKSZhi4WvwDoOo33jmt5Z+R4htCw8MEfcHb/Jd2x+J3L0CC+YapI4qIKN5MYa26vx/Zsf5Q/sfpBtt3HpwRqElQitBFqHEFWRdcEaEi0pyosHgN2M+RcHxcHU6mUbwlYIa/F6vYF5rUgY5lDQIS1OIdsElSJMTmlgHOeGq6wNa0OoQJ46A2QL/6RRJMSJtVr0PqUGM8Z7x1YaJqltIiGbIhIUeRVWk2dbO1T9HfaGHEMn8i8XUSQMZxQJ7cDFWSy0NqBRtiDphPu1DwcKgLECbIHIy3BPXNKSMgsVcxL24nXS5CLYMZt6flL/WNaGeK6kUFPBdqflCWfmjJ5eLGXx3r9jrA11TsIrr4258yBfTCSYAYUt6Omr+CJMoJSgMNMmOecdVSQS2tdyG/VnNS5csFApgRKqUR4oNX1Oc5dPkQtl5TiM1a/zRIJs/sbOEAnGOco1E/fr6+E3/9UJX/nGkB/7wT3e81y4N9WT/LEZXzmRULgCJUKlqMc/tiJBKUFR2qYC0lq39B78pCGlwPrLKRIq4zgZlnSyt/f7BjzRBoM2vPcM8mqhrSEchwgVrE+I1CirSahlk2NyxYqEqya23om4FJHwa7/2a3M/E0KwtbXFxsbqgfRTvHshlA6rWnF133uHPfgWPh8gAJlMHvKJLRmFJvIwKRyHlXrRn1/RlTvPYIeHJCcPMbvvCbYIN5F0Z/uvhtfe/g6EVMi9F3D736B3so/bez5QB1FxG/4RvPrJ6X7c/uLVTe8sIp3IzlG6kbKKpIMHElNRsP6NZ2JtWEQkWPayzYUPQHXrfZhXPofbfwXvfaNGkDdeXqymaKGrsnCuhAcnQE6aG+SsBD5O+GfHIN57RBmIhClFgnOgW0RC/IwFno933s8RObtqsyFx6u26qOJQQoI/X5GQyYRUaIy1CElDJjjv6ekOYmMPjt6cbEcIejrjUQyITA5eZ+tf/XJTbzf84B8if+mj0FoBKp95P/n+q3TufZ3NL/waR9//Z0FPVo8TLSnHFpJJRkKF5c1xyAK4oXfPHbzUOQnHrtXYIATeeqQCHSdVtreNMCWyHJM8fIPq5nuWblPE/IZdHVY4j+xZ+FwWTAjrVclEaLwHGSXoXmdTiiEhRVNT5oGBPWVgw2r0tTUqF59Lb/Dbo69xL7/Pt46+wPvcBsyEaB6YSCSskY9QI5UJ21mf8bg8/49XwFhPmqhAJECwKukUbcpLlTRd1zsIBGOXM7JD+nr+OSgaOft6A4q6uWFYwOE45ZnuGbI4xXX3EOWI4yJcm910ucR6HQxtzueHX+G7uu/lBhJhq4XnwHk3seOIFNuuTmlDaXyVg60WKhKydv1jCgdFuK90xDx5kYmEyhsKX1IvsK4bttieDE+sDeHzXmhtsC1rQ1QkZE4gkCitSdBUGLwqgYTKCkj6iPwEWQ5x3fWIhEQklK6gciWpyppchL7eWGgpu8yEvlZ9FNHLr5g0N1Su4qg6JJXp8jrIwjV1ob3O2z+xee5WIBLu7s9bQupV/NyOr55IkHIuW6KyhrrdeNn3Lktlszo+HFm2NzVKqKY1p32lO+/IbT5la9h/VOI9bPbVnCKkrUhoEwlSCKxdf9KV20BePDwKz6LD46ohEiAQNANzxna6M6WUeByE91+h6jDpOjdiPZHWQsxWQBrrEf7tmbTVlYWXIblHeUVRWnY2n1zt5rpQSr4lREJlAvG1jEiAMHavnlBzQ2nsDBkungCR4Jpg+XcrLnV3eO655+b+9+yzzz4lEZ5iCkLIQC7ESaZUChttDqkNvdBEtYAehpV60QparFHbG9Kzh4F0aEn0cY401j7KZ74DAHXtRQC6J/vR7yyacMd4ZAgByWlYBVe7zy1+A96FOrP6Va33UldAJnZ5rdb89vwkbHGGSAjBk34uH6E5B9deDAP0fIA/fYBZ0dYwi45KyXSCFRYXpwjLFAnOe+QCIkE4i4iSxCkiwTsQOkj+CefIRg/4B8Qu39v/ztiQETmc1n4Uob7LmxI/roM2FxMJSig6KsNJF4gEJTDOooWkI5Pmda4VuNiRKc77QCL8y19CWEO1+wxHP/AT5O/57ikSocbww38Y2+mjRif0vzZdYZtoST0+0EI1wXDfLILCYZ3AwOvJzlRSRFckENz5KAS6jERCZ4PimQ+E93H3ayu3WStu6pyBkSvIXYlYEK5WtTISnLOo+m90MskwKYMiQUWiD+Befh+AzXOCFmvsqS1u6x0sjv/j7F/xK+VXOWuFdxWu5CQSE+s0Nlw1jFsslZRSXNT2DoTrYS8qQvbHdxf+jajG+BXKkkWoVQlHA49POojiFFkOEK7keBy+Z+flI5yH3x2/wqvlXf7V6PfwYnngYm7zphwzU51ggVo0OFIanMWbsiESSlc2JFaWSva2Nbtbmk4W7AIw3e5So1YpjL2ho8M9plhTkTDOXUzbh253Ym0AGC2yNjSKBNkoEjrOQ5ohhGiIDqfC+6jH2V5niPxsZbZEG3WYXelKhmbIYfmIzkwuwqL3cJEJfdqqf4SgSPBRRn5YPMI4Ez7DJajJi25HviNW0p6LgYsHh9XCijYtE4Zm8NjBfetg3FIsLbM2CCEa4mfYsjd4/FwFZJOPsCBocVaN0N6nMdMtELUiIS/NuWoE7z2lK1BCczYMxzecIddCe0PekGpXAeMN1pnmWldCP3ZQ5mwFZGXtbMv0SpyNSr72+vGV5UF4uJQi4WRYxvynt//7pmSwNqzbfHVZlMZRGkuyIs9DKcG4uHoiwXmPsbM1m/NVoo+LQEy8/Z/pk8Rj0YxvvPEGf//v/33+2l/7a/y1v/bX+Pt//+/zxhvzlV9P8fsYKpkQCUJiY6CbdgXO+SY4T0VFguovIhKCYiA9fRQzFQhyZCnQx/dRVYFNMvS194S/v/4SAJ3j/bDyLeNr/KS9QZiyCXdcGLQIQebbnti3bvCiIRLMVODRKohyHHz5zIctGm9JpJqT9zavVQny+nsBqL7+T/GDhyAV6tnvPHe/qdT0VIrztpkIu2XWBl9bRqZvfKpqraYmWevv3TRZ1PqMpZkMECZWlBhYhUNKiRISPwySeZLuVJDjLHoqwzqLRKCEoHAVmUzIZNooGfzgsPn7RCp6j+4GEsFZipvv5eTjP47rL19R90mHwUd/BIDuG18iiSQVLKiAjKqE0wtMiBOhp1b068pGHEglkWXYlst65M8FYizd/xaiWjy5g2gNEgKNZjNaLh75EcLMr9rXctZE6KaxAQDdQcV8C1Hl1B9VFq/He3FyfF7QYg0hBD+2+XG+N30RieRu9ZD/5eg3+NL4mzjvOYj5CFuyv/Saf1Ko8xGyBasgqlbuXAK1veHheEHgoqtCWAZpTBYAAQAASURBVOKa+Qg1djfDBXc0IFgarEGUQ3CWk1Hd2HD5QYrznm8VgSQ6MMd4IcHkE8K0hdrW0BUZsl5RXDZhEQJvKjo6JYnKllqVIITgUz92kz/9R28iceT1pH3BddAELjIhEtZVJExNhusckXWtDXVGghdIlSIJ6ggAp2LYYr0JnSJsjqjWD/yTCEZmyKPY8pGqxVaS2tbQ68gL+aY72SyRIDHeclIeMzBnCxUzbbxTghZrbPQ1Wxsh1+Xewfy9MI1VgqV7/DrBeUzfD0ZluK8qyUqSpVbBDEaTyb4Saq5WcVFuQpOPcG0RkRAl2BVTdpWgSPCMi9UTM4DKV1hn8FY1VqE24RG2F7YxXtDe4L2ntAWn1UmTm7IOjDNYPyESdLTcrL0YswTtCsggV1//tf/wN1/j5/7xK7xy5+SxjqE5Fi6uSCgry9moonOBPIYniVBj6RuV1pNCUYbA2lX3Nq2mwzSvCtZ6nJtufwtKjCsmEswk0PHdikunP/y3/+1/y//8P//PuBnGSkrJn//zf56/+Bf/4mMf3FN8+0PIiR1AInBJB8ZnJFUOagtiaF6dHbBI2l5P9JN8gIjVkYLAgtW2hvL6S2xG36HcfQ6ERBcjxOgEsXEtKBIikyCAbBA86ra7Nb3CPnv87YR1MZlI1kSCstXa94ja1uA6m3Oe99IZUpGQLkjPbl5/6324B1/HvhFDFm9/sDmO87Cpe3jxqDnWZYqEuo+zfWNvNzaQdqfrGb0LK5CtdHCTZJAP0VVO1d5ui2133pNIhUBMGhs2V9f5ZTKEQUkZ/lc5y262EWwbCxQJycEbPPO7/6QhEc6+58dWZg3UqK49z/ilj9F97QtsfvGfcPQDP4FPu4Qxo6/fChuq10yIAa6vIfkHuKV3m9rDXpwo1UFRogiTNZf1sJvXMRt76MEh6f1XKF5YnIUhxERxs6e3OCtHHLoRz5qcZjkzot3a0FQ/SgVKI7OYJVHljWQ9BHXm3CvroMX13iOAVCkf3fwwL9r38rnB7/LAHPLPh1/h1eIumyqQFqtaLp4UpvIRZiBVCGadOW1r4Uayy1fy1zgo9ud+V4cj+my972uNvbq5YRDTS3Q3EAlCchLjNB5HkfCgOmwUAYWvOKVkmyTYYmbUUU3QokxxQiy0QDUQCqoRItmipzY4MYcMzYDdNJAtjS+1cqHekdWKhNwb9nRY2VlXkbAoLHBibViuSEi0YFxbG2QnXBMCsqhIMGJakQASLxQyP8UmvYVKp1nUOQmlKxfmIjTv4ZIT+tmqzHpSODSD8J7OOcbhyF1qv08Sz97MOB2MuPug4KVnp337SigcjrG5+nDAfidlo5tSRSXCuIg5M0vUCDUmREIrcFEoCptPefgLG4KQazjnlwYttvdbGbDeNNsSQuCcwzrObWwwrsJ4SzWeDF6GC74TU/YGQmBnbscMzZDcjildyVayvTRrYxbWG+qMKogBlHa8MDfiImhXQBaVvVD1452DcF97cHLKB57fufQx1PCAveCkd5gb8sqwt7mYUHyroZVklJvQavAEQg5rjMvq3KDlREnKKoSIpld4LDYGK7a/x0qKK7d0FJULi1DvYlzq3f3dv/t3+exnP8u/+W/+m/zcz/0cn//85/n85z/Pz/3cz/FH/+gf5bOf/Syf/exnr/hQn+LbEnIy+ZZC4urValsgRR19CEldw7hAkSDSbmMFSIePwoRUBh9++iAQCebW+yZ/rxLkblQxHN8PA15C3WTt1U+jrcFt31x+7ILpiaeQNG8mTuBltb5Xu8lHWLAiXnnLhu6slLWpm++f/veKtoZZdGSK1hJjw01yqbUhSpfbx+Hw6Pg+50gXHysy6+wIISZqh9YqehjsTCZnzjuSSJqcl49QI5MJWiq8CEGNHkcvynObytByhC/H2P1v4n7r/410lvGNF9cmEWoMP/ivY/q7yGLExpd+HWJYjkI2qw2bcjJg3ZUba0n+YbJyDRMiwRMe3jISCT7rgRAUUZXQuTOxN1jvpioK6xaLmkgAOHRD8GZObl21MhJk9Ow7nQabSczaENagCMqPekW4jL331y5qQxCKbb3BH9v+1/n+jY+SCM1Dc8KrxSRX4q2GsZ5Uq4VEghIirOxdYvWjfi+H5gQz0xcvTEXDpl0AuxtRkXBWH2BoS/C6w8kwHON5jQ2r8Fp5b+rf+/YUYS1iRn4N09WPDoWM52oRhE7wVYHwjl4kjdo5CRM4xvHa6oj5SVOnqYA0dHS4ltdVJAwWZAusVCTE1Tfdqn9MVC/cC4VoSI2GSGg7h5IOohovtYXMIpUppSsX5iK00ZAhFww8zGasDRDuD867uVaIhft9hwQttlGHLN7dX/zM1UIzsoMrX7nspIpuFp5VzjvyONE4L5dkMZEQbC21JcF7z9iOUK1nx9Gpoao8iRbsbc8/U5KWtcF517T/SEFT/6jPsaNUrsLjGYwm18estQEmSo/jMgTn3hm9wYP8Prkdk8qMnupRumJtRUE1c1+pQx2rK6qAdC5UBa5rxxmOK4Z52Pfp6GosHEJcPLDvZFCgpFh5L3grIWWoEq2eoCIh5L+YlfkIEFs5rKN6ArWMzk3XhNYtLVdp6SgqO2mYe5fiUkTCz//8z/PJT36Sn/qpn+K7v/u72djYYGNjg+/+7u/mb/yNv8EP//AP87M/+7NXfaxP8e2IGKYHYZDuYnihMgWIMMGXLcm/6O8s3IzfvgVAcnoQFQmCZHyMGp/ipIQb75n6exlzEtKj+00Og/c0Xv3k7CBu9zZL4ZknEpqwxVq+H8Pq1hi8TIIWF6xAeU/3nAGe2LiGqLMVdIq6/cFz91mjoxI6MqUiPDSXEwnBq99+njnv0fF9zlkP6pWVmixCYJvPuG1tiO+hUSS4pp3CnUVFwjlEQiJjo4VyeOFJZNJUZYokQ3TC8q159fMU/9f/C5yhuPEe7n/0j1yIRAgHrzn72I/ihSR78E2yu7+HkhKhaVRYG2pyLm4sUCPs3vsSN17753Nd87daWQrdWNmIDw9v2SgSwuSreOaDeATJ8X3k6IShyTmtRgxavelSTIiyvWg9OLKDmGsxExTWKBISVPyd1ylKSqTu4uuVoqpACJrmhhrrBC0ughCCD3Ze5E/t/BFeSiffuVvJPHH4pLEsHwHiZ1DXfF4QG7JLV2R4PIfj+1O/E2Z04XwEgL3YEDjIaSrnSHogNSdRUXxZRULb1rAbr5sDcxy+03Z+YD+ydUBoCkwqWBdCanAG6Up6MTtisIBIEG6iSOhERYIHToZF+JwaRUJFJwnvvyjdWvfbprGhrUiIOQNVNe+Frf+tNOSRZEtk1oT11qRaJWasDRDJVIcsFpEl81BCsZVsn1tXuIgMWQdZNk8kbCZb9FuVk6vwTql+bOPZmJPw6LgiX+CZTmUW7Q2PF8S6Cs6HDAI4X5GwKCNBCYVxEyLBeEPlyqmgxTof4ea1dKHkexK2GIihehIvYr6LseevgBauQCIZDCff8zw2TLQhhUQieFQ8pLAFqcwaBYKWGi0TKletfc5LWyysyp7NjbgowmTTk5cW5/ziWtoF2D+ePEcHeXklGRtSigv57IvSMhhXdNN3WD2g90GR8IRQrhG0CDWp4a+8ucFaj/PT6turtnRY58L38SmRMI87d+7wgz/4g0t//4M/+IPcuXPn0gf1FO8itKsckbFHHnSVNyFxdT6C72xOhRtOIU74k9ODusCR3sNvATDefQadTssZ5bWQk5AdP4iHEdsBorehJhLYWUwkeGdByqkqyqCuiEGP8X0IU6KExK7R3KCG0dowE7RYOYuSiuycFW0hBOpWCOBTz3zn8nO1aN9CsaG7lH5akTDX2hC9+tM/cuioLhAz57lZYPX1MdKoTtokRXRMTNU/6nhu11UkSCHoqQ6djkRnQWXRrsoU/fD66su/BtYgb32A6g/8Sewlg27s9g1G7/84AL2v/xZSCrSQ1M+YugISFgQtesfN1/851+59kSQ/nfpVR2ZcV+Ea2ImrtQgfVsNb1gYA1+lTXX8+/M3rv4tAcC3ZnM7lECCExHsaRcKxHYS08ZmVnqa1QWpU/G+rExQSJeWUmkTIaSJhU3YWXqMXWQDsqQ4/vPW9/OjWx/nDG9/dNE28VViVjwCx5hPBZcSNQojmOniYt4gEZ8BcPB8BQnNDL/KLRy0rcl568jj2rqsfjbccmTPWxb4JtoZUaL67F9RO+9VRuM/Z+YnByEyIBAdNBetCSAnOI11Ff5UiwU8UCd1IGjgXVGPW+UYFUPiKThquee9bpMoKLFpVTxPRrFbOBi42YYvKNqu8mUgbK10dtlgSzo3z06FqXmdQDRaeu8tiERmyDupaQmsn7+siq53vtIwEgG5HsbURjufwZJ7oqkMsT6ur8bovgvW2CXtMl1Q/1likSJBCTgUulq7EeDtDJITn5iJbA7TrHwOR4HxbkXD+98J7T2FzlJwELdZY1GbSTzanyIM26vdTrUEkeO8pfYmeIRJqy8TjQCmBtYHksRcgEu4dTu5Jo9zOKSbOQztEtoYUXGj1fJhXFJU7l5gC+NKrh3zz7um5f3cVaOdOPAkUlcWsQSTUuHIiYUGOhVIiWB6uiEAxJpAS74TA2ieJSxEJ165d46tf/erS33/1q19lb++tX2l6incehJAgJN47pBANkSCjIkEo0azU+yVqBKCZ8OvTg6b6Lzv4FgCD6y/MPZzU3gsApKOTEHIo4oTHg3Y5OgYtskyRUEv220RIWIILv6uJhKoIAYNrMNlySfVj6SoyodeSxicf+mH0d/wQ6Ud/7Ny/nUU/6eDjcU4UCdMPQe/nG92cd62MhFlFAlP2FYEMORjMEAmeqWwFgQg2Be9xg2AzkRvXz30PXZXG7mnLpu5ODY7bRIS89QGyP/QTZLPExwWRv/Dh8F7yM3A2NDdEJmGj5cW9mU4fuy5HiDioS8r5MKof2f7X+L93PsaW3mwmt0LOEwkAZ7eDbWf7wau82L1JT8/77JUUeAc92SEVCR7PsRudo0iIEyKdBEVCy3qkbB4VCZOB456aVyMY6zgZFmsNYNt4Pr3J+zrPX+g1VwFrHVouzkeoobVcN4B/Djf0DgD7+SRwUdgqNJ6oy604NTkJZ5NzXOcj9LLg6Qf47eHX+F+Of4Ov5+sFHn+rCLaGF9PbjTLk2J5RCI+o8jmGaBxDRXsyxXlQQq7OkRACbNWsgi8kEpwh9zOKhBi+5f1EBZD7Eo1Hx9txsYa9YdGquhCCXmdxBWS9CiVkOLkSGVpLRMiC6NY2H4rWa1obUCnCVMhydO6xrYvLWgwSPVGVXSY87LKWiieNna3wjDw+XTzh66oep9UJY3N1n0Ebztvm2ksuYG1oK2gEopmwVq4MdsvWF2lV0CJMKxI8fqJIIEymz5tE19YKLeaJhEX2hvMgkeRrNDvUjQ2zigQldZMbcVnUFZDj0mLdbBL/ctw/mtyT8sKtRYi0cVwecVpOE1cXUSR47zkeFGh9vq3hbFTy//n1b/Kzv/Z1yregmlFKFjakXBXKygYV8hoEp5KCcfF49pdZBLJg+ppTUuIcV6ZIMM5F+8TTjIQ5/LE/9sf4hV/4BX76p3+a0Whywx6NRvz0T/80v/ALv8Af/+N//MoO8im+jSFVmJnWE+26Yq4qYmDiJGjR95f7peV2CFxU41OkK0nMiPT0AA8Mr78wFx4lsh4uTiyTo3uxgjCELXZHIdm/7G4ilwUtRkXCnLUhVg01IYemoKtSyvOYbO9b1oYZRYI39HX33NCZ8L76pB/+JCK7eNVqFicy3vtpa0PrAe4WJOha79BmQfVjfUwqVBh670I1ZzpPJNTS/TaUkPhyBFUYhCyq/pxFKpMmW6M7EwanrgXySN56P9kf+rMIpUOgoxCXliz6pNNI0mU+CERC/N2G7PFMco3nkxtNW0KNNnmQFPNEQld22O0/CzptqjCVN41CxGU9vPecVEPObryAVwlqfEZ2fD9M4Ga2p9SkEnUvrvI/cqM5z/ZEkZCgba1ISGPRo2hIIFmFALC05VtfFLRorCdLNOUVrxY8KRjrSZPF+Qg1tJYXJkZq1IqEA3OEr+1AtozfscsNJqaaGyLqfIS2reFuFQi53xl9/dzr3XnPa9HW8J7sGboya67hh3ZxvkatSOjKDnjOnbAIpRHVeKUiwdgcE79RdZ2qrHK65QjvWmGLrgLv6MRV4HyNwMXBksnwJCdhehtVs3Ifvq8dmYYKYxE0cHXYYu7KhmytZsa2XieI4nTtKsjzcNkJvRCiUSWsG045td9GkfDOGgDvbIVn2NHp4klFIhO89xyVR0+kCtLiqKIaZt2wxcr4KQVNCFwM9+WxGaNaZG1eWE4H4dwvJxImigSPxzXWhiAXXyto0dVEwvR5nG1uWAdaJqEa9px7ZiAw7JydRwsVSIbH+M7U47vK2JCCtcZYynvP/tHE2pAXfi1CpIbzjrEdz6kYpBDRf3/+MyQvLYOxobtGW8PJMDxPjPW8ev/JqxKUkuTlkyMsRrlZu11DK8m4uNrmhsq6xddJrIW8CpgF9ol3Iy71lPgLf+Ev8PGPf5y//tf/Op/4xCf45Cc/ySc/+Uk+8YlP8Nf/+l/n4x//OP/Jf/KfXPWxPsW3I6QEJETPsUjCYFWZPCoLRLNSzwpFgsz6VNED3x8dsnMSVt3M9i3o9FELUqj93nMA6KN7KCHwBEl9fxSk9MXmteWTd+eCrWHW2oCcUiRQ5WzpPsatvuGKqmjyFGYzErz3c5PiJ4GO1milKJ1rJOzSW0Tr2D3zskDrHckCa4P3LoxelG7IIiEmGQl6RpFQb9b7EOgohcTHfATR3V7LqpHKhEQo0lj72IZ68Xvo/MhnyL7vzzXbSkQSKqYuO0gRAhevOzUehAdC3UIiBH90+1/nR7c/MfdA0i3yQC9QJIRtK0DgnUco0LE+zktFKRVH5YCuzHhx41n0c6Gxwbz+O8213n6oSikabr1WDhy6EdjpKr+m/pFWa4MKigQhJiSQqAqkEqRMPpPrcbW9Des8nVRd2YP3SWNVPkINLUTs5rg49vQ2EkHuK4ZlICxFNb5UPkKzzZnmBoDjOh8hVj8abzmxYaI+cOMmzHIZ9s0h42hreCYJapq6QWPfnYTARTs9QK7DFnuqG+TD58k1VQKmYCvaY8Z2HOw2LeSRnFDIRlX23q/9Ch/66i8iq3FTuVj4EvD0u2Gfp4PVq1MhyGuxPH+pIiESCURFQti3byxZ9T167ItGGTG3MKgzhCkuVAW5znu4qLUBJvaGiyoSQkJ6OBfvJGsDwO5mmHQfLyESALq6x8CcLQn3XAzn18vdcN425NF5YYtay+YzGM4ELpa+xDhD4QqSFpFQv6+Nnlpqnaj3W68WT6wNwbaTnTMprXzVqCAGUZFQEzSXUSRooTGuOnc1v/7uzy76KKFjbsTj5SRIEdt21rx3j+2Yw5PJPovSM7bjtSerhSuobEnly/lnsV8snZ/FMK+ojF2rjWA4nlzzX3njYK1jfBw8ieDBGs57xoUhXdPWUGdgXGUdZagJXfQdDuqWq8Ai1cO7EZciErrdLn/v7/09/tbf+lt86lOf4uWXX+bll1/mU5/6FP/9f//f89nPfpZu92oreJ7i2xRChQl4fNiJLFwXsswRMvyqXqkXveUr0koIyq0w4O2OHrF1HIiE8c2XkEIuJBKI9obk6F7MfAzTg94wEglbK4gEb0Hq6arDaNNoKxJ8ldNVaWDVV5AJjRoh64cBdoRxFi3U3KT4SSBLEjKlKa3BST0J1ptSDsyz+d6HFWqYUSR4F9iBqEjAuRBq2VgbWmGLrborh0cKiRayqWs8Lx+hRiIVmUrpqQ7JzORMCIHcujH1mWkhSYU+l+hZBdsNK/wyH4T0XXH+o2FKkbCMSIhwsdFCR2WGS3uc2Zwb2TYv9W6yobvol74nHMudLyGdCzaE1lHUgyigyR04coNwHbfeexUHa4lIJkSCTpH1oyCJ388qR4lpImFvQdCibxQsgitcLHgiOC8foYZQrXaWC0IL1QRSHozvhfNvihA+eEnMNTdAE7S4ExUJx+Zsivz4wvgbKwfEbVtDfe+sWyf2q5NACrZW2myc9AD0RHch4TgHpQFH3xTNKuTQtr4L3jcd9R2ZhfuDd3TGR0jvyIqzRpFQ+pDIfmM7HOvB4epJR164mrteQCQsbm6oB6k+hil2ZEoouYwr/JFIMN6iExtfM7tniRcSWZxdLDxkAcat99C7DJEQJ5zr2EDaqCe9aSKahoB3Cs6zNkBY8U9EwlF5iHHny6GNM9wf31srW8F6S1VnJKxxbpZVQFpnGNkhxlXolqWxJsi2N5ffLyb1j0Fh2VgbhODaVudcz3lpy1DTbBzjqFa5HfMYLqdI0CE74hwiYVn+QE0srPNZrYJUYeK7bhbIg5NTTGuXZeEpbdE8I89D/bfW2yk1xbqKBO89x2fl2hkBw3xyXK/eHSwMr71KXHXwYBtlZSmq9fMRtBZU1lJdYWZDZS1qwbUiJVRXZB0JCyzvbjUCwGPFhP7oj/4oP/qjP3pVx/IU70YIGSZ2NWuehpFv6KqP4WYxhHCVtF0iqbauwf636J/ep3sWZLnj6y8Ge8QCTkxEqbs+fYh0BnzgqrtRkVBt3ZhMoGbgvUPomRVyIScr79FLTlWQitCIULiqCRCcRU0kzAYtlt7E1fWLB7FdFAmennKcFkAqsLqDrsYoU2CyOvSPBeSKb4iEqYwEF3IkhEoaskgKPQnUnA1bjJu1MS9DCYk7i/kIm+sRCQA7un9u2nkNIQRdnTEq16tlW4RakSDzs0kFpPcLH0I12ioEvcDaMLV9F1avVDnJR5AIdpKNpiJTXnsR0dvGj06QD15B7exivWsmge3PrKmAtAMwBuEMXgXJbz3Y0zJBuwmR0Ay+akVCmSPlRM69KXvNpK6GDwZHepmmqAyltWT6nbWC2cY6+QgAYaHdr13W6LyfOv839C4H5piH+T4vmzyc/2Q+12Jd7EZFwiCH0nhSLTgZ1daGsN9DG6Su1/UOJ3bAiR3wenmfl7JnFh5v29ZQY8qWkQEtRcIoTvgVklRlVI6V138NkfRIzBE92ePMhlXircYi48gjOVEHLaoqb865qvIpa02B4cZOJBKOFk9a1PAAl/QYjsP9tNuRc8qJ5daGuMIbayZTkTbhvEIIUnSw/+DRWQnj7rwiAYIqoRwhTI5PLr+gUk/qel15KWls09xwQWvDOzFoscZus3LuKFcE1HVUlzNzyml1wl62/NliveVhvs9JdYRAsJ3urNy/cYYqfi2yNYmER8fVPJHgbVj9jqR6jZNoa6hDJRehfs/eg7MXDyrM7RgtdHNMSSLYjTWTl1EkBPhzj6NwxZwaof36iwYdzkJLQVGtl5BvnOHuYRiT7Wxqjs8MHhgVhrJXkq6xsDM0Q7TQTXOGjtOpkDPrzlUkjAvLKK/odtabhg3Gk/NzNnB86/ABH7yernWsl4FWklFuwqr6GoqJi6CsQqChXjM3SEmJdVfX3FC3QCy6ryolKK6ISCgqyzlOo3cFruQtGmP4xje+wRe+8AWGw9WD5qf4/QVR5wzURELdVW8KpPdoUzS+cLkqI0FIqs0bAPSP30R6h+1tU/S3lioSZG8Hk/UQ3tE9OwABqsxJ4ySv3Lq+/MHmHGLWbtCQIn5ibcAjbcmW7lGuYNSboMX+bNCioa87a+UjPC5EMabnK6wPkySr4+B9xkcvZm6uHhBlmEhMtTZ4FzS/KmnIIoHAxb/RM/kL9U3b+bCirqS6sCIBYDfdZCtZkm2xAB2ZPpZfdkIkDCYVkOdI+du5COcrEkBL2QQt2qwbarfa4ZRCol747vCPN343khmTYxBRKQGwozYQCEpfMXRFs7JsvW1WrYO1YRK2WKcu1J+vrHKUFOzITf5Q/7v4w5vfM3fc1oWJeaIlvTSZSMPfoajM+fkIQEMWrSNxLY3lbFROLT7XE/J9cxyC95yNNpbLoZO2mhsGYSVrtvrx0AQi4Vayx4c67wGWqxIW2RoAdtUmGkXlDccUiJaiqAlaFClCxfeyzuRWaaSU9An3mqlVNDchEupGBN2yBCQmRwrR2BtyX3FzJ/zu4VE1v+JnKygHCDNeWV9YWxvGs9aGOHi0ysZjSoIeIWaySCGa41RpOO7ZjAQgqE+8RVSPNxZ63ArGy1ob3qlBixCaEurPb5W9QQhBR3Y4KY+W+t6ddzwsDjg1p3RVj8Ll5/r020TCedYGaCsSJscqonXKOcssVVkrErY2lk+wVBR5AphKYP36K/nGGSpvphobNnuqucZG48s9J5VIGnXRIngfmh2WLQBIoRvF02WhlaSszFpEQm7HPDwO+7u2m5ClUb0TVQnnoXIVhcvJVCcSCZPPQAqBc/5cS8Awr6isX3tV/mw0TdS8fnfEo/zhE8kCgbp2EaonoEgYFdXaQYsN/NU1NzjncW5xzo+SIgRBXoHEMi/tuz5oES5IJPz6r/86//l//p/zX/wX/wW/+Zu/CcA/+kf/iE9+8pP8yT/5J/mJn/gJvu/7vo+/8Tf+xhM52Kf4NoXSTS97PVER3qOdaarxTNZDRt/+IkghMFs3p35W3HwvDt8E6s3tViry2PaQnT4AfGNrqHrbCJ0xH1sX4d2cZ18IEScE8Xd1fWGV04tkwLL2hmVBi957emr5+75SOEMv7SJEYIOnAhcnRzR1U/BRdk9VEwnT1gbRZCTEHvVWM4eIJEvYKlPWBhX7qV3MSJAXIBIuikTqUD16yQeDnclI0AjOe7a2yYOlGQkR3nu0njQ22LS3kBzTL3wMALf/DXSZT11r7b9UQrGjwjEf+mGzstz2sGqvmvpHp9Mo4AYRFUOhjUQghORD3ffM11sCxvuwwq8knVTheWw1d4Nhbq4sd8ETVn+8h152/uRICoFQrBWWZSwkSk8NGuvmhiM3oDJj1k6UWoFalXB05slLiFX2TfVjTSTsqS0+3H0vGsUjc9IEMLZR2xpeaNkaIJC116NaYN+dgZ0ELjbVjzKlvtrWUSQAyE6Pvo8ryS0iQXhHHq/BWpGgW40HOhIZte0rx7DTdSRaYIzn+Gx6AiVNjjQlohwzjBO3RZPhZYqEOmndiGpqv9G5g0Q0P1NpHXy2+D17nSGKwZSq46IYXLKxoUZDJJQX+1K+kxUJsJ69ASBVGcYbjsujuXu/845HxUNOimP6eoNUZlSuOncSaXw1yUg4p/4RJp/dYMYyUBO9yYzl6fTsfGuDEKKZfForAkG85o3X+ArrphsbNvt6QnhcUpGgpaZ0xVJ7gvUW481SIkELRemKx5q8aSUoK3dudov3nkF1xslp2NfedkInPheqUjK2o3OPo3QFlatIIsnZJqBEnce14vnhvOforFiLjKoxGId7Tk2kHRzAmTnluDxaexsXhufKqhBrOOc5GZRrKXraUFKQL2RuL46Q/TAfLB72Eyq+18m4WAUXFRTv9upHuACR8Bu/8Rt8+tOf5pd+6Zf41V/9Vf79f//f5xd/8Rf5T//T/5Td3V3+7X/73+bP/bk/xzPPPMNP//RP8/M///NP8rif4tsIQibNDEOpFBflTJkvSWsiobu1QvYWoDq9JnARoLz1Xpz3ZGLxQ1ciKXduAdA5vQ9eNLaGcus6ErF6n4tsCko1pMgkcLGgo1IymVAskefV9o02kRASjOVbYmuo0U1SlAp+4JpIkLOKhNZ9z3qH8gJRZyRksxkJuiET6vOidIaNA6QJSTEhKJx3JEKB97hBDKR7gkRCKjRaSswlmXvXnSgSALRWnJc/1LYzKFs1QZuL4L1HC4GMrzFZN7Q4zFybcvM6cu958J6Ng9ebrnuYqEiawMXa3uCGTXNDLT1NUUGd02QkJBNFTEuRIOTqMAhrPGkatpWmiiT6GB8Xzoc0k8vU1i3a1jCv0EpwY6fDRu98GaiUcu1OduccqZ4OZ+qrLn3ZwQOPigP8Y+Qj1NiLzQ2Hg0n140YnDJ699421YU9v0ZEpH+y8CMAXRq9Mbcd7z2tlsDW8d4Htoc5JOLCnCGea+tBRHbQosuaSWHcxSUpFj3CvHFatoAdvGdeKBLlAkWBrtUJNJFRILNd3w/3y4HD6OyXKYSAsXclwGK7tRZPhbh222M5IcFUTMGhleG0qkqZqOLwR0RyLSMK+l67WqTSo7qrL1xDWyoDLBC0Cl25tuGzl5FuF85ob2uipPmfV6RSB5b3nsHjEUXlIL9rkpJD4c+T5YeW53dqwhiKhH7NBZogEJULloRaTZ7/3npM1FAntfRvDnEd/FSpX4QiKwLqxYbOvJuTa2K5FoM5Cx8DEZecvVD/aqYaKNpTQWGfWzidYuA0lubad0UlXn7vSFYzsiNNIJOxua7rRBmSqYBUx56g8Cls02SnA3PkX50xEx4VhVFR0s/WfDbW14f3vCWOwuw9KUtHhqDy8ULBoG0EpUpHb8UJlgxBBdXeVGBWGcWHorNFU0YbWci7X5rIIGRaLbTBKCqx9/OYGYx3OrZEl9C7A2kTC//A//A984AMf4HOf+xyf//zn+dN/+k/zX/6X/yXf//3fzy/+4i/yl//yX+av/JW/wj/8h/+QD33oQ/zsz/7skzzup/h2gtKTsEUhsDFfIHUFSR4Glqa3tVwdEKHRFNFLb5MOZudWqCZc+nCSlLthsJydPAAcvanGBrnaUrCISJCqIUXagYtKSDZ1j9IufgAtUiSUzpBK/ZYQCd4aUAqtNJmWGDevSAiJx2LK2uBw6PYkuOX19s4FnSU1WVSnR9N8xqrOVvCimXk479FCY4fH4AxIhejtPIm3HQ5ZKjTq3MHBMrStDQCJXq1uEM40q6kukgErVQlCINTE2mDSDkqoxXadGy8DkJ49xLZtI9HZUB/XrqqJhFFYFfWuFbSocbSIhCRrvgd1Haoo83Nlhx5IowFQSkE31c1k7HFgrUNr2YSjXhaVsYxyw0Yn4cZOZ20vqhCg1flkkY9/LJXEzkwom+DC8tFUuOpl0SgSBp7jmerHMzcKpCSS7Vi1+F3d9yIRPDCHPKgOm+3smyPGbt7WUONmfdzmJFgyIjHaNDaINLauiPV9+0LQVSEAdFi1asu8I4/XZJ2/0SYStMnxtBQJMTj0xl7491Tgoi3BjPFJD5xtFAkbKxQJ49w1kyZZjRt1QUW432UiDfkI8bnUtjaIJNzXzNJbisDrFJFfvgrycS0Gj21teMcqEs5vbqihpEYKxVF51KzcH5dHHJWHdFUP3SL5lFAr5fnh9bapcrxs2CJAKlMEcmqFvihds+2t/nlEQj3xDfd8dwEiob6ea0XCRl/R68i62XqtatVZ1ETMsuYG0yIwFkHFCsjHDVxM1sjoGZkRpa0aRVNQJMRKzUKsJEQgtqmYATrelwRi7u/PUyScnJU458+t6myjDlt88XaHLJVUxnN0FPb/qHi4Vtjl2Iw4q045LB5xf3yPN0av8ebwNe6N7jRkcRtSTtpBrgqjvIqtPxdTJGglqKy7EqWiXVHLKKXAOvfYIZPG+vA+nxIJE7zyyit86lOfYmsrDFD/nX/n36EoCn78x398asCptebHf/zH+eY3v3n1R/sU35YQMb0bghzWxUnmlnZ0ykAk2N75igQtFePdoDAob78vhB/Gny+CFAK/cQ2rU6Qz9MaHEyJh6xp6ieTYR++/WLDd9oS5TSQA9FUnTH5mJpmiKkK4JOBa1Y+VM2yozrnv+0pgK4RKUVKTaAAxRyQ4fFRptF7mHUkVH1BJZ/qceBfOB0yRRQqJabZd+1N9Q1A4HIlUmNMguxb9vel2jCuGFJKOSjGXHNDbTmxtMCWiKlBxFXgZajWCk5qyG4ijZTkJ9VaUANEQCd05yWsNuR2sOvr04XTllBDBmxl/1A5cFN6CM80gLxEK72kyEtBhUAutVpUqR7F81bnec3sg1En1Y0/+AawLmRFaykvJKmsrQ2VgdzPj2nYHfcEQSK3EudLGOrwx1XLuPddWkPvk5N5SuIrKhR516x3OewpX8cic8Fpxny+PX+W3Bl/mH59+nv/v0f/Br5z8M6oW8bVXNzcMJo0NdfVjbWvY1ZvNvaSvurw/ex6A322pEupayFlbQ40b8bhP7ICCaqJIiNaGruqEAVi83taBEoKeDtfV0Awm909nGftobagzEsrpjATvfaMCKHwViITd8N1oKxKkyUNdpdKAmFgbFikSMtlc13VqPcWwRSREa4NIpq7/kNcQFS062oVW3VJ0hjD5pasgH1cZMLE2XFSR4B5rv08auw2RsN7qdVd1GZsRp+UJJ+Uxj4qHZKpDMkPga5FQ2OU5CdZbHL6lSFifSBiOp+0HWmo2k82psfPJ2YTA0Xr1dyuNnv6yiooE1vuMx3bckBeDRpGgAxEclTqXDVxUQpG7xXkU55H4tR3gcSsgz4PzjjNzRj7SMeRYsNlXDZGQFy4oU1ZYXEpXUrqSNKpJlFBzBErd3LAIRWk5HBT0LqBGaFfB9rqS52+H++Wb9wu6qkducw5n8hKst4zNiOPyiDujN3lz9Dpvjt7g3vguj4qHDM0wqCFlShktL7NQSpKXV6dIcN5zPCjPrWBeBK0k1rgryUmwbvk4JWRD+Me2dBi33D7xbsPaV/Lh4SHXrk3kx3t7IWG//bP274ri8YJTnuJdhNC9CAS7gYsTcFnlrZX6nXMHplpK9p/9INnGNcprYZAsYHH1Y/0alVDs3KT38E12j98grUZ4IN/YY2vZ5e9coGLPUSTQNDeEh2dXZY29odMKaqyDFl3axceAw7CK4Onqy6e5XwTeVoishzYKLUFJMGI6bNF7P7UCB4FI6MfJxFQ+AoQJQbSpCNVe2ZFzQY5CtLbqgyfSnIQu5CeZj1CjK1OOq0vWJekkrNpXRaiATLchDnwWXbE1aVClfUzah9HR0uaGsLobHl61IqFMO2wuI8d2gsJGDB5N1ToKEXm1UKXAXqyAPHMjKlsgXTWxNggNLSLBJ5OwTxlDLEVVNDWXi96ndaG1oj3gTbVsHvbnBRqugnWezVRRCkFeWi7CATjvGeWGLFHsbGRrqxBmodU8OTALE1eU6kFR+zzVioS71QE/e/irFz8AC3fKg6ZVoVYknI3h4em0IuGRCfeXPbU1tYmP9N7H14s3eLM64JE5YU9tNbaG92S3F+62I1O2ZJ9TN2TfDnk+EoFjE8MWZRecD024axIJQoTKSIChy/HlAJFtgfctRUKtYJpWJDjvG7VC7g3gubEbzvej4wprPUoJRDnCCwUIvEoYjEPt1qLJsBBh0jQaO0ZjSz9z2LLAx6rT0s8oEurvhoQshkZ6FcMWV46xYxVkfopNeg3xvS4Gj21tqAPk3j2tDTDJSDgd2ubzXwUpJJnKOK6OsM6SyMVJ94lMGJlhCAVU820bzrsQVmjWtzb0OgohwpBinLuVNZ5N0OLm+ec9jfdXY0K/zDqKBOstlasaBefZaBK2COHzHo0dw5HlxvICraXQQpPbvAlTbqN05dKGrBoCQWUreIICzbEdUdicwVl4z7tbOt4PokqpcOgYHLks+rt0RbBp6NjSIBTGman3LQRLbX4nw4KiNGxsrz/2G5uiue66HcULtzO+8fqYN+/lfPyjW/T1BqfmlLTMSGQ4/rEZUboST1CAJjKlo7uL88SsWqhoUFLEPAF3JaGBebQ19C/xXFYyWAgr4+g+ZqyYtQ6x4gkvvHhsRYK1PlTFvwVB6m83LnRltE/I74eT8xRXBKmaEbYUAluH8VUFahSlrv2d8zeDxEtJefO9EOvsYDWRkEjJeDuENN549HsAVN1trNZLFQn4mLK+UJGgaBrpZxQJiVRsqM5cTsIiW8PIFnRlyoZ6a4gEnEFkfbRMSKUm0YJCzbQ2eOYmCM570hhTPdXYENEQCK3zIkVbkVDUm54JBJQNkfAk8xFqpCp5rLXyqeYGJVCIpR762sZgsj5VDC9cpkioqwMlPiT8E6wNyRK7jujtBGWIs2QxdwMCERGkqeGYOjKjFydnh26IsKap10pFyLOQkYjwOp20NsQMDOEdylVIFqsvrHNIBUpNviNaSzqJonzMFYMQPqnoZurc5OtZjHLDRjfhxk730iQC1JLH8xQJnk4WVg8VYkrKek1vNaGLq9ARKdf1Nu9Jn+Ej3Zf5Q/3v4sU0qK7uV48mf9dqbrgTf9xUP9ZBi3o6yHVL9XlP9iwAvzv6RmNrSITm2eTG0mO6kYTjPnADMAV4x6hubVAdHCGAdd2VFiEFPdFBENLqi9F+uMc6w3jW2jAVtliAp1EBFL4CHJs9QZYKnIOjk6qxNRDvZ14mDOPC6LLJcK+eOOQOYUpsNblnF77OEtGBoKufXUwUCU6tDltskHRiFeTFVAntFci30tpgrG+k7e9UIqHXkSSJwHs4OVtPCp+pDtZZtEzIloQbSyFxuKUScectpmoRp2soEqQUDXkwa2+YRZ2PsH1OPkLYd61IiJWla+T/GFdhY2ODMZ5xDBvdiDaK+vO+rCJBywTjqoX2htIWqHOyYpTQSxUNV4W6Neb4NLzHvVh72W0pErRMKFYER47teIooUULhZnIqpBQLbX6VcTw8yZtwx3VxEm9oUobP/vnbYdx4cFSRFxYlFB3V5WFxwL3xXU7LE0DQ1xtsJdv0dJ9EJkvnbSqGXc5CqzChftxJdY1RbjDWX2qhQYjwnb+KzAZj3co57CoiaB0478lLw+KlpncfLjTSunPnDl/60pcAODsLkvTXXnutsTvUePPNN6/o8J7iXYEZRYKv/fOjU2QtZe2dT4HPEgYudjCvVCSgGeyEQbOOK7Dl5o0YcLfkZu5cIAwWKhJa+2rCFicPv42ky6PqNLYdhJvILJHgvKd0FS90by6VsF89PCLtomSCFKEDu5LTRILz9QRh8irrHbq2NswpEvzkHM08WIsmI2FibWjfU5WQjbXhrVAkJFLH/m638npZBtfZgLNHqPEAdU0iFHjrYYEEta5+rNI+JtadLstI8M6HCbkpEHUtZ9JBLzlGIQRy+zbu4bfoDI9wey+EloFoTmgPJ/fUFiN3wJEdcqM1wEuEbgIYAbxKG0WC0hmVVEhn0aZACB2l7DPnw0I3U3PWh06mGYwv73MNxIokUQJUyIlY12doXGgD2eqnj6WIgLqR4Lz07+DJ1UohNXHVJnwfpJD8iZ0fwMfP1Nf/z3tc/G8t1MJ7UE92eL18MEUkQFAljIpg/QDYqasfW0GLs/ho9328WtzlW+W9xirxYnpr5Xfgpt7lG8Ud9u0pwlu8rSYZCarb1JWuHbYowve9LzsM3JhhcUyvHOFtGckB6C5TJDjXUiRUCBdCW2/spbx5v2D/sOJm3yJshc/C/bgwIQMGVhEJMXBxbBFmTGWj6kBPZOL1qnV9HxeSRs5sZQxbPO9Sj5+vzM+wurd2QmVeuCajY90J/d3xHd4cvc737n0iTCwuYW0YxUmkUqJRNLzTIIRgd1Ozfxh87ns76y1hbySb5/6NRJLbnK1ke+531tuGlFGStdPYN3qK4cgyGFlurnjUrVP9WKMmMcoq5JWsE7ZYuQrrw6TzeBTzcvTkc+73Ho9ICM/XoHrIWgskTeVk/C445/kXXzrj2Zspz92a/J0WauoYrxqlKxlVAzLV4fAkzF9qImFibbBooSnsmNKVUxkaEK6BkRmRtBQtUkhsrIBMopxCCrHQy382KhkXhr2tiy2pn4zCfbHbCQ1lva5ib1tzeGJ4837B+1/qkcoULfSlrLLBnmHmzr2SEudCg9Jl7Aht+GhruEhTxSykhPKCVq1FKI1bSYQ/TjZEZRwPjobsH+UNYf1ux4VmMT/1Uz/FT/3UT0397L/6r/6rub/zv0/kHE+xHoRUQQoeV1/rekB98gAAk3RQ6fkr87ItjydMcs8jEpSU5JvX8VIh4gpssXm96QVfiCjZX5SREJfsw3/qWpEwmZR1VZCWVd5MPHRRdWH7YXAytDl91WU7mZmYPyH4OtBQpyidIT0ILeZaG2rVwPRZ9hN7wiyRIJgQCFJNyCIhsElNUuRR8h2W9ly8N8i3WJGQCI0WsmnKuChsN+Yk5AOkEGghMPiFN9DG2jClSFic3m4BjWhC5nzaBSlXDqQaIuHsiJF3SBEUP0JKfGvwsqu3gqzdjxCmaFbaEqEbUs2pBClVk5EgEbikgyyGyKpASN3YJaaO23nSBQOLTiIbOeRFgqSa7VqH0sFaIIQgSSSVnUzQV6GqHJ1MkV4wD2ERpBIxvHLx3K8m3RIVlCCpUsFLOnNBTCw9cSNrPBZvJYFUPbYDxq5oJtl7G4I7j3yzma0ujF3RNB/s6vmJ0p7e4oX0Jm+U+9ypwvftPQvaGtqocxIO7DHOVhg7avJFeqqPqRb3by9D+O5DX3YZuDFnlNzMT6ZWH7N4r2yHLUrvwFZNGG3hynBv9o7ruwlv3i94eFQibhWNrQFo1AidhKVe80lKvUEUQ6pYT6ljG4NEolDhflh/dK2wRStj2OIacy6fdBDlEGFyfDKv6lqEevW615FrKz/++aPf5LQ64VbnNi/139vUExalX3tMNglalO/oMdzOVsL+YcXRaQWsd07XQS0LXyTPt85SC1fWUSPU2OgpHgCD0WrW6WSN6sca9WcbJjtqrZDCRUGLm/1JdXajSDhHObEKEkFhiynSxnqD87Yh5u48KPiXXz7jm29ofuKPT8Z9SmoqO8Y4M6V0uyqMzYjKG7qyz9FJOF+72+Fc10TCOHcxOLKuS54e85S2oHIlfT1pD6uDJs2UIiFMKNtqPuuCGiFNLv7dOo5EQi+bXHfPP9Ph8GTAG/dz3v9SrzmWy0AJhXEFdubch7yA0DJRWxcve1/IS8sorxobyWWglWBcXn6hokZp7Mr6YiUlxWrf2kIM84q7D4ecDku2+sla4Z/vBqxNJPzVv/pXn+RxPMW7GVKG/3mHlAofSQMdV6Sr3uZydUB7M8jg246DIuddrMlb/lolQtZBtXWD9Dj4g8vNG2HSvOSm651dKOMHaKKNAZFOWxsAMpnQUxlDOyaVNZEwUSRY77DOcqN3/Ymw7gthKpAaVIpSCQkCq8Bltf0geuU9CCWnJjsCgSprImHmnHgaRYKIBIv3LqyQRLJImUk3dKjUCw9q6RxmcBx+vnkxIsHbKhyZWp8HTaQiEZrSmUu1ZEysDWcgQgVkWZiFd9A6D8GkfUwkX5ZmJFhQ6aSxwcW/X0V2yJ3gb0/PDjnDoQmfgZKClkK7Fbg4BFtRxQCpVCQoM1392GQkCBnCUIshyuYI0V8cLCkWJ05rpchSRXHBbIMaxkKWqmby1M0URwMD56yGeMJArdvJrkRNqOI5Ca0w8+/TWIfWojkHaSIZFVfTcd2RKbtqiyN7yoPqcC4nAWCjG1ZED8tAUm6p/lI7zEe77+eNch8g2hrm2xra2FGbJEJTecOxHUEZ5MApGi0UhTMX6saWUiAk9OucBGER1YhxbEfoiDTcE2yFihMiLyTCO3SZ0+lOFAngwTtu1s0Njwowo8bWADCobQ2d8LeLsgnqlaLRqELYiipORnVWxaaIBBBTIbCSic3CiBLwSzMSrPP8xhc9N7bhIy9p8GNkMcCuSSRc1NaQ25zTKjxnBrFis93TXlZ+tcIgMmYX3a91DmsXk4pPEhdpbrgItEzI7ZjKlVOr6hArDE04hxdZVV3W3DCLiykSJtYGJZK1GokKmwfSmXZjw2Rfj2ttgGBPGNvRFHFl/PRKd23hODkzGOMbsk8isd5ifEXGY5rgZ+C956w6RYsEY3xzrhtrQ7wf1LaeusFjm52p7eQ2x0cl7NT2Z3IqZFw4a9vdzkYVw3HF9sb5FcRtWG85HYVnd7elTnrhdsYXvjrgzfvFuUTht+6MOR0YPvrBjYV/J6OaxHhDOnPuBfDm/oD7WpEoQTfTdDJNqiWJlnRTvRbZOcoNlXVs6Yu9/zYSLRnmhrNRyeYaVc6L4H3IWVh1zEoJKhNafdZ5b957Dk8L7j0aYqxjdzP7fRGyWGPtkfif+lN/6kkex1O8myEUIGNat4KWDxug6m6SrMFyBi+5xOGDJxmPPkeRIOMau9l9hvT4Ph5BtXkdgY3rTQvgHUIvmWy297XA2gCwpXuctIL9aiLB9bYZmDFbSY9NfXWrKOehDloUSoPSJEIyFh7VCavlTY6BA9VawWvCF+P7q/3z4Xex2aKtSIhkUbviU1dFVDqEldumGWJ4DPhwDuOq/drvZ3wCQiL6F0uE6ukOw/Lk/D9cgPkKSIHPF/sG22GLUxkJC5a3nQ9hYXIYiASb9WIt6YprejtMLNPBI5yzUBNWcjq3oQ7fO7YDvDUNkZAIjawVCTqdIrSCIiESTGWBzML3bPaYJRK9aDIpoJcpRnkFXHxyYb2fmgBliQre+iXKgBrG2Caj4SogpQgiG+cXJgnZaO2oBwtaKxbxLZfF7WSPI3vKverhhEjYnOQ21EGLTT6Cmrc11LiZ7PJMco171aNoa1h9jqQQXNfb3Ksese/P2KzC9dCLK4qei1VaCRG++z0Z7pcDl+MTTVEcAZN8BBVVO1ZqyHqo8Smqysn64b0VrgQEwluu74VtHZ5aTGnQvcn9dBi/lxuZQ9gSvyDQtk6oH48N4DA2GINUWmII5Aaz9WBCNGGLCEBXVHbxYPa1ffjqm55v3IfvetGDzqA6Q5gtvD5/knTRCsaHxf7ktdEHrpQg0cGrXZSuyUxYBJkfgtAMx3Lt/XrveeX4G2zK6zy7syya7slg9wkRCbU8v1xAJFS+wlxCkdBfg0jIC0dRxurHjfPPfaJb1gYhm/ybZTDOkLu8IRtrdcRmf7KvibXh8tJxLZNwnrwhiSqjWbXE2WByHo5Oq6bOtSEeHrMCchGapgWZcXxc4X3IEKnvA01GQumi7TUhjw0e9f3Se8/IjhbWjQvE1HHLGAxYNzc47zk8zeOa2sUmmJUrGeVm6jgBbl/Pwgp97jg8NlzbXTxmfXhY8qv/9BDvw2tuXpu/Z4XWDL+QkNrdynDON9WLR2c59hgQYZJ9Y7vLczc25l7Xhveek2HRXLeXRSfVFGXBG/sD3nN7k17n4otC1vnQ2LGCDFdSUFbh/abnqCHbVoYslez0rpYE+3bAW9A79xS/7yFlmIC7ujZxWi5Wdc+vfgSaCVYdLOS8m6twmoUSEoSn2AstD6PuLiL2ui9lcL1FLBnshZV3GVbe49/4GSKhq9Lo97Ngqma1uYiT0Wvpeu/3yuAqRPTqC6VJY6iU7sSqP28R1uD9dAK2xaGQk/qytrXB180WNZEggfAZSwQmqW0T+VQbRFCRSMQwTCLkxrULSeW8KeLq48VnbZlMEMBxOeCo9b+TashpNWJocuyS0CobPzs1rgfpcml44yRscaPJSJDONJP3qfdDkPHLqFiwWRd1DjkmNq+DVEhTIeuwUsLDr31Mm6ofqjixnLkBVZSSpyJB2bYiYbIvIQRE5YkwBUIKZk9J236wCGkSsg3MOfWJi+Gn5IBpEsIMzws+Ko1nx5yy8+V/3JA9jwMpQ4Disowp66c9o1qJtljpsfFMElQ696vD5md7rbFaXf3YNDYsyEdo4/s2PsoHOy/yB3rfsdb+b8bWiX17xiiucNfhncBKWegshACFCI0PwMCOIekwEuEzrRsbaluDTbu4eA2qatzUPxrCihne0++GSYD38HAQKh9r1IqEmkhYhLa1wUvdKAtUEqsf43Nl6l2KugIy/i4pllobXtsPF0Jl4vGoFGEMolzv2mwaG9ZUBhzkEyKhDpSDiQQ+X9Xc4AwiP0OUwwsRGK8Ov8FvnfwGvzv8zbXC/q4SdXPD8ZlZWcV7GYiYk9CG9x7jDKZWJKwgZWbRVECuIBLqFfJeR6412arrH6vKhcUVb1d+BoXLqVzVePsba0Pr+mpbGy57TrXQIROhFbhYurKxzoV9TyarRyfTBIhEUiwI/auR25z9/MFamRBtlDE8UcuQKwCwt6ObsUdtbfA+ZIokMTiyHbxZ+YrS5lP5CM1xi+nWAxmDAWsiYTiuOB2W9C8x8a1c1QRj1sQHBKLwmZvhWN64vzik0lrP//5bR81z6cGjxfdDmCdD2pBSkCWKfidheyNjbztjb6tDN9M8Osk5Gy3fLkBRWQZjQyd9fKJ/q59SVpY39geML6ECtNafW8uoZKjvPK8CepQbXrt/xoPDMZs9fanP992Ap0TCUzx5CImQtSKBZlJbo+puLlcHtCCjvqCeLFnvSM5hC6UIryqvP8frL/8RvvniDzQysKWDYc/yqi6pgkbfu6a1ATN9E89kSkemlK6aqBGSDmfSs637bCyolnqi8JOGCYQkEWH1NOlk+DhUViYqB1o319qGIMqoSGhbG3xMVKhXN8XEviIQuEiy1Mnrdfp5nWvhB2GCdGFbQzkOyohLjHO2kx7v6d3ipd4tXuze4PnudZ7tXON6us223iARmoEZc1QOGNtianXftTIS8B4dw/hmD0OaspmkV2kfL3XTYJEstDeEB9qksaGL4hwiQSrkVmgi0WcPJ/sWAryY+vduY28YNYO7VLaJhHROuu+bVpUcLcXc5Ng6SJRa+iBOtSJJJeaC7Q210qF39oDuN38bfDg33VQvTMBujjf+6tab/5LO3d+j+41/caH9LoPWEu+gMzhohYY2nS0kLSJFS4FS4sItE8tQ5yScxJwECM0NUeU/USSsCFpsY0v1+f6Nj65975nkJJwycjFoUbZWaC+4qiaUaFVAjgBJHk9fV0wTCSbpNURCYkPLRN0qknsTJr5CcGM3rAzuD6YHb01jQ2eipppFY20oAJU2hIBIJtWPzk+TzTJ+52viQ+hyYdii957XDybX66PI9XmdIYozsKtXj+Hi1oaDBYoEoAlcXBUcJsthyMmxBcO4Ur3Oft8cvR72Xd5nXC2f/C2EM8jxIXMs5ZrY7CuUDJOCelJ8VUikZmzH0/52b/HeNZ/3VVsbJtWP64mE22GLddvEqsl1Hsco9fVcT+YXWRuM9ZTV5YiEevvlFJFQTFlX259XPamvoaSmsMVCIiOQCPc5KY/I7cVaUEZ21BDmh6fh+7e3NblvSDkJnRwXrjmnU4SILTDeLlQkKCGpXDmxcc5MRI/OCrznUiHAuc3Ji7Cd2fC+F2J7w5v3F3//fvvLZ1Pn+GAFkaCEorAX+x5nSRhL7h+NVz77RrmhMu5KLFBCCLY3Uoa54c2DwYWzDIxzOOdWqurC5+cWBmbW8N5z79GQ01HJ7mb2+yYPYRGeEglP8cQRwhYnRIKcCe2reltrrUqr2toQb9be+6W+4KnXRBXD2Y33UnS38SKsmq/sNV5GUIi48u59Y23w5fRgVQrBVtKndKYhEkxvC4XgWrree70qeGdBSkTtS5MKiUIASaKnaho90wGUTcNBbNaYClt0M4oEoYJaY8baoEwBUR4uRJDJJ0LhTkPw20UaG7z3YRKR9kCpECJ5ASih2NQ9tpM+u+km19ItbmTbPNPZ44XedV7u3+bl3jPcynYRXnBaDTmuhhS2wqbdwC95hyjHKC0WViMmccXR6gwfMxxMurq5QQnRqFZM2jk3QBRARHtDcjZJ9hcLHoxNToIbTsIWZYKKAwark7l91RYWWeYxbGn6PYagxRXHJ6CX6ZUP4UUwUemw8+V/Qv/3/i/SB98EgpzRryjvLIwlU5Cd3AMg3f/WlUgDtJZ0B/u854v/K8++8uvNz611KCGmBoVKSrS8rApjHplMG7tCu73hmejmubUjqLzhNNYyXpupfnxc3IiKhFM34sjUioRWMNoF72FKhApICIoE7z15vB4n1Y/hPuOy3iRHpxojhCCrmxswiDhgvRnf8sHZ9L16EK0N/Y6EahyCSGbQ64bPbliAF4oqSk+krhUJaQgHbl3mIv6fWiEhknKhIuHhaSQoIg4H8ZrQKcIUyCX3gTYuogxw3vGwOGj+PTBnzX2pnhzly5LOvUMUZzilEdY0RMLGOft13nF3fCdsAs/d8d1zj7MNYQpEcYZYg1RZBClFE0p41faGRMyvRjvvsLhLWRtqImGchzyJRbhI9WPY/yQjoR7fLFMkOO8Y2uGUerMdtlhDtxocHitwUUwUHaHFwUzZqdqKhMMZRYISCuOrOVKkViKU8bk1vkCdqvWWsRk3SoKj47DP3e1pArKuZMzj6r+cUabkNg/50isyBlxsfBEi2OKsdYxyw/GgpN+9eEOX957cjokxVVOKBIDnb4dx1v2HBdUMcX9wWPKvvhLu3d/5cnim7x+uJhIqX15YjbLR1xwPC47Plm/7dFheKjNpGUJzS8rpsOTO/oDqApWQ1vowJF1BJASrh1hZezkqDINxxVYv+X2Vh7AIT4mEp3hroPSESMimiQTT21xrYBqsDdOe7WU1ec1uhQy+bx+8+QKBF8GisKi1wdcJ9UuJBFE/JRaGLdboqSy0TAyPAcg7fXaTTfoL/LpPFLYClUBNJAgZVtMFgMe1QhHxfmqh0UWixsfVcjFjbQg2jxi2KGVsbgjnuQ5bFN7RGTxg7+ErbHztn3L7X/wS1/7J/4R5/XcAkJurg9+mUOWQdJD9nRAeaa92ACmFpK873O7s8nL/Gd7Tu821ZBPjLUdmjItKGpWfhWtRgZt50OhW9WNz2PF1s4qEus1CyBaRkHXXqgStAxezs4n0fdEAZ08FJcWhG1JF4iURGhU9tU6l8575GAgnqnzOLgHhO3JeI0OWqhiIuv6gxFromTF6HJZw04dvhP9fh0m6XUJMGOPYMSfIGBqqiiHq9GDh314EWgg2zwI50Tu512zfOE+ixPQ5EGFysWyicBncbuwNEyLhkx+T/NkflNzeFc0EvyuyptnhqpDJhG0Vrts3TbjGuqrTXAkX5UKlFHQI9wSLo/Blo7SYrX50LWuDjvkt9eQ99xaij/fmRriG94+nz3mtSNjoKYQzCDM/Wa3D1ZwXlKbVvqAnAZAwTayKeM9sznVSLAxbrG0NNQ7Pmi3gdYrITxeSG21cxNpwVB6G6rnak+5NMwlumhuWWBuEGQfrWnwu1UqI3jlEwkGxP7Vae298scpvYStElSMuuALaRmNvOL0cGbEMSmqMn5bn22gdqOJK/UUUCVkqG8vgsiDD07P1gxYh3BMhKhIaa8PibZeuoLRFM5E21jdS+TaRAFcTuKhFQhHzBawLjQ31M6Yo3ZTaYZZI0EJjnZ3y6hcNiZDT15skMmNkh2vbaYrYtFATKY21YXv6XDfNDfG70m7wcN6FfIQlVlpFIHNsfMaGiWioujweFFTGXmo1vvIVlasaRcJs48H2pmajp3AO7u23rteWpeHlF7r8oe8OrOvpwJIXiz9bKRTWmbWCO9tQMmQTPTgaUZTz2w62hopOerVV54FMyDgaFNw5GK69cGHd8kWJqe3jl445IJAj1rnHrpp+N+DpGXiKtwZKh4A+QKoUFwkAl2SQdKY8dCs3I9XUA+Tc4DBq8mGS0uoJXeQLFQnR+7+w+hFi3kM0Q9ekgJmX4nVUSkcmiFHIAnC9bXbT83usrxy2QuisyYVASpRUSC+xOHxbORDo9slLvSNBTRQJ2TSREM5T6xxGskgIgUgSbPxs3v+1/40Xv/U5eq99ge7RfWSVg5CkN19C33rf2m/FV2NkdxuSbgiOdFcraW1DS8VW0uO57nVe6t0kURobwynleICSkwrINtrVjzWWKRKcC6SLkjREQpV0SNchErbniQQFc40Fk+aGAaWP3eGtjAQbWxumth0JI1nljZy7ho9y7/OIhFQrMi0pL2BvsN6zNZpItJOHbwQbiZZkqaJcYG8wLqhmtgb3pn6e7X9r7f0ug1CS3iicX4Gndxr2Ya0nTdXcuU61vOLAxUAk3GsRCYkWXNsKO26CFs+xNVwWdU5CRZxcym6whSEuvAKjZGjBqCfhAzueVyRUMWwx7bWIhMAK1IqEgioQiLbk5kb43fGQqclJ09rQleDswsmqFoZMR/9yzoQQaBQJCR4/rfJprA0TRcIqIuG9t8K/D89aF4XuIGy+UpXgvb+QtaEOWryR3aAbCZBBeQxMrA3FEkVCyBMRIBRWaEZxwnIegXF3FIiDngz3tvvFnQutZAqTB5LnopaIFurmhqMrViRAIHjbq9ETa0NNJKw/dBZCnGtvOI0BhOtUP8IkI6GsXDNpXWZtyG2OwzVjpTpoMdFiLoBzErj4GESC1FQuTIDrxoamLWIw2TfAaOym8jtqS4GJRHdhcx60SAQhBKlMKWxBYRfblmZRtJoWitI1721vRpHQBC7GibZu5SSUroxkxOJw1aBIMFMVkIJQB3h4mtPrXG4SXbkS401D/PRmFAlCiEaV0M5J+O0vn3F0Yuhkkh/4g9tkqWyurYPDxcRbUIPYCxMJ4bg048JwcDKeuw+MckNh7IW+M+tCSsHORsqj05y7D4drWQutdWspFoUQlEuIhMo4js6KKydHvl3xlEh4ircEQiZN2KKUqkmGN90thJBrS2U1Gud9E+B3rgRcCLQIr5GC6LX1DcEwh7oubNlkTkSSoZ2R4CzMyOyVkGzqHnIYrA3Z5i26avFD6EkiNDZMJrVCSLRUTRUjad08EQZ0s9aG1FmaQIKpjATXtAU025YJ3oWMBIlg0L8BgFEpg83bjF/6GA++8/spfvD/ycb/4y9z409+ZnnN5uz7iKSB6G2Hlfekg79iRcIypCIJoYXt5gYRPfQz460maLGtSGg3N7TgvUeoqLRpKiM75+Z+AMjtWyGosRxDHrfbEGUT7EZ5/MgX5D5aG0SCjiF0XqdNt3iN+jMRVQhbbG/QOhfS4M+p/xMCuh2NWZFtMA9P//R+8y+VnyGjNaibatyCQUJZeTqZonMUpNXVdpi9pfuvXmC/i6EE9MeTSXz/JOzD+8V1dzpWp14Vl1DnJJzaISM3P2heNx/hsqhzEmr0ZDdIQlt1oeuizu/YqAMX3Zixr9UGMSMhEpY+6+OzmJFgcjxtRYIJNcLVmJ40bMbbx0HMISgr3/jYNzrgpUSY+XMnTEEvC5/UqAATX+NUW5Ew/c2QUchVH6/QJcYwNXAeFZ79cMnyPS+HZ9PRkFZol8BLvVKVkBeuflTOeaIXYT8GLd5Ir7MRiZpRHhQ5WUMkzF+VwhSIatiQySOT4H0IDe1kq5+rd8ZBLfThre8hkQmFG3NYPlr5mgbeBfJdaqhGl85JeFLNDRAmke2cBBufP2V1cSIBWjkJS/IcTprqx/VWrev9OxcUBgLRyOrb8N4zNIMpX/+gqX5Ucyq2q6mAVE2+QD0prfdzGve9u6WbczIbuCgQVK5aSCJAeF56/Fwg5iKEpoUhOqp16n31e2ouMHNWkVA3eFSupHTFVIPDLBoFQus77YFxYchLe+mQwdKWODu57mYVCQAvPDOdk9C2NPzg9+40r7mxF87BMntDnSFhL9GaIYRgs5eE4MXx9Od5NipRQjwxS69Sku1+ysHxmPuPRucSmsaurn5stisF5QKFBcBgXDEuDd3s928uQhtPiYSneEsQ6hQjkSBk46E3va1Y0LjepZjIUP9YNwqs036gI8st40iwzgJY+NqYKbDM2lC3NgRFQhhsAvizeSl1X3dIxuGGvhE97W852kGLEDIShEYjQkNBOpGxg5jLUEtP4gpxtoFokSveOVAz5ygqEsK5hd97+Yf52h/4s3zxYz/Bax/+Yww/9IOcPft+5M4zE4XEuqhyRNptVBFCdxqJ85OGEhItJKYT9l03NyRazkn3kwXWBrPE2mAjuaVchYikSB22eB6EzhAbYaKpYuBiTZS1H6SJ1GzKcNz1TzUavUKRUFtYZJnPPfyN82gpUfL8Y8ySsGq/zkKljUGLnZhzUOdLNPaGJORGtFOUg3TU0UsgOQ4ExPA7vx8vBPrs0VSjxWWQmDFpXCWHYG+oFRmLktW1CgGu5yU9r4tMJlxbkJNQ40krEuqchBo92QHvEXKxjWYV6r/vyzpwcaJI6DaKhGht6PRwScva4CctCoU3gEeUA7xU3Ig5Cfsn4ZzXaoRUx1VPmQRL1AwJJaox/bQmEnyjLPBykpEQbFrt9xC+X21FgieEj9aoQxavb8GtHUhU2PVJ+6ufdBDVeNKGM4Pan97tyKkWnWVoFAnpHv2YQzHMD8GWLSJhfpIpqkFQd8RzOyzD3/Y7qxUnIzPkqAxKned7L/LCRmhEujN649xjBUKLkDf4pBtUCUuaNc7Dzmbd3FBdeXNDIhIqV1JFFZfzwVBZh1ZexNoALSJhwQS9LCer8utaG5JWTXM4Jr9QkRCaBoqplfRJPsL8vnqt5oYG3l84c0Ygg6VgJgOjzkfY3NCNtWDW3iCFZGzHC0mEGolIGJrBuZ/75P2vtjXAZJJeZyTU7yO3OSMzOlf9Ckyt5gsRVuNrm99lMLZjqvi9lHLxdffczQwh4OTMcHxaTVkaXn5hslBzM9Zs7q8IXJx9DxdBmii891PBi5WxnI2qK2lrWAWtZUNknNfkUJr1iYRFQY7ee44HIYj6rcw7eyfjKZHwFG8NxGSpLnTVhwFPIBLWVyQoEXz4QWFwfigdhMmUi00NgQNwqGWrvs4FxcGqVeFakSAE8toLAOT/9Gewh9M+0cxLkihZTzdvrPX+rhLeOxBiErQIICRSKnQMrfRprGmsAyPbnmBA3/kKAPq5D89s3AWVSQtCacDFJAoJUlAlPRCiSV0PJM7Fbzv/f/b+K+aWLbHvA38rVNVOXz753Hy7b+egZlazyaZIimoJ1thjyqStBypAIgzJkA3DgAG/GIYeDAH2A+WBLQuiRQiYIeTRWJY4VFPSkHKLbHaTzc7sePO9J58v71RhrTUPa1Xt2nvXDt93AvtS5w+Qfc+3Q8VdVeu//sHlI0RnpyIzhI4f3tTvCng5ZURehhCOaxWQMw8yk+rHeUXCrLXBu0Nk1dhgVYTT0VoPLAAi2BvKPAAp/Gzi7Dh2dqAZoVBhEGd1PGfxEUktI4FpP7wxIWhxjZ9rEitaWpKuqG7032tJ7BA9OsEhGD3zIb+u+35wEmlFFEmyWqhSURj/ADG8h7AGk3Qotq9QbHvSLn5Ae0McCJos7uIQJONjxOgEpacbG0oopZCKh9bcAPWchIOpv1tnOXzERMK26lVhtgI/4PfX0bN3oYtA4patEd7aEBQJVf1j+B0ktdaGYox1rlIBjF2OcBZMCjrm0pZfj3tBBVBVP5bcqdIIm0N9sOoMIhvSaQXfejrJSLBy0trgJf/T10NE+RqIyK9//VmztDU8e8k/ZO4GN1sVuAiAxAmJTE8aZ+PLweaqwEOAUTGkH7IyLqotemE/DcwAOT5ZTCTYAjHu42o1x4NxIHtWxPiUIYs70R5brS4vbD0HwNtrEgnCFJ6wV3GwnpyPSCil2mnmqlnkh4VyNrrMmshtjhSQBWXHWeofYWIZ6A/mBzllY0M7kWsrHYQQU4GLAtlY3ZeaMbkrZoIWQ6Bmg32l16BIkONDf66eATo0X6Q2nQlanIQ87m6XKoFZNadmWAwWkggAkYxJbUq2pCoSfNNCfftL0mI2aBHmFQl+OZqRGTI2oyqDpI681oYikeR2QopIKegPs3PbGvz5l1ZEQjtpJiTiWHJpz1+T/uVvH0xZGuoo33PvYDHxJoWcChk9Kza7MceDlMNTf1yG44I0NySPmEgAT2QUxjJcSSSYtcYbZQXkbPbCKDWcDvJzH9c/jnhCJDzB44FQlKMPKSTZhp/tGm9dWqwOaIASMkjIvCJhVdgigBaeKZXlc6EEzYILmzOgouVMo1RV3kPyQz+H3LkG2Yj0t/8h5ta3J8sNoXHoBGaaKh4LipmgRagyHmIhMc5WFhNVpL7JImy2cw5R5Ig7L/vXn/7wzJfboDKpQSpwhO8JOmDnqho1G9QK65A/dThTgNTIYC3wK+S74x/2TNQixDIiq4gE/+CuxfRAAxYoEupEQr1S0kGkZJWPYJPOWnadEjKoXPSJH/CWRNns7FF9oFmqeOr1j7PnuoxCFkSRUZatlt/onM8/WAdCCNqtiGJJ9VwJY2B74AmRYvMC6ZV3ARDt3/CDDQHtRFcSdICscHQSTeso2Br2ngIhSC89Bzy4vaEkEvoblxn3fCho++gW8YLqSyEg0eqhRndciecDF8HbHQwWjWJTdps++sAQQlSqhJZMQjo8KMTZwxbD/5bWhiNzigkKtZaMwVlU6ZevWRt0McZZS6tSJOReFVH4mfSLgUgoAxcHZWNDOREnPOlbJxJEkSJMViWgj9IJGWCCIsGrDtwMYRZk/7XWBpiQEMY63g5trM9e8h/c3Qh5FqdMI2ohxv3GCsSqsWGNfISy9nE72iEGeqFZo0+BTE9oKf+DSWd+gzIf+uyI2r2haruI7VK7Qak8uBRdJ9KCd+08B8B+dm8tuflUU4OUCys6V0FrUYUFPmx7Q1VjGPI1Clv4GukHVCQ0WQYmtoazDUyisgIy85Mq9UFsiaEZzhHFTY0NJTrlepaKBGcR6QCR9c+kSvDNF17RoWq2ikqR0NXsbE4P7kskMkFLvZBEAE9UGGdIVxAJIzOaUruW1obZfASYz0gAHxxZ2ILc5nNBi999fcj/9v+5xXde8/dvKdTUILzXjtjZaJ3ZBlbC5zLkZKn//GxjQx1Ph5yEoxDaWbc0lNjbjpDSW6cWVabKc1RATn1eClqx4u7hiDQznI6y8Nz9eGbutZac9BcTIc458nUVCcq3NswGKJ8OM3Jj/52ue5zFEyLhCR4PpKQcjkghOHz3D3H34z/PaPfaYnVA09eEC5JxNrQ4rD6FS/IBIVD4FHq9YJlesr/8hi5COwGASLokP/oLyMvvAlOQfv5XKV7/IgC272cRZW/3j0YCZXI/c1+3EYSMh8gFRUJQhkQ29zON5f7FsnH/bZ+u3d1F7lyf/m4nvMWjDiHDJJ4nEpzw+6isUTPOoYRcS7o/tahs6HMeamGPQkWg5CMNXKwjlnpOkSCVqBpB/Iq6SnWQJxPSI4+7XonhLKr20GydRStRIxLaa9t1APT2dAVkmQM6a7coawTBP+A551BhYGWjqFKLlKi3c2iTVnYJ/xvyEv510U6UtzKtkPsb6+gN7gBQ7F7DbF7ARi2kydFH/u9JJJHCv7f8uk6sPdkA5LteYp1dft5v6+HNcw9SAKITP0gbtvcYbF0DoHdy01s2Fn1GK8xDJLcu6V0EISehNkir2xoe5bXlUrQN1KofnVfinBU+tNDRDYqE+4WXEGiUbxHJx+HKLHDJpLVB4BBFOql/dDnC5rhw/S6tDacjGGWupkiY7BMnFCKbWFREkfp1SYIiYex95giDFf56kogImM6CEIEcLYmEsuGhzGS4fQhZAa14Uk1ZKRJOZ84JoXBxGzk8RI6PpgZpZwlaLImEi63LiCKlp/1vt2/H4Awt57d7qrUhVD76fTjZvqrtIjELaxmts9wKioRLyTW0UmzFG+yEPI+ba7Q3iGJcHT8no4UVnetgkpPwcJsbwDcIDIuBH3zYDCHqRMLDy0g4PmPQYomSzMgL/yxkXDFFrBe2YFQMiWcCAvtLrA0TRUKoMTQ5wmZeAdRAVCyCrxIsMLPVj/15RcLB8fQMuRCClmqvvK4poenn/YWvl00LcSAAnHMVadFkbWhSJOjQ4FGGNdZx464fcN++n1bbXD8GWslzNTWUyG3msyACwTcbtFjHU1cmMqJZS0MJpQR728tzEnzgYrEwuHMddBIfvHjncMDJID+zGsE6WxF4Z0UrVgzSorE9AsKzg/Vqg1VQUmKtpagpDAtjOeynVVXoE3g8IRKe4PFAKhB+QCLxaf9FdwMrHPoMp2HJrlvcWun24IkEQTljK7CweDDrDGJVKKKKpmZshE5Ifvg/Rj3zUXCO7Ev/jPxb/xdu4Ad4oru71no+bJRBi2LqYdhXNurwYG8rIiGlPsFunWXjzqsAqKc/1HxTnyVj6oqEsjawtLNIgcMGtcIZLzsmR3a3/bqXUJEPxDxHMNB5oISctDakQ7DGJ9Er374AoPIxMnhpi6imQJGSIni+pwIXHSghqqBFE3fWtuvApAJSD4+hyEtDyZzjY6emSIil9ud/GCg4PT9jopTChJlKVaSVXcJYi1qjsaGOWCtaiaoewBdCODohHyHfvQZCeIUBEO/7wUkceXtDUViy3JBoSUsW6JDjke95sst2tih6uwjniO+9ufa6TsE5dLCM9Nu7FZGw2b9NvIRI0Vqe2U+8DImM2NV+VFpXJew/4qDFEs/EV1BIrkVekWGtW8u3PwvvbBB0hP8d5MGH25rJRyh0glTeWmarc3A8CVu0GVa3IVy3kkiwFQQZ944ng+Epeb7UPnDRFl7NkA1wKqIT3jNMnVcVhMYGgfCWDuGmKLby+lhZG5QBWVRqhtLW8MzFiXd2t+f/d39WkQAgI5xOkIP9KTKhTPbvrmFtuFcGLSYXwBR0VUkkjHC6TYtAJNSsDaIYIbJJ5WOJikiIm5su/PLukLucRCbs6L2KVHym9wwAN4YriARnoEihnKVWemFF5zooKyAfRXODliEnweaheUA+eNhigyJhUv14tsFJuQ5lBaRxdipwMbUpuc3nmgYmqoAGRUJ7UtNYFM6fB8YgzNksKEJ4g6NxEyLBOcfpcKK+2N7QCOHXvyQuzoJYRqR23KjEAL/99XyI0diSZt6aVeZr1FEG541nbDKxTGip+YF5aVMZZ7Xsr3O2HjRhbMZIJMOwPk1BiyUu7ETsbUdsdBU/+n1bC99X5iTcW5CToITCOtNok1kXZfDiwWnKODNLifcmDIo+99J7a9d71hFpSZabhfYGYxzGurUUCVIKrAskc7luo5zRuKD9pK1hCk+IhCd4LJiEFPrBiAoefevcmRQJJSlgnCFak0iQIVFXhv8WsDgszrmVQYC+GtLN/S3+2P8N/dInAMi/+Vvk3/lt/1rvj4ZIwBlE3GB4VRrlQmZBsDZok02FqLnxgNa+l4zrOVsDeNnvbBVRmBLHoapMBBfYfFEF6p3F2uCK1FtNajP84PMYhIofG5GghcLELZz0WybHA5SUKEE1A12SBEXUCQqcCZorIAWiZm0ogiJhHbsOgEh62KTrsyxO73s1iJRzquSubBGHB/dYaJwDWbY2RPMZCRJZs7yMK7uEsQ6tzjgjLXw11LLuZuMcSZ4SjY5xQL7jlRbZBZ8/EoXARSkF7ViTFYa8cLRbEfHRLd/33NnCtif1qtkD2htkOkCmQxyCYXuXUe8iVmqiYkw7PVz4uUiJYON5eGRCUw3kow5aLLGrN/lP9n6G7+u+F/AE7jqzObMog0DLsMUSZR1k2dhQRJ2KzHTh2qXy8aT+0WbeKlab5ZzkJLhKnt+rX/Z0hLAFFBmYzA+OVEwnKBKGwdpQWhUSUdp9pi0c5bVRoSoiWuissjZM8hEmnykVCSdDqurAKagYp2Pk4KDyoZeKhFUVjMYZ9jPvpbgY7SJcQU/762TmcjIcSbiV1a0Nnrh0U/sQataGllio5LkRFAdX29eRSlbnwnObzwJekbBsACBMgXAFN8wR+8VxsJ4sJi5WYftRNjcITeEMI+PD44QTtfrH81kb8tyRzeRVlBkJm+dUJGSZRQqFc2Zq34+LEeCmJgEK4xiGMMEmIiGJRUUUDscGkY8q9YjMmsNBF6FsyyqXPxpbjPGPCL2OQilRqTBmmxvW+/6oandoQr32ESYWis2eRuv549dqldYGO6WQaKnWnKoDJhaRcb3lwZoHms0v4ZxvpdBSMxpPwlcXQUrB//1PX+Tn/uzlpbPlF0NOwt0lFZAPgwyJI4UUAi3PXhU8NENGxXClbaUJQgiUFJwOm4kSYy3W2jPcw5yviww46vua9LNu0x93PCESnuDxICgSCJYEIQQ2DDIX5hU0fU3IUzDWrlWTB558kMLfIMv02MWz4mJ50CIEQqThz0IQf+AniT78Kf+HcOOVfwSKBFfWWOr5G6CQYY8LqgGjLlLv/Q43/fbtVxA45M51ZG9v5rudD3GcUyRI/38uPNhQDh49eWOdrY7F2tuRjRDtjcaaSPEYKyC1UN6XWaoSxqcgvJS9dFfozMss60GLJfJac4OxjlHqff9KMCES4tbadp0SbsuPWsqcBC3F3IS4EKIacEZCI4xBhgdOpxNfXWVyXFBGKCEqy0upSHDOYQpHpPVkcGUNG3/w63S/8Zml69iKFFoLimKB3NBYNkbevmA29qpl54FI0Md3ESEMNIkVzvnCkHaiiIJaIQvqhRLZpWBvuPfmuewv+tirEfLuDjaEr/Z7vlqyrJpsgpI+ad+ah0kk+OtHqUhwzk2IBPVoiQSYz+w4j+e3zO/QKOJaaNkkaNFfK034nWe2qOwNKqspElw2l4tSb24YhLFO3doAQSVSZH423BgQik7IGSzrH4Uu8xGiyeV9JmxRhr+V602UkRdwMnQcDfzbn74w+UwnEbTDJfhwkQpbJTilkYP7yPRk7YyEg3Qf6wyJbLEp22ANkYyDLcM3YyRBdmEMvorVpJD3cXqeYK7UHG250G5QWheuJNe9TS0Qptd7V4hETGZT9tP5BqMKtuBmts+/Ov0C/+Lodzk1Q289aajoXAcPw9pQGMfNu+nceVUOgMfFEOssRTE5rmdVJGgtq+DL/nB6v5YZCVtnzEiYUiSUmUfhmFlnGZjBnBqhPLe0FtX61CGE8Mcf6A8yfx4ojVNxqOqcrPtwbPi/fu9wIQnQUm02o8ns+EmYwe+2JxkzZVbBbE7COvCqB8nQDBtfHxbDqdrLZY0NAK2wP5xrbjmpw1pXHceSSJChHexhEAm5zShsjhYRo/FqRQIES+mKAe6lUAF5/zCrlJRNMA9BVbHZjdnsna3yvLTj5G4xQbQKSaw4HeXkxfwxLIy3Ra5PBIgqbHGcFRw/CVlsxBMi4QkeD2qKBJgEIDq3RB3QABkGog63drq9DL5zqWGjG4cHwkUXErcekbAE0Ys/RPyDf6H6HrF5aen7HwmMD1oUDUQCSqMQ3scYXpdFys5GUllmO7df8W9tUiOUJMXsgEIoyod2LWXwPIeXhO+5XldFAoGwsAWys934uohb5+4gPyu0lEhkRRKo8aQC0oR1aApaLFH+zQ1PSDNLEiv2tloksa4RCe0z7R8AF84tXVZAyubZ8J0w4IxFFEIUPRcmlM9IcNkIF0IkpZCV5UXmKRJf3GpxJLUHaH18l+Te67Tf/DoibX6YA/8Q7ZUEzQ8uxsDWINgTdidZHLbVo+juIHBEB96XnUSKSEtasSbWapKPsDed4VFsXcImHaTJq8+eBTrkI2QbFyh/FMc9byUprRZNUMpbP4qHVAEJcDnkJJzaIQMzYmjHpC5DINjWGys//7Ahag9hcniCyFfPHAnfnYhzrgpchEneQNnYYOIOxlkOsz5FSXLWFAkOV9kiSlSKhKNJa8Nc84CQkA0R6aCaYS2JhKyAce7VBRCsCyFnceoSJ7zqyrlJZaWIMnLjKjXClR1vt6hjYU5CHTrBSYU7vTchElZYGyb5CJeQ1hDWuNq/fTMi0hIRsmrSNEdmQx9UOaO6c85NiISOb7qYtRvUax8vJ9eRcjJ7HWvN5cTbf24syUlwRcbvpd4yV2D4nf5XcUL5is5zDMBKa8NgZFfbpxbg81855td+6z4vvzE/466EInM5BkO5O5TiXPaeyt5QIxLy3FYDxbOGLVaKhMI3JblaBWQ2I+svUdkaOosrCUsCazhIfVaGirwFxeSIYjLT+9Vv9fn2a0P+4A+bfDthoF9bRj0focSiCsh1EcuYYTGcG7x7pcJoavuXNTaAP6blPp21N8xiMDIVYT/73ocxCM+ct9MoodZSJKyLrQ1NHAmMWbzPBYLsnE0qD4rSqhLLhEHIJzkrkkiRZqaxBnKZMrIJUlJVQPaHOXlxdqvGvwt4QiQ8weNBOVttSxmYxOJWDOobvgbpveBnCO2TQk6F4i2qICxn8edm2pu2ZcUq6+sfoPXJv0b8Az+Lmg0qfBwwhW9VaMh7EEqjhU9fN5G/qQpr0CFoTA6OaJ3cxwmBfuoD899dEgmLFAnWVnJ5v8v9U7l17mwD5Xzs080bZviB8DD8eFoblFBooShKRcIoVEBK6YMnaa5+LKxlmBqGIayu61Iu77W5tN2m1458wGVFQLTWzv0oUVZAlooEJev0zQTPxJeRCC5Hu8jCD/ycjpEiqFCcDW0k4TcSl0TCeGKXcEzlI5TZBMDKwXon0b79oeFwGevont4GQj5CDfmMvUErQacV0WtpRDZEh0DTOgHhd4wgu/gccL4ayHLbiq1LZfkIJ4FIiA5vLlU5tLRaGS55FsQyYq+Wk3AQ8hG2VBe9Jpn6MFFWZ8nBETv/9v/Jxpd/Y+VnhBAVIdWt+Y1La4MqFQlJx4eQCokprQ3F2CuCgnJt7KYfci9s+svxIPWkAMxYGyhD/cY+aDFcE2MNOpzO/RFVRkJLxiH2cdJiU0JKAY6qjlJEKYWp2Rouzt8YyuaGxpyEOnSLOycKYz0ZscracG/sVTwXkktTQXi9Wk6CEKIiNvLTY8T4BNdALo9zKBW83bYn/GftBiVBsJdcJCLxQbHhXNBacK3tf6s3ltRAvjL4Lod2QCw0GsXtfJ9vF7fnBqnrIollNcA6j73BOcerb/lz715DAF0kIwrrm0LKUM211QjOTCktmoiEUo2QxLJRIbAMca21oRywl9aG1KRY7Nxky7LGhhIlgTUc5FCaQkP7Sf0Y3brnz4+Do/VIgHpjQ4lSkTBbAbkuopBjMdsWkpoxhTNTioRljQ0l2g2Bi02otx6k2cQKIRAPlC9QogwbFEJUVpTOCkXCOhBCcDHkJNzdX2xveJAKyAfBqPC/xVjGZGZM7s5OMJVqg/54/rPG2DNlGCkpyHKLtY6D0/QJibAAT4iEJ3g8EMp76EtFgpTVTe8sUu4yX0GdIZROVUSCxTrv128kL6wNZt7zWRtmIbeuoJ/64Frr+LDhTI6IO82zDkKinFdpFFLhwn6UYWaxdfM7ANgLz81lE/gvLxUJs60Nk2OspMBVy/YzE865te0oAC4fIdtbzaoKCFkWoqrifNRIGpoblE+RA0AHQmAoO/RHBf1xTp472rGitb0DQKsY+ptR7bCU3tM8bp9p/8CkAlKd7vsASNV8bl6NL/AX936G97efR1bVj5G3qCD8zVWqicIjKBJEnqKloLDellL3lk4RCfvLiYQkViRakpr5Abg2I+LhETDJRyhR5iTE99+qHgAubLfptHWlDCg2LuAarC9TNZBnmdlwrrI2FJu+ntZYy6i9g4naCFOgj24v/LjW8mHmLQKTnITb+UEtH2E6VCsZ7HPp9c+hssXqkAfBRF3k/zc6voNw1pNIC1L+qX1Ghtn8KUVCGbYYfgMubmNDq04RzkEdBmNTOQk1RFqws1H/d4OHXUU+H8HmVSuPEKIKXHTUFAkyxpWKhNntwJ9K5XoLnTFK4abns6raxzoqRUJ/9Unx9qH/3qd2DXLJzKZzrlIkXEouIYq0UlqUORR96/dpq8xJGJSVj8nc95VqhHYcyEihEPn0DP3NEKR4vf0UhbNTD9VKSJ7uenvRQbbPsBgwi8yM+OLA1yN/tPMSH+u+B4AvDL9F3wzPFOZXx84D5CTcP8wrRcDpsOHaFHz4Ds4ctCjHJ8jB/Upp0a2IhMl6nlSNDWcfoEysDZP7n3EG5xz9oj81iC5RDuZ7DY0NJUoiYTDIcTVi2ymNyH0NZJ5b7h/63/xxv/C2mRWoSIxaqGSpDjg8yZdK7RfBPzu6kAcxwdiMq4Bt8L+XwxXWBqDKF1ilSCj3o/9uSLOykUw+lEH4yIwqEuhhKhIALlU5CYsCFzW5y88Vdvgg8C0b3o4TyYjcFQ9gb5CcDubtG4WxZ6ouVlKSFYbTUc5gnK+0l6yLzKaMikdzn/6jwBMi4QkeC7y0VVcDFcXEQ38Wz22Zr3CmdPugYCgzGUpFwxyc986uIhLKUMHHNYA9F6yZqvGbgvQD/khqDK4KXBT5GJwjueWJBHf9/Qu+2yLkvCKh+puzSFSZuwi46kIzG+y3CC7M+IrO4gRilA7NDY+rAjIib/l9qoINQClfKdof5+hALtDtsbuZcHm7w5W9Nhe320QbfjtKAqKCNRWRYOL2masxZXcHqyKEs6jBIVrJQNrMv7d8MFHhQcfqGB1+T6UioSISwrkjsjFSCorCIvW0IiE6vjPZNysUCVIKOi1NMSM/Ntax2Q+D9t7uHCGQ71zDCYkanyKHx/67hJ/5meQjNCt+8r2ncEqjxgNUUGysAzk6ReZjnJC47QtI5R/WtZZVFsMye4NWnlx6mFzChEjYX5iPcOmN32f39je5/p3ffCS/CefCtTPM+MihXw/hHCwhVkqUs/k9VScSZjISKkWCqqwNUSASWlUF5PwDcGlvgHk1AsAr6Q1++f5nuFOcUKcHOrUxdZmRkIjI35kEzFIJIgT3lkoKEWW8ftdhLGy0YaeBd90LioSDVYoE4O19f9Y8vZMvHVgPzYCRGSIQ7MW7YIoqPLHcv/3gHa8CF7MiDAzn77dzbRdKQ9l0wXTt4/XO0zjrbV11bLV67Gh/nt4czV8Pvn74FcYuY1N2eG/rWd7Xeo5LeofCGX47fRnOSYCV9oaj07PPXr5xczJQaapmLI83UIUkrhW0aAvE+ASRDavgylKRMKgRFlXQ4hltDfX1mCUScpeTmfGcrQHq1Y+rFQmDkZlWNKqoqoG8s59V9xjnPBGwCk2KhM2eD100ZpKhcFZEMmZgBtXAtxyQ6tr2nw4MhXEouXxfl4GLJbm0eFumz5VxqBuUQnkFywOgsAWZzdAywhhXEVjth1Q5WOYkLG1usMVDa59YF6kZk5q0CraUSEbmbAGfJVqRYpQWc+0NWWHPFBatlMBYODwd+5atM9iwF8E5x3F+yGmxxg3hHYInRMITPD4oPenYlSok+q4/uCyhpUIGj/86EEKE5VlsCHtUTeSFtd7WsEpeLsu8h8cjqz8r/D4WjUGLQFASOBKhfUBT6YfPUvTxHdTwBKs06up7FixggSIB/ANoCFVEuLCLJunnazc25GNE3EYkC8gQCN5N5R+iHwOiuiJhVGYkKHY2Yy5td2iFm15vb5fNbky7pYm0Vx/Yth9hyHQwletQkghOSEyUrH1Ol9BSk234h3d9cp9IifBgtvhBSJkJkTBF4tUUQzIQCTIfB7sERGriqxXZGBUGkg5Qw+N5kmQGrUSHoNTJ78ZYy8bQExKztga/URH5TnM2QWmnyGeCFicbqitFQ3KG9oay9tFs7CFCnkhmDLFWFJXVYhmR4K8vxj48ovGS3kEgOLVDbuWeFKk3NghT0D71+7HTv8elN7/w0JZdwroy7Da0F4TjDyAOb638vAp1WvXmhvZMRoJLur7JRyiKuFQkeKVUUquAnMXFGt84m4/gnOOL/e8wshnfLO5OvVYnEgiKhJaMq1Ka2duEDDkPJalBlHLnyP9nvfaxjpJcGKYwzhbfM7LcVd/11K5dSiSUtY878R4aEK6olBal4mMQFAkVkeDaEDVfTyeNDeEPKvJ2g7AOk9rHFnvxBXBu7qE60pLLif8tztobTvMTvnn6TQB+oPf+akLgRzc+gkJyyxzy3eGr52rhKZsbzlMB+VaNSDhdMJDt6DbdqFsN2NdRJMhs4G00QiCD5a3R2nB6vqBFgKgWtgh+kqUIs7i5K4jkvIR/Ym1YokgoCY8x089CUiOKAmEybt2bPjf317A3lMverJEYQgh2w/E7ODo/kZCZtEr59/kQ2dT2l3kA25vR0qC90towTpcTsbPnynhcTpBJCnf+5gbrLKf5SQha1IzCekjpGzUeBkprw+FJ0ZgrooTy2/CYGrFKjGdaNqIF+RfrQCkZQq2ntyEvbPOz/6LvkQJrLP1R8dDUCKlNGZl5xdY7GU+IhCd4bBAqmgxUQjiQD0I82wVSh/qts9QIRvgqIhdmx0XTqe+Mn61fxTqWT5jfq4oE4+W7okHCCgQiRITAS6YUCcnN7wIwvPgMMmqY2gO/3Uo3PjQLqXHWVvaRynMfXl/3mLl8jOjsIJaQOkKqx14BWbQCIRAGzb7KKqYTiyrrwLTmA/Bs0sEJgXCuCleESWODjdsIKc50ToPfn3mNSFBKrgz7UyE1zOgIVTamCMpRkv9n4gcjIh9XlalTQYshjNB0tig2LwKrcxJirUhiNT2DZmCjv4RIAPK96ZwEADk8Ro1OcUKS7zR/DibtDWfJSSgtG3nYLq29XSSJZBXqqI/vLgwZVEp6fusR5SRkYaaoTiR0Tm8jncWE38vu7W+wsX++6suFcG6qIlYFhQhAfHx3ZTCWCvamaWtDyEgoCbWkgyVkJMwpEvzAYNbaALOKhOnr0u18n1Prf2c3sntT61lWQAJT9Y8ELnb2GlcOQqqMBD1ZlyZbA0CsBRthk5epEm4c+J/fVgc2uhKRL56hv5f638zF1iVfbWltRexWGQmmtDaEALklY71SkTDZd/67ysDFMh/hWvu63ydCeOVNDVpLLsX+93FrdGNqAPDFg9/HYrmmtnkqmoQPb6puZXH4/dF3GSypVl2E81obhiPDvcPJTskaqhnB+/AjGdWsDSueV5xBjI9xOsLpBPIBmLyRSHgYioQ8XE8FktzmDM1w4eTMabBVLMvfKBUJ/bTB2CMEIh9xO+QjtMLAe1VOQr3lYJbE2NkucxLON5OvhMJiGYfrRFM+RNnYsLPE1gCT7VmVkTCrXhlnpU1XYc9JJOQ25156l/vpPWKZIIWcNDYkcmE45lnRaavq+N9vqIEUIcz8cSoSnHMMij5RrdGnzL84r70hjiRH/Ukbi3OOrDBnqm5UwdaZZsVDy0fo56ek7nx1t9+reEIkPMHjg9RV2KIMOQOL6u5ckeEW+G619FV8ZyEgtPQ3G+s8edHESjpr59KsG1E1UHxvKhIwuQ9a1M3bUlozdFAm2DJYLxuR3PJEwuDKi+H1ebhSBt+EQBYJhFckUCqE3ZnsKEBj5ePce6KkskE8amgpMSWRUGRTwVMyHXr/tJCNfn2ExCZldWR/6nPgiYazkmPgZ4hN2dwQ5Purwv6ULTMS4qlZRSEmYailtUFmY6/o0RKtJ8e8GmxvXaqCDlflJAgB3ZbGWDuR/ecjWkM/eFhECJSqgmj/7Uqyr4MioNi+vPA8B8guPotDoE/vI0frSQlLRUJRVmtqX3MXaYVtb1B0t6eaJJq2M9aKhjiIB0JpbwDoytZkVhzoHvtKytO959m/9iH//ld+m3h0zDoYZ4bBePmDY6UgCw9iajRRJLRP9iuCYxFkGHj2ZsIWhclRpYS+1Qk5NnIqI8ExGbyPGwK49jaoghFnFQnfTScE1Nhl3C8m+6TR2iCjKgh4rpgmPGTXrQ3gQxuvT7fkTqHMSdhf0tzw9n3/2lMXgg3Q5AtJ0lKRcDG5hLAGJlfaSvExdhmFMxNFwhpEQn3fOSkRuSdHy9rHa52nsNb6xoYZwl1LyW68R0u2yF1ehUHeGd3izeHrCOAH2u+aGxC9r/U8F/U2OYbPHXz+zEntpbXhpF9gzlC7+tYtv9EXdqJqANmUk1AiXVORILOBtzPoxCs7ihyZDyfWhpGptrEkErY2zkMkTCsSlJAY5+vz4gZbgzGO4chvw3Jrg//fYTbfAORUjB0PK3/9e1/w94n9FSRAf2hCQxd02tP770GbG8BnWQxNH+ccw2KImsmHWCdoESb2gXWtDWVAZpmpoITCnINIGBZDbo9ucZwd0VEdEpVMrcfDmg0vsSonQcBDCY1cF5n1ipK6HaccF8wGaa6LVqwYpaaynRjrsDbkWq0JIQTGOuLo4RA5mc04LU5CIfofHzwhEp7gscG3IZQyPJ9T4FsbGoiE8QlufDL3d/Azw9GZJeA+6MviqmXPwZqFwX5TeMSKBJePsf172FHz9q/8vMkRcdcPDJsglQ9cxB8NFx7Yk1svI/MxJmqR7z69eFBrbQg6nIdQGrBVjoUnbgQOu5A0mlt/a0ApT4asgIjajy0jQQmFjFrYsjJzVCMEAjlgW7350UeAnVEzAFVtoonbZyZaKgQiQZ3e90GBkVz6MF5aG4yKJpkMwYJSntMiKhUJKUL6SsP6DGS91aCcpY8Obq5c1Vas0EpiCk8mbPTD93R3cAtsLGbzIjZqIU2OOvKDkzIfYa6tYQYublOU1oh17A3O1bYtKBKEINKSKARNllaKaElOQhypc4WHLcOVaLf677oaAaATiITB1jXuPf0xhhtXULbg+nd+01e4rUBhylmbxe+xzje9CAEUeUWCOXzQaDZYPpssKW0BCe9rPcd7W8/SkvEkH0FqZBTjQiCuqVkbnLUkSxQJSgn2wmC9npGQ2pw3Up/fsK397+9GPrE3dKeIhGBtEHE1LJ994BMATkzCFgORcH2PuRn6OnbXyEmYIhLKur2GY1fYgoNsH/BEgg+6nCw7kRFRGEj1zXAtImHO2gAgYzApg+yoqn281n4KYx2qSZGgBFoprrT8b/LG6G2ss3zh4PMAvBQ/xY7enlu2FIIf7X0EieBmdodX+t9dvKIN6LQkUeRzYcoWhHXwZiASnrnWYiMM8hfZG2A+I2FYDPjM3d/kOyffmgTTOeObMZSGoH10SiGyPp2WRAjP1Y7GlqKwDEZl9eN5whanMxKE8FXEuc2b8xECSaKVqIiTJnR0gRAO5wSj2YlTpbl3ZDDGz96/8JS/Txwc5UvvOeXAu9edVzKWg/uDczY3gE/5T03K0AwZ29GcrWNdIqGVTBMDTbDW+fwI4GLIGyjfXxKN69oCnHMcpYfcGd0kNWM29CaqpsIcPuSgxRLlei8iEqRQlVXkcSC1KcYZ9IwCVcvo3DWQkVbkxaQG0hiHse5MigSAC1stNjprjAvWwCDvh9/nGhOW7yA8IRKe4PGhNoMh8TdVtcjasIT9a6mIXrR6troOFXoanHOohWGKdm0iQTwCRYJzFjs8whVjxMZFOG+XrzWVNL0RQVGh8H5nGywQ0WEYjFx5Aa3jxYN+t5hIKBstZBhwOOuq4DmJWC9M0BQg9OqsCqh8wY8DWigUYlIBWSMEVJjtNu2GtLWAikioExBpWRnZPpciAUBtXsQJiSwy5OhkaeAigKq1NkzNKkpVBYjKUj2Rj1FApCS6fK9zRDUiodi5ihMCNTpZOeuvtaSdaNLCYa1jcxCUDQtsDQAIMRm8h/YGHdQP2aJ8hBrOYm+QwxNkkeGkwvT8wF0qr0bQyl83KqvF0sBFnxHyMHE52q0GtvWgRZUNaQ0PccBw6xoIyY13/zhF1CYZHXHltd9d61qltKBYJqNwVEFVpRrB6LgislrH95Y/8NUaTn6o9wF+uOcbbcrGhiJqT4Xb2dJyhUPkY1plRkJD2CLA979b8vxleP7y5N7xWnoTg2VHbfAnNl8C4O3sXvV6u2ZtoFIkxNX1anbiyD+D1jISdAY4nllgayhRkhyLmhv6I8fRwC/OKxv8/aUpJ2E/u+9VEapDV/emGhuG44LC2Mo+0rcjkrCq6ygSpmwhSiNMwa3BmwBcSC7SUi2M9eoSOUMkKOXJhSu1nIRX+y9zkO0TiYiPJc8svF5v6R4fa78LgC/sf45BQ+vDIggh2N44m73BGMfbt/1A6ZmrLXphhr4pcLHEbGvD64PXeGPwGp/f/x0+ffOfcz+9h8hHvu2ibgvULUQ+RtmsqvDrD03V2BBHYrr60RlkerJyomJWkSCRWOfVKU2zp5OwQ7V0dlXZnE7sv7M/OxksFLcO/GevXIzZ3vIVxmnmKlKkCfVlz6Ic3J+s2f7QBC01hSvoF6cUtpiSyDvnJvkMKwibcsC+LCOhUlco2NmcJhLAk4/rKBIKW3A3vcPd9A5SaHrRxtxxeWSKhJCTsCxwMbfZuQbw50E/7zfmQ8Ui8pkX5yQ1tBKcDMLEibVYa8+kSIB5e9t5UdiCk+IkqIWeKBKe4AnOBzmpvfMeej+zP1vF6AczvgHANTC7G7rDTrR4wNa46DBAs1j0stN+jfo9UYUtPjxFgitS3OAAEXdQF19AbV7y4ZRrzCZOfU954V+UjwCTjITQXmGiafLk9PLz1YzW0u9o/Ls/xiJUPlq8HHoScrnGJccWCK3XspkIFYGQj6VBQwk5k5MwGTRPKRIWoLRFqAZrQxG3fU3pOYgErWPS3rb/73rgYkPYn2MmbJGw74T0o6SyVaXMSLAGLQztRKPCwEGmA2Q6xAlBsXkBp2OKMJhcZW8A6CQacOTG0hssz0coUdkb7r+FOL6PzEY4pb21YQXKGsjo4ObCXIMSZfZDsbFXXQuSSLHVjSpuM9+95u0Sg6OFxIlWIjzYP7wHsUhoLgdVwqWaOqG0NYy7e5gwgDFxhxvv/iQOwdb9V9i6+52F3+uc520jqciXPMhb66pzoMxHyNsbiGBJ6Z4eMF6SWL4o5KoMWiyiFlJ6qkQLBUpV6h+VpwvrH0s8d1nwZ75PTZEDpa3h3e2neabtz5X7xVEV2FjNwAuLUEGuXGUkLCC4hfCkRthv6GxhPkKJ3d5EkdD0cP5WUCNc3IYkzDQ7qRDFvKy3tAxcTC4hsF6RIBSF9da9wrhac8Ooqn8c54uPbZO1wd+sHTdCA8O1ticIrLVESs7dtwWCJFLsRlcQCI7zI/4gqBE+vPF+Wk5VzRJNeH/nRS7KDXKX8/n7v714ENPw93JAd7RGewDA7fsZeeFoJ5KLu1Hl259N469jokgIPvoa2bGf3edf3PxnfO7+Zxk5w9SjtVBeqVAMp3ISjmu2hvpgRY5PEMP7iJlKw1mUioTCeFLWVw+mjWoEmJAkvSW2BgCRDarzYNCgKr957D9/9WKCVhMSZ1lOwlzIo7PVREm7JUliT3yfp3mjhB/8+s/X92eWu+q6tiwbAtbLSKi2paNrxEP9/aJaj0XITMrt0U2OsyO6qltZGWZRVj92HrIi4cKuv58NRnaqRaSED1wszh0aeRbkNie140Y7jpIa48y51RGtWNMfF2S5b+2wjjMrEh4WhmZAasYkckH22DsYT4iEJ3h8EBJcGIwIr0TQooEdN4V/iFcRFA9WpVOiHMDaZYoEx1pEAjBdlfcAcM5iRye4bIjcuoq69DyyvQlRCxG1oDjjBdT69O6FigHwigqpUEGqXNSIBNPZYrS5S7x0P4jFD4RBkVAd04lGmKjpWDfA2cLP4qzDBKvIH4vH1NwQy5giKSsgF1gbFqDJ2lARCUmLaB0FRgOUkKRh9lyf3kdJrx5oClx0zqFLa4OOa9WPAqid06qFC7+Z2GZsdifnSCn9N73diuwpiYBVgYsASazQWlCMhrSHXjK9LDARJnYCdXQXeeO74TNX1/q92u42RXcH4SzRvTeXvrdu2SihlKCV1PrUo6R6fZEqQSvpbe4L2jMuvvkFrn3nt4gW2LcW4RO9j/CTm9/P9fhi9beSSBhuTe/D0eYV7j3zfQBcfv1zJP3mCkzjfDhqEi8nPiyums0pGxtMZwOx46XsndMD0iXEp/85z/+mS2tDEXUQhIYQoT0RE/JGVD5aWv/YhIPihP3iGIngXa2n6Ok2O9pLA24GVUKVkRBsDQJBLLRXVYVtHZmMk0B2lNckKSRRUEjsbGdstJdfq7Z7/ieWFQ2zvMDb4dA8faH2PVJDPvYhwDXcS0M+QuuSV5+FkOA8dySRxDroSX+NGthRRUwsUiRkhSMLl8/Z6kwjFbdCsOP1jifzjHVVY8AsklgREXGx5UmbzGZs6E3e135+5SScFIofbb2ERHJj9Dav9l+ee4/IR6iTm6iTG6j+PeToGJH12en683adGkKAN0Nbw9NX/X2mHGCWYYRNmGQkBGtDqNf8wNaHeL77IgDfSd/i/xj8Ht8ZvzlFhDgVI8Z9uh2/37wioSFo0aSI8RGiyJDp8hacelZDlnsioac3Fw5UyvyHjc6S+4zJwaSVMmUwnr4eWOe4feyXe3U3qKNCWOKy5obT/rQiQeQj1PC+VzcK8VDsDT7lf4CekY2Xlo4klj44dwnKjIRxahcSWXV1Rauh5UEJuZJIOM6PGRbDOSvDLIZV2OLDVSREWlYhpfca7A1KaIw1jyVwMTVjcpujRfMzqxKKYX6+loM4kmS5tzcY6x5qJfNZYJ3lJDtGi+aQ8nc63vFEwiuvvMJf/st/mY9+9KN8/OMf5+/8nb9Dlq1+0HDO8b/+r/8rn/zkJ/nwhz/Mz/3cz/HlL3956j0HBwf87b/9t/kLf+Ev8MEPfpA/8Sf+xMLv+83f/E3+/J//83zoQx/iZ37mZ/gn/+SfPOim/bGDr1YUOGe99B3RHOhnDSK0Dpx1Rn4RSn++cRbN/EW5ummcgUh4UNmXKzLc4BChI9TF55E71yoCQAiJaG3izkokFLn/jiWKBB+26PP6pVBenhwwvvYSIJYPaoVbqEgQUvlkZzfxRAsBVvhu+LVgC0+irAMV+VyGxxQMlEhNNlMBWf9v29DYUKKqgGwgEvK4/QBEgiLdCETCyX0Qvke5KXjMuUnYotORn1V0QcitdTXbp+UkNX92Fr9psD3JSbixUkYvpaDbitgc3POhTp1tXLCLlEhtPjWorYccyu98MSxzta2hRHbZ2xvab35t6fpFxyFocfPSwvcA5BeW2xukFH4fNvAIKh+zd/NrbB68zvNf/afs3Pr62qRkV7V5Oq6pMJyriITB1nxexMHVD3K68zTSWa5/97eqdoQ6rHVI5Wdv/DVy8f4pbWgyWBuK9iZqJ5A8x3fB2olffAYiqA1mv75cJxN3qgybSCqfsVIGwRbjqv5xkSJhFt8dezXC0/HlioR4KvbH9e3cH+dWHEQGpa1BRJUtqJy4ymxOEQbzQSsAQEf57/zoe1bfo5QUbIVTfDYnwTnH2/u1fITqQxphC0SNJHXOzQQtFmANTiiMtWjl70vdurVhRUZCOesca6ockBJ3bJ8cQyITX/uIP1Uj3XwtL3MTrrcnv83v2/1BtMkq+8UybEWbfLQTLA4Hn2NYm/WX6Smyf9u3WZgM0mPk4A7q5Ca76giA48NgLViBej4CTAa4a1kbgg2hJBJ24wv86MUf589s/TDbskPqcj7b/xr/3+PPclLWvOkYYVI2Wv47BsNivvrROdToGGFyXNyFPFRILoCUk5yKMichktHCgUo5AF6mSBAmQ5iCbrskEqZf3z+BrBBEyrG34Ze5t12SAKsVCSVpIkzmJ0lCvtHO1urvWIVIRGihSeT0s085475KjQATRYJz3q7RhHreQ1OmghSK3C22BaQmpZ+f0NLtlYPKsv7xYWckwPLARSnkY2tuGJohgsVhhpGMGdnRSnKmCT6rC/qj3JP6C45JYYtHauMYmiEjM6KlzmbJfqfgHU0kHB8f8wu/8Avkec7f/bt/l//iv/gv+Mf/+B/z3//3//3Kz/79v//3+aVf+iX+0l/6S/y9v/f3uHjxIn/lr/wV3nprkvB8584dfv3Xf529vT0++MEPLvyuL3zhC/zNv/k3+ehHP8rf//t/n0996lP8N//Nf8OnP/3ph7Kdf2xQhhTaELy3kEgo/I036cE5Lh5NKLMYbEP/NRBmZVUIhFwNIfUDKxLc+AS5eQl16UVkZ3vuQiqSDrhmKezC7zQZxJ3VFZbKDxpjqShqREJ61fuIF1kQnHPLlRtSgvTxikr4nASBn8lYe6DsxHpZFQSbiY4fW+BiJFVzRkL477UyEqaIBP+gmUctonVJrBnUKyBVaG7QkX8QmIXD1TISYj8wdNaTPzKaWI+QlUdd5tNPk/XGhhL59lWckKhxvxpkLkMr1uyMw6B9xtZgneM0HzKYSWsuB+9lW0a2uz6RMH7mgzipiI5uE997o/lNzqKqxoaLze8JKLMZ4v23Fz6cLGrPaJ/6GV4HSGu4/Mbv8+wf/jrx8OzVd8nwEJ2PsFIz2mggP4Tg1oufIEt6xGmfF7/8/+bim1+YOqbWQqQUSaSItSBfoKIATwbAxNpgOlvozcugffvCxnjAaEG2iwyWp9nzsgpbjNuVBcorEpgELmbjigxIXb6QrChhnOHV1Ktj3t16uvp7SSTcDDWQUgja8SRosbRPeAK0pA1clU0RShEBquaGuDW/vc45DosTRjVJ7l4VuDi9/funMM5AK7i8XXtBBIVQ7R7YL05J7RiJZDe54IkE50PEtJKV9WRibZiELY4X8C/NtgaPN3N/PbmeXJnsDwF6gTy4zGd5tvM8kYh4uvMsT7WvQ5H53JtVkBEfjK6xF++R2YzP738WZw1ydIgMNbEu2QDdhriHSzZxySbbO/5YHA1AjI6W3puPT/0gXgh46rL/3FrWhnzW2uCJhLbuIIoxV12LP7/1cX6g+z60UNwvjvjd/tfKDQMEG5E/lk2KBFEMEekpLuqAjBBFUbVmLMJs4OIyTOwFS4iEYKXpBkXCrHrm1qE/d69uW1QgOUpFwjJrw8lgXpEgTOHPXyY5CeetgAQ/aOzo7pw9sD9cTaCUUEpU+3RRTsKUIqFsbajVhvr2jMXNDf38lNwVjVL+WYxC7kTnIWckwCQn4e7+4n2+bmjkeWGcYbigZaREJKJgfzifvSGOFMeDjDQ3jW416yx3x3cqYvBhwznHaeabGs5jXX0n4B29Vb/6q7/KYDDgf/qf/ic+8YlP8LM/+7P8V//Vf8Wv/uqvcufOnYWfS9OUv/f3/h5/5a/8Ff7SX/pL/MiP/Aj/4//4P7K9vc0/+Af/oHrfe97zHj772c/yv/wv/wsf//jHF37f//w//898+MMf5r/77/47fviHf5j//D//z/lzf+7P8Uu/9EsPdXvf8ZCqejjyYXyyMWDFGT8jLaKEh6VF8g0R3vM56+0E/EBUyPUVCUovHECsA+9LV8juzsJBs4g7fpBcrDcD55wDa5DtxbPi1XcHIiSWmlFvG6sT0svPYzo+xG1hloGznihY9LpQgESGKb0qtAzWGihXpMkZQhRF1MY9JmuDEooiBBGqc2YkyHTozzfnKkWCiduNv4V1oIWk2Ljg8w/SASId+rA/GgIX3XxGQmWSV5pykCSFqNo8RJ1ImGo18IOywhnQ0UTuv469IVJsLAhaLFxBWyUUM+RQtjcZENoowWxemPvekUkZNwxkbavH6NkPA9D5zu82DjTU4AhpcpzSmO7O0vUvti/jlEZmI1T/oPE9i8icTiASji69xK0XPo5REe3+PZ7/2j9j7+0vn4kUq2wNm5cXzvhanfD2e36acXcPaQv2bn6NF7/0v3PhzT9AFmmt3soTPGZJTkKZc1BaG+huI6VEBmvK1ukx2YKHTxECWGftE2VGgo27XpFAUCQgMVFpbRiT1KSvWUMFZB1vZndIXU5HtrgWTUihy9EOkdCMXcZ+qIHsJFRBi2WgYz0iwV/KQhWeKF+dvHc0o5C4mx/yGyef4/88+rf86+Pfq/5eVkDOKhLKfITru83VZPVZ6TIfYS+54K8XJgchSHNLK1bEyje2lGGLg5oiISvm9z1MGhtmbQ3WWV5N/fn1QnQJwqydYHGFmg62qpbs8hee/Yv82KU/hbTGDxjXuaYrjbKWP7nzA0gkbw/f5I2DryAH93Aq9gRCAzbbEimhsIL+8XBpvkCpRrh6Ma7UBeUgM80s+YJBeZaVYYvC1wyGgUdHdZDpqX+uUTEfaL/An9n8YQDuF8eTHnsd04v9sfQZCWGWfsNnKMjRkb9eBMLd6RgxPq3Uds45vnL4Rb508IVqnaKZwMVl6FcD4AXHwVlENsSpqGozmbU23Drw/76y47MUcKZSJBydFlX7Sx1F4arQwI2u31ZMhnAGYcs2hTJn4eHfx0trQ6+93v11VXNDnZBZpEiwzjYSCZnNOClO1vbJP0pFwsWgSLh30KyeEAiyNdVf58XYjMlttrTFQIQctfGKzJBFaMWKce5rIMuw4DoymzIywyn108PE2I4ZFP0/tmoEeIcTCZ/5zGf4kR/5Eba3t6u/fepTn8Jay+/8zu8s/NwXv/hF+v0+n/rUp6q/xXHMT//0T/OZz3ym+ptcNasLZFnG5z//ef7Mn/kzU3//s3/2z/LKK6/w9tuLk73/nUOtNlGEfATd9PDrLEInfoCtmgMXzwolRGhuWMAKhgHysjCoOsqaw3OjngOxaBk6RiRdXEPgViOKbKLkWIVAhEQiwkQJB3/qL3P6kZ8J0uJmggcIs9chbLIJIYhSOBfCNKk0wmuxsbbw1Y9rBC2WEFH8UIMvl0FLhWmXioSBH2WYvJrhrRMJzjlOi2E1e+riNq6sPB0PfLVieM2E1obzQAmJ0HFFAunT+2gp0HI+cNE5N0UkiOr3KKfIMSkkNhAJMpucf3J4PNVqkNqcw/SUwpqJvWGNwEVpMpK+r7CbJRIyWxAL7SsAa8c1371e5TYUu9fnwvCcc4xNTmrzxsHs6IWPYaME3T8kufHtqdeMs3DkawKLjQuLw0SrDVBVrkN0/63Gt5SztrOPaO0TPxgcbV7h+NJLvPaR/4DTnacRznLx7S/x3Nf/Oa3+PdZBZ4mtoY6ss83rH/z3ePulP8W4s4uyBRdufpUXv/S/c/Xml4mDSiWOFa6B/ij/LQReURZCJmU7NFsEe0Pr5C5KyMoKUIcQwl82Zr68bG2wrQ7W2dBeokIQrB/R6GKMFJI4kAnjFQ+4pa3hXclTU61AUkiuRZ6AKu0N3YSqxjGpPdDWQ7l8lW1Q7oQch1KRMA4zZYfFKb958gV+/fiz3M49ubRvTugbv31lBeT+jCJhqvZxBk5pL9UPv8syH+FC4kk7YTJckCG3W1HVjFEqEoY2RevJscga+JfDIJDqtqaXfyO7R+oyWiLmuklQg7u4IkOFOtgmaF0GvbrqGGLzcN9Y597qyf5d0eFDWx8C4PdOv8ZAKVCLZy2lnNR/fuUtjRwfL7wnlPkIz1ydDObiyAf+wSRLYBZ1RULuckyQfXecr3d0NTvert5EIshdQd+GAZCK2Ij8Z076RSW53+ppZNpHpAOIaxW4OkGYFJkPcc7xufu/zVePvsTXj79SDXrK2fNF5EcJYyatCosUCd7WkIGK6DVYG5xz3Aqc6bU9hbA5osjotCRJ7Ou1jxoUBWXuRKR9DosocoQtcIhQXTpRJAxGhjR7uPfyikhYQ5EAkzyCRYGLdUKmJBKy3FVWQh+ya6vzow5f/5etpUYwxlX2ikdBJOxsarQS5IVrbDtRQp27LWFdlOTAqmdDLWOGZrBSidYEKUVQbdnGwN/UpGQ2Y1D0KR6BAqOfn+JwVbVlllm++e1s7WDYdwLe0UTCq6++ygsvvDD1t83NTS5evMirr7669HPA3GdffPFFbt68yXi85sANePPNN8nzvPG76st6AvxMtlReSwvEUs31dFfQEUTJQwtcLDMSypDHOZjcD9zXnQkX4sHUEiEHYtUsjWxvrB0k6PIRotXzSo4VKIkQLaTfjGBJMM6ilrUrVAn/i8IWFUJ6RYLfz67a32sNlK3x+0SfoWdXRTw06coKaCFxrQ0/Y2kNIhuhynwEFeFq+z53htyYSZK9EFP2hlKNYKMElDpX9SP4BxctJGmwN+iT+2gl0Wo+cNG6ibUBHU8yEqT0KhUhJg0Y8bwiITr2g+Bi84IfTNuCtm6R2px8t8xJuLlSraMPbyFwmPbmnIqjsJa2apGIiKxubdJRZYPILz4z951eLqrZjTbpF6MpEgJ8SOLoBR8+2Hn596rfVeGMD9MriYSaZWMZyiaJeEngopZyKnBRmJzWwBMoww2fdVDEXW689JPceNePU+iE1vCQZ/7w10mGzUqH6rtsQefEr/NgJmix+QOC/u6zvP6hPx8IhR2Uybl292s89Xv/L/TBTWI9v84QpP4IpBTIcR/hLE5IdGcbABmOvTi6TVvGjaoQKRcpEvzDpIvbVUaCEiEwtLQ2BDK1tDe8kd1euJl9M+RmkOTXbQ0lyqDKG5kflHdaopaRUCoSJtctgVdV+XWb7I9yXQ6LU3779Cv8s6PP8GZ2BwG8O3mKbeVHtrdzf7zLge7hwOdSgE/cLwdnTUQCUoPNKjXAnbHf7outS/5aXGTk1ofItaLJvS0RcZUFNCYlCreZek7CYd/x618wfPlVvy6btTEswMupP69fSK4j2huItI84uY2y6UJFgkAQ6+l8FnHW5iGpEdmQj4iL7MouKQWfG35zpcXvh17y18+vvaW5ebs5KyHPLbfuhdrHa9Ozwr0QQtiUk2DtJPk/jsRkIC9jonzkCfA6CSUkW8pf146KUoIi6HZC8GUYIEaRoBUZxOgIpyOmH8mFVxmNT/j9/c/ycn/SvFKqIWYrIBdhMPLb5INjF+QblZkFQtUUCROV4NEARhkoCZe2JVjryQch2Nv2+64pcPG0P5nBF0IgbAbW4lRUqW3iWNINGQYPYm9oQv8MGQkArTBoL1UUdcwSMkksKz67JEBKC9AsmVrYgpP8mFgmawXulUSGEEzXgz4kSCm4uOvP2aacBN+C8eiaG6yzDMxgqRqhRCxjUpM+kL1hlJrGxobSWpHZjLE5n+phEbKQh5GoybXm268N+fbLBV/59vKq7HcSHl8J+yPAyckJm5ubc3/f2tri+Ph46efiOCZJpgdcm5ubOOc4Pj6m1VpPelQuZ3Y9yn8vW491sCpl9o8aVa/4ghmKaUjQGldkSCXYa20SCVX5OsFL/oVS6DhGxjEi6WDT/lxn9XmQaE3qBJGaXiaAdQWyc2Ht/W21BiXPvV5WGETcJoqXX0RtuwtaIYRdmt/gPb0WvbGDXGMbTKRxUhBrjZQTqapwzvultWokXJwFtEZHGtF4zP0xtsZ4v6wUKOlnZyM92e/T583khm1zg4hioni9jAQAGyeg9cp99DCQSE0Uxdikg0qHROkkEMu1e1MP2MYaNuIWY5tXf7ftHmp0gk4HuLDdNukQSUWs58/L9SBItCbf2IU7r6H7+yglaCeKk6Gdnlm1JsyngkhaRFoirUNGESrS3qgtnQ/GK9sp8snAIQoZAmb7MkoKLJatqMtRPsDuXsVJiUoHRKMTbKikbNyPh34mvdi7NjcoERI2khZKwf30GFWTgY4+/KcQR29TXH3fXGRqbgp6UZvrnR2csBzmp+xEvekqsOc+RPuNr6LGfTpvfY3h8x+lX4y40Nqk1z8CwG5fWqtr2pSBiwc3Uc7MkYIylsSRIjeGOHxf5+QeAkee9LDtjdqwQTC49CJv7Fzj6rd/i87JbS6+/SVuvvenFi6/fXIP6QxF3KHo7jQTpI0QDC88x5t7z9LZf529N79Ee3xE97UvYX/gz9GKNeOiqNYZ/O9eaf8bjk69rSFv94hjXwsqLjxNBrjT++ypmDeLceM+VFL5sN1qRG5RJVHV6YFwJMp/Z6IiskAkRMUYKQUvtZ7mC4Nv8aXhd0DARzvvnnsofyXUFV6N9tiKgnooKEyklDydXII+3CuOyMjZ7mrEMFTRqdiTJUKilPQT/BK0Uj7oM9w7hBB0QmXb2/ndatnPJlf4vu572NYb/H7/mxwNT7lT7POSfJotfymnMHA6Fuz0BHcOHMZ6VcTeppgfYAgf0gcFd4sjjvMjJJJr3WsoZ5FYjJP0WhFxpDDOVeveU22OTJ+BG5FELfICMiPICvjCdy1fez3UoQn44HOCj74gq+OS2oy3AtHy7vZTSKmgtQXDY1qju0Smi0zmn70AOi1Nf5xX1zJhUqTy95u1ECWIbIASik9sfR//7PDf8mZ2hzfy27zQWkyYPXtZ8IFnHH/4puM3v5Hw8xeO0K3ulHLpzZsZ1sJmT7G7PR1MuNlT7B/lDEZm6joshZzKIGi3FCepH3B0VAeVD0Iu0fT27epNDs0pR/aUZ+UV//5OCyUdxvr3bvU0Ud5H2gyXbM41Wzjd5gv9r/HtQOpUAx479L+RMMAsjFt67yiJhM2uWviMI8wYqf1x2gikUmEhN4JWLLhz5O8bl7e9pUK4CPIhorvNhZ2Ym3czDk+KufWolr0RrhU2RyqFUxG4vApv3tuKGAwNR6cF1688vIq8Uvmx2dNr3V/LPIIst3PvL/MRtBJ0O54YSWLJOLVkhWOjrEg2gvK5pszk6pshORmb0eZaREJ5znVaq9smzotLF2Ju3cu4f5jz/ndNr1MkNGOb4oRFnUEhui6yIqUgpxO1F1YDl1AohIXcpfRUd+l7m9BtR9w/GtPtRFNjlcIW5KS0ooTMpAztgC21tfb3HmfHGFvQ0m0Smcw1wo3yIUYYerW6+jIvxLdXzR/Xs42pvjfwjiYS/rhDSsHOztl/NH8U2Nxcz/8zHm1gR6eoTptN5j/jihwb9WjtbSHjFpm9QH5/jF7z+5dhW3YwqWF7s0N7ptWgICa5uIfeXG9/FzolHbXOvV6FHKM3t0lWHF9nW4zSuz7RubV4WTYb4aItWlcuIddQJBRqTDpqEbe7dF2Ldhz5pN7ckqiY7a3m9TJjbwFp7y2+GY4HGxRj6NqYk2FBqxPT7sJOw37vdmeOgxyjN3dX7pc6bK4ZD3uIKEZG6xMQ58U2HWynh0qHtN0YEVhy0dua2p4szdmKexxmp3QDaSl7W3Bwk5YdQTkUbnfZ6LbZ3uoSn7O5YUf2ONm7AC9DNDik200wCMaFo92e7BNVzv4KQXejx9ZmBzlyyO4G8e4G40EXGbcQOuK056dQI5cjw3bpU08k6EvX6XYTxjpjq9UhH+e04w5u7xri3tt0+3ewly/TCOfQgUhQV5+b2me5NWxGLS5ubZCaFv3TIZ04npxr3QR74ULDlQNGacq13i47rR6dXsJrp7cZmZTtuK54SLAf+jjy93+D9itf5PjZd/HUzgWebu9y7zR08F26MndeNqJzFdfuIUZ9esN7uCvPzb1l18D+ybg6Bhs3/TKynatTx6VCO+b4/T9O+3P/mN7Bm2zlR2QLGiS2bvjZ6XTvKdqdNda3AWn0bu61ujzz1V9D9/fpdVsYJ7h3OJpav6ywKK3o9RKi+0FJ09tid6PLZtKGzTbj3g6mf8ie6XPSC+TYDLnSG+ZkhaUd6jRlOqziFzvb22Q6Zzvpstlrs6277G/460BkUtrtmB9svQ+lJZ8//gZfGnwHKy0f3/nQJAjQOV4OCpEPbD4/t4+TRJMkW+yebHKQn3CPQ37gvU9x84bhLtCL27TbMYWFbiem3dHkeYtOyOyIiGkPcuJIsis3IUwqXU8u8iM7H+Byslst61ku87XhK9zOD6r1uLA15vaB5XSsuHZRc/swAyzPXlF0Fh1DEUEs+O79bwLw0s5L7G1sQzbERpJCJ+ztdOm2NCpStAc5SRKxGXU5Mn0ymdNJBP2R4xtvwau3TBW8+MJVySc/ErO7Mf3Q+urpDSyWvWiT6xsXJvtX7pCQ0soOUB2N7u3OBZhZBKepodtp+Zn6gYO47fN+1kIM7RZIyVPA99v38vvH3+Rz/a/zwuZV2mrxuf6TH3O8dX/MyRB+79uWn/5EDq0J4XHjrifBXnymR687fRXZ2Up47e0x4xS/7jUcn/pZcq0EmxttbgaV5IZu0Y4ctOfvV5eybV5Jb3DsBrXzMGazPeAw2LH3NjUdN4KNzbn945zj80ff5euBRPiJ6z/BG6dv8OrJqxiZ0e206LRDngJybp3ryHJ/wLc34+b32QIGFrrdaj3a8ZBRBgUR7bbkznFQclzWfntivKorkVy93OGr3+5zdGrmvn8Uaiz3thO67QTGBjotUAkUY2hJ0C0uX2zx5q0xJ323dFvOAmtdpUi4dKFLd1n1ZcBmLwYGFEbMrce9Az+439qIqvOn01YhI0FV7zc6ozxNu90EYw337Yitbo9utN4z4519v97dTvTQ9scsnrna4yvf7HP/oJhbhnMOsoJ2V9Nbc53Pgnw0pGU1m8maz3pRASpno7dmNfgMtjbac4PzftZHF4KteIPctshtRtKRJEuuMdX6m5y7ps+IEUN3QuxiOqJNN+qRqAQpJIUZsxtt0tK1yZCQO3Jxt7V0fLfumOp7Ae9oImFzc5PT03l5yPHxMVtbi1mlzc1NsiwjTdMpVcLJyQlCiKWfnUX53tn1ODk5mXr9PLDWcXLyaJJEHxaUkmxutjk5GS3sTK+jGBTY/hBZND9UuGwEOManGUIa7MhSnI6QPLjkKB0XjLOcvkzJ1WRdnTW4Uc54UCDNeoErdjim6J9/vWx/gIovMDxcvbyiiLAn95DdxQylHRwie3uk/QJYbYWww5Sin5KZiGxUcJKNiaTiNB8jIsWJaN4uOx4i4hbp0eLzshjmmP6I8bggTQvGUYpUkoHKyGVg6ZWk200YDNKp88YOhqjIrbVfSjhnKYYFuNNqFv1RohgZiDpEQH50iChSNJBHHYaDifSun43p2jZpmnOSj1BC0tJt2kBxcozNLRrIdIvxKGeoUsbifLLOLDUc6y7bgDg5YHA6JC8c6bhgICeCWTP0+9XpmNE4p3+aIkZDpGujojFFPwVlEVFCTkwEmNGQwcDLXrcP/SzloLVL3h+RFrm/YY4tR+mAre2rtO+9jb31OoMr72lc1/itbxIf3sEJSX/jMq62z0YmBQSpLsit9d+bDSuCRUpJux0xGuXYWv5Dbg25sRjlOAme+03b42g04N7ohE6dwLrwAhu9XXT/gK3vfI2tP/HvMbh1C0yBUxG3rWB3sJ6EsnPhGZK3voF562VGG1fnXi9yw3hUEKzM7IUgyn7nIqPRAp+/7NK5+CJb916m993Pc+P9P9P4toshm+Gkd3Xxd63AODPE8TYAYtRneHBEISLStECKWgVi4ff1aJgiDvfRwDjpMhpkqDA7K7avQ/+Q9OabiGfey35xymY0/XvMsoJhVlT2tmTgFXuFbjFOC4bpmJ5pc2JHjNOcoVXs4sMWy238QPIC9ASf7/8hXzl9mVGe8ic3PowUghvZPU7NkFhorsnJPpZSkiSaNC2w1nI9usBBfsJr/Vs8vXmZKEkhA2UUo1HGeFwwGmY4WzA2BUIJxjanLWCcZphCsSe3+OHeB9nWPa5Gewgrpo7Djt1EIDg1Q+72j9hQHXa6jtsHcGs/55kLltdu+2v1tR238BiKzNI/vM3LRy8D8O7uexkMxzAeUAzG0IoxecHAGLLCkma+yaEj/MPr4fiUSHlS7xtv+MHJ7gZ8/P2SZy5KoGA0c7n/xunrALwQX2c8nlyThuMC3U0YpgZ34w1kr4/c2JtSgo3HOeNRxqkEaVLkaORDEvPznaPvj5/nZf02h8Upv3Xvi/zE1vctff9PfFjwf37O8ZU3JM9eusv1FzVIH0L5ypt+UHvtUuT3YQ2tcIk4OE6nXpNCTlkRBsMxh6G1pGUl41zgmN+2nvPn/v30aOrYdhPH4cD/sLrRmPFojEt6c/vny4Pv8MWBtzP8cPslno2e4pYIQa2jYwbDMVL49eoPsrntqeP+gT/A7ZZofl82RA2HoXbSr0cn8VaG/aOMXix5664/dy5uWr89DkQ2wugTNjplA0BKfzCaGujtH6XV/h2cDpCDobeBSIPIxpj+EGLY6PrP3NkfNa6jMY4/+MMTkljykfeuDpQGb2sos4RxOYPh6mcjFZ4NT/rz+/TegX/u6XZk9VoSLu5HJ2P2tv2dNi0KjvM+V7swGKQcpkccDI/pRT0G+eLjVMfBUbBzxQuO2UPAVtiN9w5Sjk9G6Jn612GWcUQfGz9cpadzjjvDfXJr5tqZFiG3joE9oWtPiJfkpZwF++NDRmlGZPw5epwNuGsP2YpXj9uO0kMOxydsRps4HCObcWL7GHcHJTWxiBmZIZvRJoNaztTRif99xZHjsOE596xjqkeJzc158qUJ72gi4YUXXpjLIDg9PeXevXtzmQWznwN47bXXeO9731v9/dVXX+XatWtr2xoAnnnmGaIo4tVXX+UTn/jE1HfVl3VeFMUf7Ym0Loyxa62rQWELg2tI9wVweQ5RC2GF99GhMUhsnnsP9wq4fOzzDlrzNxrhJNJKnBWYmqfe5RlOaAQau+b+thaMBVvYc7Gj1jhwErfG8qzuYAqzcFnOWVxhINlY+3zx6+/ACHCC3BgkktwatJv2uE59rjCISCKWLMc4hTUW50QIHbJgFVhqHfUhZNDYqWX5/a/W2i9Ty5QRbjxA6keflaCdJks6dAExOq3qCIukV9X9Fc4gnaQr2hy5AaMip63iqrlBjPpV80Ue+/N99rw8E6wgj7tYFSFNDv0jRGvbJ5nnpgpHk9kkaNFZH6BtC4tzEmcExgkoDEK6KmxRZCMfnnayj7AGq2Py9iZpUSCdokVCSyScFENaO9dp8/vo/Rv+JjhzvsrBEZ1v+EDb4bt+gCLuQi3HYVwUbOsuzgo0mkTEDIoUVfXWBzuItVPVisMipSVjIqer86ktEi5FO7w1uo9AVmSEc3D3hY9y7au/SeeNryFe+gmKEBAptq+iRcQgT2mt8bCSBiIhuvsG/ff+6NzrSvrBeFZYNJZWUHQMNi5XPvkm3L/+UTbvv0L36AbJ0S1Gm1emvzcfV1kL/Y2rS79rGYrCkrRjTGcLNTxGHN9D7T6FVJDlBXHY74WxaCGwDkQ5+G9tghXV/hY71+Htr2P236b3/MfYT08p5Pw1yxQOG36nZU5Irts4fI2hcNJ/p4VclxkJKcaY6jfzvtZzaBSf7X+V74zfIrMFn9j4KN8ZeXLl+eQa0slaHsPkvLHWcU1f5Gu8ytvpXYyxVXhjTIS1DhuMR7m1Pn7FSgpjsdLhy3F8TeV7W88C/pya9fArFBf0FveKI26m93l362l2gjhm/8QxGFvuBefj9T0WH0Mh+Vb/FRyOS8lltqM9jHHIIqPILL1Nf4yMdTjrcBaMtXSFn9E6NcOqkaEVww++W/C+p33eRdMyT8yAu/khAng+vjb1HmMtErAqAScpju8i8gzZ20WEY+VzjwR5XhCZDGEMToup3/lZIBD8aO8j/NrR7/BaeotnRzd5Lpkn7Upc2xV88FnB199w/OZXLX/h0glRb4v7BxnDkUVrweUL8dw9rkz1P+kX068pWxEJceTPzUGoZWw7hVFR47ZtS/8McmwG5KaoAox7HQkhF2MrGmN0a+7zXxu+wheHnkT4ge77eJ+4gB33aUlPTgzyIcY4Ij3JXFh0zwY4DlWTvU7zvV1mI6z1g+4y36bb8tWkpyPHycByOvLOi0tbk3NVWIdLR2z2Ogjh2wtOB4ZurSHh5LSo9q8txogixyUJOIcwFpdnWNVme6NsbsgpZp51xqnhX/3OAbfu+d/pu5/trJUbcBKUJN228rnIS/ZRiaSs9xzbufcfn87vx3I9hiMzeb+VZGRYZ8lNweH4EOHmnz2XobRktBK51nqfB+1E0m5JRmPL3f2UyxemZ+KtdaRFhlEPdxySmZRRPiKWydrbJtFkxYBhPkQ9hKGrr2XsI5k8M0inOE6P6cre0ud64wyH6RGKKHDiAk2MDrk5hS3IbE4sWuF1N1lmyGDpttXS5/V1x1TfC3jnmDAa8GM/9mN89rOfrWb/AT796U8jpVxa1/ixj32MXq/Hv/gX/6L6W57n/Mt/+S/5sR/7sTOtQxzH/NAP/RC/8Ru/MfX3X//1X+fFF1/kqafW7zr/dwFCqqVBbM6a6bBAnfjgvTUDF102xBXZJDCuBikkSjaELZp80hKxJkStgeKscGX695q+MxG3faDgotCqPIW4hVhXIsZk/RV+v5gyp8BBtIywcatzCISOAIuWoXJTeN+uXHG5cSHI8SyNDdUyo3ZVk/WooaWiaPkHOjnuVwn2tj2R0Oe2IBKaloppq4Q8rFsZLKjGfUQYRBVxe/k+X2edhAIhMD0vrVan+yHsT0wFLsqysUFFSGS4WVqE0ojQuFGe0yIkiIvMs/VTtY/CJ5InKkJLRU+3Mc76WkSpfC3i4HB6Ja1h4yv/CmEKst1rjF74E3PbYZyhU5MBbujOWknKuTVs6M7czX876nEx2WJQjDHO4pzjpBjiLr0Ae0+DNeTf+jfYYLXQO0+xG20yMunKcDeAfO8pnJCo4TFycDT3ulaKSAkfIDm47zMNdELWWj7jkbc2OLr4EgAX3/ri3DWzbGsYd3Yx8fklkNZBpKUPz8Q3fkgpaEW6CpcDfG1o6d0M1Y+mszkVEFo2N5jDG3RkTCIjspnk8tnchLKxoYjbvh6SSYJ3vbVB4FAzM7bvbj3Nj298DIng9ewW/7+TL/BGeju8Nh/GWcelaBctlK+BNCektmxtKO8BDol/8JMIEhlhsb6URtBY69mEK5EPQJ0ELvrtPziFG6GtYXcDOsmSh1Yp+Xbm5e3v3fpA9XebjUErWvHk2lFvxuiG5oa+GfFD7xF88kOC/+THJR94VjaGjpV4ZVxmTFygo2YmVZxAljNUOkK0NnCjE8z+25j+Ac4atCqbG3wTwMPAnt7iQ20fYP25/tfJGxLx6/jh9wg2O9BPJb/75VNwpqp9vH45QTd45ctU/35Da0MZpFe2JIyKUP0oExY9Rndki1hoHI7jmtKx3o6x2WWuzeIbo9f4g+G3APhY5z18oP0CTieI8WlYHrXWhjJscflzSDl4aWwucAaR9n1mQQ3leg5GcDPUPl7Ygrg2a+1UhMgGaGnZ2mgOXDyttRwIU4RrWfgOKcGUtosIITwpMqwFHR6d5PzTf32vIhHAkz3r4KxBizBpSBiN58+DevVjiTK8st7yoITCYClswbAYMiqGZ67/K5f/KBobSgghqsaM49P57VVCkZrF6jzjzLmaFAbFgMIVVZPBupDIKmj0QZHZzFdP1mqFY5kwNqOVbRXDYsDYjEhkswVCS01btefaObJ8Etq6qD3lnYh3NJHw8z//83S7Xf7G3/gb/PZv/zb/5J/8E/7O3/k7/PzP/zyXa/7cX/iFX+Cnf/qnq38nScIv/uIv8su//Mv8yq/8Cr/7u7/Lf/lf/pccHR3xV//qX51axqc//Wk+/elP8/LLL2OMqf5948ak4uw//U//U7785S/z3/63/y2f//zn+aVf+iV+7dd+jf/sP/vPHv1OeKdBqrlAoSlYg6jVKAmlETrBrZH8XJEHOm4kHhQSLXwJ5NTnivxMg3C/YuUT5TmYYmt8Gve6DRE68WRC0Xxxc/kI2d462wA8VDgKHLFUUzeDpe0B1i6trKy+24EWAiFdqL5Rq5Uba1RiLlykjs93LM4BLRVFOF/kqI8ch9aGVp1IMLRVghKSrm5VycemobUhj1tz2Qh2dIzL108oVsJXbRaBSND9AxC+zq/O+JdEgoniKgQKxEQ5oHRFJMg4bGOQYkZ1IgHfrlA+2LZUhBISIwT5jp8tnK2B7Hz394hO7mGjhP6Hf2quQtSGZoD6vmjJ2A8olzysGGeRtfC7OoQQXEq22I66nORDToohiYi43rlI8sE/7T//xpcxt30dpNy5xm7coy0ThkseoEo4HVfbG997s2H5PlTJFG5S+7hxeU6p0YT96x/BCkXn9A7dQByU6Fa1j2u0NayAUtJXXgLqxGc4JLGaIlKsDWFuziGDrNt2tqaJhO0r/pimA6LxgA3VZjQzkJRCTP1My8yOImojpY8BLdtdpJA4KbHBliIbUvifS67ypza/H4XkZn4Pi2VHbbCnmoMAq+XWaiBvZHdJXWhtqBLEPalhscgiI67WW4SCwvUwIRIOcM6xG4Ryx0N4PWQ0Pt3U1lDD6+kdxi6nI9s83fEKCJylSMfoKCaJJg+k9WaMngxEgh3RbQne97SsZNiL4JzjleDJfzGZngTxm++mySCpEO1NhJS44zvYwxuQDoi1wBiLyMe+eeAh4COdd9GTbcYu40a2vB410oKf+LA/j751Q/D2m0eNtY91bHT9dWc0thTF9BFOM3/9Lgfuw8Jf89t68XODEIKdcB4eFpPJro3aeHJ7a/qaNbRjfn/gszA+0n4XH+68y7+gfehmN+TqTFob/LFYRSSUM+nbvflnjiI9YT+97ydtaihVLIMUbgVO+OrOzPmjIoTxNZB72/63c1AjEtLMVo0SG101dz44qXxYsXNoJdgK61c2N7x9e8w//df3OOkbNrqqIiuOHyGRUBID44b6x35FJOil7y/rYgub+4DU0Bh2FpTERLv1aAec5YD2tMH2oYQid9kcqZ7bnMP0kLeHb7Gf3l+LdC+RmZSj/GjhIHwZYpUwyPsVkfYgyGw6R2ZoqTHOMCwWkxXWWU7yY7TQZz6m5fkTx57A/+OCd/SWbG1t8Su/8isopfgbf+Nv8D/8D/8DP/uzP8t//V//11Pvs9ZizDTb9tf+2l/jb/7Nv8kv//Iv89f/+l/n9u3b/IN/8A94+unpuqi/9bf+Fn/rb/0tPv3pT5OmafXvz3/+89V7vv/7v5+/+3f/Ln/wB3/AX/2rf5Vf+7Vf42//7b/Npz71qUe38e9UhEHm4teZG0iKpOu7qFchHyOillc0NMyEdFTCbtwUEuimyIu1ICUwmb09E0wBSq1NJAghEO1NXDG/Tc556W2TlWMppArHwhHLqJqthRVEAm61xUSqoHaQWOllwtE6UjRbhErMcyQEP2CqsEuH2OHRWjdEJRS27fe3HJ+iApFgakSCcbby5SfSp4Nb5yb1j9kINfIPl42KBJPhQkjVOpBCopDkGzt+HU+9djbWanrgZibWhqk6zvKYK10RcjLMdIs8POjNEAkORxL2eyvMQPsaSD+4jQ4mREK0f4P2a18CoP+BT85VPgIUriCSmrhWB9VSk+9dhNTmtGREe4EVQQnFldYuXZUQCcW19h4dlaB2n0Zde5/fknAs5PY1Iqm5kGyR2WKt2Zb8oh/cxfffaHw9ivwx6Jx6ImG4uSCEcgZF0uXoss+ZuFBXJThH99jv2wchEsqJQSXFRJFQEgmRr4At7SMO/z6Rj711BnDtzUquDSBUhNzyFgx7+DYbUQecm/pNCSGmiGSdB1VOCPMSYnL9UUIghagUFyprzm15Kr7En976ISLhf0MvtZ5ey252Pfbn8ZvZnWqGuyUmigQExPff5tq/+Ue0fuP/wVNf/A263/ldNo/ersi1VbgU7SARDOyIvh3Rjr29AOCVW36/NNY+lmvhHN8Yvw7Ae9vPTR5craHIDZ1OPMVJCeGrKh3QCzOgQztee9bwbnFI347QQvFMMn2eWutQSBots1EL0dnE5WPs0Q3a6YFXTJh8cVXwGaGEqiwNby6p/yxxbVfw4ef8zvk3Xxxx98Cft4uIhDgSlVWgPzOoWqhIUPPXsTp2tL9PHJpJhlYvzPRrBe0Zef7d/BCHY0dt8NHOS7VXfBVkt8wqCURCtEb942hsqkHu9ubMfcY5/uDw9/nnwy/xajq9T7thN/XHjltBkXBtd7ZVRAEOUYyrme06kVCqEVqJ9BWkxdhPotQ/bwvvsQN2tib2hm+8POBffGafLHdcvhDz7//URS5f8D+e0i6xChWRcIbZ31bi3ztK7dzzwEmlrlBz758lEpyznGSnDIvBmdUIMFEkdB6hIgGgF0iR04baUykUxhYU4fqY2YzD9IAbw7e5l97B2IKj7JDBmtlizjkO80MfajirdloDsYxxOO6O7z5wVePIjBpVspGI6Bf9hdfMoRkyPIfCBCZkTaf9jh56z+EdnZEA8OKLL/IP/+E/XPqef/SP/tHc34QQ/OIv/iK/+Iu/uPSz3/72t9daj5/8yZ/kJ3/yJ9d677/TWFphaIF5yb+IWmtNAbl8jNy4CCrCjm/OCR+0VGzI6R+/swaknLZTrAMhq4H4mWENQsdrZT5Ui0s6IISvx6wP9LMxIm4hWmdUVFQaXUsstR/kEqrDVrGscsXrgSyS0g9VnYBonYdJayBue4n9GSGUBqm8NeYMD67OFn4QqWKvakj7sIKU0UJhwntUOmGuy8Gxn1mfzG7GMiIWEbktkFHie9JtgQqWiCJuTzHbztnqYcvZYq3zRIcZj6zriQTd91Jqrby1pBSTahMsFipCl8t0riIShNS4EIQnQ3ClwCHTQUVOFFuXKhVAFYIoJD3d5l52TL57HfC1iDiHyFN6X/3XCGD81PvIrrzYuA2ZLWjJZEqRoML33s+OGxUHAJnJuZTsLJ0dSGTE9fYFrHN0a9aJ6P0/ibn1Lb8PohYi7L+y0rJfjOcCA+eWf/EZut/+rN/eIvdWrBpi7R9X2qeeiBltrEckAOxf/zDbd79De3Cf3uGb9HefJR4fE2VDrFCM1iQlmmCcRQmBlgJTKhIGR2BytIqItCA31lc24pBCVLaGIukQNSR5y92nsEc3sQc3aF19r1fvOEsUCIfZirzS2mCiDlI4JJOZO2+GEti4BcNmRUKJy9Euf27rT3Izv897Qm7BKjwVXQRgv/AKCwHEIgq/Fa/S2Xjz6/4+YgvaR3fg6A7Phc9nrU1GvUscXHkfae9C4zIiobmgt7lbHHI73+fdrafZ3YCb+95WIiVc3Vm8jveKI/aLYySSl/QlT1wLickztDBzFdYAUglM7mirBInEYhnYMRtqdRDtK2OvRnguvloRMyWcdQhFTck0AyEQrR4UBXpwjB45RAzurCT9EjwTX+bro1d5K7sbzt/l94offI/gjbuO46E/7/a2I7oLZqeFEGx0FQfHBacDw/bm5HecVUSCxNmCoQ31jytmVbdVIBKKCZFwadurEp66MF/3eTf3U/+Xo915Mky36KT+ezKbUdiiIjbyJYqEo5PJ4He2bk4UKbcyTx5+d/wmLyQTYtJbGxwHpzAIvNmVXebgpELkQ/a2/Yv7U0TCxAogTI5wBa52/UUqRJ4hbIGTmt3tiNfeHvPlb/Wrgfm7n2vzY9+/g6opFo7PSCTUMxtWoR0UBs55giaJ/T4uCscoWC6arA1NCoYsqNqUODuZVto7HrkiIfwe+oNmRcLYGcZmxEl2zElxQmZTWrLFhvaTcsNiwGG6T0u2VloVhmbASXZM5xwVjiW6usdpfsrd8V2utK4Qr9GwMAvjDKNiSCTnJx9ilTAsBqRmTFtPXzN9rsIJAnFmNQJMFAnt9tlz1b6X8ceLFnmC73mIMABvyjBYJPkXOq4GiYvgfNoVor2BiFtzM2ELYXI/m32GfAS/UtIPeM+TkWALv45nWVzUhijxeQj17yrGiM72mUgJ/4XSD7itrW5y5YPZ0pueYOUMkwj2FYkIE3ve2rAKzhR+O88DFflzx6yfk+DSAW54jOhsoy+/gNy+ijN5o/KjDi0kMu7gajcSG7er83Z2Zj2SipaKvV9ciCnlQvnZKXWANf74RG1YMAs7CxUUCWlvGwA5PIEiDzkJskr/VcELbnSErB/nkkhQ0cTaICNs2KZo/20EDpN0sK2er8ITaspf2FEJzjnyzYs4pZH5GNXfp/eH/waVDig6242BhCUKa+k2PBR0VasxzA4IYXqCrl79MNFWyRSJACA3LqCf/Zj/751r1cO7EpILsU9jLhZcd5xzDE3KUZJg2hsIa6ZUGCUiLenmRyiTYaVm3N1bua4lTNTm4Mr7gYkqoXvklzHavIx7gGwNa513EimJTTrYuO1/q6cHCAGtlqao2WKEFKhga8jbG43koNzxJJI9fBsVclHqMzvhEb36tw7kgEnaWGcDkRm62IVECOmJBEAVy1UA23qD97efX/sBr6vabNdmlGPha0bL80ynA9r73kLifug/4s77foTR9fcybm/7949P2Lr/Mte/+1tL7wOlveFWmZPQmzxEXtmmmgVvwjdHrwPwYnyVNqJS5mVpRhJJkmj++KtgwxBCVPaGgV19HSmc4bXsll9ecn3+dRw6qESWQmt0d8vXejo3lwHwILigd2iJhNwV3An7cxkiJfhTHwmhEcAzV5cr1xbNzqY1IiFNj6uMjPYKIqFJkZBEgr/4ScknPzR/nt4tPJFwSTewS0IRo9DB3jAyw1pGwuJnncNAJMypEYA8PeI0nBu3832GdvIbKxUJJYmw04N23HDsVYwoxuz1/DocnU7CKk/7k3wEbA7GTJ8PQvnfTsjBKVUN5aD8Bz+8ySd/0JMIQGVtOOkvfhasY3AORYJSgqhUnqST5ZQqlUiLqaDHhUSCgEExpH2OmWt4PBkJULM2NNhFpJA4HPfHd9nP7iORbOotEjWpYGyrDkMz5DA7WPrM7QMKD5BCnjkbYRY93SM1Y+6ld8nXUSvPIDMpmc2I5Pz1oHz+HTUoHkZmxKDon/uYlsRW5wmR8ARP8ACQyseYNz14LZL868T/bdkAr0hDlkDHKxiWhRNOLTMELZ5VGv+AGQlntVIIpRFJD1fLSSiJFdE+o62BktBRgKVMjbDOhhyJJZcFx5y3fQ4htE+H4C/hVtklyu+2Z1eGlFARQqm1AhedLbD9fRwOdeFZ1IXn/HnT2UZuXMSNT5qJrgApJJGKKGoqkLpUP7MFiYynZta7qlUNSOuhjE4qXBRP7x9rQSgvFV6Qi9G0TkpIiigJA0LQg4NJ4GJpWykzErRfpiu7scpZxlKpEr6zbG4o/f+lrSF3BbGMpwaTbeW3OReuyg3o/eH/RXLnVZyQnH7kp+Zm66fhGpsS2iomkprczT88ZjYnkXrlA/0yRB/4KfRLP0ocMhNK9HSbLd2jPzOAza3hJB9ylA+QzifUjy94S1x8vyknQbA98p7u0cal1b+fGRxc+yBGxbRGR2zsv/bQ8hGshUgpf7iFmOQknAZ7g1ZTeQBKCE9QAXm7NzdjDV6RAGCPbiGdQ9eDXJkoEsrvLIkEl3SxIdiwlJsqIbwiIZyDek07wVlQ2hsAWuGh0uFJ0M7t73jybOc68vK7GFx7Dycf/CSvf+Q/4Ksf+jnees9PYVRMnPYrcqcJ9cDFek4CLLc1DMyY18PA/r2d58EYRLin2TyjFenGvCEpRdVWUQ9cXIW3gsWjK1vVOtfhTAjcXOMZWGmB0G1MfP6ZxyZIIXimZklZB1d2BD/yXslO1/L+K/lS0qeanZ21NoQZ/zgWjFNPYLREspK02gmKhKEdT9mzmqw3hTOVOuZitECmErdoh1nUoRkSx6szEo5O/HJ3NmeuvTbncHSr+qcDXk8n/+7NPKLM5SOUkBqMoRfnJLEnsQ7DMk8CIbPZUz54cwEJVZ7XF3d94KJSgp/++C4ffd/G1L7a7Pnjc/aMhLMNXEtVwrgW+jilrqitUytuJhISGSMQ5xo0W+uqppBHbW3YCJPug5FtbHFpqTZKRmxGWyQqmTt3hRB0VJfj7GhpEOJJdszQDGmvoYxaBSEEXd2jX/S5N767ViBzHWOTBpVd876NZMxpcVplW5U4LU4AhzonEVJafZ4QCU/wBA+CMlvANisShIzmZteF0oiotTRw0eVjRKvr1Qs6WZiTMPc5c46gRUqvrx+In/3DnMvTL1s9P1tdIh8h4naVrn9mKC9j19Kn9xfO+FnEBRfXqlVhlbpA+PwFifP7SU4GB+us03kghICohVtxQ6lUCL1d9KUXkRsXKiuFEAK5dRnR2sSNTpd+TyJ1FbgI0/kITTPrLRUh8LOdddLBJB2kVNNEgjMIKZHtLVDxSoVEiVhqLJZiww8C1GktcLEoiYQwENFRmFn0REJllxGTVhU/iPPbEe37Wr0qaNGZuW2MQ05BaouJveEo5AK89EOYrUssQmH9uRc3zBDEMqKj4sachLHN6en2WoqXRRBxm/gDP1X5+0tIIbiQbKClJDU5I5NxmPUZmZSebvNs5xLPda8Qy4jBnt/e+N4bjeRir+9tDcMz2BpKWJ1wcNWn9V98+4t0TryXebA1P2t8FhjriGtS59mchEhLn74ffNlCMKVIaCIcRXcXojZYgzu5QySjqYcxKYJtIOyiMmzRtTo+2FCI6rfgbQ6ColQkPAIiobQ3ACQhH8EfPkfnpk/ON09/MOQ1eHWFEIJCJwx2nubokvex79z+xsJllDkJQzvm1A7Z3Zg8RC4LWvz2+A0cjst6lz295X+nRUpeGCJXkCTN9xAlRTVjXg9cXIWyreGF5HrjQNc6V3nyV0FJidS+JvNh45nE/07fzO6sHfL20RckP/8JwZY8Ro5PFr6vmp1dpEhQllHmfwOrbA3gr13dcAwOzeLlAtwvjnA42jKpjtscZEQnqMCGxaD6/Wb5YgXmIkWCzIYc5EdAGSEKr6aTUNdY+xyHElcbbA0lnFTIfMTuTODiVGNDPmoM3nQiBC7iB/z//k9d5D/61CWef2p+H2wGa8M4tdUxWYSisNXg/ixhi9DcxDBpvpjej6ViYJyZqWOQqBYb8dkneYDKQuHDeh/tMK0bWaRwWOcrLGcRy3iufWAWUciBOkz3Gwf1PmDxkESuJt/WhRSSDb3JaeHDQs/SHjE0A3QDEV4iljGZSadyGMZmzCDvk5xTjQATYuuJteEJnuBBIKQnExp+9M4WC2fqVwYuGoNs+4RkIUSYvV9nAOZ8I8J5oFTlJ18XZQ7EeQbMvgZSVYSKy1NEZ+dMmQBT3yd9Qr8SCiUUmS0aB3IVrA0jgfUUCQpAOLQUKxUJPqtCnav6sYSIWl462fT9zmGHB16FcPE51N6zjcdd6DikzzvckoFLrCLy1oTAmQ4PnJ9ZT8Lsfe7M1Htt3EYi5hUJUkPcQbR6uDXtDVEIzSwrIPWpnzmLtfTWACaKBKdjr0Oxvoq0OqZyMuPoFQllYr5/0KuCFh1V0GIdvq7RVEQCQLb3FKPnPrp03XPn6zKTBUx/Uw2kC/alnj7/jX0VOqrFTrThGxyc43KywwvdKzzbvsR21COWmq5K6G9fwkmFGp3O1146R+vYD/7PQyQAHF79AIVOiMenSFtQRC3SzhJz/RpwjqkavFKRUBIJWksSrUgL6z2hUlQBoVl7o9ECJYRAhmNvD94mCedkCRksT9Y5hMkrYsvFHaxzaKGrQawQwueRPEJFQlkDCbXqR+foDe+iRydYpXFXXwo2jbDeYmKzObr8Xh9seHyTeHTcuAwtFBeDVP12vs/ehpeN7/R8nV4TCmf4ztirW97Xfs6vllSIYsw4K2jrgihufriXQvhgGiaBi4MVlWkjm3Ij96qZJluD3y3e2rAOpBQoKXkEPAJXoj20UAztuJrBX2+lNE7FyNE+Im8OhysHif0FREIiiyrRvSPXUxXuNOQkNKHMR7ikd5aGhXYCyTDKTytrAzBd11rDYZMiwVlEesq+9dvyUutpBJ7MOAnBeUKIyt4ADUGLdagIijF7m/63tH/kr9XVLH6HELypSW3Orx99lq8PX/WfldorSsN14uJuPNWKUEccyWrgvqoCshy0RVpUWRLrol0LUJSjY+TokNOB34+ztX2lIsEYpqxgD4LK1pDIpefCw4B0BRutYEUZnN0mUKKjugzNkOPsaOrvVcCiyc8VsLgMPptpg+PsaG0yIbc5mRk35iPUv1fAVHtDPz8NttXzP6OW15U/bmGLf7y25gm+9yGUn/1s+sE7uzA7YFngoisy32ldm5kXSWel7cCVXvSz5iOUkGrlMuZQDpjPI42KWn4/FKmfeZfSqxTOC6V9Gn94SPZy9SXr5bzkfnXYokJITyRsdmMSrVdbG2wR8jEegEjQMU0niXMONzpERG30xeeRvb2lgY6yvYncvIwbDxbmciihphQJpV1h0cx6JBSJjMlsPq1eSDo+CX0qbNH481kIZHcHbLHWzFskfTtAseGJBNX34Yg6yJGdc9XAzWcklL9DOSESaq0qUoi5oLRi81LwsovGc8XXNQrSjT1MZwuTdOl/6CcXSlpL5NbQUYtnK5pqIMvzdVFbw8PChXiT5zqXeaF7lSutHTo1fyhASyUYqaq2itkaSDk6QWVDrJCctpdM6y2BVREH1z5c/XuweW3lPl0JMR2cZ0pFQn+/uj63Y4Ux/nhLIarqx6KzsfA3rXaCveHwbW99mTp1RciodZN8hGDvsViime9UQlHEnszSKzISzgMlJFdDDWSrlvexu/8yAP1LzyGjVqWOsFhkLTAyb23Q3/G2lp3b31y4nCuRP+63830iLfj5H5P8h39SLswbeD29xdhldGWLZ+JAPskITAr52Kf9L7hW18/NdRUJr6U3cTgu6C229YJZVAGysbKhGbGetH48TGiheCoq7Q2r2xumP5x460r/vt+XM1hUhVeGLSZuxFCEwcCag6KmnIQm3CvzERbZGgI6IQBulJ2garfjppyELLMMR37dd2qKBFGMEPmYA+tJg+vRxep38FpNlVASCRtt6C2bRQ01kHvh1Dk4zn0wXWltaDmEKUBpbub3uFsc8o1xSSQowKxlSwTWDlysVz+edTBeKRLGBSI9QfXv0j/y+2qW5NBaVE0mTYGL58HjCloEwGRstPzyTvvnJxKEELRUm6P8cGoAPjADTrMTOkuqUh8ESig6usthdsBRdrjyWSk1YwpnlioSAGKZ0C/6FLYgsxmnxQmtNcnDJhSFqxQuT6wNT/AEDwAhZRiAN11w3cKB5LLARZePPYlQG/SIKAmz90tuNucNWiyXIaMF27EEgUhY7hVfsDwhEe0t75vPRoi4C8n5/WZCacAiQy6CdGK5RNyVs9erwha96kSEpPe1miBM4TMOHqTGMXy2fiPxJMIRImqj9p5Z28YiNy4iOlu4BTJYLRR5a97akIegxdmZdSFElZNQVyQUsZflyxlFggiDY5F0Q8jm6kGUCiy66XlrQ6lI0MoH2BXGomv1j15i7iZ5H4SgTDkJQ3U11YbpbOLiFrmbD1os0VIxiYjIMBz+6M9z+GP/CXaNRhHjDB29+CbdVAM5Njkd1VquonkIiKRmK+rOV3QGJNLbRNILz/j333tj+vMH3nc87u6Ru/OHTB1eeS95CCMdbD+YraHMI1A1RYLpbvlGEVOgBp4w0JFCKelPEVtULSW2vbXwNz1RJNyoZvur17wkYYpIyHXbz147N+cnjqTP/QDQa+aFnBXvbz1HWyaVZF4UGduH/hieXH1XCH0UaOHbbaSYWAcADkMY5ua97yIXqOBmcxJiLRaGLDrn+MboNQDe26pVPioNRUFkUzTW5wk1QHj/CAC94EdelZFQtjW8mDzVvE7+m6dIlFWIlTxTv/xZUJIr6+YkTCHqIEyGGuzPDV5LCfxwZKvAQKgpEkTO0PlrUEcmXj6fLw/+K4mEoyWKBOfclCJhGUolxCg/QThTC1ycfxYpbQ2dtiSuSeRl2sc4y5HxFcO7eovnQ2PDa+nN6riVVZVXl6kRgPKE2+v55e0f5YzGk3240TIVaX1U+GUObUpqMz+xYgxiTSJhMwQurspJqBMJZ0VlVxgVCJth4w6nQ79/t/QQanYtIcTS5obz4HFVPwKIYsxGxx+/09PzEwkQ6hmd4zDbxziDcYaj9MBfPx8wYHEZtNS0VZv99H7IMViMsRnjY4GWn9ORjMltxtiMGOR9MpudqyGiRJm7orUgerSPLI8dT4iEJ3j8CDPhdbiq1HzBxaYMXGzKSTA5srM1fWHQLYROlgc0mhwRtc4vpz+PIsEUCHW26sc6StWFK1JEZ2u6CvLMXyaDRV4Ej5uce/CfgrPVQHMlpEa4UCfJ4tyFyVcXXnHxALOsQkX+4Trc5CckQutMJIL/Lo3avgJC4bJ5WbAWctqiEP47swUd2Wrc3raKcYCpExBxq6rGq+AsIhBNQsfI9hZuSfVdCSUkDiiCtUFmI0Q2QilJpAR54VC2zEiIgwQ62FXKY1qSCsGyI2rVh/mWf3gvrJkLWqyvQ0+3SW3hfx9r/LZ8XWazwqH+vRu6TVr7/RfOsPEIbQ3rIpYRkdBVTkJ0eAtRu+5Eh36GL9u+ijmjFaoOJzU33vNT3Hv6Y5xceOGB1tma0NhQ/y0LWcvXCIGLkURrgRAQpX4AYHUMUWsxkRCaG9zgAJ0HK024TgohKDP0y+rHImp7Hsu5uXNKox+pIgHganyBn9v9KZ4Og9PNw9dRtqDobJFuX6paJCLhqxQD5VZ9frh5lbS1hbIFm/dfblzGxWgHiWRoU07s8s71u8UhB+YEheTdradrrwis9b9hJVmoSKkflW6ttWGhh744Zd/4SrPnk+YAT2NdqApduupT8MGM4lx5xKtwPb6EQHBk+pUUf30IXNJFpH3U8GBqMqCVyMruUw5EAdLM/3esLcPQfNORLdLCkud2aTv1jvKWy0NzuvAYnJgBqcuRSHb1Ar9LQDsQCUMzQmaDSrbfRCQ0Bi2aFPIBByLH4UhERFe2eDa+gkRyZPqVeuKla4LtLnzw2dX3Zaci9uIRQvgB9Z19v5+6HeXbgsL5ehzIi3KfECJd1yUSSkXCyZqKhEV1n8swIQYK71mQEadj/7dNcYI6vT1lj2nVrBAPA+XM9SNXJDgDJmcjzJA3VUCeFR3dZZAPOM6OfMBi8XACFlchkjGRjNgf32NUNFu5rLMMzRC9xuSDv1dJTvMTTvJjkgdQI8DkfNw4h0Lmex1PiIQneOwQMprPFggDj0UD7DJwcZZIcCZ8bmZmXkiJSLq4JYGLzmTnClqcLEOx0G+xaJlLciDWWmbcBuVJlQeyNUCQFPoLWiy1VyUsbWywE2vKKiiNwPm2yHUUCedosmhaZlkB+SAkQgnR6iG3ruCy4VyIoxYKV2vLKIkE5xydBVWEiYyIpCJLJoPfLGk3z3TXBlSi4x8sl9WfAiEoU2CVwoS8kLLKL4q8RH0qIyG0jpSVrH65oc0jPFyL2rrWGxs6S5j5rj5D/SrzdZmLUEqJnXPk1hBJTfsBZggeFny9Z8So3cV0thDOEu2/PXn90CsSilAv+SDjqnHvAvvXP7Iwp6TMwliFIvjd1cwMc7EZ1CwhJ0EIQTvWKAQ6ZAAUIR9h0W9axB1EUMXIo9uoWnODqDISQOX+YS/X7WqmezaUVUlJUWYkmJQzK8DOgZ37rwAwuv4epFTVOmmpMSEjYQpCcHjlff6zt7/VSC77nIRtAG7nB0uXX1Y+vpBcpzXj47VIhDNLH0R9M4bXTHRkgkBgcQxts6LjGyMvMX8qvjS3vBLO2uBqW/+RMYkVrVgxTB98cDL33TLialB5vJme0d4AgMTFHcT4GDme5CwIIWqBi5P1rsIWk7iqSCyVAVEkKYrF1+Yt1a2sg4ssJmXt4wW9WOlTolsSCeSI8XGlbGmyNjQFLcpsiCgKDpwfCO9qPwkTy4inQyNGGbr49EXBf/zjisvb61R1REQiZ6vn1/+NG34/bXYVIh/jwiTRFJFQqTTEei1bTCogVykSBg+iSCiJgbHBSUleOEbhUXJjuw35CHV6GzncB2ceuiJh+JiqH0WRI6xho+OXc/oQiAQpJC3V4ig79AGLqnliZRGsXf/ZYRYt1cY4y/30Hpmdf/bPbEZus6X5CHUkKmFsRqQmJXmAZiioh3U+BrvKY8YTIuEJHj+Unn8gLCX/S2YwG4mBYuxzFaKG4LykO91yMAvHgw1ez/BQNVmmWZgDsQ6EjhFJx9saztvWUH3ZpNwtkgol1dLqR2ft2iGRQkYI64LaYY3POHf+rIoSUntVgi08iaDPTyJUX7mxh+ju4kbTcjklFK6ziVURNmphQ30dwj/kgg/WtP2DioSIpCYWmlRKP6sLFFFrNZGQdD2BtMLeUA7ujHO1nARvb0i0xFqLLMPtdIyfGw5NHPXWhlKpAFOBlKuCFku0ZIxeUNfYhKa6zCb4GkgfCprajLZMqsq+P2p0pbetZBe9vaHMSRDpEDU8xgF27+pUC8KjwGCcMxyvfhi0xhFFqj6xDoDZ8C0GOigSAFqxJo5VrfpxY2m7C0xUCeLo5ly2hVReCVVaG4qoXWUFzA6ipJCY4GsXgMofjb2hRDQ6pte/i0MwuPpuX0cZ1ikqFWi162aJk4vvwqiIZHxM5/hmwzfX7A3Z/sLl38juVZWPZchiHUYqtMuRC2wNMGnGcEERVg48+3Z+lu7t7C7fTT3p9YH28wu/0zjQZ7Q2SCnY7vpQ13zJQPu8ePpB7A1QC188QGST2eXyQb+cQbTWVUGGcaIrQqYt/XkZa0W2IOgQ/Dm8pTzRvMjeUNkaVuQjlMsFGNkMshGJ9svOG60NM4oEZxDjE5yOq6DKPb1Zvb/J3rA2QuPPXmgleeOm/31vdAQ4H7RoneW4piAplQ9lkOg6qCogT5efU+etfoSZ1gYZcRr4n1hDEimIezgZIQf3kcODR2BtKBUJj5hIsL4OtSIShm7KtnFexCrBOUthC5IzkP0n/YJf+T9u8W+/cHTuZXd1j5EZsT++P1ffmNkU40xjUHATopBrFan4gVUED3I+fq/jCZHwBI8dpTd/CjZI/pcMVJsCF12eItrbjeF5Qife792Uq1CGHj7I4LXmLV8bTiwMyVoXsreH3Lz44PIoqYL01KGEIgrtDQvh7NLjU4fQEVJ4yXq0gnCZ2FoebFDoKyAT3PjUkwgXHoxEAK86UZuXQEyfR1IIdNTm5g/+exz9yH8IUlbNA9WA2BS+aSTI3KUQdHWb3BUU21dwQpL1dqYGZC7kUNSVOUIqRGdnpb3Bz536irpJTsIkcDERZjJujJJKkVAnLZCh3rMiEoKVRgiKjQuToMWl1UmaVrgBr4Omuszm741oq4TU5GTW2xq+VySCiYoRMJ2T4FxlazAbe8hWm1grikcQQFdCBP/+qiVYfL3jLGYrIAE6iWZnozWpfuxsrCR95G7w2h/eRAk109zgFQmVtSEuj6OYIycUEiElNhC+6hHZG0ps3Qshi9vXMUkHgaisDaUyoVzXOqyKOL74LgB2F4QuXo2ncxJmMTBjPnP6ZQDe03qG3doAr1oOmoh8qTVOihCUGhYxaW6Yvn6kNuN3+l8F4H2t5yqiownO+haPs6KVaDZ7EePcPnSLQ5mTcLc4ZLRAbbESOsEhkIP7iKyPKNLa7Ky/3me1mkGtHWPnl9WRXnklxWqH46rAxSpoUS8PY3UObJDYFxhSBbH0xGGTIuEoKBLKoEWZDREmBZ1wELzk9fPsqfiSt2nZUaWSOAucVOz1/H5Ls5CP0BE+aFFq+naErT37HZZ+dqn8/XKNQWxpbUiz5RWQD5SRUBEJgJ4QCRv1+SoV46IWIhvQCo8u4xWVlOuiIhKSRzx7HSbmNsKcVD8Flz9YTkKJbrTBRjR/DVuGN2+NyQvH6zfOf50XQtDTG5zmJxymB1PX2mExXJtEKLEVb9N+gMrHEpMq1CeKhCd4ggdHLRm+hDOrpe2zgYu+dUHM2RoqRC0fpNiUk2ByP7u+QIa+FsQaTxA1VBe0c1Q/1iE7W8jO9gN9BxAk7X72WQtJLFe0Kzi7PgkiJMIJH7LDis9YA0o+UPVjtdiojWhvPxQSoUI472bVLYmMSDsb2GA9yG1BS8UThYE1/rO1z7VVjHNw8rFPcfATv4BpdVH1y7CzXuky4xWX7Q1Quqr+bEI5S2ywc4oErSWR8zcyJ6RP2UZ44qKufhDT1gY2LuAQ5DtXQUdV0OIyG4IQgg3dJl9hxaht9Fxd5iJs6g6pLVCIpfaKx41ERmipGG1fxkmNSgeo/n4VtJjvXPXvi9RDqwibRZk1ofVyqXUJ1ZDAX2zs+oFVNkKEYEWEv0yooEjIWr2VKqOqueHgLRJTTNVyaSmmwhaLqA3CWwbmFQl+wF4SCXLNKtQmGOO8amgRnK2IhOOL7/YNDcEnC5N18/+/QUZ+2dsbukdvEY3nB4wX9DYSycilU7Oy4L27nzn9EqnL2FWb/ED3/Y2raAlNPdGyc19MVVR2ZQhcnJHVf27wh4xsyqbq8n3d9y75PjDONhJP62CjE9NtRWtbHApj6Y+K5ccK6Ko2eyFP4K3zqhLAhy/aAnVyC3XyNpvSS+/7xwPk+Ji87wk0JSHDP0sIBC0RgwhhttKH2S5ClZPQoEhIbV6FHl6Ktpeuam4MUmjiEHQ7kpDIQHjMKBLywlZkyPamz6US2SlOKKybrMuummQyaKEqgqbe3rA2VMyFzvQ9aqtV6olEFbQYBSL6yPT9eSo1whWecFiBqFYBuai5wTlXhdudR0reKsMWc3BO+Jl6YHP2UVPFiCKjrf1+HqdnmM1fYtOqwhYfcU2gKFKcVHST0MruBIPhOrXpjwb3Dvyyx6k9276cgRSStu5wmB1U4YuFLRiZUWNI9OPAg1htvtfxhEh4gscPOS+pxRWrJf+zgYt56sMSFxAJPleh3ZiT4IosBC0+wKD+rEGHD3HA/FBQeuOdpS0TdqLFlW6AfxBZd38Fb7FCLm+CgIdS/VgttruDuvT8wyMRwD/kNBAJsdRTD7uFNZWMGPCzK2o6DySREUpICgEmhEvqumLDlhWbM/ssbiPiHm7JQMrbSNSUIkGdHoBzKCWJ3SRoUSCQobVh7pgqVa2z7Ozw+o/8+5x+7M9W27goaLGOtop9ZuMKT3vhmusyl32vlpJExY+89vEsKG0ruRTkIXQxvvdmlY9QEgmxliDOmqyyHqz1AYqtFVLr8pXZfAT/xwjT9QMLfXJv+qWgSMjaGyuJBLF9BbFxEYqMjTe/PmNt8KqJqv4x6uBwqBDMCv76XErzhRDYYLGRa4SOLkJ/nDNa8nDaPbpBlA/JdUJ/5xmsc2gxCcbyagkxF7ZYIm9v0d+6jgC278yrErRQlXT9dj5tb/jS8DvcKQ6IhOaTmx9bGHrrnENHyVIlnJSTik1oroB8Pb3Fa+lNBIJP9D66PGQXgPk8jXUhpWCrF6OkIF1BcGWFIc0tUSTIlwzMS1TtDekDEAmAi7u4pIfTrVrwXI7s3yU/DvawiMrW0JGJPy+cIIoU8QqCcKJImE+UL9UIm7JLa4UPuzAQKUlb+PcNbU4UforZzGz4cVAjtBJJu+WtAyIbQdTixPQpMGgUm2r6XlnaG15Pb628fs9Bava600TCZpJ78ppJPsL16GKVGzGwI3/Ps3b9CsiQk3CyICchzSwmnGrd9nnCFv1nrBNkBZxUioS5gBSc0rTVZAC8DkTWR/XvLFRgDB+HIsEZr0iQ/hq3ER5d+qd/dETC/YPJuVPme5wXkYx8+GJ6n1ExJLMphc3nghaHI8Pd/Ue/zU8yEp7gCR4mGhQJ60j+ZwMXXTFGtDeXyzxbG14yNwubPxTZO2JSlbcSD3HA/FAQ1h/n0FKxFa3YH4L5Ae7C9/oqwmWhbBXWsLWsC6HjBw9tnP1OKf1xmyESZh++HdPZAc4ab6+pfS6RkR9w2iLYBCSK2vdY06hIEEIiezsrA6kSoTHO+io/IZEmR477CAGt0H9udRy832Vrw0xVZa3WVAqBaW9gw3b5oMXVA/iWDDWQKx4Mc+vtILN1mQu3T8W0VcJm1DlTgNOjhhSCjm6R2YLs4rMAJLe+W7UfFDv+4TzSEi0FZo1B0llRBih2WmVGR/P7jLUhgb95YGg25u0NOIsc+RnMot1bue+FkETv+yQAyetfgRoBVn5ShTYU2+qENgRvbXDW4Pr7UKRV44sNJLPOFkteewdv8NS3/hVqQZaIgKWz3KUa4WD7eaRWWNyUDFYJ6ckx4WCBfaQMXdy++11Ew2+1XgNZ4u3sLl8b+YDHj/c+PDewm94IgWhQkky/xZMd5RlWWhvKCsihHfO7/a8B8KH2i1xcMQvu4aYbPs6IJFJsdWPywi48BuPcUPz/2fvzGEuy/L4P/fzOObHcNbfKWruq9+nu2TcORQ6HQ1EaUqQsy5Ypi3qwTUmW4D8IPkMWDBjyPwZsA4YMG5AswJApERb8nkXpPUp6lkhxkcRlZjj0kJx97Z5eq2tfcrn7jYhz3h8nIu6+ZFZWd3Uzv0B1dWXeGzcibmzne75LCtuNiEpoSJeQYQWuhL6y83pyl2TNQehi+GrjRi6db/U1LmowUD7fIDTMBC0ioIFqtNyytKU9kXCQdWZ820U+wu4a+QjWWowe5SR0bZ8w8us7HEwOhiaCFl2GGrbLwOR7+SztlmmUqp8CF4MzxBLSd0NuTBFe66AWK8Kxy3kjHJb3mP3c2rFlGmVuxLjd46jNDYsCF9udUVjheMXtujCkBNp/n70htHq5TWOewt1ExOoIRILLUL19VP8A1dubuVBb60rLxsPMSJDMBy0W301hb2i1H24OzSIMEztBHuwdPHjwY6wrZDbj7uAOndSrwKbvXb/++Xv88399p2w4eRiw1tHpFa0NpxkJpzjFA0PGvPlwNMm/D1xM/ODdOWRVc0EY5581dYF/0KBF8INwNQqmWwmbejXCuoPxhw01sjasBcfaKgxRGqUUeo7veWax2YM1WbwlCMKZrA0tugw1S2yGUboMWgRGAaJjQw4liqr2A07rM9gn909esSlzjhGJamBC3JLAuUBMLhXVZLVNv56tfEYNf2O2gQ8O8p/rZj9rrJ61mBEuh03OD+ZXwSid10AuvzknNqOqo7VJAS2K85Wt1aTX24CKCsE5hnlOgmndQ4Cs0sTmlZ9GK4xWDyUnwWXewhKHGmOEJJs/21UoF+ZZGwDS5mzgoup3EGdxokij6tJQ1gL64gvIxjkkHbL1xrdGv8ivmSYf8BdBpRrl8whs5o9Bm+XWAiHLFQkLMxKc4+zrX6S+/yYbt1+c/TW5uNrNH1TopE9jzwdk3tt5Om+WsARj21mQGi7PfpnHJHQ2H2MYNdDZkObdV2Z+f2GMSHDO0cl6fDbPRXg+fpwnogvzt48xJcmKcZGIP2/LjIRSkdDFOcfvtr7OwCVs6yYfqj67fGHk+ZJI3gZxfNSrIfU4KBPpy+UD3UEGDnY2Yxq1kCg0a7kGN3WdhvJE1LXkzuo3rIFisNjp+9rLInsgDCaJBFesvfKqhGVEVVXF/tqMm7G1FFkEq4IWHXgiSYSK5M0Ntl/WPyaDZGJQWgQtbtcc+uAa0tvD5ffZ+1kRtDhbNalElcfhK4NrS9dpHsQEnGn4ZwqtoB6m5bNdoUjY0PWRSiO3WDiRidrcZWgWRMICa8OD5CMASDakEuZEwgBaucurUZ1zDoimEvjtXYdIkKSHJD1sUEF1DyZqJP3njRpuihDHhwKbZ1LkZGmhtmh1shMJXDwq7u5NPiuc1MC+CF/spB3MnGyngrC4fwLExSJ0e5mPo1IP367yduDdt0WnePShRpJ64EiSfz/gdD73IIjKMLiFrzcR6MmchBMJWoR8UK3WzklwWebX+REJiEPyYL11u+2PokhQChGNESFYJZu1D9Zk8VZgWlkAXpGgxFerjYIWx47hslpxcllVE2GdI3O5nHs8bNFmCxUrEsRI3MQN53ckA4Rj700bReCiJxIqqlAkBKOZ1jnk0HgYajkj7Ly/XFYELU5uZ7zS55y5jKo52ne/FdUfKVtDgUgHiAhJpU5aGw0Kku2LoxeJl81mS2TQmXW0eynpuudlDuscgVEoJdTCoEyan3mdhUDrher4ogJSH45mIwtbQ1Zp+ADSNYgEr0r44wBsXv0O9IsZISFIh5T0VOQru1TRBOGsPweKnyHY0M/ALiIS4s5dwoEfpFQPb8zZZuerCxdsc/Puy4iz9Go7dCtbuWhuUpFQrItzXj0xV5MwUQX5rZl7wxmzgUbRd0P2sha/3foyA5ewo5t8X+2FhfsSPOGu1mxOUGpEdNTzDvdO1uOlwVXeTG6jUHyq8eG1vscsD1hdpGBZFyKwUQ8xgdBP8pwjoNtP0RrObMTUYn9tCY0PucxWEG4iwpXIqxLeGB6nBnIWldAPgB2eTBjm44vICL2cSKioyE9GICjxiovIKIYLlEYiUqoSyoBBvPXrbrIPwFmznEjIMuu/A5Exa0OfXJBAMkxHzQfOcrDv/387aIPLcFED8vvTvKDFcRT2hjeGt0iPOqjUATu1YiCvkFwF4ZwrsyA2dZ3NYn8UigSlIe2v9Tw1Y21wFkk6vo4xSx6cSEj7VAK/Hv0hZdhic0HmXlzx67PS1+8sqn+Q5xRFOCWozj3IRpMDRT5CHKmH+qwo2ZDxC2JBoLW7bq6a6mGjyEcoNnl/AUl0VIgINVMnsUPCqVylJLHlfbI4Zh4GWvmyaxX96Dz/nyBOiYRTvPUQPUUkrC/5FxN6O8Ggi0T1lWSAmBAJY9w4050OHzxoEfwV70gz+ilyxEHTw0QZrDfdoDEHXtEho5rAlQtXKKV5LNpeHaQnPDp2jwXwJNfkA47JSYDMZSQ2pa6jSZloSbxMKmIiFaBESF2KETP5HmeXEmqqtgHOLrTTBLnf0eckFIGLvrmhqH60OiyT6P16Tn2nY9YjyWeELS5fX70ysb9ARfngyXbam5tSX4QDrru8Rx2hjGwrRQ0kjPIRCgRGL+xVSDNLb5ASBbKWtHscDleqDOLQP0DPeybPrCOcUiMMbUIvz5JJc2uD7u5D6o+ZovoxrTbzLIP1HtD1+edg8wLKplRe/bJfloBJ86BFE6G13x9l7kauSHDWK3ZEFGlhbVhgW2jce638/2rr9gzpZ/PZoNniRsA5Nu68BPiQRX+d860H4/kuWgSNwuH8chZ8PQe7z2CVIe7tUz2cHNzqsZyE32p9idvpHoEYPt386Mo0cU+GMCNFnwetfDMGjGT4GZb/u/1NAD5SfU85I7wKrlSwPPgDcGA0m7WINHOkmaXTT4gCze5GhTgaXQeM1gTmaDkJV4e3j+7pnwMRoZ4Pqlo9GORjqnAiIyHG4vLjM589jg3ZknN2XnPDXtYiJSMQw6Zerq5MM4cxymfEjBEJhY1gkIAatJBhB926wd6BP583NyMwFYpBo3OutDbMUySAJzVqyjcMvTm8Pfc1iU25nezNWDVA2G3672FzTDjWtX1SlyEITV2bUSQgBtzRmhsOWqnPG2jdRB/cQHXuont7o6DF4xAJziLDLnHk99dhz9HPj4G51gYgzu1k/aFbWpspSQ8Zdn0QOEBQQbIBunu/3O4iH6EaP1zlqiR93Nj1rdi2w56snVVxkriT5yNcvuD3zUlYGwpo0TSC5sw1ttjXQHnMHAWS9Mvmi2UorDbvxsYGOCUSTvF2QMQPVuxIkbC25N+E+WxViqqsVy0jcWPCW+6y5MGDFiH3sq+vSMB52d8jhfyBfSUWtAksRB7kKCv2TUlQPOJEwjzbTZH/kDnv+43H2G7nXG6fyeOQpwIXQzH0s2RWreHyXIUFkKjm7ToLvOKBBASiSVw2o0iQ3BJhTYAaHwhOe5/HwlB1TiQU9o1QzMqgvQKxDrkU7xCIZm/YnslLSF3qQwrXDFp81GGUJtYRiUtJ8pwEmCUSQuMHpNP2hiTN6CeWzVpEFJqVs7Hj8K8UTD7IDEM/EBvOsTc4wJjJQWEnHdDPH4hcVM2rD0f2hkKRkFYaKGStmWzIiajnfwSA6tVvovodECHMCYHEVBElvhWgVMlYn3vjMh8gKposWEIkOEdzjEhQNqXSvjv1EoeSyRDCAlH3HnF3DyuawzNPAa58MFJjM3aFYsL5qeiFZJA1EQdnngZga07oYpGTcJhL3FfmIhTLdQ5R6w3o9Zh1UIuaIBPOmi3eV3lq5TIKZK7IhziZmbRaHNCoBHQHGbUo4MxGTBhMZ8L46shlyp0Cu2aLWEISl3IzuX8i69gsiQRXKhKmMxKc93yU8ZuR0fj0jPmY19xQ5COcNVsr929mHXGo0YoxRcKAID+Xh5lCBofow+tkgz4HPX8UbzUmz9WO7TF0CYIsJC9EpFQljLc3DGzC9/pv8m8O/4B/dP83+JWD3+Wr3e/NvP+Zi4offM7yg8/ZcrBaqBGa2ufbFPvjIGv7MFatEZut1dzQrPn76WDoSO7dgKSHCyu4sIb0D2i3/bWstoYf/TsH3+RfvPlP6eSNEj47YEgl9Pv19r5/XRRQ2kimEQcFSQPD4QIixFnUIFcjlPd98es8OET1/TW2UCQ8zHwEH7SYTDzPNXPbRqsvSPrW5yQUioT3PJErqHrZTBPJSaPILYBjKBJsiurcRnfurCS/WqVC5t0xaTKNUyLhFG89lPYBdvnsgcvStSX/ogM/q28WtzXMvCd/CC0fIG2CRCuyFdZasPIz9GvMgoxyIB6tQZN/YF/jYm0toGYHnYsw9R0vXm72aAVQLoAoM5O1ocTPpie5l3siH8FloLWfeZDJoEajNBUd+cHT9KDcsZSsER2gKpu4BTf6QGkCMaQ2GykSOvuerMtVOZkJJ5si5ioS8qR68tR8rA9aPKKiZiOo8Xj1POfiTfrZkMOkW9odEpsRqfBdo0gAqOqI1FqSrQsMty8yOPtEWQ9aoJhtHbcuDNKMYerYqkdsNCJCo4/SLJtnDAg6H1Qo5UMXkznd8sBEcF7RnKFFlTLmrJkHLuYkVFH9mFQaPiD0CEGXwblnGWycRWxG5ZUvoRUEaUEkxKg8g6Pwr7oiIyHfAUY0aeBVTWaOtSHu3CUYtrHK0N68DMzaG6x1iPKzx3aKoNnIswza21ewJvIDwzywcDq7I1BePSFzpQ0jFPaG+v03CPqTSf0FkQDwQvzE0lyEiW04woBeTZENRU6CQfNDjQ+tpWooP9f6bI+Tgghs1ELObMRsN2PMglrJMPD7etVpoES4XLQ3nJC9oV74xbsszEjA5Xx5Qd4FCmNkYfXqPEXCuvkI4ImrwGiUEuKcSOjZPlF+2xlmglMBLqxykFRxDgIDtSleulAjbOrGUhXMUzmRcHV4m+/0XufXD77IL97/DT7X/ipXh7ewuZJxnmJBBwEfvjxgM07KML/xfASA2lhuxGHWxttELbIsV8dlqO494s4NqqH//IO0CmHND86VwSlNJycSVikSUpvylb0/ZD/Z49W2DzyVbAA2o5LnE9w+WBK0WGyvFgourN9ZEPaa5pW603lQonGmgurtIUmHXtHY8NCDFtOJoOXS2jAQ3JJQ24eB/iArWw0unYuo5tu+/4DNDaswntfSOSKRoAYtrzAZdHJFyeIrVbtz/CrSdwJOiYRTvOUo2g7KQeYRJf8SVT2JsKY1QYLYD1QLVUIxU/yAkLI+cY0n/nxg+cjNvI89sC9FoUg4Qtgi65AsWeqVISfQ2PBQofSMsgAgUiF9OyQQPTmzbn2IkZgI0bPVkTUTY0TNr1FcofqQMF66XysmInEZNm9bEGfRnYNyliEzgZdoO5eHd01lJOSKBJdnImh8RoJzjvgY6oFQGc5H2zxePUtFhewnbQZZQmIzavrBz8NHCbEOvOxdFIefyGszpwZtIl4xUMig+8MMm8JOM2aj5mszvRd66Vh1Ai5z/jl67LuMA51XcI6WYnOf/fis9iBLiFWY2zL8cZpONTfonh98DCt1AmWONDutlaLzzPf7dbr6TXS/TZj4nI8kqKDyQXlJbuSe6kIMYJQmKRQJc4iExr1XAWhtXaG99Rgwh0hwDqNlYqbef5ajnocstrafyH/k8s+eDYoNJLel+JzShRhWt2hvXkJwbN/45sTvds0mF4MzXA7P8vHa84sXMgVnwaxpL1Ayqbw4G3hS8RP1966lfhiHdbac9T4pGKNo1sKl6gqfk6DI1lDMXYkKIuHWUmn5umiMWxvGMhLG6x/99XHErWutqARmYfVqkZHQtf0yhLZsbFiVj2B9GGlofNtOTBG2OCjbBYYp/plINHvt/DPrzJyr99MiaHG5onNLN9jUdSyW3+t8g+vJHRyOTd3gQ5Vn+UzzE4CvtEzc1IAvr3OULCnv7aN8BL8fJnMjCnJFYBGR4Cyqu+czBRA26vlgszN1DAUV2n2/T+rV5c8rr3deJclrkW/3PQklSR9EUckdmYdF0OISIgEgzl8/6MzJMHIO1T/015V55I0OfRhf5x69nl+fysO0NkwFLQJUo0JgK7S7yVtqbyhsDc26JgoVm03/nPEwmxTAhyAWOJIiIRsg/QOciXFhFento4athS9/0MyORx2nRMIp3h7osZnwI0r+VW0LvXF+/YfZohIwHeJs6gf0Dxq0WK6MXm9GPytyIB6tAfN4sN5SODuWqbAm9Gq1g8tS//08Kk0Wi6DNjLIA/CAZ52X8E6SAzfw26SC34ky+L1IBsQ7nzOzKavuICWfUEeOI8/YARMZyEu6hEj9LY03gB23OjnI+JlZBJkggo3ylpIgc24YgIjRMlcer57gQbZM4X3+5Mj/jHYZQBRhlSFZIHcPAh491+ymIT6uvV4ORpcQIGpmZPV+EFF/9qMcC8aLQ+AC4dHSc2Cz3u48pEoY2ZSOoeVtG/vCY5ooE3brrH4Jza8MwbhBw9GuY2n2c3tZ5xFnqr36JIPOEQBpUyjaA8lzICawCXpGQEwnZcJLMG7M1tHaeoNv0s/uV1p2JKjlrfSCeUorxbybsHxD2W1hRdDYv5T8Vn0EqTGaJAEZM3toAdgXNc//CBwDYuP3SRCWlEsWPbXw/f6L5fStzEcZhnVs4ez8DkfEcNT5afY4/v/WjvCe+svg9ixc2cVy9VfDKHbVWVsiF4AwGTdf2J6o1j4vGHGuDMRnDfNBZUTHelDeyNgBE4WIlUagCarkyZC87pJP16NgegieXliG11sc6aZ+BEyt/3XQ4nPHX9WEyIo/22v7v7frs9zbKR1hOJIgI76086V+rm3y0+hz//uan+fe2fpiP1N7DpXCXmqrgoAyMHIczQT5J4Y/Zg3RSkQCzKg2n1EJZfVGX6EI/ibSRS/EPpsbtmYXOwP+uaZbPrH+vPWp4uT24jbWJt0mogHiK427OaWwYJ60K4qHf7c2QIZL2kGEHFyxhI8IqkvRLRUP1ITY2TActQn6Pzufz2h37lgYu3skbG3a3/U7cavp7zN7DViT0RveSXt+SrmGlAtD9Q78PTeRVMDpAuvc8CTUHrdOMhFOc4iFAG5yzx5L8S1hZXfs4/noRJK7jsqEPD9MBnIAiAQClFw7oJmAzP2h/1GTcY8F6S5FXCspRusTz73gpbIosu7k+KlB6rrLAiMaIpqamFDXWJ8+LUoiZrY6MVECsgtnGBqVWkipS5IQs8JJ6u4Sfec3KnIT7pbXB6jCvr3Mj0mBqWyeIBFEMbZK3UjzY8WuU5ly8xeOVc+xGG49k+8KDIBRTBi4ufZ3x9gBthDPNmGo8uV+1Uijje+PXgc3AGD3xbCgClTggHSMSpgmHwtZQMxE14+02MKZIaN1Dhj1UfuwMK9X5KpoVCFTAvSc/DEDl+nepdnxVX2pyRQLeRpOvuV/54tYgChsEecThZHND3L5DMOyQKUNn8xLDuOlVDi6j0pqsA9Raecn/2C6t710FoNs8jy3uQeKQopp16hHJE3ALQhun0G2ep1c7g3IZWzdnsxKOCudcmYGxCtMEiBKhpo95nXUc7bp/UhCoRHqtqlQjmqdjTwR9sfPtlW0xq1BW4fX8AB2AwB93GkUovp5STbXyRIFCK1nYuDI+A38n3c9/1lyZO5Omjigw+eXa59YUOQmpymtUnR9EA6UiYXPOY9L9rGhsmB+0OI73xFf4T3Z+kj+z9Sk+WH2GDTO5wIIAKSwaEzAVXDwiK0pFwtgyZhQJYnwY9tRzgxocorr3cCYsn6E2cmHN4WR7In4cLihxVLP9iXyscRwmB9zu30QQtGgSO+Sgd8dbK7QpMxIKTCsSXh/c5P+49694feDVT6UiYZChkt7ohQ6vRnCsmIgRXFSj2/P3joepSPBBi7PndCN3C7d6LLeYnDCKfISCSNh8y4iEyeeydewN3s5wOEkKmRjJMlTv3oySwzk3pkh4xJ7/TwinRMIp3haICvxg6y2S/EtYAedGQYsnNKCXNa0BzqZgHqHqxwJ5q8BKOHtkNUX5HS9brHNI8OgPJkXUXGWBFkWkA6KpAbGzGRQqGx3OvC9Qhs2gUc4s5W/yA/hVx6YOvYJnwQNSqAxGaVKXkY41NxQzPTYIvUfaLci9KC07eQWkaFJnCcVgjqJIWYKaiblUOfOuCVos4Kum4lmp7xQCo2nUg5m0+gJKCYHWrBFaD/jzKDBSWlAKRKGfwczyn00TDoWtIVYRoQp8raFz2OqGt8XYjPDO6wBkUQ2n1g/bHIcRRW/zLMMzlxFnqXW8ZSINK4WLYIxUc54sUwqX548gCpuTv+OBi4Uaob11BZfnmBSqhHF7g8M3GRg1WSlYEAntrctjayt5DoKasTYUGQUqVy0shQj3L74fgM1b314rRG7V8mTNrAIpduoDwgGI4wQKG46F0OjReqzAR6rPEUrAXnbIi/03HuhziwFVpw/9PCPBmVFjg+RE13QVZ6A1YaAXqijGZ+DLoMV18hGcI8pN+MVXW1X+fEhkNINfqCfuL1Ak9OygzHnY1uuFVS/L0yjW/U4yh0gYQ98OGDg/WJxUJOQBlGMVkOKyicGYJF2ke8+HNo5Z4QpFwn53cl+388tDvSKobIDu7c19Rvtey6sRLlYucTb2FaK3+zf8M4voUmFQoCCXCny3/zoWxxvDWwDEOfHQSxUyaI0+MynUCGvYd0XTHfpzvBLOrvPe8D6t5HDm50dCGbQ4ex0vtvGwr9ZqIzgpFETC2W3/PLC18dZYGzr9IxIJeX0n1pZVquWvoioyaOd5CaMbd39gy9DYU2vDKU5xgpBC9p4VYXsPl6nzOQkakj4SHs0juhTrhhVmWRn6+EhhVWpYDmetJwaOsmgTsMo2IfDIBy0WmKcsMKKp6HAyaBG8AiXP8Fhk29kOG5ODslyRsDIjQQQJqrgFREIgBpMH52VjzQ0jRULgZ1pd0Yk3R5GgpCSBjFIIQtXEjx4R9ggizv2uyyACm/VoJq1+HKFWazc3OOerHw+SDofpSOsbBZoo0CR5+rV1jjAYfd+JTdkw1TIsNFDakyAi5bET3fJhhLbqH/qPErRYQItGgO4zn5j4eRpVQPlZXiXKK5hE5fYdbxtTKBxg8xkgVSgSnKNx/zXA2xoKdDcKIsF7nh0gzg+IxkMDVdKn0vJBce2tK+VrAayQt1NMzezn6+JDCFZvd2v7cYZRA5MOyorJ46D4qHUH9KJkaUXl2p/rHAp1ItWPx0FglCd/1mDUYhXykep7APhy97v07fEHQrUovwS60ey+NWNBi+SXz+ndIlCNNOmC9S1m4PfT1ihocUU+gheOSWlrUfkHVXWek+AGZQXkMPFhogf5LP3WlCLhfm5raKrasQjBaRTrfjvdX5pNUagR6qoyQUYXeQkd22No8xYBm5Wz4ZIOUO27eeLnpCSgUCQcTCkS2r180FbB+9f7B6hhe+I11lleafvz8ZnGc5wriYSbOO3Xb5pIaI5le6cuKxtCWll34vW9NECSHiR9b9MatPKMqfX2dy/xB1VNT8rke1mPf3X9/+KXr/1zDpODtZY1D5KlM0GLBUpLz0B5mf4J5I2sQqeX0e1ZRGBnyz8rbTb8d9DqZEeuQT4KCmtDcX1bVQHp1Qgtb6+ZgSpbQ9RglJdQ2Bqq8dt3HX3YOCUSTvH2oJgFtelbI/k3kR/YifiwuhOCl6GvcaETd3K5DCcJpXO//YptOIYiYZVtwtksn2V7hxAJQTw36+BstEk0sw1utF1KrzelZq0/ntaQjktUmbFZFFAiVFREYjPSRq5I6B2iBv6BJzNhzh8VuRezioTxNhKFD4U8TtDiH0VEuWUlW4dgXAJj1Ho5qAAiaBn5tYv2BRGoxWbC+6nzwXTmLEpU2cQRiJ4MXMxzEoK7ftY+qzSZF0C41rYor4wYbuwy2H2i/HkWVHytYdEEYfNQVx1QVARr8SWMNr9umzxRvLQ16GAs34BRTkL7DpIlfjCs/cOib4jwqO9fQ3D0q1ukRYtPaVuwvi5y2togahQ/sM45LYr7F94HwPaNb6xHOs+By0Myp2fAF0HlRMjqzgOotG5x5Zu/QtSZrU601nmu8QTUDceBMYrA6LW9y8/FV9jSDQYu4SvdF1e/AS9R/7WD3ytbBcAP3Ov5oCrJxxapGikSIA8unfN9BIE/1ufZKwpFwv3skHt56OHuCkVCmmV5K0B+LOafWcnXo5v1R0RCCoc9b3EwalaOX3zm9op8hHWxbZpoFEOXTOy/aczLRwB/rSz2p1cl+G2TLAWboLp3ETuAOQO3jfxHgwT6w9H2KRHAAAEAAElEQVS+bueugnosZYuDdO9PzLBf616ll/WIVcxj1SuczcM6byb3cXl7TDyjSBj9/63kftla0bb+vhrnt8f+0NsGZdjxE1eD1npqBPz51s9Xs+raE8qM2/2bZC4jcQmfvf2bZMcNQ7TJKNB2CqNsEJW/7uEHLhZqhM2mITAKGXaoD28RBYJzcNB6eOtQWBt2cyXE0sBFl6F6+1P1nVNQBqdDpHfPk0ljy3y3NjbAKZFwircL4iX1b5XkX5TylY8mONkB/doZAzySM+9+IClrPODaPJjxCFhhm3BlY8Ojt1/mQukZhl5kNDM0+QtK4mVedeRcuMznKqxzLpiIollhHiomJHMWF1awYT6Tm/gHYReMKRLmZCSIyITSRuUhi+82G8LDQqQMgeiVOQmrsG5zQ1H96JTFKE1Nx3THAsuiUKNl5Nsu8hH62ZBYhVRyubC3ZVTKoMgiJ0GK3IRq08/qH4dIEIUWTeYs3We9KsGKwsUNHHl1pUiZJC4mKutjlXjyIsuJhMJ/3MzbGkpbQ44kqpOENcRZKq3bvvpRQCnlB375Di3aGsZtDQ6XD5pdrpKYzhpQ/twRt/Zk3cHus6QmIhy0aeRWjKOiGNCvW9voKyxZnRXgHGdf+yLV1i1PdEx/rnOIGpFPbwfiUC/MHJiGEsUnap64+W7/9XIGfhHeHN7mt1pf4kZyj+/2Ju0Q04PwRApFwkhePy+EMgo0oVEM56gSmrqOIKQuw+GoqKis5lyENPMWj2I2M78slBkJPdsnLCog08l8hNnGhiIf4WSIBCWKM8tyEnLMy0coMNvc4MMAdeceMujgwhrzniMCI2W15XjgYmFtKL+/oIKkhcXBfydFyOJTjWf9NkS7KBR9N6QlXg1hxiod45CJ5pLrw1H+StcOSF1WEg/9xPnB5LANvX1//Vzz3tnLSQQBKmqAGo7kFnf6o5rN+8N7/OH9L661zGnIEstCESjZ6otXLjyoHWsNFI0Nu9veAqq691HDNltV/9l7B71lbz82ksSS5GqHs3k2wzIiQQ3anhwKV2TNmAixFtW5CzYpVQ7v1nwEOCUSTvF2QeX9WW+h5F+iqg/2O2kiYcVsTdkU8Yg1NgAzfviFcMzOXK9c9nLbhMtSP9h+FPfLPOQhhqvgCQMZ5XAUKoMFCoLyfXZ91YfowD+cLBisBjJaTtrYmfidKy0KflZiLnGhTUlSKJQfHD9qQaGPKLRoKjpamZOwcjlrNjfYzCIGnDiMaHbCJta5UhERGk0YavrDDC0+JwDytobc1lCgosOS8MpyRUKBpNJAFcqBo26LaAxepZE1z3DjhT/Bi5c/CSYkwytjFCpX5eSKhJJI8LaHwtqgk96krSGvbSwxlpNQO7zhiZY8YFIpPAlgM2oH1wBob46aDFypSHCYOce7zkkNlFut4iqWqQ17518AClXC0aW6owH9mkSCiL9cr/iouH2XSp5XUT24MbNu1o1UGCeJ+PWvE95+da3XRoG/x6671y6EOzwRXsAB/3f7mwu/p1vJfX7z8A9L1catdFKRMe2JH+ZZBAVx7Js9ZneMCFQiU9a7jkOLYnNsVv6s2VpJHGd2lI9QLN+HLRYVkCNFwiAZNTZszWlsuF82NqwOWlwX6+QkFGqFaUUCjFQa+0VzgzY+V6B/iItqLBumNEt7w7giIbc2lI+VUlocdOce3cEB17peZfVM3VthtDKcybfj1th2FORAc2rseC25O/HvdtYrwxn7Q3wTVTqEQQdnVgw8x9AdjD5XggDpH5QqyLsDTyQ8WXsagO+2vs3rnfXOoXFIOj9oEUbkS7vvyctlpMNJYTwfQfUPkaSHixtsNfK2jzv7PpdgRRPSUdHt+/tcYKRsiVhIJNgE6e37JpI1hs0urCFJF9U/pP0ub2yAUyLhFG8XSvm2fcsk/xI3UI3dEwtaBHKP+YpHnCwDeQQbG2AsoX+VqZu1JPezy15im8hSH3x5jIHJ2wHRBgof9zJYOyIPwJMDaxAJuAxZt8XARH59lgQuFvL6ogKy/JggQhWtDXr+dypj1Z2hMlRVTHBCQYsPE67fwg06q1/4kFEz8dqzqIuwbnND5sAgZFgqKqRhKtRNhW5esYhALdaj6kctZM5bBgpbQwF/3IyCOt3YIGdYqefKgeMQCWrC7tE78yT7zcsY5a8PQW59wPnMnJJMyDMSFJBFubUh6VNp3yYYdnNbw8WZz+sUOQkHN7AuVyMIuV1BqB7eRGcJaVChXx8RJi73NjggmLOdWhQKQdx6QrQC++dewCpNpXNvIgRyXYwG9GtaG5QgaygStm59q/z/IOkS9ie91876mdmThD68S/3bn6Xxld9Y2DwzjsAojBaydP3z6eO1F9AobqX3eXU4u7/vp4f8m8PfJ8OWPv/76YH36eeYViT0nT+fCksBzs1mJOQoBv7z9n4xcIbVQYvetuRbXgoIniSq5MqIrh1lJCSpKxUJ0/kIiU05tP7auKr68SgYz0lYhFKRMI9ImFYkKIMkXe9DX3HPmVcB2RoLWyyhDC6oIL09Xr3/ZRyO3egsG+Gm/71znMvDJ4vsA4BKrngYJ5U6Wb8kPYo6z7btjhQJQ/DpsXnI8hEmSl6/7Y+YM038PT7po4YdMpdxb+DJiw9ufZT3bXwQgC/c+ezRwhdd5pvLZP46VSPQ+eNge6hXBi5K0ltY17nW6jg3amxogvT3cSYCVEkk7HUE1bqFbt0q7QIngU5vlF1Q2A4WEQmqf+i306w76Sk4EyJJr8xIeLcGLcIpkXCKtwkieVr8Wyj5FxOipgZVD77QNawNNvXVgY+ihF+taW04hiJBVqgdXJbCoxhAuQhqTULAenl2+QChjM8+WEkkuLXzIkQpCCsrAhe9vH5ckeCURpT2XnFnF5NDfgQL+PDAC5XttzRo0fYOF27bIjjncOkAd4IPG+CzPFxytIelUJmyAeG4WLe5wVrvy86cpWoilCi2wzqZtdj83ItCTWA0Qd5DP21rGK13MKqv1IasNhroJJVGPpA+3mNDqIKSSPB2BUHlpIYhH3iNqXJEBTjrVRQKVWYk6LRfWgSmbQ0Fuk0fnhZ37iHJsBwMa+XtCrWirWHzMSam23O3j8Oh5wxiVBEKqexa+QMFsiDmYPdZALavz1oIVmGdAX3l5T9k83f+T1Rnv5y1Xnbo6GG3bL1I8gDi6sHkoNs6V4b8nRTMgZ9ZFZsS7N9a+XqtFZHRJGvmJADUdYUPVp8B4A86355QBx1mHX7j4IsMXcpZs8WPbXw/dVXBMSnPHycSjIaeKzIS8nNGYJFUIwx8sFqazl7zi4BBWB20mFmLFiEYJxLykI6qFERCnzCX3Q/SxYqEovaxqmJiNXnePwiKjIeDrM1gTsDl0CZlU8TG2LYXGDU3HPrrpQpw8eZaEy+bcwIXRxkJUy9WATaq89LwOgDvCc6PBsF2yHnl1+32OJGQkwONsYiG64m3NZwxGyUh08pGREJhT3BBDPHs9i6Cc47v3fDf3TMXBVA4bZD+Iff7t7FYIhXTMA0+vPUxdqOzo7yENWfry6DFBeTGeDbI4UAvDVyUpItq30S1by9URq5Cq5MxGHrb1m7URrLE2zYZHb97HYWLasiwi25dR3XvHTtrZhzdvLGhWtGl7aDdzWbu2ZIO8rrHiHUUqSVUgGRD2l3/HNOoPYITiSeEUyLhFG8PiplwbR5Nyf+aKDIGls1S+yrAR7D6EXywntJLaxpd7qWXYykS5hMJzmZ+RudRDKBcBKU98bIGkSB6pEgQEW+nWXnzkyOpPlRUWzijZ5Qm0oFvbhgjz6wJ/fNvKSNf8EChDEebcz05OJtCOjy6siBL/CyQNkcmIZauz6CD6+2vVqKMIVIBRukyb+C4WKe5wTrnQ6oYWVoapkpVx3Qz/6AcaE0casLc6z7P1gB+1ruio5nARWtCUhMQKHPs61ioTBlQJsoHByoBixvZZmw2UqiZYMLakBZhi0mvJBIOd56c+1lpVGcYNRAc1datsq3BR4I4mnNrH/GHfP5UZOaciyJCIDo/M462H+5feD8OoX5wbW6w4TKsM6CP3/w2prtP/TufB/JcgyWH7ObtFxFn6dV32Tv3PAC1g+sTr3E4zAnftwoiASC4f22t98ShJjuiwud9laeoqwpd2+fr3ZcBP+j+jYMv0nMDtnSDP9H8PoxozgWebL01NohsVEfbHQauVPhUS0WCLMys0FoRB5rhHHtDoUhQKLZXWAzSzBHoqbaRnPuPcyKh74YEgd83w4SFioQyaHHN2sd1EauQpvYj+jtzVAkHmb+OVySabTcCNnQNQRi6tCQc1kWzVCT4/TxMXFmBWZ/jKLiV7tGyPQLRPEkD1bqO6u2hkj5nVQ0BWrZLJ/+uzzT98s9tjucjeGXAxWCXhvIMQ3uMSBimrN22M457Lf/daQVPnss/L4iRpMedrj9PduOzvn5WFJ86+8cJVcS94V2+dP/31/qMNO1xN9nn5cEN/qDzHf7N4e/zS/d/k3+299v0rL9XFDaOVl+DS+aSBL5N446/XidddHd+xeYqFGqEnabGJG1cMGJsiuP3oAOZU7iojlMBqnMPtaDS8ygogharFU2t4q/1aeoYDCeXq/qHnuDQRyTflAGb0e74c/NUkXCKU5w0itlq9YhK/tdFUZ+37KJmU2RVQMvbBCkTaJc8pBWVbAt8dYsXnu+bNMENu9jeIbZzD9u+h+sdInEVgpObGXnoUHnOxRoWBR+aODaLpIOZ6sg5bzyafcSELBvsV1RUStQL2CD06e+SWxsWKhLUwtm2h45kiETV1ft5GunAW2WCqq/eOinYBMIapOv7RQMxo5n9B8BazQ3O4cRbFYoBuRbFTtggsamXtws0aiHVisnbGmTG1lCgaqJSOZDlgYu22iQbH/AfA4Ey5bYofFCbKIVzDlNeW0ZWN1GmvK4apUjza0W1c48g6ZLpkO7GrK2hQFED2WjfLMMClYJqf59w2MaKpjP1fh+2mF/uFhAFvr7OcVSiLYkbtLYfB5gbbLgMKwf0WYLq+Rnn8M7rBPeu+YbKRatoLZu3vgvA3vkXJiszJwgzQU44aNEcjoLq1iUSgqCwyR3hc0TzfbX3AvCN3ivcTQ/4jYMv0rJdGqrKZzY+UQ5szwf+GjlBJIzdsqMoIyUfeBREgix/gI4jM1eRdCE4w8Vglw9Wn1lpE8oyRxyaCc6q6BIJJCiPURX6QeD9tiPNfCDjeF0hjOcjnCyRAGP2hjk5CWU+wpygRfD5KRs5EbGXtea+ZhGmFQlF0GIUUKo0xvFi3xOIT4YXMfEmoFCd20j/gFACtnKSpcjL+L5nhf/ojyueOu+X5ZwrFQmXwl3q2u/klu0SjXEkg2Pw2N+77o+VK7sQBcW6K5wo7vZ9le1udLZ8fc3U+cHdHwbgO4ff5GrrZXTnzoTVoJt2+F7rRT57+zf5Z1f/Cf/njV/iX/S+wmfbX+UbvZe5OrxNy3Y5yNplgGRh4zjsKyTLkGmVSTZEde74/ISwllce7qOGR/vuYBS0eLaReRvd2P2lHnslkHVwWFhXdIgLKz6QccqGtRJTkwtF9WM11hgjxJE/FycqIG0CSQe3tqVhEsNUGCR5ZsdpRsIpTnHCUH5g+shK/tfFOq0H7hGtfiygjZcUL0JBJBzVI58PvF3RCR3XUZuX0Gefwlx4jspjz6OOIP17uyHifY+rCAE3PqtavHdOdeTEe/J9fBTVh5h89n3BYDXSgR/rmCCv7ssVCSL5A6hb/HlzGireKrhs6EkSrb39Ze33JUiliVQ3cA/g25xdMEgQHcneICLUTfzAgYurmhsKD7UT68mLsQexQpXQy1UJcagJA00/G1JRIZUFeRyRCnzdonMMzj1JVmnSv/iczzJY4K1da1vGrh+Si2+KXhc9/ihSHJNjxKXBlERCEbvX3rqMW3K+dJoFkXCLwhUgCBv5rHt34wJu6t5j8/Xxs83zH48CpbFlu8PRcP/iBwBo3nsFM1hclzeL5QN63dmfWJvad3/Xqz0WnMON+68RJF3SoMLh9hP0aztkOkRnQ+LOvcllnySfaDNMa7R8s3/Le7ZXIDQKY4Q0Oxq5eCU8x8XgDBbLL+9/nr2sRUUifmzj+0eEAHAuJxLupvtldWotGnGpJvaDqTC3jPm96lgYkgBeRTDn3DWi+bGNT/Dh6rMr199fvqfrefMJAKTMa5DAj6Bv5eP4jdpso8S9srHh5IIWCxRZD/OaG5blIxTYnNPcsA4KsqSogGwtsjUAA5vw+sBbd56NcyWSiXBRA2yCCyrlcVDYG0RkIh/hXnrAwCUEYtg1mzQKIiHrokRm7A3rYtzW8OzFye/bmagMshwnEgAuV6/wQvP9APzuvc/Ral/lxt63+MM7n+dfvPlP+aWrv8gX7n6W1zqv0M73bSQB58w2z8VX+P7a+3gs8MsslCOjCkjPRE40N9gU3b3rMyyiOp5NM96C0b1/5LyEMmix3p9pQxCRUpWwN36pVAFOh6juXdRgjXwIZ1G9PXTrxkTGQqFIqFX8/i4UA52xnARJB54wOeYY5XDo75dRKITT5/G7CO/gqeBTvKMh2t8MH1XJ/7oocwBWDLoeYdWFKLNctm2zY81Qi9LoM34GDhNODFqVUYgJgIefCnySEBPh7Aom3M1pIlF6+QSmtTm5dkRFgg78g3g4e3yF4meyrHOkjR107xCrQxQ+tM0PQhfc3N7OAEyboaob2CyBdLBWWJWf+XNIWEGUxor2hM5R7TjTyy0aV8IY1zvaDEisw5WXBeccGT7LIBv745yjZioTzQ3zquas9TWFTiyhDiZmOI3yDQ5Xe3eoOldeZ4c25UzUXDhQDpW3MKQuRVU32Pv0f+R/MWwfK2ixgBafT2CdQynxM+z5Nk2sS0kk6HIm1ihNEk6qlxbZGgoUOQnV3n0O7QDwT6XN/QW2BgpngyDiFu4fozRO1m9tGEe/foZO8wK1wxts3/gWt5/4xMr3FJ+ybEBv2n6gkda3Ub0W5vAOG/de4bA6u40AW7e+A8D+2efK/d1tnqex9wbVgxv067tlg4VaMlg+KnTrHuIsNohwOkD32wT7N0jOXFn6PqWE2Gi6g4zgCLdSEeETtffy/9v/LA5HKIYf2/hEOQAs0FBVKiqiZwfcSfa5EO6glFCPodUDE0/bGnJlwJJdo5UnyIrWkKPCOq+OCedYWpQSyHxeQ8f2wPgBXCcfx03bGjKXlQGB8xQJwzTz5+SU6rDSusXuG3/ArSd+gEFtcb7Ubq5IuJvsY3M7UoGD/HPnNTYU2DINXhveKNdxXRQVkJ2BD1zs9PPZ3zkC0FcH18mwbOpGWVnpoSDw0oZzwTbf7r82oUwZx/W8reF8sIMSRb2wNtgezjniwIct9o/4WHNr3x9ngYbHJ7kCOm5I1w0RhJ3wzMx7P9p4H3c6b3A3O+SXul+e+f1OtMvFyiXORec40+sRq7DMIQBvLXszuV0qR4o8iFbP+UyltA9sgMt8JWe/hYsbTMhkTAUZtFC9+2T1s2tNOjnnuLuXVz9uaubNa2/VhTsHLs/9GP+8CJdapHsXEZ1XhM6BTdHde3n7hfMESN7+M56RAJ5IuLuXTAQuqmGHdZrZFqE99AREvfLuJRHgVJFwircJRVf9W1X9+NCg/CyyWyCldjYbSeIfVWizlAhxyQAJq8diZSWslIO7dwNknawDxywhsIpIcnlA41EUCcp4YmNR4KIyBGImchJsEKDLh0VZSBgUQZlHyQU4CZTnS1hF4ub6yoJ0CDpEwhjCiv/7JOwNaeJtKnETlF7DnjJCpAJCZdgfttkfttnL/x7/c5B06KUDEpv5NgEdsRM2aZgKfTtc2dxgrfW/FzfRb1+gYapUVEgvl6eusjWAzzKIVMhwjtLFPEBzhxFdNjf4rAKFyhtvtHiLw8S5k5NvhfXB6jA3HkCmwxlbwjSysMog3kCAOA/1k0GXuO09+u3NOYPsYhVEFg7+fOCiTxo5Du5f9DOIm7e+MxNuOA8uH1AuG9Drth/4JFsX6D31UQB2Xv9DZE5SZ9S5R7V1CyfC/rnnyp8XTRdFTkJxrCzKATgOggMvn06buyQ7j/mf3Vs/J2FVg8k8bJoGn6i9wJZu8ieb31eG+41DRDhn8tnodNbeUFgHCgWAxeWE0+LPVSKIBncMvzxAmlmMmcxHGF+2cyNiw5rJa9100OJ+1s6JlKBsGhhHf2gZDGf37c61r1Jt3V5pxdnUdX+vIZuxJ+ynqxUJM80NR8DGWAXkSJEw+8W81H8D8GqERZNXhSJhL2vNDY68lsv/LwW7/nO035eJSxm4ZKq5YX28lNsanjwnM6GqRRvGjqoT2Ml7vQw7BJ27fLryPJH457OqingmOM+nq+/nP7zw7/OTF/9dPrz1MS6Gu1TyXLJxFLaSkkjIFRitLv4anPY9idC9j/QPciXC7DHpwqonE/rrtUjsHyYkqcMox9bGfIvrXEVCAVPxOVudO3PbHCTto9u3fG1jWMOZCBm0S2Vop7A2jBEJMNbcYBNIerh1m7TmoNX3+3K6Svbdhkd4dHOKdz1MhLyTPPJzIMqgti6S3XsT291HKhuTNymb5hreR9e+4UmOBc0KzoFNUNXNd7Zy5KSgDWsNIKaIg/HqyLl1l9b6JoYjKlckquF682/cgWiCvMqvf+k5gr3rtC48Q1A8BIhbnHuhtJ8tLmwtbxXSgSdrggiJa3DgZ35XHXsuHSBRFclnWiRuYg9vItGCmYo14bIEiWtIXPfLTgYQVVe/ER9CdqVyFoud4OnG0/59LaLG5H8Xg7Z7w0MOez2UET8bn2bMu4JkzucHaLHeyjKFQGm2wgbX+nepqHClraFATUe009HDmcunpx9YkYDCOkugDFpJbrPxYYrkLSIF6eibfXRZAYkINojRSY/W9pW1SLd24zxR/4Bo7xrwXoI7ryNAp7JFOu/YcCDa5ZWT87e13Aeran8XoLNxidbWFRp7b3Dpu/+aq+/9U/TruwtfX6hRlg3oda5IyOpb9B97gfiNb2AGbc7e/Q6d2ocmXrt189sAtLafIA1Hx3KRN1Fp3UZsirOS58ue3HW/yEdIN86S1baIr31n7ZwEY3zjiHXuyOTGC5UneaGyXMFyPtjmteENbib3KfaYHwC40jpQkHXF+bDM3lJUjmbOHetBO82gGum5+18pr1goiIRMTxKui4IWd0xz5lrqmH8bEJv6zAygtn/NTzYs2O8iwq7Z4npyh9vJHju5fSJ1GW3rDe6LMhJg1Nywn7VnFA2r0KwK1+87DjqjjIRpRcK99IB72SEK4eno0sJlVVREU9c4zDrcTva4HJ0rf5fYtLRuXMyVAUY0VRXTtX1aWZdK6AmR3nD9a4O1jpcn2homUdoadAPVb5GZCoigBi2kewecoxHv8mfDH/Yhurrmv+NhB3oHWBX5GXubjhqlxlAoRQ6zLtbZctDb6UOGwdihn9Xv7S+v5BSNMxGqdx9noongxHm4e8dbKc5sLL7GeELMlU0kMwhqyLCD6twha5zzgYjOoYZtpHsPydJcPaHACDLoIGkfF9RGYYvxpLWhIBIKW4OLjm+/LYitRvzWTsi81ThVJJzibYPeOItUTt6v91ZDVTfRu48jJsT19iZncbPMDyIfZUXCsgrLvDtX4gcbkL1roIqgtfkosw6mv2+ll1dHuiyviTxixWYQL1wfESFWkQ/cq21y8P3/Pp2dSyNFwrJKT6Ugb3Z4K+HSIUQ1r7YIKp6AW6eBIRuiKqOZRon9w9EDKypsikR1RGkkbhwpe0FEqJmYhqnSDEZ/NoJa+aduKlR0SKDMxOAoVAGCHzRFZnFzg80cWudtAgsG1htBjViF9O0wb2uorXxQj/VkkGeGRRcD/mNCi8KIIsOilHBmMwZVzP7nbSgFeQATrS/F4D2p+vvF4c5Ta31mu+HtDWE+WA1uvQbAQfOxua93DhCHiFo4WFVSRNwdc4AtwvVnP02neQFtUy5/+9eJuotbHJxzvuBoibfB5IqETrVBKorue74fgAu3vo4aU+aopE/z7iuAD1kcxzDeIAkqKJdRad0mAzRywkSCV4N4RYIf0JmDO8ga+SOjnISHc00qmhvuJHtlbeqZ/PFE5xkJE9YGxVKCUwSM1sduqrPWEgfzz+niOynWJ1GT+297uvqxzEeYVWOU9qipS0zl8BYqv1+ZtE/cubt0fYuchDtjOQmHWQeHD5+tyOJJo7qqYNBYLIfZ0dp6ysDFLrR7ubVhSnD1Uh6yeCU876X9U+gPs/K4KpQpt9LJc/JGcg+Ho6GqZUtFse4AbdslDiVf3vrrf+2ez1SIA3hs1rlQkhe74RkkaSNpH9U/8LWLSGnLqKqYTVMfHZNhLZ+xv+VJh2z+StVVxVtwsLRtj2rkbTkO6Az9dVl6hz5wcNVEh45wzqG695dXQrqMO3c9wXR2Y/E9pSDE9tsstJK5sIqkA3Tnrm+T6N1HtW4Dbko9kQfuDrokiSXJG1VKRUJtVAEJD25rgLEq0jBZmpH1TscpkXCKtw0SxI+25P8IUHEDfeZxJKzjOiMywdnU5wO8nZ7zVVBF5Nks3LCHVBvlTO8fdYg2yyXuuTR/rrVhSXWks9bX3R15fQKvdFiw3IoJJ27ADodG54SHLD4ui5aOt9jagE1ROQmACX3byYrBe0HeMGaTkqjqfaBHCEhcsPRSNSVR7S3bH7EKCJUmcSnGLE6rt/kMulefzD9+QmXYChr00sFKW8PoPT5vIc2PKz8L7ImA48KTHUHZCAHgsL5FhEKRMBbqWhAJ1kvsHbD3/I/w4lM/Sndz8aziOA4bfkbRtO9Dt0Vw18ub9zfmZwcUu7lcpznQolBKY509dkGqU4Y3n/sT9Oq76GzI5W//OsECSXDm/GcuHLRmKarr33sYeUvM4OJ7GNZ2MDbhzLWvli/dvPMSymX0q9v06lNmbJFSlVA9uOHLZ06ysSFL0S0/OEs3zmLjOll1A8ER7K22eCglxIEpBwAnjU1dJ5KAlKycwX/fFeHP/aCm3vDXkWLg7lVSq4uMjJZjVQE6/PmyqPKzOB8KhUQiI7JIGMn9C9zN5fHbenbixlnnT7kphU3tYFIpUttfrhyZ19xwMBa0uJx0ETbzWsyjNjds1PxyDzquVCSMS8mdc7w2HbI4BgcMk6w8rgp7w82pnISireHiVE7BeOBinF+C+0dobShCFp86LzM5OKnLShLobLjjr4X9PVT7Dk4ZL+9fhqAKiG+mSLpzw2lFhGauSjjI2j4oeCxw0WmDM4GvVl4HoVcJlJWQuapVkq4nQDp30AfXubPn7y27S+YSmxV/jqV2NLs/C8FFNWTQQbVvobp3cSacu2+cDiHp0O16UsWYUQjihCLhBGwN4HMmAJpRiqwRKvtOxSM8ujnFKd5ZkKiGPnPFp8Z37nsSwaZ+ZvVRhnj52DScs15W/C5QjZwYVikLimDKaeZeaV9nt+R9chz7iwlBLZ61L1L2SzLB5cF2zo3IgnkowlDfwuaGMh+hsCeIIJWmVyksQzockQ45RAdeQfAAOQkuS/P1yesIw4pvyVhHIfGACJQh1hFDm/oAtEXNDQJOOUIVLlQkAGyGNSIdrmVrAIiUIVCmbJ2wzisSHsTa4JcbkI3NzGTO2wgKRYKMk3CivUIntzYoEdJqk1bz0toD+FTF9Kt+gKO/9QUkS8miKr3K9txD20vWXZ4NsIBIQOVVjG55gOoKOB1w9fnP0K9uYZIeV771a3ObHJxlxjc9sT7dfQSHNRFBZYM0J9YOnv1jgA9WDPqH4CxbN33I4t75986VqY/nJFjnln7uUWHaRdBijM3JwuG2J4TWzUmIQn2skMt1ICKcnaqB1Eq4sC107aS1oWj3WNXcMS/fYB1kmUWr+fkIkGeUjlkbBowI02Z18njp2QF3c2LkfK66mPgsXB7kKROHc0EcFFkk9f03l67zGePzSNq2V+6vdfIRCqzKSXDO8XL/Gq8Pbk78fCNX0O93xmaAxx657meH9N0QI3r+9luH1qpsOCmIhHvpwUTrzvWhV2QU+QgFxomEyhEzErLM8crNoq1h9li6m+7jcFRURE1VcEHsww7NZGDiUpgKTjRq0FqoKChzEvLvq1kQCV3nB+T6KBNJUlZC6s4d9MGb+Z9rqPZtVP+ALEu52/bX+bOby+xBUipO5uYkjF6Ji2q+fSOsL7YSmxBJh3Q7/visxaPzqyASur0MN+w/UFtDgVFmh0WyE2ySesRwSiSc4hQnCAli9M4VpL6D6+77h+NHufoR8pk/mX1AS/oQxg/sM39XQRk/2FlKCJgZRYKIgAmWhPXZ4x0nOvDvW1CTGCqDVnpiFlgVdaWyJGyxaJB4KxUJ6dCTCOGYsiCs5Mfm4vVwqQ8DnSZiVKUJeQPCsZAliB57YAvyTJeTrJZcgoapkNls1NwwtR1FBZ0jW0kORCpgO6izGdTXsicoUVRVXAYuZrm94EGsDeAzG8ZHK7Zcbn5M6qCcuRw/BpUoH26nfO3iut+pdY5+PjhWr/rAuMGZx1GiFlYjIuQ2jsXWhmJG2D0IkwBYE3H1+R9nEDcJhm0uf/vX0FPBYda5hTPTMMpHGNY2iHRQ7ptk5zEOGhcRZ9l94w+p710lGLZJTcThmfl5Ad2mHzTGnXuodLhSkWCdI1kzgNQUQYsbuyWJUdgbgvvLB6kFQuOPwewhkQmFrH16NrrIC6mUioSckF3Bsyi1WE20DGnmv/OFRIQIyGh9+m5EmE7nI7w59HaSHd2kpmfVSN5RpCauMWbQIe7t4xBuX/k+AOL23QmbzDRCFZQ1joWvv1AkLGtsKNd7iSLBOcdXui/y2fZX+K3Wl+jZMeIkfzwZprlCC6iOjXuLgMQLwZm5RKi1PtSyQF1VqKoYh+Nusg94kuDQdhBkhowYNTd0x8IW1/vS37jj17sWw4U5pRh38s8/a7bygPIAF2+srw4oYGJs3FxICGyUioSiAtLvj8OFKoAVUAanw7wtIfX/juq4qIEL69zvxWTWl01trIgcKoJDF+YkFBDtbR5LA4EFpxS9lrdVFLYGgEqsvAjTQa/14LaGLHN088O0XpG5gZDvFpwSCac4xQlDTIjeuYxqnvNy9UfcvuET+mVm0OiSPqqyebyZ8ncp/IzpYmWBs5lvD5gzCBETLSYg4GjVj8UyRXzg4rLmBnTZjV7U25WKhGUDwzWIBJcOsYe3jtRmsHhZAwirXrmRQ8KKV10ssyhkKaoyG4gkYdW/d4E3dOX6ZEMI4onwvyM1STwgIhUAeSChATvlDc+s85J35a0Qq3A22mInnPVIL0LVRKVX3OIDEh8U060PFofJl+us9cTNOLTB2Qyd23AKSflCEmAKDsdgyw9WizNysPuET9Ofswzne/3KdZoHLYIRX7l5EuPZLKxw9YUfJwlrRP1DLn/711Fjx5hjeX1gUf04qG2UCiTws9bXL30Mh9C8/xpnX/99AA7OvsfLoucgjWoM4iaCo9G5uTIfoZ32OEw7axE7ZdBiczSjm+SKBNO6hwxXq4cCo9HGz9g/DJwvFAnp/fIYc87RzfIZzLGMhFX7RnUPMDY7VihnZh1xqBeOYzzxJuX6JKSgPOk33dhQEAmPheeYB5u3oow3TBS2hn79DIPaNv3KJoIrGz0WochJKHz9+4W1wawOrCsUCftzFAlf6b7EV3vfA/z5UGwTQKCF2hg/Uo2ZsAhMNy1MI8tAK1VSgiIyY2+4ni/jrNkinLrWTlgb8oyE3pq3nJeKkMULMveZocxHyG0jD4bF9/oiCHPU3OB/vthOsAZM5IMKTcWrJscO5jsHfrvPbizPGYEVzQ3HgY7o9vzz0jiRICLU8n+3W4MHtjUUNhujoBIb336xLDfiHYxTIuEUp3gI8G0Ol9Dblx/9Gf1iQDnuXc4HhjJngPZHHkG4NCNhUZ7EyurIY1ZkShgvDPLRogh1QJL/XiisDcsVCf7Nxmc3LEM68IP1VfaDdeCyUT5CDtEBEtUXDt5dHtA3zz4kQYSElePbG7J05tyVqEpRSfiwEamQUGkyMrRSTI+dnLWIcmil1hrki8x/WF2EUJkyJT9zjnDOZzhnV1tPxlDMCBb7zzc45Me9y2ZyQkQHI2sDgisO2XXHkQ6GWxfLQYJThvTM5cVkhBMclmDJeeEVCT509UEVCQXSqM4bL/w4aVAh7t7nse/+mzFbkaCWKAOK6sdhbQOjNF717ptOBtUt9s88DUA4aOEQ9s49v3RdipyERuvmUgIDvIc7UmF5fVkGc5AHLW6MshlcVCXNq2nXaW8QgUDrh5YBu22aGHw2yX4+M953Q4o0jErZ2sDS5ojg7lW2fuf/zc63/22uoDnaejgcoVl8P8idCATKlOScif01clyRkLmMa7m3/3I4lYkx/lmBmjgnRrYGT/R0Nn046Sp7w3hOgnWj4MT1FAme5GzZ7oSl4MudF/lq7yUAtrV/zRvDWxPvHZ/VbozdCoY2KQfjl8L5RIJ1biabYLoK9NqCfASARq5I6Ng+YeAPzHWsDUnqeP3WiEiYhnOuVHacDTYBbwVrdYcn7jicqYDM92fh8T9p3PZOG3Y3Vt+PRkTCCa2LDugW1Y/x5DlW2Bs63fTkbA0VEBMgWbIw8PKdjlMi4RSneEgQpVD1nUd/Rr9MRx+7UCc9JKw8+iTI2wAx0eIEXrfEoqDmV0f6QZUcm0jAhBTVkvNQVRFZ+eQt3tfrXK5EWXwLEBWsViRkydKB/rrwxIzKWygmoSqNxUqOdOjtBuH8AEFV3Vyv9WEBputpJag8kMrhKAiU9jkJLiE2eia0LXOAcoQ6mDvIf1BEKiAQn5PgnJtPVgx7Pg9mTQuMEY3Omxsgnw2lIBLcbPhuQSQU9gfJFQnrDuBFkCAiy2fBkzOPIcagRTE3A08AHHqpPNaTLE4eLCNhGkllg6vP/xhWaaqtWxNNDsuiCkbVj9tUdVTuXxFBFNy8+GFsfm1pb10mjZYP6oqchGbrJmrJB6c2IxBNrAwDu+Icy9JyPccVCTBSJaxbAxkGi1tMHhRKVDmrfiu5B0A39zbHEpbWHuvc0qDF6st/gADx3deIks6RrBhZ3qIQmMX7XvLj1Acu+mtfXPXrudMcve9mcp/UZVRUVFYyzsAJWiu0ys8JZ0vlQXuzIBL837WDa0tzc3bzfXcvPeQg62Dztpei2WAZYhWWzQ6FKuEr3RGJ8PHqC/xQ40OAVwikY/fgInARoB6P/v9GcheHo6lrpXJgZvOdm8m6KBQJt5M9UpdxIz8W5qkaKiryrRc4yGtC1yESXr3lSK0nQeYFDrZsl74bolBs599dlvnzOslOtgGgIHoGLqFvh6W1IXcAnDhKRcKSfIQCW7XC2nByBH5n6K+H1XjyJC6IhNZgcQD5uigaRDyx5T/n3Rq4eEoknOIUf9ShZq0NLukj1a1S1n2KEfws6aIb2hJCQBvmjjzytPrj7msxYV6TuCAnQRs/d+q8q3syI2HJw6oJWD316/z+eFDJXjqEIJxoXijXI4hBax9+OP3p6aCsi5wHiarHCkh0WQJaz6pLTIgEFdwDt0Gsh4apkOYe3ukjJ8scoh2h6FGoZr+NG56MFzNQxs8223SkZJmCy1JP4qz5gKRF5/kE/rgSwJTHvcz4W0UZcP6YLR7WF5IA0+uW+6WVFoaPPY8DBlfeB/gwukXch5tYp/kItMKKO3FlyqC2TTdvmqi0bmOd89uwSEZvM3TXT++5+g5VHZX7V4kfHg3DKrevfIIkrHP3sQ+vXIdu8wIOqAwOCIaLq/gGNiFSIc2gRrri/DetPGgxrJRBiwXKnIQ1AxeNUg9VETQta+9afz5Vp/IFpmexy/Xbu1G2UAiws/fKamXXGDJrUWZ5UKOoghAeEQnvfXrIp98vnBkjEq7mM/ePBWfnqpEcgPiwRaMU1vosBJ0NyXRIv+5n4LuNc2TKYJI+UefewvVqqCqxhFgsLw/897mxorFhHOM5CV/pvsRXugWJ8Dzvrz7Flm5QUxUyLDeGozrKcUXCeNDiKluD334hyDNIiqOqaPDIsHy3/zqJS4kkKAf04xAR6tp/aKL9yDu1kGTLj9HvXc/VCBfnK8UKNcKOaZaqE+sgCNSJN5cY0dRysucga9PM92enz4mTdmnmuJe7V86ukeO9WfPn0TClzBx4UBREQi2aPC/r1ZxAGTz4c+9IkeCX6ZRCkqNVm75TcEoknOIUf9Qh+SA2f9jxafVmru/8FKzIvHALf+/zFeZUNdrMD6COS9rowA/6FwyWQ2VQIuUspScSXN7MsOQBTxZVBXiUtoKourwScw24dIiEtfl1sEHFD+jnqR7srB1i8r0xElR9cOhRMB20mMM3STQeSOVwFEQq8DVz+aBw/OvwQhZHrCIkD6R02QA37B3JbrAMdR2XFZB63uOCSxETr63QMKLQon2zAHlmR3kMujm1qaN/G2WwuQw7W/GQDj4gUuXH++DxD5D8uf8n6dkn8mUtDlsUEZ8jsgSB+FDDhzGc7TW8BL3Suo21Xna9SEavuwd+gK4DKtVtjHi1Reas5zRF4Rzsn3+elz/65xnUZlPrp2FNRL/qXxctqWVMbErDVHIVxGSg6zQm8hGmtiXJrSems4f0Vz9oG+UJ0IdFJRRhereSPZ+PYCerH4GynnEeKq98GYAsvy5t33v5SIoEaz2JsOzarMRn3Vhc2SQRVfq898roHHXOcTXPEri8JB9Bo9BaCIwPMS3yETobF0eKNaVLy0v9YDHh45svvCrh5b63QWya1baGAkVOwle73+Mr3ReBgkR4ulx+YdEYtzdMKhL838650pKwyNaQZRajhND4sMmCoBpv8Pha92XAhzUuOg8Le0OPbqlUWaZK6A8dV3MeZF5bA4zyEc6O5SM4m+c5PISDf2OsArISglb+OO8cv/hoLu4e+ntXJWQi22IRtJaS2DipnISCkKgFk/fxek4stAcPPjQuiITSaqMCyAa+WvJdhlMi4RSn+CMOL3HXlLPPSc9bGsLVcsQ/ihBl5rZclPWFiwgBZfx+nh5w54qEY2ckiEKC6uLARfE+2qFNc2NDboNYFQIqK+R9WeJJjMrG4oH+urApKp5voxGVhxxO1Sc5m3rVwBwVQ/leUb6O9YgDa5clEFZ8c8D0MtdokjgpRCokFIPVmR84TB1zoqBSWGnSBHSENM7g+ocnEoBZtACIiK+hnIYDTLi24kNECJWeUCTowpYjc1Q5apSMH+Qz7aFZrwLQWefbWvOB5/jxrvQi37orB+DLYJRCcaLOhhK9XJFQbd32+175h+l50GNBi7GJUSKEypSDeq2Wk4GL0GqeByBa0KZQ2LGqJiJWIdEKe8MoH2F2QOfCmKzpZ76D+8vD/IBRi8lDsjfsmA0Uir4bcGg7Y9WPY9cZ55gnSNCte0R3XsMBhx/9CZw2RIMW1cPbsy9egMw6ghVtGYJvbXBjFZBdO3l93M/adGwPjZrr7QdwmfMctii08ve0epGPkNsZCpT2hhU5CUUwYM/59VknH6FAEcrYyVUgHxsjEQpcCf2xeXV4u7wOTCoS/BdzkLXp2D4aNbf2EXzmgFYQGG8DGj+mipyEgfP3jkVkBEBdF80NPSq5k7W35Hb4yk2HdbDTmA3HLFA0NhR2EciJHxG0COkJH/+jnIQOIlIOgA9P2N5w/X5ha1gdtFhgK5/TOqmchJJIUL0JJW4j8N91+wREfa3+uLUB/6z0Ls1JOCUSTnGKU3jpeKFISAeo2qYnGE4xi1xZMEMI5ETCwgG61v7PnPeJ6BW1RcshUWVhjoARTSiGxKblDC3OrbZSqOVDJZcOkSD2OQJR7diz4MsCEwtIXAM7VeWYDDyBseR9ACqq+QyJowyss9S/b966FE0SJzTrvwyB0lR0TEY20dzgTSoOpaTMR3DpAImq6K2LSHUT19t/4M+PVIDRfpZbM/94EW2W+qanEaqALK/l9LP/yk/DziPTlCeznPO5BY68ClFWB9hlgEbm2gI8uTA/JEGxWAFQwChNUX5y0ujXd3EIwbCNGnTRLA7JLIIWk9pm3vIx2r/gt/M4441W3eckBPffnLuRQ5sSKk2svJWibqplVeg8jBQJ8wP/hnlOQrhGDaRWyp8LDylx0Yhm12wCcCu5XzY2FDP/gCe35nwnlVe9GmF47mmy5i6D888AsHXv5bU/37EGkVCEjrpRBWRBeBQobA0Xgp2ZtpQCGd7WoJX4CshsSNz2U+VF0GKBdh64WGndmWgVmcbZsYEvHI1I2DajVpmPVZ/nA1MkAnjrSSCGvhtwJ90HRhWQMFIkFGqEc8H2wu23mW8CUUqBmvTgFxaXAheD+WQMTDc3+J8tq4B8Kbc1LFIjJDZlLzsEZhsbwkATBIr0hJtLSkVCOt3ccLIXuVdv+uU9cXb9DILxnIQHRZI6hvmlqq4HSJqfNzahEfjjun0CKoz2lLWhYMTlLWp9eitxOlI4xSlOUQbruXTo6wtXBHL9kYbSIHMqIG02qoecA1Em93zPxO97tvoIifoz0GE5QzXzuSJUTFQqEnz9o124niWUnqu8KGGT8jhRcX15teUypEOf1r9MWRDEfhvHZr5dOkSi+lzVwATCiic71rQ3lNu7qH1DB0hYfctyEuomxuImmhsy6xBxRHqUj0CWoOIGog166xIEMa4/W6V2FITKEIjOB9eT+7lUhES1nIhcLycjVMY3QWBRiG9ycJ5MmiYSykBQZzFK45yXthstYwGi8+Ey0AsGZIvaCJyzuWx8+TGlUMgxZ/tXweqAQdUPHqqtO544WQBTBi2OaumK/QuUs8xHxUF1FysK3e+g8gyGcQxsQlVXysaNmo7BLciMyJKS8JinSABIdvwgdZ3ARaVkbovJSaIYRN5K7o8UCeMZCW6WbFK9FtEN7+nvPfURAPqXngNge/91ZEGGzTSaB9eptJcrGHwDi79W1VYQCYtqH8HfBoz2pJgWaLZvIjgGlU3SKSI1jeoMKhsrayC9omO0bzaPQiToJh+pvocfqn9oLokAXsFUZB4U2xho4ekLwk4DtvOPK/MRligJMucIA+0JdiYTgXbyBo9iG2p6MWFdV4UiYUQkLKqA7PQd1/Mc1WcWEAl3030cUFMVf27lcHjLQSXSpCeckzBubQBGgYsnE7mTL8uVjQ1PnDsCkXCCioRCjWA0BNohid9ASQelImGQwPAB9q9zriQSxltEnA78570FrU9vJU6JhFOc4hR+Ft053LCHxPWlg7o/8tAGmacscBkos3ymXwczM+POZnmw4fEhJvTEwILBXKxCP4nGWEbCCkWCH8TJLPEx/pq8LUGCOM9JOHroos9HqM7PRyhgiirHscG7s/5YXQFRGqlsrN8sYVP/HS9q3wBUpfmWeR2LnIRASxl8Za3FqozIGN8gUKg6cjuShBX05kWcTR+I8FCiqOnYS5+nFUpZBmLy7y5cO3DRiK8otM7lbQxekTCXhFOmJBKKwYnRCqPUSmmvdYtndkX5s2Eic6LcZr3S2uAVGscbpK+DIieh2rm1lEgoBujSOFMO6nW+f8EPuo+zhk4ZBk0/AA3vzaoEUpfRMKN7RKxDAmUYutnz3xzeQ5zzQYsLVD7p1gWcCLp7iOqtJr9C8/CaGwDOjwUuzstIQGYfniuvfgVxjuHOY2XFZbp1kSRuoG1CY+/1lZ8bH97kPa/+W8599ZeRJaGpMpaZUlRS9sasDX07mq1fVPsIkzYKpYSNQ08QTNsaChQ1kMvsDUZ0GUooCE09+52LTefeV0SED1Wf5Zn4sYXLB7gS+WPz6lhOwo99RPHnf8jnPaQuK8MyFwUtAj7SSHv7lJrKHlCiSlvBxWXLYFqR4M++RRkJ37rqP+T81miwPo0iH6FQxoxDlCIyuSJq6VodDRvGf09t2yVz2VgF5Ml9xqt53eWFLahGs9vezfr8073f4kud7078/CQVCZ3C1hDhw5MHbXAZatghDBRhfgt6EHtDZ+CDMUXyzymgDGQDf/y/i3BKJJziFKfI5ckZ2ARV3Xyw2fF3OURUXks3SwiwghAQE81RMtgH7izGRL49YVFOQt43rnJNAqxhbRibDZ6GD+TUo8F2EPv/T44h97fpymBPH3LYLEP9fKuCWZqPMPH+uA649XIN0sRvywJFAuT2hgcMmFwXPichAD0qPbQWnHJU8kE+6WCmBlOqm6iN87hB64HWs6IjIhXOyv1t6gm1IIKwglvT++ktCvhmgXFFgtKz6hKlchuRr4AUAIE40CsDF51bki2gmCUCHLnyQxYqFsrVEoVW+kghekdBQSTUOncWr4u16M4+AGHjfPljk+9fV/j4j7GOzkF/04frBVNEQln7qEdEW6gMNR0zmHP9KW0NG2cXtsQ4E5a2h4XtDVlK7dufY+MLv8TFl36b8ze+SuPuK0Sde8gJh5/uBlsIQsf2yirCYubfFf8ds8zIsEf85rcB6D310dGCROiefw8AG3e+t/xDneXca7/n32Yz4qvfWvhSKcMWGctI6JfH85v5bPy2bi6dSXe48hxRQLOV1z5uzCcSCntDfX95DWQRENjU1RlSLui3eOYP/hHnX/n8wvevwqXgLIKwn7U5zEYBncVzy83kHhZLTVUWWitcPtAz+fYbNdvk8uHqs1wOz/G+ypNL16cIWxy4hDD0x2I/md0/aeb4xuv+5x94YvE1pmhsmLaJAGh8c4PRQpqe3P2nIhGBGJ/vkXVH1obuyV3jClvDk+fnb/vLg2scZh2+1Xt1ot5zK/8Ke8PllpF10MmzC6oxYAIkG6L6bUh6OB2WrR8PYm8oSIhaNNW4owySpai3KKz5rcIpkXCKU5zCDxizDEzs/einWAox4dz2hZm6wDnvmx2Yu+Wz8eusj1Jeyr6kucHk7Q3lgHCVJUDpnEiYL1cebzUQpZG4vv6sfw5X1FCuQQiUIYfW4pJ84Bws398T7zURrDE7vyxosUQQ++/6LbA3BEpT1REWW85CZtahlaOq/GDOJQMkrk/UYIoIqnkWqW3juvvHnj1vmipno9meLk+cRYgoVFRfWD86DZOrG1KXeUUC/judS6aJ9sRd/tpyGcE6FYAuVx7MWSyz4WqWvGoRWWlt0Hk4XeYeDpHUq+eKhO599IIKVtU79I0NyhDWR/7tYv9a3MKB+0qIY7g9ZjcYu2YVtY+RmlTs1E1lbnNDGbTYXD6rW9ZAzrE3SL/Dxhf/OZXXv0ZwcIv6nZe5dOtrXPreb/Pk1/8vnvv9/xdP/+E/5tKL//ZEHtIDMezks+pZvv9La4MrlF2j11de/zpiU5LmLsn25CC8f9ETCdWD65jB4inVzdsvUunulWRh/MY3ltrFlFZgR9kNGZah89tezNQvUyP4bRG/HCDs7xMmXaxoes35dohe4xxWGUzSI+reX7jYQjEwbya/tn8VbVMa9984tsQ7UkGpGhlXJRQYtzUsmhTJrEVr8S0gFHkik+tzLtjmTzQ/vpSMgbwqV/z5oGM/ipxnbfjuNUd/6OXuTy2Q9jvnSjXJRGODy6M5tKC1Ig40yQlefkRkwt5w0taG7sBxIz9knlpAJLwxvAlASsbNZFQzGhgpsy8eVJVQBi1G/moPIEnHhyDqgEb+Oe0HyIYociUaM4dNrgu1767AxVMi4RSnOEUeIChItbFyMHyKXMo/PYhwbrVFQZvZIgRhdV7BGlDx4sGcb25QqDJ0qkjrWrbAfDZ4riJh6AfTY6oGiWpLbRBzkQ69vHBNIkFM5KX6WYLEzbUDQcWESNzArZOTYFNUuJxM88RJ48jESQHnLLZ9D7dkYDGOmolxypbNDQ6H0YqwGHw7OzfXRJRGb11Coiquf3isdTVKU9Fzrgk2HX1vOaGzDlmhRaNFkdgUo/IKUpvNtZJIEcDoLFp86KB1tqzHW/pxIphFIYVaco5stADnwIr/nNXWBsHgwx8fBpKoThJUUDji9p25rzFl0OIG0Zg6oNi/Wb7PVjRZziAvwCPZOIvVASoZoA/vlr8f5rWP0wqVWIclQTSxnuOKhOIznCOZkvcWA/DpgEd9cIfNL/x/CQ5uY4OI9ns/zeHT38/d7afp1s+S5haLIOnSuP8629e/cbQNXoDxsD1BiPOBosV5ZVe++ZIOid/4OpCrEab2i6tu0K6fQ4CNu/NDF1U64MzVLwFw6/LHsWEFPegQ3np14fqp3KGmRROJvw507YDMWa4n/vtaVPsI+fcsPmwRILx7FYB24xxuwf3IKU1nwwdx1vYX51mcD3b481s/ysdrz8/8rpKHOepsiBmurvtchGLb3hjMIRKK2sclloTUOoz4vA3wlqkHQWFvcKGvOehP3Rqcc3z1FX9cf/DJ+SGw4FsTBi5Bo9gaC5+0zuVZNf7fcahPPHB01NzQLisXO31OxEb02m1/tdxtzrd09MbsOABvDidzQk4qJ6Gos6zmtzRnIiTt5c9DUoYjPogi4V5+q523nU6bPCfh4bc+vVU4JRJOcYpT5Bq/GFWZnXk8xRwsq3hc9b7p+6BbsryjwIQLBw1KhFiFI5+7rDFbWcwGz3tYyVJPXIy/PIh96N6aM9OQNw2EVW/LWAHRARLXsEnfkzZRdeV7xqGqG4Bbun6umPZZQ+lwLOKkQDKAMPYS//a9lfWJsQp9KJq22MxircNoTaBMbvPQZT7CzHoGEWrrEuBwg+M/uM/AuXLwLybyioI1ZoONKDSKxGUEFOeLXZxJoQOctWh8dkGRfaC1kC1I3BufvZsHEV8hmE2/Cd8Osaq1QZF//gK1wANDpLQ3xIezAyUYVT9m9S2CseuOEY3GEwnHESRY59AI2qhycB/lA1rnHJLXPk4jViGxCibtDWlSrue4IqGT9Wmnffpjdphk6zyuDHj0T+LhzZfZ/L//GXrQIa1tsv/Hfor+lffRe+qjvPnkJ3nl+Z/gex//i7z48f8HN5/4AQC2bn4TtWaw6jIU9X/gwySLme2iklPyi2109VuoZEBa3WR4blYCr7Vw/4wPDty48725s/Bn3vwyJh3Qizc4vPR++pffB0AlJyjmQY0FaY7bG24l90hcSkWiUlUxD/57VqW1Ibz7BgCHjYsL3wPQ2SjsDcsbNmq6gp7TljAeJBl195YuYxkKIuF2ukd/bIa3lXU5zDoIwoUFtY8ANnMEgS7vmWpBWPG6KOwNNigUCZPLeu02HHQhNPDCY0tsDXk+whmzOZFL41xR1enfGwQ6J1ZPjswcKRI6VEJvAXOMBt8PglW2hoI4KNRgb47Ve8LJ5SSUioRi7kIHvhEqv6YV1objKDGyzPG5b1m+/Mqo4nIGKkBc8pa0Pr1VOCUSTnGKU/hGgbh62tawLpSZIARcYbhcYVHwgXIjb72zGSi1Oq9gDfjAxcWBh1UTERQPdm61IkFEQPTMYHlhq0HgFQMcZZY+S1Hx8nyEcai4gUuGiAnWzkcoIJWmr0UcLAlzs6m/0S8JWiyXF1ZAm5UkwDz46swK5twzSP0MrtfC9VsLH2QjFRDrACeONAMrGZEOCMXk+QjxUvJDVZqozUsjJcSSILe1IYyOdxMgQbgWkaBEYfJmAVMc90vINJ/fYvNkdfE5BlowenHgYuYcSpZnHehcGj4OJ64MLVwGEfFZBA8xfLtT9wPv8GARkVAELe5OEB9KhEAbMpchShBWV2WOw9nRgGV47gkAqq/8IZXv/T6DbFjWPk5DidAw1QmlgWndRXBkURWbW+YyZ0ltxnbQoJsNsMX1RQekmz7rIbz3JpWX/4DmV34NsSnDM5c5+GP/AbbmB8ZaebVJmm+YNRH7556jX91GZwk71xcPwNfFuTF/em2isQEv6MqVNJXXvgpA76kPz72migjt7SfJlCHsH840MoTdPbZufgeANy5+HyYw9C+/DyeKYO8G+mC+IkXJKEhznEi4mg/IHgvPLs06Gn3PCrKEYO8GAAeriIQ8iLHSur20BnLuOid9wrEmmQchEhq6ypZu4HBcG5u9LmwNZ82oyWQeLI5wLMhUlDq+FQio5/aH1Phra3/qUviVV/xx/r4rQmBW5yPsBpuT6+ucz8bIFRSh0YRGkZxgfcm4tUFESmn+a7cc7f6CVpY1MEgcb+aipsW2Bn+de2/lCRSKtu2VDRJwgoqEQU6+lZcwwUUNyI+V+jGtDYddxz//PcvXX/Pv+/BTwnuvzNlWZejYHi49AXbmEcEpkXCKU5wCoip66/IDe/X/qEDy/IAyvM8VhMCK/aeNHzAV3ldn/WD9JBQJOvTs+oL0/KapsR02ylyCtWwB2swGFNrU11VODbZFKSSq+wrRNVDmI4RHIATCChIEnsQ4ogVHRKEa3ku+cB1TT1KwBpFAEPmchuPYG/KASQli9JnL6LNPgjK4zv2562bynATRliTLsFhiHfhKxHSwls1DN3cx555BbV7A2dQTCsecufXHxOh4Fznadx8pgyCTg/ZF50A+Y1TkKRQDzzjUCyW3zlp/Wi2QD4OfKR5/v3MOJ2PkxgoEokeD4IeATtUrEsKDm3NnsU3HDzhMc9YHH4khK6ssPfmyLmwe0qiUYnDpBbpPfhiA2vd+n41v/CZVCReSLVUTlUGPACYfBKdj69hOezSDGufjLZqmxmE6IrWGeU5C9bu/S+2lLwLQe/yDHH70T+PGiTLxM7J2PHBThDuXfdDh1q1vY4bdtbd5HiIVsqX96GXcI+/KAR1E119EDzpkUY3BxecWLkuFEfubjwNToYvOce71LyI4WltXaDUvoLXCxjUG572KYZEqwTdyFIoEv288kbBePkLmvK1BKyG4fwOxGWlUoxc1l74viRsM4qIG8sbS106jsDUUeBAiAcbsDWM5CaWtYUntY4FxO8ODDoYKa8NA/HE3npFwc89xc8+rHpaFLMKosWE8HwF8C4Aet9QIVEJzojWQ49YG51xpb/j8tx3/x7+1/MJvWP7ZFzJ+6+uWr75quXF/vc9+/bbDOh+auFWf3f7UZVzPCaCnokucz5Uk4/aG7fx9t/Zhv3P8be7mt7xaPP97OI614dWbjv/P5yy3DyAK4Cc+pviB532OzjRe7r/Jv02+yVcPTsaC9SjglEg4xSlO4QcCawbXnYJZQsBm6xECRT1k+T6bZxGcgCJBG58hsCRwMdZhXv0oq8MWGc0GT6AcbM8eL0eS+xf5CEcgBCSooMIqUt04VrOIxA0fPrggm8BlCRLW1iJZRBQSNx84YFJEoWpb6HNPoZpncYM2tnc4M/tTMzGiHc6BU5ZGGPvXONa2eUhYQW9d9ITCxnlclhyPUMhbO8YDEiWsrP3dh2LQRdBisZ3LFAmlL12Vg+LALFYEZIBBlloU9JQnuhgAmzXzSgIdrMxIeJBH/E5lCyvaZxTk7QyjBdvSMhA0z8+8N1BBaUOYzoJYBX9JUn7AIkL3uR+k9b4fwYnQuPkK23/wLxZaZGIVEinDMFcljPIR/KAusSmCsBM2CZThXLSJEVVaHAorhcoSnCha7/s0nRd+aO61KjCKaR6ps/kY3fpZlM3YufbVtbd5EYoBTcOMzi9PoXl3WOXVLwPQf+KDS6/hgRHubj3ll3Xv1bL+rb73BrWD61jR3Hr8EwDl4KP/+AcAiG68NLcKcnyPVHJFwvXhXdq2h0JxITwz855xOAtae2l/YWvobV9e+p4ChSphWQ3kPFTyvI8kz7VYFti4Dq7kRMK15A6Zy8ic5UaeD7GMSPB5A2qi1aUIZj3uOVtYG/rkGQnD0Xn31Vf9dfHZi7JwAAs+J2A/n4XfnW5scLPXrDD0OS0nRSU0dA3B12d27YBPvEfx1HnYrPlb1jCFm3vw7auO3/22n4H/0vdWX/NfKWwNCwImbwzvkuUtG1u6UZJgV8eIhLMbcKbp1+FfftHS7h9vqwtrQ3XBY0ehwmj3V183M+v4/Lcsv/olyzCFc5vw539I8cSSIM2v9jyRGMm7Z9LulEg4xSlOcYqjQpm8lm5EJHjbwjrWBjMKanRZaXc4CUhU84qBZchnk1eGLUK+rlPWhiyBsDq31UDC9XMSXDr0+QjrzP4Xy1eKYOs8urJ81mzh+0XQjTPeAjKvccFmSLQ8oXtieVEV3BG9tQsIFDERavsx9NmnfGbEFNkRqzAPJ3QYpaiYaLSsBfkIC9c7rKC3L00SCr399RdgMz/AH1MwiYm8SmeNqkmjNIHS3kPtrK9+XHQ8igZkzE6QEwnaz87N9QjbUT98gYNhh86YnFTL5KAhV6yvZW0gf52Txd/7MM04bA+P/ZBv0fTzNgazf3Pid6rXQmyGU5qgPjtgNMpXQEoRtngE4YR1EEwNWAaX38veR3+SzASovWv0f/vvY1t3Z94bKENVVxhYT2aaw8nGhnbaZyuoU8+tAjUTsxNs0MuGWGdJN8+RxXVsEHH48T/DIM8KmIfpQRUAItzNVQmbt18kGJPRHwcfqj7LB6vP8OHms+XPvItNEd55FdPZx5qozDRYuK5KaNXOMozq6Cyhfv8NxKacfd2rLu5feB/9sO5DPPPNSjfOkTR3F1dBKvEWNUbWhlupH5hfCHYIVgxUMusI830Y5ETCcPuxteT9RQ1k7WB5DeQ0iuDQe9tebRH1D5AHqKbdMRtUVETqMm4m97md7JG6jFhCtvXie0SWWZSZVCRoxSSxeUTUc0VCx/UAT/gOEjjoOF7NT98PPbV4395N9vnlfV+JuanrVKbsQ5l1M3W2oVEYpRZmxRSwznHYSUhXvE6LKpUVB1mb3Q3hxz+q+Yuf1vy1H1P8hz+k+JMfFj72jHAl52n+4HuOwyUVkUnmuJq7c1bZGi7ndpzHciLhdrpXXkuUEv709yk2qj6/4F9+0R65CjJJHcP80aS2gEioRvkl085v3ijQ7nsi5Wu5leFDTwp/9o+puQGLBa4Ob3OYdTBononXI+3eCXjHEwkvv/wyf/kv/2U+/OEP88lPfpK/9bf+FsPhanmlc47/7X/73/iRH/kRPvjBD/IX/sJf4Ctf+crM627dusXP/dzP8ZGPfIRPfOIT/Nf/9X9Nuz35gPdf/Vf/Fc8999zMn9/5nd85qc08xSlO8ShBaT+QGlck6GB5ZWABE4wGW9Z6lcKa7QOrICZaPaVS5DmsM+uuzeyDos1Qi2bATbx+TkI2nAlsXAemuXPkoMVxSFRD1c/gpgYZ/gFSjmSZ8LWS4ZGCk3w+Qjy/pUAEVd1EbZzDpcOJQXmkAiom8M0CRgjF5GGVlWM3rRSEgt66tHZ9IzCyt4wPuoMIzHqBi1o0QRFqaDN/LC4i4ZSiOKiNKGw+KjZaoc38wMXph+7MWTLnGIyRbKLUVM4JIEwEnC3fhuWvS1JHaPTKh/xFsM4xyGv4Cv96+dlF0GJtk2BOUKkR5ctgVE62HMnaYDFzQipbW+e4933/ns8Z6ezR/+2/T3ZntlWgYWJfAzketLhxln42JFSG7bA5oSY6EzVomCqttAdKs/dDf5H7n/5PyjrIRdD5tk1fnrobF+hsXEScZefaV9be7nmIVcjH689TN2NEnfP7Nb76TQD6l9+LW0GGKuWJ28MzzwCwcecltm98k3DQJgmq3Lv0QZy1vjypuIeI0H/8g3495lRBliQRIyKhwLK2htFm+HNE9VqYzj5OhMHOY75idsXh0mv6Gshg2F3fnuAclY4nn+5vXCbTIeIcYe9gvffPgYiM2RtuTtgalinWMufPkXHrkyB+buCYREJNxQiCxRLE/v7XGzi++qo/+y7vwk5jToq/c3yr9yq/cvC7tG2Phqryw42PzL4ONyOVN1oRBpo0W77OvUFGFKmVr4PJnIRxaC3sNIVnLyo+8R7FT35ccWkHMguf+9bia9zVO5BaP9N/Zg6345wrlQdXQq+uaugqm7ru8y+SUUZINRL+nU8oapEPXfyVP7AkR7B2FGoEoyFYcLvRSqjmp9OywMXPftNye9+HZ/6pjyl+8IX5VoZxfLP3CgCPq92l+R3vNLyjiYSDgwN+5md+hiRJ+F/+l/+Fv/7X/zr/5J/8E/6H/+F/WPnen//5n+fv/J2/w1/6S3+Jv/f3/h67u7v8lb/yV7h69Wr5miRJ+Kt/9a/y2muv8T/9T/8T/81/89/wuc99jr/xN/7GzPIuX77MP/7H/3jiz0c+MnsxOMUpTvHOh4iADidCE9cdzImJyodC57IJefgDr1fe3DCTazCOQlq/liJhlGoNxXIXD7ZFqbwWcfnA2tnUf/4RAxNPCqq+DUE8GTqYJZDbQ9aFmAiJakcLTsoSZEXApFQ3/H4ck5AbpWkEMYkaEuvAJ/VnyYk0rXgliVkY1DkNZ7MZK5ToPABzneYGpQiUtzd4RcJie48oA+JnCoM8pBH8YC7UmnnjdMfkbGMvG1IzEVqkrCfUAsiYLDgfIK5PJOhyRnje5zscxngv+nHgcAw2/IP1tCLB5AN05qgRinVTOemikaN1SzjmPhAPbUpl8xLxj/xV1PZjkPQZfP7/IPne701cb2Id+ZyJg1sIkEU1bFihmw3YDppU9OSgW4vmXLSJEuUbH0zg/6yAUYJWQjanVabISti48zLhUZQ2a8A5iAZtgrwusX/5vSvfo5SAOPZ3PZFQO7jOzrWv+XV9/OM4HZA5T06ND24HF55ZWAXpj9LJjIQCj63IR/AQlFalGiHdOIcKY5TIymPWKUM3t9Ssa28I+ofodIAVTa+yRb/qpfsPmpNQ2BuuDm+XoYvLah/Bp+uHweR5rnygCO6YVYdKFHXlCaeo5u0N99uOb1/Nw/eenL2uDG3Cb7W+xBc738LieDw8z5/Z/CG2zbwR95zzUnxWzDKlwSDN0FqIA7MwnHYc4zkJyyAifOp9CiXw+m149db8Zb86ZmuYR+7cSffpuwGBmInK1eIYnq6BbFaFP/0JRRT4vIRf/7Jdu56yUzQ2RCwlmkaBi/N/3+47Xs9jOf69P6YWWjbGcTfZ51Z6H0F4Uq9zfr5z8I4mEn7xF3+RTqfD3/27f5dPfepT/NRP/RT/5X/5X/KLv/iL3Lo1P+kYYDAY8Pf+3t/jr/yVv8Jf+kt/iR/4gR/gf/6f/2c2Nzf5B//gH5Sv+7Vf+zVeeukl/vbf/tv86I/+KD/5kz/Jf//f//f81m/9Fl/72tcmlhnHMR/+8Icn/jQa66eRn+IUp3hnYZwQwGXrBfSBzxcoHtTsktq748AEeQ3fkgGhs14Bsc6Aafo1WeoT+pcMtlflJDjncN0DpLr5trWESFhBNXZww85IypolefbD0YgdVWmsPZtffNYqK4IojWruQpZMqBIaYRWjhUoQYLx2/ci2hrkwy4M6Z2Czua0ZEtVx2Wp1hhGDEeMH49Yut/fks7k4i0FNzBhGwaLmBjc5ILMJm2GdSIWlf1+VjQaj98uKXIVxBLlSYp4UOsssRim01mTHVW47SPIWA9PZR4Zjtoy8sUE15w+YjCiU+ApINaedYjlkRlk1qn0MkahO9EM/g37s/eAsydd/lcFv/TzZ3jUgbxiRAJW3TaQbu3SzATUdsR3OP99rJuZMsJG3OKw3KNBaodV8oqZf36W1dQXBcebql4+y8SthnWPz7ksIMNx5DFtdTeRpBRrFIKrTbZzzahGb0q2f5XDHZyfYOYNblF5YBTl+mFbHWiW2dLNsEFgEl/9XC0S3PUExPHPFnxPah5WuQmFvWFUDWaAIWuzXtnHKMKz6QeOD5iScD3YwaLq2z17mVWYXV+VDwERjA5C3whzxVJlCsd9N1Y9Af+9bCWnmZ+IvTTVR3ksP+Bf7n+P14U0Uwidq7+VHGh9dPFMts+clxXbI/GYW6xxJatmshlQinzWzCuMVkKuwVRc+9KQ/ED//LUsypXjIrOO12/5ni2wNRTjopWB3gsQtiIRrw9sz14SdhvCTH1cYBW/cgd/82nqNEt08V6G6Yv6iUQYuzl/md9/0BPSFLdhprne/+Gbfn2dPRhepyAk+8z0CeEcTCb/zO7/DD/zAD7C5uVn+7Cd+4iew1vL5z39+4fu+9KUv0W63+Ymf+InyZ2EY8pnPfGbCjvA7v/M7PPfcczz11FPlzz75yU+yubnJb//2b5/sxpziFKd4R0FMODFglnUHoMqMZvmdPdmmDB345S2bFXYORK1nw5BJ+TfZ6lYDCYqchAXrMGhDGKM3L6y3Dg8Jqr6DhFXI091dliDRekGL45CwurR2cwJZnmmwRrCpVDaQygauP5oZilXImUaNrUoVyRJvJzgBVYeoXImxpiLBVz/OHu+yZgNHqAwX4x3CIi9EB4tniESXRIJWelwggzGa+Q/Ho+rHoU0JlWEjrNEMKgxz0keJJw2Kh1RrXT6YWO/7V6JQSs21DSSpIww0caixx5zh9CRRTFrbBCZVCSonEkxzvoTdiM5JF9/csK4owgGIH2COY2ATH9aaz3yLDgg//ucIPvynIYiw+zcY/NbPM/zqryDpgIaplo0NSXOXoU04E254Fc0C7ISFxWG9tgURH7i5yGJ/9/JHcEDz/mtEnXtrLXMtOMvG7RcBaF96jk7aXzmIUVIM0B0Huz5vwQG3nvj+khGwblJFU2BhFaSMqj1jicrzYlVbg/8sh0YRDlsEd7wiYXDhGV+ZynqD6faW93ivWwNZBC12a7teGdQoiIQHUyQY0RPBimfMxtx60gLFN2Wm7z15U8mDVLoWgYsq9sfwjft+T37oycnZ+O/0XueX93+Xlu1SUxV+YuMHeW/lyZUBwvOo1jDQBEZI5jCWvUFGLQ6oVUMCI2jUSrXJImvDInzsGaEeexvAl1+eXPa1ez4csRLCua357y+IhCtTdpyzZotQDAOXcDedPUbObwk/9lGviHjpuuPz31pNJowUCcv3c70IXJyjSHDO8Z03/ee8cHk9EqGd9Xht4O1p76s8udZ73kl4RxMJr7zyysQgH6DZbLK7u8srr7yy9H3AzHuffvpprl+/Tr/fX7h8EeHJJ5+cWf7rr7/Oxz72Md7//vfz5/7cn+Nf/+t/feztOsUpTvEOgPIhcJP/XvN94wF9JxS0CD4EjCBeHnaYh9uttTyl89kO/0Dk0gSJ6ssfeIIoz0mYnZl26RCXJejNiyczk/4AEBOimru4pO+3z2aeFDgqgoonBuaFN04jHfp9o1fPSIhSqOYZsFlJUkQqoGoiqjr2+QhR/cSIKIlqi8mfMZRZEnM+V0zkSZU1FBpFqKGvalxCwilVBptOqwUC7Qf+4zNWzvmzUuWj4V7mB7YVE1LREYWKYDT76t+bOYtWglqTSApUUUc5R5FgLdVQ54GARx+ZjG9DmqsSgoJIcK6sfpzX2ACe5DAqr4BU89dx/uf6NPvp2syhTanqeCKIUkQRPPl9VP7kz6Evey9/+soX6f3G36V662Xilh+8t2pNNoIaG0Ft6WcbpTkbbYwsDmvANzfM37ZBdbuc7d+9+qW1lrcOmofXMcMuNojZ27mARrGXtMvmiXlQyg94Muc4PPMkB2ee5vbjn2Awbk2R+QGSi6oglXgFjcMTYM1ckn4lmn9MjMNZh2ioXft2rqy4jK1t5uug1ypfSaM6/eoWgltLlRCXRMKOvwVu+G1/UCIBJjMhLq6wNVjr0AjazN7DjJK1S4fmoQhclGg0Aq3H8PSF0We9PrjJ73W+gcVyOTzHv7v5KXaDzaXLLa4HMie7RClvW5jOCigsDRu1EBFPUinDysyWwtrQtX2SNYjlwAiffK8/br/8iuNgrJqxtDWcn6/0Osw67GdtBOHSFAGmRHEpmG9vKPD4WeGPf9Av9+uvO7708goiIRd1LWpsKFAvMxJml3ftHhx2fTbCUxfWIxK+3X8Vh+N8sMOOeXAr4qOGd3T/xOHhIc3mrJdoY2ODg4PFAS6Hh4eEYUgUTR5NzWYT5xwHBwfEcczh4eFce8L08l944QU+8IEP8Mwzz9BqtfhH/+gf8bM/+7P87b/9t/lTf+pPPcAWgjGPNtdT3PjmJiif4hQL8G44bmwYggZRDlEaE4aoNc5XF4ZIYEBZnFaYMFjrfetCqnWy3n45kJpZbwUqDNa6trjA+GQi5euxRDlMpbpifRVS38Tu30TpkZTZOYsbtlFb59HN7WPVN570ceOaO0h3D5d0wChMHB/ju8i39+DWwn1ewJKi6ruYYD0ix9U3Ub0tbPcQVdtEa8OZuOn9/lkbU2ue2LGj4gqpYuU2uCyFIMCEITL12U5VIIzBJcvJgTGIWFQULTwenQ7AeFluINrnGOQD3TDQhIHks7n+Z5l1aCMEpqgwhO081LMeVohNQEZGaAxGqZJUQEGgDaGZDM3yJNOscsi/39evjQ+8M+swWhFH/vW+PUJYkcM1gdQ6jBECo8m2L8C17xDs3/QBg702Kkv9LPXGTllbN42KMQySAaHRPsRzjRWwmeeHAqMn94FYNqPKTGo8ALUG5vv/A9InP0L/S/8S176H+tK/oKDKko0zXKhsEpjVx/yGrnLWbXCjd5/YBCttJlHgic5F23b/ykdo3nuV+v6bVNu36S9QcCxDEX7o/7bs3nsJgOFjz4HWbMd1tmlwb3jAYdqhYSo+I2IKoTEM0hQxAbfe82m/zPx3vkdHCI3Mz6d44oPEN14iuvES/ed/EBdVMMYPDIvv9kc3PkYn63M23Fy5TS6DQCyVa9/Ol/+BsXNKMUyytY6XztZl4u4e9b2rtM8+s/B1YlPi3MLQqe0SaI3ObTlB0sVkA+wDKKuuxOeQtqfsHovOLl331DqCQAgDPUtMGkVvuN62z0PT+EG4C0ZEwoee8ooB8ETd1/P6vxcqj/PH6u9f6z5YXNOMnh/oV4sN7V5Srrd1jjSFM5txbmkAECqhoTtIl25fRUXEEtJ3Q1quwxm1uXL9nr4AV3aFN+44Pvctx7/zCcExyk145sL8c/TNvicIzgfbVOaoHC/HZ3l1eJ2ryW0+rl6Y+9nPX9YMU8tnv2n5/Rcd738cKgsUB0ULQ62y/HrYqArg6PSZed133syrPC8J0bQVaQ6GNuHFvs9T+UD1KZTy9wKt1Nx73jvx2fgdTSQ8KviZn/mZiX//6I/+KD/90z/N3/k7f+eBiASlhK2t5Sz+o4Jm8+2dXTzFOxPv5OMmq0C/W0VFGmdqxNtN1BrVgTYx9Ds1JAiwKibeaqKrJ3eep2aT/uAOwYJ9m6o+plknWuPaYoeafqeGCv1Mc0aF+Mz2yvVNzRn66d7EOqSt+6hzZ4kvPLW+DWQBTvK4ScMn6F9/ERU0iHe3UWvYDmaWEezST/cwjXjhg6FzjpSIePcMprH+951GVxhcfxFd9baVJhVclmJDiM/uoOKTOXay2NLvVdG1aKnlxA7BxYrKmY25ZMFguEPavo+pr/cdJS4i2m4SbC7ejl67jkuHKKOpuohqGJb7uZNk9PoZldg/zgwTizaaRj2mbwfsxHXONv0s0FajxhnXoJX0qIcx9W7GIM2oRIZumlCrBmw2axMDwbS9h2iwWR8RhZgACUJMWKEahQShohKMHoL7g5QwCtjcrGKt47CforWa8WQvw3BoCQJNoxGhLj4OXwezf4taxSAt7wNXzR02NhdnjGybOr3uAG1CuomlUlmtghkMM0KM/9x8/yY2oxlUOLux4StHF6H5PtyTz9H6+m/R+uq/hSwljWtcPPcYF+tbaxOH1XoILUcn7dFYkKlQQLTmsJcSxQtIh8ounYvPUb/+Hc6++WXufPTPrFVvOA9RZND9NhuHPgtCvecjVKOA7XqdnbjJpXSbW7097g9aiIK6qUysU31ooStUKrPnTJZ5u1mjHhPOIxmrV7Bb51B7t6jf+i72he8nyRzVToLRisAoKizPBRiHk5Sde6+jkgGu2iR88j2EuRInsTBI3VrHS3rhKbj2NeoH16hEi3NOwoP7iLNkQYzUN2nUQhqbVZK4QdBv0cxaDOZMCq6LCiGfsh+infZ4onlu6bHmBilRfn2YxtA6+tl62z4PZ1QTDiHVnkgIDXz0PSFR4Nfnau82d9MDjGh+YOf9uUJqNZJ0dE2b16gShIb20BIECqMVre6QM9sVzm3XJgjM1EG615vYvsrtV4jvvs7ec58qVWbbYZPrg7t0VX/tffGZj1n+91/v88Ydx7U9TSUUesOMKICnH4vmEiDXDjyR8HT90tzPeSa8xGcPv8Je2iINUhpmvmLw+98L373W4/a+4/q+5v1PzB/a9oZ9wLHVMFQq/jVfO3yZG4O7/OjOx0rr1ZlNC/Rp95lYr97Q8cpNr9L4yLMRlcrqa/p3D18ncSlbpsGzG48hIgT9kEo1WDq+eyc9G7+jiYRms0mrNdsTfHBwwMbGYvlIs9lkOBwyGAwmVAmHh4eISPneZrM5U/VYLP/ChQsLl6+U4sd+7Mf4H//H/5F+v08cH49ptdZxeLieX/DtgtaKZrPC4WHv2DVXp/ijh3fDceOSAWk3xXUPERT91gDprt4WZ61/n+0j1jJoDZDBybHPtp+SdoaIbU/W8xW/7/RQKsGEq8OUXJaQtgeg8+3KLINOigyWv9cNLWkvg+wQ0YFvR8gSdGOLfmsIrF+XOI6Hcdw4G5C6CvQt/VaCyBFqEItlpJD2HST7c0MIwe9LhhnDboakq/d9+T6nyWyMvXMHVd0EwA46iNL0uxbprb+spZ+Tpv47Gx4uzXCw/TZiQvoHA0Rmv8dsqEgPO2i73n3PdvoMWkOUW7wdaS/F9joMwoh+b0gr0WUwl0szOt0BKtckD5IMEaHXG7A3bHMh3mHQSzE1TaczQA01h90+JjEkaUqvlyDW0hskxANFuzUoB4DOWVyngz7zOKID7LDrmzTaLZLBANs+oGc0ujo6f9u9lM16SK87wOFIk4x+PyEL17cwDYYZWit63SGoKiaIUMmA/o1r6Ps3CQBqOxweLu4nGwxTOt0hYSr0+ylzlNwz6A8zTPG5OTppn0AZBp2MRJb0oRV46pPUzr5A61u/SWvrLLtpTKt1hFYToJ5VuNs9xPbbREuULWnmSNKUTtdhFswwJhc+SPXGi8T719Fvvkj7zNE8ykoposgwGKRsvvEtJG/T6OoavW6brgwJ8vaXLddEi+FOf59r6T1qOi7XP01Sur0ENcfqMswsLnP0+wnJcP71J7zyAWp7t1Df+wqtxz5AhmLQTxhqRbhCRTSNbi/h8Te/AUDv8vsYdEdWkkE/YTBI6a1xS+oFm+yYGJP24fab9DbmPxdHd70/vFffpdtPiQJFpzMgrG4R9Fuwd4devNySsArPmMtgoN9fbovp9FKCekinM2tFG/RTBv2U3vG4JkLrB52J6mNMxg++Lwab0ev5a9Mf7H0HgGfjyzAUemveB4epBefo9QZzCTOHw6YZrUGCEq9IiOoRve7kNiZJSm+QotXIlHn+xd8lGLRp1c/T2vUWmob4Afud3gFX9HrrGBv4yNPCH7zk+DdfHnJl13/CE+eE4WD2OxnYIdcH3v50QZ2h15v3OcJusMXtZI/vHV7j+crjCz//yi7c3ocXryY8fW7+s0E7/x4CldLrWTKX8YW9b5CScU7v8FzlCgCh8udodwCt9qAkb772qiWzPjyzGSX0Vhwo1lm+cuAVKO+tPFEem8lgSK+bsLc3e897lJ6Nm83KWsqIdzSR8NRTT81kFbRaLe7cuTOTbTD9PoBXX32V559/vvz5K6+8wsWLF8uB/1NPPcWLL7448V7nHK+++iqf/OQnT2ozliJN3xmDrCyz75h1PcWjg3fyceOcInMKN+whURWsQtY0WGZO4QZD3xBgBTnBfeDQZBhkmCBzpHc2zcCptfa7s5A5gTTzQXwmAqdXrq+TgEwFMOhDAK7XRm1fRkwNewLberLHjeDqZ3HDvp8ZPIanHQyZqeB6LdSCoC836PuAQgmO/H3b6g5Zex87HPoB7aCPap7LGwFOiFBxmkwCSIaIWjwLZZMUCWvIgn1lJcBmfoC/TnClzQArqCX7JHMKm2Y4I+CEJLMUU21avD2hCDUsqt0GaYY4RVXF5QNZlllCAsQJwyxD5a+31pG5DOXyY77ItR90QcdItOGtDVET6s6HmfZ7uIMeWf8mNk1AGV/76ByBVqSZxeIwWugN7JEUCWnmMJqy1izdPE9453XU/Rtw6B++VeNsfrwu2rEKZx0WP7BYJ/QxyxyhYaJOrZcmbEaNif2yEpUtKh/9s5ANCQmWr+e8t0vMlmlyc3CfTWYl6NNI0wy1wDoxDGrsXXgfO9e/zrnvfZZ+vMGwuiD5bS78sWOzjI1b/nmwc+F5ssxinUOsmti+hqoSRxF35YDbgz2MjB6zrZ3/PaSpLcP/FlXZ9c49TSX8PKrfwVx7ifTic1gckmVYOVrOTty+Q9y+i1Oa3qXnZyoPrbNrhoQKnc3H2Lj7PWr336DTmJ/PELf8zHOvdgZrfQNIZh1JfQfuv0HYuX/8UNIjwua5IfP2s2P9cwUoG2MKEitwhkAMiUv5D//EkIvNBr3eEGsdd9MDrid3EYT3xk8eaXvTzGLyZoZFYYlhoOj0EkTBmYZXLkxvo8I3UyRphlEKlfQJBn6yNGrd4SDPFCnyNvbT1pHW88NPCd9909HqwbfeGNU+zlvGG/1bOBxbukFNKgs/57HgLLeTPd7o3+I90ZWFn/3EWU9ivHHHMUzsXOVGkZFQCf25eHN4nxQfUvm93ps8G/kA0UD762+aQavr2Kj56/o33/DXghce89/FqnDHVwc36NgesYQ8GV4qt9E6n6Oz7BnmnfRs/M4xYczBD//wD/O7v/u7HB4elj/71V/9VZRSSwf6H/3oR6nX6/yrf/Wvyp8lScKv//qv88M//MMTy//Od77Da6+9Vv7sC1/4Avv7+3z6059euHxrLb/6q7/Ks88+e2w1wilOcYpHG76yzvhQQRMezfMfhL5ucFnt3XGhA28dsEtmZtZtSyhqIp31QYvxiqDF4m2ikKjhwxW7B0h9B9V4sBmnhwkVN0rP7rGXUWku3ecuHSJR48itEAASN5DqJm7Q8g8vziEnZGkoP0MEiaq4VRWQLkXM4vuaBJEnyNYKbrQgzFXOTECHYC0+3lBwY+SJKdLICyLB+sF73w6om5jKFCkSq5BIBQxsghYfVlcuSybnVlzSR2pbE/kIIuKDOisNiLdJdQypf0JN84Azq1L2hm32hx20Wv3AOQ2bkxEFkrHARd324XS6uTyd3yjl1/UI6XHWuQnfbmoztCjqx/Cva9HUzfHluWfCJg1doZ0uVkGIQKA1q9oK7zz2UTrN82ib8tiL/2atloFpVPevEQzbpDqke+5pMiwaNVFZVyBQms2gjhFN6vxARYuAzD8ObOYIVhFNStN93IdaVl79EoJDIceiPc/e/S4Ag/PP4KZCb33mxvrLLdob6ntXF76mCFrs1XcBV8rcsxNqblgXPiZWFqpXpr+BuH2HC9/7nXL9p9EfZvSHo7YEEaGeNze07aSa+BvdlwFf/9fQRwz1das987HRiKJsaZgHrRWBlpIAicfaTOLO3fL/j1IBOY5Aj4IXwccrXV7guLmaByheDpfnlhQ1kDeSu+W5NA9nmlCL/OD/2pySliR1FGKfImzxWjL6Xm+l92ln/lojImOBi/7vOwdwv+WrXJ+9tPoZyDnHN3t+ovu5+HHMEcm+dxLe0UTCT//0T1Or1fjZn/1ZPve5z/FLv/RL/K2/9bf46Z/+ac6dGx2cP/MzP8NnPvOZ8t9RFPGf/Wf/Gb/wC7/AP/yH/5AvfOEL/I2/8TfY39/nP/1P/9PydT/+4z/Os88+y8/93M/xm7/5m/zKr/wKf/Nv/k1+5Ed+hA9+0F/Qr127xn/8H//H/OIv/iJf+MIX+NVf/VX+8l/+y3zjG9/gP//P//O3bmec4hSneOthQj+oW+YdngNftZeB0qsHUUeEiCBhZXFyvuDJgTWXhTZ+mlbcQtn+3PdG1bwJofK2Vz2+FZCwAtos3u/O+X1ynGWLoBu7/nsbdvIKyZP3UEoQszK23LnlGRc6zFs71kjetzZvZVh+DojWPlFePGkwntRvtPZp5Plo0gFaCanN2AhmiS8lirrxNZCiR/WmFjuRjeCyBJRGxbOBy+AzjIwKSIMK4hxg6SYJA+mDgnPxFhUd4tTRZ5UcTAQbJlteMm72bhJ09v3nryC+jGi0aLJ88LrOwNDhytpMgL4dUtXx0jq9hwWjNGdjrxwYLiHowkAtnMUvoRTXn/3jJGGdsN/i4ku/vfo4n0KhRri/9STKGKxzKJlPJACESnsiIe+nFDWqa5yGhZVEgnWOW+efxOoA094juPM6ouYvbxlU0mNr/3UA+o+/f+b3WoFe0EYyD52NizhRhP1Dwt5syLlO+oT5rHevdsaHQ+bHtm36UWbY3Vu/o/QBkFmLEplbswmUwaXFmpy5+iU27r7M49/4ZXZf/31kusVgzjo3tL8ut7IRkXCYdXht6O0dH6gsVksvXm83P+h0DEGgqcVB2dIwDyIQhposnUck3CvPiYJIOMw6ax8HBZ44C4/nl6Yru8xVBmQuKwfx07WP09jSDa8qw3IzWVzjKiI8fs5/1mu3Z9e5cHkY7bMrAK4NPXmi86Hwq4Pr5evLCsi+X9a3r/q/nz4vRIEwsAmvDW5MfM/juJ3ucTc9QKGWWjLeDXhHWxs2Njb4h//wH/Lf/rf/LT/7sz9LrVbjp37qp/jrf/2vT7zOWks21bH61/7aX8M5xy/8wi9w//59XnjhBf7BP/gHXL58uXxNEAT8/b//9/nv/rv/jv/iv/gvMMbwmc98hr/5N/9m+ZparUa9Xud//V//V+7du0cQBLz//e/n53/+5/nUpz71cHfAKU5xircVEkS4fIbySO/TgR9ArZlsf/T1qrCwYB3WJhKAUZ2fqKXe+ZmPCCtIpYlqnj0SAfGORVDx25n2QU+GxLksBa2PtP9mENWQ2hbu/nWksetJrJOGCQHBObdEeSJLj1uvbKhhB21Wztu4DGQNVY74ylRfa6hpZ30iFfjPEoiMpjvI/AOig1RSKiqgpucfdzUdc4d9lHNl+J5zk4oEb1mqwwLyR4lglMHqiMQO6Q72GdiAJ2s7PF7dIdYhiU3pSQslKh94rqlacm6ijSHd2MWJQufZJE4Eqe0sXYQWjUGRSIbAiu+0gKDGBllDm3I+2l5/vU8YDVPhTLjBzcF9tgIzd/1988bqZWVBzJvP/SiPf/OXqR9c48zVL3P3ysfWWg816FLf84PvezvvYVPyutAFigTw+z/UAb1skK+nP2Yy5zDT2+Hc0hR56xwHSYdGZZPO5RdovPY1qq98Cf3cT5Aecfy9cetFlLMMm2dJN2YHcUrUqBZ1jewFa0K6zfPUDq5T37vK/cpkPlkxmz+IN0hUgHZjZFV9CysKbVOCQYskPn7g4jqw1qH04tl9rbz83zmHchnVw1uA12fs3PgG9b03uPn0D9Fr5PttzvFYqA1a2UhJ8418Zvqx4Cxb5ujb6MZUHIugtbC7UWHVRTc0GpdnM4wTCcpmRN19BrVtaqria3WxdGzvSAoKEeGPf1DxtdccL1yevzI3k/skLqWiopV1iCLC5fAs3+2/wZvD26VCYR6eOCt86w3H67fdzPWuiMSoRX6ZXdtnL/Nq9g9Vn+VL3e/yyuAaH6j6nIh67Jsb2j2vZnjpuj/Rim36fPurvDH0x0dT1bgU7nIp3OV8sMP/n70/C5YuO8tz0ecbY8wu29X/fXV/lTqkkpCEEBZIMiCDODbb9vHexvtcgLtQODAX2HfmBttcOIhwhAMcQWAMYYdPnOOwzT62N0HnBiMLhACDkAC11ff119+sNps55xjnYszMlbmyXd3faTwRJVWtlTnnmJlzrZXfN97vfY3o4Xv+ZHKF7B40Yu8mD3QjAeD69ev8q3/1r+Y+5t/8m38z8TUR4VOf+hSf+tSn5j73woUL/PRP//TM76+srPAzP/MzS601EAg8XIg2fsf+uKqCaqThtOkFM5l3XMexGgmiI1zRg7ThPRKWfV6UotcfgW+EJgIgSiFpC7v9mi9ARyn6fpd+zkjAwuOLoBsbFAc7SNY8UXzmwnOYxN/PZT61UeEGKho9/6ODxNlyO4zWHo4IzUNpBvuEF9NVXuncZDs/oB3VEBGSSLPXzfF5rI6+K7gQtYhnHDfVMZEyFG5QZIMVR1wVGM45KHLU2urcURSjNSXQjRJa/ZyNaJPHmusk1evTMBk31e4wv33WHP8EIuPFpo4oWhtElcu5qq8tfA90tVveI0dV89WLOzswWGHf5sRzmjF3i/W4xV7RYbfo0IomCxqjBGQgW59Pr77Oa098O1e+/ptsvPoFevU1dtcXmy/WX/8K4hwH9Q169VU/4+8ssRjUnPsjUwm7hd+xVGpQoNuxvxcOv/BZcns3aCKYGleydV5/7L00XvhjojuvU997g068fFoDzrL6ph9r6FybVCP4dcrQsG9Z9lauHTYSLo8fNxuMNTQ3vaeEOlTbiFb0sxXSg1skB7fPvZFQlpDGevaOPYJS/tobu2+iXEke1XjjiW/jwrOfJenu8Mif/DK3L76TN66+H4XGHtH6DEYbdquxgIOyy9e7LwMMi9Rj4xhTCs1kiYf40SX/+2DQSLDKoGxBuv8WvbpvHLZ1ndvlLtvl3rFHMbJE+Na3z17MS1UBfi2en7Ax4GrVSHip/ybfOqchemXdKw72u/DWDmyO9CgOKmXBYKzhtUqNsK5bvD19lM8ffI3b5S63ih3WTIvmUJEAz7zmyEto1+DSmveOGDQRBGHH7rPT3edL3efRKLaiNV7L/fHfdQIFyoPGw601DQQCgfNEGV9wLSqEjlI1H447ErEsYmLQGndUijngOGMGyviCL0oXFi8T64izcyl471ckqXLEj8imXdFDkvqpxzskqaPbF70fw3lgKn+NWeMZtqiaYAsaCVECSvnGwzzcYLxn/usiSoP4ncKaTrmabVLTCXdyL731UuVDAyythNaMqDCAWBkynVC4AlXJuAW/iwxA0YMoQdL58YOpjmmbVS62rtOWNVpGE400CxIVeVMzgWUNuJ3z9YA6shs88EkAlvYbiVWEwyGy2Kfh6Hk7ZZ+GzuamJtwNIqW5kK4A00cctJFjSfF3N57g5iVf7F565jMk+7foFeVsYzPnqL/yJQBub77Ne3qIYLHDuLhZJMoM+2lKBINw9CfCWueVDVN2/wdNhIZOuZKuk6iIKG2ze+lJANZf/eKx/Dcat18i7u9TmIS8OsZRRHzTY5HvBECnV7LfLYY+CdnuGxP+E4NGQrexibWgK++OAf2GV9bcDZ8E67wR6yyUEl8VWajf8TGfB+3L7K0+wnPv/Yvc2XwKAdZe/xLXv/ifaO37cYXRd2CoSKg8Ev6k8xwWy5ZZ5UK0drKFi/gxrDMg0oLRgut1iHs+9W5nwxe76d40n4TJ5LrT4JwbFuHX5qgLRrkUbaBR7NsOd+asx2gZejI8/8b4z8VQkZD6e28wWnE53iRREVdj/zv12Z5/34ejDR3Hl14+VCOIyND74JH4An9t7RP82eYHeFtyjXo1gjFoIlyNtlgx8/+GPAyERkIgEAicFG0QEx+/wFamcvA/p1/BumpuHCkIvbmdOpbhn2gNSk3usgcmkDjzqo3iSJSVs8Mmw2lRrU1/nnNAREGceX+AaZTloQpnHibx9/fR1+EIztrlxnuU8v9UDZpMx1zLNmmaGtv5Plp7uXReluQup6ETagsy2lumRok9lHE7X+QAuPwAVWstbPRlUcZavEWWrNCLmzR0PjYGkKiIWAxau8Vz/BVladFaJqTMnfZh80CWNAaNlfHO/ksYPpbOz4+rqmFjnaM9RQFwL2iaGutxi/2iO3EdWinf6zxGVNqNRz7AXvsyyhZc+ep/w3Y6dIvpTa9s53Wizg5WGe6sPloV2t49f5biZUCkzHCsBKkk9UeWaa1FzOG9N8A3EQ6o6ZQr2cawoWPEcOuRd+GA+u2XSDrLF+Crr/uGyJ3Nt4GZvfZIK5a5XUtrcTjytEkvW0FwwwK8uohhcdppbGLtuIkoQNG8e40EB5g5qiARn2pQ4qhv+3n5/ZXLAFiT8Pr1b+fFd/w58rhO3Nvjya/9F9ZvPzd2TzYHZotlh57t8+WOH4l5T3ZCNULFWTkpaa0wWhFXaoR+0mC/7a8xGzNc9H+vtouzbSTcKnc4sF0MmkvRcmoaI5pLkb9PXq5MGmfx2AyfhIFHQi3xP1uvVoqEK1UD4XpyBYBne6/inKtGG+CNO/D6bd9ge/tV4aDs8kzlpfDu7AliFfFocpE/03yav7L6nfzFlY/yLfV38mRylQ813rXU9T3ohEZCIBAInBA5qSJB6con4XycfEUbXwQdLQhdFZt3nAaGKDDJ6eb7v0EQEyNxDZcf7sr5cQD1wPhEqLjmlQdTcLaoEkoWKAi0qQw/FyVA2OX8RZQG1JjvR6IjrmbrtKMau7aLUpa8cJSqZC1pzpWcA6Q6wiiNxVJUu/ZaKhWFA6mtLFyWVt7d3lqHTVqkSTR2zUZpMp3itFvaSy4vHYnRE3PcO83DyMJlFQmRMr7wZXFIqKvmx5USujYnVRG1ezzWMMpG3KauM3aPpDgoJWilllZ8ACCKV5/6OP2k6QvCFz/jDQGnvEntN/wowM7mdQod4bUvvtmySJEQKYOpRmjAF+hHG0qlA4OMeSQ459guDqjpmCvZBqk+/BkxSpPXWvQv+ML04pt/utQlx5071HdewyHsXHrn3McaLdgFZpS2kphLpQaZlt4Qd7fRZR+rNL3a6lRTyXLYSLi11HWclIHiZp7XgIj3iND9Dmm1nv3W5bHHHKxc4bn3/iVurfld/Itv/DF2RL5Rr8wWc1fw+9tfIXcFK7oxd7Z/mXWzwCPhOKSxHo41dOsbdOu+oE8Obg0NJeclN/Rsn88ffJVfufNZ3iomDTbn8fmDrwG+gD9OksHVypTx+f5rc9VHj2761+mtHa8mGDCIfqylvpnRdX2MaDbNarWeLSIxHNgur+e3hoqEQdLDY1tQS4Q/7T4/VJhsHVGYiAgrpsk3ZU/w7c33DmM0H3ZCIyEQCAROSpSiGhvHN77TVQPimEqG4yBxbTJBwDlAHdtsUaLQSFgWVWuPF+IDf4QH5fWbdy/bcm704yiSNBZHQLpyuUaC6DFFwoBYRVxJN1iLG/R0n/28Q6TM1Fn6o6QqJtMxlhJbOATl55Dzjh/JWUJBoqqd/l5eEmVN4uYKrjfu4t0wKU7scI5/EaV1ZPH4B+zClri0gauSO9TqlSWORPVBXRBZbEhY4t36lQi9MqcV1YnOqdF5EiKl2UpW/A74kUZXbJZIbjiCNQkvv/27KJWhufsaT3/pP/K23/t/89gX/zOXvv5p1l75As2bz9G4+TwA2xfe7os6UX68ARY2qyIxGFGHEZB6MlbR2vFdcuccO0WHTPkmQqbHfz60KAToPPHNAKzdfg7TW7xrvPr6lwG407qC1OePRmm1+GYtSuujV41QlvawkXDn5UPl0G411lDfqGKEJ00lXdVIiLu7yKyRqjOgtBatZkc/DjBaaGy/DkC3tkY5Rf1ldcQLV74FqzRZ987wOsH/zNWU/x35hZ2vA/Du7PqJR/xsFfN5RpMNAERGUzsYNBLWyZMGhUkQ50j2vTKkbSZHGw5sl9/b/xL//vZ/5/MHX+ON4haf3vnDubGMo7zUf4OX+m8gCN9ce9ux1nwtvoBCcbPY5nP7fzxTYZUlwsWq5zqqSjjo+X+vJ/BK379fl6L1oVmqEc1jsU/Hebb3yjD+ccA7ryn6NucrXa8wefcpFSYPE6GREAgEAidERFC19rE/JIgoH4l4RnL3qeeIUyb2IZ312y7HWa8oXwSfk5/Dw4aPgdTDnWlX9CGuefXKA4A3XNTTYyydRaLlmmaDxtNcSb1jOVWOUt4nYcouaaQMl9MNtpIWXfq0oxrpEs2JQQykVSWFK1EiXpGQ95D62lKxrKpKDOj2Sxq1mKi1DrYY88hIVESkFeIcdkGx63d5wUTj5z4oezRMRvpt/y/Sj/0tVGN+YsMALQpVJVss7GJYL3su8VGvTXM+4zOnoWkymiaja8dHZmKtjuUVMKBfW+WZxz5Gt7aGFVUZzt2k/dYzbL30v7jytf/hEw6aG/QaGz45ZKQQ1Qs+QisRUhUPCy2l1YTqwTo3tkvftwVGFFeydbIp4zmDwidvbdJZuYzCsfbaH89fR5nTessXtTc23z6WzOHXYMdeP+9ZMv9vRFF45Yyp1CCdxiaFSdBln2zXy88HiQ2dRiVhP2oiCqisTmFSBEfSuTP3nKehdA6jZGZiw3A9SmjsVmMN7cszH1eqmL1NX0yu3vjq2PcG4w0WR12lPJEcHifq7vLYF/4Ta698Yal1O+tHk84yOSXSQq1SXHTr6yBCt3qP0n3/ng1207uuz81im8/ufZH/cOs3+JPOsxSuZFW3yFTCjt3n8wdfnX6iEQpX8rm9PwHgm7LHWTHTY3VnUdcpH22+D4CvdF/kjzpfn/nYx7aq8YY3pigSEuHVgT9CNK7seqIab3i+/xooS1b9GamncG0Dvtp9idwVtHV9aX+HbwRCIyEQCATuAd6I8Bx/BesInIx/wB7E3R3D9E+SBrp9canCKgBEqY/fHIw32AKVPkASRxP5e2eamkBYOrJUosovIu/Of+AS95XfBdbMcoCLlOZqfZMts8pavLyXR12naFEU1vqmoLWgDSpb7kOuUZWfgHU0a7FP00hq0D9UJaQ6IotirC4pFzjYDXZ545HC0jqHdZbVqIGur6BWZxc3k+vTvvBUi5sYg6z6btmnphZ7TNwLRISWqVMcMfHUWi3lWH+U0jn2Wld4/Vv+n/zRe/9Pvvr0X+blt30nN669n+2NJ+jW1iiijO3HPwj4X59KZCjrN0v8Hs1UPHzftb+I8Qc4N2a02HcFmU5mjpX45pDC4th95H0ArLz5NdScn7P2ja+hy5xe2mKncXEi1fFOvj82MqIFEDe392QdpJEmNdqrQUSxv3IVgMbtF/21jxotOr+zftREFCX0an4L+Tx9EsrSKz8W1eNaCa1db6I4r5EAjv3LfkRk5dbzYyaTjZGUg3fXnhhTrqy/8nnSg1tsvfS/qI+MgcxikHQxLx70uEQ2J+17o8VuFSPbrfuiOqs8LSIx1Ctlxf995zN8pfviUNL/3a1v4ftXvp0/03gPAH/SeZa38jtzz/nHnWfYsx1qKuW92VMnWvdjySU+XP8mAD5/8FW+UvlPTDyu8kl45Rb0q3zUgUdCkhS8mfv7bOCPMOBitEZNpeSu4OX+m8PxhndcFZw4/rT7HHA6hcnDSGgkBAKBwEOIDEYnRmXAzlZF2TEaCUqdq3LiYUNEIVkLV/Yrc0vxRfUDgiiDROmEv4HfZVdLKyskSlCNNVx/csbWH68K7Fv2XjTRRBrGKKkxbCWrtI9xr6Y6IjGGnu2jEUzRQdImLPl+iQh57oiMJku0f+3qa7iRok6Lpq4znHILnfDzwpFGZqxo6JQ9Mp3QOEF0qBHld83V/KIQfJFstJfvtqPGQtn+vSLTMUb0WDNB68NZ/eOQF5bYCFmsEaPoxQ321h7l5pX38tqTH+P5p/83nv2Wv0Z38zHAF3U+HtD6WfolLPDikcab0oJwGK3oox/H5faFLedGbg4aCaWz9NeusJ+toWzB6htfmnhs1N3h0td+k63nPwfA7QvvQIsea1xY56rmyKEqQSlBMVvlMfjRNZHGmMPHHfokvIyUxbAxMDBaVDN21ovG+fskWDs/sWFA2rlDnB9gRdNpXZj6mMH7Vra36GarKFfSeuuZ4feblU9ComLelj0y/HrU3aV94/Bxl575n5j++CjUxLrxI0dnWbjGe36soRfXsZV3T2eoSDg0XFzRhw3Vy9EG39v+MJ9sfxtX4y1EhGvxBZ5ILuOAz+x9gXLG7+fd8oAvHPjr/pb6Oxd6i8zjHdljvDfziSO/s//HvNB7feIxK3Uf1WgtvHTD/14deB3s6ptYHE1Vm/AwEJGhKuHZ3iu8/7ri8QvwnseE53qvcmC7ZCoZU5gEQiMhEAgEHk505B32RwtC57znwX1aJDwsSFL3nzbznvcceFD8ESokrsHRqL2yin48RhygaqyBSXH9zuQ3nT0cWVhmTTqaOtowwBhFVu6hiwUKiBFiFVE3CQU+BlI5h6qvLv2hXQQQqKeGpBpHULU2mGSsmdAw6VLJDc5BEo/Py/dt7tUIxzAmG6BFV89b3EhAHFYsRvSJmhZ3i0TFpCqmN3J/aiVoLdjyeI2EonSkqUErNTWacRpa+ehH7yex+PdopLSPi6xSMbSSoTrEOodGhoW9q2JIEzX7Z0yLruIu/c/P61t+h3bt9S8h1e9609/nwrO/zRN/9H/RvvksAmxvXOfmxtu83cjI/V24kkgMkTL0q6azEvENkxn3a1GWGCNEWmG0L3IdsN++ghMh6W7TuvkcgqOIMoq4Tlk1YaaNFpRNb1p3UkWCKnNWXv8yK298eaphJgAyiImdT7bt1Qid1gXcjILXDdUVip2Lbwdg5c2vDs/9aHyJpqrxkdX3EMnhMdZe/SKCY791kW5tDVP0uPT1T8/9vYZlYhTltJgdrxQ5yA7NAgeGi3FnG1XdRx+sv5P3ZNf58+2P8Ofa38rFaH3id+OH6t9EKjF3yl2+cDB93OBze3+CxXIpWh/6EJyG99XextuSazjgN3f/kNfzm2PfF5Gx9IaBGsFoeNP6RsnleHpixPWqSfBy/wZXtnK+9wOaNPKKCoB3pY+f6Hfxw0z4NBkIBAIPIaI0RMn4rLuz55YUEThE4gyiGNfdReKaL4IfIKYmTNglox+PHEc113H9/cndzSqKdOnEE5/xN/tctqBZT0hYYPB4hFZUQ0TQFJglTRaHS6oKw1Y9Hn7AlihF1VbGlBiJioiNppyz/tL6CMtkZNe0Z3NiFdE8RQxjrIw3e1yIkNucuklJ1THNY+8iSoRWVB8zXNRKYUQojqFIGDwyMdrvrhvFIs84hy9SyoEiYZlGghivoHClV06oEUVC6RB9GP2YuxKjzDDqcRq6Oq/FoQTurDxCP2miix5rr/0xmy/8Hk/84S+y+uZXEOfYW7nCc+/5fl578qMUolDivT0G5LYgEkPTZHQq74mj6zxKUUKivbLBaO/DUVqLNTEHzYuAl/CDVyMggrNg9PTRgrJ1sghI09tn84Xf4/of/DsuPv9ZLj73Wdo3JotZn3wgS40HZLdeBuaPNdgq4UQrYf/Ck1jRpAe3h54Qq6bJ/77xnbyz8ejhWvsHtG/4xIK3rn4zrz71cawy1HdeY/3VL848V2kd5ug4yCnRw0bC+vDnoIwz8riOwDCyc9U0+UD9HWxEKzOPlaqYb234ZtYXOl/ndrEz9v2Xem/wcv4mCuFb6+8+E2WFiPDhxrt5JL6AxfLfdn6fW0fOO/BJePFNx97QH4Fh7ONRf4QBq6bFqm5isTzf92qHV/Ib3Cn3iMTwttQrTKTMqW2/Ortx9Q1EaCQEAoHAQ4ocifJzlSIhcL6IjnxqgS1R6fIz+/cLYmIYRCEOsIVXuRzz/lGNNYhSOKpKqGIxl70fRS94XN6l2WoSR8cz3stMSqwjorL0JovHSGAREdLEkCXjzRCpr/jXr2rieZ+EhELsTGVAXloiI5iR6+yUfVai+twd6kUkKsLi5n7gdc7/j1WWtqnf9/O/NZ0MC3oABKJIH0uRUBQlRstQ7m6MWmo0QokvsI2YpQzwjGgiMeS29A0rUQw2+gvnMCLD4+S2IBZDLPOba5GKKJ2t4go1b116NwCbL3+e9df+GOVKDpoXeOFdn+Tld/w5etUc/LRivnAlNR3TMnVwzqsijqzzKKW1Q+WM1gqtGaptBuMNcZUk0WlsVs+ZXRDbpi9oTdFFT1MvHSHZf4tLX/9Nrn/+37P+2h+jyz5FZQa89cLvYo6MU5XV+IZZVPHYkmTbGy3uzTNadO6wIROl3FrxDYOVN2ebDq69+scoZzloXqDTukg/a/PGYx8GYOOlPyTbfWPq8xxubmTlSTDblQlmfX1MJdWdMt6wDI/Fl7gWX8Dh+MzeF4bRoYUr+dy+N1h8V/YEK+bs/hYqUXy0+c1cMGvkruC/7Pwuu+XhmMjFVUgi6Obw7Ov+GtP6ATt2H0G4FM02rB2ON3RfAeCL1VjG29JHhr+LL3/90zzypV9j68XfO7NrelAJjYRAIBB4SBGTjLu1OxtME+8SKmtCUvNF9IOGjkBFfpyhwtnyRBGgYhJUcxOXH4wX+La6F5e9H5VhnqOeK/re38DEUPZnPu4odRMRO4VBoxfE4k0sSSCLvT/CKJLUkbQ5VCVo0TR1iqWkLKerA8pKZj8o8nJbokX5Au8URMog4ua9dN7QUSyJMtTv47GGAZmeHG+IzOzCdxrej0IPpfZGZIkGlDerLZ0dk6zPQ0So6cPkBqPVUMk+jH4cvOeuoG7ShY2cSGmsswheOXB7/Tp57FUr3doaL739u3nxXZ+k07o49rxpxbx1llQnZDohURHd6jU1WqYq7gf+AANDUBG82qbqOQ4aCQO6VSPBOUdUvda5LdjJD4s+Hcf0E/+zN88nobb9Ktf+9Fd4/Iv/N+23nkWcHxN46e3fzdff/wN06hvoss/FZ39rrHHmrK0SZOeXPObOG6iyIDcp3Wx15uNGGzKihBsb3jywdfPZMdPF4fXlXVbe9PGbN6+8d/j17c0n2V5/AsFx+Wu/OfW5OHws7RkhRR9zcAeAfmNtzAC2U403DBQJSx9ThG+rv5tIDDeLbf60400Jv3gwYrBYe/JsLmAEI5rvbH2QVd2kY3v8l53fHf5OUEp4dNO/bl99pfL+aPsRiC2zSjynOTvwQHijuMXzvdd4o7iFILwrfQyA2vZrNCtD0bXX/oTGremmj98ohEZCIBAIPKT4nWUOTeqcW15KHjgVEteQtDF9TOB+R0f+3hn117Dlia9F1VchzsbSDHClP8+yH5LnyMhdmYPWqPqKX2OxfCPBKE3LKXRcR+LjFe31LOLSem0oTR8uVZSPaCzz4c9eK8kQZSmnFKuu+icxo2oEH/l42vSEgTnfPJx19KXPSlyb+wH7fkGJomVq9Efuz0WxfkexzpGOKEmWmUMXvHrAYomP0ZBNdDxsUhhzaArpnCMyh/e/c75JsohIzFA5gIATzYvv+j5efOf38vx7vp/91WtTI36dY1jMD84vKCJliJSmFdXoDXwW9HSFRllaTDXSMCCO9NBPIU9b9NK2Pz6Hu9yIDF/jrs3JbTHcuQbo1yufhM708Yb67Ze49qVfp77zOk6E7Y0neO49f4GX3vVJf71K8dqT34EVTePOK2MjDiVgkIUKkvgtn6Kw27x0NDh5/DUYacgoEfZrG/SyFZQtab317MTjV1/7E5Qt6dQ3xkcmRHjj8W+jnzSJ+vsTDZDBY+QMPRL0jm8SlGkdXWtSFKdXJADUdMqH6u8C4A8PvsrL/Tf5YuUr8KH6u5ZuvB2XREV8ovUh6iplp9znf+5+fvizNvBJGBgtFrX5/ggD6jrjYuTvx8/s/hHgVQp1nYFzbL3wuwDk1cjZpWc+Q9TdPdsLe4AIjYRAIBB4WBlG+Q12lq2fcw+cOxJn6PVHjiWVv18QESSpjyc3HCP6ceJ4JkY1NnB5Z/ghz1VRi0sfQ+nxptgoeReJahBnXglwjEaC1sKqRLQaV5BjxKKCL7Zq6fTXRNKm91uomieZiYm1oSgm11+WFqOEqNrlHY18PO2YgRFv9jdvuiF3FgW0owdnDKdmUhhJatBKEFluZLmwDi1qzI9CKfGz/AueqwCcb0Aty2gRNYgM9YdxwwZI6Sxa1FKNHFM1hpTy/QKHI0+bHLQvTW0gDJHxhknhSozSxFVzuWF82oB1Fq1kqkVnUToi7dMahuvRCuTwsQNVQi9bweqIwdUOxBClK0lGVBoARWW4mO5PNhKS/Ztc+dr/QHDsrD3GM+/733ntyY/Rq48XhP1shbeufTMAWy98DtPziiBXLhcRGt30jYS99iXmdRJGGzJKAFHc2RqYLn5l7CZURW+YqHHzytMT7481Ma8+9XGcKFq3XvDPP8JZaggHRotFa4skUmM/L4MoyLi3h14U2zuFJ5OrXI42KLH8153fw2K5HG3waHxx8ZNPQU2nfGfrg2gUL+dv8vkD70VxbaN6fwDE0km8IuHKDH+EUQbjDUVlwfru7AkAWm99nfTgFqWOeP49f4GDxha67HPla7+BjCZkfQMRGgmBQCDwsDKR3CDzP2gGzpQHzWRxFIlTBp+mh1GNp2hCqfqq9+wYqBJciSyx+3p4AO0rpymNBFf0q7QF5Y0uZzUcpiDOEpuEJD3eWMPC42pTNU+6OOdIVEQtTui5STPIonTEkR7u8p4m8vEoRjRGKcAxy6GhX+ZkJnkgxhoGZComVdFQymyUN74sF2VsAkVhiSJFNOJHoZWP2ZuVVDBQjaB8s2EZo8UBkTJoURSurJpVg4aFYKrfx/3KH2EZPwwt2hs/Iijm1rxj6/fPPfxa7sqhhwN474m0Gm9QWjHtdilKRxqPX7s5Er9558I76NbWuH3Jm/D5dAo1kk7B0DdiQFlFQMZHFAmmv8/VL/9XlC3Yb1/m1Sc/RjHHEPXWpW+i09hEl/lwh9+OjFXMQvrdoXfAXusy5byW0khDRpSP9LyzcX3EdHEkQvG1L6HLnG5tlb3VR6YertvY4Ma1DwCw9fzvElemk24wkXSGHglm+00AitYmRquqEeWxJqFX/R487ngDVCMOjfdgqtaHN1j8prviubJu2vyZxnsA+KPO13ix9zpxJFyprBBUfRsrBYlErJn2wuM9Gl9CVSXy1WiLVdNEypzNl/4A8CMqZVzj1ac+TmES0v2bbD3/u+dzcfc5oZEQCAQCDykiCqLsMLnBubkS8UBgiIkB8QW5LX1s6CnGYsTESGMD1+/6Yzp3vEaLUoDyg+UjDMYaJPEyU4lT0DEUS6Y35D1UkiJJtvxalkRqbe+RkXe8T0KcjhVPA4rSksYDxYWjd4rIx6NoURjRWGWnegA45+jYPqtx/Vi77PcaozQNk9EbJg0otBKKJQwXC2u9QeZIfaOVQrQf85jGoKgb1HTHeW9ipX1ygy19IS/OO/8jaHNotJjqZKkGhRY1VCKIqKVUGIPIQj3SSShsSabioeRfi6Yd1emVuS8FjxSA3h/BeyKMrUepsfjNPG3y/NP/G9tbb/PPq9IplKhqnEKIlBpTJNj2SHJD1QSUMufql/8rUX5AL1vhlac+Xv0emIMoXrv+7X7EYfsV2je+Vik/FvhO3HrFx1U2VrFJY+ZrerQho8QXzIWJ2V1/DGCoKpCiz+pr3mzw5uVJNcIoty59E3vtKyhXcvmZ/+kbIFTv2Rn+yR4qEtq+kaCVjPm2nGa8AaCpa3yo4Ucc3lt7ivYZGiwu4np6lXdWPgb/c++PuFPsDdMbVPswrWEZk9RERTyVXkWjeG/Ne2CsvfYnRP0D8rjB7YvvBKBI6rz25MdwwOqbX6H11jNnf2H3OeETZSAQCDzEqGQ8uSE0EgLLIDr2fhpl4e8fpU882jBANVZ9wd8/oNrWO86CpisS8q73Noh9I0BMgkQZbppx2RRc0UPX2mee1e7XEqMa67hKhdGKazixY0WKF3scmtftl11qKqF1isjHUbQoIu3jAqdtXe8WHSIbsZacrSLjblA3KW6YNADNekxp3ZgT/VFcVQ2PjjWAn3U3IhQzdqIHhbjD+tjPY/we1aKJdTSMgNQoCmu9yEYORxvqZjk/DCUKjaLE+pGMJRoJg8jC0SKqdJbakXM2TIYSwSmHMD4qcnQEZ3h9lWdCMeN1L6uxBq2Ewlm08iMcY42t+gqlMihnibs74CxXvvabpAe3KKKUl9/+3dglX5/xEYffJeofLPz5jip/hHz9mh/rmCHzcM6hRxoyA8NLZ91wvKF18zlU0afxyp+iix79tDVsMsxEhNeufwdWGdL9m9TvvIyzDlH+HGdCkaP37/h/rRQJR9+3bjUukp1AkTDgbekj/J9rf25YgN9NvqX+zmGSw3/f/X0ub/nPPrq9nD/CKB+uv5u/tv7n2IxW0P2DYUznm498ADfSVN9fuTI00bz47G8Td+6c0dU8GIRPlIFAIPAwc7T4C42EwDKYCDGRH4uxpVcPnHLHWnSEam3i8i5wzChSpbxPwlFFQtFH1Va8+mZwnqw5bhQ5A6+MgKjWquT/Z4+qrYBJcHmXRhQTKU0+koZRlCXGCHGk6dkc6xwX0vmu4sdBRIhVjBM7NtpQOsd2p0svL3lidZONxtkrMs6bTCfEKqJfNUrraUQ9NXT6s9oBkJclUfV6jyFe1eAmBSOAr9VF+cJaiz5WIwH8KEbhSpQIoqEofPSjrjwTBFk65tNUBpq2ijVcRpEwFlnIwGiRCRO8TMdkKqbvcpTImDloYd2w+DxKavTMBo4tfcoB4v0RIvSEiajSin62AnhVwtYLv0vjzktY0bz8tu8mT5uLL3KE0RGHx176HfS8botzxJU/Qn/jmldXzHhRrR2oK6qdblU1Epyj09yil7VRtqD15ldpvuiN+rwaYfH9UsYZdy74ZsT6q1/075FioZpiWczuWwhQJnVcUgOBNNKUIyqeMUXCMWJ0j3KS31+6f8DVL/0aF577nekJFkugRPHx1vupVeaLf1h8gXdfz1H1bWA5f4QBIoKplEebL/0ByhZ0Gpvsrj8+8di3rr6P/dZFlC248tXfQOb8/XFwbn9v7gUPz5UEAoFAYAIxMSiFs6WXVj5Ef8AC54eIgriGK3OcLSBKzmTWVWor3oRQ5FhRpCKKSns+/NpwrCEdn5mWOGM4ljGPvAdxwspam7XW+fgDSJyhaiu4/gE1k5DoiM7Ih8y8cKRG48SxX3TZjNu0o9NFPh4l03Ellfa1QadX0ukWEJU8tbnFE+vrvtB7wIiVoa4zutV4gwisNGIio+jl0zsCeeHIYuN38o8QzUgqgIFyBKxUcvNjfnxOVORDc5RCiW9oGOMNAHNXECm9dPGlK0WCdRalmLnmsfWPRBZCZe44YrQ4QImibeoUFNWP2+HPUFk60uQwrnIUY2aPWFjniCoFSOFKIm1IVDz0jRjQb3jDxY2X/pC1171B4WtPfpRuc/nib8hwxEHR3n2VxhtfnflQdbCD7uziRJGvXvYNpRmNh9J5dcWgIaNkxKdCZKhK2Hzh99H9DnnSYHvj+tLLvnXpm3CiqO2+Qbr7Jho5M4+BUX+E4dciNaYM6dbWcQgm72BGU3buAlsv/h6N7VdZfeNLPPH5/4vWjWdO1MzIVMJ3Nj+AQvFS/w12L/wBCKzoJjV9/N/zyf4t2je8geObj37L9BEVUd6/I8pIOne4+NxnZ6/dnV1z6H4gfKIMBAKBhxkdgYp8JJ7I2M5tIDAPFdf8dmJZIkvKihch2qBaWz6m8bgKBxONNQdcv+PHGqLx3XSJUu/xsCC9weVdVNokTtLJHeozRDXWQCm0LWnHKf0RRYJ1jiTS7OQHrEYNNpLFRmDHJVIa0UKeW/a7OZFRZE24utrmWmMN193BPaDxZc0oo3SH/g/GaNr1hKKcHHHwhomOJJ7u9WG0MM1HAhiOTzixfrTgmL9HI2Wq+tv5po1jOCLQtwWJiieK+lkMzl9W6QrLMBpZCN5oMUITTTlnPUr9TqyzY9MwDjfhjzDA6CqKcsr3nHNDU8nCWVIVj/lGDCgqw8Wk63eP33zkg4tHAubQz1Z444ofcWh99beJX59emA7UCMXKRTCR94eYVQNa0CMNGQREqWF/c7syXZTqC7euvOdYzfsirrO9+SQAW6998UxHrkb9EQZERiEyEkmqDb3aKnByn4STkO28TvutZ3FAP21hii6Xn/k01770qycaFdiIVvi2xrsBeLPw5pVXjjHWMMQ5tl78PQTYWXuMTvPCzIeWcY1Xnvo4DqH91jM0bz0//ZDCmfpe3GseoksJBAKBwATaS9Rd1UgIow2BpRlGV9ozjbGUWhvV3Bg5/pLP05FvbAwo+6j6ysSOnZgYidO5MZDOOXAWOaZk+kTENSRbwfX3aSe14S6sl6YrctUnUzEXk7VjF6jLYESjFcSRYqOVstI2ZInhYrqKAbDlsSIz7ydqyo835CM72/U0oplFdHrjIw5+xl+RmOmvsWifqDAV51D4+yZS+ti7xJEyGGV85KIW77NQVROFtdT18Rp1kTJYLLJEZGW1/LGRhMIVJDqeer+lKqGmEwpVDgvkQWRmZKZft9EKLTNSM0ZSDpyzJCoa840YYJvrw3+/s/U2bl1699hhukXJzn5/KQXGgBsX3sle4wKqzGl9/tdo/sGvoDrjTbNoZKwBmJuSUFpHdGQ32Ud6VtcQpeyuP+ofG9fY2Tq+T8DNS+/GAe2dV6h1J+MwT4rZ8Y2BckSREGmFNjMMF+f4JEiZU7/90sSo2YlwlgvP/w7g3/dnn/6LvHntA1ilqe+8zuNf+E9svPQHx45XfCq9xjvSR4f/fZyxhgH1Oy9T334VK4obj3xw4eM7rYvcuuzv22nGi875wnuaIupBJXyiDAQCgYcYEfFS77IPqNBICCyNmBiq3VNOkdgwcVxVqRKOqUjwKQ9VJGWZgzZ+TGIKKmtV9/wMyj6YuBqDOF9ExKsSnKOuNaraTc5Li9MFSgsX0zWSc4oLNaJpZjFb7YxaLeLA9tiI2zRNDdc78K+h1ofpLueMsyX24M7M3f/jECtDTcfD9Abw/dJ2PSaKFL3+YaGaF1XM5oxGwiBRYdqqrPPjNRZHIsf/WYhEYyopv9EKpQ+jHx2O9DhRqPjrHvgeLCX/rjwgBhTWUlPTz6lEaEd1nJRDVUdhLZGWmSMwWiu0ZqoKBASlBmoPIap+7ge+EQPK1Yvs1Te5s/44rz/2bUMJuQMOeiVYSBI9VvQuwqJ44e2f4OD6B3CiSG48z+pn/r+kz/+RlxdYS3TzFQDyjav+WkRm95NwEx4RSo17Krx15X10mlvcesd3jJnyLUuetdldewxgaPB3aoocveebEqOjDUr592P0Je0MDBdnKBKkzHnkT3+Va1/5r1x69jOnXtrKG18hPbhNqWPeuvYBUJpbV57muaf/EnsrVxFn2Xjlj3j8j/4jte3XjnXsD9XfxWPxJS5F61yI1hc/YRRn2Xrx9wC4ffGdS/t0DN672s7rE+bAZaVsWlZJ9CAQPlEGAoHAQ47Emd/JFRU8EgLLY2Kf3qANos+ukXBilB5KjmeNNQyJUhA10yfB5T3/c3FGIxuLkLSBZC0y67PMezann5c4XXIhWT2zlIZpaFEkUYQY2C0OaJk6G3HLvzZlH9VY86MrJzQ4OzZ5x6eBzGv0LImI0DL1MYk8+Jn9lUZKad3Qlb60jlo8u3k1SFSYtuPtcCgllM5iTtBIUKJIRwwXjfLNhMKWGKWXNlocECnjC/M5Re/h2v3/Hh3Ljuc0ruomIzGHSo+ycCSxnjoeDn4ZsdEcTTctrUOLYBSUWIyo4es38I0YoOOYZ9/5SV54/DuGf6ecg/1uQaSFjXZajXTMv95RrAUdxRw89a3c+cj/Qb5yESkLGl/+Ldqf/UXSl/8UVfSxUTIssEUJMEvpIRPjBkc9FfKszUvv+fN0NydN+Zbl5pWnAWjceBZ1sH3i4wzwRosOm9SwRzxlIiNjDaAxRcLRnwVrufK13xg2GdpvPXOqyEOdd9l86Q8AuHHt/ZTRoYdBnjZ5+e3fzctv+7PkcY24t8vVL/862c7rSx9/YL74Pe0PH1vttfLmV0k625QmGaYyLEO3vkapY3SZk+7dHPues15FpB6iz2EPz5UEAoFAYDqDKD8VRhsCyyNK+4L8DKIfzwQ1YvQ2Y6xhwEKfhLKPqrXPzMhsESIK1VgnUULNxPSKPvuuw0bWYuOMohft7g1cd2/i61o0GuGg6KFEsZW0MUpDvwtxhmRtJG3hyrvTSHBFjqR1XH4258t0PDFvD1BLDI0sotsrhjuB0ZxGghLlDQanVKqOQ6d+c8L0kkzFlNb7Ghit0Erou4JIzNL+CGNrHazJzb+Hy2osYeCRUDqLFjX3nKmKqJuUvvXGoM5BfMRbwjo31nSJo8nkBmdtldyq/LWLJqqc8L1vxKEvxdFmROkc+92cLDZsrKSkiSEyCnuMToJ1djiOUTbW2P7Wv8TuN30Ma2KinRs0/vTTAOTrV4d/G5Xgoz7dNHXFZENmnqfCSenV19luXkJwZM99fv6DnSN9/o/Inv2DyXjciqE/QmtS3m+0Glt+L1vFikaXfaLuzth5Lj732zTuvIJVmu31JwC48NxniU7osbL50v9Cl326tbVhYsUYIuytPcZz7/3L7K4+gnKWq1/5b8QHxxj5qMbYjoVzrL72pwC8deW9S0eP+jUrDloXAajvvDr2rRKveAmKhEAgEAg8MIiJwJjK+T782g8sj8Q1P1JwPygSRIFbPNYAA5+EGm7KLrsrC//8+PxUAFPXlLUwtRZNHJ2yIFMx1+pn44vgbAna4Iqe//cRfFygpm8LNqI2DeNVHC7voOpr/rVKaqeKezseFky6VETnMiQqJlUxPTt+vMGIQxxp9js5iVEzzQLBy421QDmtKrR+k1zgxO/XQAHg4ycVWilyW9DQCeqYxxykRihYqEiw1vpeYLWTntuCSCYTG0YREVYjn95QVjGTkRassxyUPe7099jJD9jJD539jVYg469d6cBUow2FK4mVGTZiIvH/PjreEBlF6RxFaTnoFjSyiI12QlS9b5FRzEiZnHUl40WbCL1r38Ttb/9r9C4epikcrF0e/rsSQWQyDcM6h0ZNOu6fU1H4+paftU9f+TLSm5GgYEsaX/xvNL78W9S/+js0/+i/MCEL4dAfYVojQSkZ/9lXil7dJ2iMjjdsvPx5Vm58DYfw6lMf57Unv4ODKmLz0jOfPnaxnu7doP2mT9N44/EPz/1sYnXEq099jIPmFrrsc+3Lv47pTTZNjxIf3ObxL/xHrv/hL6KO4QOTHNwm6W5jRbO9eXyfi/22v5+OjmK40jfVHp42QmgkBAKBwMPPQJEg6q7twAYeDiROIandF2kfojSI4PoHSNyYPdZQodKml9Afpeh6xcJd8EcYRZRGNddpiRCXMReSNRrxGcVOlgWoyCsLjuwOigiJiliLG2wkfs7XFX3QBlXzKRESZ6Ciczdd9KMmgkQxS0V0LoESoRXV6U8xYzNG0W4kaKVIUzNTmg9UPgJ6aj1k3WG9eNJGwsCkUWnxcaNVsZoe02gRfA69iGAFmBlW6LEWIn1oEFm4klh7w8N51KOMWBn28x6F6rNnD9gpDlAIW8kql1JfbA4TM7QgjPsFWOuTNAbnHfWCiNShb8TwuozGWkcvt6w2E9bb6Zi3g9ZqYeNkHDdVRu7SOrvv+x5uvv/7uPnkB7l54dCUTynxNe2R+8BZ59UVR97/eZ4KJ8UBe40L9FpbiC3Jnv+jyQeVOa0//FXSV7+KE/EeEK8/Q+sPf2Xi99606Mfh90QmIg07RwwX2298hY1XPg/A649/G3urj/iIzSc/Rqkjartvsv7KF45xgY4Lz/0Ogk+6mJeGMHyKMrz89u+ml7WJ+gdc+/J/Qc0Zx2q+9SyP/fEvkXTuEPX3aN56YenlDRIX9leuYE9gNHzQvgRAtvvmmEmkdW6mR8uDysN1NYFAIBCYQLTxM9BnaJgX+MZAsjZ69cq9XoZHab8tXPRQ9SXGEuLUNx6OVIYu73k5/z1ojkjWolFf5QIZFxrNs2vs2QIxBtXeBOe8amOE9bhZpUL4os719pFs5bAZYxLfXDnv9IYyBx2hsvZSEZ3LUtMJSryHwVHqiWGlEZPOiH0cJdZqQp4/RDhR9OOASIwfwRimdlhU1eQ5Lhpv2olYZFbuYkVpHXF01GhxcfOiZiJqknKQ98jiiEvpGk/ULnG9fpmL6SrtqIZReuijoJXfrR8dPRgdLXDOjV2rEkVyxHDRaKEWa9ZbCSv1ZOLnQy/ROBkwavQ4i+3VLfInPjC2Gy4iKAHLUXWFH2s4KksfLPEs9TyDRJf9x318ZfrSnyAjo0CS92j//i8R33gBpzQ73/xJdt7/fThliG+8SPv3fwkZ/GyVBXq/MlpsT1EkaEEYV2B0K8PFdP8tGrdf5OJznwW8zH97ZAQhT5u88diHAa9YSHffXOr62je+Rrb/FqWOeHOJNIQB1iS89I4/Rx7VSDp3uPqV/zaZ5mAtW89/jitf/02ULSiMb9Yu7eXgHM2bzwOcOH60n7bJoxrKlWQjr4lzk6MxDzqhkRAIBALfAEhc84VYIHAMROTY6QrnhlIg2he9SWPhw4c+CSMfwJ2zIDJ3LOI8ER0RtzdZ0ZDOkdkfF1fmEKVI1kLqqxOqhIbJhrvBfvTBjXlMiAiSNXFnYIA4lzL3aSBJfWFE53HIdEymYjrTfB4E2o2EdI4/wgCtZWaZ6rCnaiQY0URiyCvpeW5LIjEnaiQoUWgEi0UhE0Xv2LqdVzAM/xu3VEKIVopNZ7hc1nhb8zIX0lUaJhtefySGRAx5Vchp7U0ki1GZvBP0wDixes4oA9+IAUmk2VjJaNTiqbv8ZmCIucR8gx9FEPSMt8s5R+ksNZ2gR5QRUjWMjp7CWXxqxdHJBiVjXg9ngbMOUdDfeIyisYYq+qQv/rFfX3ef9u/+R6Lbr2FNzPa3fD/51mPkm4+w/cE/7/0fbr9K6/f+M9LveqNF57Bxhp3ye09VM/t2quHiTS5/7X8gOO5sPsVbV7954vk7G9fZXn8CwXH5659GLRhZUkWPzRf/FwA3r7yP8pgjZkXS4OV3fqJSQrzBpa//z+FYhe4f8MiXfoW11yt/g8tP88K7/x8A1HZew/T3Fx5/dKxhb+XasdY2RGSoShgfb5D7Qt13ljxcVxMIBAKBqUhS84VVIPCgUo02+LSGxfey6KjySRgpVvMeRMld90cYJW6tEdVbxOXiGd+lsSUq9iMourkBSk/1hwCgf4AkDeRInJnE3ifhLAuio7giR5K63/VdFNF5DJQo1pM2hS2nqhKWPo5WzNKpW8EXpgtGAmYhItT04Q583xWkOj6ReaMWhRJVJTcw8z1zAAKm2kUfqCCWMXcUgUwcTaVJ48nGg4hQNxm5O9wRTiJFOWqGKA5dpV1oURPXGmsz0QKZJ/1WSqGM931YxKxRhAFdm5OqiLW4SaTM2GiMVjIx4lJaRzTSldgtDtgtDrw5o8gxvRsWrN35RoI2ik6lSshe+AJ69yYrn/v/YXZvYpMa29/6FylWLw2fV6xdZvtbvh8bpUTbb9L+3f9IfONF/73W5sQIA/hxEVHjioR+2qbUEcqVKFuyt3KF1x//M1OfjwhvPP5h8rhO3Ntl6/nfmXttGy//Iabo0sva3Lr4rpO8PPRqa7zytu/CiqJ163m2Xvhdsp3XefyL/5na7puUOuLlt30nbz3yAfK0xUHzAgK03np24bFPO9YwYL9qJNS3veGi/1l0MxtbDyoP2eUEAoFAYBqqvopeuXivlxEInBzRiInnpjUcRWVNb65Y4fIuKm3e0zjLtFbj0vWn0EmCPbhzdgeudpklbaDq6xOqBPAFisuryMcjs+MSL0i6OAtc6f0YYGFE53FpmxqtqM5u0TnxMeZL5336wWnMMRMdD4v+wpbU9cmau0qESAwOX3DOEiRYW+3KV+MFuSuJRBPJYkWCKnN0lGKiiEgmDfwAUh2NnTsyeujb53sc3hOicCVa1IQiIRJTFeHLVeFKydIRkLNGEQZ0yz7tqE6sIho6HSorwKsrjq7J4YbJF+Dfv8KWlWqLMzUrLfFNKxGhd+lJyrSJ6ndY+e1/j+7sUGYt7nzrX6Jsbkw+t73F9of+ImVSw+zdovbM7/v1TvFHAN8biLRmrDcjMhxv6NQ3eOWpPzs3OtqahFef/CgOYeXG12nefG74PVX0qG2/ytorX+DyV3+D1de/DOBHIk4Rg3jQvsRrT34UgLXXv8Qjf/ormLxDN1vh+Xf/BfbWDn0vdjZ8wsTCRsIZjDUM19fyhovp/k1U0RuadT5EyY9AaCQEAoFAIBB4ABARVHMTyZaPS5QoQ5TC2dIXcK6c2Im/F5haC73+CGiD7ewsfsIcnC29kerI7plqroNJcf0jbu95F+Jk6msoJkHibLaS4ZT4sRLlmxVUBo9n2LhQotiIWyhkqvHiMuiBdH5KUeiwRCcYQxhlUEg75xA40VjD6LGc+FjLWYoEay3KMBwvKGxJrCKiJVQQruih0zpRVkfPUI4kKkKNjAUY7Y0HHT5mUomgRSiqMQ5zpAkTqXHfiKWue8kISGe9eeY0gcmgsdE0XpmU6QQ70tDSasqIixNkNPlCGQYeDNNSHk6FHahjAKXpPP4+AMRZ+o017nz4L2Mro9RplE0fdVmO/K6b5o8wwGiZ8AZ589EPcvPSu3n5HZ/ALTEK02ld5OaV9wBw8dnf5vLX/gdPfP4/8Lbf///wyJd+ja2X/hetW88jOLY3rnPQvrzgiIvZXX+cNx79EODf5u31J3jh3X+ePBt/bXbWH8eKIj24RXJwa+bxzmSsoaJI6vTSNoKjtvP6UCHzsI02BOetQCAQCAQCDwSqvnq8J0QpYhJc3vMyenNvxxpGUWkT1q5R3nwR1909eYPD+jhLRj7sS5yhWpvYWy9BlA0VHK5/gFq5NNZ0GFtT1qI8S5XEKJXRolSZ7MPRk+7umY1dNUzGWtzkRm+bKKovpVzZL7oYpauiWBDtZfEDV7RB0W/FLVWAzyNSBi2Kns0xyizlVTD7WBqLX9usEra0flRgYDiYu4IVvdhfxD85p7ZyEXElrndj6sBHrCLiyvfBaO09DMQXpda6KnZSKAtLU8cT74dXR/hGQrxkSbJsBGRpxxUEo3TKPjWdklWJGUmVYjEYwdAybmA5lKVXh+vbgkQiSrE4vOqjOEO7RXtk7d2r70S/9lXEJLzyzj9DPU4Wvlq21mb7w3+J1u//Eqq3Tz4yAnEUo9XE6nv1DW7UJxUP83jryjdTv/Mq2f5btEZUCf2kSbe+TrexQbe+wUHr7NSRty99E0WUgQi7a49NHb+wJmF/5SrN2y/SeutZbjyyNvVYZzXWMOCgfYmku019+zVutq6iqzGYh4nQSAgEAoFAIPBQItpAWsPmXVy/570BouPH7Z0XqtYGd5Xy5ovQ2z+ZCWRZ+Os8UpSq+ipu/xb09iFtVJGPehj5OJWRcYMz3zkrc99EGFmnypqUlaP8WbEet9jJD+jYPrUF0Yp7RQdBOCh6JHHkZ/DFy+IHH5CtO6xNjkrzj0usNEY0B2WPhs6IT3E8ozQCqDlFbGkdjRFTT+cgXUIFMVC5rKy2cc5SvvHW1HtCiyLTCdvFPpmO0VqjNZTWenNC42MqS2dJzXSfhVQl3Cn2YMkezbIRkA5fIE983TkKW7KS1IdFXVI1RPq2INPxYdZnxUCWrqvivm8LWnGNnisonPXqgXx5VcUiLG58JEMbXn7/93AxWWXFFtzKd1lZolFm0wZ3PvJ/gC0nfj+MopSczWiGUrzytj/L+qtfJI/rvnlQX8eesz/TbjW6MI/tzetVI+EZblz7wGTD4QzHGgbsty+x+saXqe286hUykZ4fQfsA8nDpKwKBQCAQCARGkLQJZQm28AZ/9xmqvopeu4or88lRhCVwZQFxNlFUiIlRrS1c0fWjHf0DJG3BHEXGWY8bjK2zyL3p68g6pdpJdPbsirBERWzELXplf0yufpT9ogsIq5HfoXfOjwkYrceN9hxQ1a5HpfnHRYsm1hF9W1A36aniP41ovzStYMZlOsCYgdGiv754mXGKvOcbbnF2eE/k00de6iYdGlyKQGw0tvS76ofmhG5mEyYz8bEMMpePgHRTox/7tiBWhoY5LG61aFKdHCZQiIw1K1x5aNxonUMQmqaGQQ0NLM/SbHG4hsH5K1VMphMupCvUdLK8F4iouU0EACMy3UjxBBRJgzce/zZuXXmag5Urx2oiOAdFcTaeKUfZX7lKqWOi/gG1ndcnvn+WYw0DDlqXcEDS2Ub19mcqZB5kQiMhEAgEAoHAQ4tEKSiFKHNo9HefoRrrvpmQ93D9Y5oFutIX5FOQWhvJWrjODrjSmyzOKRiG4wYzisZT4ezk6x+dj8HjatygaersFd2p3++UfUpnuZSuDV3785E5/9F5cVeND4iwdGKDc9ZHck4hUzFGtN/5PgWDNIJFm8lDfwTnfQqiJRIbXNFD0iaitL8n0uZM74xYGT/6US0iMprSOSyDMQQfmzlrLOS4Kg8/PqEmZvonkbFifEDH9mmb+kRDpWFSykEEpBJAhs2KEoeuYhL7NidWhkwnGGUoncWos41/xDH0YwD/3g3Gb2IVcTFdRfCGkWeB0uJjRM8xsWUZennJfu8sh0QOccoMlQatt56Z+P5ZjzWAH6no1tcBaOy+PlUh86Dz8F1RIBAIBAKBQIVEqW8mxJn/5z5FGuuo1cu4fmdmEToV52Z6HogyqNYW4Hzs4hI+DCpret+FM8QbLcrQH2G4Pm2QpDEe0XkGaNFsxC0cjvyI2qFX5vRtzqVkjdWoQSSGVMXD3Wij1Vhhbh2I84X7sokNrrOD278zNZEiURGZjpdTBsxhmCAh0yM7rXMoZKhIyG0x9CRYfAEWSQ+9FFTa8PL4KSQqIlKGooqBNEZVnQ2vCCicxYjGzGgYREpXSQzL7UQrpVAa3JwIyCoVE3VkB7h0FgGa0aQqJ1ERIlI1PvzIyOB1tWU1JiFe0VDTKZHSpMpQuBKl5WyLX5GxAi13JfFIE6hpamzFK3TK3qniTgcoEZTyKpJ7SWkdsdZLNIlOxvbGdcA3DWT0d9w5jDUMOGh5b4rW7mtTFTIPOqGREAgEAoFA4KFFtEHXmn53/j52zBYRVGsTSWuwZHLCIAlB5kiXJWsh9TVUYwNZwixQogyqpIszozJaZErDQ6UNcGfbuABomozVqMHeiAS8bws6ZY+L8SprsW+qiAj1kfg/rY/kKVpwYtFKhiqAeTiv60fSOkxRl0TVbvZpEhvANxKUKFDTZf5leSSxwZXUdLJwnMJ7aURjBpgS10CbqQ2uSBkSFQ+TMiLtYwtxXjLvExJmNzB8moOmWPJ+WyYCcjQxYpRu2SdTMfUp3hneODIit6U33RxJYrDOERlVHbscjkXEOvINmzMcfB9clowUnX1bUDPp2HnWkxarUZOd/GBpNcTAH6Jb9tkrOtzJ97jd36OUElFnnDxxApxzKOPTRs6DTvMCeVxHlzmN2y8Pv34eYw0D9qt0iube65iHr48QGgmBQCAQCAQebuL1K+gpmev3GyIKSZrL79CXVWLDFCO70WPq9UeQxvpyx4x90sWyzYylKCaNFofrGxg8nmXjAt8gWI/bxMrQLfvktmC/6LKVrLKetMcK6kzHOPzOvq7mGAYllcNhq7GGZTwSXG/PN29qbVw+OVpR1ymX07Wl1Q2zMKJQc1wHS1c9Rh16JKQLzCcBKHr+PRmdbY8S32Ca5ZOg02EjQCtvSigiKC2UriStdvunXofSxCo6VgRkHCnKOZ0EVyVGHN0B7tuClagxtSEUKU2qY/ou95GOiqH3hHMOow6bImk1lqLFG17KGe40e2NHYUwF7xyZGm/CKVFcSFep6Zi9cvo4VOksB2WPO/k+d/p73Mn36dg+zjkynbAZr9A2NfouJ9Kac6rfl8I3ZLzK5tzWITJUJQzGG7r9kkaVMHGWYw0DOs0LWFEk+QFRb/dMj30/EBoJgUAgEAgEHmrERD7Z4AHA+wgsuTNY5lMTGyaOqdTSxn6izn7cwJW5H62YtobzaFxUZDpmI2pxUPbYLTpsxm22kvbEDrKX5/tiVikZl7VX/2+WGG1wzkJZoJrrqNoKKD2xiy8ipx5rAFB4RYLDTrUeLEtHHKlqXd4gcDl/hH6l3hkxxRTlvTZmvEepjoYr0FowSlUKDqG0dqIIPkqm46FHxTIcHT85SulAI2ONhL4tiJShYWaPNzVNRmGtb4KIT0/wCEorH/uoomHyhRHtv3eGO/nOOkSBVE2i0vn1TIsKTVTEhWQN5/zIjnOOns3ZyQ+41dtlv+iiEDbiFlezTZ6oX+J67RJPNq7weO0il9I1ajodRmWe10jBMhSlRZuqSXSO69ipGgmNOy+j+l16/eLcxhoAnDZ0GpsApLdfOfPj32sejL+qgUAgEAgEAt8ASJSAaJwtkAWFn7MFkrTOfGRD0jrs3ji7AzqLxNPd20UZSOq4/dteQn/GrMRNtosDUh1xIV2duhsdKzOM/0tVfDgvrquWjnKHowTz6O0jaR3Jmn7kJGn4tIzs9I2Do/iGhMaKAzfZoHHOEevDsQa/87/gfhp4WUzxEpGkBsjUGMhERRjlxxOM0sSRN1nUWuEsRAuaeImKjhU/uCgC0lkwyfgaO2WPtmkM1QTTiFVUFfB+d7ywVStBvLqhaws24/bwPjCifWKD8mt3LJVMORfnfCNhEDWZ24JYDLFMv4daUY3NcoXXezc5KIVYGZqmRtNkpDoiUfHcBph/b5xvzpxy7aehLCGNNbHROHcMj5hj0q+t0K2tkR7conHrOfJknbS3cy5jDQN2m5eo775BevtV2Lh4Lue4V4RGQiAQCAQCgcD9QpR688Qih3jBxzRbzExsOA0SZ6A1rixOreSYZbQ4ikoblLtvneo8s4iU5pHaJlr0zIJKRGiYlDf729S0Qikoq8LWe9nZhbv5zllc0UOvXh42gFRjlfLGdhUtefYD0rGYYaE7gQz8HrxZnxG1OCEh74GJpzcS4gyiKgbyyPdjZYhE03cFBk1sFKXVgI+cXHRe/9rK0q+TVr7Yn1W4W+e86ePIfzvnWInqc4/rlSma3BVoJeSFbyhpBFWZWtZGxkPM4J4SO1SxnPZ9LgGDDBUJuSto6Bpmjr/JRtIiUnqYBrKM8mTAwLtChGM1c86a0jriSGOUj948i6bMLLY3r5O+cIv2jWdQzX3gfMYaBuw0LnIRiG69Au6bz+Uc94ow2hAIBAKBQCBwnyBKQ1xbbrTAVQqGs8ac4bhBkYOOpxotDvARnV6FcR7EKlo4lpDpxCdgCBitGZjhO3wEwMLirN9B4hqStYZfkqRRxVsub57pevtLm+cZMfigxfHH22qUYbCrXdiSTCULTQFd0UOSxlTzTtFRNfIyeS1KFI0Rw8osiWjXY6+EEDO3CAbfEDFKUSyZQGAUcyMgHQ4zcq1d2ydVMfU5zSzwDZGBcaTWPg7RWYcYsOKIlBlTNPhxF+1fbzkjs0ILakRxUVi7cN1aFGtxk1ZUO1YTASqzS6URcVU34R4hjtgotBH0OUdR7q4/gUOo799g/ebXq689dm7n28vWscqg8i7x/p1zO8+9IDQSAoFAIBAIBO4jVFpfGME43Olf4I9wEkQpJJ09E38sytwrLOatc6DCyM82BvI4JCpCK01uy7F58YHUfN5YgHMOl3eQxsbY+yFRgtRauCnpDVOP09nBlX3Il3u8UZppPn/WOrSWYWJD6Sy1BcWof2Lh4z9n4KNBp3sZpDoZFn9aC3GkfSMBNZbY4JybMNaMlMaglzZcXBwBKciIW2GvzGlHDfQS0ZdNnZLbEq0Eh6PAYRAKV/jYzhF1hYiQqAgrbsyc8TRY6yrFBcOG0mkTPuZhqtfeVqqKe5HcUFqHRmGMv2eVAVuen/NjEdc4aPtYxijvYEWd21gDgBNFZ8WfL7vz5rmd514QGgmBQCAQCAQC9xNR6pMD5u3QlgU+3+98igxJamcidZ5rtDg4l9JIOn23e3icoofdu+n/2b+N6+7i+h1c0Z//Oi2Jj/8z5K4YN/OrNmrn+iPkHYhSVL098S2VtQG7cI2uzL0ioraC6x8stWYvq1cIMvZWFdbvyGtVye1ZPF7gyhy0mTrWMOBw5GVyhj1RkfcLGLnOwlkSHY+/dv0D3O6NMdWFEkWsl09umBcBOXArqMQYlM6iRdGMpnt0TFyHjhEOCyRXgjaK3JU0dDZxHyfK4KoRDnsGLgMWb3wIfiQlUuZMzDlnoUURaa9sGXqD3GVK66NKjfYpI1opzrGPADBMbwDYbl6mPKexBvAKmd7qFQBq26GREAgEAoFAIBA4J3xUYuWTMIuyQEw0N/rxVGuIUtDR6dMb5hgtjp0vqcOMYtv1DnC9fdTKRfTGI6jWVjWn73B5F3dwB7t3EzcjnnAZlAh1k9K3ReX278a+p+d8ZHb9A1RjfaoPhKQN72OxQJXgOjtIcw3d2lr6dfcGkH6po8kNtnREkQaBvismJPlTmRb7eJQoRaLa1BjIWEVE4hUdAwbRj2PXWfT8OY4objIVU87J/XPO0S0PX5NZEZDOORRqONbRs3mVtLBcoZjoCKMMhVhwVRyj9s2kbMpr6EcJvBnnWdXgWo4aLZ6vpV2qYpzCNxLugSKhKCExetik8R4b57uOvbVHsZVCZXvlsXO+bqFfNRLS7RszVT0PIsFsMRAIBAKBQOA+QkzsvQ/yLszwQHC2QOLGmSc2DIlSX1gW/bn+BvPw4xdqrtHigGkGj845XHcHEPT6I0hjfWxH2NnSKzPKHHtwB7v9xqk8I2o6wblqvr46j8X5RsKM19nlXTCJj3ucdl3KIPVV7O1XfbNk2jH6HTAxurnlX/es7VMsFrzuuoqkdGKxjuGYgwWiymywV+a0TG1xYkPRQ9XX5t5PPgayib3z2oQRXqQ0qY7ZL3sk+OaBc1NGQpxDoti/byNqmlhHU2Ms/VMc2/k+iI9FTHQ0MwLSWodSDP0g+keSFhYRiyERQ4+uN/1zDicliUxvRpiqGNVKKM6iPnQM38jcFaxEjXMx6hwlUf61N1rTz+9+kWudJYkOX9tYq6V9Qk58Th3xwtUPsZbfZnv9UbR1DGUsZ4jzFiuUrXVsnKH6HfSd1+GRMz/VPSEoEgKBQCAQCATuMyRt+Hn5Wdj8XOISh+cXQbKm3/E/6ehAkfticZlGxBGDR+cs7uAWoiP0xqOo5sZEQSVKex+CtIFqbkKULD0WMI2kMmW0yiL43VnrLFr0sGA8iuvt+wJ8zkiASpveTLKc9L1wzuL6+6jmJhJ76byqrwKTXgJH0aLRCIg9Mobi4/zAS/ubZn6yh3POj3Aki+8nrxxh6j1RVylFtWZXGT6akUaCs6Xf9tZmYjwiFjPVsHDQRKjplLZp0LP+ebMiIG3laaGUL0aPJi0svD4R6iajGBgeCBRY6jqdahppxCs/5KzGAkSGigTnWKwkOQP8ve3GvEHuFv5sMrxfYfDenr/x482169x++3cgWg9TWs6a0lnfiFSKfM2rEqK3XjqXc90LQiMhEAgEAoFA4D5D4my+R4GThTvWp0XVV/3M/v7tkyUqLGO0WOENHpve88AWuP1bSNpCbz6Gqk16D0w8P0pQjQ1c/+DEu5mJioiVoXTebK+0vpA1SqbuaLuiB9qg6isLDlxDkvr0JkdvH0nqqOb64bWkTZ/4sKApokVhtMZW0YQw2AH1iQ25LTFKky4qpCvVyTKNqWEM5JTRi4G/gHOOwlm0UuOy/KLv74WoBna8keDjC82YT4JvIhxQ0ylXsw1aUY2yamCMRkCOYi1opRA59BiYNpIwj0zHCH5EwncJHHUzfeTDVLGLqFl6iuUZPF+UDL0dztNocUCkNFo0St39BMjSOrQIkTlsHGgtd8f4UQQjMpbSctY461Da+3r0Lj3pv7YgxeRBIjQSAoFAIBAIBO4zvE9CNNXYzo8McG7+CMM1RCl64xGksYE7uHNsvwRX9hcaLY6dL6mDK3AHd5DGJnrj0WOpLlRj1XsnnFCVMIgxLMUiyqcCWPGKhGmjDa63h9RXZo4sDBBRXmVw5L10tsCVfVT74njag1Ko5jou789timhRGNG4EZu/0lq08rvafZuTSjThUzBxHUXXv09LNKaGMZB5d+J7iar8BVxJ6Uoi9NguvitzJM5QSe1oYiWRGCI5TG44bCIkXMk2SHVMpmIipcltMTMC0lpHVO1u92xOTcfHNitMVESkNSUlYIm1nqkMMKIq/wx36iLcOodG0Mr7I0SiSY4Z53gSjBivxJHJKNHzprQWrUHrw/tEV6kcdpqb5hkxGDkQLeeqxChd5WWihP6FJ3jhg99H7/oHz+Vc94LQSAgEAoFAIBC434gSX9hNK96rxAa5C7JnMTF6/SqqfQnX2106yhDwcvkljBaH54pSJGmgVi6h168eW3EhplIl5J0TqxIyneDwu+mFc8PZcXWkGeLKHESj6+szjnRkbWkTTDxmCOm6u0htFckmFReSNiFOFkZBxlUDYnC1RaWgMFrRtwWtaIlGTjk/9vEoPgZyUqESKUMsmr4tKFxJpM14A6bMkaTh31dRY+MRIkKqYgpbjjQRYq5kG0NFgTdNTOjZfGYEpINh6kFhS5rm+OM/sYpIdEQpJYUqSE1EMsOscTD24ovw0+GsH8sQhNwVZDpZKrLytBjxEZ0iPqLkbrYSysKRRGZskkFrwVQ/f+eFdQPvE58WcV5nspaxsY0ird+VsY27RWgkBAKBQCAQCNxniCgvh5/WSLCVIeE5RT9OrEVp1Ool1Oo1XNnDdXcXPserJmQpo8XheeIMvfEYauUyckL5r6qvehVDf/9Ez0905BUI2hc5Tpi6K+x6+0jWggVqhAESJUjWGo43uKLn5+FbW4ia/DguJkbV1xZ6PsTK4ORwN9yWYIzG4mezF/kDDHwLJJrvozC2tjib6nOgRKiZlNyVFM5ONSeUKPGeGdpMKDQyE1O4cqSJsDk2liAitKMaeZWsMS0C0jm/oz2YTV82reHodTSijJIC50papj7RSBolVvFMo8jj4Cp/B62FwtqZ4xRnjYiQqBgrFoWcu9HhKNY5EjN5/89K5TgrBq+1VGqB81JiWGfHxjYeNkIjIRAIBAKBQOA+ZFYkoisLr1iYUoCe21pEodtb6PVHcQh2//b8gmMwD39cVUFlOHjidZoY1do8sUlkomJiMThlsdbhsBNz6s5ZsCWqsXastXqvB+sNFrt7qMYmkjbmP35BFGSkNIgb1kHWOeJI+dhDiRab9eU93+yZYxY5edIq0WNKDGRWJV84N/66uTIHbYYjO2Iir6wZPawYBJnaRDg8fowWTens9GJTHFr5sY6lrn8GDZMiImitFhb0iTK+kXDKerG03nOByufiuCMZpyFVEU584sWZmEYugQPvUzClkRBpdSbNmVmUzqGEqiElnPrNm4lUfh4PJ6GREAgEAoFAIHAfIiYBpSbd+8viXBMb5qHqq5jNx5Akw+3fmurhAHgZ+2A84y4jtVXfhOkdX5WgRZHphJLSK5DFEekjioR+B0lqc5sAU9eVNJAow+3dgihBNTfmPyGu+SjIOdehUWglDGs/513ve7agEWUzYysHuKLnzR2PoQDxMZDtqakiiRqMM4hvcgwoKuNNk/hEkKg2ce+kKmY1qs9sIgwek6qIbtmfiIAcGE2KEn/9ZvH1z8IbbyqyaHEzIlK6Gkk4nVlhUVrqiSbHm2TeDX+EAZE2KBHfSLhLioSytGgZT2wYoKd87Sxx1id7iIDScur3bs6ZUHex4Xu3eXivLBAIBAKBQOBBJkr9rv7EjrS7JwX6AEkb6I3HvAljdxfb2ZnY/XdlvtCE8NzWpw2qtYUreidSJdRNikgVgYkMzfsGuLzrmxXHLPREG6S+CoBuX/Ay/3mPXyIKUotGMYg69OPXSrxqoqEXxT5acPbYDRGYHQOZqIhINEYUZiSxwZV9JK4PVTQSZ34OY/S5OuKR2oW5KQtKFE1To2+LiQjIw7l3r4g4zWhAoiKyKKEepcQL3mejtN/dRkZsL49HYb0vR5J4M8lEDJHcxUaCGJQSlFLYc0owOErhHJGe3kgw2v/snVdTwzow1b2oRVAiZx4BOYi2VEGREAgEAoFAIBC4m4g2SDy+c+vHCeTYIwNnjU90uIbefBwxkVcnjDr5O/+Ye7a+WhtJW7ju3rGf69MHBBGHiGBGdrVd0feRj7XWidalshbS3Bg2FBaxKApSy0CRYIeJDVZKYrWErH+orFjeaHG4rkEM5JHxBi16aBIYjRoF2hJJRlQ0p0gcqZnUKw+q+mwoxrAO0WDFEanoRP4IA5QoLrVbXGwsjh414uMTnVjcCccC8tyRxJpIa3JXVM2su1eAmip+U2l3bgkGRykLRxzrYTOoZ3Nu9/3Pq1Y+wvS8xiycc5jKu0ApQaYYd54Wa30Kx5TJjYeGh/jSAoFAIBAIBB5sVNoYN6WzhZ81v0tGi/MYxBrqreuolcu4oo89qMYdRO6takIZVGsTynzmbv4sEhUR64hCvKnf2M56/8AX3scwJxxbV1L3oyFLqhkWRUEeNhKquW8FhZTU9eKddJd3kPqaN+487nXoCEmbU2Mg6yatmjG+kTAw3mREgSEmBq1xU9IfFpGpmEQZLDlaDqP7ShwayF1BquKF17+IS+kaa/HiJosWTaQ0VtkTGxWW1lJLDIiX2J/U2+GkRKIxKFCnj7FcFucgNofNpm7ZR4sitwVaKYzIuSU3OBxGDhsJBuF4vyWWOId1iCGMNgQCgUAgEAgE7gHVrv6wQCnvbmLDMoiJ0auXMVtPIGkb19n2O873WjWRtXxSQu94qgSjNI0opaAgUno4Zz80Wayv3tXd4nlRkFoURhmsWGzpC7PSlTTMgrGGvAc6RmUnU1aAV1dMMwNtmIyNZGQnv8wrg8WRUQ4dgzIThovLYJSmaTJyyrEISGdBa03uSprmdKad4F/beWkNw/VUjQSc5SR72kVpMVqRxj5tQouaMPg8b5QoYm1wYjmvBINRvNGiG0Z1+tEcR6Ziejb3oiujj06/nOkCZGSkQmuFO+NzFTgMstQ99KDywDcSnnnmGf76X//rvO997+MjH/kIP/mTP0m/P9vddoBzjn/xL/4FH//4x3n66af5q3/1r/L5z39+4nFvvPEGP/IjP8I3f/M386EPfYgf+7EfY29v8g/Sf//v/53v//7v5z3veQ/f8z3fwy/+4i+exeUFAoFAIBD4BmYYl1epElyZV4kN558vf1wkbaA3H0dvPo6qrd5TRQJUsZWtTSjLY6sSmlGGU3askUC/41MlTjAKcBrmRUEOil3nLNY5RDsiZcgWxT7295F6248onHRdcTY1VSJREc3RRkaRD9Mahs8dJDjMMutcQN1kID6qsayq99J6RYYIc30WzholQqQNVp3MsK+fW9JYY4ymbwtiMXctscHu3/ZNJSBViU8AETn3VkJZWoxSQ3+Evi2IlKGmE/LqZzWO1PklSIgw+hs00urM/RhcyYSPx8PGA91I2N7e5gd/8AfJ85yf/umf5kd/9Ef5d//u3/FP/sk/Wfjcn/u5n+Onfuqn+KEf+iF+9md/ls3NTf7G3/gbvPTSS8PH5HnO3/pbf4vnn3+ef/pP/yk//uM/zmc+8xn+/t//+2PH+v3f/33+7t/9u7zvfe/j537u5/jkJz/Jj/3Yj/Grv/qrZ37NgUAgEAgEvoHQsS+4BsWaLZATyurvBqIUqrGOXrtyr5cCgKQtpNbGde4c63mJikhMTKTVoSIh7yD11RONApyWWVGQShSRUli8rL6UklSiuTvag3ECVVvOp2EmJkGS2tTxhrHzlX0kqU8oBLz/x/EVCeAbBbEan+l3DpwqfezjKfwRTkKiIkTcNIHGXBzeJDJL/fuV24JUJydOmzjWuW0JtsRVSpdYGW/wiZx4RGNZCusw+rCR0LM5dZ3Riuoo8Z4f55Xc4KqkTtGH96PWcuZxk9a5CaPWh427/5vwDPm3//bfsr+/zz//5/+clZUVAMqy5B/+w3/Ipz71KS5cuDD1eb1ej5/92Z/lb/yNv8EP/dAPAfCBD3yA7/3e7+Xnf/7n+fEf/3EAfu3Xfo2vfe1r/PIv/zJPPPEEAK1Wi7/5N/8mX/jCF3j66acB+Jmf+Rmefvpp/tE/+kcAfPjDH+all17ip37qp/je7/3e83sBAoFAIBAIPNSICJI2sNuvVxtbbqHbf+AQUQq9eomi6GI7O0tL+RMVUTcxiYkQER91qM2pRgFORVxDshXc/k3ErI1/S8VeUi/gxNIytblyatc7ODRxPAUigqq1KQ+2FzzSTVU+SJzCiYYBIFYRdZ2yrbZxblCsOQosdd0a+jPcLRIVgRw/OrEoSoxRJJUjX+ksdXOXfr7LHOJ0aJgZKY1WIOKw1qH0+W2ll6WjkRwaLZbO0jQpqY5IJKJnc7QySOUZcZbTAYfpHodfU9pHlp4lDoc+x9fwfuCBbpN8+tOf5tu+7duGTQSAT37yk1hr+a3f+q2Zz/uDP/gD9vb2+OQnPzn8WhzHfOITn+DTn/702PHf/va3D5sIAB/5yEdYWVnhN3/zNwHo9/t87nOfm2gYfN/3fR/PPPMML7/88mkvMxAIBAKBwDcwEmdQzRDj5L7yR3gQkLiGXr0CWFx/0mdgGpEybDRqbDR9hKXrHSBJE+LagmeeDyKCaq552fmRcYBYGSwWAbRS1ObEHjrnoOyjGmvDKMZTrSuugZptmuhsCaKnN790BO7ku98Nk1Uz/YPFCIijfkZpIbOiTadhRKPV8Xe1+4Ujiw3G+AhPQe7aWANljugYKgWCEYNRBpQ78yjEozjnMJG//3LrvUgGaR+NKKNnc4wStBLKM05TcM4hypvFDhjU+2d71VI1KA7x8aAPT3PhgW4kPPvss2NFPnjFwObmJs8+++zc5wETz71+/Tqvvvoq3W535vFFhMcff3x4jBdffJE8z6cea/RcgUAgEAgEAidBogS0hqIHWt8XiQ0PGqq2gmpfwvUPJgrxWbSjOvUoqUwWc19830PjNEkaSNbG9fbHvh4rDThKVVCLYtJ590fegbP0eYgyf38eiYEcUvS98eaURoJPbjA+ieQEZDoh0RElJaVzWFcSa3MmYw3OOVzRP4w2LWZcX4WPgDxeU8RV58kSLxDvO19Q3y2jRVf2fYSnNlDmRJVppKipHppnd17n66nRsYZUJcPrrusU53yaglaceVOjdA4l/vgDlDrbkY5q2GZM9VA6b2S5yAj1QeKBHm3Y2dmh1ZqUmLXbbba3Z8usdnZ2iOOYJBn/pdZqtXDOsb29TZqm7Ozs0GxO/qIdPf7g/4+uY/Df89axDOY+Dx8dzC+d1xxT4OEk3DeBkxDum8BJeBjuG6cyiFNcv4NEKSZNz2Q3+RsNvXaB0uXY7TeRxurYjuQ0tuIV6lnCbuc2Jq1jGq0xp/d7gV7ZpOhtI2KHhptJbDBaIcaxmtSJzeyP92XZxaxexqRns2sPCmmuYm+/htKToxKWApU2MPFkce9UCnEMFNXO+PGoq5hWknJb38HaCKtLGnGdWhSf2inf5X1IEvTWo9j9O9idN6HsIVlz6n0To0mMoS92GPfn/392Rd4vLEmkqaWGvsvp2h4bSYvUmLvSsBIlmMYKZdnH2QITJSTGoE2PshwvtM+SfumIjSKJvYqjpGQ1qQ9rnoYkpH2DVSVJbDjoF2e+lsjoYWLE4L+1AYecybnKygMiivw1AhzkfVpRSjupTa3vHsS/VQ90I+FhRylhdbV+r5exFK3Ww9NdC9w9wn0TOAnhvgmchAf9vunl6/RvvES02iZdv0dz+g8BrvUk3dcVdv8Ourm+VMGW6pL4whXijZXzX+ACXDula3dwvX103RfufVMSJ4ZGLebiygqtZPq9bos+TjdILl9Gp2f3+bKMt+jmt9HNZKLIztkn2doimvF5tttbwR7sousn+/m8YlZ5dW8HgyYyisura6w0Tj9+Uu73Udk66aULOLdFuX+B/Nar2IMdVNZEHRmfqNmYRiej0+uQVAqDwf/Pojjo02rG2KQgFs2j2VU20vZdiQt0tqSUGunGKkVcUmzfwDQzNlSTvaJH1ymy7JwMK3sFcRbRbqYUtqQZpVxotUdGUjK21R67eYdWKyXf7p7pWixCoxZRrx9uKFsH9QOvVEri0/tr9AuLNppmI8VowTpHt9/jqlpnpV0nmVPfPUh/qx7oRkKr1WJ3d3fi69vb27Tb7SnPOHxev9+n1+uNqRJ2dnYQkeFzW63W1KjH7e1tLl26BDB87NF17OzsjH3/JFjr2NmZjPq5n9Ba0Wpl7Ox0KMtz1EEFHirCfRM4CeG+CZyEh+W+Kfua4iBH14TO7f3FTwjMxEXrFP1t3JtvzjVP1FpRSxSdXkkvj1D3yetuqVPceQMpIkQUvX4fWzgkh6Lj2OlN94Gw+3dQ9RW6Bw7pnN21uNJR9Bz074yZKjrncPtdeo0SxfTzFT2F3d5DlScrFKVQuNxxp99BxSXSgx27nA/GPMq9PUy0NvKzFuFqlylzg7v5pp90z1rDxolzjqJX0unldKOcNI3o9QrsjPl+62C/08OaHpu9BpvpCmmesLcgAeOscHkXrKW3X+B6QrHbQbkORc/R6eX0epronDbG9zsFphGzv99jv+iiRZObkh05fN9UX7Nz0CUpE7qdgugMeysHnYJYC/v74+MqeV7QL0psefryuJ+XIEK320OQ6joVSsHOTgcTT/483E9/q1qtbCllxAPdSHjiiScmPAh2d3e5cePGhGfB0ecBPPfcc7zjHe8Yfv3ZZ5/l8uXLpJXc64knnuCrX/3q2HOdczz33HN85CMfAeCRRx4hiiKeffZZvuM7vmPsWKPnOilF8WB86ClL+8CsNXD/EO6bwEkI903gJDzo942TGGtSRMUP9HXcF6gE17pM+dZz2M7B1EQBj8X2OhDXKXWKvU9edxc3sHENDvZ8+oJTGBR1naCdpiwn57ydLX3UYtqG0nG2tnKaMqrj9m+j9OFOvStzHAYhmvnaWYkoS4ubsuZliIhITcTrB3tspjUi4qnXfxycLXHWYVWCG1u3htYlXFTH3nkdt3sbVT9M0IjFULpyGEdprcXa6WvZ7XfpkfNYusmlZN0/95TrPg6u3/f+Fk7798A6bFGi3GFjpLTuXGwBS+fQWlFaR7fIuZA0cFYoR+7JmBhxQonFcbZrsc6iYPg+DVAilIXDmtO/D0XpiCOFteCcpVP0uZJuIKXzTYI5v0sepL9VD84QxhQ++tGP8tu//dvD3X+AX/3VX0UpNSz0p/H+97+fRqPBr/zKrwy/luc5v/7rv85HP/rRseN/+ctf5vnnnx9+7bOf/Sx37tzhYx/7GODTHr71W7+VX/u1Xxs7xy//8i9z/fp1rl69etrLDAQCgUAg8I2Oib1DfjBaPBNUrY1qX/bmi/3O1NQB5xy2LFD1xX4KdxNRBtXcxBU9nLNESrNWz9iozTFQ7HeQpH52JotHUGkTbDn+xcqscJrR4gDREYjy6Q4nQItiJW5QUtKIMqKziH0s+n7NM9IfVNZCr16uEjQO75tERyBurmGfc469skO3KHi0scm1+iaxuvv7uq7MkcSPgIhJ/O+VMidSGqPUYUrMGWOdbwgM5P4gU1NGUhWTqoiSAi1nnNzgmOp1YrScWXvNeyT41kfP5sQqohXdm8SX8+T++a14An7gB36Aer3OD//wD/OZz3yGX/zFX+Qnf/In+YEf+AEuXLgwfNwP/uAP8olPfGL430mS8KlPfYpf+IVf4F//63/NZz/7Wf7+3//73Llzh7/5N//m8HHf8z3fw1NPPcWP/MiP8Bu/8Rv88i//Mv/gH/wDPv7xj/P0008PH/d3/s7f4fOf/zw//uM/zuc+9zl+6qd+il/6pV/iR37kR+7OCxEIBAKBQOChRkyMam0OP/wHTo9qbaDaF3CuxPX2sHs3/T/7t3HdPVx3FxWlSHY+xfdpkKzlG0v9DloUG7UGjWi6ssInEHRR9fWhQeOZryfxTS5X9A/PW+a+eTGvCWPiqog9WXIDQDPKqOmY1kxlyfFwRc8nZOg5BX5SQ5IGrn84gpwaA+KYIUIA4MB2idBcMGtcba6h7lmDyh0qcXTkmwlFjhFDrDVOzVZTnIaytGgjRFrRszmJMmRTUjaUCE1To6REac52LSJM+ynQSnFWvRMHw1SKTtlnJWrcvVjPu8gDPdrQbrf51//6X/OP//E/5od/+Iep1+v8lb/yV/jRH/3RscdZaynL8U7n3/7bfxvnHL/wC7/ArVu3eOc738nP//zPc+3ateFjoijiX/7Lf8lP/MRP8Pf+3t/DGMMnPvEJ/sE/+Adjx/rgBz/IT//0T/PP/tk/4z/8h//A5cuX+Ymf+Ak++clPnt/FBwKBQCAQ+IZC1Vbu9RIeKkQUeu0qqn0ByhxX5FD2cXkP1ztAKNDNNR9TeJ9JjUVHSGMde+slJK5xMV2b/eCiByZB5vhBnBqTIHEN1z/wrxeAK32zYx468qqFMgdmKxfm0YhSmiYbMes7JbZEpZMJFKOIKFRjjfLG8zjnEBFibZA5EYLWWcqiw2qR0qxnZMn5NHUW4WwJoobvk4ggSR3b28NInUgZnHQpnTvzQrG0EEcapYRenrMRNTEzmls14807jRL6uT2TqtU5EED05KCEVgJyVp0Eh1JC3xYYpWlHD4Z5/nF5oBsJANevX+df/at/Nfcx/+bf/JuJr4kIn/rUp/jUpz4197kXLlzgp3/6pxeu47u+67v4ru/6roWPCwQCgUAgEAjcP4iOfEF7ZGNUiyVea3CwfXcM8I6Lqq9gd29A3oEZBbtzFtfbR7W2kDkjBqdFRFC1NmVne3hekLljDYPnSZxh9zonnoFPjeZytkldn/76XFmA1nN8Mw6RtOmvL+9CnBEpgxY1sXk5oOt61Jyg1ApN1UHJyqnXeyLK3KtAzOENL3EKzisBMh0jCtw59M6K0tGua6+ScY66mf06pyohVoaeySn7FqbqCI6HdQ4lwqCPsJMfUNMJRmlECeDHG07txyCCEaFT9lgxDWpncG/ejzzQow2BQCAQCAQCgcB5INqc2yjAWSAmQTXWx+T1A5xzuN4+bu82ktZRjTmKhbNaT5yBUt5voshBx14yv8zzTuiRAGCMphZHROYMypqi59c8ZW7/KGJiVG0Vl/u0ASOaSGsKJq/FOUeRH9A0K1DfIs0yXO8epYCUOWIS30CrEJN4zwdbkqoYUW7CjPDUp62K+CTW5K4gVoZMz07riJSmoVOsnPzeOIpzDlFeUZLbEuss+6VvFBoFGjn1GMXAB8Iq34lZieerWx5kQiMhEAgEAoFAIBB4AFG1FTCJj/OjaiD0D3D7N0EEtfEIeus6ktwFaXVcQ6IU8h6Ufa+AWMYcdE4xuQxS9NlM+hh1+sLXFT0kbSFquRJJaq2qAC8wojFaUU4Zbei5HqkFiS+QtNfJNq7gii6uzE+95uPiinzyfogSqEZMIm3Q+uz8AgbkuSWOFJHRdMucuk4X+gbUo6waNzgbI0SvSKAaO8ip6RRbqSOUUogGd9pGgnVoJfRs34/c6DMaubkPCY2EQCAQCAQCgUDgAUTiDFVf9eqDfge3fxPnLGrtGvrCk+jW5tjO87muRSkkaw8LZG+0uFgkLiYGrccSEBYxaJjYvZu++I8z3MH2aZbvvQ2cQ9Llmy6S1L3pYu8AJYpURRRHEgacc/SLfZrRCj3dYq2VoFvrSHMD19muxkDuJs43fEaQgeFimROJRms583UVpSVLDCJQuJLGnLGGAZmKyYzBYc9EIWEtvmEg0LcFmU5IVETP5sORh3KZloUtwE1XSljncOL/WY2aqCV+Bh5UQiMhEAgEAoFAIBB4QFH1VTAxzhaolcuYC0+h2xcOTQ/vIpLUvWW9c0v5DAB+J1wPDBfn45zFdXdxe7d8w2T1MubiU+j1RyBKTjcuUPZ9zOqM9ItpDEwXKXKcc6RRPBFV2Hd94hJ0fJE0y2jXY2/02b6EpC1cZ2fG0c8eZ0tQauq9IWkDV+ZEYohFY8WdWRyirQwpk1iT25JIGbIlfAMSFVGPUkqVY88gAtI6MEr5EQeEVpTRMjW6NgcBrfVibwhXYnt72O4OMPlg66CQgoZJaSwxIvMg88CbLQYCgUAgEAgEAt+wxDX0+jU/935GEYgnRZKal8nbYulGhijjd8P7nZmPcc7iOrv+uGkdvXIRydpj59Dti5RvvQBRgqjjlzgu7/mUiWM2YCRtQuxNF1NlsEeKy26xz1bUpqfaXG4lRMb7boiJUSsXKW88h+t37s57N8VocXgdUQrOYZQm0gZHMUykOC39wpIYRRJp9ssOmYpJl4hDFBFaUR3UHc6gj4BzDmN8mkKsNKmKcQbe6u9gncNoodOb3z5x/Q67RtASYTs3UHGLWAyRGESEsrC4pGA1bqLl/vVYOQtCIyEQCAQCgUAgEHhAERHkPokGFR35wrq3vzCxYex5cQ3b2Znplu8O7iBJA9XaRLLm1EaB1NeQSq0gjfXjL77M/bGPWTh708UV7M6bxEfGSPo2JylLTLqFpCnt+vhrorIWrn0Re+slMNGJGiDHosyRKJ2uSDAxKI1yjtQYnLJY61BTohKPS1E4Gs3IjzXYkmZcW/p1rumEWGvyvCQ9ZXKDw6FF6NmclqkRKYMSIVURXdvHLPKGsAV9lxNlW2xll7B3XuDAduhoS9ceUJSOfmnZMDWaZkH06UNAGG0IBAKBQCAQCAQCZ4LKWpBOL/ZnIVHCrArOdraRKEWvX0XVV2ceV5RCty+eaMTBOQsiXlFxAqTWBmS4Q+uqa+nmezSiNj29xmozJksm166am0hjHXewPXzeeTHwrpiKqQwXiz6ZSXCUU40jj33OKk8xjTSls4jIseIQUx1Ti2L6bnkPjdmLAaUVpbNDjwYtmnZUp1fmKCX+QTOQokM3imnWLpJl6zRXnuCyanHNrLLOGk3bYKtZ51prlfi8m0L3AaGREAgEAoFAIBAIBM4Eqa2gV68c70km9ukHRwbUfUNAUGtX/djBonPHGXrlEi7vHsu8kbxX+SOcbKZdkjqSNojLHK0UhSvJbYGxBUm6hYoSVpvTjy1KoVcuIXEN19090fmXxjHzGkUbJEpxZU6mY5RW9Pol3X5Jvygp7Mk8E/plSWS8P0LP5qQqIj1GUocWRTuqUVCc3rNBBJxFiyIdUY80TIYS8dkQs5QSZZ8+Dp2u0YhbANi0TVHbIN/epSYJ79i6yPu3HuNiunralT4QhEZCIBAIBAKBQCAQOBNEZOn4xOFzdAzKwEjx7/Iuruij1654lcOyx6qtIo01XGf5FAdX9JCkceKEi4HpYmQLDEJRWjrFPg3ToC9rtOsxtSlqhOHzoxS1eglscbwGyDFwtvSqizkeEBLXwRZEYmhkEWutlDjSOHx84363YKfT48bBHvtV5OgiisJRj/3r2i37tE0DLce7P1bTjMgo9jr9EzcTnAMBcimIlSFVh69DpmMyldCXHMGbQx55NpJ3OYgiGtkGcfXcvLS8ZVvErXUu13JatbhKhXh4kxpGCY2EQCAQCAQCgUAgcO8wEWKiYSPBlTmut49auYTU1451qBONONgSlTWPu+rx86YN4qSGcSU920cXfWrZRZxJWWulC4tLyVpIbQXX2zvVOmYyx2hxuIY4BbzhYi2OaNYjtlYzLq/X2VyNqTUtaQPWazV2+z0KOz0CcYBzflAgjTV7ZZeGTlmNj/86t+I6j6ys0Nc99juL0z2mYZ1DIZSuoGky1EgzQ4liJapTuBKtBHs0arLo0dcalazSjHxTa7+bs3tQcGGjyeXrT5LU63Be7919SmgkBAKBQCAQCAQCgXuGiIIoxdkcZ0tcZxvV2kK1tk60u3ucEQdnC1D6xGMNw3OaBN1YI7WWg/4+dVMjV2s0s5hGtkxCQRUlaa1XD5w1ZY6YeL4iwSSgNMY6tCjKakRjpzigJzmbtRbftHaVp7eusZW1eas7v3DOq7EGZaC0ls1khUhNN0x0/QPs7g3cFKWDUZrHmltcaa/QVV0OusdXbTjnQDmcQE1Pvtd1kxJrTSnlEUWCQ4o+B1FCPV0lUQk7+32cEx672OTKRp24VkevXsHZApf3jr22B5XQSAgEAoFAIBAIBAL3FJXUoSxw+7eR+ppXIxxzRGKUpUcc8p43e4xOH79oGivEKiYuCurZRXKVst5OKxO/JdactpCsdS6qhLlGiwNMjOgYY0si0ezkHTplnxXT4PHaRR7JtmiaGrE2PLGySSyGvXx2bGdeOLLYcGC7rEaNmUkGzpY+ArO1iSv62P1bvsEzQqwinmhucanZ5IAO3f7xmi3WOayUJHq6R0OqYppRRknJmCAh71CYBJIGTdPCOkdpHdc262NKE8naqPZFXG/3fBpB9yGhkRAIBAKBQCAQCATuLToC55CshV67gujTud4PRhwkzrAHt2YWd67o+QL+FE2LASppEKcNarqOi7ZopBHN2vK+C6IUqrnuGypHjCdPjRuMLsw7v4Y4A1tQNxkXkhUer13karZBw2Rj6pDVWsYjzXV2ez0KN/nauuofMRajDBtJCzVDXeK6u9X7fhVz4bof8TjYxnX3xpIsUh1zfeUCG806+0WXXrF8wW4dlGLJdEIsU+JDRWiZOijL8KV3JWJLDuKEWtQi0xmdbkk9jWjW4onnq9YWUl/DdXeWXteDTGgkBAKBQCAQCAQCgXuKRAlSX/FNBLN8PODcY8YZev0RJG3hDm5PeCY458DZE8c+TpxPKZqtq6w1HqNHwnorxehjGk9mLSRtwjEjLOcxjLdc4nUdKEMupWtcyTaom0l/B1f0oMx5pL3GatLkTn9yrUVRohUUkrMZtchmRD66MgfnfBGuDJLU0RuPoTcfA6Vw+zdxRX/4+JpOeWrlAqvNhL1+l3zJZoK1gFiaRxoio9R1Smoietb7MEjeoYwzyjilFbcREXp5yVozmaoyEaWr8ZTy3KM87wdCIyEQCAQCgUAgEAjcUySuoTcfWyy/P+5x0wZ683H0xqM4HHbvpi9eoTIgjJH49GMNA+LWFr3kImmsadWXjzkcrldpVHMdV/TPTpVQLDZaHFI1G2YVwi7v4nr7uO4OiVE8sbIBhaZT9sce1y8czhS04/pcg0XX2UGaa8hIMocohWqsoy9cR7Uuev+EgzvDNTVNjesrWzQahp28R1Eufp2stRityeZETyY6ohVl9GwfbAEIB3FKpuvUdI1eXhJHmsYclYlEKejY31sPOaGREAgEAoFAIBAIBO45ok43zjD7uBrV3MRsXUcaG7juLrazg8u7volwRgoIAGMUTglrbR+deKL1Zm2vkugfnM2iKqNFloi3HD7OThoauqI/lqbhOttsNRtcqq2y0+tgq8aHAwpXYGLFZtLGzDFYxCTo5nRTTTEJau0KeusJJEpwB3eG31uNmzzVvkAtU+z2e1MiG8fpk5PqaCz2cRrtuO4bFv0DbFwnV4Z2vIISxUG3oF2PSeM596lJfDOhePhNF0MjIRAIBAKBQCAQCDz0SJyhN66hNx/3cZN5148SnCAZYhaRUjRrEauNkzcnRBukvu53/xcUyK4ssPu3D1UWUx/jjRaXuk6T+NemGD+eswWus+vTNNoX0CuXvDlj/4BHV9eoq4zt3I84lIWlT5+trDnbYNFZXK+Dam3OVYSICCprodeugYmwnUP/gfWkxRMrmzhVclDMun7/+uW2oG6SmU2NAQ2TEaHoYTmIElKTUTN1rHU4B+0F76uIeMPMoEgIBAKBQCAQCAQCgYcDEYWqr6K3rqM2HkVls2X3JyGKFBvtGllyOnWFqq9448P+7FQEV/RxnW0kreM6O2NeAuMPtAuNFgeIUhDXcCOjCs6WuIM7SHMDtXoJETUSsdmnEQmPtjYocqFr++zlPepxwqVsbYHBYhPVWF9uXWnDNxNg6HUhIlxIV7lUX2G3f6iIGJIfoLrbUPZxOFozmhqjpMbQQtER6CtomjZaNJ1eQT01NLLF76tvjLiH3ichNBICgUAgEAgEAoHANxRiYnT7AhKfjdHigJVGwiMXT9+cEBOjGhu4fPp4gyt6uO4OqnUBvfm4jx7s7nojxNHHHcNocYBKalClXDhnfROhtopeuzw2fiL1VVRrE7q7XGw22Uza7Pa7dGyfy/WVmX4ErszBlqj21rHSOVStjV67giv7uKrBokS4Wl+nrjJ2y4OqeLdIfxdEY9MVin4HrRRZtPg10EpoKE1pMmKd0ogaAHT7ltVmgl4i3UPiyidhVmPnISE0EgKBQCAQCAQCgUDgPkPVVsCkw6J5gOt3Kq+Cy6jVy4iOUKuXUCuXcL09XN49fPBxjBYHmASQwyZC2kSvXUWOeCyIKFT7ApLWiYp9Hl1ZI7IJDZ1ysd6eeXjX3UXq62MGi8uiGuuolcu4/GDYNKknMReSVbQ1HJT7SHcPF9WwzYvYpEnf5SRoast4RODIVEpkWrSiNpGK6OclkZaJyMeZxzAJEmcTTZ2HjdBICAQCgUAgEAgEAoH7DIkSVGMNNxKv6HoHuLyLWr3iTQ+rHXIRhVq5iFq5gusfHDYfytyrEZYooofnNQlog9u7hUQZev0qMmM3X0yMWrkM4lhJ4LHGJtdqG9TiGXGP/Q7oCN3eRORkpahqbaLal7wCo8wxWrGaZbSLGCm6dJM6ZeMCziS4KKUrQgOD0YvNL1XeJUmbtJJLtCLfDDnoFbTqEWm8vHmmylpQPtyKhPOxRg0EAoFAIBAIBAKBwKlQ9VXs7lu4vAdljnMFev0a0lifME8cKAQQhb39CjiHK3NUffV4hpImQqIYJwq1fnXh+IfKWrjWBeztV7i80gSZkdLgLK6/j1pdfMx5+Ou8CLbE7rwB2Qo1d0BqNWrlOm9Kjxq+0HUorKlRzx1KLX4NXNFDN1aIbA2jDM45ytLRbqTHew2jFEThnD1xw+R+JzQSAoFAIBAIBAKBQOA+ROLMNxNuvwpJDb3+KKq+OvvxIj4JQSnK2y97RcKSRouHx1BIYwOlI1S6nN+Dam3iegfEnW1UfQ2o/BnK3DdAihxciaRNVHM5g8W5a1QKtXrJp0ns3CCtNXBskdWarNpb3O7foiFNClcgpkHmSsSVILPLX2cLUJoobWG3/dc6vZIsMTRryys6oDJcNJVPQnS81/9BITQSAoFAIBAIBAKBQOA+RTXW/DhDawtVm+09MEBEkOaGVybsvHkso8UBurlxrMeLMujVSxR5B7t3EwRAQEd+/KG2gsQZEtcmvBZOij/nFVxSx2Rt0je77Hdz1mrr5DZnv9hDicboBol20O9C2ph9wH4XiTNMUgf2AOj2Cy6t1zH6eKoC0RES13CdXSQ0EgKBQCAQCAQCgUAgcDeRpI7euj70Q1gW1VhDklplnnj+SFzzhX13148uRAliYtDx8cYCjnNOEyOtLQDaDcv2Xg8tMevJBrntc1AeUNeb6JrBFTcRZjcSXNFDtTbRxgBCUVi0UrTqxzCqHEFlTcr92yd67oNAaCQEAoFAIBAIBAKBwH3McZsIw+fd5d1wVV+FOaMX50ktMWitKApLYhI20k1u9W5i8giTNaF7B1fmUxURg7EGldQxCEpgr5PTrMXUkpOVzBJloBTOloha3qjxQeHhdH4IBAKBQCAQCAQCgcA3DGliyBJDNy8BqJsGF7JLJJKhkwxJGhNRmkOqsQbiGkYplFIUpWO1mZxcTRGnfqzkIY2BDI2EQCAQCAQCgUAgEAg80CgRWvWIftVIAIhVDCJoo71aosinPtcVPaS2giiF1oLRQpYe32RxFFHGNy+KhzMGMjQSAoFAIBAIBAKBQCDwwFNPIxDBWgeAtQ4RMFqQpAFR7KM0RxgdawAwWmG0sFpPiMzpRhIkrYMtFz/wASQ0EgKBQCAQCAQCgUAg8MCTJYY00nT7vni31qFF0EqQKEHSJi4/Mt4wMtYwYKOdsdo6vUmlRClojSuLUx/rfiM0EgKBQCAQCAQCgUAg8MBjtBobbyidQ2mFrswqVa0NtsQ5O3zO6FjDgLVWSnZCk8Uxouyh9UkIjYRAIBAIBAKBQCAQCDwUNLKY0jqcc16RoEBrb5goSR2iBKrxhqNjDWeNKIWkLVxoJAQCgUAgEAgEAoFAIHB/UksMSWzo55bSOoxWqCp5QUyMqq3g8gP/4CljDWeNJDVw7tyOf68IjYRAIBAIBP7/7d17VFVl/sfxz+FyTggczWayMXVGaGS8YFAIGIRJLRXGvI0XtJEmrzniBaeVRqRojjpWajmlqeSkXRzLLsvLaGWkk+MwmdlNxxTI0CYzNDiIym3//nBxfh0P5paAc9D3ay1X8DzP3ue76bvOYX95nmcDAIArgtXfV0HX+OlseaWqqw1ZL9gw0RJgl2SRUV1V67KG+nZ+nwR/qar2J0Y0VRQSAAAAAABXDHugVZVVhqqqDfn7u97yWmyBslgDZJw73aDLGpz8beeLCRQSAAAAAADwTgE2P/n7+qiislr+vhcUEnx8ZWl2rXTudIMva5Aki8VHlmuCGvQ1PIFCAgAAAADginGN1VcB15x/6oKvj8Wt3+eaIMkW2ODLGmpYbM0kX2uDv05jopAAAAAAALhiWCwWNQ+yyc/PR76+tdzy2prJEthCPgHBjROPf8D5p0VcQerh4ZgAAAAAAHiPZjY/Bdr85OfrPiPBYvGR33XtGi8YP+v5fRKuIMxIAAAAAABcUZrZ/NQiyCabv++lBzcwi8Vy/mkRFs/HUl+YkQAAAAAAuKL4+FjUqmXDbqR4OXyCWkpGtafDqDcUEgAAAAAAaEAWX39Ph1CvWNoAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMo5AAAAAAAABMa/KFhHfffVf9+vVTeHi4evfurQ0bNpg6zuFwKCMjQ9HR0YqMjNTkyZP17bffuo3bu3evhg0bpq5du6pnz55asWKFDMNwGZOYmKiwsDC3f+fOnauXawQAAAAAwFv4eTqAn2LPnj1KS0vT4MGDlZGRoX//+996+OGHFRgYqD59+vzosVOnTtXhw4eVlZUlm82mJUuWaOzYsdqwYYP8/M7/WI4cOaLRo0crLi5OU6dO1cGDB/X444/L19dXo0ePdjlf7969NWrUKJc2q9VavxcMAAAAAICHNelCwrJly9S1a1fNmTNHkhQbG6vCwkI99dRTP1pI+Oijj/T+++8rOztb8fHxkqT27dsrOTlZb731lpKTkyVJ2dnZuvbaa7Vo0SJZrVZ1795dJ0+e1PLlyzVy5EiXQsHPfvYzRURENNzFAgAAAADgBZrs0oby8nLl5ua6FQySk5OVl5eno0ePXvTYnTt3ym63Ky4uztkWEhKijh07aufOnS7j7rzzTpeCQXJyskpKSvTRRx/V49UAAAAAANA0NNlCwldffaWKigqFhIS4tIeGhkqS8vPzL3psfn6+2rdvL4vF4tIeEhLiPK6srEz/+9//3M4fEhIii8Xidv6NGzeqS5cuioyM1NixY3Xw4ME6XxsAAAAAAN6qyS5tKC4uliTZ7XaX9prva/prU1JSouDgYLf25s2b67PPPpN0fjPG2s5vtVoVEBDgcv7ExER17dpVrVu3VmFhoZYvX64RI0bojTfeUNu2betwdf/Pz8+7az2+vj4u/wXMIG9QF+QN6oK8QV2RO6gL8gZ10RTzxqsKCQ6Ho9YnJ1zop96c17fMzEzn11FRUYqLi1NSUpKys7OVlZVV5/P6+Fh07bWB9RBhw7PbAzwdApog8gZ1Qd6gLsgb1BW5g7ogb1AXTSlvvKqQsHXrVpeb8ovZsmWLmjdvLun/Zw7UKCkpkSRnf23sdru++eYbt/bi4mLncTUzFi48f3l5uc6cOfOj57/++ut166236vPPP7/ktfyY6mpDJSVlP+kcDc3X10d2e4BKSs6oqqra0+GgiSBvUBfkDeqCvEFdkTuoC/IGdeFNeWO3B5iaGeFVhYQhQ4ZoyJAhpsaWl5fL399f+fn5uv32253tNXsXXLi3wQ+FhIRo9+7dMgzDZZ+EgoICdejQQZLUrFkz/eIXv3DbC6GgoECGYfzo+etTZWXTeAOqqqpuMrHCe5A3qAvyBnVB3qCuyB3UBXmDumhKedN0FmFcwGq1KiYmRtu2bXNp37Jli0JDQ9WmTZuLHpuQkKDi4mLt3r3b2VZQUKD9+/crISHBZdz27dtVUVHhcn673a7IyMiLnv/48eP68MMPFR4eXpdLAwAAAADAa3nVjITLNWHCBKWmpiorK0tJSUnKzc3Vpk2btHjxYpdxnTp10oABAzRv3jxJUmRkpOLj45WRkaHp06fLZrNp8eLFCgsLU69evZzHjR49Whs3btSf/vQnDR8+XF988YWys7OVnp7ufCTkpk2blJOTox49euj6669XYWGhVqxYIV9fX913332N98MAAAAAAKARWAzDMDwdxE+xfft2LVmyRAUFBWrdurXGjRunwYMHu4wJCwvTwIEDtWDBAmebw+HQ/Pnz9fbbb6uyslLx8fHKzMxUq1atXI7du3evFixYoAMHDqhly5a65557NHbsWOeSiH379umJJ57QoUOH5HA4FBwcrNjYWE2ePPknL38wDEPV1d7/v8fX18fja3nQ9JA3qAvyBnVB3qCuyB3UBXmDuvCWvPHxsbgs/7+YJl9IAAAAAAAAjafJ7pEAAAAAAAAaH4UEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUEAAAAAABgGoUE1EleXp7uu+8+RUREKC4uTgsXLlR5ebmnw4IX+cc//qEJEyYoISFBERER6t+/v1599VUZhuEy7pVXXlHv3r0VHh6ufv36KScnx0MRw9ucPn1aCQkJCgsL06effurSR96gNq+//roGDBig8PBwxcTEaMyYMTp79qyz/91331W/fv0UHh6u3r17a8OGDR6MFt5g+/btGjJkiCIjIxUfH68pU6aosLDQbRzvOVevI0eOaObMmerfv786deqkvn371jrOTI44HA5lZGQoOjpakZGRmjx5sr799tuGvgR4wKXyprS0VEuXLtXgwYMVFRWl2267Tffff78OHjzodi5vzRsKCbhsxcXFuvfee1VRUaGlS5cqPT1d69ev14IFCzwdGrzI3/72NwUEBGjGjBlatmyZEhIS9Mgjj+jpp592jtm8ebMeeeQRJSUlaeXKlYqIiFBaWpr27dvnucDhNZ555hlVVVW5tZM3qM2yZcv06KOPKjk5WdnZ2ZozZ47atGnjzKE9e/YoLS1NERERWrlypZKSkvTwww9r69atHo4cnpKbm6u0tDTddNNNevrpp5WRkaH//ve/GjVqlEsBivecq9uhQ4e0Y8cO/fKXv1RoaGitY8zmyNSpU7Vr1y5lZWXp8ccfV0FBgcaOHavKyspGuBI0pkvlzddff62///3viouL05IlS/Too4/K4XBo2LBhysvLcxnrtXljAJdp+fLlRkREhHHq1Cln27p164yOHTsa33zzjecCg1cpKipya8vMzDRuueUWo6qqyjAMw+jVq5cxbdo0lzHDhg0zxowZ0ygxwnsdPnzYiIiIMF5++WWjQ4cOxieffOLsI29woby8PKNTp07Ge++9d9Exo0aNMoYNG+bSNm3aNCMpKamhw4OXeuSRR4zExESjurra2bZ7926jQ4cOxgcffOBs4z3n6lbzO4thGMb06dON3/72t25jzOTI3r17jQ4dOhj//Oc/nW15eXlGWFiYsXnz5gaIHJ50qbw5ffq0UVZW5tJWWlpqREdHG3PmzHG2eXPeMCMBl23nzp3qfTwKmQAADldJREFU3r27WrRo4WxLSkpSdXW1du3a5bnA4FVatmzp1taxY0eVlpaqrKxMhYWF+vLLL5WUlOQyJjk5Wbt372apzFVu7ty5SklJUfv27V3ayRvU5rXXXlObNm3Uo0ePWvvLy8uVm5urPn36uLQnJycrLy9PR48ebYww4WUqKysVGBgoi8XibAsODpYk5zI83nPg4/Pjt0tmc2Tnzp2y2+2Ki4tzjgkJCVHHjh21c+fO+g8cHnWpvGnWrJkCAgJc2gIDA9WuXTuXZQvenDcUEnDZ8vPzFRIS4tJmt9v185//XPn5+R6KCk3Bhx9+qFatWikoKMiZKxfeKIaGhqqioqLWNaq4OmzdulVffPGFJk6c6NZH3qA2H3/8sTp06KBnnnlG3bt3V5cuXZSSkqKPP/5YkvTVV1+poqLC7bOrZropn11Xp0GDBikvL08vvviiHA6HCgsLtWjRInXq1Em33HKLJN5zcGlmcyQ/P1/t27d3KVxJ528KeQ+CJJWUlOjQoUMun1XenDcUEnDZSkpKZLfb3dqbN2+u4uJiD0SEpmDPnj3asmWLRo0aJUnOXLkwl2q+J5euTmfOnNGCBQuUnp6uoKAgt37yBrU5ceKE3n//fb355puaNWuWnn76aVksFo0aNUpFRUXkDWoVFRWlv/71r3riiScUFRWlu+66S0VFRVq5cqV8fX0l8Z6DSzObIyUlJc4ZLz/E78+o8dhjj8lisWj48OHONm/OGwoJABrcN998o/T0dMXExCg1NdXT4cCLLVu2TNddd51+97vfeToUNCGGYaisrExPPvmk+vTpox49emjZsmUyDEMvvPCCp8ODl9q7d68efPBBDR06VM8//7yefPJJVVdXa9y4cS6bLQJAQ9uwYYPWr1+vmTNn6oYbbvB0OKZQSMBls9vtcjgcbu3FxcVq3ry5ByKCNyspKdHYsWPVokULLV261LlmrCZXLsylkpISl35cPY4dO6bnnntOkydPlsPhUElJicrKyiRJZWVlOn36NHmDWtntdrVo0UK/+c1vnG0tWrRQp06ddPjwYfIGtZo7d65iY2M1Y8YMxcbGqk+fPlqxYoX279+vN998UxKfVbg0szlit9tVWlrqdjy/P2PHjh2aOXOm/vjHP2rgwIEufd6cNxQScNlqW5PjcDh04sQJt/WnuLqdPXtW48ePl8Ph0KpVq1ymZtXkyoW5lJ+fL39/f7Vt27ZRY4XnHT16VBUVFRo3bpy6deumbt266f7775ckpaam6r777iNvUKubbrrpon3nzp1Tu3bt5O/vX2veSOKz6yqVl5fnUnySpBtuuEHXXnutvvrqK0l8VuHSzOZISEiICgoKnBt51igoKOA96Cq2b98+TZkyRQMGDNCUKVPc+r05bygk4LIlJCToX//6l7PSKp3fHM3Hx8dlR1Fc3SorKzV16lTl5+dr1apVatWqlUt/27Zt9atf/crtGe5btmxR9+7dZbVaGzNceIGOHTtqzZo1Lv8eeughSdLs2bM1a9Ys8ga16tmzp77//nsdOHDA2Xbq1Cl9/vnn6ty5s6xWq2JiYrRt2zaX47Zs2aLQ0FC1adOmsUOGF2jdurX279/v0nbs2DGdOnVKN954oyQ+q3BpZnMkISFBxcXF2r17t3NMQUGB9u/fr4SEhEaNGd7h8OHDGj9+vGJjYzV79uxax3hz3vh59NXRJKWkpGjt2rWaOHGixo8fr+PHj2vhwoVKSUlxu1nE1Wv27NnKycnRjBkzVFpaqn379jn7OnXqJKvVqkmTJumBBx5Qu3btFBMToy1btuiTTz5hTfNVym63KyYmpta+zp07q3PnzpJE3sDNXXfdpfDwcE2ePFnp6emy2WxasWKFrFarRowYIUmaMGGCUlNTlZWVpaSkJOXm5mrTpk1avHixh6OHp6SkpGjevHmaO3euEhMT9f333zv3afnho/x4z7m6nTlzRjt27JB0vtBUWlrqLBpER0erZcuWpnIkMjJS8fHxysjI0PTp02Wz2bR48WKFhYWpV69eHrk2NJxL5Y1hGBo9erRsNpvuvfdeffbZZ85jg4KCnDPtvDlvLMaF8yQAE/Ly8vToo4/qo48+UmBgoPr376/09HQq83BKTEzUsWPHau3bvn278y+Ar7zyilauXKmvv/5a7du317Rp09SzZ8/GDBVeLDc3V6mpqXr11VcVHh7ubCdvcKGTJ09q/vz5ysnJUUVFhaKiovTQQw+5LHvYvn27lixZooKCArVu3Vrjxo3T4MGDPRg1PMkwDK1bt04vv/yyCgsLFRgYqIiICKWnpzsfDVqD95yr19GjR3XnnXfW2rdmzRpnAdxMjjgcDs2fP19vv/22KisrFR8fr8zMTP4QdwW6VN5IuugG5NHR0Vq7dq3ze2/NGwoJAAAAAADANPZIAAAAAAAAplFIAAAAAAAAplFIAAAAAAAAplFIAAAAAAAAplFIAAAAAAAAplFIAAAAAAAAplFIAAAAAAAAplFIAAAATcJrr72msLAwffrpp54OBQCAqxqFBAAA4Kbmpv2H/7p3766RI0dqx44ddT7v8uXL9c4779RjpOYtXbpUYWFhuu2223TmzBm3/sTERI0fP94DkQEA0LRQSAAAABc1efJkLVy4UH/5y180ZswYnTp1SuPGjVNOTk6dzvfss896rJBQo6ioSC+//LJHYwAAoCnz83QAAADAeyUkJCg8PNz5/eDBgxUXF6dNmzapZ8+eHoys7jp27Kjs7GyNGDFC11xzjafDAQCgyWFGAgAAMM1ut8tms8nPz/VvEdnZ2UpJSVFMTIy6du2qQYMGaevWrS5jwsLCVFZWptdff925XGLGjBnO/uPHjysjI0Px8fHq0qWLEhMTNWvWLJWXl7ucp7y8XPPnz1dsbKwiIiI0ceJEnTx50vQ1TJw4Ud99990lZyXk5uYqLCxMubm5Lu1Hjx5VWFiYXnvtNWfbjBkzFBkZqa+//lrjx49XZGSkbr/9dr344ouSpIMHDyo1NVURERHq2bOnNm7caDpeAAC8DTMSAADARZWWljpv0ouKirR27VqVlZWpX79+LuPWrFmjxMRE3X333aqoqNDmzZs1ZcoUPfvss7rjjjskSQsXLlRmZqa6du2qoUOHSpLatWsn6XwRYfDgwXI4HBo6dKhCQkJ0/Phxbdu2TWfPnpXVanW+1ty5c2W325WWlqZjx47p+eef15w5c7RkyRJT13TrrbcqNjZWq1at0vDhw+ttVkJVVZXGjh2rqKgoPfDAA9q4caPmzJmjgIAALV68WHfffbd69eqldevWafr06YqIiFDbtm3r5bUBAGhMFBIAAMBF/eEPf3D53mq1at68eYqLi3Np37Ztm8sN+T333KNBgwZp9erVzkJC//79lZWVpbZt26p///4uxy9atEjfffed1q9f77KUYsqUKTIMw2VsixYt9Nxzz8lisUiSqqurtXbtWjkcDgUHB5u6rrS0NP3+97/XunXr3K6xrs6dO6d+/fo5N2y8++67dfvttysjI0OLFi1ScnKyJOm2225TUlKS3njjDU2aNKleXhsAgMbE0gYAAHBRM2fO1OrVq7V69Wo99thjiomJUWZmpt566y2XcT8sIhQXF8vhcOjWW2/V/v37L/ka1dXVeuedd9SzZ0+XIkKNmoJBjaFDh7q0RUVFqaqqSseOHTN9Xd26dVNMTIxWrVqls2fPmj7uUoYMGeL82m63q3379goICFBSUpKzPSQkRHa7XYWFhfX2ugAANCZmJAAAgIvq2rWry8193759NWDAAM2ZM0d33HGHc8lBTk6Oli1bpgMHDrjsaXBhEaA2J0+eVGlpqX7961+biql169Yu39vtdklSSUmJqeNrTJo0qV5nJdhsNrVs2dKlLTg4WDfccIPbzyE4OPiy4wUAwFswIwEAAJjm4+OjmJgYnThxQkeOHJEk7dmzRxMmTJDNZtOsWbO0YsUKrV69Wn379nVbllBfMdTmcl+rW7duio6OvuishIsVQaqrq2tt9/X1vaz2hvjZAADQGJiRAAAALktVVZUkqaysTNL5/RFsNpuys7NdNkXcsGGDqfO1bNlSQUFBOnToUP0HewmTJk3SyJEjtW7dOre+mpkODofDpf1yllAAAHAlYkYCAAAwraKiQrt27ZK/v79CQ0Mlnf+Lu8VicRYYpPOPSNy+fbvb8c2aNXOb0u/j46O77rpLOTk5+vTTT92Oaci/3EdHRztnJZw7d86l78Ybb5Svr68++OADl/ZLPTayLioqKpSXl6dvv/223s8NAEB9Y0YCAAC4qJ07dyo/P1/S+b0MNm7cqC+//FLjxo1TUFCQJKlHjx5avXq1xowZo759+6qoqEgvvfSS2rVrp4MHD7qcr3Pnztq9e7dWr16t66+/Xm3atNHNN9+sadOmadeuXRo5cqSGDh2q0NBQnThxQlu3btVLL73knB3QENLS0pSamurWHhwcrD59+uiFF16QxWJR27Zt9d5776moqKjeYzh+/LiSk5M1cOBALViwoN7PDwBAfaKQAAAALuqpp55yfm2z2RQSEqKsrCylpKQ427t3764///nPWrlypebNm6c2bdrogQce0LFjx9wKCTNmzNDMmTO1ZMkSnT17VgMHDtTNN9+sVq1aaf369XryySe1ceNGlZaWqlWrVkpISHB5IkRDiImJUXR0tP7zn/+49WVmZqqyslLr1q2T1WpVnz599OCDD6pv374NGhMAAN7MYrDTDwAAAAAAMIk9EgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGkUEgAAAAAAgGn/B17Bl+CJdZZ+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/wAAALGCAYAAAD4N5qEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wcVfn/P+fM7O7tNzeF0EuQogYSQugxIEVBiopIE6QTkOIX5IuIDURQyjcCoQbpPeqXH1JEsACK4ldEmliAJIQQUm9u2zLlnPP748zM7myd3bu79+be5+2Ll7l7Z2bPzJzdO5/zPM/nYUopBYIgCIIgCIIgCIIgxhR8pAdAEARBEARBEARBEET9IcFPEARBEARBEARBEGMQEvwEQRAEQRAEQRAEMQYhwU8QBEEQBEEQBEEQYxAS/ARBEARBEARBEAQxBiHBTxAEQRAEQRAEQRBjEBL8BEEQBEEQBEEQBDEGIcFPEARBEARBEARBEGMQEvwEQRAEQRAEQRAEMQYhwU8QBEEQDeaSSy7B/vvvX9O+CxYswA477FDnEY0P/vKXv2CHHXbAX/7yl7oedzj3kyAIgiCaiTnSAyAIgiCIkSKqkL7vvvuwxx57NHg0o49LLrkEjz32WPCzYRiYMmUKZs2ahXPOOQcf+9jHRnB0RLW88sor+MpXvgIA+POf/4yJEyeO8IgIgiCIRkOCnyAIghi3XHPNNaGfH3/8cbz00ksFr2+77bbDep8rrrgCSqma9j377LNx5plnDuv9h0M8HscPf/hDAIAQAsuWLcMjjzyCP/zhD3jqqacwderUERvbSDGc+zlSSCnxwx/+EG1tbUilUiM9HIIgCKJJkOAnCIIgxi2f//znQz+//vrreOmllwpezyedTqO1tTXy+8RisZrGBwCmacI0R+7PtWmaBddj5syZmDdvHl544QUcffTRIzSy5pNKpdDW1jas+zlSPProo/joo49w1FFH4b777hvp4RAEQRBNgmr4CYIgCKIMJ554Ig477DC89dZb+MpXvoIZM2Zg/vz5AIDf/OY3OPPMMzFnzhxMnz4dBx54IG6++WYIIULHyK/5Xr58OXbYYQfceeedePTRR3HggQdi+vTp+NKXvoQ33ngjtG+xGv4ddtgBP/jBD/Cb3/wGhx12GKZPn45DDz0UL774YsH4//KXv+DII4/ETjvthAMPPBCPPPLIsH0BJk+eDECn+OfywQcf4Pzzz8fuu++OGTNm4Oijj8bzzz8f2uZ///d/scMOO2D58uUF48yvt/ev/bvvvosTTzwRM2bMwKc+9SnccccdBWNauXIlvva1r2HmzJnYa6+9cNVVV8G27YLtXnnlFZx//vnYb7/9MH36dOy777646qqrkMlkQttdcskl2GWXXbBs2TKcccYZ2GWXXXDRRRcFv8uv4ZdS4p577sGhhx6KnXbaCXvvvTe+973vob+/P7Tdm2++idNOOw177LEHdt55Z+y///741re+VewyB/zoRz/CHnvsEcoquOKKK7DDDjuExPvatWuxww474KGHHgrt39fXh+uvvx7nn38+urq6yr4XQRAEMbagCD9BEARBVKCvrw9nnHEGDj30UBxxxBGYNGkSAOCxxx5DW1sbTjnlFLS1teHll1/GjTfeiKGhIXzzm9+seNwnn3wSyWQSxxxzDBhj+OlPf4rzzjsPv/nNbypGkf/2t7/h2WefxfHHH4/29nbcf//9OP/88/H73/8ePT09AIC3334bp59+OqZMmYLzzjsPUkrcfPPNVddu9/b2AtCi9oMPPsB1112HCRMm4NOf/nSwzdq1a3HssccinU7jxBNPRE9PDx577DGcffbZuPHGG3HQQQdV9Z4+/f39OP3003HQQQfhkEMOwa9//Wtcd9112H777bHvvvsCADKZDE466SR89NFHOPHEE7HRRhvh8ccfx8svv1xwvGeeeQaZTAbHHXccJkyYgDfeeAMPPPAAVq5ciRtvvDG0reu6OO2007Drrrvim9/8JlpaWkqO83vf+x4ee+wxHHnkkTjxxBOxfPlyPPjgg3j77bfx8MMPIxaLYd26dTjttNPQ09ODM888E11dXVi+fDmee+65stdg9uzZuOeee/DOO+9g++23B6AXLjjneOWVV/DVr341eA0Adtttt9D+N9xwA6ZMmYJjjz0Wt9xyS4UrThAEQYwlSPATBEEQRAXWrFmDyy+/HMcee2zo9f/5n/8JicDjjjsO3/ve9/Dwww/jggsuQDweL3vcFStW4Nlnn0V3dzcAYJtttsHXvvY1/PGPfwyJ6WK89957ePrpp7HlllsCAPbYYw98/vOfx1NPPYUTTjgBAHDjjTfCMAw8/PDDQa39IYccgs997nORzz2VSmGvvfYKvTZ16lTcddddoYWDhQsXYu3atXjwwQcxe/ZsAMCXv/xlHHHEEfjRj36EAw44AJxXn1i4evVqXH311fjCF74AADjqqKOw//774xe/+EUg+B999FEsXboU119/PQ455BAAwNFHH120NOOiiy4K3bNjjjkGW221FebPn48VK1Zg0003DX5n2zYOPvhgfOMb3yg7xldeeQU/+9nPcN111+Hwww8PXt9jjz1w+umn45lnnsHhhx+Ov//97+jv78edd96JnXbaKdjuggsuKHv8XXfdNXif7bffHoODg/jPf/6Dz3zmM4HI938/YcKEkJniv/71Lzz66KNYuHBhQUYGQRAEMfahlH6CIAiCqEA8HseRRx5Z8HqucBwaGkJvby9mz56NdDqNxYsXVzzu5z73uUDsAwiE8gcffFBx37333jsQ+wCw4447oqOjI9hXCIE///nPOOCAA0LGeltttRU+9alPVTy+TyKRwN133427774bd955J37wgx+gra0NZ555JpYsWRJs98ILL2DnnXcOzgEA2tvbccwxx+DDDz/Eu+++G/k9c2lrawsJ93g8jp122il0jV588UVMmTIFBx98cPBaa2trUX+B3HuWSqXQ29uLXXbZBUopvP322wXbH3fccRXH+Mwzz6CzsxP77LMPent7g/8++clPoq2tLShT6OzsBAA8//zzcBwnwtlrJk6ciGnTpgXi/tVXX4VhGDjttNOwdu1aLF26FIDO+pg1axYYY8G+V155JebOnYs5c+ZEfj+CIAhi7EARfoIgCIKowNSpU4tG69955x1cf/31ePnllzE0NBT63eDgYMXjbrLJJqGfffE/MDBQ9b7+/v6+69atQyaTwVZbbVWwXbHXSmEYBvbee+/Qa/vuuy8+85nPYP78+ViwYAEAna0wY8aMgv2nTZsW/N5PR6+GjTfeOCRgAX2e//73v4OfP/zwQ2y11VYF222zzTYFx1uxYgVuvPFG/O53vyuor8+/h6ZpYuONN644xvfffx+Dg4MFmRA+69atAwDsvvvu+OxnP4ubbroJ99xzD3bffXcceOCBOPzwwytmg8yePRsvvPACAB3Jnz59OnbaaSdMmDABr7zyCiZPnox//etfOOyww4J9nn76afz973/HE088UfEcCIIgiLEJCX6CIAiCqECx2u2BgQGccMIJ6OjowPnnn48tt9wSiUQC//jHP3DddddBSlnxuKVSrKO0fBvOvsNl4403xjbbbIO//vWvVe+bL8p9Sl2veqahCyFwyimnBL4A06ZNQ1tbG1atWoVLLrmkYAzxeDxSGYKUEpMmTcJ1111X9Pd+6QNjDDfeeCNee+01/P73v8cf/vAHXHrppbj77rvx6KOPor29veR77Lrrrli0aBE++OADvPLKK9h1113BGMOsWbPwt7/9DRtttBGklKEMi2uuuQaf/exnEYvFApNEf0Fo5cqVcBxnXLZVJAiCGE+Q4CcIgiCIGvi///s/9PX14aabbgqZpOW7z48UkyZNQiKRwPvvv1/wu2KvVYsQItTPfdNNNw2l+Pv4pQ1+bbzvEp+fAfHhhx/WPJbNNtsM//nPf6CUCi0o5I/nP//5D5YuXRryBACAl156qeb3BoAtt9wSf/7znzFr1qyyxn4+M2fOxMyZM3HBBRfgiSeewEUXXYSnn34aX/7yl0vu49fxv/TSS3jzzTdx5plnAtAGfQ8//DA22mgjtLW14ZOf/GSwz0cffYQnn3wSTz75ZMHxvvjFL2LHHXfE448/Xu3pEgRBEBsQVMNPEARBEDXgR35zI+q2bRe0RBsp/FT83/72t1i1alXw+vvvv48//OEPwzr2kiVLsGTJEuy4447Ba/vuuy/eeOMN/P3vfw9eS6VSWLRoETbbbLPASM73HcjNDhBCYNGiRTWPZ+7cuVi9ejWeeeaZ4LV0Ol1wzGL3TCk17L70hxxyCIQQRR3wXdcNour9/f0FGRgf//jHAaBoC8FctthiC0ydOhX33HMPXNfFrFmzAOhU/2XLluGZZ57BjBkzYJrZWM7NN99c8J9v2Hj11VdXbAdIEARBbPhQhJ8gCIIgamCXXXZBd3c3LrnkEpx44olgjOHxxx9vSkp9VM4991z88Y9/xHHHHYfjjjsOUko88MAD2G677fDPf/4z0jFc1w2iwEopLF++HI888giklDjnnHOC7c4880w89dRTOOOMM3DiiSeiu7sb/+///T8sX74cCxYsCMT2dttth5kzZ2L+/Pno7+9Hd3c3nn76abiuW/N5Hn300XjwwQfxzW9+E//4xz8wZcoUPP744wXR9mnTpmHLLbfE1VdfjVWrVqGjowO//vWvI3kmlGP33XfHMcccg9tvvx3//Oc/sc8++yAWi2Hp0qV45pln8O1vfxsHH3wwHnvsMTz88MM48MADseWWWyKZTGLRokXo6OjA3LlzK77P7Nmz8dRTT2H77bcP/B4+8YlPoK2tDUuXLg11CACAAw88sOAY/n2fO3du1e0ZCYIgiA0PEvwEQRAEUQM9PT247bbbcPXVV+P6669HV1cXjjjiCOy111447bTTRnp4AIDp06fjjjvuwDXXXIMbbrgBm2yyCc4//3wsXrw4UhcBQEeeL7744uDnjo4O7LTTTrj22mtDJnWTJ0/GI488gmuvvRYPPPAALMvCDjvsgNtuuw377bdf6JjXXXcdvve972HhwoXo6urCUUcdhT322AOnnHJKTefZ2tqKe+65B1dccQUeeOABtLS04PDDD8fcuXNx+umnB9vFYjHcdttt+OEPf4jbb78diUQCBx10EL7yla8UbeFXDT/4wQ8wffp0PPLII/jJT34CwzCw2Wab4Ygjjgii8bvvvjvefPNNPP3001i7di06Ozux884747rrrsMWW2xR8T123XVXPPXUU0F6P6CNBWfOnIk//elPodcJgiAIAgCYGk2hCIIgCIIgGs7XvvY1vPvuu3j22WdHeigEQRAEQTQQquEnCIIgiDFMJpMJ/bx06VK8+OKL2H333UdoRARBEARBNAtK6ScIgiCIMcyBBx6IL37xi9hiiy3w4Ycf4pFHHkEsFguluhMEQRAEMTYhwU8QBEEQY5hPfepTeOqpp7BmzRrE43HMnDkTF154IbbeeuuRHhpBEARBEA2GavgJgiAIgiAIgiAIYgxCNfwEQRAEQRAEQRAEMQYhwU8QBEEQBEEQBEEQYxAS/ARBEARBEARBEAQxBiHTvjqglIKUo98KgXO2QYyTGF3QvCFqgeYNUQs0b4haoHlD1ALNG6IWRtO84ZyBMVZxOxL8dUBKhd7e5EgPoyymydHT046BgRRcV470cIgNBJo3RC3QvCFqgeYNUQs0b4haoHlD1MJomzcTJ7bDMCoLfkrpJwiCIAiCIAiCIIgxCAl+giAIgiAIgiAIghiDkOAnCIIgCIIgCIIgiDEICX6CIAiCIAiCIAiCGIOQ4CcIgiAIgiAIgiCIMQi59BMEQRAEQRAEMaaQUkIIt8TvGDIZA7ZtQYjR0WKNGP00c94YhgnO6xObJ8FPEARBEARBEMSYQCmFgYFepNNDZbdbu5ZDypFvrUZsWDRz3rS2dqCrayIYq9x6rxwk+AmCIAiCIAiCGBP4Yr+jowfxeKKkWDIMRtF9omqaMW+UUrBtC0ND6wEA3d2ThnU8EvwEQRAEQRAEQWzwSCkCsd/R0VV2W9PkcF2K8BPV0ax5E48nAABDQ+vR2dkzrPR+Mu0jCIIgCIIgCGKDRwgBICuWCGJDxp/HpbwookKCnyAIgiAIgiCIMcNwa54JYjRQr3lMgp8gCIIgCIIgCIIgxiAk+AmCIAiCIAiCIEYRV155GU488eiiv7vhhv/BUUcd3uQRDY85c2aH/jv88M/g4osvwHvvvTvSQyvKokUPYc6c2SM9jLpApn0EQRAEQRAEQRBEQznqqGNw4IEHA1BYvXo17r//Llx44Tl44IGfo7Ozc6SHN2YhwU8QBEEQBEEQBEEMC8vKIJFoKfn7jTbaGNOn7xT8vMUWW+KUU47HW2+9jr32mtOMITYd27ZhmuawXPaHC6X0EwRBEARBEARBbKA8/fQTmDNnNt56602cf/5ZOOCAfXDUUYfjyScfD23nlwn8+c8v4cQTj8b++++NU089AW+99WbRY5500rHYf/+98YUvHILbb7856IIQfs838F//9TUceOAc3HzzDVWNu62tDQDgumEX+hde+B1OPvl47L//3vj85w/GggXzYVlWwXv39fWF9jv55ONx5ZWXFZzvq6++glNOOR4HHjgHZ5zxVfzrX/8M7ZdMDuGKK76Hgw6ai8MOOxC33HIDXFeEtkmn05g//2ocffQXg+t77bVXYWhoKLTdUUcdjvnzr8aDD96LL33pMBxwwD54883XMWfObPz1ry+HthVC4AtfOAS33FLddasWivATBEEQBEEQBEFs4Fx22aX4/OePxFe+chJ++9tn8eMfX4HJk6dgzz33DrZZt24d5s+/GqeeeiY6OzvxwAP34hvfOBePPPIYenomAgAeeeQB3HrrAhx99PE499z/wtKlS7Fw4S2QUuLss88Lvefll38HRxzxRXz1q6eWje4DgFIyEPdr1qzGrbfeiAkTJmCXXbK18n/84wv4zne+iQMO+AzOOutcLFu2FLfffjNWrVqJH/7wmqqvSW/vOtxww3X4yldORkdHB26//SZceulFWLTocZimlsI/+tEP8Je/vIyzzjoXm266KR577Od4551fh46TyWQgpcRZZ52Dzs5urF69Cvfddxe+9a1vYMGC20PbvvDC77D55lvi61+/CJxz7Ljjx/GJT0zHk0/+Ervttmew3V/+8mesXbsGhx76+arPqxpI8BMEQRAEQRAEMWZRSsF2ZOg1IRVcV5bYo77EY7wprQIPPvhQnHjiKQCAPfbYCytWfIi7774jJPgHBvpxxRU/xq677gYAmDlzVxx55KF49NGHcNZZ5yKVSuLOOxfi+OO/innzzgEA7LbbnojFTCxY8BMcf/yJ6O6eEBzv858/EieccHKk8d166wLceuuC4Oeurm5cddW16OjoCF67666F+OQnd8Jll10JANhzz72RSLTg2muvwnvvvYttt/1YVddkYGAACxYsxLRp2wIAWlpacP75Z+Ef/3gLM2bMxJIli/HCC7/HN7/5HRx2mBbeu+++F4499sjQcXp6enDRRd+CaXK4rl642GSTTfG1r52OZcvex5ZbbhVs67ourrvuRrS2tgavHXHEFzB//rUYGBhAV1cXAOCppx7HTjvtjK222rqqc6oWEvwEQRAEQRAEQYxJlFL40QOv4t0P+0dsDB/bvBvf+sqshov+uXP3C/2877774+abr4cQAoZhAAA6OjoCse//PHv27nj77bcAAG+++QbS6RQ+/ekDQqn2s2fvAcuysHjxe9hll12D1/feO3rt/Ze/fBw++9lDAADr1/fiscd+jksu+QZuumkhPvax7ZBKpfDOO//BOed8PbTfAQd8BtdeexXeeOO1qgX/5MlTArEPANtsMw0AsGbNKgDAv/71NpRSmDv308E2hmFg7tx98eijD4WO9cwzT2HRoofwwQfLkE6ng9c/+GBZSPDvssuuIbGvz+GzuPHGn+C5557Bl750NPr6+vDSS3/ARRd9q6rzqQUS/ARBEARBEARBjF0aH1yvO4ZhQMriGQhSiiAdPRc/Jd9n4sSJcF0X/f19mDhxEgBgwoSegv0mTpyI999fAgDo7+8DAJx66glF33v16lV57zmp/InkMGXKRthxx08EP++66+448sjP4Z577sAPf3gNhoYGoZQKxurT0dGBeDyOgYHqF21yswcAwDRjALSZHgCsXbsWpmkGUXef/Gv5wgu/xw9/+H184QtH4owzzkZX1wSsW7cWl156EWzbytu38Jq0trbiwAM/g6eeehxf+tLRePbZpxGLxbH//gdVfU7VQoKfIAiCIAiCIIgxCWMM3/rKrIKUfj81uxnUktI/YUIP1q1bV/R3a9euQU9PoXBfv74XU6ZsFPzc29sL0zRDKfh9fesL9uvt7cWkSZMBAJ2dWvheeeW1mDp1asG2m2yyaejn4WQtxONxbLLJZliyZDEAoKOjE4wxrF/fG9puaGgItm2jq6s72A8AXNcJbTc4OFD1GCZPngzXdUOp9gAKxvD73/8G2223PS655DvBvPn73/9W9JilLskRR3wRv/zlY3jnnf/gqaeewP77HxgYFzYScuknCIIgCIIgCGLMwhhDIm6M2H+1iOKZM2dhaGgQr732auj1ZHIIr776N8yYMatgnxdffD708wsv/A477PDxIJ0f0OL5b3/7a+jnV175P3ziE9MBANOn74yWlhasWbMKO+74iYL/chcPhotlWVixYnlwzLa2Nmy33fZ4/vnfhrb73e+eAwDsvPNMAMCUKXohYunSJcE2S5cuKcg+iIKfcfDii78PXhNC4MUXXygYq58d4PPss89U/V7bbbc9brjhOrz33js49NAjqh5vLVCEnyAIgiAIgiAIYhSx++57YsaMXfDtb/83Tj75DEybti3Wrl2Dhx66D4bBcdRRxxbs88wzTyGRSGD77XfEb3/7LF577VVce+31oW26urrx4x9fEXLpV0rh6KOPAwB0dnbitNPOwi23LMDq1auxyy67wjAMrFixHH/4w4u48spr0NJS3o2/FKtXrwxaAPb1rcf//u/P0N/fjy984UvBNqeeeia+9a2L8IMffBef+cwhWLbsfSxceDP222//oH7/k5+cjo02mooFC+Zj3rxzkUwO4YEH7kV3d3fVY9pmm2mYO/fTuPHG+bBtG5tssgkee+znBdkDu+22B+bPvxp33XUHPv7x6Xj55Zfwt7/9X9Xvd/jhX8T8+Vdjyy23ChYwGg0JfoIgCIIgCIIgiFEE5xzXXns9fvrT2/DIIw9g7do16OjowKxZu+GHP7wGkydPLtjnssuuxG233YS77/4penp6cPHF38Zee4VN9SZNmoSzzz4ft9xyAz78cDm22WYa5s9fEKqbP+64EzBlyhQ8+uiD+MUvHoVpmthss82x996fKuodEJWf//xR/PznjwLQ6ftbb70NrrrqupDZ4Jw5++KKK36Mu+/+Kb71rW+gq6sLRxzxRcybd26wjWmauOqq6/A///MjfPe738Tmm2+B8867EDfddH1N4/rWt76Hn/zkGtx6642Ix+M4+ODDMHPmrrjllhuCbT7/+SOxYsWH+NnPHoFl2dh99z3x/e9fiXnzTq7qvebO/TTmz7+6adF9AGBKKdW0dxujCCHR25sc6WGUxTQ5enrasX59smn1SsSGD80bohZo3hC1QPOGqAWaN0QujmNj3bqPMGnSJojF4mW3bWYNf6N5+ukncNVVl+PJJ3+DCRMmlNzuyisvw7/+9Tbuv39R8wY3xhjuvHnyycdx7bVX4X//96nAN6EUlebzxIntMIzKFfoU4ScIgiAIgiAIgiCIBvHRRyuwfPky3HvvnTjggM9UFPv1hAQ/QYwD0paL/qSNjSc23gmUIAiCIAiCIIgsd921EM899wymT98Z5577X019b0rprwOU0k+MdvqHLKwbyGDaptWZmdC8IWqB5g1RCzRviFqgeUPkMl5T+onm0cx5U6+UfmrLRxDjAKkAIRUkre8RBEEQBEEQxLiBBD9BjAOElJBSgRJ6CIIgCIIgCGL8QIKfIMYBfoSf9D5BEARBEARBjB9I8BPEOEAICalAgp8gCIIgCIIgxhEk+AliHOAKCaUopZ8gCIIgCIIgxhMk+AliHCCETucnvU8QBEEQBEEQ4wcS/AQxDnClBBS59BMEQRAEQRDEeIIEP0GMA4RQUKAIP0EQBEEQxIbAnXfejoMO+tRID6MuXHnlZZgzZ3bw34EHzsFJJx2HJ5/8fyM9tKIMDg5izpzZePrpJ0Z6KHXBHOkBEATRWKRUnkO/AkCKnyAIgiAIgmgum266Gb73vR8CANLpJF544Xn8+Mc/REtLKw488LMjPLqxDQl+ghjjSOXV70O35yMIgiAIgiCIemJZGSQSLSV/n0gkMH36TsHPu+22J/7xjzfwwgu/H9OCv9J1aQaU0k8QYxwplSf6yaWfIAiCIAhirPDee+/iwgvPxYEHzsFnP7svvvOdi7Fy5crg9z/60Q/wta+dHvzc19eHT31qN5x++leD11KpFPbddw/87ne/CV5bunQJLrnkQnz2s/viwAPn4L//++v48MPlofeeM2c27r//Htxyy4044ojP4rDDPlP1+Nva2uG6bui1lSs/wne+c3Hw3hdeeC7ee+/dgvd+6KH7Q68tWvQQ5syZHfz86quvYM6c2fjrX1/GZZd9GwcdNBdf+tJhePDBewvG8ctfPoajjjocBxywD77+9bPx4YcfFGzzq189ibPPPg2f+cx+OPjgT+Pcc8/E22+/FdrGL8N4++23MG/eKdh//73xi1/8DKeeegIuv/w7Bce85ZYb8fnPHwwhROWLNQwowk8QYxwhFZTUIX7S+wRBEARBjDeUUoBr573GoVzZnAGYcTDG6nrIVatW4pxzzsBmm22O7373Cti2hYULb8V5552Je+99GG1t7Zg5cxaee+4ZWJaFRCKB119/FbFYHO+882+kUkm0tbXjrbfegBACM2fuAgD48MPlOOusUzFt2ra49NLLwDnDfffdha9//Ww89NAvEI/HgzH8/OcP4xOf2AmXXPJdCOGWGmqAL+7T6TReeOF3ePPN1/Gd71we/D6VSuK88+aBMYaLLvoW4vEE7rvvLpxzzhm4996HMXXqxlVfp2uv/RE++9nP4aqrrsUf/vA8br11AbbddjvsuefeAICXXvoDrrnmSnzuc4fjgAM+g3//+5/47ncvKTjOypUf4eCDD8WWW26BTMbGb37za5x77pm4556HseWWWwXbOY6Dyy//Do4++njMm3cOurq60dbWigULfoKhoSF0dHQAAIQQ+PWvn8YhhxwGwzCqPq9qIMFPEGMc5bnze5qfIAiCIAhi3KCUQuqXV0Kuerfyxg3CmLodWo+4tK6if9GihyCEi5/85CZ0dXUDALbffkeccMKX8fTTT+Coo47FjBm7wLZtvP32W9hll13x2mt/x9y5++Gvf30Zb7zxOvbcc2+89tqr2GKLLTFx4iQAwN1334Guri785Cc3I5FIAACmT5+Bo4/+PJ588nEceeSXgzF0dnbjqquujXReS5Ysxn777Rl67dhjT8BnPnNI8PNTTz2BlSs/wv33L8LWW28DANhll1n40pcOw6JFD+O88y6o+jrtt9/+OO20eQCA2bN3x5///BKef/63geC/9947MWPGLrj00u8DAPbYYy/Yto177vlp6DinnHIGAMA0OWzbxW677YF//vMf+NWvnsS8eecE27muizPP/BoOOCCb8bDJJpvgppuux3PPPYMvfvEoAMCf//wS1q1bi0MPPaLqc6oWSukniDGOVLqOnzFQSj9BEARBEOMOhvpG10cDr7/+GmbNmh2IfQDYaqut8bGPbYc33ngdgDbK22ijqXj99b97+7yKXXbZFTvvvAtee+1V77W/Y+bMWcEx/vrXlzFnzlwYhgHXdeG6Ljo7O7H99jvgX/96OzSGPffcO/IixmabbY6f/vQ+/PSn9+GmmxbijDPOxi9+8SjuvvuOnHP6O6ZN2zYQ+wDQ1dWN2bP3wBtvvFbdBfLYbbfsIgNjDFtttTVWr14NQEfZ//3vf2Lu3P1C++y33wEFx1m6dAm+9a2LcMghB2Lu3N2x3357Ytmy9/HBB+8XbLvXXnNCP7e3d2D//Q/CU0/9Mnjt6aefwIwZu2CLLbas6byqgSL8BDHGEVIBYJ7gH+nREARBEARBNA/GGFqPuLQgpd80OdwNOKV/cHAA2223fcHrPT2TMDDQH/w8c+YsvPbaq0gmh/Duu+9g5sxZyGTSeP7538K2bfzzn//A4Yd/Idi+r68PixY9jEWLHi48DTMW+nnixImRxxuPx7Hjjp8IjWv9+l7cd99d+NKXjkZXVzcGBwfR01N4zIkTJ2LJkvciv1cunZ2doZ9jsRgGBwcBAH196yGEKHjP/PNKpZK48MJzMWHCBHz96xdiypSNkUjE8eMf/xC2HZ5XLS0taGtrKxjHEUd8EWeddSreffcdTJo0GX/60x9w8cXfrumcqoUEP0GMcaRU0JKfTPsIgiAIghh/MMaAWCL8msnBWJMEfwPo6urC+vW9Ba+vX78OW2yRrSmfMWMX3HTTT/D3v/8N3d0TsNVWWyOdTuPWWxfg1VdfgW3bmDFjl5zjdmOvvfYJpe77FArZ4S1ibLXVNnAcBx988AE++cludHV1Ydmywoh5b28vOju7gp/j8Thc1wlt44v4apgwoQeGYRRcx97e8M9vvfUmVq9ehauv/gk+/vEdg4WiZHIIwEahbUst7EyfvjO22WYannrql5g6dSri8QQ+/ekDqx5zLVBKP0GMcaRUYAoAGCQJfoIgCIIgiA2enXeeib/97a8YGBgIXlu2bCnee+9d7LzzjOC1mTNnIZ1O45FHHgyE/XbbbY9EIoEHHrgHG200FZtssmmw/ezZu2PJkvew3XY7YMcdPxH6b8stt67rOSxerKP2EyZMCM5p8eJ3sWzZ0mCbgYEBvPLK/2HnnWcGr02ZshHef39J6Fh//etfqn5/wzCw/fY74sUXnw+9/vzzvw39bFkZADo7wOfNN1/HRx+tqOr9Dj/8i3juuV/hySd/iQMOOAitra1Vj7kWKMJPEGMcqZS3AEuufQRBEARBEBsKQkj8/ve/KXj94x+fjqOPPh5PPfUELrzwXHz1q6fCti3cccetmDp1Y3zuc4cH22611dbo6ZmI1157Ff/1XxcB0EJ3p51m4OWX/xQyzQOA006bh9NP/youvPA8HHHEFzFx4kT09q7D3//+KmbMmImDDjq4pnOxLAtvvfUmAMC2Lbz++t/xxBOPYbfd9sBmm20OADj00MOxaNFD+O///i+cccbZgUu/YRg4+ujjgmPtt98B+NnPHsaOO34SW265FZ599mmsWbO6pnGddNKpuOSSb+Cqqy4PXPp//eunQ9t88pM7obW1DfPnX42TTjoFK1euwp133o4pUzYqcdTiHHzw53DbbQvQ19eHSy75bk3jrQUS/AQxxhFSAl5S/4abuEYQBEEQBDG+sG2raIu47373B/jsZz+Hm25aiJtvvh4/+MF3wLmB3XbbHeeddyHa2tpD28+YsQuef/63mDEja843c+YsvPzyn0Lp/ACw+eZb4I477sUdd9yK+fN/jHQ6jUmTJmPGjF2w7bbb1XwuK1Z8iLPOOgWAjpRPnboJjjvuRJx44snBNm1t7Viw4HYsWDAf11xzFaQU2GmnGbj55jtCLflOPvl0rF/fi7vvvgOcMxxxxJH48pd3wE03XV/1uObM2RcXXfQt3HffXfjNb57FJz7xSVx++VU488zsuCZOnIQrrvgxbr75elx88YXYfPMt8d//fSkefPDeqt6rq6sbM2fOwurVqzF9+k5Vj7VWmKKi3mEjhERvb3Kkh1EW0+To6WnH+vXJ5hmUEKOC5WsGsbYvA6kUNpvSgak9hUYipaB5Q9QCzRuiFmjeELVA84bIxXFsrFv3ESZN2gSxWLzstk017SPGDMOZN8nkEL7whc/h1FPPxHHHnVBx+0rzeeLEdhhG5Qr9UVfD/9577+GUU07BzJkzsc8+++Caa64pcD8shlIKCxcuxH777Yedd94ZxxxzDF577bWS20spceSRR2KHHXbAM888U8czIIjRhRAA5wyMMc+xnyAIgiAIgiCIZpBKJfGPf7yFn/zkWjDGcOihh1feqY6MKsHf39+Pk046CY7jYMGCBbjggguwaNEi/PjHP6647x133IEbb7wRJ598Mm6//XZMmTIFp556Kj744IOi2z/yyCNYtWpVvU+BIEYdrpBgTJfxS0kr2QRBEARBEATRLP71r39i3ryT8eqrr+Db374MXV3dTX3/UVXD/8gjjyCZTOKmm24K3BqFELj88ssxb948TJ06teh+lmXh9ttvx6mnnoqTTz4ZALDrrrvi4IMPxp133onLLrsstH1vby9uuOEGXHzxxbj00ksbeEYEMfK4QoIzBskUqICHIAiCIAiCIJrHrFmz8cc/vjJi7z+qIvwvvvgi9tprr0DsA8AhhxwCKSVeeumlkvu9+uqrGBoawiGHZF0m4/E4DjroILz44osF28+fPx977LEH9thjj7qOnyBGG1IpSKWClH4K8BMEQRAEQRDE+GFUCf7Fixdj2rRpode6urowZcoULF68uOx+AAr23XbbbbFixQpkMpngtTfeeANPPvkkLr744jqOnCBGJ1IqSAUw5v9Mip8gCIIgCIIgxgujKqV/YGAAXV1dBa93d3ejv7+/7H7xeByJRCL0eldXF5RS6O/vR0tLC6SUuPzyy3HKKadg8803x/Lly+s2dtMcVWsnBfgOjlGcHImxg4QCY4BpGlr4c17VXKV5Q9QCzRuiFmjeELVA84bIRUoWaTs/EMIYqNyRiMxIzRvDYMPSmqNK8Dean/3sZ1i7di3OPPPMuh6Xc4aenvbKG44CurpaR3oIRBNJWy462tNoa4khY7mIx3lNc5XmDVELNG+IWqB5Q9QCzRsCADIZA2vX8sgCiRaKiFpo1ryRkoFzju7uNrS0tNR8nFEl+Lu6ujA4OFjwen9/P7q7S7sZdnV1wbZtWJYVivIPDAyAMYbu7m4kk0nMnz8fF1xwARzHgeM4GBoaAgBkMhkMDQ2ho6OjpnFLqTAwkKpp32ZhGBxdXa0YGEhDCErrHi+kMi76B9KQwkXGEohZHOvXJyPvT/OGqAWaN0Qt0LwhaoHmDZGLbVuQUkIIVbZXOmN67gghKcJPRKbZ80YIBSkl+vtTSKdFwe+7ulojLT6MKsE/bdq0glr9wcFBrFmzpqA+P38/AFiyZAl23HHH4PXFixdj0003RUtLC5YvX46+vj58//vfx/e///3Q/t/85jcxefLkssaAlSj3pTKaEEJuMGMlho/tCDhCQkkFKRUcR8BxBBiLlvLmQ/OGqAWaN0Qt0LwhaoHmDQFogRQFX6yR2CeqYaTmTaUFrEqMKsE/d+5c3HbbbaFa/meeeQacc+yzzz4l95s1axY6Ojrwq1/9KhD8juPg2Wefxdy5cwEAU6ZMwX333Rfab+3atbjwwgtx3nnnYe+9927QWRHEyCGlAlMAYwyMAVLpL6kq9T5BEARBEATRZJ599lf42c8exrJl70MprWd22mkG5s07Bz09E0d6eDXxzjv/xosvPo+vfOWkYaWpE9EZVYL/2GOPxf33349zzjkH8+bNw6pVq3DNNdfg2GOPxdSpU4PtTjrpJKxYsQLPPfccACCRSGDevHlYsGABJk6ciO233x4PP/ww+vr6cNpppwXb5Lfh8037Pvaxj2HWrFlNOkuCaB5SqWAVkgFQABSU9xNBEARBEAQxGnnwwXtx22034eijj8dpp50FpRSWLHkPzz77DNauXbMBC/7/4O6778CXvnQMCf4mMaoEf3d3N+69915cccUVOOecc9De3o6jjjoKF1xwQWg7XZsTrmM444wzoJTCXXfdhd7eXnz84x/HnXfeiS222KKZp0AQowopFcC04meMQUlF6WsEQRAEQRCjnJ///FEccshhOO+8rA7aa699cPzxXx11bZYtK4NEYmTE+0i+94bCqBL8ALDtttvinnvuKbvN/fffX/AaYwzz5s3DvHnzIr/X5ptvjn//+9/VDpEgNhikzKp7xrwIPyl+giAIgiCIUc3g4AAmTZpc9Hech43ann76CTz66IP44INl6OrqxiGHHIbTTz8LhmEEv7/qqstx2213Y+HCm/GPf7yJnp6JOPnk03HYYZ8PHeutt97AwoW34O2334JhGNhrrzn4+te/EWQUfPTRCnz5y0fg0ku/jzfffB0vvPB7TJ48Gffd9yj+9Kc/YtGih/Duu+/Atm1stdXWOO20edhzz71D4wCAww47EACw8cab4Oc/fwIA8N577+Lmm6/HG2+8BsMwsNtue+Dccy/ExhtvHIxvzpzZmDfvXAwODuCZZ55COp3Gc8+9ONzLPaYZdYKfIIj6IZUC89L3dc9QBUl6nyAIgiAIYlSzww4fx+OP/y823XQz7L33nJLi/5FHHsCtty7A0Ucfj3PP/S8sXboUCxfeAiklzj77vNC2l112KT7/+SPxla+chN/+9ln8+MdXYPLkKYEgf+utN3DeefOw55774PLLf4RMJo077rgVl1zyDdx++92hY91++03Ya685uOyyK4OMg48++hD77DMXxx13IjhnePnlP+G///vruOGGWzFr1mzstdccnHTSabj33jvxP/+zAO3tHYjHYwCAVatW4pxzzsBmm22O7373Cti2hYULb8V5552Je+99GG1t2bbSP//5w/jEJ3bCJZd8F0K4dbvmYxUS/AQxhnFdlVOuz6AURfgJgiAIghhfKKVgSyf0mgCDG9HVf7jEeazqDknf+MY3ceml/42rr/4hAGCTTTbDPvt8Csccczw22WRTAEAqlcSddy7E8cd/FfPmnQMA2G23PRGLmViw4Cc4/vgT0d09ITjmwQcfihNPPAUAsMcee2HFig9x9913BIL/tttuwo47fhxXXXVtMN5p0z6Gr371GPz5z3/EXnvNCY71sY/tgEsu+W5ozF/60jHBv6WU2GWX2ViyZDF++cvHMGvWbPT09GCzzTYHoBc0JkzIjm3RoocghIuf/OQmdHXpduzbb78jTjjhy3j66Sdw1FHHBtt2dnaHxkiUhwQ/QYxhXCnBeTbCD0U1/ARBEARBjB+UUpj/6i1Y3P/+iI1hWvfWuHDW2VUJ1GnTPob771+EV175C/7v//6C1177G37+80fw9NNP4OabF2K77XbAm2++gXQ6hU9/+gC4bjbSPXv2HrAsC4sXv4dddtk1eH3u3P1C77Hvvvvj5puvhxACjuPgzTdfxznnfD3klbbFFltio42m4p//fDsk+Pfeu7CD2urVq7Bw4S145ZX/w7p1a4Mg0w47fLzi+b7++muYNWt2IPYBYKuttsbHPrYd3njj9ZDg33PPvUnsVwEJfoIYw7hCwtP7ui0fSPATBEEQBDHe2DDFYSwWw157zQmE9l/+8mdcfPF/4e67f4qrrroW/f19AIBTTz2h6P6rV68K/Zzv7D9x4kS4rov+/j4IISCEwI03zseNN86PcKxJoZ+llLjkkgsxNDSE00+fh8022wKtra346U9vw6pVKyue6+DgALbbbvuC13t6JmFgoL9g3ER0SPATxBjGFSpYAWXQrn26LR9BEARBEMTYhzGGC2edXZDSbxqjO6W/GHvssRe23XY7vP/+EgBAZ2cXAODKK68NtTD38VP/fdav78WUKRsFP/f29sI0TXR3T4Bt22CM4cQTTynIBAAQKg0AvMzRHJYv/wD/+c+/8aMfXYdPfSq7v2VZkc6tq6sL69f3Fry+fv06bLHFVnmvbpgLOCMFCX6CGKMopSClBGfZlH4JUISfIAiCIIhxBWMMCSMees00OQyMrvZ2ufT2rsPEieEoumVlsHr1KmyzzTQAwPTpO6OlpQVr1qzCvvt+uuIxX3zxeWy//Y7Bzy+88DvssMPHYRgGWltbMX36Tnj//SXYccevVT1eX9ibZix4beXKj/Dmm69jiy22DF7zf2/b4YWAnXeeiV/+8jEMDAygq0svZCxbthTvvfcuDj30iKrHQ2QhwU8QYxTpOfJnU/oZoBQkKX6CIAiCIIhRzVe/eiz22edT2H33vTB58mSsWbMav/jFIvT39+HLXz4OANDZ2YnTTjsLt9yyAKtXr8Yuu+wKwzCwYsVy/OEPL+LKK69BS0u2R/0zzzyFRCKB7bffEb/97bN47bVXce211we//9rXvo6vf/1sfO9738IBB3wGnZ2dWLNmNf7617/gc587HLNmzS453q222hobbTQVt912E6SUSKdTuPPO20MZBQCw9dZbAwD+939/hk99aj+0tLRg220/hqOPPh5PPfUELrzwXHz1q6fCti3cccetmDp1Y3zuc4fX78KOQ0jwE8QYRUpAKsAwctOedFo/QRAEQRAEMXo59dQz8dJLf8BNN/0EfX3r0d09Adtuu13Q4s7nuONOwJQpU/Doow/iF794FKZpYrPNNsfee38KphmWepdddiVuu+0m3H33T9HT04OLL/52yIhvp51m4JZbfoo777wdP/rR5XAcB1OmTMXs2bth8823KDveeDyOK6+8BvPnX43vfvcSbLTRVJx00ql49dVX8K9/vR1st/32O+LUU8/Ek08+joceug8bbTQVP//5E5g6dWPcdNNC3Hzz9fjBD74Dzg3sttvuOO+8C0Mt+YjqYYp6dA0bISR6e5MjPYyymCZHT0871q9PwnVHb/oSUT8sW+DfH/ShNWEgZnIAQO9ABttu2o3ujkSkY9C8IWqB5g1RCzRviFqgeUPk4jg21q37CJMmbYJYLF52W9Pk42bOPP30E7jqqsvx5JO/CbXCI6qnmfOm0nyeOLEdhsErHqfyFgQxihhKO1jbnx7pYWwQSKWglApS+jUMkpb4CIIgCIIgCGJcQIKf2KDI2C4GU07lDQmvhl+FXWG9RQCCIAiCIAiCIMY+JPiJDQqlANsRZDwXASEVlAI4D9fw06UjCIIgCIIYP3zuc4fjj398hdL5xykk+IkNCqUUXKEgmtQ3dUNGSYV8hz7l/Y8gCIIgCIIgiLEPCX5ig0JIBSEkXDE+TFaGQxG9D0YRfoIgCIIgCIIYN5DgJ4bFuv4MbEc07f2ElHCVgiDnuYoIKQHGwi8yUA0/QRAEQRBjGnrWIcYC9ZrHJPiJmlFKoT9pIW03T/BLCUihKMIfgeJrIgqSFksIgiAIghiDGIYBALBta4RHQhDDx5/HhmEO6zjD25sY10il4MrmCkgpdXSfBH9lXCELA/yM2vIRBEEQBDE24dxAa2sHhobWAwDi8US4W1EOUjLyhCKqphnzRikF27YwNLQera0d4Hx4MXoS/ETNKAVIIZuaNiWk0mn9JPgrIoQELxD8gFR07QiCIAiCGJt0dU0EgED0l4JzDinpmYiojmbOm9bWjmA+DwcS/ETN6Gg7mlpP77+X7dAXdCVcoQpWtRljoL9tBEEQBEGMVRhj6O6ehM7OHgjhFt3GMBi6u9vQ35+iKD8RmWbOG8Mwhx3Z9yHBT9SM9MzzZBMj/FIqmAaH1USjwA0VV0jwfMEPUA0/QRAEQRBjHs45OI8X/Z1pcrS0tCCdFnBdioQQ0dhQ5w2Z9hE1I6VODxducwSkVLqHvGkwOK4k4VoBIRTyFwYZAwQ51xIEQRAEQRDEuIAEP1EzUikoBThNqqdX3vuZBock476ySC/zoiClH4xa1RAEQRAEQRDEOIEEP1EzWvAruE0qClcKnuBnnnkfCddS+IsxBSn9DFTDTxAEQRAEQRDjBBL8RM0opcVjs8xOpNQLDKbByam/Ar63QrGUfiqFIAiCIAiCIIjxAQl+omakVJAApGxOaz6lAKngpakzuOSqWhIpFZQsTOkHGBSaa7RIEARBEARBEMTIQIKfqBnlKXCp0BQBKb2cfsb0ewuK8JdEKS/CXySlXykApPcJgiAIgiAIYsxDgp+oGd8YTqrm1IUrBUhowc85g02CvyQiMO0Lv86Y1voU4ScIgiAIgiCIsQ8JfgJKKawftKpOy/cjyFKqptSFK2gjOgYGgzPYtmj4e26oSKWFfYFLv6f4Se8TBEEQBEEQxNiHBD8ByxFYP2jBcqoT0EJ6pnCqOTXhvmkfY9CC36UIfyn0Akx+/b5+RXndFQiCIAiCIAiCGNuQ4Cd0T3spq07Ld4WEYXCIJgl+P7rPmI7wu0JCUI+5okipwIrcEsa86D/pfYIgCIIgCIIY85DgJ3RPeyGrFu1S6lp6pZqU0q8UlOc2ZxgMQipy6i9BqXvJoF37FLn2EQRBEARBEMSYhwQ/AakAIaqP0rtSgvsmcE0Q/LouXaepc84gpCSn/hIIIVEsxO+b9lGEnyAIgiAIgiDGPiT4iSClX1Up2oXQpn0MDE3Q+7p+34/wcw4pQRH+ErhSgvMiNfyMeeaHdN0IgiAIgiAIYqxDgp/wIuWqKtGu0/hl0PatORH+PCM6peBWEeEfT63o/MWYYiiFpizQEARBNIuhtIOM7Y70MAiCIAhi1EGCn4CUSgv+KlSgLxr9Nm/NMu0Ll57rOv4opDIOlq0abMrCxGjAFQrF9D5j5NJPEMTYY/2ghaG0M9LDIAiCIIhRBwl+Aq6rIGR1NfxSKSgFHUVmqim19EqpUF0654DjRHvfjC2QTLvjJgLkitIp/QgKIwiCIMYGQohxs6BLEARBENVAgp+AIyQUVFUt7qTUUWLGtIGe24T2eK5UnmDVGAaD5UQT8BlHIJlxkLZEo4Y3apBKL+CUSukHyLSPIIixhSBPF4IgCIIoCgl+IhDr1dTD+yn9nDFwxiCaoKOllLkV/OCcwXZlpPT0VNqFkBKDKbtxAxwlSKmb7pXW+5TSTxDE2EK3aaWuLQRBEASRDwl+Aq6rzfeqEe1SZSP8jFW3WFArUgIsJ03d4AyuVBXr+F0hYbkCrQkTScuF447th0IpFVSZCL8Cowg/QRBjCu1FM7a/2wmCIAiiFkjwj3OkJ5gNzqtKy5dK1/wzL8LfDMEvpApF+A3OIUTlqI7tCDiuQEdLDLYtkB7jdfxSaQPGXMGfzDhBfSsbBRH+viFr3PgpEATRWKRSUFBwKKWfIAiCIAogwT/OEVKb75kGg6jiYcmv4eecgXMWLAA0EinDzvMGZ7qlYIUIv+VISKlgmhwKCunM2BaaUgISCsz7dK8ftPCTR9/AL15Y7G0x8hH+dQMZpMb4fSAIojkoz0RWymglXgRBEAQxniDBP84JIvwGr+phSWtsrb51qzc03CFZ5Jn2ca6FayWjJtsR8McaMzkGUvaYfijUiy8IIvyr16cglcLq9Slvi5GN8LtCwrJF5JaKBEEQ5VAq6yvTjBaxBEEQBLEhQYJ/nOPX4pucVfWwJKWC39uNMxZE/BuJTlPPf7Vy3WYq48A09I6JmIG0JWBHbOe3IeLfG39xxO9MEKS7KoaRPHvHlXBdCYfqbQmCqAPK+zsmm7DwTBAEQRAbGiT4xzlCKgilYBie4I+owZRSAPNqwpnet5ER21zPgDDl/QOElEjbAjFTT/WYyeGIsV3HL1V2MQYAMrYW/K5vVshGNsLvCAlXSjhjeNGFIIjmIf3ovlSR/4YRBEEQxHiBBP84R0oFpnQ9vJTR6/ClVzMJAJzrBYBGPmj5AjVf7nMOWE7p9gK2o6PJMUNPdcYYOBhS6TEs+GV2MQZAYI7nR9SZl5ExUriuhCsUbLcJvRwJghjzKC+nX6nKXVsIgiAIYrxBgn+c45v2Ma8QP6oQlDkp45wxiAab9kmJ7DhzMDgrm55vuxKu1BkMPvE4x2DaHrOpn/nnFUT4hfZoYADUCEbBXCGD7gpUb0sQxHDxk5oa/XeIIAiCIDZESPCPc3xxyFl1TvtSyMAxXy8WNNYsya/RzM/oNziH44qS7207wtsvu2MiZiBjizHbFk7kXYu0pc/TN1ZkDBAjqPgzttAlJJLqbQmCGD6+Fw1k9EVrgiAIghgvkOAf5/jikLFs//YouFLmpdc39kHLd2AuiPAbDEKiZEvBtOUGhn0+psHhChmY2Y01hBte4PAj/ICX1s/YiNa5ZmyBeIxr/wjqm00QxDBRCpDQUX6K8BMEQRBEGBL84xwhJBj3hTRDVM0uBMByLfMb7I4svRrNwgg/gxCyqHGfVAppyw0M+3IxDYbBlN2o4Y4ojpDgvLjgd12d0i9HSPG7Qrvzx00DUkmIMeqwpZTCmr40HHdsnh9BjCZy/z5QhJ8gCIIgwpDgH+e4QoZa3UV9WBIyvF+jIys6glNc8LsljJocR8JyJEyjcJonYgaSllvW4X9Dxc27N7mlC45XijFSz8SOKyFcibjJISXgVjkQITeMRQIhFQaS9pjuBkEQowX9p0d/6ZHgJwiCIIgwJPjHOa6bEw1WiNyuTchw2rjfmq9R+F0BeJ7i980Giwl32xUQQhaN8MdjBmxbBPXtYwkhVOg6hSL8Qnr3amQeil2vJZ9haN+HalP61w1YWNuXadDo6ofwuhBQyQJBNB7fjBQo9DAhCIIgiPEOCf5xjpMrDln0OnwtKrM/M4aGRsuzpn35jfkAgBUX/I4s6uwPAJwzKKgxJ/h1WyoZOudcrwLHlVWlvSql0D9kRV4IqoTjSsC/JwxVR+st2y3bhnG0IKSE4yqIMZhBQhCjDeUtVnPGIFwS/ARBEASRCwn+cYwsIg6jRH59N//c/ThDQ8VNbspmkd8WFfxp2wErM8NjJsdA0qmbmB0NZDMh9M9unr+BK7TZor+AUgnLEVjVmyrb+rAaXM80EIDnJVDdtbcduUHUxbtSwRVCmyQSBNFQ9HcZA+OMPnMEQRAEkQcJ/nGMlApSAdybBYwxuBFSkKVUUEConp4x1tD0Zf1AV/z4hsELBKlSCqmMKJrO75OIGUjbbt3E7Ggge0/1zcnkdSJwgpT+Ulcz/3hapNerBCBjC/iWCoyjqmi9VDpN3nHFqF+kEUJBSIypuUUQoxWpFBR01pm7AXh8EARBEEQzIcE/jpFez2I/pZ9HTMtXSkHJcJ04Z6yhD1paoBaP8BuMFQhHV0jYbvH6fZ+YyWG7YkwZq/m97f3si0zeubkiexWjiGaplCde6yf4fRNFgzO4VUTrhVCQEhAKdRtPoxBSQkq1QZQfEMSGjlIAA9Mp/eSbQRAEQRAhSPCPY4T0hLsXDdZR+soCTEotwEOmfVy3fGsUuaZM+RgGg+PKUHq45Ug4rkCsiEO/D2MMHAyp9BgS/F6qvp/Sn7bzFkJcHeFX8MskKhxP6nKJejhf+y35DMNbYOIMdhWC3xUSQki9ADHKH+qFt5hWr2tHEERplFIA03/LhKxfRhJBEARBjAVI8I9j/Fr8bISfRWqT5vc8zjXt457ze6PEjSxTc25wFogrH9sRodT2UsTjHINpe8yIMiG9e8pLRfglwLImV5WQXsvDejxA+y35TK+GhDMGIVVk4z4hFVylINXob81nOwKGoeflaB8rQWzouF5Wk99ydKx8nxMEQRBEPSDBP44RefXenEdrk6aKmvbpqHGjIit+ymYxDO4Lx9wIv4g0uRMxAxlbhFrXbcj4pn1BSn9+Db+bNe2L8kwspYLr1i/CH7TkQ3ahJmq0Xgipxy0RaWFqJLFdibjJvYWo0T1WgtjQkVJ/r3HGoGTjFp4JgiAIYkOEBP84Rj8UZR+MWMQovVTwBH/2Nb/VWyMj/GDFj+2nceZG+FMZF6ZZProPAKbB4QpZEAnfUFF59zR/IcP1TPvKeCCGkAp1TOlX2ZZ80PdNyuj+AK5QYEovLI32lH7X849w8+YlQRD1R3rNPzhjnnHp6P5+IAiCIIhmQoJ/HJMv4rgnBCs9LOn9WGGEv4EPWkKGMwpyYYwBKtthwBUSllO+fj8X02AYSjt1G+tIIvLs9/MNCR3hLdSoaPdKSlmQPVErjitCrR0MzuCq6MfWLSQBqNGdJi+8a2ZwBgY26g0GCWJDxzcqZRyQoAg/QRAEQeRCgn8ck/9QpOsfo0T4C3u6cc4a+qAlfbFXAgUVGA76vdrLOfTnEo8ZGEo7YyISq9tTZcmP8DuuAGOIbNrnm8/VI6Ke25IPgJdpEF3wW44A43qejuZ75Xc14FxnI9RzrH1DFgaSdt2ORxBjAeFlnGUj/CM9IoIgCIIYPZDgH8fkt9GLGqWXsjC9PjBLatCDlhAoGeEHPMd3X/C7wqsVjyj4TQ7H1YsEGzr53RMyVp5pnyvBoIW2ipDT7y+iOHWIqGdsUXBPWM57VMJ2JAzOYHA2qu+V3/3C4AyAqqvgH0zZSGXGRjYKQdSLIMLPGABGEX6CIAiCyIEE/zjGFTLkYp9Nhyy/n14QCItv5oWNGxrhL/N7gzPYXjTbdgSYqly/H+xrcAipqmoRN1rRNfrZn/0If2vCAAA43u8lokX4/TKJqKK83LgcIWEa+fclWsq7UgqOK2Bwrhd3nNF7r/xuAtxbnKjnWF1XwhrF504QI4EW/NmfqYyGIAiCILKQ4B/HuG62JR/gt9arXMNf0vBNNe5BS0euS//eyOnpHtWwLxdfUG7oCCFD7RLTnuBvb/UEvyu8xZnSbQ5Dx5N6jgw3op7fks+HMb0IUQlXKAiJnAi/iDT+kcDvJsAYg8E57DrOK0eouh5vQyNju6M6u4NoPkHXGH9JOGLLUYIgCIIYL5DgH8c4QoYEf9QovZCyuGM+iyYia8EXnqUwONNRZFciZbmR6/dz9x8LTv2uK4um9Le1ZiP8ALy0/gjHE7qNnpDDu7f5Lfl8OGdwIkSshZQQQqf0c84gGri4NFyEVEE2CvfKD+phZimVLg9wRX2OtyGytj+D/qQ10sMgRhFKeW1b/Q8dG73fDQRBEAQxEpDgH6copU3ueMEMiFDDL1BSfI+UaZ8vSlOWC9eVMCPW7/uYBkfaqm/kdCSEmZu3MOKn9Le16Ovhuno8EpUFvG+oZxo8iKLVPC6hoPI6OwCAwVikiLUrFIRSMAwd4ReiPkaCjcCVCvBKSvS8rE8bQSGU7qJRp+NtiDiOoPpsIoRvVJr9ahndXTwIgiAIotmQ4B+nSKWdjAuEe4QIvyslGC9U3wysIQLXH2sl0z4hJdKW64nU6lL6TUNHYutpsLZ89RCWrBhA70Cmaa7y+Ys4QQ1/q34xiPArVtFgUXpp/6bBtfP1MISW44qiHgzcy8yotPggvMUTxnSEXyo5ah/qXUeCeffAYAxS1GdeSa89ohCj99wbjSNUsGhFEEBuhF9/w/jfKQRBEARBaMyRHgAxMviti/KFsULlGn4hShjoMTTkYdwXg+VN+zikBCxbBMKwGkyTI5XW9cHVZgcUQ3rZBmnLRV/SQmvcxKSuFnS1x9GaaMzHzr+n/rlLqWA5WvC3tOjXsg/Cle+TlPoYhuF5OwzjGTq/JZ+PLsVQFRdphFSBEaPfessdpZFe2xWeQ7+O8LtVtB4sh19WoVP7R+e5NxKlFKSUkTwfiPGD8hYm/Rp+zti4zYAhCIIgiGKQ4B+n+P3VOcs3Uasc+RWqeD09Z4Wt/uqBlF4Ep1LU3qtxzq8Tj4LBGVyp4LgSrYkaB5qDKySkVOhsiyFmcqQsF8vXJBFbn8aEjjgmdCbQ0Ror60tQLVoQIjh/P7oPAK0t+v+zhmesYlRdR/h1uYMcZs18sZZ8gJeZ4UgIoWAapfd3hQxWfLTXxOh9qLfdbPcLxlhQPjNcpPJTlaN1Nhhr+Jk+FL0lcvG/p/yFTsYwLhfECIIgCKIUlNI/TtHR4GzqsQ9jlVuwCaEK9gM88daAh/FsBKcSOi2/WsM+wBdmqJsDuB+1NriuW29viWFSdwKJOMe6/gwWr+hH/5Bdl/fykV4k2a+28E0I4yaHYfrj8s6PVc7k8DMGDINBydpr+H2jObNIGYgRMT3fckTYb4JhVKa1+8Z6Rm67S8XqIkCEkF5eRn0WEDY0/PlIgp/IRXeNybblo5R+giAIgghDgn+cko3wh0WYjo6UfliSXkpxscg0YwxOAyIrSqFiDT8AcA7YjkCsxpR8znVJQD0QUotYnidyEzEDPV0JKAWkM/XtCiCl8h58wxH+RNyAwfV9yQpPVdGl37/XBueQEcwcS+EKWdJIkXMGKVExPd928kQ0RqfwE8Lzxsgda50WJ3RZAwDFRm05QyPxS0z87y6CALxSD2T/JnGmM2DGaycLgiAIgsiHBP84RSp4zsZ5bdK8+uiS+0kVboEU2le76de7NZ9UKhTBKQXnDBlH1BThB7SfQbpOrflcoZ3aSy1SmAZD0nLq8l4++Ysx/rm0xA1wwx9XFSn9UkH5GQMRzBxL4bjFW/IFqPKu80opODl18QDAeP2yMeqJkBJSSBgsPFbfS2E4SOm5kXNtDDje8E0k9QIgiTlCI/Pa8nHGtBcNLQoRBEEQBAAS/OMW6UcL86hU/1gu2u7X/9f7YTw/glOK1oSJthazasM+n5jBYTmiPtFYIaHKGOPFTA67zl0BpBfV8k8/47UZbEkYgWFe1lQxQvtFBYDp+8pQ+wN0qZZ8Aaz8sXV5hDZm9DE4gz0qBb9uH5gb4a/XWF2vNaU+Xn1bSG4I+FFbIetjgkiMDYKSr5wa/uF2FSEIgiCIsQQJ/nGKkLJomJ6z8vWPUvmlAIW/45wFfcLrSX4EpxQxk6OjNVbz+5gGh+tK2HWIntqiMJ0/l5jB4bgCdh0ivz75WRtBSn+Mg+Wl9EcxZww9MFcQ5eVwhCy6uJRz6LKLLEJKiLy6eM4ZHKf+2STDRQgdgc4X/I4jhj1WxzMDNDirS8bAhoYf4YciMUdk0R+r8HeDGuFFIaVU3crDCIIgCGK4kOAfp5R6YNY9zktHf/PrxEP7MjSkdjI/gtMoDMNz6q9D1N3JqzkvfC/d276eUWqRJ6x9075E3AA39C/81m7MK78oR75ArfW+ZiwXRhkHfsZRNmLtiuJRcz/aO5oQsjCvw+AcYphdDgDAdSU4Y9ocU6pRaVrYSJRXTiRG4X0nRg79PZWdD5yx7OLQCJGxBT5clxyVPiMEQRDE+IME/zjFdYvXxDPmpe2XeKD2+4CXMu1rRPQtP4LTKPT4tVgfLtpVvlIbQVbXCH/GEmA575n2U/rjPNTj3hXKS9EvfzzfrwHQ1yZbDlDluEq05PMxvGh9KYSQes7lCf7RmNothATyhIbuXqGG/fDvCBVE+KVUI96W0HIEVq9PNW3hQUg9b6mGn8hFZzaFTTJHejFQSAXXlaPSZ4QgCIIYf5DgH6c4JVLOuZfqXSo6IhUgUcq0r3x2QK3IvAhOI2EcsIZZHy2kLGjNVgzTZEjVyalfKYWhjBMyLAza8sV5EOEHtHEfq2DOCCDkB8CZriGvlnIt+Xw4K1/jrt3p88wlR4nozUdf2/BrenFCDkuAaAGj59RoWOywHIEPVg3hw7VJJNP17TZRCqk800KQIVs9EVLC2YA9IXTL1ux8YL5p3whOEeW156QIP0EQBDEaIME/TnGFLFqH7wvBUtpOO+aXMu3L1vjXk2ZF+AHPqd8anoDRJnOqsuA3ONK2W5frZbsStiMQDwl+v4afweA8EKKOK4N7VQ5X5BphsZpKHfRDryob4a+Uou4KWXD7destOerS2m23cKHH97YoZ4ZZCf8zmU3pHzkx4Yv9/qQFpYCBlNWU9/XNQhWohr9euEJi+eohfLB6aNT5YUSl+N+HyguajUQqrzvJKFuQJAiCIMYnJPjHKW7JCH82bb8YSpaOtjcqsqK8RYZmYBoclj08p34htCAp2YbOI2ZyOK6qi+O65Qg4rsyL8OvjxuN6HEZOaz4Glp95XkButNpPS68WVyi4QoRKCvLxU9RLPaDr8ojwa7pzABt1Kf2+sV4hSqf714gf0ec8u9g2EuduOQIfrNZiv6czgdaEgf6k05QIce58JME/fISUWLE2idV9aQyl3Q3WCLJYBthIZ4FIqeC4si5+MARBEAQxXEjwj0OkLx5KttYrY9pXMbu+/pEVncrbnIc30+BwhRpW7aXrpW9XaiNoGrojQl26Atgi5NAPaLM8AEjEOYDsAoTjRcwrCUYhZHAO2pCxeld8x5XlW/Ihm55fKhpWLGoO6Gk4mlL6lVJwXFE8s0NpQ8ha0e7/2TnFUNsCzHAIxP6QFvucM7TEDWRsF0NNSOsXOVlJtZSXEFmkVFi5LoXVfWn0dCTguLJu5UXNRn8n5X3mPHPHkcJfNLfsDfOaEgRBEGMLEvzjEOGZsRUTpDr9uHS0Vcry/fFYGcO/WpFKC5xm4Ivw4Qh+IVSB+C4GYzrKXo8If8pykZ81H0T4YwwAC6Lsrp/SX+E+uTJbw++PtdqocqWWfICO8LslTLaUUnCc4iK6Uju/ZiOkgshryefDOeAMI4IqVWGngmaeezGxD+h5YTCGgWTj0/r1vGUVW4cS5ZFKYeX6FFauT6G7PQbT5DAMYDBlj/TQakIWWYVmHJAjOEd0l4DsdzBBEARBjCQk+MchMic9uBgKpcVgRUO+CLXh1aKUQkXVWCe0SB9mhF/IkIlUOQyeNderFSkVkhkHMTPc+y7tPWyaMQUGFqT0O66X0o/yrauEyApMPwpfbYTfsl3wMi35AH8xobjg16nsurVdwX4V2vk1GyG0iWCxxQnOh9eRQciwdwbjaFoKdimx79PaYmIw5TS877gr9XzkvPaOEeMdpRTWrE9j1boUOltjwXdGS9zAUNrdIM37pCxcXGUMI5pO73e6cVxJ5ScEQRDEiEOCfxzi9ygunXLOStbhV3bMr39/cCFVxWh5vRmOmHI8F/womCZHKiOGZZhlOQKOI0OGfUqpYCHBjAGMZVvzOUIE7RdLva2U4faLfveGaiP8aUvALGPY58MUita4u0KWNEA0OKtLOUS9EFJBquI1/IahOxHUep+lDN8sg5fvbFAvfFO3UmIfAOImh+UIJDNOQ8fip/Rzxiilv0bW9KWxYm0SrS0G4rHsSlwiZsByxAaZ1i9UoQEtZ80veclFtxHVHiZUx08QBEGMNCT4xyE69ViV7BNfLi1fiPLiuxEPWiLHrCuVcRvuJm0afFhO/bZdoo67CDGTw3aH57huOQKOlDBzBL/tyEAfmqYf4ddjst0c87OSXg3hsgTOvbrUKoYZpSVfQAlPAd3xoITBJGejqs+1kDqaV2whbbit9ISQoWU2gzM4Tu0LCFFJW25g0Ffy+4IxxEyOvkGrYePRC1D6vTgHRfhrYF1/BivWJtGSMNASN0O/0yaYwFC6sYs2jaBYhJ/X2FWkXgihEDM55Ah20yAIgiAIHxL84xApFViJ1noAyqblC1m8nV+wK2d1b0XkP9At+WgA1z3yGp5/bUVdj59PzOTI2KLmVEyrRM150fcyOBxXwBpGpDpjuwUeB3503+AMjGvzvSDC74rApb9chF9JFdxrxhhEGTPHYkRpyedTqu2f8DMNikXNWfl2fs1Gp90XNyg0vM9FrYthQqmQdQbn+n402qnfP34pse/TmjAwlHYaVrMc+I5wFhiLjpb7viEwkLTx4ZohxGMcrQmz6DaJuIH+pL3BCVQpZYGtDOcja+gppDYaFUrBHUWLkgRBEMT4hAT/OMR/eC5N6YfpyhH++jtoSynBAKzqTQEAlq0crOvx89HGfbXV8QtZOgW9GJyzoGdzrSTTLmJm+P38+v2WuAEwBYbclH7ppfSXLs+QnnEjy0npR5WGjFFa8vlwL2KdjxCypF0j96Pmo8SpXwhV2A7cw+AcUsmaRarjilDmgOG1SWz0uWvxV/n+xUwDrpANixBL5XcWyX5mqrmUOl19w4te14u07cKREm0tsZLbtMR1Wv9wsptGAqFUwYJn0G1mhOrn/b+TDCObaUAQBEEQAAn+cUmlhyDOGGSJQF2ldnONSOmXXkcBv2Z5INXYB3fdmk/U9KCmU9CzLfCiwIGa2zc5rkTGEYiZ4Y+y35KvJWFAKu0pYAQu/bqGXyqU9mqQgESesaOqzpAxSks+H4MxOKJw0pUTnEaFdn7NppyY16aHqHmsrhvOchjuAkLk9xUSFfpwBsRiHOsHrbqbdgJZDwPfpV/K6sTcYNLGmr503ce1oVCyXWQOukMLGu7FUG90Blj4Nf9cGp0BUwo/I4cxNMVrgyAIgiDKQYJ/HFKpPzHjpaMSrihMnwzty1hN/drLIbz2cL5B20DSbmjtMvOi2bW4qgshS9acl8I0GZI1RtW0YZ9APM+hP5MT4VdadgfmebaQQUSs1HWUKlszHcCqE1lRWvL5+PX4+eOxXVGym4SO8Dde9EbFdkXZchcMIwXfdsNzKlhAaLCgsR0ZOVulNWEiZTkNMX6TKmsi6ftJVHMtXSGRsYdnjrkh4ziy7EKtTzzG0T9kD3vRRkqF3oFMU6530ZR+li0HGgn8CL/BGawNLGOCIAiCGHuQ4B+HCCHBytx5/bBUKKKU99CdKwLzH+i45/5ez8iK/0Dnp70LqZBssJs0Y6ymlm+u0MZ2xdrIlcI0OCxb1CRcbUd7DeQvMPiCPxE3oJQv+L0Iv79oo0qXdkil28Dli4RqBH+Ulnw+Bi/eBcAqIzj9eThSUbx8HKfCQg9DTfXRfr16/r1QaHydsu2KyHPZNDiEUBhK17+fe9A1gusIf7V+EtoYc/RkgzQbR5Q2ac2lJW4gY4sgQ6hWMraL9YNWw6PbRRcm4ZcgjVxKv/TKT0yDwXLG70ITQRAEMTogwT8OcUUF4z1W3HhPegLR3/fX/7cM1//sjVAKqF9fW68HnNwHutwe0f3J+ouKXAyDIV3DooLIa58WhZjJ4bqyphZzacsFK3Iz016JQEuM6wh/yLRPamNGqNIRflm8vr9SdkguGVvAjCgWeZGadKUUnEoGiGpk22/lYrvlo+GljAkr4TvUF1xKpYq2MqwXUmkfi2qyVVriBvqH7LpnXUipgtnoZ+BUlW3idcLY0Azp6oG/YBQlU0OXM6lhZ2k4roTj1m58GhX/+yv/zGoxGa0X/uKUjvBziGGU8hAEQRBEPSDBPw5xKzzEc6aj6vliUEqtZX2B+Z8P+jGYcrBibSrYhgX1tfUZq//AmF8LOdBgwW8aHBlHVP3A6AoZxeOs4L1cqaqOhimlMJR2EDcLP8YZy4vwezX8HDxbw++l9HtB/KLomunwa5wxiIjt0KTUYjGqlwHnKKhJ1+0jK2RLlMhGaTa+WWO5z5XBGewaXOyFV6+eL9g4Zw0VsEIoCImq/Ch0Wr+LZLq+GThSocCYLWpmh1IKjisghByXBmr+93GUlH4AiJkM/cMsm3KEhO2WXlCsF8HfpPwIP2dVl33UbUxBS1P92RHjdKGJIAiCGD2Q4B+HOBWc9rXDcaFBW7aOVv9seTXuuYZznGVT/+uB3zqO5Zj2Ac0Q/AyOW71Tv+PISCZ1+SilqvYMsB0J25UFhn1Ati1fIqbHkh/h9136y6b0551HOW+HfFwhi4rUUvhGbLk16a6QEBVSkTlDTaUXUVFKRTIxE6K4KM/F4KymFGffoC5fsHHOhtXOsRKukJBCwqhiPnOuo++Dqfp+PgsixVVE+IWXIeHK0dEiTSmFtf3ppolA4RmJRq0yaokbSGbc4Pu9FmxbwhWipClovdDfYaqkr4waAcHvf69yr4bflWpcLjQRBEEQowcS/OOMUvXAufgOx/mBU6V0b3Y/0mZ50crc3tvZHtn1EvxeeiQAx2leSr+OusuqBb/luJFFbvj9WNXtsCxHwCkp+PW1isd1Sj+AcISfMQCs5MJMsdtXTctFPyodNR1cp2mzkIgTsnIqcql2fvViMO1gxdpkRfET5Xz9iHy1GQk606Hw2EaNPhPVvK+rqus4AejOEH1D1rBaTRaMpUg6StRFRT2PtAhr5PWKiu1KrB+0Qt+bjUSfe/TPYjxmwHHlsNL607br/Q1pdEo/itbw61+OjL+H9M5bu/RrL4HRsNBEEARBjF9I8I8zStYD58BZNpof3lfXfTPuRV+9h6l0zoNrsFjQgAi/08QIv38e1YgWpXRafrUCCQBMkyNtuVVdN98MqtjDbjow7ePBAk3WtC+3Tr74sWWRbgzVtFwUUsGNWDccwMImdK7wImUNiJpHpW/QwmDKDha3ShGI4wpjFVJV7TkgvPKKYmnLrpANq1MWQpacX+VoiRtIWwJDdYzyyzyjUcYR2b/Az76ImQyWPfLCy3KENulsUtQ3yiJvPoZR+3eslAqWI4pmidUb6f2BKHpqrPSCZkPHlNNC0h9Ho7tpEARBEEQ5SPCPM4qlBwslsNZaA6G0qGGMQRXpc+0b6HHGQunnmYIe8qpuqZT+Ax3Pq+FvdIQf0KX41aTZ+5HEalKgfWIGh+1Wl1GQTDswi0T3AQQu24mcCH/ItA8Aypj2uUVaXfktF6M8RPvpytWIRYZwPb6I0AOe+yK6AXX8li0wkLThuKrIHA8TRRwb3CtbqFLw5xrWhY5nMAjZOKd+VygwVf1cZoyBc4b1g1bwmvJEp+NqsZu23Krqu528BSjGEDlN2he88ZhR8T42A9sRyNiiadFnIaRXU16d+WIy49bUmtTxOiKoJrjk+4kfpU5tJHS2UkovjHtjMni47I0gCIIgmo050gMgmouQWoznRk1d6cASFoQSMJih66lVoRj0W7UxFq4dLoh+qvo9aGUfnpob4QeqT7MXXtuv1kT162gxk2Mo7cB2BBKxyr3shJRIWW5Rwz4gm9Ifi7Egwm/kRfiVZ9xX9PiiWM24l+UhFXiFLAYhFFClWGQ8nHKto2Llj2FwBtvRtf5GnZcvB9M2LEegNWFgMO1go57S2wqpKno16sWJWlL6ZdFjG4zBErqdY6wBa7eiyKJPVFoTBtYPZLC+TyBjCUgpvYivnj+GwbDV1E50tMaijSVvPnLGIqdJ+5F009CRVldImPWeLFWQyrhaFDdL8EsFVuVbJWIG1mdspC0X8QjfR7k4QsKV2hi24YIffslX4URlNbbBHC7+PPfnq8F508o3CIIgCKIYFOEfZwT9rHMenl0lIJQLpfyobDaan4uSKogW54r8gocZLxJcl/EGNZrhCP9Q2mm4O7tpMGTs6Gn2rpSQUkbuW56LH32LGuG3bAm3RP0+kFPDn6OnTDNbww8ArFyEXxSmyfrGelEis7WIRc7C9fi245ZtHwlko+b1jpZKqdA7YCEe44jHODKWKHtvdNp9+cH6PgW1RPiLHZlz3XqsUS2/LEeE0uirIREzAAYMphzYrgjMPmMmQ2vCgGW7VYkxkZeVxDmDU0V5CcBgcg5RZRZNvZFKIZVxANa8um6pWxxUBWMMnOnv2WpxXAml9IJUo1PqdQJY8ZR+zqKXfdSTbJlBdqHVcatf6CMIgiCIekGCf5zhO1bnRvilEhDShYTfAs8zdCtI6Qf8J8dMTqpnsSh4PSP8/sNTbnqpUlpMNBLT4HBE9AdzIQqvbTUwxoJ2epWwHAFXlo5U+vckFkORCL93Pqp0hN8VhTW/3OveEEVc1yIW8+vxLaeyHwLnDG4D2m8NZRwkMw7aWkzETQOWK8oa9zl5NealUFBVixDbFcUFjecz0ajUcNut0oMhB8YYutsT6GqPo6M1hraWGFoSJhIxQy9Sqeh+EIBnNJlzffXiU2Hr0KL7eh4IhsHgypFtkWY7ArarEDeNpi081Hq+8ZiB/qRd9f6OkDqjgKHhWQx6QYEVLVdgVWSB1JN8f0nT0It8bsSWpgRBEARRb0jwjzO0iA8/eAgl4CoXUuU8HBUREkplU0NzxU9+Sj9j2mSrLuP1Fhlyo7h+ynvjW/NxuEJGNoVzhSztgheBmMGRtKItYli2WzSNFYAXTfLq9mMKzFNKgWmf66f0F4/W+4aN+Q/RjANSyYLuDcWoRSz69fh+FoHjVD6G74Jd70he/5ClRSLnWljLYl4VWaKMFcga7VWD65ZzWK//uQNe73pH1Cz4K8I85/0I+J/9cEo/Ii8+uY5eLGCMQaH6DIt6YjkSQkgkYkbTOgY4Qta0CNkSN2A5ouruIRnLhWE0J8KuxXXx+1lNFkg9kTJcYmBwrv0rqDUfQRAEMUKQ4B9nFHtAtqUNCRWk9AMAWJEafqngK367TEp/NYZalVB+S74c0T25uwVAk5z6ZfQ0+yg15+UwTR3hjiIIh9JukKKfjy9MGQO4IUu69DOwoo/KUvp9pMOv+xH+Smm6tYrFbHq+LNmKrjisrlFuyxboH7LR2pKtXTYNIJkuLXxsV0RyQec87H8RBadItkWAaowDuDZCRE3lKVHgTAvxKMicvubB/jx6eYkjsnORqfp9N9WC7QgoqIZ3WMjFrTFTw//+S2aqy6RKWy5Mg+sIe4MFt16ELn5unCFyFki9x5S7qK4zcRqzMEcQBEEQUSDBP84o9oDpSAdKqVCkpFgP5VxzpNwIfzpP8FfTvq0Sfo2mHw1jDJjYlQDQHKd+MMCJGImzHbdsu8NKxAwOxxUVnbEdL708bhY30/IXYFriBhTCtaRATlu+Ios6gGeUWKQ0QUfTK/fW1mK9+tIGX8S5Qreu00Z80S5oPUWvb9aXa54YjxlIZor7RkiljeCinK8uW4ge2fWFQqljMx5dOFeD33az1vKUSvAqroPvO5K75uH7SURZ6LHd7PXjxsg6pifTDgyDe4tbje9TD3jnX6P7YjzOMZB0IotmV2gzQtPg+u9Ag+vWi2Ws+URdoKz7mFThwq8a4YUmgiAIYnxDgn+ckR9lkErCVS4UZCil33fqz8XNMX+y8try5T4Q6ge9egl+/fDkR9ljJkdXexxAc5z6DYMhHbGu3olQc17+vTikVBVLCCxHwnZFScM+PwW3JW5CQYLnRfj9xRjGirto+0KkaBuvCGnUWbFefYRfePX4WQPECFHzKqLFlcg168s9/7jJYXst5fLRfd4RaawG13M5qtDLLp6UPl4jUsP9VoeNSunneX4NlcaS31mEcwaJym3f/MUY/zzMEXRMz+2sEbSTbHAEPCiHqPE+xk0OyxGR75XjSghXfw8yjobXrascX5l8GPcEf5N1drE1iGrmO0EQBEHUGxL844z8SKRQAi/9dQB//ZsTroUsYrgkcnphW3kGerlp74zXrx2S9DoD+A9LcdNAtyf4+5ONNe0Dsk79lSJcSilYTm21suEDsYoRfssWUGXS3XMj/LlZGbkRfv98ij0M+y7TpU6l0rUQNXYrYCxrQudWYYBYTbS4EkMZB0OeWV8uhsEhhCoqFv0ShKgRfr9sIQrS8zQoFaE1OCtrJlgreo7UbkBZCcNrURgl+qpUYWcRxhApwu8vxvj7miPomG47XmcNP8KvGj8OIYd3H2Mmh+vKit9JPn67QYOzYNG4kVkM+ZlpufhZIM3IoshFSon8PogGZ7Cq9EIgCIIgiHpBgn+ckV8PnMrYeHepjaXLBFI5hnHFDJdyhYdlh3+Xm9bvR/jrkUopoWvN/QfOZkf4dZp95VZefs35cCOipsmQypR/MEzbTtkUXV+UJuIcCjLHtE//XotqvXgjVPEU9WKmfQAAVllkVSPWC/BS2PXcizZ/8t39h8NA0gJTxWvXOWehz4iPNhqMbtrnly1EoVh0O/94oooFhKhUc/1rQYsxRIpw+98ludNRG/BV7gaSH+E2DD5ijumWI+BICdPkwYJFw13sixgeVgPz0uKjLio5rgSU39bPv0eNO0f/70MxOMsuFjUTKVDw3WkaemGu2X4CBEEQBAGQ4B93uHn1nIOZrGjOdWMuZriU25s9/wEw18HcK/WuS2RFKW0U6AQRfh5E+Jsh+E1P8GcqPPC6QlZVc17u/dK2W/LaSaWQTLuIxUq/j38vWuKGbmmYl9IPALYQXkp/kffwBFYpkVnpAVrIUjG3CDAvwh+hr71PYIA2zPlm2QJ9Q07IrC+XeIwjmXYLzr+adowG163hopa8VFpICjIG6pwaXs31r4XcjgyV8Dt1FHSNKNI6NB+RVxpieq35RqKe2rJF8FnUfhiVxz9cdBaFHJa3iGEUb71aDNsVQXSbMUA1OMLu/30oBuc6w6BRbStLIZQsyI4yDA5XYkQ7RBAEQRDjFxL84wilFByhQg9/KStH8Nu5Ef5Cw6XcSFGh4A9H+Ov1oCeEjjQHNfyxbIQ/ZbmRDfVqhXMGBYV0hah7vWqeYyaH46qSKeq2I2A5EvES9fsAAs+BRNyALGLaBwCOI8BQPD3fa1teFB6ht7UQsoT/f2X0QpOsygCx2jT5UgymbVi2GzLryyVuGrDswjr+ahY4/HsRteRFejejaLYF/NT4+oua4RpQVkLfs2gp7bLM9a20vyvDizGMMaCKzhv1JJlxQotuYNEyHIaDv6hSa4Qf0N9JqUzhQlcxMp5DP5CTUt/AqLYo5TWCbIlQsyP8/t+sXEzOIES0DiwEQRAEUW9I8I8j/DZWuQ9/Qzktl3JFO+Phh1GldNoyiyj46+WO7Kee59bwt8SNwLBuoAl1/DGTYyBll03HrFfNs2l4gjdHkPjGY7YjkMq4EEIGD9XFyEb4OaSSoaiiv5uO8BfvhS7LtBdkvHKrLVvIkg/hleCcwXYk7CoMEKtNky9GKbO+XGImhyNlwdwXQvruYRGJ3sVCSIVyEoF7tfD1FhLDNaCsBPcM1aKktEupSgVxK6b0C1Fk9YqppgsvV0hkbFGwUNccF/vSC0ZR0MZ9Ek4FY0ypFDKOCL6bGIdnrFjzW1dESonyp9b8Gn69CBF+zc9oIad+giAIYiQwK29CjBX8aE9uFDqZk9JvlajD50GkBMGDjJ0X5czklgNw7f5fjwc9KRGO8JtakHW3x7G2P4P+pI1J3S3Df6MyJGIG0pZuhdcSL/6RqVfNsx+VWtuXxpr16aA9moKXHquy25XCX3yJxzgABc6yIsMw9H11XQFmFk8p1r2tix+bs8rRaWcY5oUG0wZ8QkR3Fjc4gzvM1N2hjINkxkFXW6zsdhwMacvFhI5E8JorKomOfBQcES0zRUhZYulF48+Dekb4dRvMOhhQVnyjaBFuqVTR9ScWYS4KKQv25YzBcpproGY7ArYr0NmanV+coSEdFnKpx7wwDQ5XuLpVZbx49gugy8WEUN73TnPa4oki9fL5jITgz8+o0CUcqmJ2FEEQBEE0AorwjyOEn97KSgj+HFOh/Dp8qbwIdl6Ev9MTSI2K8Eup6yF90z4/Qlatcd+Ha4bQP2TVNAadZi/KtufTwqM+Aqm91cBQ2kHacuF6ESyDawHfljAwoTNedv9MkNLPCsbkR20dT6QWexgWskxdrJdyXw7bFTWXNnAv9bUaA0S9SKIKTCarYSBpAUrX2pYjZnIMpcN9yR1RXSmH4WUxRCGaWImeMRAF30OhUS35AkrMv8LxFF9M4wwVBZSUquBTaRiswHS00ViOhBTh+cU5g9Ng88B6CH7/81XJqd/xUtaDCL/3R6Shpn1K399/vb8eP33ibaztz4R+r1RzBX82E67ILyN8dxIEQRBEIyDBP47wI/x+wFcqGRKxli2DFkf5dfh+LWbWtE8/uPjCO1QOwBhYnR60pPJc+nMi/AByWvNVFvxr+zO46+l/4cHn3qnJJZkxBs5ZaHEkH9sVdat5bomb6GqPo6MthvaWGFoTJlriJuIxw3P4Li/E0l5KfzzOC1pW+TXEtqsfSovX8Je+Rr4RVqltpNIGi7WKRYMzCC/yW40BIkPt4sZyypv15RKPcVh2uC95tdFwLfSiPfi7bun2iD763OsnJIRQ3vVvrOCPOm43r7OID+esYoq05QiwvGlkGrq3fDOFYMZ2C0SgUcU8qBUxjPKaXEyDIVXBuM9xZRGzz8am1Esvff7Nxb1YsS6F/3zQF/q93xqwWWQz4QqvucFRtK0nQRAEQTQaEvzjCOE5mfsPz0KJIBoM6D7R0mvTlh+lLxXh7w4Ef/hhsF5mSX49ZDalX4uyaiL8H6wa1Gny/Rn0DtQW5U/EDAwknZICxXKGb9hXL7Jt+VhByypf8DuuyGltluc675Y2+WJMP9CWeogXQtbekg8A537v9Cqvp2I1tzhLZdyyZn25xEwO25VB+YtSSte7VxXh57BdEenz4YjKiwmMR2+bFoWss31j/zywiCntQhSfT5xVzmxwiyw++UaHzaynTqZdmGZ4HPXqLlEO2y10jK+FmGkgmXHKjrXo4kWDI+y+aZ9v3lrQTYChqS0YpdJLrMW+Pg2Dk+AnCIIgRgQS/OMIvxaWhQR/TqTSVkFEmHE/PdHbV3q13Vw/wPkPd91FIvz6AMOP7OSmR/oPdH59aDWt+Vb2poN/L14xUNNYEnEO2yme1q9FX+1p7PUmW8NfJMqUm9IPvTCTH+V3pQQr1fe9QgcGVyjIKlPcQ8fnTPs/VLlowDjgRkyTz2cobYPzwrZvRd+HMQAqaNMY+FxUI/iN6D3obVdUdFg3OAtlHAwXt4o2g8OBc1bRCE6Pp3iKtG9YWG7hxHYLswNMgzfVMd1xtdFj3AwvKPnGhY1sGxdlwSgKfveQcgtLluMWztUGR9j9CL8///P/DnGvDWazUEpBleiKYHoLPI02aiQIgiCIfEjwjyPy21sJJWDZ2VcsR0LlRPhFTuq2gpfSDxZ66OvuKC746xHhz02PzLr0h2v4o6T0r+xNBf9+r0bBb3AOIcPmhD66LRoaHhGNij/GWBHB70f4XVebmSkUGswLUToqWKnVlpAKbhX196WOX23phRa91UfPXCExmHLQUsaMLB/T4BhK6Xnnt8Srpu2ZwaK16PJ9CSpNK4MzODn+G8NFSFVl14HaMDiDE2HRo1RKf8VsE6kNL/MFL+f6u61ZBmqWZ9gXy3PoNxiDbLAAdOtkvlise0g+aUsU7R7SqPUMHU3Xf5P8e5n//cwZmprJIWWZlH6DwxWqqRkHBEEQBAGQ4B9XCBE2sBLKDQl+x1GQfoQ/z3ApaOnHs4LfNBjaWzzTvoIHreIO8NXgv3ellP5yQkcphVU5gn/pyoGaH7BjJsNAqnCBwXfSHw0RfiGzD+XxGApS+sOmfcyL8IeP4ZbrbR202iqd0q9U6f0roeddYSlCJXiNUe6MLZBxRKR0fp94jCNtC33fRWHni0oYhhaclSK7xUw2i8F934M6KStXFDrbN4IoKe2+X0SplH5ZJtvE/12xe8NQuf6/XtiO0FHfIgsPcpjdJcoha1iMKoWf2VIqwu8KCceVwYJidj9UbaY5kLQjfUcrr8wsN8Kfzo/wRyj7qCfS+0ItmtLvZaRQaz6CIAii2ZDgH0foyF3Oz0rAzhH8tqOCCL9GpycCOmrhb+k/9CViRtCmqTClP1qP7XKEIvx5Lv3d7XqhIbeeuhi9gxZs70G0NWHCdiQ+XJOsaTyJuIGUJQrcql2hIGQT2phFIPdaGGah8DYLUvoLo+nRIvzFfy+kAlPlr8Of/7ESN/zsDawfLO6noJQCj66/AXit+Wqoh05lnKJirBxx04DtCGRs4UWRq7v3vut5JcM2X7BWOrbBWWC0Vw8cpz5Gb5XIprSXvg7+XCuV0q9kacHsitLXL1ckNpqMJYqWyATn3yBBqssd6leaYRgcqbRT9HeOK+G6siDCH6V1Yi5SKny0LolkunLbROX9TeI5bVvzF54Z0yK7XtkvlcekF81LmUwqpcipnyAIgmg6JPjHEY4brs22hR2K8Ns5EX4AXoRf/1O3t/IM++ys4G8tIfh5DZGdfHwxyoACl/6YaaA1YQIAeofSyIgMhpxBpNywmF+5Tkf3N+ppxbRNuwDUntYfN/06/vBDpTaqq040Noq0nfU6UEyWjPC7bvEIf1ZglTLtYwBYGZFVOTr8xrvr0J+0seSj4vehuyMetHuMShTxmI9SCv1JO/CFqOa9lNSfA/86VCuQdWlMeVEjIgt+Dqnqlxo+nLaK1ZBNaS8T4Zela6J9B/Zy5SWl2jsanMGq4DpfD5RSGMo4Ben8we/RuBp+f/4YdVq8iZscKcstOs9cIeFKGXy/+FSb6SWkLrWIUg6WG+F3SkX4uf5+a6RPQi4yWKQu/nulKreSJAiCIIh6Q4J/HOG4IhS5TdsWcp/dnPwIvxcdAXxjN/3Q5LfkS8QNtMS16M4X/IyxYT/Y5HYG8B/oTBNIukPot/vQ3qpP5r3eD7E8uQwfppdjnbUmFM3x6/c3ntiGbT3Bv/jD2gQ/Y1o+J/MFf4SodrPwI1ytcRNSCTCvJ5krJJJpJxzh91z7ch+u87sxlKLUQ7ydN8fyUUqh14vsD5WIFpomr9oPweBaPLpVREstz4SxmnT+4P0MIJlxdHS2hntvmgxDqcqCX6jKKdmcaxPA4WbU+FhNMqCMktIulQp1FqlmfyF9QVjMy8JrzdfgyK/jStiOCDKTClCqYTX8OkOkfplHMZPDdSXsIkaLjiuBItdaR/ijX2MpVeRMHekZjrKcOv38xdhaPUFqRXppB6UWAGstPSIIgiCI4UCCfxyRa+AklSwQrrajwn3bcyP8nhDU2/lRZCMwO8vva63dkYef0u/XQ/qCXzALH6VWYHVmFRIt+vjpNNBmtqPd6IAjXTgqKyRzBb8f4V+xLlnYviki8RjHYNIOCYVm1TxHwY9wtcQNSEhw+G34JDK2yJr2+Sn9KBbhL16DGlDGKM1xCqN8uQylneBelhL8tWDwaHXxuaQtAaeImVoU4jFDn0uN9z5uGrAcEXSfKIb0BGsUwaZQn9Rw3+iueYK//Lil1J4RrMwtUqUEv5AlzQe1CZ0adhZSJUoZ9vlUm/JeDW4NHSTKYRocjpQFJU2AXugrJnI5Y1Wdnx/hj/I59h3xobJ/HzJ22LzSby/brAi/knl/Q/MwDVbQwpYgCIIgGg0J/nGEk+N2LZRAOqMFl/+c5jiAkNmHOcYB6T2s5aZ5Z3JS+nPdzXMNnXRK/3AFvy8+s1ERw9AdAzpjXejuSOjxpAHOOAxmwFUuHJk11lvlteTbeGIbutrjmNzdAqWApR8N1jSmRMyAZQtkctrzWY6o6KTeLIJyi7jhlUN4Czxearjh3S7He0DPzdwAvKhoJaMvVjqN2q7gCt6bU7c/lKqf4PfLE6p5sK+mHV8+cZPDcSVSGaemPucxk8NyRZAtU4x8z42yqPqIV+1H0bzylEop7Tplv3zGSan9pVQlF2MMQ7drcxrsmG45QptQlon4VvJyqJXcMqx6wRQr2kvesiV4kYU+PwsjaiaFkNIzw4xi2ld8/uT6mDCuF7eb1QlPD6X0NTe49qNpdGYJQRAEQeQySmRKlvfeew+nnHIKZs6ciX322QfXXHMNbLty6zWlFBYuXIj99tsPO++8M4455hi89tproW3eeOMNnHLKKdhnn30wffp07Lfffrj00kuxatWqBp3N6CFwbOY5gt/ST0EdbVoFKhVuYcQYgh7GIqcXdta0jyMlh4LoVe6DIPPra4cRWZEKkN44/KiSkZN97Y87mRLBewKAI7WQHEo5GEo7YAyYOrEVAIK0/vdW9Nc0JtPkcIQMRWlsp/a+8/XGz1zwI/z+NVFQ4Cynhl/oKL5EuG1WYDpV4XxK1fGKCjXDvQM5gr+OEX5NdNFbSzu+XPwWW7WKY84ZIFVZw0m/x3jU49XD/Vt4BpTlsjTqSoWUdinLp0irMtkmrihtPmhwDikb37ItbbllFwONBqZ4+xki9cQ0GVKZ8OdWKYWM7RY49AP6u7vcPcpHemUsUbICfI+X/HuYW8fvR/ibJbD1Imvp9zIMDlcO39+GIAiCIKphVAn+/v5+nHTSSXAcBwsWLMAFF1yARYsW4cc//nHFfe+44w7ceOONOPnkk3H77bdjypQpOPXUU/HBBx8E2wwMDGDatGn49re/jTvvvBPnnnsuXn75ZZx++umRFhU2ZHwDJ5YT4fcFekebEQiL3FR33dLI37+Y4Dcw6AwgEfMFf3hfNcwHrWyLo2wUzDCyreZ8wT+UynGmZwYyIgMA+MhL55/U1RK089vGr+NfMVBzXadhsECsSqU8k7PR8VHKBCn92q2KQRu6vTHwClY7K3Ii/J4YynPpr2Q6BZRO0/V70pcTi70DmeDf9Rf8pc0E88nYAlaV7fjy4VyLyloXezhnSFmlr4FQ5ZKDC49VrLa6Wlypo6H1aOUWhUop7ZWyHBgr/R1TKdsEDTZQk0ohlXERK2MKyfnwvU5KUS9Ph1xiZrYlZfA+QsIRqsChH6i+hl5IBSkKRXwx/AXh/PmT+zcsaC/bNNO+8ossJmcQovGZJQRBEASRiznSA8jlkUceQTKZxE033YQJEyYAAIQQuPzyyzFv3jxMnTq16H6WZeH222/HqaeeipNPPhkAsOuuu+Lggw/GnXfeicsuuwwAMGfOHMyZMyfYb4899sAmm2yCU089FW+99RZmzZrVyNMbUbItvvTPQrmBQ39LgiMeY7BshbSd+7CUG+HPRtnsHCd4oQTicQ6kwxF+zgHpagFo1qiplJce6WcnAAAzsrWi7UUEv8lisEQGUkmsyqnf99l6405wztA3ZGP9oIWJXS1Vj6slZmAw7cAV0oteoWh0ayTw718iziHhgjGGVZmVeC/1T6y1V2JL40AAuQ/JrKCGn5WJqAJe3/cigWkRtCcsfcNzW/ENpR3PdKs+1y7XvKsSqYwTyQG/HHGTI2OLmrME4jGOVMbVddZFroHryMgRfoMx2GX8AKIihF5kaEZbPqBySrtSCmClxRFnDG4J8eS4pdtLAgCYKuuhMFwcR8JyJFoTpQW/wZi3UCbrvmjoClnW+6AW4ibHUNqF7WRb8DmuhCsEWhOFnTWYH2GPuKYRRPgjCGLlLQjnL2wUlBw02aW/4nenpNZ8BEEQRHMZHWFJjxdffBF77bVXIPYB4JBDDoGUEi+99FLJ/V599VUMDQ3hkEMOCV6Lx+M46KCD8OKLL5Z9T/+9HKfe0cbRhVRhx28hBfykBi349VRI29nroCP8yts++/DsR/hjMQahBBLx4in9Sg4vpV95RZq5QkZH+PX7BSn96axRk8lNr47fyRr2TcoK/njMwBYbdQAYRnu+mAHbFkhZblBvOlpS+rM1/Dyo4be8jAdH2sE4He++5ltMRcnIKBWVjRIdzo3wu0KFfB+GS8zgGEw6FR+mlVIYSDpVt+PLJx4zkLFE0cUepRTWZdYG5SVFx2sasJziJmiA57kRcV4Zhs66GG7qcjmju0ZgVBD8lb4/WIlSBqW0mC/3uTQNXrQevV5Yjo6EF4t8++gOC6ouhov5OE79HPp9dCmLDH1uHaEgJYouWHCW9WKJgp+J5ojKWQF+vXz+/Clmitc0l34pUS4lRS8GkOAnCIIgmsuoEvyLFy/GtGnTQq91dXVhypQpWLx4cdn9ABTsu+2222LFihXIZDKh14UQsG0b7733Hq699lp88pOfxK677lqnsxid+N5sgUGfcuB4gj8Rzwr+fNEupIRSyqv51jv7RmPxmE4Xj8dYwb5+j+zhPGjpXVXwQMcYoFhOhL9VC34pEfgRGMyAUAKOtAPB79fv+0zLSeuvBc4ZFBTSGVdHa1T5NPZmkvbMBONxAwoSDAy2Z2LoKhe+9hBC31emWDilv4LLNOClIRdL6a8QHVZKhWr4AWAoXT/H6rYWE4NpG32DVtntLEcv1gwnnR/Q6c1TerLlIrn84oX3cM8vl2Ewky65v+mJ9FLGfa6QkXuo68jh8I0yq1lkqAeVIvyiwvcHL7H4pFsalu9wYBgMliMaJgb9Y1eK+OZmMNUTV1TIcKgRzhgsJ/u5LZclEXi5RLzGrtCdRVSEjhu+4Wi+B0LayhsPa8z1LYYUlcthWJFFCoIgCIJoJKMqpX9gYABdXV0Fr3d3d6O/v7TJ2sDAAOLxOBKJROj1rq4uKKXQ39+PlpZs6vYJJ5yAV199FQAwffp0LFy4EKY5vEth1tDaq5n4D85+FEbAhR/Mb2sxkPDSTm1HwPBUoWl6UWLOAOb1Rzd4EJFMJDjAVRDht3L25Vw/6DLOar42jDMYJof/PB83DXAvwm8YDIbB0N7KkUxLpDMSne36HhqCI+3YgbjcbHJHMC4A2G7zbvz+1Q+1Uz8rHpmqREvCRMpy0N4aA2cMZq11C3XGj7y1JgxwzmGaHAL6RrvKQcwTuUIA3GAwTAaec4+0kz8Prpd/bXKvkWkaYND75z7cMqZFrFEiojmYsmG7Ok29uz2OviEbKcstuX0+qYyDN95bh52mTUJ7a2H6sGEAHa0xrBvMoKe7paSgd9JagLQkzGGnrhcbu1IK7yzvh+MqrO7LYErnhJL7cwNwhCj4jCjPnd6M8UjXJ6YAV7jB57RWhFSImdHesxzF5k0xYqbXTYKX3tY0jZLjiZkGFArPWSgFBiAWK71vPGbqjAZW+3dUOSxHIB4v/f6A/o5Dxh3W92Qx/PkTK3PtaiUeN5CxZTBeIVXwtyEfw9ACmEc8P6m8vztSgRvl9+GcweC80KU/5++QHgPX301N+ButOGBU+PyYMQ5XqVH/zLAhEfy9qvNcJ8Y2NG+IWthQ582oEvzN4sorr8Tg4CDef/993HHHHTjllFPw8MMPo6Ojo6bjcc7Q09Ne51HWl2TaAdak0N6WAONAQnAIV4udrs4E2ltcABbAODo7WsAYQzzhwnYFOrta0dGRAQPQ1hILaia7OhNobcmgrc1PD2fo6sxG023J0NnVip7O6uvkAcBWDB2DVrYNYNxAa2scnHEkDL2409URQzJtwXE52tu894m5WLdGZ3V0d8SxyUbhRaSO9ha0t5hIZlysT7qYtml31WNLtMSRsVwYcRMdHS2h8x5J/GjXhK4EWlsttCdaoAb09ZOQaGnxsiIU0NnRAldydHW1oadHj9+SQPuQXXA+7e3ZxbR43IUrJbq62kL9xVOOREe7U/JarB3QmQY9nS3o6Uygb8iGUCzytfvTW6vw678sgyMUDt1nWtFtOjtasKYvDUcxbFziM9mfdtHV2YLursbcs4zlBqZctivLnp9kHDwWK/j+EEKirT0Fg3G0tlT+mpZSAYMZdHa1orMtXvPYV6xPYwI30Nle+zFyyZ03xUgkBCzHRVdXG+JFFmjWpxx0uQpdJb5DzJgJBaCruy2Uvp9MO2htT6G7LV7yj3KbKzGYdtDR2YK2lsIFpOEgpIKxNoVJE8yii1O5OBLo6Gyp+Xuy6PsLifaONDhYpPlTDbF4DEJKdHS2ImZyrBqwMKEL6Ooofq8todDZ2YqeCH4pK/stxBwFHjfQ1dWG1kTpsbvg6Biw0ZeXJSQUQp85VzK0t7c05W/0uiEbrmIlrwUAMG4gFuej/plhQ6SrQd/pxNim3vNGeeadzcyWI5rPhvZ9M6oEf1dXFwYHC/uj9/f3o7u7tCjr6uqCbduwLCsU5R8YGABjrGBfP/V/xowZ2HvvvfHpT38ajz76KE477bSaxi2lwsBAqqZ9m4Uf+U2mLDjSwWAqjVRav8aZADe0QBkcstE/mAJnus94xnKxdt0QBgbSun7TcYO2TMJ1MJTKwK9Z7B/KYGAwm8I8NJTB8hX9cCc5ZetYS9HXl8JQ0sKg16/d5AzJVEbX6XP9nq0t+rjr1qeRnKqnsy0k3v8oCQCY2tMWGpPP1pt04R9LevHmO6sxubN6cROkp0uBZNJCYnQE+PXCDgAhXKTSNmIig6FMdm5arlfP70j0D6YwOOSiry8JE3qhYN36pHc++g/Vb15ZjkTcxH4zNw3ap9mOgGUL9PYOhUTamt4k0mkLAyWuxQcrdZZOT0ccrZ7R3ereZNH7U4wVa4cAACvXVthHCixe1gsuJdryxI4rJJZ74xgo/KqpC2v7s2Nb1TtUdqyW5SKdsjCxzQx9RmxHoH8gjXjMgONEm1yDQxmsWzcE1yovskshpUKfN3Ylh1fbbnCO9vYEkkmrbNs9V0ikMvo7ppi4612fQjLtwChRZpKxBYSQWLduKLT4NJiyMdCfhqFKt+ZTSqF/0MKatXF01WmBwyeZdrB2fQodrSaEW75sZShpobc3CdTRQNB2Bfr6U1XNn6gIKTGQdLBq9QBaEybW9SZ1KY8qfp+TSQu965Mo6vSZg1JKz/l4DAODaazrHUJ7mYWYvr40hpKZgs9X32D4tWTaxrr1Cp0tjf+SXt+XRspywEtcC0B3EUimFNasHazp7yJRiGFwdHW1YmAgTS0Picg0at70D1kYTNnYfKPOuh2TGD2Mtu+brq7WSNkGo0rwT5s2raBWf3BwEGvWrCmoz8/fDwCWLFmCHXfcMXh98eLF2HTTTUPp/PlMnjwZG2+8Md5///1hjb2R7Z3qQa75nu06cFwXGc+lP2ZyxMxsHb7jujC5CSUlXFfCsgRcz/FaCBZE3A1DwZECprdvOuOGJn9bwsCHa4aQthxsOqkDiSrdzB1XG+L5JkymyeAKAa7MoETBr+MfTIrgHJkysKZXR5OnTmwt+oGctkkn/rGkF+8u78fcGZtWNS4f3X9a6F7io+BDD2RbUsVMwJESQihYIlvTrpj+vesquEJAevfYn7+W5er6WaEXe/7w+goAwO47TgnM6ZRUel7YIpTSn0o72hG7xLXwhXBPZyKIxg4m7cjXrn9In8dAqvw+MYNjcMjBynVJbLFRR0jwDaUdpDIuutvjDbtn/UN26N/l3sfgQCrtIpl2QuLGsgVcRyJu8MjjFELfk1q/i2xHwLaF7r5Rp2sjpCx/LKWCBaRYkT9YVqXPl5KwPePDXFlv2wJCSs/0r3T9tvAWNdvKRJJroW/Qgm27YK1mxWsph3nfimFZ1c+fanBcvVADBWQsgdZE6fcRQsFxZMXzE1LCdQXaWuNwXQnbFkiUKZVyXAnhqsCo1CeVcUJjUbL89c3YLqRUdcnysB0BJcv/PWAAMrb+u4r6rjONe4SoPM8IIp96zxvLFkimHZqLY5wN7ftmVC0vz507F3/6058wMJA1U3vmmWfAOcc+++xTcr9Zs2aho6MDv/rVr4LXHMfBs88+i7lz55Z9z48++ggrVqzAFltsMfwT2EAQyoWEhOUZ3bUkOBKeaZ9tZ03bfMMl7f6NHNM+z6Xf1OZ1pveclO94HY8ZmNAZx/pBC0tXDmAgZaMahGcU6BscxUwOhbAJVkeR1nyccazv0z/ntuTLxTfu+3BtEhmrNuO4RMxAJuPWvZ1WrQQLEABicQCeBLJF9ror5mUASAWlJACG3K8rIbKdHNI59zO3tzXnhYaM/jwpl8LmeypM7EoEac5D6ejdMfxMj6FU5X062030DmQwmHf8lOUOux1fJXLHN5R2y5rC+TXI+aLFNzqrapyKDav3uu+Q3syOE4wxr7Vl4bi1cVvpCD2g68OVKuwGIqQCVITzYMUNKIeDlAp9Q1bkdo2sEWOoZf5UAYduAeoICbdSS0EVrfuHb15ocA6wyh0a/JaNdo6pK1Do0s/LXF8hJVasSWJtf6bo76tBz8Py8xXQnSmkkmUzXwiC2HCRSnntSukzToweRlWE/9hjj8X999+Pc845B/PmzcOqVatwzTXX4Nhjj8XUqVOD7U466SSsWLECzz33HAAgkUhg3rx5WLBgASZOnIjtt98eDz/8MPr6+kJp+t/73vfQ09ODnXbaCR0dHViyZAnuvvtuTJo0CUcddVTTz3ekEEpASBXUGee69NuOgvTSEX1h50ot7vwWS7bnKm6YAAdHvITgB7Sg6elMYCBpY+lHg9h0chsmdrVUdDIG4D3sI0fw6wcllhPLaw8Ef/YhTwiF/kG9TynB392RwOTuFqztz2DpykHsuFVPxfHkk4hzDCRtdHeMjjBNbqss0wSY8AS/zAp+yfU2rkCwsJMrSIXMCv7c+5m2XXS26RvNmNfmMeeBXHitufxsj2L4gr+nqyVYZIkq+HUrPX0eg2mnovu5ds53sXZ9Gh0tMd1ZQSkMDNnDbsdXidxzSqYEhBIwWemvWs4ZMnnO4kJq07VqBJthMqztS0NJha72eNn652K4nnhret1hCUd2vSiFsk7z/ndU/v6uVECE0zB48e+t4ZDMOEhZLrrao0WMK3UqqIVa5k81xEyufRLiJiArvA9TkcRtcL85g/J+rrR97oJwWytDMqUKXPp1BwtvASTvO2Ndfwa9gxYm1FDWlY9S8BbGy2/HGBrWmYEgiJFHKt12WAiFUeLnTBCjS/B3d3fj3nvvxRVXXIFzzjkH7e3tOOqoo3DBBReEtpNSQuTVA55xxhlQSuGuu+5Cb28vPv7xj+POO+8MRe533nlnLFq0CA899BBs28Ymm2yCuXPn4qyzzkJPT/WCb0PFlW7Qko8xIBFniMc9cehIqJyYr0JOCzfGArEPAIapYAgDpqnvRbH+x/o9GLo7EkhlXCxbNQTLFpg6sa1i/aLf090OMgo8J3mW3c+P8CdzIvx9Ay6kBOIxhu4yD93TNu3C2v4M3lsxUJPgNzjH5O6WUdOSzxeNpsHADQUuCwW/jvDHvBZ6CoyFXa5dIeFfXivnfuYKUi20GXKfV/3U7USs+FeKUgq9gzqKNrEzgX5PIEQV/CmvBSKgF4BsR1YsEelsj6F/yEZ/0kZPZyJoxxc18lorg+ns9U6lpRb8Zb5q4ybHUCa8iCGEKpeJXpSuthhSlovla4YQ7zPQ3R5HT2ci6CRRCT8qPtzOBdXif8cUvO53Kijz+SqVIeA6sqLwAgDT4GUF/0DKxlDawcYT2yJdQ8BbkCrRl74YPGdRs17UMn+qIWZy2I5EKkJ2FGcsUrtIXwRzrpd0K0X4pdSdGLKCnyOZEgX3Uy9Q6u15zlxKZVys7ssEi8qVFhErjl/pJdRKrTQZY2BgJPgJYowipQwW0BMgxU+MDkaV4AeAbbfdFvfcc0/Zbe6///6C1xhjmDdvHubNm1dyv6OOOmpcRfJL4SoXjq0fShJxrh35QxH+3AcRBlfo1xjLRpE5ZwAT4MxALOYL/vKRsrYWEzGTYWVvCpYtsNmU8nX90ovw+ymbpslCixFAVvCnMjJI1V7X57nBdxuQkOAlKlembdqF//vnaixeMVD091EYTa2V/BT8lrgJIUWQCeHkRvjhQgt+L4MCHNKLvgVpwCUi/LkohB/IXaEgyqQQpzJusFjU05kIHnajCv78cpDBtFNR8BucwzQZVq9PobMthrQl4AqB2DBbcFZiMGes6YyCLdygq0QxYiaH5QjYrgxaCVYSO8VgjKG9JYb2lhgsR2BdfwbrBjLobI1jYlcCXe3xsotsrpCRouL1hjEUTX2U0hN1rMJnrEjKuO2KSKUJhsF0WrqQBdemb8jC8tVDcIRER2sMXRG6H7hCom/QQksi+veCwRkcVwxbcOair1tdDlWUmMmRsmzdqaTC8yzj+m9IJYRUuh0f8xaBKpQB+H+TfMHf2lr4vQXoBQfH93Pwxiqlwur1KdiOQEdrTH9/SVV2cakSSunxswjHUAqRFkEIgtjwkEJ/n9FnnBhNjB61QjQNR1hwnKzgBxDU8DuOColqpuClY+rIny/4EzEDEgIc2eyAKKmxMdNAT2cCvYMW+pNW2W11L+1syqZpsFA6P6Bd+jnXD1BJr+vA2vVaRE6YwEJiN5+tN+4E5wzrBy30Dgy/hnOk8TMsWuIGpHIDoWSr3Ah/Vri73oKK/1wtvZRaXyjklgjkp8myvKhqbjpuMdZ517fbE52dXg2/jtxXjm766fw+QxH9INpbYhhKu+gdyCCZsXV0rcER7KF03uJEqvzcipm6I0ZuHX8lsVOJRMxAT1fCi/o7WPLRAD5YPVS2llqL7uY/oBhci+58RE4pUVmK1HvbbrTSBJNzCFcWRNh7BzJYtnLQPzzWD2TKejH4pDIuMrZASzz6ohLnDEJVTmGvBqFUQ+8k50ybdwpZ0R2YM/1dUwkp9ZgZY1qkV+hakPV40du1tmSz1HLnA2d6rLnXd/2ghXUDGXS3x4KU/+E+nEuJkNdNWdjwP+MEQYxOhJIQ3vcjQYwWSPCPM6SScJWA7WmSFk/w+6LdccI13WDev73/80VJIsYhlABjHPGYt69bwZHbg3OGWIxrl+cy6Ac6Ha0DsiaBuTDGAqd+P61/XZ8n+Ls5HFU6ghyPGdh8iu6FPJwo/2ghE0T4DQhorwOpJITKXmeJ7EO04whtzOjdMt/8rGiEv0jqbq54FBXE4vrBrGEfALQmzGBhIZmunBY8kAzfx6gGkJwztCY41vZnMJB0ggh6IxnMO5/+ZPmxMs94LneBJbe0YjgYBkdXexzd7XH0J62ynznbkU017PPhnAVZPLlIVT5rJEtYzPkGklEj/K7MmisppSO/y1YNwjQZOtpiaGsx0T9kF/0M5DOQssBQpfcCZ3Wv6Y5a0jAcmOc9UCkqHjWlX3gp+oC+fq5boYa/RIQfCJeX5ZuMpi0XK9en0JIwYBjcu/7DN9GTSgEqWmYFY/oeEQQx9pDeAuJwTHQJot6Q4B9nCCUglQhq+BNe6mkopR9FHkQ84R+K8CsFDgYzlv1Si2qAFTMY0rZbMuKovAe0XFMm0yyM8ANhp36lFNZ6gn/iBDPUkq4Y23pu/WNC8HuCpCVh6GsHFqrfBwCBrHB2hPQMpLyU/rwIVe69LPBnYOHWU24FV/R1gUO/bpHJOQva0EVJ688X+AOp8vc1l9aEibQlkLEbX78P6B7sAIKFsEqZLIAuDUnmXAe3RITadqJ9voodX0mUzWSxHDEiHSe0uJMFEXQtoKJFTHPFmhDls01yYYxB5ZQtrexNYfmaJBJxI2jTFo8ZcKUMFq1K4bgS/UkHLYnq5hj3BX8d0z+diAsewyFmcqRsUdGLRS8qFt7ffITMLudGyQrQNfzZxaJYjMGv1sntMOKbjEqv9GP1+hQs2w2+f/SCAIb9cK5UcWPAYhicBQvZBEGMLVypPZJsp7YOUATRCEjwjzOEciGUhJUf4fcEvxAI9ZXMRoDDLfniMQ4FCcY4ODMCcRNV8JsGh+Pq/szFyHU89rcp5XbaniP4B5MCjqPAOTCpO46MSJd90Jy2WTcAYMlHg5FSdkcz6ZwIv/TaF+aXNLjKDSJyjmd86T/n+lEwXyeEI/yFzte5D+SuI1FOK64fyBr2+fiu/5EEvxcl98c2mI7e4pExhs42E3HTaLgDvRASGa/d5ZSJuuY7vxyhGHGTI2VlyxscVxaksv/t32tw9UN/x7/eX1/T2NpaTfSViFRHaavYKAyWdVEPjUkqRCkx4Dzcdk1IGeo2UQmm9ELKR2uTWLE2ifZWs6DDQVuLifWDVkljUkC789eyqMQZ88Zcv4ivI0Tk86+V1riBlhivKPi5b5pXSfCLbFaCH+Ev953s+xT45SCmkS0vy53jvsmokAp9gxZ6B6wCPwZtHDnMlH4FSFR26Qe8zgyU7ksQYxK/3MiiLB5iFEGCf5whlICEhG3rh5uWIMKfkw7phNMhlco6PvtfYPEY1+IQut7SXzAo90CcS8zkcIUoGeXwHY9zTfsMExUj/H46/8TuGGJGDK50yqb1bzyxFZxrb4JKqdejHf/aJ2IcUNqssCDCr9ygq4Dr6p7Rfiqxb9rnR1TDLv1FelvnpNxarigQiyk3BdvLsOgdDEf4AaC9Nbrg96PkEydoITaYimb25xOPGehoi9YmbTgMeSnznAE93d5YvTaCZccX1PHnCP6867ls1SCUAt73asurJREz4LgCfUOFkWohFITEiHScKFVDHdW4MH8uCqn7oUeNcHNDZ5Cs7NXmjsXKPlripv6OGCr9HTGQtGHU4BHhb1+LUWMxlFJehkhdDlcSv1ykEsyLoFdaz3CEDBYpOGPB91ExQhlgTlbw+140+W0uFfR32MreFGImLzRbVdFaB5ajmowUzvQiVaVFkGYwmLIjLUpuyLhCwnIEXFE504Qghov0DEAdh+YbMXoYdS79RGMRSru3+w9EvuDnnCFmMjiuCkVHuG8u5Kf029kIv1RehB9cR1ZS4VTKcvjttEq1o/LKIXUrQG9RgBvFHbtzW/P5hn2TJsRgMhMZlYYjHcR58QdTg3NM6kpgTV8Ga/symNBR2k19tONH5BNxAwq6Pj9f8DvKgWkwWMim9Pt/kKRvkuYJpUyuaZ9dKPhza45tJ+yKrpTCOms1XCXQZXYHqeR+DT8AdFQh+P0H0ikT41i73o3s7t9sBr1xtrRwdLTpr9ehlF5kM8q05zEMDiF0HX8iziGVKmjvlfQWEwaqXOzIpa3FRO+ghUldLYjnCFtXSEghYVRhNlcvDF5oqgZkTSQrwVk4WlptD/pEzED/kI0JHfGyXTdaEwbWDWQwsSuBWF66keUIDKScgsyAyKj6tWmr9vwbDfdMFSuJ29wyFh4sEigUSyAIZYD5EX5TIVEkwg/oP19DaQdpyw19BwW/L9EpohpUxIwUQM95V6iCVoEjwWDSgVAy0uLNhsqKtUn0DdkwDAaDAbGYgbjJ9eKPwdHeEqv9s0sQOehglYJpcAg1/O4fBFEvKMI/znClfhDKeJFE36UfyKb1p51wOqTMibwUpPSDgTGOmBc8tSIKfn3ssKjMJTe93F8UMAyAF4nw56b0r1uvBdeknlgQaXFleYE0ZUIrAGBNfzry2Ecj/iKOFozSq+EPR3N1Sr/+t+Pqbfxome+SHRyvTEo/49kHZD+FOlfwCyXgKu2p8OHgmiAzpLM9K5SiCn6lFAZTek5uNEk/lEYx+hsJBtL6ere18GzLyLSAkJXHy5jO0pAlBJtvuFdNOUM+LXEDGcstiOgJqeAqNWKmfa4qIvjz2tR9uGYI/+8PS0JtD/X+Oh3cX7gSojqH+taEickTWiq22PS9IPINJAHt22DZbvAdWgv1MngK+tk32rUvIsxrBVIpg8ER2cVGzsobGfqLB7mmfabBg79n+QuUgM7i6GqPF43AG5yVXHyOilSAKvL3qRj16gxQD1KWW9Q0czTSP2RVvTAjlUIq44AxvXjk/9w7kMGKtUks+WgQ6wY27L/9xOhBP08BMW8Rn5z6idECCf5xhitdcMZheXXGuf2ig/Z6+RF+qdMygazgj8V0XaRuocSrruEHdFp/uoRruP+lmduWzzBk0Yc1P5KaTGdT+idP8AyZGEdalP9jPrlbp5mv7duwW/Olg7Z82cWYwpR+J0jbtl3hGVplI2a5jdhzF2+KpfTr1GnlpYOH3dS1OaREwmiBTOsFlbZWhtX2Rxhw+iGVjCz4dW27fjCe0qMF/1BqdAp+X4y3tRpob9WfrVRaQqgoLSs5htKOjvzlLLL5pDL6Og0WEZxRYYwhEdeR6lDdu5Cew3jzRaLfpSBf3Lki7Hj+l7dX44331uGtJb2h7XT6d1YECikjyq7qxxmPMaztT4fSv5VS6E9aME1e8/VjvH6u7UE/+1ET4Q+75BdDein1/pB1hF+WXCTIRvjDbVt9wZ+ywp+R1hYDiZiO6BYdI2ewh3n9tVFqNDjXHXPq2ZmhFlwhYbtig0g9FlJibX8myHSKiuNKOELh/7P3Z8G2pOd1ILb+ITP3cKY714yhABAAAXAQJ1OiTFKgSDftJiWTphxhtRQh2QoFQ7b1oDc9KxR6sciQFWH6QdFNt8VuRbeo1iyBJEyKlECIIFQAClWFqkJNdz7jnnL4Jz/8Qw4797zPvZe8e0UAVXXO2TtzZ+bO/Ne31re+JGLoxBy9ToT9XozDvQRXDzrodxiGE7G1lpodnm5o+ygFZzabRT4BRb0ddgB2hP+pQ6FzUMLmKvxV1Z0QAqXKhViw9PNyaUNAAuFfZnSVB2c09NU1YS39biyfW4hRTkBaLlmvpGa5xji1f3vVEX5OOAqdQ5vZi7mg8J9vr8p/Pszx9bdPVzoem8Ir/FFMwzxrH9rnsw+krob2lcTIwNlLq+9XzLf0G+PD3oyz3jYJvwIFxWBk3+doP4LSEvfSu7iT3kaS2AfhIsJ/OpwAALoJwZ5zCAhp1k6sv0wMx17hZ2Fc5CQ1wVkzD1FEkQvba6ob4+iMMWGhu0wmwDz0Eo5RJmo5CFLNn7Jw2SDA1EhPqerBhRP3XWqOFiQV+7d/3bLW6lXR70QYZ7Km8meFwnAi0d1gAgSjJIRobgql7TjDx+HWaINPyZ9HbpuuFt8GMOs1oYcflbGtUUn4m/fdbsLD1IU2WIVfbfS98i1Ry6B0MDxe9U9IDSn1wvPzJMC3PK1637eEX88s9sQRQyH00vlDO+wwD2FahxsHusyo6h12eBTYEf6nCHYmuyVhWYvCn0TTYW2UWLstaaT0R5WQP1qx9K+k8DMKKXWrlbIayuQXdJy1K5BxRMArBYjDPRaKF5xwSC3n2vpLwp9tTeX4F//xXfzPv/02/h//4yv4F7/3Du6fTZZ+baELiAVtCG0IPfxROb6wUE5x5j0AgDQCjJcp/T5LwZP3WZb+rKgvhquLeJ8wXiWo2qhQdLgY2evpcJ+jy3vY4/uYiBFoZPdttKAn/WxsCzH9HkfESWhJeBL7+Idun3pdhp4j/MYsZ8OPGEUhJNJcTln6C1GqgVqbQH7XAaUEEaM4GWR1Vfwx88Mm4VCNqQHeZdIkc548ee7UFni4LVBKwBjBaeXYjTMBIVUtE2Gd992WrdpnHzwOt0YbfEr+PD7p3UL+vNlxibODDP09C2ha+u05aLP0zwOlBMpMX4OrwCb0LzkZwv3d4ybZQmlI15L1uPdlEZS2YZSrFtELoQA9273EGYVUeqW1yw47zEI1f4pge9ksO+ywKXaE/ylCVXX1qnmnReHPRalUEAJoZeCz8qqE39/GKNbr4WeMQGrTutCtjjiq9vC3pfQTQrDXLRfb166U4UOMciijUMxJ6r96kIAQ+9m2RSIfnFmSKpXGV944xv/rn72K//Zfv4Zvvns21zpojMFpdoyhGKy8Ta9QxDGBp+7e0r8f79n9qY7lc5Z+47Zr1SYT9qN6Lo0pzz3gpjd4S7+26nB1QeXDIQFg4Aj/wZ5tvaCEImFdILItFKNUzi20nI3ssdzrMRBC0HVW+WXm2z9q+Oun17EjAHsdu6+DyWLCbydiEHec68djnNWvy1WnFDTR73CMJkXY31wotORhPjIQQqacPkLVF+k+ELRZ7Gjao4W83Bn0/Q7HwB07YwzOh8VM9XBZbDO1vTrP/knCvPue9m0IlfNN5hBw7VbV2pTBjhGnYSRiswVpERgloTVpXehVnSWGPHYbuZS61pr1JMM7V9J8/vOiiVwoLOq1YIw8kQXkHf7owd+b/CNo18O/w5OCHeF/iqCMhDIaQpCwSKpZ+t2/F4VNFQfKcKFmaF81QI8QUlH4l19o+d5d0WLRq444KhaE9gFlcB8AXL8ybd0Uajbh4ozi6r7t43+4hT5+pXRYPPz8j76MT33oCggB3r0/wj/5rbfwy//T1/C7X7vbavUqdI6JmkCa1RasxphAiOKKwp+7sXh7vG/3bWosn7egAVohnGchS/Lh1+DVUVfVsVlS6akFVdXCPhiWCr9HTGOw2P5cKj23f/Z8ZM+Jt8j3Ovafg8mTR/h9mGDPFSX8dXk+Xu66YszNA2/Y65s29mZw3apgLvr8bGBdLYW4XJK8CLQRmmZDJOuWfn9vaQZINnv4L1PhB+z9gsAeuzSXmGQbpPM7MEqg9eaz4IHLyzDYCAZzSZonc7U2FmBmAcQYQKMeiMU5KVP6V1RrfWbAJsd/naDEbQU1rovMTVfxLq0nGb4wUUi9khtmksmFBbkkYi4/5ck+Bjs8+fCWfkIIKK0LJTvs8DixI/xPEZSxRF64QnbESW3utu/Dryr81JFyTwYK1/vPuK6NyAsJ/ysutBglrfZLv85TugxumjWWDyj7+AE7kq+2DcKQqfmE68aRJ/yb9/F7WzejBJ/80BF+/sdexv/15z6HP/W5Z9BLOAbjAr/xB7fxtbdPp147kRPkOoNQq5FZqcrjZBV+i6DwMzuKSrqxfIAfZ+Ut/cb29DfCGSkB9nvWMVE9T97Sr7Vp7ZkWRoASZgPNGgq/fT1BElmLfvWYTX0uLYOa7cmzt8pvklZ/WQiE3xUlfJFi2TnXMaehhaX2vnmT8G+uRvU6HBejApNcQkj1eAk/qY/o1K4I5QmUMSZYbqdGrjmbStleMj3ScNvod+2xO77IIJTZXOGnZQjmptB6OjxOGbVUjsSlgcz/bNpG3NcIs2/VaP17p+xL6Z9TAKdlSn+Wr0j4t9BTr7QJ989lsM2gxnWR5o4Mb3Es5GXBt6oI1d4G2AalbSYKb5vtWEEcURRC7Wz9O2yMqjuVbSEMdIcdtoUd4X+KoLS1WfvFULV/HyhJuyh0TeG/dbUb+lM9EeTc1Oz10Rop/fZ9KNJ8OizJOIVfVG6WrLHNKmqE/0qT8HPkOp+blH7d9fFvI6nfk7vqCKjDfowf/94X8H//+c/hcy9fA2BnA1ehjMJQDkDBIF3K/bLwqichAKU6HCcf2rcf9dw2Sku/5ZXWfmYMainZ/jx2Yh7Uy6qyGnpsTbuFWmhhp0EUGoUw7njUVdCEdtDp2NfNslMWusBoYrfrz3HfkelNVe5tQ2uNNLPnLCj83XJk5DJJ/TG3AVLNuta0wr854Y8jBqk1Ti8yKA0w+vgeB83QNK1dCrsvNAodioBtPby+31upei/4ZSHiDFIZjDOBZINRfB7MK8xbUFmFnM5jGIoBHmT3l7oGLwvz2hXa2hAIKQl9Ez7jxSuyjFtXUyD8Kz6HbNFoM9Kr1GrOChvU+PjIgNa2bYszCpDtuEsuE0o5R5pePrC1EDaUMFpA+Bml0Nrsgvt22BhVdyqjFEKqrbRq7bDDptgR/qcIUksYICT0V/v3gdLeX4h62nC1jzZY+nndvhi7tvl8xQdmxCgKqaesdFbZKfv7qauWzgre8epvt0ODuurBKYfUYm4QXlD4LzZX+D3h3+9NtxZwTvGx5w8AAPdO60F+qUqRqxxd3oM2yxFED7/A7cYchpTnpjCu+OAJPxQ8r1PKwBANDaeWVXqmQwBgzNDrcPez5rm1qlghmoF9NhySgeLC2fn7PVYLVgTseelY4wHGMwl/jombvBAs/YFEP1mLs1FWhGCybuKKEz2f1C+XOp+cW6WpyVcnUz382yl29BKOi4mwqvhjtvRXQ9O0D3Fzu1R1l7QRfooy1f1REH7AqvyDcRHO9SagztK/DYt3W0uD1BIDcYGL4nzj918HNqNhgcLfAJ1DiO3jiUC49+QMACkJf16sQaQ3JL1VR8oyoJVA2scBIe3IMM5seVg+4ZZ+6Qg/paQ2SWgeCqkhtak5GWeBcbowQHaHHRbB8n17H2GMQG2pVWuHHTbFjvA/RRC6ACMUuUvoT6YU/oqlH+3J+aXCj9qIvGRNSz/nBFKqqZ48v6DzP19kmX3mRgzGCD7yQnfqd4wwGJj5Sf2H5Wi+TZP6LxzhP+zHrb+/ddWS7/tn9W2NxQgAASccyiw3u93DE6JOzGqBeUHh5+VxIcy+r1TaJfZ5e36bws/COKumauZHqVk7eHl+lFEwRoEShgs3ku9wr50U9bq2mDAr1G4iJkhTe4w8eQ6q+RMWsjSYWHdIEpetMuW+auglz+deL5oaIeZH8vnv6DYUfruvDHkhIfXl9r0vgu1hL0PTyuAjV4CquEukMhANomQMoNzUCPmIRtIlMcPNK92Qh7AxzHYWhkK1EH4jQUBwVpxiLEcbb2NVUDI/vEq13HN9kGEbjDEwKK8D3lD4pTIr92MTYCOHhSeky4JS+/m2NRlmVfiEfs4oCMUTOea0CqGsk4wzgkm6XLFXCBWm/SxCwinGudz18e+wEWxLlb3emBtrvbumdngSsCP8TxGEKUDBZir8wdIvTKsFScjSVsuiusLvxyE1x7ctAqMUyqnEVRhjAFJf0M3Lnj7aj/CX/tyz+FN/4mjm3/h+9jZcO7QKf5qrKfv0qvAzug9mEP5rBx1wZkPKzoa2V79QOSZyhA7rgBIKjdUIfyDoCYOuEH7/mXusE35Guf18StpjrFGZg+3DGSsFhNLS3zgurp/S2sHrCf3KaFBCpxL6m9hzhP98Mj22UGqJQZbCPytLhd9ep6MlF32PCoPUnsteZWKEL1Kk6fLns5vwqQKXvyavHtnjtS3CTwhBN+HQ6tGo4rMQeqhVSfhVZaHezPloBvcRaotPSpd2ykeBrW6HzE+yXwbe5t5UmpUWiFkCgOAkP1lr7OcmIG7hOwttZJlSzOzV1sZObClH8tn/jivjYlft4ycbBGxVx8gCwJdfe4DX3zuf+xrbxvH4RvMVQsG4cXVsi2MhLwuFc65EnCKXaikSlRZy6eJfHDHkuz7+HTaEXf+WCr80T/7Iyx2eDuwI/1MCZRSkUWCEIpuh8Ht1RMxQ+P1iyIaRmLrC72ytZYjb8rALt/pDVrvfVBX+Wf37HnyObY8RjlRNk0qPiFNc2bf+8k2D+6o9/G2glOCmywzwtv6xnKAwAhEtlV21QlK/t8R3Y24JP6HQRkO6cYQJYYiJPUdB4berZsA9kEylZ7raw99r6eEHygWyaliofTgkJaWlv5rQX4VvF7hoSbEXugjHspvQoJr7lo3xE0b4PQmvtpTsBUu/2Sg0zY/lu3K4/fyCXofjumtpWQU2RGs7CxnqksJ9oVG596aN69FjajSfU5CV0mXi5x8xbKowAy7J3ADVOAZjDCQ0KCh6rIdMpTgtTh6pskwpmduuIFvaEIibBNJ2TPyiuhzZatu9CClJf1sY7DywxqSIVeBDJgmx9/9//Z/ewz/9nbfnHmNKsfEowE1QSBUKQ5QSSPn43AbLwF8jEaOQcv5kF8BNrsnV0oGaftRsW8vQDjssC/sMKydYway+Jt5hh8vAjvA/JZBawRgNSlgg/NMKvw/Ial/I5+4BG0c25IdWU/oZLce3rZrUz8mUqq7dTHgf2mfT3BcsRowBZqioEY1QqBzFnPT764e+j3+z4D5vT59F+IGKrf80hTYaIzlATJPwe7v4X/443j22hYMbVzo2IRakpuIlhCJyhN9QPw4PMMb+tXIzwJuW/iRm6M7o4Seu51Xremhf1bq+SOH3av0wLaYcGIUuMPb9+5VQRq+gF8KsvUC/DPipAb1O+b3w5F8pYJyvT9L99+PKkSt2ZPKxjtE6HWT4f/7Tr+P//c9f3UqyvFdGvQpsGu/ZvKe0JfX7meJP3ky65UAINu7p9hkGTceNNlb1J4Sgz/oYFBcYysGmu7w06IL+eCH1VG4FdQp42/UVevi9ws8RCsKxG803yVdzMTRHQ64C14ECSspnWSH03LajbYwC3ARZrkIRlRHiplw8mYS/On2DMQqp9cLvilR2fB9fYYJGxOkTFwa7wx8tVAR+APa+tOvh3+FJwI7wPyXwQWo+OR1o6+H3Cj9a7cde4U8iBm10TXFnlJbKyopWyogRZIWstRFoZRfxpWWTYNHlSuQEbHzcvg0aoTACYzlb5b8Rkvq3o/Af9hYT/nunE6QqRaYyJBXCTwmDMMsvWG8f277c52/07bkhJBBoTjgYSCD8oN7Sr12bhFP4dWlJ9ed6Xg+/H9loFcU6wSCwvwsK/yzC7whxmmlkqn7cU5Uic7WXKuGPIwLfNj2YrDa+8DLhF4pVS7+dDW539mK8/r56EnGwRwIxelwBU6eDDP/dv3kdZ8Mc905TfPvu9ohj2cOP2qIpy5uW/obCT22Am7WGTzN+e50+OcWhNlBKalNJ1kEZdlgpwEHbYq+7fzLKEdEIJ/kxziYj/NZXbuP+6ez74jbg1fpZxSHZkjvg2zza6lpB4fcp/awk/L6QvSrhL0nv6ufAu10IAfIKEfUtW23YxijAdaGNTaT3rjg/FvKJJfyN6RvELG5BKKSGlGphQn8VScSQ5mrKcbjDDsvCt6NWIdTuetrh8WNH+J9ChB5+T/i1ABveQxyVN6m8RaX3P4sjCoN6EA4BrYzmW80SxxlFIU1tsWt7wEvFi3OyMAGZKAloOdPSG5MYIzmYufAPSf0bjOaTSoeAtYP+dEq/x62rtrhw/yzFWI5AUHdMUNAQuLcIhVC4f2bJ8jPXOoArxghtF5sxiwGtgqUf1Fv6/cLZ2m11NSSt1dLftFGTEK5WhdACBKQ+km9GaF/XqeFZZjAUg+AsUUYhUxmytB5+B7i+c+cMeJIIv1fzmlMivK1/E8IfQvsSgm53u8F9q8CT/UFl2197+3Q7b25K27fSGtWm7mYYaLOoSIltCSiEas0iGMkhzvIt7eclgdEydX5dKG2zD2jDcWOLgOX9pcO6yHKBf/zv38LvvHIX/+o/vbfRdhfBFgfbR/P5sMbm/Z1SV6huIaGh5UuUBWH/PIod4V/Vmh1I7xrnwH42e2+qht/NI/x+f7fhkFkVMiT0+yJQPUPjSUNz+gbjBJMFoa2F0NAaK2WTxBFFLtTK4cM77OAhdX1tTCkWtp/ssMOjwI7wP4XIG5Z+WkwAmYOTcmRb29gbv5CJ+PQDlBKK2PHbVS39EaeQStUsena9X1bxqwrOTBgNKAm05A8AQMI6lkSqdgX/+lGZ1L8uvLrPGQlhd224daUb/v50MkDM6j3UlDBIt1BfhLsnExhjxwDu9yMYABQEhbP0JzQBtEbkF/yO8CsFaFjC7i39zbaMTs3SP93Dr21HQA1CCxfYZ/++32UzbZVeDc9yg3ExQaZtsaXQBaQWyNyp2OvVSbQvADwphF8bjUlqP69vU/Do+7aFsVhLZS5EGVAVxwadzuMh/GfDHP/dv30Dg4nA9cMOfv7HXgYAvPbu2VYUMUItEQGAJgdqFhGnevipJV250GAthUGhBTK9+cjNbaEtz8Gntm9CANtCC5WxTp5qQVFKg9/5TwWOz+w19P6D0czRmNsAIZip8Je5AzMU/tYigWv5qij8Hsm6Cn9jUsQqKKdK1Bf38wi/x+NQ1QupIZQOhN9naDzONqF58IUs36oSMYq0kHO/K4VQK7f32O+NmXIU7bDDslCNAFJG6dphoDvssE3sCP9TiFpKv9EgxQhESxBjwni9tsWSv2l5638VBARR3B6wtQjEqT/V/kml7U2z1qNJ5l+uREkA04qzByUUBMBYjlt/73v4x5lcO6m/Gtg3L8G7E3Mc7VnL/8OzHDGt2/8podBGLZXsfvvYfp7nr/dhjA5qXlFV+KHLHn5iz61Sxln6SQiaCZb+Skr/PIW/mqQOuIAwI+xIPmfnP9ifPae8E5fZD2mu3WhCG9inocse/m79PbyK/qT0WyqjkGZ2X7sNhd8XNcapXGnygoe/Fhkl4Lyee/CocDbM8d/+m9cxGBe4ftjBf/OT34FPvnSEo70YhdR44/2LjbdRDU1rprb7xHVPClvdJtqNlmy5TUgjIbV8Imz9yig8zB4gbbQXlant6++j1tP3P2N0bcKJ1gZf+I+nuPewQMQJ+j17TL/1webncBYosYFosxT+ZhsC4J4LaCfEviBcneLi0XETY9ZT+NsdBYtgW0bsvTBfUuG3L5wfZnhZEFLDVNTvkKHxpFr6fais28+IEwhp5vbxp7mcG+Q7C7aP//GNfN0FvP3Rhr83eTA3kant3rfDDo8SO8L/lMEYU0vpJzJHlg+QqgwwJtgh22z5JeGf1tptOjLca1cnNYTUXQXKzTL1roKlFH5dANBW6Z+BmHUwksPWsVRJxHDogvaOL9ZTA73VeV5gn4e39Q8upj8XIwxKq6Vmt99+6Ai/6983MM7SbwlhwmIYYxATS9xNUPhNnQxUe6YrCn9vhsJPXVDarJF8F6P5/fuAXXD61hJVRBjJEaSWSFUKCorxxL5Hv9dOop8cwi8xcYS/qfB7d8J4stqoRQ+f0N/tMIAAXafw+/GPl42zYW5t/BWyv9eLQAjBZz56FcB2bP2UkLCAb6ok/n50Zc/mXMwi/KpFKQaswr9sAe2yIbVAqibIVL11iBICrazVel0opaeiTVVlTKcxBl/80hneu5OBMeCnfuQaXv6wvVctGiO3CQi1bqLZCn97oYaAzHhNvSDMKsQuCYXn1Qh/MzhyFWhjfWWE1OfZn43mE35CHw/BEy3bfJLDxZqFLM5oCOVr/XtjkBYyOBhWQRwxpLncWJVdZ+JBLhTevjvAyUX2RE9M2GE2tK4HkIZC7q6Qs8Njxo7wP2WQsgxB6sQUuhjhn42/jF+f/AG0kSF4r420+x5+a+mfvnS88r/qQsu+J0VaUdW1NiAUrSnMrXB2fmIMyJwHZUQiCCVmjui7vmEf/zKBfR7XjmyFZDCY3l9KbE7CUgr/QxfYd70Pv9yvhvYlNAa0QUQd4ScutE8hFAfsiyoZDiG0j6OXlKF91UWIn5NdS+h3AWEMFAOv8M8h/ECp1ovc5hZM1BiZTMFJhJFT+GdZ+kdPyGi+VAhItyvNHv5+UPjXJfz2jbsJBUxZ7JiXAL4teLJ/MS5w7aCDv/iTn8Ber8ym+MxHrgEA3rx9sfE4K29pN8b2ElcVX99Te+VgBuGnboSbMlNzt40xUEZCmfWO/7YhtIAwAiM5anyfrGNmEyVIVdpyyp/Zz2yMwe/+wQXefC8FIcBP/PA1PHszwYeftwGib925uLSwMpv3Md2qAZRW/1kZLW2Oh1LhL58PHkno4V/jsxiynqW/0kqRVyz958P5BcltBDWugyyXtTYIjyfW0t8oZNlxZ/XiShVCaAhpWtsPFyHmFELqtYQLj3Em8N6D0cqkPcslBuMC790f4u7p5LHkO+ywGZQxtbUqpZsXcnfYYRvYEf6nDN7OzyjAqcIkPUZqBDIjkKt8Lmn3CxkeoXVxFm2g8HNm+5z8gt+4m6ao9vDPC+0ztqcTLZbWKggh4JTXAuKq2DSp3xP+/SUU/oMD+8/T89nHaxFBGYwLDCYChADPOUu/R+5GEHZYDBiNmNoTpKuEv0IQqoejbSxf9eeAG4XWSNdWTkWlhJUK//4Cwt/1C3TrDBgK68DQkgXFqTdl6beveVxJ9U0MXZYAZ2RqkendCWlmlnJsNDGpEH5CSMgEGFyyu0FKjV/9tyXZ/29+6hPYbxSybl7p4taVLrQ2ePWds422V1rabW929R7jLf1X9z3hb+RJ+B5xM5327l0nGhrKPP4CkdACxhgUOg9tN4CbA27mj69b+N5yOrRQGgkCgi9/bYBX37JuoB//oSt46Tlb3LxxlKDfI5DK4O07w7W3PQ+EEJAZI/aUdo1FM+7vba/RWoOgUhBu6eFfi7ARrGWx91MDgPpoxVEqZpJSwE4GeNQJ3nY+/bT6TejmYyEvC80WH8Du7yxxoZAKUqm1FH7fSpKumAFRRZYrjFKx8jU4ySUYIeh1Oe4ej/HBw9ETNXp2h8VQyopVHowSSK13rRo7PHbsCP9Thjy3i5IkoWAyw7gyi1noPCyW/Oi+2muF75dsV9vLYsHqi4aIUUipbW9hSDxGsOxxhjBWqhVGgxjlWOv87Sesg1SmISCuihuuj//hxXoK/4VX+BcQfqEFuvv2b88GYuYifxHh9/37N4+6iCMGAxMs+kXF0g8YxE7h13CEX5vw99X+SKBu6eeMIuLT55Yzir1uhCQqV9vKqDDBYbCEpR8oFfFJphHTBLnKoKGRuppLJ6FTvZhB5V4za2HbGISRfHSKuHjCP1lT4fcBdUlCQQlFv2uP52X3md47neB8VKATs1ay7/HZl63K/7W3TzbaHqV2seT/V100BUv/frvC7xfpbUqxd53oJ0Thz1WGiMZhEkUVs3rWl4WQ059faolvvlHgq9+0TqAf+b4jvPxSL/yeUYbnnrXX1Ovvn6+97UWYldKvlG5OsQogxLrSmtDGt4BUx7ZabEL4KQHkGoq7FfjtPjQTuc9HswtzlNq2qEdp35ZKQygzFaTKKHli08SF0lPOnYhTTDLVeuw8SZ4rEsxBzCkGY7H2eUkLgTSTK12DxhgMJwJRRG174V6Mh+cp3r0/3Ng9tcOjQcjyqKyPrRuF7BT+HR47doT/KUM1sI8UIwxNuRgRqgiW/lxML0K8pX9WgN66vZOA7cGU2qBw4SZW8SkVB8bnP7yJVuXw7gX3VUaYTVUX0+F917ek8M8byQcAqZogThTiiEBr4Hw4fcxsH/58Ulft3wdsWrx/2NQs/TCImVP44UP73N+7/md/eJXWYcHUcYF93RlBWHu9aGoEGABkuUZezB/J5+FH801ShYhGEEaAEYZxWqb8NxGKBOnjJ3BAOS2gaecHyv0XAhjnqxeSfA9/nNii117PE/7LVfh9EeP6UWcm2QeAz3zE9vG/d3+E8wU9y/Ngbfk2Pbw6ItIYU1r6ZxB+oOxIad4ngusEpDUd/1FCG43cFOCEgxE+HSDqJmasCyGnHQ7v3p3gD79ur7sf+NwBPvVyf+p1LzjC/8b755dnIybtPfxam5m3bEpJa7+5cver0tJfIfwbFJ4pJWup3MaYcP01Ff15wX2UAso82rA8IbVTv5tjEMlW1OS8UDgdZLi/RUt60XJdR4yikO3KaSbU2mQfsOJFVqi1+viNMZhkCkIpTLLli7K5UMgKFa5fziiu7CcYjAu8e3/4xOTV7DAbfkpx89IzME9su8wOTw92hP8pQzmSj4CICUYoF8CFFkGlLwprga291iv8UbvaHjtSuF5oH4ExBkIoZ+m3Co7vb/ShfUKq9mq30XCxSVbpX4CEJRjK4RQB8Ar/YCJCgWMVeJI0K7TPGDtv/iQ/Rszi0Md/cj69MKCEBdI+C9X+fQBO3a8r/F0WA8YgcpMAlCP8WgNSKRBi+878eqr6uWNOMRHjQPzTBcUcqa192Kv7/S6dOZLPw5PkNLPb3ecH6LE+RhNH+HsthL/rnSgGhXy8JM4qM3ZR74sXVcQRDTb/8/HqhNhb+pPYFtq8wl8Ifanjfnwo4MGCPIqDfowPPbMPAPj6BuF9PnjPu3w84ReyHFV39cB+P9O8RdlzSkoTp4MUv/k7Ezx4aCAfs6VfagGlJThhiGmMXKW17zghgFxzYaiNXVTWMjWMxp379pp7+aUuvvtT+62vfe5mB3FEMMkkPnD3lG1jpsLfkjvgQUl7qJ2eIvzl926eS20RGCUzg+DmQWsTKk55QyU/G84u8jFqg/IeNeFX2oA1UhIZsfkF6xCTrJA4HWR45+4F3vjgHG/fHeCDh6O1w2+bkG2En1NIqVrPV5qtl9BffW+h1FprGSE1CqHQiTlGqVi66JEVtkhQbUOglODKfoy8kHjn3hCng12Y35MML1ZNTxwpR87usMPjwo7wP2UICj/XgFIYmXIxUpg8KPxWaZ9B+Geo7R2vrKxpP2OUIBPSteGbmqWfuTYCXwVvwpJ8YufuLvFAjGkCoQtkqr4g6SQc+y6U7OGKixVbjLD71hbap4zCSX6Me+ldAARd3sNVT/jPpgk/IxTKyJkPeK0N7pzY8MHnb+zZbWh3HFAS/g6P7AQGZ+mv9jELbZUQrcrxev74xpxCQeA4PSltsguCsKSRNqF/ycA+oLTn+5R7Sqwt3iv8zcA+wC7q/XrVq+uPC3Z8oN3XZtaAhy9aDCfFygu2QPgTe2w6EQ8hZZdp6x8uKF5V8VmX1r8J4SeB4Cur8Lvz669HQspWGW3MVLGDhP+r47V3L3D/ocLrbwoU6vFeK8II9x1h4IRDGIm8YutnG6isdrxdfbGpTHlP8sXFNsSM47ln7O+3MWKxDcQF9zUhpJoZ2OeDHKvQlRF4/lhFLSn9ebG6Vd5vb1Vl2o81BUqF31+rZ3OC+6grdD/KdHwhdasLzo4lNEtbj7U2OB1kePvOBd54/wLfvjvExcSKBtcOEvQ7HPdOJsH1ti78qETWuEbs/k63UEhlC6HRGv37HoQQUJDQTrUKCmldSntdjqxYvmgwySVoZTRudV8O9xJQAnzwcLxRmOAOlwtjDIyeLmAyRqcKgTvs8KixI/xPGYLCzwQMjzCqEF6hijCWryjKXvDwWp/Sz0yrwr9RWBKsSjPJlLV4GtRC+zjzLgDP6RuLEl3Z5hKztgkhISCu+V7Xncp/vGJSv1dEY06RxHXiV6gc99N7OMmP0WFddJltHfCL8NOLdoVfzRkl9vA8hZAacUTDPiuUI7j8WL6OU/YjZ+lXFVeHkAoEqFmoq4F9ykjkKl/63ApdgIIGhX8pwl+x9Fcx9gp/C4kmhARnwKaEXxmFkVg/rEzpyki+Fks/UJkqMJEr95GPg8JPQGGLIX4032XaPMOIyd789hQA+PSHroBRggfnKe6ftk/AWAqGuBnh0wWobswRcRoUsGZw314vCsW6KsZuksNobHv4m4XMRwnfokMIcaSCYlKZGELXVJgBBKW4Ktxqo5G53BY//rINnER4/ll7vDcdz2eMwf/wm2/i13/n27WfkxlqvZSmdZQiYAmx0vVWAH+/tqF9vghdvt4/w7QGcrEaYWPUjXdcUeWutkR5wv/MVZuTMG80nyWtj3ZGdyZkbYyhR/jsSxL+wcRZzVOBTkxx7TDBYT9GEjEQQtBJOAwB7p6M13LLeSjlpji0XCOUTJ9jITWk1AudZYsQRxTDcbHyuSmEgtEGEWeQSi/V4miMwcj1789Cr8MhldqFvz3B0NrnT9WvVUbJpbrxdthhGewI/1OGUuFXAE8w0uViU+gi9I8VwtQS34FS4WdRu8KfbGDpB2xPngjBfd6y6Xv4y35exskUSSdKwoS4+eUeiAntIFWTWlI2UCb1P1yxj/9iXCqi1eMzkiPcTe9gLEfYjw4Q0ZKUeMJ/fDYdEEQJnRs09oHr33/uej8shrSxSfdAtYffbsOn9CsjAikopE0/VroMSStH8jFIFywWO9VsXniQNhpyxYR+wM2XB5BmdUUu9PC3KPxAaevflPBnKsOFuFi7v1sZFYoVvRZLP1B+hnG6+iz4SbWH352krvvsl6nwD8bLK/ydhOPjLxwCAL62gcoPAkhlagUo30bScfeXXtKeJxHxMlyyCj++cDhWkHr1gss2kakMjJTXc0xjpHISrj0f4rYOlLbTTZqZGpkrRnXnEH5CCJ69FYFS4GSQ4XjN0FIAOB3keP29c7zy1knNrUBI+yzq5kSGKmhlcoNH2SdbUfgr5z3iJJDvyYpJ69SR3lUDtqSbGgCUlv5bV+1z5HxOD78Pm3yUM7onWXt6vS8+LFvs8M/pw36MOGq/Rx/0IoxSgbsn47V7mH3Bp43wM0aCA8qjkBpSm7US+quII4a8UCsXKzKhQNy+MkaWGp/a7N9vQzWYdIcnE9rdnKYU/jWdQzvssE3sCP9ThqDwR7Z3clIhu4UuQ/sKoaGbCr8fy8fbFf5OhfCv02fGuR1RlLs+flJJYS4tmwSc0OmeRy0AQmEIBVmSuHHKIY3ERNYVyUD4V1z0NgmSNhqn+QnuTe5AGYU9vh8Im8eVwwiEWPvpJK0viCg84W//PD6h3/fvA5Z8Tiv8lnRH7p/SlAqPlLbn3uhphb8Tc0glILVExO3xntfDb9VTBUooBqtY+h1JlspAVBK5fQ9/m6Xfvs7b5DcjvcpIFCqDNOu9jzIqqKgzLf3u5+PJ6oTfK/xxXKb/+mN2mQq/f+95gX1VfPajNq3/698+XVuxpK74pCuLJt9G0nFEv+vyJJa123qFX2t7TT2u0Xx+FB8j5XciojGEFsjdxJBFfdRZIWcqfL6Hv2bpR6nwd2e4TzziiOK5m9Yp9Pp7i0csSi1xXpxNOSZOBuV9s0qWKCFT6rFxIYV0xkrE5zo0Ff5my1fVvk0ICbb+SbHad5pRAmlW76nXGoHk+dC/W17hH+Zzn4cEjy60zyb069b+dl+kXnZfskLOdGZU3/NoL8bJIFu5gO6htIEyZiqlH7CFnqxQte+LzwHaFLaPX68sYIxTEa7HJGIYpWKhKt/Wv98G8ogDHndYDcYAGu2E3xYSd+6MHR4fdoT/KYNfPCcJw7gxlq4wItghRUPhN5WeWc5JxW4rw4KvE5cL2XXsS4xSaG23o+FS+n1oX3hrA0IbvaDGBMJvg7uWv6lGNMZQDmuL1utHbjTf2QSn+QnuTD5YGJ4H1AP7jDF4mD/Acf4QMUvQ4/1WVwRnBEdOBW8G99mKvplJEH1g3ws3SsKvjSoDEB2BjSkHCEIPvzRloJFw841llWBVLP2FLkAIAYvs8ZnXw6+dXZoSGsj6QX8+yQCAqBJqN3HBfcaYuZZ+oDKaL92M9EotkZti4USEma83EmnmCP8CS/8kNSsRTu94AYA4Kb93/UtW+I0xK1n6AeDjLxwiiRgG4wLv3VuvRcIqrLo2lz0LCr+bGOEI/7JZIf6aAqzK/7gUfmFs8YxXCL//jKm0ZIi22KqV1rgY5Xjn7gBvvH+BN29f4OQim1o8KlU/bgCgtQrTMuZZ+gGA0yik9S8zni9VExxnD3GWn9YI1kmlUFq1M3t7fm2ftbEj9mZZ+qkrClRepytjW9tS+oGyvWzVHmx/71yVVClVVfjt9XX9sBM+89zvqZk+LpcFITWU1LOJpZkuysxCmi83554xGzR6/zTFxRpTPJSeHhvr4cf5Vvv4J3l7y8I6oJRgnC3/fBFuX/z1GEcUxYzcoSpm9e83sVP4n2zoSuB0FWzFfIwddrgM7Aj/U4Y882oZx0jVle2iZulHTeH3fXQAEEWlvX40kSENOeJ0KmhrZRgX0tSwbHqCSkDAKKBrN07tPJ6O8Ovlt524ue+pOxZSS3T7dpF4MRa4N36AoRxiLBYnVweFvxch0xlGYoge6yOm8xXSeUn9MGglKHmh8NBlDDx/3Qb2GWNsdRnUkX17jBLCAZCawl8Sfpvqr1Wp8OeeYEUMhc6RsAQ8su8177wqo+1YPk2QOidJb4Y634RPt0+dy6EQ5cNxEeHflPQKLaC0Qt4IdDPG4D+8chdf/dbx3NcXUiAPCn/7LdW7FNJ0dgGnDd7OTykQVcwS5We/HIV/nMnwfd9bkvBzTvGpDx0BAF5562St7frgsGr6nu/V96MhS4V/8XFURoV8BQAYjma3yFw2pBZQRuE/fHmAf/Kv7wfrfkRjTNQY2uhKD7lBmks8OJvgzQ8u8PadAc5HOToxhVQa79wb4K3bFzgdlMRfaTM1zz4TEsp93HmWfgDghOPZZ+zffPBgvNCKPFETKKNwWpzgQpRBf1WFv3q/IHS6h9+r9zMt/YRAuZA+D+Nss0aXamezX9sT/nRFSz/gFPcVlTjlWlCMMYF8dmKGoz0f3DfH1k/ROnrwMlAm9M8glgRLWe/nOQXa0Ik5CAHunExWHturtZkZxBvG+YqyUJzmcqPAviriiGKcyqVJdiEVhFShxYRRCqXnjyrWxmA4LsKEpHmghDzSvIcdVkPpPmoLmDRrT2DZYYdtYEf4nyYYEyyWnRgY6rrFThgJL9ILYaArxLmq2PMK8WCs3k/vWwIWpbnPAuMEUtrAQKXKMKPYPUCNseOEVPWhpxWI0XblBAoYtVRSP1D2RA/FEMfZQ3wweR/n+j46ibM3pj0ktIPBEj3envAf9mOMhHUNcLrY0n7tSp3w03wIUozD/rVt987JOGzLEzINDWO0LZQ4RwIjDBwACEXklEUFBeo4tD3W7aF9cUSgjK4R/nmWfm0UDIA094rMYpLhUSb12217db+T0Cn1LrzGFQm8ZXtdCF2AEopMpbVr+Z17Q/zmV27jn//eO3MdKxepJTiEzFZRg8KfmZWyArydv5uwWjtIv2fP5eCSFH5/Le91o6nxXfPwGWfrf/Xbp2vZF70SUt1iUPgd0e/5EZFLqLe5kBCi0iYyXu34bxNCCxRS41vvpjgbSJycu1YNGiNXOXKV2R5+Y3DvZIw3b1/ggwcjSKVxuBfjaD9BHDHsdSNc2U9QSIVv3xvg7TsDnA4ySxobXxXvfmGMzPweeTDCkHQ1bl21DqdvfTA7rV9qiVRO0GVdxDTGaX6MsbRF0ZrCX/nehAC+yndsXn824FTdho1Zu5D56uK5md0QCP+K5BLAWoq7UjYDpZpZkEQMR/sJgPmEn9Jy/Oxlo5BqygVS2xdStiTMw0KnQAv2exEm2er9/N650gbvyPCtHd4R1ZblsQ4Sbvv4lxUwCqGhNWr3TM4JRnMKs3mhkAs9MwehiqqrZYcnD/a20d4uY7M6dsWaHR4fdoT/KQKRObw7rRMjKPwJsYSxMBKxE6PtjPbyweIJT8RJIIbGGDCCmr3eh7utWsX3iBixs+FNPa2aR2UPPyHW9hs+l1Z2hyl1Ef4AsPxDscO6uBDnOCtOQUCwzw9w5dAek7OBtC4AnWOixnPfx6f0d7sUIzFAwjpLbb+p8BORgTi1mRLa2k5w2wX2PV+z82sY2D5v/5qYxsHxEFeKD5zb4yOVBogOC1ag7LuNYzsWkBOO2Im88wo5XjmdVEbULbIoengrvFdjRwvs/NXfjdP1FVtlFKRRiGkcRqZ5fOUNq+wbg5mzyY0xGDpS1e3QmZ+333OzwXODTCyvyvtAKltIKN9775IVfu+aOOgvp+57fPiZfex1I6SFwjffWT28j1ISQtk8ykwJ+5k7M0L72jBM60RrNNZLtedcBnKd4+LchM+WuuIWJRQGBpnKAsG9cIrf1cMO+t1oihBTSrDfi3FlL0EuJL59d9AaDjdyN/xuMvva9PC//8jzNsNkXlp/rnMILcBpFO5zx9lD5CrDyaDcj2oPv/toNbXUj9ibpfAD068xsCpa1R7LG8fHO9WWuUaaWFVxN35MIEjNWh5xiitLEH5GpkcPXhaKQk/1F9f2hS1XfBAuGG+mU6AFhBAc7cc4GeR4cLZ8P79Ui/fZt274kXibBvZ5cE4hlFl6PZMLObWvSUQxztVMop4VClKppYoUbWMqd3hyYN1H7b8jTsTaYYfHhR3hf4pg8gmEsk+jTgSMnMJ/lR8AsAp/xMpe7qo64gl/1XamDUAaCn/kieG6o/kYDTZzT/gpBbirmBvi96/yVDUaluA7hd9b/JdERCMc8EPsRwdIWAJCCK4c2A9yPhAghICTCBfFxdyRXj6lnyeFdUsssPJ7XHWE/2Io7aJAC1vAgB3NJ810gv8HLYTfL4QpSJg3nrAE0BqEUHDCwlGjkT0/Ulk1ZL9XKrn+3EVRmfqfJIsX0EILENAyXX+Gvb0NwdLvFf4FCf1AtUiw/qg1HzQY0wRSS0jXxz/OBF57twwue/9+O+FXRmHsyPGs/n3AKo5+DXqRZkuHSvmFbCehNYV/r2uvmVEqtxJQ1UTIo1gysM+DUoLPfPQqAOD3v3EPD85SvHd/iDfet6ntX3r1Pv5/X72Dr7zxsHW/bbCbRtWb3iT8qyj8zYLIaGzWzmrYBMYY5CrD2Xn5uaqtBhGJMJYjGGNw9SDB0X6CZAnFLxB/p/j3O/UCzdi1hCzrtGGE4/nn7Hu8fWcQpqQ0kSur4vtrssf7ELrA7eG9WitA1gjtM26SgMeiHn7Ah9pV82Ts3d4TH84AStsV/mVzHqpgKyruZd8ukMvyOUkIKQn/3NF8dhrNZXyPm0gLOdeGv+xYSCHLtrtVwCjFXofj5CJbOudHKD23sBBxijSTrp1Cudr/dnr4AXt+lp32MM7klJMm5gxFoWa6TdJMhjDWhftCyCNr/9hhddivcPv3mBCCYnfudniMWOw33uGPBYwUKCYpgD4IgCQCRhOr8F9hB7grTlAYAQKr4heiXtXOAwkk4eFkFX4KWbH+24LA6sm2HhGnGGXS2tJ9SCAjIG5haXv4g4xvf1btySXEzW1a7cbaXLhcObBfjbMLR7hYB2M5wkRNsMf3pl6fCxUWMCZKEdNk6W33OgzdDkWaaZydCzzLFQhx4wgJhTR2lJgP+zLGhMC+akK/MRraWHJf+MA+FrsIaeuMiAhHYSQYVwAopLKKVrVPO6ucawPbj9ZzvR7zlA5hBBipEv7l+vf9MQAQJhUsCuwDyn75LDcolESHr0ZOAUvYlVHoEAYDG3TYBfDKmye2J9pdTu89mEX4ZSBus0byAfb66vcYBiOF4VhC39BgWHx8xo48JQkBrSwK+117PrQ2mORyiuhtilVG8jXx2Y9exX/6xn18/e0TfP3t2b38z1zt4bnK9Qu4lHStawt2T+x97/4qKf3efRFH9p42HOkwmq86Hu+yIY0tJp2elfeltBImGNEYuc5cZsZyzqAqPPGvwhhTOkTmXJtVcMLR35M43ItxMSrw9p0BvuOlK1PvO5YjcFq/5vp8H+88qKf7V+8XhNiw1aqbW2uzFNVpugJgShWeczJFmALhX+M5ZEnv8q8LYwIpCb3kvlizjMJv+3tt8WPZnvh1oLRGLuYH7VWnRMxr5SmkAllTLoojhrQoIJVeqqhVSD2XwEeMopD2+VsIhS1yfQBWoR9OxNzWE8AWoPJCTeUH2NGSBlmhcNCrv0Y7h9gy/fv2vQAZxhZf3rWyw3rQevZ5YZSgWDfbaocdtoCdwv+0QIswki+J7OKrqfAXRoIYUwk8qvbwu6RwTkql0S1yYMobXLKhpZ8Q2yNgKgo/55bsGGMAYl0AIBVngdYIij8hINqAbKiWeIX/bOD66gkFAcGguGhVYjxBiiMKwwokKxB+oLT1H58XtlhhvN2XQfswPIeLcYFxJkEJwbPXKpZ+q/GDgEAEhT8GoOCPT+RIDuH2/ZQyU58nC+0b5cOr5whlLmbPkpVaghJas/QvC0+WfQ//opF8gFW9/bN1OFk9/RkAlJYwMKCEgoIiV3aE1lfeeAgA+IFP3gRgWyja+k6lUUt/3moLglqyj9z38Ccxago/YwSJy5m4jKR+/577Swb2VfHM1R4+/sIhCGzQ3pX9BM9e6+Ejz+7j0x++EooVx8PJ1GutZbVu8W4q/N2g8C9ePHm1+dY1S4alNEgz+ciD+4S27SLHp+V5ryr8nHIoo5Dr9a7jNmjo8H3qJst9FznlUFD42Av7ANpt/bnO7QjXhoOJEIIirf+srvC3JO5rs9CMRQhq9n3L902wSDOGKcIftzzDlkWYmb3kM0Trckxg+Zx0hH9vCcJPyqDGTVAINbc3XkgNqczcQDsfLrao1zjL5Up2/uY2jDFL96LLBYSfV5L6t5nQ7xFHDIXQC9c0hbD5Ac0ASfseFMPxdCtRXijkhVqqfx/woX3YBfc9oTDGrsHawChZa3rVDjtsCzuF/ylCIZydP7ZEJXWLy5LwKxitXLVZIRfTln4eIajtFZod4CvVa6f0wxYRCCojlyoLOgL7gGcurZYR4kbyecJP11L4mzhyCv9wrCClAecEXdbFRI6RqRRdXi/Ve8Lf61r7/6rV92tHET64l+P0XADXFGDsAoCCQvs+c/e3vn//1tVure/Pj1EkhCB3fcoJTWpqgCf8jNlzK6WGaeQd+JR+ynVQQbtJ3QHQ69RvHV4pp6BLqfNNdN3fpo4ELeMSIISg12EYpwqDSY4bB/tLb6+63/7aYpQjUynevTfEySBHzCl+9HuexytvnyDNFe6dpjVHBWCDCtOg8C8g/K54MZ4sPxrOq9hJUrpcPLodgjw3GE4KPHO11/bytVFOnFhd4SeE4P/0k9+B/b0OhqMs9C0KLXBRnOOf//YI4xQYjNv7eKkv6jlMj+Vbvoffh2Xt9Rn2egyjicL5SEJdfbQLL2kEstxgOC63W1X4AWunH4kRDqLDrWxTVa7NZRV+RhiUUfjI8/v4g9eANz64mFI2c5XNdEgMh817SYXwO6WzGdq3CM2+ZWMMiCG1kXzN+20nFJ7XU/iltKSXLgg6BHwOgSt4BIXfHu+jffv9mWQSuVCtirafzLDJuDWlNd67P0QcMbxwY6+VIBdSQyoNxmYv+6pTImZBG4NsgVNgGSxD+JV2UwXmPE8pJdCwRYisWK4XfhVwZidj2Ofe7AJoIRWkbs8PiCOGNJ++BrJCQSiNgyX32V+bWhtsKaZghy3C3ttmK/zLuGd22OGysLvqniLkFcI/VnaxzQnDPrVkwc58FyFpv67wV0L7Kpb+hsC/kZXS42gvxuFeXFP4fRovIQScEVBKwwKJKAETyBCBLUVsRvi7HYoktgFiF0NLLBjlMDAYyukZ454gdbvW/r8qQnDfmQDRJkwasAtZUlP4bx9P9+8DpcIPIPTwd1jswhbs8fFJ/WC+h79F4XfnjnAZFvURY2E6Q5vSoYyCMQqUsKBcrmbpryv8oWiwYKxfL8yjXy+IzfZz2wuYEw6pBf7z6w8AAJ/56FUkMcOLN20Lx/v3p8+7NBJZZo9fdwGpCkn96fKj4fxYviS2xZ8qys++fYXf9/Dv9ThGrrd8VXgSpozCeX6G25MPcFIch+Mwa+zb9aNuraDkr0dP9Ffp4R/5HvYOw8GeCzocL19w2RZyldf694HyWveIaeRs/dsJFdRGI3OurmV7+AFbXL1xnaMTM0wyORVYOZZjMNJOGs/dvdJfm9XeZ3sPr6uTSumF1nBK6iF6vk+2qvA3EW/wHKra2peBtfTbZ2ERsm5cwGTMgyOlLVQR8Kq63kjhH4wFBhOBhxcpHp63F9LsGMj5VvBl9sU7BTZpP6CE1ASFWfDjgBf15BPYZ7BYcXLAsmCULBxTWQgbNtyGmFMIOd3qmGarOSW25QbZ4XKgdZmB1QRjbjTfLql/h8eEHeF/ipA5wp9UAvv2aK8W5lZoERZLeUsPf1Xhdw57VPvpN5l/7EFcv7kPjOIcIKBuewScUVAKKO12QkvUV41kpdC+Wftw1LD1A66XXwynZrb7wL5+tx6utiwC4b+QMH7ulCta2EJMhfD7wL6G2ly1iQeFn8XO7eAUfpfUT53CrxSmLGh+UcK5zWjwCIWglkW0NgrKBfyVCv/yCxmvjqeZbRkYpYst/UBlHn26PuH3n5ETjnEm8Pp7dhzZ937iBgAEwt/Wxy+0QJbX92UW1iH83tIfNyz9QFkk2TbhN8aEiRNxR+Fh9gBDOVj5fbTRGIkh7k5u40F+H4DBAT+sBA4ut9++8Fgq/D5PQi1URf3Ixl6H4WDPvm400ku3VGwDIbDvzO7rfr/uZvHgJLKj+9R2bP3aqLUIPyMMhcnw8Res0+D198/D74QWyFWKmLYrnb44euOq/X02ZWE1MJVzJpRe2HNtVc26wg9UFP4W4umfQ0WhVw70pNROgVmWVOnK7G1fpK5atBf18Zcju9YrUmttcHKRgTOCfofj7um4dVvL2Il9MWBeErxwToFNiDVndKl2i0VjGz0iTpEL5fZr+73tccQwSsXcItCkJbDPw5/jNCvveb5/P1qyfx/wLpnZbXU7PF6oOZkkoZi2C+7b4TFhR/ifIuTCnu5ORMJIvj3adWFudoEmVB6IXXWxVir8pb3euGhi4v8dlXFIa/bwV+FHHDHmFH7Y6ikhBBGjbjSftoS2RoYMyIaWfqAS3DcoP0tEYwgjw8xpj9ORLaAc9Ffr3fc43OdgDJAKGEwMqpMGCGhIFlda4+6JV/jr4YFV5c2rhF0WwcUpu/13yhx1hF9bZ4CHMSaca8Z0Tckr+2LbFX4NR/g9WdcXIGK58UvVfvyLkYSUdp8WJf37QsE6pNcYA2EKUJ9rQAjefk9AaYNnr5WBci/dsq0C79+fVrqFLpA6hX9ZS3+amhUUfm/pn+5T7vfsuRlseTSfHRPliEuikckUJ9lDTOR0z/0sSC1xd3wHdya3kesCe3wfHWbvNV13nEbZ4nuEVDrsS7OH3+7r7PfQRtcCFQPhHy9//LcBZRSEETg9s9v80HPWATTJdO16IoSAgGKilj/O82AVfvv+nQXXZhWcRih0gZddH/9bt8tiT64yCCPByTThN8YEwn/zqrWyT50fUx/jKhb0ZwNuckPF8q5dn2y15auJJBStzVqE35jlZ2Z714Lt4Z+eZrNMcJ+dRLAeiRtOCgwmBfpdjk7MwSnFneNxmNDgkeVyOZJuyNzPLqSG2TAJnzFbsFnkolDaQJnF4/84o0EguIwwuySywYCzHCM+PHVeO0HMKQaTcuJO6N9vu4BngBDsFP4nGEobm2vVAkapG3e9O3c7PB7sCP9ThGoPf1D4mZ25HDtiJ3QeSHtRWSwVVUt/ReGnqPdPJm5Rvoml36PZw29cnyQltqKvjAG0suR+ywo/MB3c55HQBAMxgKyohOeO8O/314vFoJTgqtve8YgCKIeRM1IS/vunKaQy6MQM1w7K4oLQArnOEDnlTVQV/hrht78njvBLVR96Xkgd/pNFpqYqJ64Q1DaiyBMoG1xk32AvliBLKqmUEjdrHnh46m3spDUAqQpvHV5WLW7us+1F9tezwdvftvvr1X0AePZaD4wSjDOJ08qiXRsNoUTZw7+gOBEU/swsbdv2hD9OpvuU/fsNxtsLegPKAkIv4SiQIWEJNAyO84dL7bfUEg+zBzjPz9GP+ujzfu068q0PkyVGCmYVFdATfkpJ6IOdpxJqo8O56VYV/vHyx38bEEZAKIHjM3suX3KEXykTviseMY0xkZPavWVdKKOQO8K/isLPCYfSEs/esPeXh+dpIFOpSkEwfS0CNndDKkt8bzjCnzefA86S7NEMaGwDda0AnuR4p5dX01mLqhoUfrFecacZLjgPdtIAcT38LhiXVxV+eyzmjeYD1iP82hgcX2RgFKEveK8XQUiN2w/HoQChte27X6q/nWAuEd/GWDjbF784uE+5UMdFJD7iFHmhLi25njEKpUztflRFLhSk1HMDEZOYIivKaT6+f3+VzAHvFNgp/E8m5in8AABj5rpndtjhMrEj/E8Rqj38I1Va+gEEhb9m6Rc62L19+jCvKPwaBpT65FinJG2R8PvRSIxbO7PPQyEEIFTjLD/F28M38eX0TXxh+BX807Mv4pvpO/bF21D4D13v5UV98R3TBIXKg8qfqywozIss6PNw7UpJ+O2UAfsZKKGQxioDvn//uev92uKm0DmklpXzaAlNh8V+ZpTdd6/Y0zKlX1fyDvx5o3S6N7aTeMI6vXDVRoMAIbE+4gQRLeozuBbAK+QPT8v+8UXoe7U4XZ0gKaOgjQ4K/72HBQYjDc6A7/xwOYqMMxryEt67Xzo7Cl1gUsjwEbsLVFR/bWSpQS6XIM5Kh8Vhp4Ww+eOzTrFjHrydf6/HUegcEY3QY31kKsVJdjyXQHmyPxADHMSHrcFuoX0j17Vrrw1pCOxjtevd9/PPG80ntawVY3wP/2ikQwHtUUBqgTQ1SDMNQoBnrseIHElt9vFHNIIoBshXcFPMgtLrEX5KKAwMOh07pcEY4O7JBMooTOR45sjRc+eEOtjj6ASFvXF+Kz382i1+Fyr8FFMKP4gpW77aFP6oLErn67jNyPIWe+84AGYo/Esk9ZM156sPJwKDSRHaZDwO9yIMJwXuHtvpIkLaQuwydndKMHcsYZbL1tyEVcAZgVRqodqptVmqeM/daL5tB/ZVwRiZck14FFJDajN3QgBnFEKpUKRMM7mWS4KY9d0gO1wu5vXwW5DdudvhsWGX0v8UIRD+CLij7YJy3yn8kZsJLnQRLP2FsP2PjLBaD391LJ9VFcoRedsI7fNo9mhmKsMfnv8+fuP4FOf5Rev4k2+kb+PT/WthrN0m8D38FyMJpcqHOSEEEY0wEBfYi/YxLIYYu/nxi0Lm5uGqH803YoARIMZ+QkoYpLPM+/79FxqBfTZToAxk8gp/h8aACmELiIOl3y5ctEJNZfXnOYmmswh8MWfcovALLUBAy+PQJSBKwZjliVWvQ3GCkvAvsvMDZd/8JPXkffkFnzLSvsbVPb/5tj22H34xBo3qi+8Xb+7hvfsjvH9/iO/5+HUAQConoUc8icnCxbRvWzDGknS1N38WvFf3CQHiaPpa33PBdtvu4R9WAvukluhwa8Xf4/sYigEiGuFacn1KTQtkX17gKDmceS68wp9mGlIJsDmW1uZIPo9ewnE+KuYG96W5KIsxCavZvNOigOrNP/7bQqEKnDg7/5UDDs4peh2Ki5FCmmocVYZLUBiw7AJjdh/9+GCj7U4KEezznSXH8pUgyFWOZ6/1MZyc487xBNevMRS6QJ/vtb7C2/kP93mlaNxU+E0g0n4k3yK7NnWBrX6hrNys62pKfxOcEzBmM0rGucBBd/lPDqxGwI1BiLFphvYBy1n6mzkFy23X4HSQgsAq0FUQQnC0F7tpIwz7/cglyC9e8lFKIMTsfcmKzRP6rVJNFiv8Ss8KPZ/CrSt9DEfppanfievjb8svKISqTcNpAyEEjBCkmcThXoxhWtQKQ8tip/A/uVB6vmOJUMz9bu2ww2Vip/A/RSgVflIq/KwHqTWoGwNX6Dw8hAoxrVzwynrBL9Z8zyNQKhtTVs41UKb02/9+f/IO3kvfxll+DgODiMS4Fd/AJ6Nn8YP9TwOwrQoTI0H05tvvdyk6iXUWPDitK7IJ6yBVKQbiAifpBaTjHXsrJNM3EYL7hsxHPwMAGCiMsUFvIbCvQviNMRjLMXhlLnYRLP31BZ4n/Ia0h/b5ntsoIlNkyBOmNkt/oW0vfBin1yEgRoEsoWR7+NF8J+f2/ZcpnvQq5HFV667/e0IIslzh2+/b78RHP8JCwcTjpVv14D5tNEZyBJFTtx+L95VSEgoU43TxLHgf2NdJaHAhVOGPzySbP397VVRHTJpKEYkSii7v4aw4nQrxq5L9fX4wt/DinRBaW1I6D/56rPbtA0BniaT+QWoJVhwRcE4QRzQUGy6Gi4//tpDpFGfn9t+91b3bLc9dFURJdLXBOL9ArrKNtjtyQZYRJzPDxGaBU45UpXjumnWA3T0ZI1cZDMzMc+sJ/9E+D88BIetp95QQSPffyvUiL5pQRSmBqozz09o6JeaF9gGb5clQupiMeljyVRbJq9sGSsJ/PipmEjVKlhtTV8UwFbgYTav7HoxR7Pc47p9NcDbMl7LGA/aZXszYF6k0hNJbmXVvR+/O/w6uYn+mtL3VZFuII4pCtPfxp7lcyj0RRRTD1BYq80LVWj+WBSGw7Yw7PFEwxoR70ywwutx0ih12uAzsCP9TBE/4I66QGbsY3qNdGG0Qk7L32xM7IUyY7R5C+6LybmaMXawRUgYxJW7+sZCbzRW2268rOJm2C+CPH30Uf+VTfwn/1Y3/A/7slR/B/6rzMXyq+xEcMkvKjvXQStcbghCC52/ZxdoH9+rqDCUUjDCM5RgXrod6mZ7zebh26NLLc4JMILQlUDcbe5zmOBnYY1BN6C90AaGLYOcHKj38pD5H3Y/lKwl/PdTKL2baCH88g/AbY6CMBCM0WPr7CbH7r8XSeQqevCt36pYZ6+cJdJYZCLXag7RK+N54J4XStuhy5YhOWb5fcAGJp4Mco1QgV5kNMCtckNySoWi+IDSayNqoxTb4kXzdhIbJGFXYQgDc+21P5R+490o6Brwxfi2iESIa10L8ViH7gCVo3kU0nMzva87y2Qo/MJ/w+1aHajHmwGVsDEaPhvBLLVHoMrDPE/7qVIoqiCoQaw0lJxjL8UbbHmXO5bOCnd/DjqgscOuavf/dPh5jLEe1e0wT51WFv/KcqBZ/KSXh+20V/sU9/IQQ2wrgLf0aCxV+oDoxZvUFNiPLE37jWgyAqqW/vOb2e7FL/jczx4cyaqfSLDv+0hiD0wv7LJj3zIkj62w5HxXLCuW1eeFNCKmhtjT6jtHFTkCh9Epj6y4TzI0CbgZRamMwycRS7QQJt27J81FhRxuusV6glQlGOzw5MC6QdF7RiTHicpJ2BZsdHj12hP8pgif8KrJKZkQ4YhJBo0xvL2qWfhMS3P2iLaosrl4Z/T7+P2/9KgqdhhtY1aI2L0F7GRShR7NuU7/auYL9ZA+MMhgpQn/6dW7HSB2r4VZ6+AHgxWcc4b87rbZ1WBcjMUSR2cXdMj3n8xBHwH7XHsf3Thgenkncvp/h2x9kePOdAr/zyn0AVjHqdcqFd6FzSCPBvXrv0ucBoEMbCr9T/LUj/FKjRvjL84wpVTkJY/lk7TU+/K42kq+jYXx44pLEqqmSL5OHEGzyAIbpauF1hS5cGKTBa29ZcvWpl/vglCNrqKvdhOPmFesLfv/BCKlKbQq6T+hfov0AqKjyqYFcSPh9Qj9pJdGEEHS7njhvj/APncKfdAx4y/i1DuuEEL9UpSuRfQ9fIBksGKeYBkt//Tr2iv9kTmifJ1fdyrk52HdTHcaPZjSfNAJSCZy4wL6b1+zxDMGFDYUfMgeMRqKBYXG2dnifDSy0771K/74HJxzSqJArcjrIMcpzRDSe+Zqqwk8pCc6sKqkjBHWF3yweuQbY77cKhN84dbhU+M+KU/zB6e/XxqVuQvjpCgRcm6rC71uiynsXpQRX9lxw3wxbv83BWb43e5xJXIwL9Geo+1X0OhEoBXpLtnX44kRbUr/wvepbIOF2NN/8c1MsMcXhUYIxMlVcFUKjkGYpws85hVAaeSGxQvdZDbZotiOMTxq0a8FcpPDL3ZSFHR4T1ib8o9EIv/Irv4K/8lf+Cn72Z38Wr7zyCgDg/Pwc/+gf/SO8++67W9vJHTaH1iak9CvuA/tsb64xQAIX9mZEaekv5iv89/PbyFSGU3EcRNxZC711IBqW/kI7JZ3F4JSAMgKtBIy7w17nRwAc4bfN6RttHwBeeMYmaj88E1MJvYww7EcHELndwU369wEARuP6vt3nL3wjwf/8xRH+5RdP8IXfO8WXv5Ljq6+fAyjnwnukKg196AAgjQw2/ZjyWg9km6W/FtoXzjOmLf1JGcQlKwq4NnZhTEExdiRjL9YA5SBGLU/4G4r+MseTUhIIzSz1bBaELsAIw73jAudDa8n82Ie64CRCrrKpcV4vueP+7v0BRnKImCWYpH7s23Ln3ucSTNLFhHNcJfwzbtWeOG6T8PuU/qSjpxR+Dx/i9zC7vzLZB0o3x3AB4c8qoX1V+NC+bA5hGGYtCr9P6h89mtF8UksMRhqFMGAMuOpcPK0Kv9EgIoXmCTogKOQE6Zoj+rTRoRiyykg+Dz8GNYo1jhxZfXiah6JiE1IZDMd2e4dunKl/jlSfA5SUZEVp4waILCZ0BKXCr9wIPG87jzjBN85fwasXX8O3x2+F15RjRFf/bjBKoJYk4KoS1OX3qdmbfbSgj5/S+ujBRTgdZNB6OZIJAHvdKLTBLALzhL9lX4TUS5+zReCMQur5qeXyCSP8ccQwyWVtn3OpWvv6Z4FRgrRQa/XvA07h3yW9P3HwXZhzFX5qpz3sCjY7PA6sdce5d+8efvZnfxa//Mu/jHv37uH111/HeGwVsqOjI/zar/0afvVXf3WrO7rDZkgLBT8wJCd2EbnHbH8mDBCzSkp/pf9SN3r448oCo3BtAcLkNSXEOwQ2JfxFo0fT26w7LLGFBQKn8NsFbUn4B25/Nn8o9roMV11af9PWD1hSPHKq9ib9+wAAo/GJZxQYBTgz6HcIrhxw3Loe47lnGD7xoT5+8NM38aPf/Vx4iTIKqZzUlDfvhKCg4CDwoYrSqGDpV47w65mWfkwRuCQqCb+ohPGVCj/DxB2LXqRgWARovXSegievHstY+oGyULCIPFahjYbUEpQwfNOp+y+/1EUcUXDKIY2csvW/6Pv47w+RqxwxjYOK2mvsu9QSqcvJqH0mV8RIU4Ncz3ck+NaJJCYzbc/+sw9WLHbMg0/p73bbnQUAQoif0GJlsg+UCv+iIo1PtG6GzpUK/xxLvyuCVK+rwzCaT29l9N0iFLoIdv5rR1EgL60KvxYgWgAsATEa3AADcbGW/VMbtZHCD9j7R65zPOfah3wOQRsGwzL7w28vDo6g8ntECIHS2vW7tsWuzobvW1bK1EL1OKfhu5RWphv49rLJmj38yy7MVaVvN4T2NXqzQ3DfjNF880h2E+NM4HyYo9+9nMxlSgnkjLGEuVRrK9NNMEagpJ7ZOqG0htIG7BL78ldFEjHkjT5+G9i3fBEkiRlGE1FzgawCSm0hZGcLf7KgjW9Rmv039nuug8tphx0eJdZ6Yvy9v/f3MB6P8eu//uu4evUqfviHf7j2+89//vP44he/uI3922FL8MprxAwmplT4AaucJKGHXyBxLkEpAaUUFNFhfI5XTSzJswupQmchUMn/zSRVa4UlVeEXApF3HLgCQ8I7ICDgFJBaAW7fr/J9UBDkRmCkJ+gZg6UbF+fghWc7OL0Y4YN7OT72od7U74ONfUOFn2iNl29KfOQnI9Aihe5fh+7a8XBjOUaf9/FM99naawqVTyVn+8C+mMUgRsMQilQXGMksFHY0nKVfoUH4y4V7E2G2dWFqZEkZFcLdQkp/RwOUAUos3V7RVMmXPZ69LgPORAibWwZ2JJ+CkjyE9X3qZUtsmMtMELpAwsoRZF7hv3+aQUkOGtFA2JruhC/c+9c4LU7w5178BXRZGRHuixhphpr9uA1VSz+ZUZvtB8K/WjvDLOSinBO9t4BQUEJnJrYvgi+QjDMxN93aj1TrOkv/WI7ACF/Yw2+MCcevVeEfaxRme0WSWchUhrNze/37/v3qPlUVfqIEoCUQ2eulYxhGcoJUpejx6fvOPChoZLl972YhbVlwGiFTKW5dTfDqOwifow3nFTu/P5eB8FfOEXV5L9rYHvFlb8+ElAFuxin8wruRGAnFuWqRLUyMmdP2MQuMEmijXR/7/PuQUiXZ8+Nr4waZK0fztV9zPphwGcJ/OsgglZnaxrZA3CiRtrGEy4bTLQNvbxZKo22IglK2KMTXVMIvA7bdwTqLfFhiVkisEmnQiRkYJWvnIPj2D22erGLI0w5jDIw2YWx1Gyi1527ROModdrgMrHXH+d3f/V38xb/4F/Gxj32sdaH24osv4u7duxvv3A7bg1/8dmJUEvrtY9YAiKm39EvElbbATKiwiAGAxCn8mSx7nHOd1dzzSctCbx34YJrIPRhFdbY8gIgaa913kgMjDFe5HWV1LC9qRFNIhfNhvlZV3Pfxv38va339aEuEH1DW1uut9JX9Z4ROJccDQK7zqeTsMqE/DuGFdvwcELn31rA/tyn90z38bXbDQPhFXZ321mitTSDAe5E/L2Zphb+qkicxWdquWtrDl7fuKiOhjMadexJK23FpN66WFz5BeRw9DvcSHLi55OfnpTXf7kN57rXROM4fQhmFs/yk9h79MEZQQxo5V2UOlv542m3RfL9tKfy+fz/iBL14dr/2pvAK/yRTc631aWMs30VxgYkcV1L621+roctiTOW6OtgrMxQyUVyqSqaMcgr/NOFvU/iJzAHvyKEMXNmgtZEcrrxtbRSy3H621UfyWdjgPomjK/Z+fnLaONZGgRR2akV1JJ9H6KGvFH6JW/BqvdpoMUpKVVMbu6gue/gppHMcTURV4fctBesp/FoDcol91FoHVa/s4a9/X8vRfO2TF0hj9OAsTDKJs2GB/oZ5MQthpueFa22Qb2Ekn4ddO5qZ4wh9i8OTZOkHbEikn4BhjME4lUs/qwD7uTcp1viMhd1ovicL2na7LOGAaS+m7bDDZWOtO3eWZbh69erM33t7/w5PDrzCn0R2dB0A7FGrGhkDJBXCT0lpo88KGRQ/xgDGXO+sLpWUTGeoejM9WdyU8PsRR15tDsnzTnWNGGC0RnWuU9XWTyqLeSHtKKFVxvx4PHM9AWcEaaZxej79mcYT+7NlQubmgVRsXobQGlH2Sf1NcjSRk6k+6zLrILGWekJDUSCidh/VgpR+v1iuwltkpQQmogxqVEaBgCDLNbypohcp12pBbFL/EogiGhK3l7XzA6iMuluF8FtXgm/T+NDznVrxkpHp4D4AePaGzXQ4ObGf3RO2ajDcWI5DhsJYjmqvL0P77Ax6aeYRfvt54mQ24fdBkdvq4fcJ/d0uaQ3s2xY84U3T+eMUfY9+J+bQRkPoAqmahACyWfcYZVRQz6sTFJKYBuX5fFjU8iu2DakFhBI4cfeMm5WCUlXhN675k4gUxo/RJByQtm1kLIZTxadF0EYjd4R/XUs/IwzSSBwc2GM0mpRtAgBAZAGaDQCjaoF9HmUPf3ltUoJAVqQ0rQFXJ9nJVDsNpdbCX/bJVlq+olLhrxYik7D9Ne3PBktZ+qVT9YwxlR7+GZb+GQo/YIP+FxGB82EOqdTadvClQaZH4gllnX7bUvg9fJGkCR/q+KSk9HsknGKcKwjXjiCkXonwb4pVAx53eDQwKIuR80GWKiTusMO2sdZd6uWXX8aXv/zlmb//whe+gE9/+tNr79QO20dd4fc9/KWRLnFhTMJIwGjEcanSh8A+TkB9DoAsF1aZSmuz3EtlZTMSEkKZXJHB9413HOGnUI4ktxP+qkKulEEn5qGIsAoYI3juplXn3r9XJ4HGGIzcKLpNCb/dX/ewIKiF3VFQazGt/ExogVxniBrErFCVwoidYQXtxl/5aQwqKPwGBiYsiLOGolpFVfVP8yKQVaGFTeh3x6HbIaEGYyi1VuUl4dXYVdwSnjyN0/lqcRXKBQ16wv+iC2f04ISj0PnU+924brd177iAlAaFMLV9AOqK7EjU59X3KjPos1zPJfzhO5vMXkD4Pt5tjeXzbRG9Of3720CV8Ko5xyBcj4kln1Y1F6EIOIvw2x726XNDCAm2/sFIXWpSv9ACpxcCStmiZVX99gUPY2wmBrQEdAH4UDzGQYxEDILCCIzFqG0TM6EqCv+6ln4/Do9whcN9+x4PzyrXmfH7rXA+tD+vK/zuHDdC++BUeqGmA9mUURgXo6kCByUEUupaErbv4Y8YrRD+8v7sn0N5odcr7BC0jqZrQmsDQlGbXd9U+H1oX5rL2Y4DMp/EFULhbJSHdpbLBCXllBwPIW2LA6Pbuy9wRmdm/ShtVuqNf1SIQx+/RCE1ihUC+7YB6tpNdgr/kwVbjGwvYlZBKVCIy8+P2WGHJta6S/2lv/SX8K/+1b/Cr/zKr2A0sgsRYwzeffdd/K2/9bfw1a9+FX/5L//lbe7nDhvCK/xxrJC53lWv8AMI85ULI0GMqagjspbQ7+eBV9XPZjhZm5VzHQRLf0Tqo+a4JWecYGoGih/Nd6JG0BUioQ0Qcbp2Vdyn9TeD+/JCrzQ3fi6q5JLQWsGCEjql8Oc6h9ACvDEb2yv8MY0BKAA2cZsRBub6USUUrLXMLmp9wcYvRtsUJEpJIFqTvAy1E7oAJSwQ/n7H2pLt52CAkktPTPDkbDWF311vmZ5K1p8FqSVOz2yfcxQR3Lpet69zGkHqenCf0AJHV+xnfHBShM/LGGpzx6uEfyLrhJ8xEgjYOK1PO2jCE35ffGuDT/0fTbazgPAhev3e5S5gfWEny+en5Xuy2I0ZpBZQRkFqgSi211MhdasqKpQsFe7GyMSS8ItLTeoXWpR2/itxjbhQStBJyrYQogsQJUvCT6h15yiJmCYYysFK+1pV+DtrKvwAwChHqlJcv+qT+ksibidwSEBVFf7yXuS/E3nV0u+Kj9rYdPamePufX3uAf/Fb9yFk/Xr2KfZVEhieD7y09LcR/qJYdyLD/AR5AOGzEJCgVBOCKQKYRAy9jj235zNUfkLIXIV/lAqkhQyFlMsEpQSiURwXUsNobNVizxlBVshWB4ZSeiuTdrYNSgmMNsgKZQP7HnHbAXEumZ3C/2RBO6fPogIVo6TWJrvDDo8Ka5WKf+ZnfgZ37tzBL/3SL+Hv//2/DwD4q3/1r9qESkrxN//m38TnP//5be7nDhvC9wPzjiXnEeHBxk9I2cMvIGG0Lm35hUSPtij8lcCxVKaAKW9ypbKzPgmp2iMjXu9fT1wPP4UCKIJ6DQAHbA8R4RBG4kJc4Cjed9el3S8y8VXY1R7QLzybAH8I3DvOaxY+37/fTSjYhlZHohRMUFVJ6L8HLOE3qC9cM5m2PmC8wt9hcflZ3SLZW/rtmyoYzaGMtfVTQmeOQfNIIgohFAphII0IrgMKiomz1PcTU34OQl0hY3H4FVDa81dxS1T74pVRiLDYil7oAnfv2+vrhVvJ1IKNEgoNayHvMFvsyVSK3r5GHBEUwgS3R6/DaudgJCoKv5xub9rrMaSZxng8nRPgobQOyld3jsLvj1chNXKxudX3win8iwL7NoW32We5mZtjECz9CYc0eShMUS7hxGJMcon9Xr1gM3LtEIQAnbhJ+O22R+PLHc2XqwxnZ3Z/q/kQHt0ORZbbrIHrib8OSO2fREkk0T5GcohUTrAX7S+17UIVyAtv6V//muiwDgpNceuqwlvvZnh4WlX4DYhSyHIZtnW4X2+fAOrTWghxJFkbiJaRa7/z1XsYTgQ++PgYn3qu/KyUuPnVSrskbAIh3bXAyvMojS3iMMJCC1JR6DBedhUwSmYmyJeHwBYgKAEmPrCPs9bny5X9xPXg53jm2nQIIyV1l0BzO+fDHBGnj0TxZpRM7ctljILjjKIQGlJpRI3JBlpvJ3T3MhBxiuGkQCfijzxjwI7MXC0DY4fLhzEGy8wdYZRACLXWOnSHHTbB2qu6v/7X/zp+5md+Bv/u3/07vPvuu9Ba46WXXsKf/bN/Fi+++OI293GHLcAr/Eicnd/377v/dV16uwEgTRFUxbxQKFg5qi0o/BUlJVNZ7UYXejfnpCOf5aeIWIy9GSnfXskB7ChAr1ozwsIsaOpIapXwU0JwjR/gnjjFSX6Co/4LkFKDM4a9boSLUYFC6pWJ0eEex36fYThWuPugwEvPWRK4rYR+ALbXnVQW/MZYlb9irdZuYWuMQaomrX3WeQg3TKy1gTG7KEWjF5wqQPNg6wfK0L5O3H5rSGKK0UShKGzRp8t60EaB07hM6E9MmatAGYh06eOsPEaFUGCMTNlDP/1yH4XQePml5VPJe03yuOBUGGMgtMDd+5a8vPhsp/XvKIgtnkT2NUMxRETtmMT37+Yh3b85XaCq8I9bCP+NKzEengqcnRnkKm998Ht1n5D2PAWPOKLg3OYqDCcCyeGmhN9+r5sEetuoWtoHWYYryfTfaF0W/boxQ6qE64+0PdudmCPNJdJcYb9xuXinQiehUwtyr/APR/PzAzaBNhq5KXB6bt+/Gtjn0eswnF1IpJkG6aUwtH7uDKEgKgMlh2CEYSAG6PO9pRaJ41yE++dGCj9h6LIurl+199+Hp0V5vWoJYhQunJ1/r8fAK73MZQ9/lfBbsiKVmUoZr05WmGTNHn5ACQOp3HPBlFNcCKufw1xl6PF+aekXZmnnT32b06S3Ce1EaMLIzMA+jyv7CW4/HM8czUfnFBjSXGGUiuASuGyUjorSwp/lsnoL3woYI5C574Ovv/k6eTuPCnFEkebKFioeoZ3fg+x6+J84aIMw+noeGKMQ0t7LIr4j/Ds8Omz09Hjuued21v0/Ighp0FEjod8YUBDElNvgIRgUugihQ3mhkHM/7xghkKSq8BsYFCaDMda26pWVWb15qZzgtDjBYXQ0k/BXe+1jzjCQ9cA+AKBGgDAGo02tOeU6P8I9cYpjcYqXYReXnFMknKGXcFyM85UJPyEELzyT4JtvTfD+vSwQ/q0l9BtjSXFQxomz9JcPdQIS1NBC23F8HTpNVr1q3OFxyAUgKM8dJwzSKBCmYKRLv/aWfq9SzbCR+3OrJEWuMtdmoJFULf2xQjgh3pqsNUzlEI1SiSSiwZLu8dytBM/damF/sIWlVy++hk8efBo93g8/r5LHUVpgb4HAr6Exzgocu9TxZv++ByU8hFMKXSBTKWKa4JnrBu/fzXH3oT3OTct4zdKvs+Ce8Lh5Lcarb41xfCpDX3ozeDGM5IspGJ1/bfW6FIOhxnBS4Pph+2dZFj60b++SU8ApJUhiirzQdqTg4fTfVHudOzHHWZaBETv2LVUpuglzhH/aIeAJf7MYA9jiHWBH8zXD4baFTGVIixxnF/YauzlD4QdgnTGqAJrFO8oAmQFGI6EdpGqCXGfosLYhZiWMMRhnbjRnRDZ2HgHA9aMIhNi2mUmq0e8xGypqFC6G9jNW+/f9toGyiFjCBvBpg1oAnO0Rd2GXTcLvUuyls3lXyQ4hdWKYqbRG+IVw41vnoK3oxpytfZ4SV50a4Al/HDEILXCWn+Ba5waYm4xSjuabT/jbtjdKCxRK4+ARhcMxSlAIDaVMGDmXbTGhv9yObbMTLeGIQuknLrDPI+YMF1kBgD3SwD6PncL/5MEYA7LEKWGUIFeuWPQYUL2sbAABAABJREFUrp0dnl7srranBN7Sr7hV8PaoXTRqFzLCGUXk6j+Fzkt1xoXTAL6Hn4S/qaLAdDry9ELPKl9nxRlylSNr9P5X4fszKbWLglryvAPVCoQyNNcKIbivsCPRpNYh6KibcCyRw9SKtj5+T3L3Nu3fh5eKfO87cT+r9/F7Mp+7QDlGp4lZOZYvgvPyu7e06lrkyCXj9rxa1cwupn0qddtYPqBUm6UgEEagcGMBCQgmnvAn2pIVu1X7j4qSqo0GZ/baWwWvnP8hvnHxCl69+Frt55SWffHDdHGaudISt+/Zv7t6yGcWazjlKLSA1BKpSiGNREQjPNPo92+SymHF0m9gMGmo/DevW2J3ci5RyPak/nElsI8sCM/z2x+M24nEKvBp/1txrCyA7+MfpaJVgfX9+zGnALGuDEaYGxdXBKt6K+FPPeGfPnZe4R9PDHK5nXGGTYzlCGfnCsbYdp+24xmCC1Nhgy1Z47tMuf3eaAlO7ZSC0RLhfRo6pOmvm9DfBOcUVw7s/oU+fi0BA5y3jOQDKqF5jX5VYmyRUevSmQWURS4AmOTTKf3aGEhtoGHqc6xp/fz7fJmqM2beaL7z4hynjfGZ1W3OU1J1sPQT5CGhn0JqgVSltaybMqm//XvKKvkGVSitcTbM0X0EvfsefvSb/+xSWRX+MsLp7IjF6bVC0dLy8aTAXxtCqsdC2ggB1BOYb/A0Q69g6ZdaP9EOlh3+eGItGeeTn/zkUrbCb37zm+u8/Q6XAG/pl8wr/M4D6xzjjBJEhKMwAlIVlf5Hg5yXPfwe1XAkABAqh9YGjBHEcVksaGJQXGAkh+jzPQg3h5y3kdYwY9kS1UBiqSVbxigYYxWH5mY84T+TA0htA4G8Y6ETM3Bmw5HYiouX528mIMTOnB6OJfb7fHsKv9YAFOAD+Ai1YwUrD3VKWFAkU5WCzqjX+byDLoutz8wRfQICDY2IcKTIwSIFiVLhrxZoZlnN6qqZtJZ0WEXKtzfsxfVRiQBAtAqPQqUMIsZW7gm9l94BAIzkNOnpdWxfvE+ZnwdlVCD8s+z8gE3qz1WGQhcYyWFQ4W9cjUEpQuGoSir95AQA6JAImREYy0Gt9/pwjyOJCfLC4OxC4vm9aTLiLc1JQmaeZw/vkhhMNiOvhZTIcteWsXEBazF6XYazgcQktS6H5lSAWv++FtBGIaEJKGHITFqGg7YQfj+isdui8Pe6Nm9DKYOzcYbn+tvtpRRaYCSHuDi373njatT6/uVoQuW+543zTBmIUCBawLDYhfcNcaiPpiZzVKFNSfg7LZ9/Xdy4GuP0QuLBaYEPv9AFtIIhBBcje80cTSn8Mwq/xPbva6NBK/f+ceU8TjJZU7p9DolyzgC/WKYUkKif/9SRbEoJIm57/Se5AFrMZFJLXBRnoIThakNZ9z38ShvwGYfRWvpt0byq8CujkOscqZyg79xIiwi/D8qrquoAME4lJpnE4d7lttlUwSiBrBQ7hLQEZVar1yYgxOYsNCGfYMIP2Os7yx/PPlLSXiTZ4fFBLzlRwgovpF603GGHR4C17t6/+Iu/OHVhK6Vw+/ZtfOELX8BHPvIR/NiP/dhWdnCH7cCrJzmxhH/fK/ywixXGCGISYWxSZ+l3CcdC1xR+j7yh8Ocmsz2ZqCr89Yd4oXKciTMkNEFEI0zkGNII8JbL0PcyMkc8C9dCkHCn8GsFKAUeRdCNvsc+7QSydZqfoIOjYB2NImozAaRGd0XCH8cUt67FuHdc4P27OT79MV6S3A0JPzEaRBuY6j4ZgJiyZsxA3ViyAqlMEdH2BWBZHIkA5fR3YnvSpTGInMWUukKOVfg1JkUlnHHGIiYOydeYChH0bSM1S79HJZhNaYAyAswS3fx4wso9JlMZLsQ5gPa++F6X4uQcOJ+kC8NwpJa4+8DZ+ecQfh+UOJYjZCoL7ROcE9y4EuP+iR9hNz2SLwbHFbaPu/IUYzEAus+HvyGE4ObVGO/fy3FyqiCfnbaVVxV+umAR0e9xAPnGhP90ZI8rY2XrxmXCq8+TTLWGLVYT+oXxRQHmFkwm7OOkQfiVUaHA2etOf8cJITjo22LDxVBA3ZhuqdgEEzmuJ/Rfa/+elgq/nOrfd3vqgvEkTGSnbgzFAKmaIKItPRAO2ihMMpd9sCWFH7CE//VvT3B8Jux31GiAcpyPbDlxpqVfmKnvpIEN7qte2lWFP8vtKD1WCeQwxt6rYAyEI6KcIyT0h9fK0jkWxxRCqqlrxMMezxQJja2DpzLxJKjcymBWDmiYvU1IaENLOIOGzYcYyxGumKtghAXCfzEqrLuhGRTq0t+bjoLBJA+/f1QgroXCTw3whY9Vi+TLgDOCtDGmTGm3vUbGw8PsAY7iI8Ssve3rUWKvG6G/WQfV2qCUQModYXySoHW9BXMeCJ7sjIod/nhirVXO3/gbf2Pm7x48eIBf+IVfwIc//OF192mHLcP2dNoFcIq6wq8BcFhS4a3edcJfVfjL9/QW+37Uw1hM7H/7kL1KOnJ1H86KMwhV4CC2i1WD2SFrpcLvFo3VIDrAJdgbcMZhGsFbhBBcZwf4QJ7gQfYAH+1eC4FAFAT9boSTiwxYY83wwjMJ7h0X+OBehk9/rB8U/k0Jf1hA19Ltm5Z+BuVUI6EL9GfkH4iqG8IU0MSAgrpUc1Ox9Nt996F93kZbHTHXRLWYQ8GgjQIBhZQmJHX34/pDz1BqLcsOWmvruJjR8EbTUxCtoHrXwpiyB9m98PvJDIUfsL3buc5Dsn4b7pyMkecGUUSm7PlNENAwDq7aPnHrRoXwV1RUn9C/Tzvosx4gTzGuWPw9bl7zhN+0JvWXPfyLFX6fqD/ckPCfjdy9odueMr5tePU9zdrD88oASQZlfIihC+cERRTb70baCAetKtxtCj8AHOxznA0kBiPpgjC3Q/i10RiKATiJ8PDMKs1tgX1231zBIzflOL4GDKUgru2AEAJKKFKV4iCaTfiV0cjcvXeTwL4m/KSBh6cFjLaTNxQYLmwOLI4OGoQ/uIFMLaeCEhLcMdXrrOrUyHLrAPD97+GzaVsM9OomZ6Q2wQWoj4xNIoIxgDSfLqoJLXAhLpCwDqQWELqoOScoIY54zl6Ya22Cwp8Hhd8WZhlsC1amUvT5HvZ7EZgLwxuMCxzt1x9ATVUdsK6Bi5HYaNLCuiAgNYV/SS6zMjijyAtVK4IoZQtCvNJaZl0TGXKdPxGEnxCycOb6ZcFOrdgRxicJWi2n8AN2IkcuZrcZ7bDDZWDr5dqbN2/iL/yFv4B/+A//4bbfeoc1kQtlH9xUooDr0XUKPzRAmR31Ezt1o9BlSn8hTFjIRJWHryf81zpX7TZMCv/48aRQ6bIXfyxHGIiLYG+0aCc7ACozluvb8z38RmtAKxDO0fbUvcEPAAAn+TEiRmoW9U7C7XSCNXrgfB//7Qc5lDJlUN02CD+A+lguA6BK+CmkUUhVCgMzZYH2EMYTfnvw/BgruFDGyE85CD38tvgyzt3r5qTCV/tyKbE97ozQcBw4aykYEAYoEdoTlDYh+XnqHBgDUqSgk1Ow0X3AOTvuVwh/prMpgtgLo/kUclVvN2ni7du2YPB8yzi+JribQ950U1QLBVVLv1f492gnBGOOWwoUN53qe3KmQlJ/FZ7wx3E5GWMW/Gf3/ffr4tQR/kfRvw+U6nuWm0Doq0grln47arI8V5xGYFzX/s5DG4XUKdxtPfwAcNC334HBSEFuMak/c33bRMVhNn1bYJ/dN3fN5pju3/eg3AX32esjojFSmc6dLqCNQp67kXxuG0RmIGJ2ZsoyuHoYgVIgLwyGIwliNIY5hzYEjE4XPas5IJOivDYJJa333lElfyMv9JxkfVM6wBggG8GL1QkyiXeRtPTwj8QQhc7RoR0YmKkAR794n9fDbz8GcQq/T+lnkFpaNwqAiZyE9ztywX2nLbb+0LZQ2d4oFcgKGUbdPmpIty+5VFhwG1obnFl7c7XFS2kz5YKwY1JFGDv7NINS14p3yX38g3GxVJvcDrbQuqwJhzEylW2yww6XjUu5hXe7XXzwwQeX8dY7rAFPHlhiF3wx4dbuDdt3RAkBpQhEUFQV/kIHpc0TOW10IJXXOlcA2J5+HzYURSQszSeFDT07LU7BCKuppIzwWtp/Fd4e6dfB/iEfLP1uwWsNANNRKdeYVcBOiodIYg5SIQsJZ4gYXctSdf1KhCSmEMLgvbtZUKo27XkmrQt40ujhd4qZETMtyHbkXD3vQLtQPUYojEFp6Wf2uvB9qKlblMdzCX/p3uCEQegctEL4+wmApu2TUHe+tNtHu8ijlE6fOSMBI6HjPkgxBhveBxFpTeEHMBWEd+hmq9+5p3CRjeYuhN69axfgL81I568iIhEKnSOhdUWpRvh7VYV/AADYZ71QVBu1tCB4wj8caYyyfIrAjfNKD/+Clbbv4R+l6ysGxhicu5F8vUfQvw+U8+GzzITpE1VkFUt/rrOa2ssJRxTZc9wk/KpC+Gcp/H5e/Gisw6jLbcDmSxicntt92u8zdGaos17hzwSBMjPOMWWAEaElJqIRhC5m3jcBS4wyT/gd4SViApqdrfORAhgjuHZUqvwwBuepvQ8d7k27QjgjZcJ7RWGnMwLHqqP4stxMnRdCy9FXouIAE01Lf03h9zkP9b8pdIELcY6EJtY5ATrVpgYAMCQEmbZB+xmBKMMJfUo/JRQRTTCWo3B9Xzmw95HzGaP5ULHRG2NwPsrBOX0s87opAaQoi2p8C9Me2mCT+nVtJKHSBtKYWkq/nQijwuSUpxmUEGizevDtKhBS4c7JGA/Pd8d7GdgWpeW+I4xSFEJd6vnbYYcmtk7433jjDfzqr/7qztL/BOFoP8EnX9rHiy9YMrJHy6HVxhhwSkBAEKMk/ElUKvwhjMil0VYT+r3CX+gsiNGEkNDvP84KnBdnSNUEXVZuF7CEv9B5q5IjGpb+omnpV47wM7tYaxK869wS/rEagrA6IYg4RRKz2ui/ZUGpHc8HAK+9bYlcrzM963tltNnzjO3tb0KqYmb/vjIK2p2IDikVfgICThg0TLCt+vnVUtnQvjRY+pdQ+AsNTiMILcEIqyT0G4BQvDJ5E//y/HfxTn7XzhM32rVh2PJMFDEbIthQz4iSIEoCjMMk+4AqIIcf4NRNXIjd524S/o++2MNej2GSGnz19fMpEuAxTgUenNjfvTCnf9+DU46j+OoU6e4kDH/yew/xA587qFv6vcLP+mESxlhNE/4kpiHk7MFxMZXUHyz9SzhXfbFpnMq1FZ9CFxiFkXyPXuFvm1SQFt7lQCG0BK8QfkYYeDxL4dfIMnscZir8Lql/OGrf9joodIGxGCJmHTw8tcdylp0fsHZ7vz6cOVyCchBlg/uAMldinotFGYXchS923OcnSgCyqGVprAP/eR6eWcfO+cR+gMO99uPsi4dpRWEnxPaqN1EdxZcXBgr1ex8lgNEGpKLwc06CMs9db1j12FTvV9XvxkgMrTXcFfI4jZCpdPr7QzDX0l/h+7XnpDKW8Mc0DrZ+YPFoPpBy3FqaK4wmAr3HYOcH7LOukNZqn1/CSL7qdozGFOFHIwRNGeXGBovWAuHTBJ8vcZmj+R5eZBiOC0xy2TpxaYc6ZCOTZB44I1Aaobi3ww6PAms1Lv74j/94ayVrOBxiOByi0+nsLP1PECgh+L/8bz+Cf/K1/4z7OYLVGLBrFcoIQICYVi39Tk2WplQu/OLJqUsxjbEXW4t+VeEH7EKrEArn6QhJNEaP9aYVIMKQ6xxSi6mePN/D7634vsjQCZZ+O7OegLjEdGM/h0OHJdinXQx1ilNxjFs4qL1/vxut3fP8wjMJ3novxft3XY7BNghSG+kgqCn8gD1fwkh0SG/671H27xMQRITCEKvwU0f4AYPYuSyIG2ellOt7Lpbo4Q8LaNtScBRfcQq/OxaJAQjDa9m7mOgMXxx+Bdf4Ib4vegm39LPQ1No0E05BmevlrRw+ooVbQLvFZbyH++n7AIB91kcv2sf97N4Uieac4Ps/e4Df+tIZvv56hh/85Ai39q9O7f+bd84BAFcO2cbE9js/Pp2hEHr4+R4iY6/VsWoPErx5Lcb5UOLhqbS25EruwCSE9i1eZHsVW2sbYNfvzE5wnwWhi9Kl8agU/k6p8BctinWWl84iZSSiyn2LEBLajpo9/JkQ8O2RzZGJHmE031hDqNmtEKlKMRJDXE2uTfWTNzEWYwgj0aV9PDi118GNGXZ+wDbY9GKDcU6Q5sBea/3JtvYQJWDcW3HCMVETHJkrrc9hqSUydzhD77eWIFKAqBxmRl7AMgh9/GcSeAk4d90qR3szQj4jijTTNcJPiSV0zSJpNaW/KAykkrUVCqXEOQNIsH8zhkD492gX53pUmyDj71fVEECv7ndoNxw/7orPwgjEpCzSUAIUc9LQq6peeGZFxNl7reuBgGKiJtiL9nFl3773TMKPMsxrlBYQyuBg1oiASwajBLlQLqHfbDUAcgrE1Bx3SumpZ582ygYJajkz7Pdpgc3BsHkPq9/tF2OcCRyfZ9jvRxhnEuljbCv5owKlVlH4CZRSENLUsrF22OEysdal9gM/8AOtF/bh4SFefPFF/PRP/zSOjo423bcdtoyxWwhVFX4Aoe/I2/yFEUHlFQWQM69cOAUlkO8OetwuwjOd1ezZ9vUKF9kYN/ZNqyJNCYM00m6vkaAXQpl4Q+H3ln4lAELAGHVWz6YyQ3GN7mOoUxxnDwF8tPbrJGJWWViQ6N6GFxpW8G0ookRJGNqyoGp8roQm0NAz99kfJ6uE28WxgQEXBVjcd5Z+R/h5SfjroX3L9fADZZtBaenX0IRi4q41BooTeYF/K7+GZx8+wGePfgAH9CoizsBIy3lTotqqDQC4ry2reIbuQRuO+5hW+AHgYx/q4utvjPDwTOB3/st9/NyfaiH8ty8AAC8uYedfFcYYjJTd1z7tQju7s4JGpsboNkIWb16L8cY7E5yc6SmVeRx6+Bdfm4wRdBKCLLdhYOsQ/kxlmKQudPERKfzB0p4bCCXtmLaKk8Jb+uOY2N81DGndxB7fZgK77wVnrD5ZpIq9HrOzrDVwPs5wozv9N4Uu8DB7EK6168mNmd87bTRGchDucw9PFiv8RIlA+Cez+R+s7FsWJSIao1DZFDn1kEaWPfyJC/9UEsQIEFnARP2p1yyLG1fs9o7PFLQBzid2O0cz3tIXD9NqDz+x4+ea0yfSrH4e01ziqPJYoMEZULrOIk5CSv88wp+LMgRwWAwgtMBBVD4HmX8W6SK4iADXa+vcAW3nvjp7u7pPxmhQl4mT0BhjN7nhyr6978wi/IzaYobWBmfDfG6eymWDuoDBXChIrcFn5UxsaVtZpSiktZl6DihtR3f6Xv4Oa/nSPiWglEDjchR+rQ0enE2glEann1inSVqE/Ikd2uGnjmht8K3bF3j+eh973fZnsf9u7YIXd3iUWOsO/nf/7t/d9n7s8AgwMXaRUVX4YQyII5pJUPgF3FoaBuW4tbB4cpbJLu+g7xZN1g5Zvq1fzL/y2gg/cfV661gjq36QVntemdLvCg9+tjx3RE0KEMoAYvuhZGM0HwjBNbKHd/AAD9IHU++fRBQRZyikRhKtRnD6XYarhxynF3a/t0KQnGNhCo0+1mRBOnEYycdiK/kSCjoZ4Jnf+5+gn/kYyKd+KPTwo6LwSyNDOOO8RaYvBkhpx1Ux56qYpG5+e6wxduSVguLnrv44Xpm8idezd3E3v4+79/85Xux+GEfXfgScRbVFHmDDxZojyu6JUwDArfgGTlPbh9xG+Akh+MHvPsS/+K1jfPOtMe59eoRnrpYk2xiDt29b5fWlZ7e/WMx0FgLguqQDEQHdIkFqcoyLQQvht1+K01NV68nW2gSb+rKqWq/LkOUSg0mOZ6+tRuiMMUjVBKkn/I9I4e/EfnKEJXdyT9YIbBgHym1Bqkm4erE9fmlen9l+MXFZBJ3Z0wYoJdjvMwxGCmejHOaambIPn2THIWH9vDhDRCIcJVda3y9VE2QqQ5/v4fRCYJwqUGozP2aBqALdWAOgNqm/yXAcDOMgwgX3EQJOODKTolB5jZx6FFKEiRmdjiP8MDCEgYgJ0G3/DMvg6IDbvnll7fwXXuHvtS9cg8JesQT7hPG4cd+dKtxkBarGLEqJHYFXU/hLS/+Ba6ERpgjFo2rmiDYahcoxkBdhxKaHP/fN4L5OzDFMC4wz2bp49+1SQJnSz7lV+BN3P49ojEwOkKssjOabRfitjV5jlAlMcomD/mXot8uBURLG8hq9fAL5OuCU1q6RtnwdYUQ41s3z9LTBE8t5gZLr4nyU43xYhGsviRgGYwF5VW+lrcMY25LT/P7/UYYv/FFC8ObtC/wPv/EmvvPDV/C//9GXW/+euAff1Lp1hx0uEY+vfLzDI8fEKfM1hZ+UF0Eg/EaCsbIfyRN5f4OuK/z2vUSjr+67PrkHxoD7DxX+2ReOcXLW/oAmIK1hSb6/PmpR+I3Rlgj7BRWjmH7uEVyBJT73JtOEn1GKXsLn2jXnoary721KkEJ/e/3raAipjeVbBt4anbAk9Ovy0SmI0aDn92BgQxsBANSP5QOkEsgLHzpVX9hVj1H1d9WU2fGk7OH311mfdtClCX5w7zvx5/vfh492XgAAvJ++g3/0jf8vLuRpXeE3yir8FcuxMBIn0qryt+Ib6BB73Nv64gHguZsJPvRcB8YAX/iD92u/u3syQZorcA7cWjCObx2MCrufPZKAGgpGKHp+f1tG8109jCx5ksCD80noH64Sn2XHcfngvovxXKm4FUIXyGWBNHu0Cj+lJLQsjFI5FdLmCQCLNEjLo8o7GZQ2tf7f0WR6XGIbvK3/fChqoYnGGJzmJxjKAfb4PiIaIaYxTosTjFsKTQAwEiMANmDxrfdsv/aLz3TmumWgcvTcZThX4SfcKvxuH22htB5O52Fbc8rP0okt4SdGwfAEUIX9jq0JSkkoYtw5Y/CX25Vue0+1//xZ5ZomBJAa0wp/ozVjnNVbruyYPACk7Pe2Cr99771KsKZ/plRbkLRRGIiBbVlzhdOzC4F//dvHuPMgByNs6phGnMJo4HTQnpkgK0q0f2ZxV6DybhUfCjhWYxzt2ROeFWqq2An4+eraJqMbhGkmjwO+Tzwr1IxS1PZg74M6EP1C6lpgHwAXhMjAiJ2c8jSDEGJn+GyZ8BdC4cF5iohTMEfuOzFDLlStILMJhhOB9x+O5mZj/FGDMcbWY4Ew1eDh+fxpQQAJUzB22OFRYCmF/x/8g3+w8hsTQvCLv/iLK79uh8vDuKHw+1sNcQ/WDisJP4FdLGV5eVP2icd+UdThHSQstjY7o93PbQHg+Vsd/Oznb+Lf/YcTDMcKv/4bD/Gnv+8IH/9wvZ2AU45cZVOWySKM5XNBgaYS2qcljNYgzC6eOCMu+K+6wCc40j0QEIzEGMNihP24rrB2E46z4aKbcjteeCbBK687+/ZWRvJpgHCcyAv8l8m38H39T+GAEJAVH4qlwp/YhT6hIMKtyoX9rH4aQ0n4DTQ0ikD4y0WmkBqjLEOHWzWWUoI4IjbMsdDlaLGstPSP3GKsX+lJ3+N9/Onud+FDve/C1ydfxsPsAV4ffAOf7v5g+BuiBIhWMFGpaj0UZzAw6NMu9lkPPWKv3TaF3+MHv/sA793N8PbtMb59d4CPPGtlQm/nf+YGD86EbWIk7Pvvsx407IjCHu3iRF9gLKcJP6UEN65GuPuwwL3jDJ+6ZWeVh8C+mICzZQk/B1DgbFb69wxkKsVpfoph6kLh6PKugm2g12G2xzszU+PxvMuB8npgn0cScZffYf82jpi11rtrsTsjsM/DEv4cw5FN//Y9wRfFOc6LM/RYP5C2hHUwliOc5A8REV7LHMlVjokcocM6MMbgzXftFIiPfWiOi8RokCJFt+NzCObsKGMgeW77+N13l9MIEzWZaoPQRleuHxsmSoSy8fZJDJKPQVQBw9ZXjm9cjXDvuMAb9+y+dCKDhCnbX98g8aWlv9LDTwmU1KhyWa1NeNYc7HEMRrKW2m9fB+hCg6Ae6lo4tTemETokQmYEMpWiy7qB8BfCIFMZhuIihMcqZfAb//EUpxc2gf5P/9AecpVNHdN+l+N8mOP6YQe9RruMUjp85NLSPz03JmYJJnKMq/E1xBFFITRGqUQnri/BGLFW34txMXO6w6MCowTSqbFL3obWBmcUk0xCKqsiC6VrGQ/G2NGdjFAQQiF0AWXUwlyNP84gjRGO28DxIMM4Fbh6UN7ffOFnkre7XFbFKBUYpxKF0I/0WXOZ0C5ygjAS3KkXC8YZUgbkLUW/HXa4LOwI/1OCXOUoghLiCL+zI/rnahx6+CVgDOKIhPAnSoGI+RRkS+i63IYe9XgXIzFGYerk+dpRhD/3EzfxW//pFO/fy/FbXzrDw9MCP/Tdh+FhzgiH1DalPCLlw6Taw6+NDnO6O9wSWRgNv2K0SsA0gWOU4io7xElxjrvj+1OEvxMzcEahlA7V7GXxzI0EjNmRTfv9DXsbjQYxBoZR/P7Fq7gvT7HP+vj++EPtYX5zEJQtntgGZUJApQvykwWI0YHwG1oZywegkHbxULX0a6cyaWPA3MrWBzJ6R4AxJvTw7yXAAzc2yY+lsxungBI4iG7hT976Yfz6u7+Ob4++jY8n3wP4/AYtnXOjXMQFO390FQZA16l4s5RWADjaj/CJj3bw+lsZ/v2X38f/+X/3aRBC8OYHlpA/98zl2GQ94d9jPWuBZTQUKMZy1Pqam9di3H1Y4MGJgDQSHDyklXcS2qpst2HPXYNf+vox7h/n+IFP3cQnXjyaOT1CGYVBcYHz4tSq20UXwGSuDf4yUPbxT4/H84oS5RqsxbpOCHH3KIM0Vzjc84TXvm5ZhX8wUu7+kmAsxzgtThDTxBYjC23HyzGCHutjJIc4zo9xq/tMIBsTWYb13T8uMBwrcE7woefm5ERoCaIFeombOjG3TkNt65UWMLDXU0RjZCpFoQt0KoU1bRSyZsHDFxThE/tzGGzQx381BjDGvQv7fkd9OBtYs+haBr1W1WzOKI7241orVfX3Vw4jDEYSaaFqhWDiWgGs1dw/HyjGnvCDokMjZEqEonQ5XtYgU2k4TwDwX14bhrasSarBKbd/o0WtdSqOGEYTidNhNkX4dcXq7i39jNvRgVVExE4ByFSKvU6EU5FjnApcP6xfI5QSSKGRS4Wr+4+3Z5oQm3HjSfhlgjF7boXUSCJrda7eu/xIPk44GOGYqBxCC7DLrkQ8wdi2wj9KBY7PUux1o6lnQBxRXIxy3DjsbPR8UFrjfJRDShsG2f1jEgtgjAntRv7elAuFXKiZLaO+ZWaHHR4VlmIqr7322mXvxw6XjPPCjuSLSRSIvTbWJumfqx2nmNvCgA7Be4BVLcLCxpHKnuun70c9S/j1tFreSSh+8keu4Q++McQfvjrE1781xsm5wJ/54avodZi1URoFqUUYFwdU1RIaVGvAKtemSEN/OgBQSoGGoqJdNsEzyfVA+D9xpd5PFUUUMacopEZ3xQUNZwR/+vuOcHIh5iZxLwOibQHjQk9wX1qCO1IT36i30nvVevihAJSEHwCoyJG48CVDSku/hoZwglrVtm+MAWMUWmkwlIR/OFahTzjLddjNbpdiLNoIPwOMhtEKz/dv4VrnCk6yM9zJ3sW1/c/YP1ECzcLNfUf4n4muwhiDHu8DhZ0KobQEm5E4/v2fOcTb72a4d5rilbdO8IkXj3D72BYJXnh2+3Z+oLTt77O+nRoREfRdr/BoRoHi1jUXgnaqQlJ/OZKPTI0DnIVPfrSHeydj3L6r8M69Id65N8RhP8af+I4b+N5PXK8RlYmc4Kw4wViMkbAOuryPB5k7Z4/Izu8RCH9mai1BxphA+HmkZyp5iQsr9G0QyiikrvjU7c4/dod79j1HY21H2akcx/lDGNj7zFvvTfDFL53h1vUYP/2j10EIQZ/vYSSHiPII15Mb0NAYVsL63nzPqvsffr4DzmdvnygBaIletwPAuB7+OSCoWfEZYVBGodB5nfCjLHh49YxU2xUYBykmQOfKlBq/LG40cgmO+ijHbjYImHeF5aJO3n3gokc1pNK6VazF35M8oLT02wwBZ+lnZWhfTBi6JMI5ypwZ3zJSFAapU/0B4PRC4Cuvlq6bSabCMRW6mMpK6Xc5TgcFrh3I2r4rrcPz0yt7jBs0y7SEEDDCMBYj9LsRTod5bQyhB3XFDM7IIy28zQIBIJW5dMJve5qtc0Mb25vOKp/fJ/RTQsNoyuZkk6cNhMBNrdgcWhs8PJ9AG9Oaxp9EDGluCWzTlbIKJplEJuzATb/G++MAY3zESqnwA9bef+Oo3enFGUUu7NjLjcc677DDEvjj4afZYSFOc6c+VsOKjAGhJZFPHOEXUDBa1ZReXu3ddn3iHZfQ75P623rxAbuI+f7PHuDP/smriDjB3YcF/um/e4DhWIaHd3NuenUsnx/JF5HIEiCjrJ+NlO9v0+hLKKXBCcGzvWsAgLvj+9P7BYJeN1o7OOXjH+7hh77rcAsLMwUYjW9lH4SfjHUKq+zplfr4C+VbH2LbE04IqKwQBZGHedVVwq+0ghD2CFYt/caYMM3AozrbGigT+juxLQ6M3WK7z5oKvwSDBucMn73+nQCAd7O3yz+RWW1SgTQKD+U5AKvwa23QoQmYu21N1GTmceh1OD79SXs9/+ZXbuO1985hDHB0wHDQaxRojAaRq/e+NzF0tv192oWGzcAICv+MzIGbjvBfDDQmhT13VUv/soS/12H4kR/q4f/407fwfZ++gk7CcDEu8JtfuY2//09ewf/yH76Ns1GKk+wYd9PbSGWKvWg/EJuRz2B4RIF91f0GgDwntcJetV+U8dmEv+MWp5PcvlYbhTTTtfeeBa/wj0Y6kP1CZeixHl59c4Tf+I9nUBq486DAvYf2/Smh6LE+zopTnBfnSKUN60toAq0N3nb9+x/7UPvYTA+icgAEvcSFXi6YEGooA5H1giojDBNZ/w4oo5G576Unu6mY4Pezt3EhRzYfQxe11P9VcbBHEPPyfnC0ZwuTbe1HvniYF7ZtaBZGrl+/E9O666PyGkpJsNAHhT8qQ/tiQtFzhRc/9z6EjCpAKImIxtDa4Ld//wxaWxcaYAm/dbyhdh16JDGDkGqqZUa5sXy6kiNBmW793sY0Rqom4bocpdPuLUYJCCVrTdq4FBjiFP5HQEiI3ZZSZooEeYWfVu4DbefpaQIlJDghN8X5KMfZsMB+89noEEf2+m/mbKyKUSoAV7RL/xjZ2bVj/JTUCxnzbP3MtUq0BVTusMNlYEf4nxKce8JfIWFWcUF4sHYraqnUoqb0+vA8oOzhryr8AJCbrEYMm/jwC138uZ+4gcM9hnGq8drbdrFKQAJR9fCLp5izctScK0hAq5qgzyjAQGoBcEpbu+dzHTua7e7kfuu+dWMG447F4wLRGspovFkh/COVVhS45fcthBuy2Fo4CK0p/FwWwdKvfQ+/BpSRKFoUfm0ATkktFLFcxNtz5BP69xIDEOaKFQjqNgCAUmitwIkBpxTfee07QEBwJh/iPD+zRRxZ2IAyh2N5Dg2NLklwQPvQxoByhp5Lcp9n6weA7/xYD3s9iuFE4N/+/nsAgOdu8dqiEbCFBpqerhyQWIPRGDlSv8d6LnCLYN8FZI5U2vr+vS4LYx1vH1vbv1f+kgQhlRqwdvXT/NjlVUyjw7pAnOLjn5T4r3+qix/6Ex1cPWKQyuCrb57gf/ziGzgpjhHRGHvRfo2U+NDFbYyYXAVdR36y3NSSt4O67+z0s+BJ7dD1HimjkPqRdAt6+Pcd4RcSOE8nGMkhemwPf/jqEP/hD+z90och/pfXy5YMTjkS2sFZcYILcQEKqzreeZAjzTU6CcULt+Z4VY0BESkMZSG0b24PP2CJunMFeHibeNUZoY1C7uoC/ti+MXkT3xC38YXBlyFgR4AStT5ZIjC4cVAl/M5hZabJQGmp1zOvW6BC+BNauSamXxNHFBGjlR5+Gq6bhDJ0mSf83tJfeYZpa+X/+rfGeHAqEEUEn/9h+3xQyvb5M8JbwxABoN/hOB3ktfYDO3sbtdBIMDU1QhIAOIkgjETiLo1xOl10IYTgyn4y1x3yKEEpXA//5e8PY8S6OnQL4YeuTepoC1h82mADHjdftxRC4f5ZirgS1NcGRgmGiyqTc6C1HRubxPY7PMnkY113bRPB0t+i8M+Cb2PZEf4dHhXWvou/9tpr+Nt/+2/jz//5P4+f+ImfwJ/5M3+m9r/Pf/7z29zPHTbEWeEV/pLw+65OTyo4ZWGhUui8pvRWctSC4t6LLaHzSf2FzqbCipo4OojwnR+3vfSn53bBwwivzU4G6jONy9nydqVklKzZUSmhYCjw4mtfwMHxWwCs8hJxhmvRPjjlKFSB0/x8an/iiCNi9PHedI3G+/IUmSmQuByDzBSQcL23KzwUizBBIXYEs6nwF4g94Q8Kv7VTB4U/rir8AGO0tgvV2dZAqfD3EwNQGgh/9VoDKLQyYESBcYK9qI+PHHwIAPDm8A3b02ykbYB1uF/p3yfEFh0YoegTex1MZqjmHt0owXd9xv6t75W7dYtOq2/GuCLS+teAVgXG7tjv054dn8Yo+q4oJiBRzEiW9ir/7YdjGFPa0+MYtX39xsUr+Jd3/hneGr7R+j4RjbAX7WM/OsBR5xCfefkK/uvPX8FP/q/3QSlw/1hgctFpHeUWzuEjV/hLS78yMqTle1KVxLSVPHl4hd8numtoZG7awCKFnzMSPu/98wH6tI8vfXWI//x169T43u/cx0//2HUAwHt3MpwNyu9RcEbIYZgH/ua79vx+9MXufIumUTYtn3L0HPkrJCDUnO85ZSBagVTIPacRhBY1pVMbHVptvKV/7FwAQz3Bl8avAiAbOVqI1rh5UH5XjvoAYGqtAx4hNE+auYR/4s5ft8PCZAqfrF/F1YMOOgmvOcBKSz9Hz7WFeTLoQ0YBS+gHI4kvf822t/3Qdx3icJ+H308y2z5Q6Lw2tcGjk3DkhcS5U/mro7h8/741m8lWhd/b+nls/7bN0v+kIY7opQSctoEzgqyQdj65MbWU/uZ1YM9T0XqenhZQUra2bIKTYYZJJkIrzSwkMcMoFWuvlSa5RJpLm53EKYT646Nua2PX09Z9tCThpxRa25aZHXZ4FFiL8H/pS1/Cz//8z+OLX/wibt68iffffx8vvvgibt68iTt37qDX6+H7v//7t72vO2yA89wucqokzGiAUIrkzutI7rwBEILIKaxThL+i8Jc9/M7SH3lLf7ZUy/lVZ6M8vbALHk45hK6PxirHLtH6qDnAKl2VBRWlBIeD2zi4+ABX7r5qPxsAHjEwo3GrewMAcHd8b2pfYk6RxOzxhqdoiTeE3bdPdF4K52CkMxBjVrP0O7XL5jF4S39F4Rd5SDxXkAAMlKqHZrVa+isS/yxLfz/WEEaHcMhaDz8sGePUtlIAwGevfRoA8O3xmzCyqOUyAGVg3zORVeG0topef4ngPgBglOOF5yluXbN/H3GC69enCT8xamPCPxEXdvEPGoIFI0YRUx6KOBOXo9GEJ/wPTux3YOysvk2F+qywx+OkOFlqnyihiFmCDz1zgI+9ZItyX3u9PTwwnMPHpvBrF85p98NbR6MIM3MagFLh94RfKlkh/JXjpwo7y76Bg327fTHp4Le/bDNGAOCHv+cQ3/eZAxztR/jw87Zo88pr9WPX433scVtQlNLg2x84O/9Lc9L54RR2rQDGEXHAi7lzVX6XgVFV+H07VF5ROpVRyJzDoZPYsL9Ul4WmN/MP8LY6sX38617vRuPmvh8RCBz0AKA9bySQ7ULPtfT7Hv5uReG3hL/9NZ7oMIZwzUSEoedcRVmluJaE4ECN3/7yGZQyeO5mgk9+1H4nwqSRVIPTyBY/Z7Q89DocJ4M89N76UVy+QB1HzLXztC+tYpogcoS/zdL/pKHXiXDlEYUHckohlUFeKPfoKtcc1sVS/jejHMrMPk9PAyi1rYubqOTaGAxGBTrx4rDWJGLIC1UbG7sKxqmw2QzMu3RUbbTvH2VYS7/v4S/XsfMIv8Ufn6LHDk8+1iL8v/zLv4wXX3wR/+bf/Bv8nb/zdwAAf+2v/TX843/8j/Frv/ZruH//Pn7qp35qqzu6w2YICn/N0g/08gvsf+03sPe13wTTArHLcRSqQBKXDwBPAo0xpcIfevgrCv8SD5+rh3Ybw7FCIWx/bnORFSybFYXfZwxASpCKLZsQoOOC4pjMwyKMMQZohWf7twAA98YPWven340e6013LIa4rc4AAB/vvBiKMiOdWfvvCg904VP6aQQ/HIpWwr6oLBBRd+wIAKKhFUFsrN2VUdT6NY2zplfbJYJq55TESUXhHzunRkx4Of7PQWsgIeX7vHzlw0hoB5nOcHvi2xnstrXReCjsMbkVXXP7YsA5CdfwvNF8HpxG+MHv3kPEKT71kQPwtrnW2oAYudJxbmKc+5F8XXjPDGUElJZJ/SMxPZoPAG5dswWBh6cSQhdhHFn1+wcgzJ6elfg/D5/7Duuqeed2hsFoesE2fmw9/K7PPLNkXzlC6wtQUUTmjt7y1+IkEzDGYJTnof2kW1H4aZGCZhdTrz9w0w3+4x8O8Oa7KQgBfuwHr+Aznygnenzuk/bfv/XuJFzrHn7f3rubQUiDvR7DresLQiHdFBSAghASkqrnJ/VbNK34nESYqHG470ojkYeWBgZAI3X3hOv8CADwe+nrGMuBC8lcA0bj+SsKvQR46YabkkJIay6Af24IMa3WVzGpTKbwRZw81zMVXN+7TFh5345ohF5kD2bV7u2vkVdeG+HOg8IGrn7/USA4Pde2MUmVHTELDTGjP7wTM2S5xMXIPmds1xRBHlrQKIzRIWekiYhGiBJ7ftos/Y8D257lvi44sz38mVBTrjbpRvJ5+IBF+TQTfud60xs8t/JCIS9mJ8nXtkcJDAzSbHXCr40dNem3Q12boFgzP+lJg+X79jxUxaNFo/kAsiP8OzwyrEX4X331Vfzcz/0c9vb2wlgU7ar73/Vd34Vf+IVfwC/90i9tby932BhnjpBU+6q1MTh6+C0ANmWZyTyMxhO6aFX4hS7Cja3r7MpB4TfZUu7zTsLCQv/sQoIRBg1de3gL15sWcRoWXwlNYIy2C+YGcYudbZXJHEprMEZsH2SF8N8ZTSv8gK1cN4PpHiW+lb4LAHg2uoYD1g+E1hP+VSz9ZT9rBBgDTQhYM7SPVh7uTNmQJGWJT9XOD9hrhFFaa9WoKmZA3dI/ahvJ52AIRUQqPciU4yP9jwEA3py8BVNZ0B3LC0goJCTCEbOEyxgDTgj2XYFpsgTxjWmMwyOF/9svfBp/6nuP2v/ISDebcP0H70icAwD2aM9mDYCAEavy94j9noxlO+G/diUGpUCeG5wO06CgJEmd8HvVciRWJ/xXjyK88EwCY4Cvv1F/fXWsYr/3aHuHvYshL2wyd2np94op5hL+jif8hQ31Grge0yRu9P7rwtroGzjc9338BowR/OSfuoaPf7geuPfM9QS3rsXQGvj6t9qPvU/nf/ml7kKlrEnae0sSfkPZlEshohEKlYfQU6FFXeHXCqm7f/5A/9O4wY8gjMRvT16Fkev1QBOj0YmAv/hjFP+bP+EKwYS2FhD8/aQQNhh0FnxQZSdhoVBTFJhD+O1npMy+joKCE1oJkJ0m/O/ctj/7/s8ehMBGoKLwu+kGbZky4bMTgk7CcHyRoZCVoD/fghZRKKNmKvx2e87B9QQQ/jfeP8ff/e//EK+8tZxr6DLBGIXSxhZzGl8hocVUa8+sgMUmLsYFfu/r9/AHrz/E6++d487xGINx8cQUOtYFdaFvm3yONJcQyiydGRFzGwa7apEh83b+pFKExR+fOfRam9AaK2oK//zvOKP1gNoddrhMrDVfgzGGft8qggcHB+Cc4+SkfGC8+OKLeOutt7azhztsjFSmSJ3iUVX4YRQOHr4Z/pNKUbH0ixrh9//u7fyccHCn4PYdActVtnS83NWjCJN7OU4vBG5dj0FQpi0bY4Jlk3OCXFQs/VrBaA3C6ipaXNgFN1WFSxVmYNSm3D+//wwAG9x3kQ9wmBzUX8spOGOQSiPij1bh1FrhW9n7AICPd14CUJLlsc7sNII5VtgmhPF5BzFghLWZVyz9TOQgBGBgUFAgVEIqg8KR9+o5r6NcgZUKfz20r9cBJm6h3Ub4NaFgjQX8x/Y/gdeGX8cHxQOknY/Dv6rZv+/3gTCK/Wh+8n0VnHCkZgKFAsKIVvJItFx5GkINRmMYRvL1LAlgACEUnBH0aBdQwGhGgYIzgmtHER6eCnzwcFzamxs96F7hn6hRbcTZsvjcd+zhg3s5Xv/2BH/iMwfhPKaZdiOFFve9bxtJTEGprbfkmYHq1Ql/FM8n/ElQgxUKXQRrf/PYESXcOVbWHu9w9dAWOOOI4Kd+5BqeudFuX/7cJ/fw73/3FN98a4zv+dQ+osr3JC803r9jr/tF6fwAQGRem0bhCb8NG5xzTimz7UyVz8AJR2ZSFMoWa1VN4aeAlkjdPaFPO/jT+9+D/+X8d3BfDfC1wdfx2c6fXLi/U3Dfk1pOAaFW4fcXkkPiLP3GwFpdZ5gffJGr26EVwm9mWraDMshcuCNhoISgz2cr/ABw81qE7/x4v/ZevW5p6Qdspkym2/M2AKCX2PC+82EOo20Pf2npJ66vfzaBOugmAEYYO1fK4xy/9/p755BK463bF/jcy9ce234EtNS3jbH5Hs1jOi9gsYovfPl9fOOds9bf9TscR/sJ/qsf+hCevbb4u/skgbrpEEobrDvTYZQKrJLHmMQMaSaRF2pqtOY8jDM5Nd6RMYLxmu0BTxqsWDSt8A8mxdzvOKM05H/ssMNlYy0556WXXsL/n73/DrYtO8t74d8YY4YVdj6x+5zOCi0JtSwwQkIEWwYhGYRA9iVcI5C5LhzAYH1l/wEYyq66Dti3cBU22MDFde3vfkYggw2YIFkiSChgkECx1a1O6nDyjivNNMb4/hhjhhX32vuc0wGdl1Jxeu+91pprxvG8z/M+zxNPPAG4jve9997L+973vur3v//7v8/JkydvyAbeqhtTEsGKaFWAHmB9/2mCBmMkTV7JsHOTEs2Q9JeAP27k35YMf2JG6CXlSeVCu5zjl0JV711oWz30w0DUDL+K3GLXGpgwxQoyB/4EQJYShxIhJdZa1sIV7lq9A4BPXvvs1LYoJQgkFM9Bx//i6GmGNiUWIXdFTomw0nR2F0dl+L3bdWnMNwH4ZZ5iEdUcP0o7wJ+XgH98v4qJ/w+11Hxyhn+lLd02A92JfGSHAxSCwqk0fJ3qbLEZnMBieTSvRy4u566BeMbP71sAYVECVgPH+C8j6RdCIJEMiyG5zaYc+gFnGDjHdGypMgV94xpOJcNfpl8oKepovgWKhDOVcd+QkV8EtRp5yNoU1bEtbHGsSKpzZ2I21wPywvLgo/W+K49fuyWf9TxgJ2l333OU1gqVch9Mno+TVftJWFKTVN+lOb+f64zPDR9jYAZTc+Z33Bbzhtdu8rY3np4L9gHuur3F2ooizSwPPT4ehffE0yO0gc21oBpXmlvWTKVRtMtoviWc+oUpELpeJAvheKVEJ06Krg1ZXpv2pXpUqXNaMmZVdXht10VifmLwEFdHs1VPh36HydaukP4+Nb5/g0BU+H+Yzme7Rp5db8WyOh8sNfM/WVWUqnS/DwgQQtLxDe3MptX8f3kOSQlf++WbU+d4ea6UDH8gnSFcM/1g7KsKQRwpesMM6796OYscBnIsWWNWrfpohuZ997mqa/vu+f98UBsAICxajxv2lZF8n3xwxG/+/rXq2KsljfsubLvr9Y7TK9x+osNqJ6zOyUFS8MzVAf/rwenY3ud7ST9qd1yGv9CG/ignjpZv8oaBJNemuj8vU9Za9vrp1L08DCRpptHLGD89z8spHrxfSYPhzwuzkMFXSpAX5gWvNrlVL4w6FuD/2q/9Wn7zN3+TonAX/d/8m3+T9773vbzxjW/kjW98I7/7u7/Lt3/7t9/QDb1Vx6920Ob7X/49fE3n5WM/P7kzrsJQRUbkJf3ZhKS/nL0qDaJaql4clzJKSz3ff1hNAv5AKDLjFmlNSVSgGjP8QYw1xhmsTQA3ldYARhaZZ+r9ItQaHjjpvvuntj87ZQQlEMRRsHSz4kbW53sPAXBfdHvFZNaSfh9buCTzrK1G4/Zd7N2qrdXIBkBQeQrCEvrPEqpAa0taOvTPYPgnm9Nx2fzJXWZyknqGPxaNSL5xhl8bg1SKQACN7QmU5K7Iu/VnF6p4m8uFY2TONub3JQ6QrkUO8Kcmnbsob1aZf63t7HxsJ+c/WmOlWULn9HyjY1W1qzQBB/obkn49nPsZpXHfFy4Mqz9pgtbRhMP/ceb4hRA84GfTP/P5Ptq7Az9X8/tllbL+rAH4a0n/+Mln7LhJVatSm0BSJNWMfZPhf7z/eT46eog/HT021dQRQvCiuzpjEu9ZJaXggZeuAvCph/tjC7RHnvRmfXd1DmdrTeG2oTFWs6ykH+E8SSZn5QMZMtRDtClIPEAWwjVDEj/qFIuwmoG+Nz7HPdFtWCx/ePUPjt48MsXY+I37QOnuU2Z6/1Yu+NkCwJ/WgF8pUY2QDdLZ21Yx/D5pJESBFLTC+r5TPovOnnQ7+DUPrLG5Ps2FVgx/CfhF4Dxl7Pzt7cQBg7RwzT3EWKrMYRUGklJI1n8OnfqttVzdc+dub/j8APyBkmSFHmvKGKsx1vDgIwnPXE65cMWdE4E37ls0x5/lmt2eOw++7Q338bfe8nLe+W2v4kff/mX8f779VXzz6+8G4PGLvRdcRJwQDmjqY4LFJNNkuV6g6ptdgRJLmNHVNUo1o6SgFY3fY0MlKQrznDe9bkQ1CP6p77Nojl9J4cZYbs3x36pnoZa+0h9+uI6C+nt/7+/xa7/2a0gvS/zWb/1WfuInfoIXv/jF3H///fzzf/7P+b7v+74bv7W36th1tnOajqxBepANWD+4AIBuORAgdEYsSoY/q4Ad1GxjDfgdiLH5CCVkZai3bDbu1ob7nJ09l8Wq/CKrsEUVuSSlW2jX2fJx7VLdXFcZjcpq1i00zpgJISqp9ks276OlYnpZnycOnpranihSk2vVm17DYsjTI2dW95LWHdXPVypJ/wgQS0vNmwv38jiSjz9sZJ66WfhymkfqMUl/PDHDb6GahS4XRFGDVS0XyUpaWrGsTPumAL+1SKWQYjyvWwnJHcFtKCR7us+1Yo9dfUBuC0IRsKnc+IXLZXYyxnYQVaZYQz3Ots6qUEbkJsdYPS0PLxUjpdz7GCV0Qd+WIzMdrKmND6Wgcg7vm9HczygBf29Qs5JNr4UbAfjBgdJ2SzIYGR57ypsAPkcO/WWVjY00dSMp1lqSUuUwIRvtDfJq5AFqSb+Tf6fV+dhslvRy51+yr4fHPsYAL7m7QyuW9Aa6cuQfjjQXrjhAcd8h7vwAwuRczK7x+exC9bMK8GdLLNwFCD3+Hdz5nTHSI4a++daKnSHgyAP+duPeL4TgdSuvZEXE9HWfP97+yOGfO/YdiukuoJ/LEDOd+v3oyByG31hT+YGU7H5p3DdKi6kGrTamMmY0JcMvFEiJkorY39vKZ9FL7unwjm+9rWrYTFbTpR/q9IN5xn3u6wqiQJLl2kVxVSazsHAsw1fZ5Oo/h0B7kBRVY+35wvAHyu1TOcHwF1pXjeXtKs7XGfctcuq/4hsa3VZAt1U3e6QUrLRDXn63U3wcDLKqMfBCqbK5eFx2OEkLtHGy8qNUHCkGSbG04d4wzcm1IZzwCXA59HYst/56qjfMnjO1gLXWq1NM1YDZWHHP9EXNkUBJ95pbgP9WPQu19JX+zd/8zXzLt3wLv/ALv8D29jabm5sV4Ad461vfyk//9E/zUz/1U7ztbW+7KRt7q25crV99BIElXT9LseZi60SRVRndmckXSvpbqoXFYPrb2HRYOfWPFsw+Nmtjzcnq0swwTMyY627Tod9ty/gM/2TJdDi2xHKAX/pFqWP4Axnw8hMvBeCT1z4z9R7BsyxlBnis/3ksltNyjY2w9hWoXOjLPOgln+flAjWSEQIfVTCRt+0k/bZ20PemfbMk/aUhVaDkGHNZNgW0tpXjeze2CCkZeGA65hWBw9NBECCswTYAi1QQWcvdgRsB+nz6NJdKOX+wiSwXNdYipDN2UlLSEe48Xca4r9x2bfV0pruXIVupZp5by1SR90g8G7jqJf1lGoBSohrRSGyOnpN/vtpVFcgBaMVizPgrmQD88xz/DyulBK94sWvwffKh/phh38pzxvCX0XwW7aP5hjPGGsqaxfBbHKBMxhzqXZWjH32buDi8Y1YQCF7xIjf//YnPuX336FMjrHUjGYepBAAocn5v9CAf6n+KK96nohMtKekHPys/voAs752JSSoH7XYJmL3PRVuOj9hEMuRr2i9DAI/1H+GJ/mNLfLgvo8fiM11J3L12ev/WJp+z1ThpkePFgtU1UAN+PSXZzhsMmsFddyH1Parl1U3NuMJJM9JmVS79Sf05AkmqFx+QlXbIifUWQohqDlcFLJzfL6s8P/eHyz0vb0Zd26s/O8n088IxPVCCrDAoMQ74S7APNeAHxrx/ZtWVXfcdz2zNns+PQsX5U+6afvzi8e6pz3Udl+E/GGZLKVImKw4Vaa6XkvVba9nvZ1NgH9xz2VpLfgNm2PNCc3F7wH7/6KNuN6IKY30kX32enlx399xFgL9KK9AvLHXJrXph1tKA/2//7b9Nv9/nX//rf80b3vAG3v72t/Pud7+bXu+FeZP8oi5rWb/i3PmHt9+PDdwCSRYZsQeCmR037QtnAH60rkykKqf+YrkFTKAE6ysly5+7mz/OpKliSzxLWjomt1SM1dPskkzGQV9kcpSS1VxpCRAeOOlmVz+/9xjDfHw7w0D6P59x4z0mK7jfTzkYuMzmyfe11vKIl/O/JDrLmCmeiAhwC8KBzYDlPr8ZX+jm5AUinwT8CRZbzfAL6br8aTZb0i+Eczt3EUDl39TburvvAX/kUuhLhr8zATC0sURKuq/Z2J9SgCgSXhyfA+Dx9ALPZFeBOo4PmJDJC7rCMZaDJeb43T5pocSMrGGrnRRZKMdcHrWsoe8jL2MREskQa10kH7gFaUuG9fEsDma+jRCiYvnBOfQ3gcMkw99f8nvPqpff10EpwfZezsUrGX0v6e88x5L+NHHyXW01Iw8O2xMy0EnBi0vjKCXjmlHiztGm+WCpAhnZnOK4UXS+Xv6iLkrBtd2ci1czHvmCd+e/63B2H1yaQ4r7bk9mbm64jOUbLQH4rVRTLv9AFW1aO/T7JsoMhr+s09FJXhnfDcBDvQeX2n4q2f6spcNsH4zyfpFkeoqth5pdFqL+2xLwJ6kZ8/wAKvmrEKA94A9QCN9ka/uxtMQspzYrz/s8t3WzWTpDuEUybyFEZUJWSvqDYLFhX/WZ/vw8GB0vKeFGVDm/X9bzgeUPA+n+13gOGUx1XsM44FdCLVQVloD/9Ob86/Oe21yz/YmLs+/Nz+ey9ngMf15ohulycXyTVT5DB0uMoySZZpAUMxu34O7foxvg1D9MNf1hzs5Bel0xhcctrc2Y0kdKweaqWwMdGs1nucXw36pnpZYG/O985zt53/vexy/+4i/ynd/5nTz22GP82I/9GK9//ev5+3//7/Pe976XLHtuumu36mjVObhElPbQMiQ9ey/WOxuLPKtmvzOT01xrlwuxkjVpBy2wBlvkWJ3XTv1LzvCDc+qHhnEfksxkU/OQlaQ/iF2DYWJBJZNx8BORu56AoHwiAnCmc4oznVMYa/jMzufGXhNISSDldCaq1ajeJZfhfYQHibUWIQUbqy2MdV3eYZJXC95LyUV6RY9QBNwdnBp7rRCCbjnHb9Mpo7F5lXlGKlKxe42QiNKwL/ZjG0ZDURCJmuGHeoa2yYQZ6xyoHcNfN0OcaZU7NuWx68SWxGYYb9rVlZOmfbZq4NjGDL/EElBwKthiVXbIbcGF/BpQG/aBVwj4xbUUomooDJdw6geneugGK1M/F8bN7h+b4Tc5Pe0aTivKs0jCVpJUpSRSiTp5YQEzf6YJ+CMxpkaYZPiPK+kHBwZfeo/b1k8+1KsZ/udM0u9N+xJTAf6SDW7GOJWKk8mqGOTUkJSAv13vu+bYR9/L+49b7ZbipXc7RvAjf7rP1R13r7n3jiUAv7XspNeq/ywBf3OG/9A5YiGdB8YEsA5FSG4y0rTcTs+Qe8XVLMCPCrjP33u202szwfj0d/CGfTO9CsTMe1XZRMxyM/MzymSFcgzB/btUfRj0hBFg3RB2BpYAoQgqs7yWLMfLlms+h4Go7k2lrN/N8WfV+x9WpUJKKTutIppRJcN/sJSs4+bUJODvDZ/79ZsQgs3VeExmXpiiOq8B9nu1nNwZ96Vzz93LJcO/APDffZsb9Xj80gtzjl8fY5tH6fHm98uKQ+miDQ/57FFakBeaaE5jIVSSYVJc934fJDnGQm+UPSeNK2PcuVuldQSSta5b3x7md+AaBbec+m/Vza8jX+2vfvWr+bEf+zE++MEP8vM///O8+c1v5sMf/jA/9EM/xOtf/3p+9Ed/lI985Ggzgbfq2a31q86PYXfzblARxjP8FCmxcv/ObYEQtlo4lhLREtC3gxbW6Mp1umL4l2RVgMrRugSNyrMqNVviJF+lpL8VtKDIEXL84THN8DdusAKaztEly//Ja58de8gEftE3KY8TukDkCbJ/BZnsLD1Pb4xFCcHmSsydp1a47USXMFAMhgW9YcbDB67hcE/rjspAr1nlHH/PpEvLkEsJatPrQPgZftleqxsleULgAb+Q7r3Lhe6UpF+4ZoicYFZLkFUy/CuxreT8HRlPs1wCr7pQUNQPZGkLJ/OXIS9qna9+HqA4GaxX/22srZhcRGPs4TqYblf+HC4N0Y4YzSd0Qd8DylVZy0ZLSaoQTpnQKQH/AqA+yfA31Qglw7/m98myyoZ59Upv3vfkxZRru+54PNemfaPUYAFt69nieIbiZLJKWT86akTSead3axk2GMBBfv0s3itf6vZdyTSeOxMvF2doNTv5XvWfB3rAftGvAL82cCjZJZRj0SfuCYEMyU1Ompaz8BKsZuTvCW0xA/ALxZqICYUzP9tvbNv872C8ImbG0kGIKUNBaHh+5KZqCDarilIcG2mpfULMpKS/BHuqlnM7Sb97TUdNR/MtKiHElKw/EAHFIfPhzTq6pN/9TW+UPmcg8+reeEPkuWw+LKrCjgN+qJ87gQwobDHzOFlrl2L4z5/sEgYOeF7Ze+5GLI5TUogxk+Nla5jmvm93vFHGOFIkma68VubV/iAlmCHnLysMJHlhrmucxBhLb5A5/w8Le8+BF4MxBtlg+KNQsd49fIYfnBrwz4Nx4a16/tfx2ns49+mv/uqv5id+4if4yEc+wk/+5E/yFV/xFfzGb/wG3/u938vXfu3X3sjtvFU3qGSRsbr9BQB2Tr0YKQWFKg3e0oodyazLVP4rr9viL3/FJitd9zeVaV/QcqDSOMDf9k79qT0K4PcM/15tvFTYnJEHqWEg0FZXi8RYBlg7PT+qJhj+oCl5tYwx8y/feimBUFwbbXNxUEfxCARRGFBMzlL5jHYbxMjBNmqwvZTE35nMSZQUhIFkYyXm/Oku506vEEWGp4fuGLykfedMtqxy6rfJ0iA0rST9sVuYC1nP8IcxRO49VZ4QydKl38egJdMAq4zUVkogpBhbqpd/t3PgGf4Wcx36rXX7VyqBEMrFkvlSpkDiYhhfFNeA/1S4ObZwttYSNPZTyaZfD9NdbRyi9ntY1jDBl9A5PVMa9rX9q93+KitQDaf+Yj7Df2qrNpWK4/FzomQrtyLndbCssmFera8G3H3ObVPuExqeO9O+muEXCMfozTCRLBUnk5dLCQ7zVFTS38oI0CRjILNf9I/c1Jms9dWAu8/XCpYX3blcfrfQBdt+pKP8Ck9llwmUqNRUh0fzucbUZBOwvFZKU/tWLMEaRtYD/lkMPyBkwAnfRLqWXj38O5RpFjPuWVZIxIyRibhUh2VmCrxDLQ0e87Co0hfsFHvb9HgpvHdGKBRloHjbA/50ScAPTeM+t331iNlyrHfdpF4O8Jfn52BULP0ZN7pKhr/Tdsdnf/D8BPy5yUgnDmXTuM9YMxPw90c5o7RACDi5Ph/wW2G447RT7TzxApvjl1JQFEd7ZllrORjkx2b3wT3TCm0qr5VZlWaa/mi+nL98n1yb6zLuSzLXII4jRbcdsNfPjhQbeCNKT6R1OIbfA/5DjDmVFAuj+27VrbpRdfwrvlFRFPHGN76Rt73tbbzmNa9xndUrVw5/4a161mt9+3Gk1YzaGyTdE0ghKDzDLxoz/LktwFpuPx3z4rvrBW1SSfrbPiKqwBpNN3AL4CMx/F7Sv3eQe0bcOfWXgL8ZyQeCGOV8AyYYcZk60KdDtw3B5IxrY3HcCmJesvkiwLH8zYojOTUPV811qwgbdhCjHVT/6kwmq1na+pQBVS+MlZCstEIu6EcwGNaDLU7KFeyMxXMlATfp0h4ClddBEDm6UAiUZ9NF2EJUgD8j9HOuMvAMfzIdg2atm7EPlMuWbsr3StauAostQX+eQ78xKCkc6y0l2KKayxUmd/4AQFe1ORc6ifFtjfl994cCoerb1WrozsnrZfiF0R7ASMAsPT5Rvb5I6HlQtSI7LnECQWNTCQJRAf5Fs/dRKNlYc+d2PIHPRl5FcKrl9k9ihofmTx9WD7x0fMThOZvhb7CrAsEwy6oeXdM41ClOBLYxXgJ1U2CvNx5JBzDMx/e3S0q4fjblVd7xXSkxBv4XlTU528bdq+71nhWTsv7D5/hdY2qW38RKsEqeedDbUghjGHp1VGcO4EcGnJResbAE4K9SLWYy/NLdFycY6xJY5LkzZZysQVoC/vr8a7XqMY0p076GpL9m+Gt/jo5PkFlW0g/NaL56+yRy6RG1tJT0B0eT9I9Sc/RYxBtQSVZUUXxnT7tn/vOR4bfWUlg9NsMP43P8UI+zNauU859Ya800jQNnCHglucxJ10fl8Rs0x2+sOdT08UaUFOLIkW5prj1Avr7lfxRKLm4PeeZqn/4on1KqDJLcjQ0sYPilFBhjK6B8nBqmBVobAiWJQkVW6Ge9eaW1MxWuGf4G4B9kC1U8gRQU2jxnCQO36ounrhvw//Ef/zE//uM/zutf/3q+//u/n4997GN80zd9E//hP/yHG7F9t+oG18aVRwHYOfEipFQgQHuGXxQZkSoZ/gJmyC9LeX0naLlZbBmA0ZWMMl3SpR+cM3kQCLSBg35RxSEluV/EBbJ2nheRi3TDONDYKDlyi+is62a+VRPwCzFl+vTAyZcD8ODOQ2QNRipQcnpMv7mwlgE2XkEkB6j+FVjwQDfGECqJbEwda6N535N/wB9e+CMA7m69xL3/jMVzyWD3TeIX2Yd38fNmfCEaEMiSTQ9iROTeU+YpoWf4pZ/hr0z7xhhV+LO9P+G9j/6Bm5+fIekvq9uikvR31TgAajrsIxTWmHq/FgkyCCsM9pUrD/ClnZfy8vY91evLb97onbAWOEbmepnuiq0UAmGskysv/VoDRVo1OlZVB2PcdxWN4x6IGvAP9PxoPoD77+0Sx4IzJ8fN6krwcrJ9sooWHBaHRxIuqjMno0pV0IplNcf8bFcnrk3TjJEcJO67umZTA/D7OUnp3Z3LKs/Fnf3aob70UBhOKCr6h+z/ZevMyYivf/0Wf/VrTizNlCU+zUEgeKDjmo5Xil0Skzbm+Jdk62aM+QghKjfzVinp9/eEeQw/Qcgp4a6lZRj++j4041zxJqmTz43ynpLldupeDDBMSr+Gej+2q7hFd99sVilhDoKGpF9I9zwD2kEp6T8C4PcNhpLhBzcmcZhxX1lNhn8ZmXT5/ZLELj16cCOrZPfbLcHmmo8EfR7M8E+WthrTAPwnN939anu3MRYm1MzGzDJy/v1sj37eY+OEO35fuNQ/dsxds0Z6yLX06nU3ZQ8rKZ3h21HGQkapizkM1PUt/1c7EWEguLwz4tFn9nni0gH7/bQCrgeDzKkDD7keZGP2/TjVH2aoRlOhEyt2DtJnLXXCWuvWOIgqcSAKFKsdd65qY8eiZCdLKUGh7ZGVGrfqVh21lsgRmq4HH3yQ3/iN3+C3f/u3uXTpElJKvvIrv5K3vOUtfN3XfR2dznISx1v17FZ7uE97uIMVkp2te6soulLSL4usijQqMFijx8h0a209wx+2IRu6oUWjKwYpM2nFxB1WQgi21gKu7ORs7+Uuqg9Bknnn5UBUnxfKCGH9CMEk4C8Z/tUTsHdh3Jm+NLlq1J2r59mI19hLD3ho9xFeefJl7vOUdAR0Y/uFzrDNzxMK21pBpAOUuYzpnsKG0wsKbe0Yq3CQ9fi1R3+bC4NLAHzZqVdznvuw+SXEjL5bOcPvJP3gFtGLGdi04dJfAtnStE+ELQhLhj8l8my/UOP7pinpHxYDPtf7NJ/rwbfdfS/G1reLOBo/vt22mivpN8bNtAmBO3aFm0G2UmOLDBkGlWCiq1oVGCrLWotEjGUzr8bd6jsXpiCQx7qVQWnKJZwE+kjsrymwthgD/LZqbtTbKpSkI8sGzsiBNTX7WD7w0lXuuDsnUuHYz8sZ/hULK0GH/bzHsOizGs7OFl+mhBC86v5V3vfhHTbXjrn/bkCFoUB58U6e1oAuisbjIA2+N4OLMirP1PJc3CvHSxpKhTK2USIwWPpmhDAGewPEDPecX86Zv6wdD6jXVZd1tcKWWmNHH/BUdoV2fA6wS0XzWaEQc5qNo6Se4dcmIfOJAHMBP5JTnuHfy3YPvZacC/+chamQTnkwcX6Xkn7H8C8n6S+bOGlmp4zz8kaKSyXpR1UtiI4fhzoKkK4Z/gbg94Zwuc2JRDTvpUDN7M1jkierGUU50sOln5k3qq7t+XvWqmS1HQEDeqPnK+CvzTjPn425tpuzs59X+ywQAalOps6twwD/oOizk27TCtqc3tJE4Yg0d/Fu505NG7wepXKTMyqGpDqtIotvRrn0HNdUV0ueP8PEpSLdiPOtFQW0ooC8MOwPMnZ7GSvtkI3VmP4Cd/5mBYFgcEwJfpZr+omm1TAFbMcBOwcpvWHG1tpy6qvrqeaUU5PhV1Ky2gnpDXMOBm6/zColJcYUFMY4FeutulU3qZZu8T311FP8zM/8DN/4jd/I2972Nv7jf/yPnDx5kh/5kR+pDPy++Zu/+RbYfx7XST+739u8k1zGFSgxDUl/CfihloiXVdiieqi2gxboHOEXh50y+9gsx4iUVTv1uxu+Emps8VSy1qGMELMkT8YgU8d02nWny5NjUXRiCsQJIXjlidK87zPVzwOf8V459XtDQsTkAlhi4xXQGbJ/BTEjW92aevH3xMGT/D+f/UUuDC4Rq4i3veib+EvnX0+oBLoYl8eqPGHj0oOseUQyNKmbez0Swx+5YyBkJelvzvDLPCUsTfvU+CKpKenvNRzN97JtDNOsalndtqgi+aYl/T6SDxzgNwartWvE6IIgCBeeM84PwS1uymqLkMDfvq6H5S/ylF8bfJw/HvhYsiMAfmENqc4ofGxiV7bRgGJ8MaUEFcM/tCn2kGi4lXCFlqr3YW7yCvSsGsuqOtwAcNm694423/BVW3ztazav+72OW0KIaoY6SUXl0D95jllrkT6WsXm+lEDxoO/vTa3xphXAyWADgJ5NbgjDf+Syhp1sB6Camb8zPgO4Of6mU/+hJaVLK5lRJcPfbqkqkk8iicTsxSZAJ+jQkTEWy062vfizF7Gf/tqevE/XLv12yrTPWkviE0JajeNdM/zTgL80uBpn+FUlOugEpdpseVlvzfDX26eEQi9p3Fcny9T7Z9E9rfw8rWGYZc/6HP/VfQeGN9ZUZVg4GM2OTXwuy3iGf+TP67OnYpSEvLD0BqXBonLGfRPXxJVdd/7PcujPTMZ2eg0pJJGM6ARtTp90++GxGyDrT01KZrIjqUyOU6UkfllVgjGWg2E2ZYZ6vVX6FG2sRKR5wVOX+yRpsVTsX6AkaaanE5KWqFFaTKUNCOF8k7YPkhui1jisjLVYxpUKUeC+91rncOM+KQXaWopnSZFwq754a+mr/uu//uv5qZ/6KYqi4Pu///t5z3vew7vf/W7e/va3s7W1dTO38VbdiCpyTuw+DcD+6Ze4G5RnTI2X8csiQymF8qdFbscXTKWcXyKJhXIu/Z797ojS3T8jP0K8WWXc5536AxGMxfJV2fIy8pre8dfLbIiwFisEuutAS5PhF0LMlL++8uTLEAie7l9gJ9l1nz3p1G81s0YI/DtDtIIo0tlsm3UPgA9d+F/80sP/nVGRcLp9ku952Xfw4o17CZQklGC0Hnv/rQuf4uwTH+W2q48jnZ2dY86XkZX641Mx/A1Jv5vhd804laeNWL7xxXRT0t9rZMbvZDtYMxvwx4ElUA2GX40vsJqRfPUPHbuP0SgVYBeY5ZkZrLkKJB3vPH49jvVX8qvsmD6fG33Bfc6RJP2annGLyq5soYQbe5ATUkkpBW0R++NZs87zKpRRJduHWpqsUITAqir9AK4f8APcda7N2spzx/BDIwUkrSMiJ1UkTtLvzeAbp0trojHQdMwvI/lOh+7ekNqCongOss9Nbdi3Fbjc7zsiB/gvZNdoRT4ecxncJ5Q3Ex2/rxWFJfey0FYsGfnzoy3jxWyeVJxUbpsOlfXbgvImbOyklFgCdmq7ar8PF7HWLN0Ac2MMvx/zSDNLYcbngzPtgZ4SVTMgaqgSVqIyMWZ5B/xZDP9RjPvKGf7QL/TzQrNzMP/zw7AeoemP8md9jr906N9ai+rvPjIUS6YSPFvlCAZRKVdW2opNv2Yo00WUDKaM+7QxXPUqhtOb4ySUsYbddIdEJ7RV/bvzZ92/H3lm97q22VpLqhOkkAyKwU1NYZDCAf7JdKGpbUr62CIjyQqy3CwFxI+1PVKw2onYWovYWjvkvuMrDCTFMZ36B2mBYHqMptsK6I/yZyWiz1qLNXaK4QeqOf79w6L5rJg2jL5Vt+oG19KA/7u+67v45V/+Zd7znvfwAz/wA9x11103c7tu1Q0u8fSnCHROHnUYrN+GtS46zFqLDr2BW5EhsZWh2yTDX7oeRzJGlgZnQoJUxLaeW06K5bvatVN//fAuJb0O8NeSfnQ2bdjnHfpN3MVEDgiJvLGgF3Im4F+NVrhn3Z3DpXmfRBAFCl3eeHXBdr7Pnl4wKy3EmOt8WalN+O2nf4s/vPBRwPkGfNfLvo3N1kb1N63QA/7GwypK3cxxmI8qWf/QJMzyU5isctHYkqFLFgCkZz1EENemfUVKWC6Q5USed9Bg+JuAP90GW/+uyRB0YyfVHZnSvG5CRicmQLDAHZNy25RcaI5vrDM8bD7UpRBV1NixjfuspefVARrDnhkcTdJvbe3Q7yX72kw3N6QQzqnf75dBfjQn6FLOH8s2AYY1L8/u5zcG8B+3jDUMk2mzpuNU24OOJLFzI/mMtc4XQzBmIDmpBJjF8K+rFWJ/X+vfgGi+o5YwOTvaHfeS4d9Sa3RliwJN3nbM+lIz/LKM5hsHzyVTLqVT6pQM/3w5f/1+J5UbDbmWLjbbFabACkliUn555/389v5HnMFrVdbL/uuKGpL+SbbeYKoowdaMWD5rndt3UxlQN4TlOMPvq/STsdSRrodV7dI/fv0roQ4dDTDGVuxkec4a6x3UF7CW5XmapkcbP7gRVQL+E+txFceZ5ZbRDLXac1naarQxDeWKrFWBDeM+15ip/3vnIHXKskCysTI+jnGQ7bOf79ENVsaeKefPuOfjhasj+tnx/VFym6NNQVt1yEx6JKXJUUtKZ6Z7GJOte9ewSd/P7xvnp3MTS4jxEbxFFShJYeyRnfrLOL5ohvmgUs49abd3868rY9z1LkQdr1c2/taWjOZD2GPFK97s2t5PDm1W3KoXTi191f/jf/yPeeCBB27mttyqm1jisf8FwN6p+yoJuRACbQ3Cz3YL6xZrobd2mGQ2ygdXLGPHhFrjFp8+jqkTHH12cmvDfVZvoMlzgxKK3APuoMnwq9iNEEwY3MnEgR7T6mJDt9CTOq/d1oWT9M8yiyrN+z69/WAlZYwjyagY8dn9T/Mbl36T3xh8jN/Y/zC9OaDfqgCRjzPw1lo+dvBBnuw/RSAUb77763jz3V9Xg2xfscJvZ0PSn3k2t8gqprynRy4O65DKKzWEWxBZQUPSX7v0yzwlKBfIDUl/FI5L0fsNwH8tvTaWxNV8yHZjW7mBKyRxY961jORrsvMIhc0zbJ6AVG5qbQETYA3TIFqKKtv+MMZ8fpmx43pN944m6Td6bH6/rMnFlIs1dCoAOHoWfFIB/hiBZU2VBoDPHeA31tAb5FgrKnbzeqpk+EeJRufu3JxcyFksSslpA8l4/O/GGf7aV6JsoA2eg0ZJmg/oe8XUlmfThRAVy38QOaC9lKRflNL5cfBcMuXt2DXHymSHpQC/N+7bTq8t/ltTgBA8mV0msRlXil0+2PuzRtNHTCVdNCX9egbDXxqyNQF/oASBbz6OUj02n53NMO2LG2NXgVSEfhZ22WdRKWtPM1M3fIFAhKQmXSh1bxqORZ45LVVNi1TKJeAvMlnN8T8bVRSGg4Hbb5trIVFYp4rsDW4MQCpMwV62e93fSVtN5q+JMn3jpAf8Taf+QKgxE9PLO+66P7XZHnumjfSI3WybWLbGVFQAm2sB7ZZEG3jowqVjjzcUpqCwBZGM0FYfKR7yqCV883MRw2+tdaSENfSG2XNmzrqorD26U/8oKxhlxdj8frM6rYD9QV6Zgt6sMn6I3zH8ZdqRu6DWu+5cPQzwKyVvyHP0Rld/lNN7HqZ33Krj1c1t892q50XZbIS48ggWD/h9CekAv1RR7YRe5JU8Mp/oTJeLp1i1PIvjNbbSSUw7vnEwOsIDrhWrauGze+BuzKVbaaBkBfgjGc50tK8B/wo2qBe21Vx96eg94+H9ovV76ARtBvmQR/Ye57H9L/B7l97P71z7FT6280fsFW6GXWP43OiJ2V9AhmDzsZi+q6MrXM0uIZH8jfv/t6qxMFmB9NvX/Fnu5251VgMUkxwq6dfaVAZW5fiDEeOSfipJf0ZYejU0GP5JpnSgayb6IDuoTAEn/7bbsmOGfc0F1lgkny8hpFNrFKnzgJBOGzLvKxprCSbMsKQQNYA+LuA3xpno+bpq+lOs6cKymp71Znoe8FvG0wTAATuFoCOON3tfAreWbCGwrKvrVDZcZ5Vgf60bsdYNr8thuaxSVjxKDFa7+8/0DL9r9Cg5HhE5Jelvmvb549uRcXWMevpoCosbUbseSK/KjruX+brTA/4dcZllTfucL4l1kZKNqqXxCqyp7sOLAL8F+iNDNyvHRHqL5469quuprFYCPJld5uPDh9z7CTEVWVoeR60hM3oMBGpTVAkhzVg+qI/rKNVjDdtS+hsqQV6a9gXjHgUtr+ZIloyJjSNZTVaNmsZ9MqAw+cI5/tRvjxQQBu7ctRYCpTALorZK474sdY2L65X1j4rhUn4DV/YHWOsavO2Waw6V18zu4PqSP8pK9Ihevl8dn+NWbnLSzN1QWz59Y2sW4JcBaVE3Zq7sTc/vF6ZgO71GYY0jECZKCMHtp93Pn7jUYz/bn/qbZaqwOda/XyCCmyrrL5+1Cxl+rwYqioLhknP1z3YFSjA6onHfKC0w2s5VK0ShIn8WIvqsBYMH/B60l1GElaT/kASMQArSG/AcvdFVaEN/mD8rXgi36ubXLcD/xVBBjLnvtTxz+8vJY+c+K4TzfNcYAqkgKNnxOqM9m1g81DPisXc0978QCqs13YrhP5pRzYkJiZ7R7rQMA1Hl68YywmqnKGhWBfjjFZASE7gbbD3H76OiZgB+JRWvOHE/AP/90d/i3Z//NR49eAyLYSs6wVesPsDXttzvH06fmtof7u0VQmtEwzDowYNPA3D/1os52z0993sH3oCsyl+1liCvGf4Vz/D3l5D059qS20ZzBIvFIhumfZWkP08rCawV9UO2aXxjrKkAf+nafVDsVL9vzld3W2K5SL6yfIPIFi7WUUnvoj5nUWSxBJMKAOHc6uH4DL+whl7jXL2me1MgauHrdU7PXxOrpVGhBTHD88F5DvjjqY82OpBUwK2FQrPmPTcG+ubOh86qJtg/s9lxzsOC6zb7qkzTEk2W1WqbZlnrziOpxFKS/lxnldy8K9v19aSHz7px307qJPulnL+sM+EJQhGQkiG6+4wy5l4HYyXEtKQ/aZgWWlON2JSjL5NlcZF4rVDSDiLWlHs2zGX5rQZrKDBczNzfvKJ9LwCfGj3KI8nTzql/wjytOSaUZuNs/SgrqkZfa0KpUf53khr0DMCvAmfqBhAxDvjb0l0jy7KrQogKgA+TWcZ98xfsVSRfKJCUowiWQLKQea2i+VJniLvs+MG82s622U6uHnotXthxCqPNtaACjKUq5mC4WM2wbCU6YaST625iFDYn9bul3MZyvdAfalJ/r1AioDBF1fCoHfp9I9ZadrMdhsWAro90nVXnPOC/etWyl20fy3Qv01mVvBPKiFSPlm58PHHxgMcuHH3kaOEMv9FYXZAmKUmuKxXK86mCQDJKiyM9zw4G2RQRMFntOGC3l95Uubyx1jWjhWgw/JOS/sXHX/nxn+MYF97MKrQhy83zshlxq45etwD/F0EJKbFf/te5dObFgFvoWQAp0FY7gBi6G5PSeWXoNiXpr8B3yzuN+4WccoxSOTt51IfkpHGf92SaMO0L3IJzguFXfoZft91itWT5K6d+L+mfRx8/cNK59VsssYr5CydfyRtOvIVvOPsWXhad4+7oLBtqhdwWfD59asY7lPF9btv7eY+nRi4N4TVnX73weytpPOB32yZ1jvSAU+q8Ec2XHsrwZ0Xt5N7yAN1gJ0z7mjP8fmEq65itpkP/sBhgMEghedGW8zrYL2qJ5jjDLyqmfFYkX6jUuGJfKKwxPr4rQAqBUItcrYWb85+oFb9wGy7yWFhU1lSSfIBdM6A4ygLVFPUMv+q4vSimGX6AUMrKqX9QRvMtWRXD74Hbqr/O9A0ACUepSbAfKOkUOqGqFt7HrRJsjRJTSRvjcHpHSpzyxy4A/NU8duH9MFCEMqh8FvpmOCU7v6llCra9Wqg07CtLCcm58JT79+YVrIVkiVPQSokoxheRY+Z3VjMyixn+YaKJA8nWeosgDNiShxj3WQsYLhf7FLgo1r/YuZ8H2i5G88P9T3FZHziGv3F8pBSE/lim6fg8fhnJF3rD1Ga1Kqf+GthDLZuVQUOdNBFj2ZLls2j5e0O3cuofvzYFLASuaeUpAFLU3gOlg/q86jTOeYGonq/HqRLsHhQH9IvFCpbLe+6ZubFW77NypKE/LKZ8Fo5a1rqowcIUVcP+OGWsobCa1N+iy0ZeHElWOm7flSy/EorcZFwaXeDpwZNc2PaGld2MvWyX3WyH/WyPtupUx2hW3X7GA/6dgiQv2El3jtwASU3C/p5lmGgCEZDbYqnG0ygt+P/9z8/z/773Yd7/saePBH4XMrDGqTGTNMcau/Rs/bNZoZLkhVl6jj/NNcOkID4k9q8dK4ZpcSjgvp6y1lYRkZMM/7oH/L1htvAYKSUptB0bJ3quqxwVSQtT+ercqhd23QL8X4RV5porCdoaN/NdAuUiqwD/5CKnlEe2g5abCSuZTCEAQ9uzu8vKKMvaWneft+0BfyXpbwD+VunSP4/hbznwV87xVwy/LJ2jZz9ITra3+LYXv5W33vtmvv9V/wdff9df4mT7hItI8bGDL2/fA8BnR0/MfPi7xbdbWH7u4DNYLGdbt3GmM5/dBxC6IAyDqsFRsvtQMvwlQEkOdY9PG8aBsQzBCqzRtWnfRCxfGWmHsO5/jDP8Bz6Sbz1a59zaWfezonYvHgP8bblcJF9ZUvrjYZ2hn5TVLOJkVaMmM9Yo62EpkT+etD3VdU55JEIXS5bvLpWIgLUYnTG09Qy/tRYBMxdUSgnaHvD3TXIkJUFp2teRsTMAlGEF4m5ENN8yNQvsgwOsK53oumX97QbDXzYPpsyYrFusTuZNSynGmlXVe3ng0/H3pZrhT6aM5W5mCVOwox1rN8nwQy3rDzadTH601By/cmMxjXN1bIbfGEb+3jkL8A+TgiCAzfUWUahotWI2rbuHzgf8GmENTxWO3T8fnkYIwas7L+Gu6CwGw+8OPkmvGDKpSCrvLWlmxu6hfR9LMMnuQ32PSbPxOL+S4Zfef0QiUWrcH6VdNp+PYCBbytoHE4BfiWChF0AzJrA0rrU4AFD+96wqz9NRogllyPA65vgLW6BNQSACdtLtuUBbW821ffddNtfqfdb87suMBSyq3GTkJieU0XV5ExhrMFaTeo+HphnniQlZvxCClWjVpdpkGf2hPzc6A64ml9lOrxHIsB5lm1NrKwGrXYW1cLAb0i96HBxB2l+Ygks7I37rd3v8zz/cceZ1yKWa0k9e7lXN/w996hLv/r1Hl76vFgsamNZoMIbBYDj2jH8+VaAkmV7eqT9JC7LCVMB6XgkhiMObG9Fnyk4/TDH83VaIFAJrWZgYoLzSM38eMfzGuOwkoy2j7Ob6INyqZ6eOdfV/4hOfuNHbcauexTLeYETgbkShDCD0DvcNSX8+5dLvJaKqBUWBaJreWOh6qfGxGf49J+nKZwL+oHSAG6vapd8x/GYS8AtnIrVo0XHP+l3cv/ViQunY5iiQmCIHXGTevfE5WiJiYEZ8Ibs0/QYyhCIjK4Z8vvcwAF+yuYTBpSkIo6BaAKsG4Jc6q8DzwKaOEZ9T1tpqfj+SYXVR22Z6QFDH8glrCZsNBB/NFzVk+qVD/2a8we2rDpDsFzsVKA8DUbH23ZackvSvXnuMs499CIyeNgmSEnTtxyCEA46znseLQPSal/RndvGM7bwqzfPaIuZ04GLbrhUHLJOIAIa+HrmZfSRtEWOsRQqBnGFAKKRoMPwp9gheAeX11FGR2+dCVuD1eiIJl615YL+sTitAKVmPphxShSmqJkb9HjXbmWXTKhLANYfEdART828DJSoJ+Sh3+6ZMR1iVdQPt2ZT058WIfa+AmWT4Ac5FpxEIRLuPiIdLGvcpF5HX+B5JUjqZ+xl+Oxvwj1KNVIITq61qnjeKI07KUtJ/deb9UhiL1YanM9cQOO8bFUIIvmr1VZxQa6Q25/2DT5BNAO1SrZEV41nv/WQ+4C9/lmZmbAygBAUi8EAbOXVOlGqz9AjPos4MST9AIEMyk45tQ7MqSX9Qn5vWu3a7ibLZz56mqiUUIbnJji2BL0yOwdAJuuQmZ3eOYV6iR+x5r5wmw99teGhcbzRfZjIKW9BSLTKdHlsxoK07V0YV4K/XGyc2p+f4QxnSUi1GPdfI6LYlJ7prrIbrrIZrtCbGzeZVOcd/8UpOIEIGur9006KwBZeuuAv48nbGMNFEMmJUDKciKSfriUuuQXl2q4OSgs89ucf/89ufO9TwTYrFaRAYTZHlZEn2vJzfB/98N8sb9w1Gs+P4ZlWnFTC4iRF9ziPK/TufYPhdTKE7Vxe53UvpE7OeZ4DfGEsUSfrDG5PGc6ue2zoW4P/2b/92vuEbvoGf/umf5qmnZsmcb9XzunyanmMgHNgqGX6Rpy7WDcjs+A0q8yxuS8VusdmcVRaCtn9dekSGf2MtRAi3sBslpsojDZWsfQPEjM68tcjUA/4Jhl8244WEOJKEuhUqTFEgjFMUBEJxf9vJ2j8zemz6xqcChCn4/MGDFDZnVa1z9+qdCz/DYsHklckTQNCIApI6oyMiBAKDXcgQFNpgpFtMVP4KAkTuj59UCBUgVOgGX4GgyKt5UyHHnWWByrCoCfgPij1y7T5HCMFdpwTrHcPmClMM/6mnPsbGlYdZHVyeyqV3+yx0RoLlfyoxU4RhjEXJ2SA6DiICSvn20YFvz7PjK6rNydAxr9eK/eXk3kY7aThOzi+EcNeVmt2cCESdKqAxpEfY3lHlNB+5GWkZsCpLk7Wby/BbaxeCfYA4UrQiRXqI7M9Yw8MHn+NXn/olfvXJd9FvxBNWjuXaVuzcZCwfCB/3NP3eJTgsTcgAhroE/G6/l6kXGQX5EZjf6609P7/fka2ZbHssQ86GWwDIjSsMs2Wi+RyL31SKjHwsXyuWYIqZgD/JNULAidUWrbi+90RRyKmgi0SSmnSOLFyzZ/r0zQiJ5LboRPWbUAS8Ye3L6ciYPTPgD699cAzYl2qNLB+X5w+9pH8m4C9fkzIGlirA7xuVoQimFv6tarxs+WdRKWuflPQH1Xz47AV7KUNuehVYa71ZqZw7X136VoxSjZKBc6Q/5ohObvKqF94Juhzk+2OxqmUNsiG9vtvezfUGw++3JUnsdcfIJTpBICo5+3G/kwP8miRx+6/TOEcmfX+atbPvzovS3O+oVQL+C1dSQhkeqWlRmJydvfr8uXA5JZSRMx88ZF30xEV3zb3+lWf57je9lG4r4NLOiP/7fzzIM9fmPy+kFJUqcmYZTZbnFLogfB469Fcl3P3psDLGsj9MpxvCc0r5B8bBTXKbd8tBt//Le0HTJ2HpaD7E84rh18ZijXXP9lxXSqZb9cKtYwH+f/2v/zV33XUX//7f/3ve+MY38h3f8R384i/+Int7ezd4827VzajSUdSxhS7SRnigTJESqRLwjz9Ma4Y/coxzk+EXio6P8zsq4A8CwdqKe+3Ofj5b0l9tcOMjsxHCGiwCE3tznorhb2xD44a83PY4Uzl3J3eXyEtbdyGRXCv2udKQtruSGF3wuZ5zqr6v8zICdUgn3TrVgVQKiXRO9A2GXwCB0Us50RfaYoV36FdR5WhdJRU0gDVhOcefVGC5ZPibAKvnZ443WxtstNZoqRiLZT/b89uvedOrcr7z9YZAiTGXfowh9I2YOO2PR/KV36/VhYaz9qTzelm16d8cEO3n2ktwd5QqwfKq6nAy2ABgWx8cOj4BzvCv74H4agXkLQpmM/zKLf47FVBfzineWlsx/F0Z+lQMWUXzHT+ScLnKCkMcBXPBPjjDxbVOtFCOeXF0gd+68Gv80faHSE2CwbCd1eZwYSArwFRKqpuKE+tVSbJq/kwAPL/4G4vk82M2XQ94QxHQ8pGR/Wcxmm/HS+RPzGD3yyrj+dTm5SMw/MY1Xn1VDH8syXWC9ve8EvCnhcZq2Fxr0W6NS+ClUnSigHXlG1+zZP3W8rS/993mzQab1VUt3rD25SgkzyQX+NOdP65+VzYT84Y831jDsGxSzFi81ww/Y4CrXBRb3+QMUEx2gbrHGC+rGf5x0CGFxGDmqojqGf7GOWkFYSBRav4cf5PhB6e4O0qDYmwbTIr0x0MJRSBDdtKdMcWAtppLBz2Mjzkt5+ChlvQniRt1Og6blxeazz6xw+986BL/9df7/M4Ht7GGY3sTuMaQIClHVZoMfwn496cdxEsvoFI5eNQ65+f4r+3mFJk8UtMiNzm7+/V98JnLadWMGi1oMg6TgsveaPCus6vccXqF/+ObXsbpjTb9Uc5/+u3P8ZnHd2a+VopDgKLR7CTOn0YcYR30bFcYSEZLROiNsoI010dSK7RjxX4/vyGJMpNljK2Ocfn+zVGD9SUBvxAsPdLwbJS1FmMtUSgpCrNUM+ZWPb/rWID/LW95Cz/3cz/HBz7wAX70R38UgH/6T/8pX/3VX83f+3t/j9/5nd8hy67PnfVW3bwygEI4h37hGOyK4S+yKtJocoFTzfCrcp6+Pn2EVHR8AyA7IuCHxhz/Xl5L+lUjWx4xw7CvdOjvVLP9paS/Mu0DwB7JpCtQAmHH46PaMuZF8TnAsfyT9bjZZmhGtFSb8617ZwLUsfJzdUEQoAIXq9cE/OCj+Srp9iLAbxB+njUO4io6q2T4RTOusIzmK5J6wS6nAdaBl7tvtdcRQnCm64zFdnK36BC6QNoCEQRkJq/d0FWLMOtXC4s4H07NXM+qQMmZSxFjnQJllnRPKFE5kA/z5QB0s3oedK/KGvDvmxHZMotuq+k1GH5wl4RSamrsBEB5qX+pgBjmyzkx5zavpMSrUiGkAqEq476byfAXpuD3rvwOH9/7MOoQo6d2HBAoNeWGvJ/t83uX/yfvu/Tb7GY7RDJi1QPfyW1vzujCuKTfNsYlpHTjJLOM+9rt+jWTDD/Ux2oW+3lTyhq2cweSt9T0/H5ZJeAPVnd507V3EaTLHVeh6wXyqAGMSsVLJAIC4Y5LUVg212O6E2C/rFYg2VQbgJP1T32W0TxVOLXC+Wi2P8nJYJ2vbr0EgAcPPlOdu1El6a8THbTVpE1VwkTFlWmfRc9g+GkAfjHxbGhXkv6jMPwe8I+mnxWLTPXKRX7YNJkUrompGqask1WlSRSWojCEMmSkR0cG28YaUpO657ivlmyRmZTddKd6v1Qn7Oy5/bG+Oq6KaI7UFCZfmtHOcs1nHt/hv/7+o/xf7/oE//X3H+Oxp1LywvLUxZRPfzY/9hx/ee6Uiovm/WG1qwgDgTFUIwpllaz/cQF/p63Y8P4Gl65lRzJUHGQj9g/q8+eCl/c7j4bBXAPAJy+7Z9GpjZZLPgE2VmL+5jfez4vPr1Noy6/8wWP84ScvTr1WSrd+mLeP8yzjYtKjkNmR0mGe7QqVJM31oU71o6RAa+bG8c2qOFIkWXFTZP3WukQkuD6GX0lxqEru2SxtbDWmaK3zTbhVL+y6LgePra0tvuu7vot3vetdvPe97+Xv/J2/w2OPPcY73/lOvuqrvoof+7Ef40/+5E9u1LbeqhtVBqSSGGuQSAIpa3l1nhL7aLvMFmMPiNIIqCUCB1ibrIocZ/iP+oAv5XdXdxo3ZKWrG2nLCgd2GjVp2AdgSy+CJuAXHOlBFwaKAIOZQG6led+T2WUOGoyytZZPZ88A8NKV+wmkOhQgOXbOoJQkVAptxiX94Iz7uuXc8QIG2xhL35uCdcNOHdflj1dTOi+axn1+gVg2C0oWTltdNRhOtNxs+xkfL7ibuQW/0JlPTVCVnD8WIaEICBtgJc77Sz2YpRAzRRjWs1GzSokazB1nlr3cpyuqQ0tGVSrCtv+OC8vayuF/1YNIY5l73KV0SQTlHH+/6C9lDliy+4EIiIV0TS+pWH8WTPsuJxe5ml3i0cHD/OGFP1r4t1Eo6bRU5bCf6pQ/vPBB/vuT/5Wnh08iENy/9nK+5fy3cVfXXUf9iSZNk8GDccDv1B9e0u//NxbN58Fhp5HlXo7BdGSrchwuj/HgGA2iY5Up2PGNpUUM/6rq0NIrWAGPdwUre08v/f7gndEbLv2Jvx5qdt+w3g0rMDGrwijgVFA69U9H86U64Ypx95l5gB/g7uCU84fBVoA7bjD8pTzfWN3Y5mm2rtUw7dPUZn9lQ7gE/CESMXHdtYOS4V+eXW5GQ05WIEOSOWC8POfDMQMx6w3D1FzAHwaCUgg2vI45/tKwTzUUF0IIuspJ+0s1UaIT9nvuuzUN+6AeZ0gzS1oUh3qiZLnmVz/wGP/Xuz7Br/zBY3z2iV3ywrDWDbn/xSGvfZU7jz7zcMpjT/ePNcdfAv7yHGmqd4QQ1ZqhOcdvra0Z/mNK+qGW9T9zOUWJYKmmhbGGK/sjrHUNLiGgN9Ac9AsiGZPpbO64RDm/f9fZ1bGfx6Hi29/wIl77CtcQ/N2PPzMFHN29cH6cZ3/YZ6CNa+w/j+ewg8AxyYdJx/cH2biaZokSQhAEkr1eesNn0ctnkzG2akY2Gf4S8O8PDwH8SpDm+oZv33GrNO0TwqWs3CwPhFv17NUNs+yM45h2u00cx1VExfvf/37e/va389f+2l/jkUceuVEfdauus4zPDC2sJhAKJVQFCmWRVfPymS0oUZi2usqS7cxyupWStijj4MzSubNlnfDd+Mvb9U3RCPdviSSwTDH8NeBfqX5mG14EdTnH+mUrUILAZBg7/lDZCFarCK3Pjh6vfn4p32ZH91BIXtS+DynkodE31hg/a6+cZMqYMdM+8Ax/Gc03Z4bfeufyZ4YOINy1egdYgxASWc7wh02Gv+nUXzL83rTPL8r7eQ+LRYmA1cjt27Md9733SjCsU0oqezARyRcmNZiKs8HkJMbMKlnbyTLWzs3aFUJWgP840vae36clYK9k/UsAfmE0Pb94K+PerLVzlR1SCAJELenXo6WM40Zelh6LFrX5BqwG5ajHzTPtu5zUBpUfvvi/eHj30bl/KxCstCO0tvSyA379qf/GJ659AovlXPs8bzn3Nr78xOuIVcxK4M6pybGGToPBE2JyJrqU83vvESHGFkb33tFmaz3gvjvb1QuGHmx2VYsk1QzTok6+0INnZfFrdMKuccdoa4ZDf7POF26x/2A3Ih4cfg5aKV3jDZdsUkY6tSNRRTk25/eDWeYHjVIq5FzotmEnuzbFRj6TXMQCG2q1umZmlpRVLF7pP1HO8OdFLc93DH8jSnCiakm/xdja7K/wi2oraoZfivGGwYpvWqdm+QV+JWtPzZRMPBCK3M5mvmfJeLHCn8MSOwfwCyFoxzWzftw5/sI4FZCa2AdKBpVrf6pT+kWfnr9NbkwA/jiSVf9+lNQmsPPqkWf2+fRjOxTasLka8/pXnuVvfdPL+BvfdBtf+soWD9y/ype82DXiP/THA64dHP3+nJkMbFPSP36OTDr1A/SHmix34z8bq7OVLMtUKes/yhx/YXKu7rhjd2or4swJdw4+czmtxkLmpUaUgP/uCcAP7r73xi+/g40VDxwnAb+Pf5w3OrJ/0EcLQUr2rKaTHLUCJcmNmVKJNSvNNaP08Di+WdWJFf1RXnmd3Khykn7GxiqafkjrXXeeLsPwF8bObRA+22XqACeiQJFkeuGxuVXP/7ouwN/v9/mVX/kV3vGOd/CGN7yBn/zJn+TcuXP81E/9FH/4h3/IBz/4Qf7Nv/k37Ozs8MM//MM3aptv1XWWtZZACgyGyGe2y5IFLrIq07jJ8NeSNuGA/SSuEYoQKpl4CVSWrbIbP/CGXUpBgc9oFiESO+4ZQMOhvwH4Z0r6hTySaZ/AEipDMePyeEX7XgAeSZ4m9SzIZzz4f3F4htCCVILgMIbfaMpYukBJsExJ+l00Xwn4Zy8U8sKANFwcOnB2z9qdoA0IgfQu/eMMv1uoz2b43TaXcufVYK0y3CsZ/v1iF2sMIhthvQHgpEN/lNZALsyWW+hJ4YwMJx91rvEwnzXvVrPsRwO+xhRVo6IE7Cc9ILu2DMNvCnp2nOFftK0Ip6rpCs8wm9FS0XwlYGrJFgpbqWrWA/c+iRnNdQ+/3rqcOPnoRrQBwG8+/l6ujWbPkYKT9ecMee+l32JQ9FmL1vj6297EG85+A+v+PQBWPKicBPxNht8xZOOAX/ipHuUNR5t49LZTMX/9TWe4zTNzxuSVaV1Htiqmom6gjVgujeH6aj/dwWKJRVj5ccyrl3k38oc6EcFg/n6uSgQuHtWaigVVShAEllHpt+IVJVjcRbaolOJ01CUUIdpq9rLxbXgmdefDInbfbZekLcYTW8p7S57XzK2xhsQbFC4C/A6Am2r2P/eNDSNqhn/yeVQ21gx2rtnerM9zoyJUILOsQIQUZnYaSOIjq8LGIt8K14h1o0rzF/DNaD4AgTzyHH9u8ioGcOo7qTapSdnJrpHplF7PbcvmhNxdCFEx6EliD5Wwl9F+X3LvFj/wti/hr3zZeW470SExI5QnBL7iVeuc2grJcvj1Dz59ZAfywuRkWZ3kMmnSNgvwl3L+jbXg8LG6BXXbKXcf2TsoyBJHjhzWiMltwfauOxdObIbcfqZWCYA7h4Z6MNWAGiQ5Vxrz+/Oq40dxhhPSaikc4J8FFJM0pzccIENFYYrrTmC42SWoZfGzapQWpIU+NI5vVoWBItOmigK9UaWNSxJq+gM0/W5qSf/ifR9IiS7MoSMNz1ZpYyrfrDCQpIUmeR6NHNyqo9exAP/73vc+fuiHfojXv/71/OiP/iiDwYAf+ZEf4YMf/CA/8zM/wxvf+EbCMEQpxZve9Cb+7t/9uzz44IM3ettv1THL4kCptsZltsM4w+8Bf26LigUrjfgiESEopsB3ueCqpJSHLVq8pL2s1a4iaDB6LpfVz7+JCMG4ZwDMk/TPMO3jaC796IJIWrSdXjDcFp5gU61SoHko+QJ7RY+nc5ef/fLoPOQZSsx2ah+rxncPHIIhyNxDv/DGemMMvxnNHEvIC8Ouvoyxho14jY3WOuDMjlThHzCNGX5Khr9IGzP83rTPL6gOcmfYtxqsVQZ0J9qbKKEobEEv2wGbg28WTTH8DUl/kA2X2vdSCh8TObloEbNd/nHPopKxXSbnuFkjPcBgkQ3W/UTF8B8OtvazXVKbIxA122mZkhY3K1CCFp7hN8mY4dq8KgFTLGJ3DfjrrhO0UP72fZyEgsMqNznbXtb9V+98E3esnCMzOf/tkf9BWsxe+I50nw/svoehHrAWrvO2+/4a57rnp/5uFd/cy8fjrpoM/+Ti3s0SusWt8GqQRcuikVd8SAQtEbl7HrWHQs+MjnZPOGaV+3ArWD80Quqlo13WCk0mJV+gP+Y7UmjLw88Y/tfDht1+KWmXgAGraxY0lghrGJV+KyXDLzjcS0MoWgFsBi4xoCnrN7aO47tjCcAfV8fYK1RKSX9u0dbFr+pmxvoCl35rHbNnrHbApgT8eIZfqClD11AFlSnpssZ9UoqqyTDp1C+8UeSs5kFaTKdKlLaSbhxp/n5vT0QBhjJgpEdzZ71nVWYyxJylnBCCjurSz/uuiVNF8k2z32U0X5q6psMiZcS2B/ynN9rVeZ2bjNzkVayvUoKv+8otolBweTvlfX+y5JgK7nzTVpP6Q9eKp1VzTcBfbuv2dc7vl9WKJSd99N+FK+6YZ3oxUCxMzu6+OxdOboScb6gErLVEMiLV6dTIxpOX3L3q9Eabbmv+dnd8qsaksZ30hrezGP7+ICHJM0Qg0FZTHPIdnutSUjBaMCs+GOUoIQ69l86rVqTY7aVLR8guU9pYhBSN+f1xz6ES8PdH+cKml1KCwtoqpeq5rubpJB0j87zyGLhVR69jAf4f+IEf4JOf/CTveMc7+K3f+i3e/e538zf+xt9gc3Nz5t/ff//9vOUtb7muDb1VN7akZzLCCYZfFFkVy6cxGD9vWYLvSMZQ5FMmSe7F0JmQcs79/OEOssEECyHG5grDhkN/KMIpk0AA5Rn+Iu6SmYKhTkn8UKRogBJxRIYfU6CExc74jkKIiuX/XPIEn/IGfndGZ1gLViAfEgYSsWCR5z6j0Q2WgkBYgsKtbtK2Y5qVzipAOzBJ5b7fLK0tVzPHvN29dpc7qJ4Onc3we5f+BTP8pWHfWljPHEsh2YocENhNryK0rgB/fyKSrynpF9SNmUU1ay67/NciomY18PvniIC/52MHV2S7amqUDP/AjA49fx9LXBzp+ehU3TgRYiGoClQ9gjAwyREZ/tgtIvzbSxnU8+g3YY7/WnoVi6UtO2zGG7z1vjezGq2wk+7xG4+/ZwoM7KcH/OJDv8qg6NNVa7zx9r9KN+xOva8oElZHAwSg0WP7ucnwT0bylbnmAoFEoARzJawAI+/C35Ytt9+s8/WsPBRMAvrwhsv11o5vHi2a3wfAWjZGV3h1z11Lf7TeIh7tsT+wfPhBw//3dw3v/4TlY49YfukDhvd/wrA/kgijEUZXDHE7dnF9zUi+ci8takYBIBVKGs60XNxe06n/anKZzObEIuSUb4zNLSGdzwsNhr+U9OcOzBk8oFvA8Afe5R4gyQzajrNfxieThKgp8YKUdZRrcgS1WWcCgI99LcTMGezatK9sUNhq7ERJ6SXXsxf6zWg+oJrjX1aVAM5bIZDz5euBDIhljMla5IWTH6+vTP99aXiZplDMGV8oq2T4T67Xz5bMZBS2GNuW1W7A17zGsdZ/9OAVHnxiMuFmdmmrMZjq/Kjm9xtqpq31ACGcGqM8XiXgP3Ed8/tlNeP5lAhmsvPNGhUJe96h/+RmyKmtiCBwIwk7e26/FLaYSjF64pJ73i5i98EpqGCa4ReCyqOkWcZadveHCKmRQqHRz3uGPwgko7Rgt5eyc5BwbX/Elb0Rl3eHXLg6YH+Qjcnlj1qdOGCYFgyWSANYtmqGv5zfHyfDOnFQ+RAdDOfv/zLa9/nC8BfajPVRlbo1x/9Cr2NdOf/pP/0nfu/3fo93vvOd3HvvvYf+/QMPPMC/+Bf/4jgfdatuRlmLkNIxECVTX+XXZxXrDzXQLxc6kYyRVk/N0wMumk95KeeinGtrENkAUYw/+Jpd+Sbgjxo5y8YaRjqlVwxh5B6U/TAgNwUSydCv/MYl/QKsXiitHN+8gkC67zPrFffEt9OWMUOT8mjqWItXtO91ADjPCcThN2yrC8rLL1CSlldEWAR57B78ssgq9lljSGaAWissF4bOMPCetTuruD+ERGp/cx6b4S9d+huuzj6WLwrct+15hn+tIcMGONE+CcBOuo2D436Gf0LSXzL8pemhGh1ukFaa2jXnXa11D9JFaol138DI7Gy57bwqDePKkQlwza91L++f5VJebZcxPOblzff45AZrPau3YFulrGMEMzTZElnwJWBqy3h8P0jJirp5c/xX/Pz+yegMYaDohh2+9b5vRAnFo/tPjJn4lWB/PztgM17nL596E4GdIV/XKbJ/FWV0tR8GDVl/c0Y3iiYBvx0zb1SBXLj4HnhDxkpGL1zjqJS4F+gjObgfq0zBto+3PHHI/H6U7BMUKV+6l4G1fL4T8bGHLvBf/sDwicctSQ7dFpw/6a68h5+x/OIH4Pc+G9Dr57X5XUsCmpG/X7el89SRyEMV/c7cFM61HeBvXgPPDJ8E4Fx4Ajnr3j/2PpLYejbS7+PKpT83WOsM+JIiJfeX7CzA3/x5mro5/qbct/AMfyiCKf8P4ZUdAOlRAH97NsMPDjjPYr7LWL4yJsz6US0pBIFyoH++U/94NF89x78c4C9MQW6Lqfn9yYpUzMD3BddXgpn31G4p6R/ZhfJva23F8J9oAP5EJ8gZje57zq3wspe4Y/HrH3qCnYPDr7vSsyH1j/F2SzqT2/5VhB99CwJZNS62d922Xq9Df7Nun5zj9w2NWWWt5er+AK3rmGGlBLedKuf43XdWQjHMx+/X1fz+bYsBfyXpTyYBv18bTZxjw6RgNEpBFSgZIKxEH9EQ8tmuOFD0RjmPXzzgiUsHPHm5z9OX+zxztc/lvSG5NrSi43szlEz1weB4UZGzqpzhz4px4qQsIVxsLRw+x2+xlUfJc11am7FnRhRIhmnxvGlI3Kqj15EB/2g04gd/8Af5hV/4hZuxPbfq2SiBA/3CZYNDzQKLIkMpWckhc79wLCX6sfCAX04vMIRQdKS7sY0WLKaFzhCmgCIZk6k3XXWDQFQzc5EIq2XEQCdY67LPg9Q9+G/fuJv7urdzV/s0ygNaoYuaRS8HM5c16dLaRSqJ2ZFKSkhe1rq7+u+TwQang01QAVYXhGIxc2uthiypUwcEtDwjV4RttJfgS52NZbcPJrLDtTZkdshetodAcNfqeT8qYZ3J2QyGHz8uoLLpWL5Yuv1dMvyb8ThIORV7wJ9tYxvHvynpFzqvlArDjvt7uQzgFwLFuEzbGIuqctdnV1tF1bl6FGl7OT++qsZZ6JPKMbHbDTnzpPzvWnqZvhkRoLjTx6kZ68YDFgUSKCG8234pdz48Gq5kwDsiHleNSMXqTXTqLw37TsVnq/1/W/cMb7rrDYAz8fv87qMcpL0G2N/gO1/61zi1sjYt/dMZqn8NUSTYuFuPqjT2QdOFe5akXzUUPkpIFnkbjYoykq/VaMZIhFGVzH3gG1s3q6zO2NXu2GxNMPxJocduR+2Dy26bsi1O99w99GrXHYM7T8GbvkzyXX9J8pbXKP7aV0ruOOVuZw9eCHnX/zzgUw95RUOsHOPvTdfaMsZYtyBddB1VJSTn4g0A9vLdiml+euQVLWEt5w+yIULPAIVSElvPrlcz/D5iL7cYLMYaBkm9+J3H2pWy/ixzzd7SBVspKkAaCDUNMwWVcWByiFqnWTXDPwPwl3P8E4Z2FcPvR9KsdeMjQrjROSWdrcqsmpzhd5suD1UYlVXYHG0KAnE4CNot5fzrs/+2NC0cJc5NZZ7xbm+YkxWO/dtadfvYWstI1/P7zRJC8MqXhdx2qkWaa/7r7z96KKjR1rgUh1HDsM9oKNLKqBLqNcO13QytbTWysLVxfFBY1tmTUeW0Pxq65sq8RkxhC67suufnifWwaqicK93+q3i+iJEZVc3pwSjnqo9KvOvMyuTbjlUl6Z8jeZ9cqxz0M4wuKKxLcJAsMWr5HFcQSE6ut9hai9la8/9/3f17czVmvRsdPi55SLVjxf4gv2EGdNq46Lp5DD8sH80npSCbuFm4BJaCa/sjnr7av6HjCIuqKMzYaEIUSrJCVw3OW/XCqyMD/na7jVKKVmuxAdGten5Wuci0wqKEJCiBWwkyixwpqObwMv9gKhn+WM6W17sXS7pyfKE3qyrAb3UdIcd4Vz5oMvwohCwj4yzrYZc7gm7lONtZOUkkAyIZEISdWsJasvzCOyUvORdpiwypFFIxV4r50tadFdB8Rfsef2N087PqEKbZJgNsNqjm6QHa/kGsozbGO0wrD9hXSsA/AexybbmaO1Bw+8pZ4iD2jQ2DFe5YAoigyfCXM/wZYUPSH0g3UlCYosov3/AL/7JOlQx/cVDJ+a21DBuS/tKwr1ARSceN+CzD8CNchn3zEFlrnUnbAk2/aLDmg2KJz/FVZsCvynG38ZNVLJljN9Ncs98fn717vO/c6u+MTlcqCWstQi0GVcL7FJQmgb0jAP6WCMa9DKRiTd0cwK+t5lrqfClOxWfG9v+XnHwZX3b6VQD8j8ffy3956FcqZv87X/o2VqOVag61WoCaHDW4hsgH2HgFEKwGrtHSb4Du8Rn+8f1oJyIPAzXL76GuYQPwa58lHPhZ19Uq6vLmRRoCHGS7aAyBUKzJurGkjSVLNbmuF06dngP8l4PTtK+6RIyLmynf9rWGb/xyxT1nRLXQPb0h+KYvV3zLayXnNjXG1GCu1ZJgbMOwMK7CHZZZKAup2AgCOr4RtpNu08t77Of7COBc5O4BKh9x75/+V+588D0z3qUh6ffNwLKBk+XWz2cXDDxwmTWfXVbTqV9bXQH+QInKSd7dx2YY1vnmc3qEcZ9yjn3ogabIE4T3IVBCuW2YAH3ZRCyfbUZI4uLA5kv6xxl+gEiGS8/xF6bAYg9XXQC7Pq5uc202+12pGxKNQMydWd/2DP3malxFruY2JzdZtW6YrCgI+dqvWKUTB1zaGfHeP35q4bYaq7HQcOhXfnwlRxT1dpVz9tt7OTt7GcZH4pXH8XoqCiWnttz7X6zm+Gczw4XJK5XBic16H5w7457dF6+6hkQoQgpTVOqikt0/s9mms2B+H6h+P8nwl9Vk+PPCsDdICSODFgaFIhCK7BiRyX/eKo4UaVbQH12/rN9aizGu+ZXPYfihEc23hFN/mhZjIP+xCwd8/qk9vnCpx85+cmhs4Y2qXNux+7KSEqPtrTn+F3AdS9L/xje+kfe8Z3qO81a9AMo6uaMVxsXdTTD80miEMRX7W3ign5UMv4ygYR42KBKKcq5OKjrl3KRZAPjzFCskQrsHeFlbDeYhVE1Jv6zYcGstgVBYL+cnXkF48CmEoBO2KsBcyfqFcGB/2c5okaJUQKjU3JfEMuIvrX0pf7FzP3dHt1U/t1IRLDDGsVZjB3sIFY4ZTYWeFS/CNtqPRUj/PlWU2ASgzbXmWu6l5Wt3+g9wG2wEtWnfDJd+N8Pv9lsYFtxx0iKygTPkwxkldoLxpt7JjpP6JjZj6FUMI5ticNL7jowJ/bx+Fq+Qxw40LMPwg3vYNUkKbUGx2KBHCUHbO98Pj5CtXu7LFTUJ+J2qYTu9irWWNNV0WkEVuWOs4QvDJwC4t3Wuel3FovrGlBweEOxeHHvvQDrmb82Dqb2id2g0X9k464oQ2VTVCMGqmt0Iut7aTq+hrSaWLTaijakmxl8+/1XcsXI7mcnZzw7YiNf5Dg/2wRkjtfyiCl04sJ/2K7APsKJKwF8fs9aYS//Eo8mON36UEiya0GkCfoxrHIWBG9EpxzgG2fLny3FqpzTsU2tj53BhDIFSY+d62wP+k/ee5dV33MnJrCCTcFU+M/f9b9sSfPNfLHjLa6giwM6eiDAmJWky/NgqzvDQkgphcs60XdPhWnqVZzy7f1qtE5dJHKN9pNW0BtemGqkWaPnnQDoh6c9zi7GW3OSV+Vgrmr8MKRsFeeZY1JJNDwJRsaSlpN+xwg0TyMpAdnn5bi3pL5DDbVTvAnLo5s6FEI75nmjolmMGYwy/j5AEJ1OeK+mPpxn+QIbkOlsqns9ty3LrsL2eZ/jnxNVV6oaRJhDBXLPDmfP7PrZu3mhBKEPCVsFbvuoOAD728NWFDKu2rulQNkI6LekJAg1FbWBbMvzbuzlXd9zzcms9PLap22TNmuOfVYUt2N2r5/fL2toIaMWSorBc3cmq7SobuV9YEMc3WWWE4+QMf7UNjcVKf5QzygoCWfjIRulMd/Vib4YvhnLeGoK9/vU3P6z18XVjDP98wH8wXAz4AyVIczMG8gdJTrul2FqLKcyz4+JfNjKmvVEEw/TWHP8LtY4F+L/xG7+RnZ0dvvu7v5tf//Vf52Mf+xif+cxnpv53q55/ZaxjIa1nntTEDD84oBl5MFh2tBO/+Gi5ECQQnt0tEtJS1ikVHVmaNc2RjlkN+RCrIjdW0DDOardUJXEMAjnG8DdHCKQQGA/4ZXtcKtuWEdoD/sqpX/jh1CUWRtYapzqQiiicP3sJLp7qSzr3VQ9xawEVgJ5tsAdgkz4264+x+wChnzPNwwbD7/frPHO2ojBcHJXz+3eVX8Ax/DRN+2Yz/JE/9udPG77hyxRCp/RSF0m3otbGJNQAsYpYlQ7U7fhtKef3O7KFFJLQM/xZtELRcouYpRh+pllba9x5sKiEFJVR5PAIwLfnF26TeeJbwTrSm3Md5AcI5QzkSmbx4ugCiUlpiZDbw1PV64x1MvNynbn2J/+D9T/6b8hhzeILIREK1v0+3Ne9hWaS1toa8Es15ZuxFtycGf4yju9keIY4nAYHSireet9f5WT7BKfbJ/nOl76NtWi18XvJSicizXLEcBuR9LBxl/JxY6nP6WYTK1CiAoazXfrr1cekweNYWcuwHDNRrQrwOgbWVgqL/pzF+42qHX8tTc7va+3AYXmLCNIBUdrHIrCbp9m4bZPXHrj77eeGjy9elArF+Y2Cb37DFu94223cfb5N4hlpgSAWkb/nS5bCQFJhtea2TgPw+/n9O4ItyoZNGSEqrEXl4/d6bUwdy1emuzQaOEXuAFLJ3s6b32/+Ls0cuC3nZANVA/5AOo+Xg3xY3Y8A2l4BcxSvhlJlMhwkyMG22/elGg3H8k8+2/KS4Q8bzwFR93PDQM41mCyfd8NGDKASCoNZao4/0QlyCTk/UMndN2c49EOtbhiMDEoG5CanMNPgsJrfX6sBf6pTP8Yw+yQLPLN97mxMK1JYCzu9+Q2N8nNLMz43qlIgsC7dxP++NOfb6xVcvOq2a+sGGPaVVQP+zDPk2UyvmLRI2dnzDv0NwC+EqN7j6cu1D9KgGKCtrhj+wwz7YLGkXwpRAUFrLXv9xCuacgzu+pdCYcwtwA/OD6E3LK47Zs5Y6yNfmzP8002v9SUl/VGgGCR5BfJPrLdY60aEgfLms+JZcfE31lZYYWz7QslgVMx/9t6q53Uda9Dp7W9/e/XvP/mTP5n6felSeyuK7/lX3s8NgyFuuOkKIbEqROgcpXOiSUl/xfDX3XODRUmFKYG0ENUM/7xFltA5whTYsIU1+ZibPrju/DNJOjbDHzck/V44XzH8YgLwRzIkDWNI+mOSfteKXeLmrgus1ogwJpB26bF/cAwTKiCwGnQ+HocHWKOxg12EiqZipMoFdBa0aobfA/ZuxfDX0lRrLfv6GpnJiFXM2e7p6udY63KgZzD8ZaNBALH/bgWFSzIQkl5y1X/m6tTiTQrYkKv0TJ+d4oDz0WkGkw793rAvjVbRLXds5OiAZUp5Bq0sY+2hgD+Q0PEAblngm5u8amCtTEj6lQzYVF22dZ9Lgyu8aO1FdFth9aB+vP8IAPcEJ8dktNZA4Bf8Ih0SDPfc9vW2yTpr/r2du/yacoB/Tw8QRmPnqE8zk1XZ4ysymhqjWS8THHS/uufeiCoN+7ai02NRmc3qhh2+9+X/OzCbOe7EinT3EsneNXLVhcSCKBealqDwUUUTTZpOS5HlxRTgFwIe3HuQjz78Eb7tJd/CijixIAfDVOdlR7Yw1mUcB8qNVFTRfHrgDtwScugjlzVs544ZnpzfN8YQRCFZ4fZHye6n3a2q2fcK3eG9xrAnh1zKt7nNS+mnSiowGcIaotDds0v/graMHCttQIVLnhsyADPkvPffuJxcqiTsd6gT1Z81QX6YDdBRfR0ZYx27nlNJiJUSKCXQ2pLmhsLklTP9MoA/yyzGFtU+CwJRzZhHlKZ91t2DfZXPomVj+UQ+YsXuATBMwbZWwWg3M240KEUgQlKdYKxBCok2pprPryT9eM8If10oJeY2W0rTvjy3FIWtrjclFMNiyFo43+zRWENmMwIRcHUn4/GnR7zq/tWpawcgSevoxvU5gL9UN6SZQRiFtimFzQkmlomTDL+1lqEezpzfL6tWR2RsrbW4cG3Azn7Kmc3OzL/PbY4Uqk6faEnQOVaoShloVUSnJWnFkiQ1PPS498u4AYZ9ZZ09GSElDEaa4UCi2i5WL5z4rtf6A/Lc3aInRybOnYl57KkRFy6n8CUQyYh+0eNa76Dal0sB/gWSfikFReGenaNU0xvkdFoByUHa+BuJtd6pX7Wn3uOLqcJAcTDI6R3CuB9WdSjSYQy/O3aHAf4gkGNGmFMl7MJovxtVxjjAH0yMU0aBYpgUpJmuUiNu1QunjnXEbjnuv3CrnIu2whJNPqCDGHSO1Hkl6c/8LGgJvlsiqBbIxsvrzYxF1mT0TFnV4kkot7gs0rFF94nNkGcup7Qiyb5faDrA32T45QLAH5BUiQNNSb+tXN8XVsnmSEWgtFMysChJuS5rLDIIwBbYIh2bnQewaR+bjaa2GUBmHvCrNkaVDH8JSj3D35g5LrRhO3dA4e61O2rwaQ0Iz4iWDH9zhl8qbBAhiozYSwBzz15ZFXOQuJnqFbU2ZdMgsJygw1NQuY83DfuAiuFPoi6269MG0oEbp5jl+zC2E8Zl2hZ7aHa4EJKOlxmPlmRsS1Y5IhhLpPBvyEm5yrbus51e5Uu7LycKpTfTyXhq+AUA7g3PjL3MWEvgv1+wf6X+xWCv8d7Op2Ct8Ay/GWJMjmD24mvkZ49DERJJMc3w+5EJbTWpSWjdgEWcsYYridv+reA04QIXwkUNhnZgEGHGaGMDfJNQSJcWLgSYXgGJiyc0Jkf647C6otjrFTNncB85+DyZyXlw52Fee+p12Dkfb3VeudR3ZAtbuGaM9FLOjimj+UbuWr8ZgD9P2NHuPGsy/BZAOABYnurl/P5wtXFOtbf40t4zfHS9w+eSLywA/BKRG9dEVSFYzcjfe9ve+8MZHi4J+D1wvq3l/DfK+/iK6rIu6/MraAD+IBsADbWLqRM7LLY6N6NQMNKWInfblKbTkXzGmrHZ8dq0z6KtJck94FeC1LO8gQgR/v/GjBBVadp3COA3BTLZQyb7dAVAi2EqfHNcQa6rxpxz6h+Rm4xYtUiyGnxFFcNvq5hRcIoXIcTMplwUCqR0+2yUalaDoPpOiU68HHt2R7CwhTPsI+L9H9nmoK+5upPz5q85MeWJUHo8rHZV1ZiYrDiS1bakqcVEhtzkU/eVSYf+cn4/kvHUezYrEAEjPeLEWsyFa4PKC2DmdzM5UsgqfaLTcgo0Kz3TXxTY0N2DTmy4NUOZrHAjDPuqbQ4kp09EXLqacfFqxvk7neqxGzQ8Oazmyo73NVgLpzxnznm3/8vbGXluCEOJFJKHn3EKoLNb7aXAUynpH2XF1LkkhajGzvqjjEwb1oKInh7Vz10h4YhpNn+eK44Uu710oYrzsDJ+XSmFWMjwLzvDf1gJMW3qdzPKmDJ9YPxeEQSSwhiSW4D/BVnHOmLf+q3feqO341Y9S2Ws9QddEE5m94YxpH0v93a/K9mdctHU9kwwgMWghCRryP46fpGV2bRiQZol8rR+AEkFJvfsifvZK1/iwNArXtTlD/bcZ4dIpKq3VYr5DH8og8qJXmTNaL7lTPusKcqWrWOlEJVb/GGlgQBnrmWL8Ru7Y/d3pmb3q++UOrCaBi1k6UFQjEv6+3pYPegLbbmSXQAa8/vgW84Ca3UVyzfm0g9u/zQAfyXxUwEHnh3sBqtTci5hcrY8I75T+EjEyUi+xIGcNFwhijrOq8EaZNLHdBZnkSshJvaNGDeqm1FSiip6bbBk/FZt2Derky45qVZ4KId9vUMnDpB+/vsL/ccobMGK6nBKjjMyFufIDRAc1HFmYjieOx0oQdu2CFAUaPrZAavx7P1SznnGooUSdgqYRkFEW0SMbMagGFwf4Pfn/G62TWFzIhmxFmwc3xFZF6x3FJFtzXTTXx22kQgMllG6T9cbQr7+Sze4eDXl/NlJ8CDYSd2+vDC4hDgtfNjINIjKihHaw+mOjEl8M0YpB2ja1l9PJnH6+gXM5HFrMLpEjkYi2VC1+7Y2xqU1KFkh/pLhHzUAf9I9weueeYSPrnd4MrtEX4/GIiTrkoCpvSCMYeSbcG1vZmmxlbnaUiUEIbAVb1b7/Hx8xrO0rlReS+fDdLzRpo1lJYyIRUhqcxLtAH8cSkaJoSjcSFmZsd4E/L938X1cTC7ytjv/N2LRrn6XpBZrdcXwh4Gg74FLJMKqMdusaobfHuKMnew7+X7Ypr0aAgZjIcmhXZpHNiT9zrgvHwP8qmGK6BoFTYNJ6dUAdooxE0LQbikGQ80oMax6HBnKkEHRJ9Mp7WAOC25ytNU880zGQd9t3zOXUz76iX2+8tUbY3+7u+/n9+ew++W2dFqK/lAzGBk6kZgCh3mhK9BSMvzl/H5bzN7Oaj/IkNQkbK6583Ie4HemjhqMqE37YiApQCistIhiBLhGWgn4y7qRDD84Wf+lqxkXrqTcdVfMUA/ZZKv6fWFyrnnDvqacv6y1lYDVrqI30Fy8lnHnbS1i2eKpy+7auuvs4udiWaWk31qmAJeULrWn0IbdXko78soRnaCqkQ+Bsm784la5BspglNO/DpbfWos11plcTph3Nmvdx/KNUk2S51iRz72uF5WSguxZMM3TxjcyZjw2BIJRVrDJ4gbfrXr+1U2gNm7V87kcw++ZyEnmwDPjokiJPFNfzhGWLv2dBtturEVNnELtoF2x4VOy/nJ+v1xgy8DL8+obbreteO2r1lntBpV/QEsGlWcAgGQ+ww+gStl6c1zAiuVi+RqeAkpKp3Bd0uzPahyoUCGkwzF5uk162Gw0NbtflvQRg3nQxii3f5R2mdxdv9AvbFEpLYbZiO3MAcu7xwC/ASw2bzzEwvEbcznHH/sRh7wyjhMcWLcdK3KGpN8UbHmDvJ4Zkpl8zKEfa4lKSX+8gggUpu1Z/uTwOX7nYj++cF9g0O9eIxombAuMIptVRsHNBlBwUrpzai/fQSl3HrRCxRODxwC4N7p9OpbS1gv+sMHwq8YMP7jzAyFYD1aqz5hX5fx+S7aAGQoJETSaHcc37hP5CNW/BDptxPGdQQq5PDM8WUXuZxtnvz4MJR1RRvPtVT9fWwl46T3dsUaDtZbUjqqm45XhNcDMfe/Sy6ElIpRw88LSy6oDpWjTQgAaQ3IT5vhFkbCbOBC/GayONT0LYwmVIAwVCIssUmLfFBpOAP4zmeaeUYEFHk6+sPgzveO/sKZSN5Txg9jDr6PxN1OQp9y+crb60R3haWxjf5fRm+Di+ZplrSWImhGtPpovKo373L6fxfBfSi5SmLzyP2i69BssqWf4VWAxlPP8YaXean7NWtKfYeeNc5kckfawQQtUhJKC0ix9WH1FW+1f/GeUz8VR7o0Dw/Hzddxg0sn6583xd+LaHb8sKSQWu3COvzA5xhr+7EF3vpdM8qcfHvDQY+Pn9d6B286N1UOc4BtO/coz8s3a9hLxdhxUEvNUp05fcYgaq3SoX1tR/r1mA35tNcZqMv/VhYBWaAAfByxKZaDbXycaM/urXTU34vG41TTuC0RAZtKxRkhucnb2vKfADMA/9h6+MRHIgMtX3XssY9gH7tkRh2Vs5Lis33mauMjEQVLQjgOMKch1hqIG/IGVZCZZKgHiz3spKbHAXv/4DRBjvAJU1uadsxj+OFKV1P/J3Stcy64dyzBQKfGsxOIZa6t0m8kKQ0l/mL+gTNtfSNt6M+vYmow0TXnPe97DZz/7WXq93hQoEkLwz//5P7/uDbxVN7asdcppKQRqUspaSr/ztJrvz03mZJbVIlJVwMNgp95DKkXLs44jPRrrYjbn9/1PKuM+O+M5WS52Wr5BUMYPiQUMP4Dy86SVS79/9VIMf5FVYE5KQagUWa5ZhjMw1joJtJLufXQBKsSaAjvcRah4JruPtRXDX4RtpFdJCGsQRhOogLYIGdmcftEnVi2uZpexWLZam6w3GWL/HavoIqmcqqBZHvC3fXOjZPgzk1fu3muyNeXQik5pyYiOaDG0Cbu652TROMCvihTp1R5ZtIISoNurqOE+atTjMKsg5V3sTWPxvgzDvO7Psdy6BU7oRyLmVQn4JyP5qvcTbRSKwubsJLucbJ9AhgWXU2eQeG90dloGLurxgybDH0wYFirhpMIbaoXtYp/9bI875mxnzfBHs0cbpGRVxlzT1wv4h8jRHuiCK4lTjZxunXGRiIeNYcwpmw9desacS04JN0vf10P6+QFnZv+Zey8sfT9CAg4QbKc7SNF26psJNDtqOvQDiPo8ipRkZAUd2WJgEgZ5j1brBDeyZNJju5iW8wPowtJuBxUAb/euOADZWkM3moFZZxMrBF+5N+Dx9joPJ0/xqs6LZ8q7rZBQAkNbMPL/bjck1uIIx1FIBTrjtu4ZPr39IEoEnA3WoaFampzhH38DUEFAW0bs6kHVuIo9ECtyMEY3GH7PRppabjzK+tCqJf1p5nLZK9O+oD6xYhlWzSVbjm4JUanNDIbcpEQzrneZDRFF5ub1fXVix+4PUzjhdki9f2EMCKeZB/wNVs9axq5X5Rtn89y1S+O+ZjRf9TnFkPVoY+brMpNx4aJh96AgDAVf95VbfOrhPh//TI8PfmyPjbWAMyfdPigd+ucZ9lXfvaWA3Dn1y4jcZGNjBbWc36tH/Px+sIRKppzjX/Eqhp392UDLWI22hjR129qKJdIahDbYwDVMRZG4dUOgxgD/jTTsK+vMiQil3PHp9wVhpxib489NXjv0z/n8c2diHnp8WCkRBiNNr+/O//NnlldmtWNFmmuGaUHzriWloMgNe73Ere+kIM8ztCmIVHkfFCjhRtMKWxCJxc/JL4ZqxwG7BwmtzRZyqcHN8bJYv14RVYLIrBl+IQRr3Yhr+wmXD3a5o9PB4OISj1JKCgpjKbRxKrGbVMZYsLMb9lEgSXNNVpiqAfV8LmMtT13ucXqz80U/hnCsb//MM8/w3d/93TzzzDOsra3R6/VYX1+n1+uhtWZzc5NO5+hyFYBHH32U//P//D/50z/9U7rdLm9961v5B//gHxBFi29O1lp+/ud/nv/yX/4LOzs7vOxlL+OHf/iH+Qt/4S9Uf/PhD3+Yd7/73XziE59ge3ubc+fO8ba3vY3v+Z7vIQxv/IPi+VgGQDqgHkywlKX0WxQZcauU5hdjucNtardwJ/kR47dJ4RZ6I51NmSWV8/sWyV7RY0OtIKQcy9WtttOa2pTJS9KMX8gJy2LA72ebabpHC5YC/OQZorGojpSc6Yo7q5x0Vjin/nyELTKECh27nyaIOZJ2UWQIz0CZVofcStwjxCJ1hlaOyR3pnEHRZzPa4mo+Q86PTxlA1IaFwQzZlQcWLZ2Dqhn+A892tkVIy0wzqCIbgQrYVGsMi4TtYp+BZ127qlXJ+fOwA1IhpagZ/iWc+qUQCOW8EKxwD7dFufZltcOIkICcgkHRY0MtBnDzIvnKygvDVrjB1Xybi4MrnGyf4AuDx7FYNsMtNsT4KEDZOxYCZDJApjXjGSb9Mf8CJQUIy4Zy+2WvOJhrHFcx/CJGzFqMeMAP1wH4rUFkQ0wQQz7iimemT4ZnUGJ+PvrCt7QGshTRjWAOQSmkoFsy/Nl+NVIwq4yBXgPwA1wZXWVT3OVVRuM1nAT8DS+IMgliRXYYmIR+3udGwn1RpJD32DbuHNhS49e8tQ74SimQSNoHTlExNr8PWKlI25u8fLDDCgF9m/FEepH7WuenP1Qqd2/1HzCyE4BfiKNJ+WSALVJevH4nfxJtcio4jzLjx6cp6Q8agL9c/EoV1BGt/jwOPeDPvUt/6je5ZPGHDdPNkT+f40rSb7CWit2Sof//CAKlsP6O6aT97t9REKKQTk1QDIkmJbTWOHZfBTS1AZ0W7PRhkDr3FhchWzO6gQzJTUZhChLfgAgb5pYGO3XdxKGq1AmTVRr3NaP5wMn6RyahMAXBxPidtZZRMeIzD7md+IoXdYkjyZe9YpWd/Zwnnk5474d2+NavP81KR1Uz/BvrhwD+dskgGwIRMNSOzVbK/bw27HPX7rLz+2UFIkB1vAN/WjBKi6lFuLYaiyWpIvmUZ/MtIN2hMsaNAxKzsRZU3gMnbgLgV0pw5kTMhSspF69k3HG3HZvj3x0OGSXuKTDv82/36ovtvZxRorl4xT2fNzckVmawhDw6Nzlh5D5nMppPCqcgKdl9gMJkGKuR5bkjJArQxhn3lSrOL+aKI2dCt9/L2Fw9ukTdmfZZ79I/n+EHWOkEXNuH4dA9I401c/055pWSkizXaG0JbiLWNtZOz0j5CgPn1J9m+gUB+LW2ZIUhL4wbDfoirmO1iP7Vv/pX9Pt9fvmXf5nf+Z3fwVrLv/k3/4Y//dM/5R/+w39Iq9XiF37hF478vvv7+3zP93wPeZ7zb//tv+Wd73wnv/zLv8y//Jf/8tDX/vzP/zw/9VM/xTve8Q5+9md/llOnTvG93/u9PPXUU9XfvOtd72IwGPCDP/iD/NzP/Rzf8i3fwr/9t/+WH//xHz/ytr5Qy1rr2EgkwSTIKKXfRUZL1d3rUkobiJBAiooBN5hKylfFdEhJW44v9MoSeQJS8qH+J/m1vQ/weHYBKxUUyZTcvimZiyumxi8mi7SK5RGtaTmcijzgz5qfL+fLOqt9o7G2GJNOB4GYd9+b8Qa4mXNvEojOHLs/2EWE08781ZZ5gGiCCBVEFDAu6wdWPHjpF33y3HAlc9Fpk4AfYzwDUkbyTc+pl5L+lvcIMBi0NRXgX5UdVD6gece3RY4tMmQQseHn168WeyTWLVy6sl0B/ixeqUyrdHv5aD4pJSv9y9zx+d+j1bvqGOYltMhKimpeeZgfngjQ84B/MpIP3DfWBm6L3YzmpYEDwJ/fd+78d7Xvxre+69dYi8SBuODAyfnT7oYzmLJ2bJzBzfY2JP26Pzc9omQR2yJEzOnmr5bjDMeM5nOqmwyCmN3AktqcAMUmHaQUqOM8z3UOpnAM/5xSQtCpvCkGsCAqylpLT+/517kNujy6DFJM3jaAWtLfUa26GeMBmLs+63GOvl4uQWLZEmkPipztuYZ91s90uxGDWfP7ZSXdEyjgVbnb1gfnyfqFdGoi68zlmoB/8vsvVcoBrBUV8T0v+9/5ktVXYbSmuVxomvaFjQZXqbgIlKRTPQd8wouX9Ge5N5osJf2exR/q+n1Kw8qyGWAM5NqSe2m9DDzQ9gkuZWyjErJ6Fknh1DEAaTE97iPyESIfTTVFO7HbzmFJQAvlzmnfMA5EQGEKCpuT+hn+sCkjt9DLD+hldRMuCiXzJsPmMfzuc/JKXdcsbTVPXRqxs6sJlKi8b4QQ/OXXbLK1HjBKDO/9w21GiWYwdPtr0kF+sjpVNJ9GConBJSqUVUfyeUJApwuNBScrkCFGZax23HbMkvWXgL807Gu3pB+pGL/YyyaXlKJi1mfN0N+Iuv20O49KWX95rhpruLTj/r2+GoyfB43qtBRbvtly4UrKBQ/4z54KOMgPlpIc72W7BKHbJ6NJSb90a7A019VIg9YZFoOsTPvKxp+5Fc3nSwpBtxXy9LUBOwtMJOeV8fP7zqV/PsNvrCFueZPkNEBbp1g6aikp0MZQLDlmetwyxuGEWVUqdZYlwp7r0saB/XkKqy+mOhbg/+hHP8p3fud38sADD9Q3EyCKIv7W3/pbvPa1rz2WnL8E5P/u3/07vvqrv5q//tf/Ov/oH/0j3vWud3H58uW5r0vTlJ/92Z/le7/3e3nHO97B6173On7yJ3+SjY2NscbDP/kn/6QC+l/xFV/B933f9/F3/+7f5b/9t//Gzs78Wdo/byWwKKGmHtKlm7vIU+Jyht/mpOUMpohcDm4Zy2edxN6Zb/mLScoGs9O4gVoN+Yhn9AGPpE8DcDG75pz6bV4B+LLKRU6AIvCGfRbrXL5L8Bh1puXq1JJ+0ZT0C+EMuhaVLtz/GsqHQMqpufK5JUTNNkqFzUaY4QE2S8ej8SaqAvxRhziUaG3RlXGfB/yintXeS/cZ6j5SSO5YPTf+ZqZwgF+XgH+6pSm8qWGrMedfWM2BKbPpV1AmrVMOAOubLDII2fQz7s9kDtwGKGIRVpF8WbziQhiOyPALAacvfYb1vSe593PvYXPnC0tFzQkpKkfy4SHA11pbseGrDaflsvJCE4QB59rOpfzi8DIHaY9nBk5RcXt4HjHByBvjzG2kEAT7Ts6frp5Ae/WJHNTstJKgEKzJ2qnfNtjDZiV+UdkW4Vylw1oF+I/H8AuduutCKC75GLnTao1gcI1Aj6bHfpYoW2Qu2lLNB/xjDL8ejTGoU+9n4aDYA+DFG/cCcGl4BSmYNgS0lmFpJClbdTPG7z6nSBJVHONkLOB1lU4R2QGXSUhs5honQd2Q1Nr4eEDP8IuC9sDNqg/XpgF/2nVNpy8/cBnn14o9rjX8DqoSCmG1axyZcUm/tRZpcT4By84xCnfHs6YgDCRKOgl+dc4bXTUiAYJ8UIFhbS1KOCaqTs/wz4+S4S8suc5JG4AO6lEMgMQD9ECJ0s+VLHWvBZDKS/tR1QIU79RfPosEgpYH/JPNZwCZ9rEWns63q/hZgK6/ZVaAX44bI5ZAODd5lRrQZPhTnfBrT/0q/+/n3o32zTwl5dz93ykZ/nR8QVrO8c8yWStszicfdN/pZfd1KpUAuObDG7/qBHEkubab8zsfcOdYuyVnRvY1q1seC+94L3Az+uXM9yTDX47dLRsJWjZLSi+BnYPp71Z+VtkAcYA/c6MrvqxUrlnj62tes8nXfPkJ7jl/c+LmSob+wpVsbI6/sAXXdryJ4SHNhvI9nrlcA/5zpzuM9LDySJpXw2LIQb5PKXSdZPiFgDQ3RKGsjoU2mb8ua8CPtQjLWBLGF3t12yGhEjx9pc9u72jz/Nbayqsprxj+6WtsL9slbLljNhgarCdZjlplY6congXAv6ACJemPXhhpD8a4/VVcRxrDn5c6FuBPkoRz5xzQWFlZQQhBr1cv6F/96lfzsY997Mjv+4EPfIDXve51bGxsVD9785vfjDGGD33oQ3Nf9/GPf5x+v8+b3/zm6mdRFPH1X//1fOADH6h+trW1NfXal73sZVhruXr16tTv/ryWFnY6jowJSb8sY/mK6mEUi3GHeWMtkQzcAqixmGmr6UWW0Dlap3xk9FD1s53ioGHcN37zKBcSIaoCDuXiXXjGdJacH0BE5fdo3rxF7WQ9p6zR7gHZYCZVIKq58kVVzp2XTu1CBW6kYLTnQPeCBZHwplc27hAGzmSsjubzgL9kJIseF/2c9fmV24km59W9pF96M6lZjQYRO7ATFlk1t1bYosHwdxHWQt4Az0XuvAakYM0z/JlnCTqqhRCCyEfypdEKipLh9xn0SwB+gPbINd6k1dz52B/QfvRjYwtlY+2U4ZASgo4oAf9iAJeYhMKfB105DfizwtKJIs61HDN7ZXiVT28/CMBt7duITOzPkebMrou6HGP4105AdwMAMaoBfzm20MU59RssvXxcrl5WxfATzAXPa765dWzAnw2x/rtc9gaCZ+JTWJ0TJ9cw6dGVA7bIOaxFpqQ7zwB6NlkI+LWxHHig+8qTLwdge7SDtsUMZsxU5o0d2XJNSd+MAQj8mEinUswMlwfCh5RM+4ii4HPluE18+5gxamEcu18y/KuDa0hrKMI2eTytVEq6btjgxGCHu+PbgDksv1QuL95oKPIxht8Yy4m9xzn10V+m/djHj/R9bFEghaAVCLfALPehN+yzCKe5sraa6TfaJVogqAB/Mgn4c2jJ1Sq/vmT4BzMYfiFExfJnGfVCN/BAWyin2sgTOteeQhlqhl+KqnGdThh6iiJF5AP+TD/D+w7+mI8NP1f9rlMC/rJfLSTCmGrsClwzIdVp5dLfBPz9oufup1mPL/ScwjBQLoFkFpNbM/zTz6cmm9ysJy4ecHVbIyU8cP/0ubO2EvD1r99CCLjqHeQXOfRX373B8AOEMmYn2+bp4VNsJ9e4tu/244n1lm+eDpaa3y+rbGKsr7ptKRUDzSpM4ZzA/f7otJTzUGiOIMqgUhIBnNqKeM2rNo+fKnJInd6KCAJBmhkODgSFKfxYR862N+w7DPCXpoqPP51w0NcIAedPt9FWL2xUG2vYy3Yx1tJpuf02SMbvl0IIttYiVtr1NmQ6mZhLd4A/EGJubPIXa3XbLk7xqSv9I5n4uVH3UrlUMvzjRNqwGLCb7bDuo/kGI5chcxyGH0BYl9J0M0sf8kyMQ0WS6arJ8XyuwlgKY8ifBbPD53sdC/DfdtttFeMeBAFnzpzhz/7sz6rfP/LII8Tx0YclHnvsMe69996xn62trXHq1Ckee+yxha8Dpl573333ceHCBZJk/s3t4x//OFEUcf78jNnIP68lHFCf+nFYA+VYlQx/UTP8hGOdfAGEIvCAuL7wO7LMP24C/oxPJE/QM8NqJn9X9/3izE4t+CvALwKEKkcIfARX4sCNnAf4PYOtGgy2EHI5ht/a5jhn5dSvD5EDlVnXFROrQqwusHmykN2HBsMfd/zCkCmGvytrYHd1Vhxf9R0MQsiKnRczZvilB4mqSAm8jUfeAPwrsgtBiEj6WG/sZ/MhSFXJ5yNRLyzK2MCK4Y9WvBs9mJZjsmXSP9RDQWQjQt/8uHrixe57f/6PWPnU71ay94N8yMGEPLfJ8B8mbS8N+7oinmKvtW/atNoh67JFS7XQ1vC/Ljug9NLNlyCwWNNgTXBxjBInl6wY/rWTCM/QNhl+KWWVwV7K+vez8ei+ssrrpysC5Bxt/XroQHPiZ32PVKZw4zTe5bwC/OEWRdAlwGL2LmKWSFgYq9x5PSwqgajGEUY2Q+fTDGxZIz0ksxkCwZ2r51gNV7BYDvTONIAyupEc0XKRSY3INKUEUlEnBJghc50Fj1I6Q6QHDJXgC6kbt3lp+67xP9HWGdd5R8qVgTtXhqtnZjYEk84WFgizIa9QDvA/nl4gmXJud4y8MAWFTSn89ykZ/s7QfU586ZHlv4/wo1ZAO/LjUKUPhQf3OmxR+PGg0rjPWFsZ2HWDcYa/kvRnBpO781lJNzYF4wz/sAFISlY6y2qGX8hxhn/t83/M6T/7n3SuPIbxzSYhRCXpTybvGVmfpBjxGd9AuZRvV7/r+Nv1wI8ceGORsdGbQIYkelQz/A1WLzE1QH9w5/Pu772qYzbgr+fmJyuU4ZQrPMBHPn0NgJfe06Hbnn1vuP10zOu/tB4p2TzEoR9qtUG5LS3VohN0MVbz1N5VCu3mlYtwn4N8n8I4xvsoFYiAbtfth1mS/tzmSKGqbWjHAnTB0OZcK708VIDQxcJG4Y0sKQVnT7pz6eLVrFJeOMO+6bSAWXXbqdgx8Zk3+NsMiSJJJGN6+YGLIpxR/aJHv+jRDbrVfP4gmWbow0CNrc8ynU6Ywrn7hEJWkY63qq5uO0QKeOpKn/0lQb/1iglozvDX94Lc5Gyn7lpd99KhwVCPKZGOWkJQjTbdrCoKs9A/KQwkaaGflcSA6y1jLMbUDZkv5jqWad9rX/ta3v/+9/MDP/ADAHzrt34rP/dzP8fBwQHGGH7913+dt771rUd+34ODA9bWpkHc+vo6+/uzWbDydVEUTTUZ1tbWsNayv79PqzUNup544gn+83/+z3zHd3wH3e4023eUCmbM7TyfqpyFVtJlUbfCcGo+OojbDrwUOW0POHNbkJcMvwxRQVBFdQkJcRAQGoW2pvr5StSCgZP0l5+xl17j07mT8n/V6qv4YO8T5LagZwdsSQW2QDS2p/BuXxEBSjmgKQyEUiESB9pkd33mjLdolYDWzbAFUmGVBGGQwsxlS4Vwi9omS6CkoNMK6Q/zxeyBEQTKLfykECADTGYRcWfse82qMtbKtrrEUUAYCLRvuATGfe6anzfv5z16uO9/39bdqDF3aIuVzukg8EBdRK2pfWTiDjke8IsVMpujha4A/5rqIsMW0uZInWJNG1GkqDAiQCKF4kSwxkW/SF5RbZdoUDH8q8Shj3TrrDjTK2sIsiG2PT+CKOi790uiVZ6843XIrTNsPfIhWhceQo0O6H/pmxDSSXebcXFhIJ10OoPL2VWknC8xHRov55etqeOZZJpOK3ASUuC27mkeP3iSVGdIIfmSUy/h2jM7kE+nB4ShIsgHyGyEFQK7fpIwc9ArGO1TNP4+ChRZodkMVp1Tf7HH3ZPHyJpqJGYliAiCYOYc9krcJUBSYEjtkFitT/3N3NI5ymps2GVfDxjZFIXkdLTJaGQJV9aQMkMMtpHt7kKJfllWF1idIUPfsCrl0JMVSDpBRICiQDMq9liVZ2cC3wO/yN9sbRBHEbevnuWhnUfYK7ZZi06Nn9/aMPQMdzdog3XO1EEgvPGhIAoUXVMC/sQ5gAfX594rkgHSFDyqr2CwnAzWOT3lri5oRfX9s913apBk/ezse4uMyNvrRKN97swKTgTrbBf7fCG7yMs6d4+/s5SArsBmKAJiFZIZTZy7nwW9bYI8wcaHy55NECBMhlSCOPR7ziekhEUN+I0MCLMhUT4k8/4Uceju1yvePDXVI5QStRt/YclyP7/fUtWzc9QAyiOToYR1njAtBfsFuqBitoRn+AOU8wzwTanWcJ+BsPU+VjHkLla2Ok90gcz7fFpfIvcqpX09oKAgkiErbbcvh2l9nQspsMJU+YaxCMlNUaUGxKGs3j+1dXPh83uPYuVfIQwlYeDMWCfvxyud2rRv8ndSRmR5iian5b1snrna56lLI4SAL33F2kKfk1e+dJX9nuZTD/e589z0s2CyVn1kXuLHC5QSKAIiAnYzCQxYW1EM7T79zGKFpRt0l5b0g/NV6Ky4Z83V/QEj41QCoQxRQmHQhEpV29BtCSSG9w8+wU5xwNu2/hLrwQpCgkWDElX0pRQS1M1hHc+fjXn6UsrFqykveXGblASbB/QH7pw8czJauH/bSnHmRMSla+7+dO5MjFJObdTLe6Q2YTUYfz7mJmc/36UVxISBqhj8YVq4pvqc0lZjbU7gzXPLElISSkUhDEZoohkjkV9MVabQlP9/fTXmYJBxYXtAGCrWuouNDaUUqECglCTLfZMsDlBKOuyR7ZLahLVoDb3i7jX9oXbHRNiFx3BeBaFE25uLOSwQhGru9inlPFJybZ732AfhSbQbuM/K/XKc4/dc1rFWOd/3fd/Hpz71KbIsI4oi/s7f+TtcuXKF97znPUgp+aZv+iZ++Id/+EZv6w2tfr/P3//7f5/z58/zzne+87reS0rB5ub1NQxudmVlNnUc0ukoNta6rE1kwo/W10gBZXO2Vhz7aLBklIxZQLfbous7lWmQsb7WIUsyRkVK18+Lbw1WYRcym9DttLC64D29P8Ngubt9G/dv3MmD6RNcTLfpiSG3d06C0tCupe9i5G+eMmBlpU23G6EzzWrYJigGZEB74wSra9OLV9MSDABhNGFk6cQxthOiBweEMiFcPTl7H+UCvdJCTVh5GiHJigHt9oKbv38Ar640GkvdU/P/vlGqNEVcXWV1tUV3mIMfS4iFpt2OUME6HFAlF3TDDi86c8dYF9ZaQ9qPQEAh/EK0u8LaxD7Kki0SICh8tJBOSFVeSfRPtNfpxBGddoGSOabIiUOQcRczMvSTgjNyqwL86/EK7VZA6OXfZmWd9ZX6PKGzCoN9uqTY7ux9DyCf3nPbt3KCVitAnH81xdnTBB/5H4S7F1n/6K/Ca99M2l2l22juxdpy78rtfGT4CXp6QKZGbLWmx3cA0p5bjG8EnbHjaa0lM3Bqq+tmeIuMuzZv5/GDJwG4/+R9nDt1gmy/hy4UrcZrNYKVTkTXM6lm7QSrayusi9vZxTn1q269vauZoT/MOMUGjyRP0zM9up3xhuSwGFazgRutNt3VtotLmygTK1ZUmz09oFDZ1PssLNOHKIBOzOM9pxo5E2+x2mljbcZKN2al3cWMDohiUO3D31tnCXlLIjyobLdnLyithb1hwWq/y25xQCoSzsZyZqrEaM81uG5bO8Xaaot7ts47wK93eEkrHPvOOcP6PO6uoXNBHChWuvXfrGYGM8CzLBaClO6cBI2lSmcwGGG7Kzx81Y2yvXL9vrHzSxtLx8Laeot2FIA1BD0H+M2p83PvLfnaKaLRPqv5Pi/ePM/23j6X9DZf2n7J+B/KGJRmT9VjNu12BLIgbrDb3cEV7NbEa2eUiSUUGVEnILQtBp2QMA4JlKTtJcy21cEGMfSv0jYJRSuksLCy0qLTCjgl1+GiU5902jFrq+6eVBSAZx67bVUdvyYzntuCKIIwatHthECKtQHGH9sgspBBrAK6nZjAM70tnRK3Q7qRO4/Wog4kUJDW58lon6FIeDB1cnvpz4OeGnK+dYoT6y7zfZhCq1Wq2kKIZEX/Wxs7szUvB+t26vOwkDU7mOqMi+kFXn7qJez0c4yFzoQrvfSS+Cy3xFE0tSgt0pSwJVjruGvql3/vUQBecm+H206vHHosv+FrzvKXXmsOnd8H6LRt7Y0hAr/vXQ1G7jl1aqvF2fXT1fyyPKLPR5cW58645sHuQcaOuULg/y9WMXFb0RYhSeaaOFurIa1QsFv0scCOOOBsewtECIGtJRmw+Bl9nXXfnfDRPzvg4pWM1fYpNAWX99w+WV0JOLHEGvDuO7oV4L/3ztXqnLFZgQlTVldOVc0Tay2XR/uo2LIebSCEYGPNnf9Jrllbnd+4S3VKtGdptWOCsX0S0mrHGAXtTsBqdHjz74uhuo3n89pqm71eys4gZ2Ojw/rKfLVyamCln7G60qqafyc2uqytxOyle+T5kNNrJwhkQBR5077CEgYRcUdV1/SRSiriWN1UzHFlP8VIyVp3/nc3SIyUbGx0jtTwe7YrNe6+0O5ErK61b2ic4eTa+vlexwL8t99+O7fffnv133Ec88/+2T/jn/2zf3ZdG1NG/E3W/v4+6+vzmau1tTWyLCNN0zGW/+DgACHE1GuzLOP7v//72d/f55d+6ZeOHSFYljGWg4PpObvnUw0GPjc4zwlTS9LPOJhcWOT+v9MU0zAQ2kn2AFBauq77IHXze3nKUKbkmaafp0gf0RFod1oN8yGDYcLDO5/iYrZLgOI1nZeTJDkbcpWLbHNptMOdnAQzwoSDSgrcSxx4VFYxGmYo3OdFUUh64CTQmexwcDAtBXZJBBKsob+7h/XzgraQJJcvIjOJjKePebF3gNUaOWGgUxSGvCjoD+wYs9ysYVbQiQIGg6OZvgCsDPooIBUx2TDFaM1IS9aApD/g6vYQKIgIyHya/d1rd9CfkJ1ZXaAHiZPej9x+ya2a2kem8GxInqCs+/fFoQPvXdkmTzW5KBgFArmzzYoKSIYZmJgkKUjSgjVRP2xiE5Hv7yGswQrJwEa0k5yBP51WWiuEg32ynW2y9nzA37l2iQDoRRskaUGSZIjV25Cvexsrf/KbqME+63/wq1z4sjfR26qN7Ky12ALOBltcKLZ56OrneODEl878jO2hO3c6xIxGtSwyK4yLA9Sa4UhDno45rL9048X0+gkUOcNRgY3q1w5HBe1AUFy+QAgkK1ukI03mo/fkYN+91m9vnuUMR3k1CrGd7jEYJGOjJLvpHgCRiLG5ZjDMEWJasm+tpUPIHrA92GVLLddkwlrkwR6isNhRxpNDBz5PqU1Go4wkLUjTDGkNZpiSBHuo4vDHhRkdoPsjAlq024rRKMfMcRQusoIOLXY5YGe0z8leH+JpyfM1b2y3EW5y0EvYCt1s+6X+JYZxRtMjab/njm8gFDoxjDKNbIdj12VRFCRJQVe2///s/WesbWl63wf+3rDCDifeUFW3UlfnJpvd7GZqUhRpk5JsSqJmgJEM2oMBBRASATXs+UJA/mLACh8M04ZhmAbkDxRIyYQkQzMgRhpLIMFhEJPIpprsHCvdqpvPPWGnFd4wH953rb12OmefW/d2V5P1NApddc7Ze6+19grv/3n+gbGbcm90hBCbmScXlZgeIycT3hAlZ2ZCKjTPyeuL55f1eOuoSoOrLer0Pru2xsqEMzWE2SpFF2CaHzAA1Mk9rh+Gc/qN4j6TabEAtETt8PWM41m4b+YiZTarmFYG1fFhcLdeYXq4KDVYV945fDmjOBnjTYmpDeWkJEsU+SSmccgMq3r0AT85YzKtqIylLGu8tSgXngfWW04mI3w0TZqVhpNI5U4TwSSK5ccdV3uAo7OH7PQliQ6vG09qyiosqhvWmXSS2bRiv4y+ApMRk0lBUodzNfFhG8b1LFxjeOTpA/5g/BrGW67qfYYq59XyDm+O73PF7yFjo81YOBtVpIlAVA43HuPlHGBPqpJpa1xl2/0YRWlTIhNqV/NHb3ye53svYGrDpDB4uxqx18TKPTiesjNY/H1tHHerIxLT597xjM+/HK6Hj3yg337mNmW2VPz0e4rx1PLg4RTVidu7dxSeI8O+uNTnrv2MVAVpgIVqnKJ6gdUx8lOctwz0kMk0stR8xUkxbSnQt6dHvKRuIGrw9hSndpFS0uuFc37Z4+Vx1bDvSZOg4799pyDfKbl5OzYX9/VWx+Spw/DdCgEHu/Pj6Jzg/uwhmR2Sq8aPZsqt6V0ylTGNxo2CcP6PpxVno80yqKmZMplOUFZQd7JRRVnjZgVTJTlmhE//bOeSKykZDDImkxLbeU5J4OS05LOTgnc9vctgQ+P6+HjCeFIivG+tYMqy5r6ZcWv6JuApraGM67YsFZSV5+i4IhcT+mvMRC+qaWmYzeDoKHtinhXHp1Nq4xDnpAEYY7lzr2A3U2/rfPujowlFUXHqHA+Oxo8lSlApye5uj7Oz2YVy329E7e72tmIbvK2+pXe/+90rWv3RaMT9+/dX9PnLrwN45ZVX+OAHP9j+/OWXX+bGjRsLdH7nHD/zMz/D5z//eX7pl36JZ5555rFs+5N2zXyrZSMV0nmH9AK8bH/WlI8GR8JUQTsas81HdVjgZWi8EFgXjdO8wDuB8IraWWxc0OVRm1vYgnE15VPHQQP9scEH6Isc5zwHEQwd1We4foiRc3VFk6pdRA16gsIRJmS1s+Akbhoovj7bWdmHtpIcqim2nGKjXhCV4osz3Ol95MENRMdQyzuLrWuEVO1+NKWEQAtJWVnydP3NwhqPzMXKa7cpEZsbJu2FSWCqSXrhGPal5XAvQ5KwV/S4HyPlXtx5Abt0znlrsNbhvSKJkXteZavfc1xQSGvQ8XgfReO4XTUIf+89Tmb48gxbzoI5jfPgPN57Djr54n2Ro6dhCltnA4JtIO2xsPkOCcD07Nzjo86iprm3HwNuw3vYwSEn3//XGXzqX5GfPWD3za8w3XsG3Z14e7ihr3PLHPH65DW+ff9jaz+jOZcHsrfgRFtUlr1+ghBh8eWt5enBNbTUJFLz0s67sMahsDi/6GLr40NRnQbQPB0ekvgEl+2F5GhrcMUUH5tMgnAfajX8dkJdl8iOAeM40rDzGDfoPBvN5YYyBwujarT5eliqYFpW4FQGznOnivp9fdB+/83xR2jsZIzv7XNRorstC7z3Lch3zm38zoWYa+nPbIGvK9xyVjpwGtMDrmQHWOO4noWm0ageMTMzhrYzhazCediXOd6DsQ4JC9sgCHF+QxUA/6g85eqm42YrZDXBqxSvU1g2KHM1anqKlQlfnAZD0vdkz6G8WjD6NLVFa9leF8nRmwCMB9dwXmz8bmf9wFTJxkccyF0ykVD6mrvVMU8lXRZL0DnPIluoJ4Jhn60tquOPoB+8seU9SgTdfl2BtSRSUtSORElkjDs1OqeOEai6nGCMbewJsM6j0K1kY1LN0PG5UFaeSWRwZWl4Djnv2m3XQmG8ZVqN6WdXWk3srPCtSZRjTun3MI8hnU0wzs+fRY2fjCux1iBMwXR2zBfLcPw/1n8/D80Zr3KH+/VJiBUUgfhSGRjNPAcqHt+6CvfcZprloKoaF37RXnuN4eBHrn4bf3TvT/jq8deZlSVKCoyxWLv6DOllksnMMZ7YVkfflPSa0hYUpuS3/jgwcZ5/VrM/TLe+3i9TvVwynlrGE8vVg/n7H5+GY7431I/lc3cHitOx5fikppdlQTgg0ngq+5bS39OWUTk/h4/q0xgbFlgotq5o7Oudd0/kmDT19LWM128VvHGn5KWB43506L+yl2z1udevJHz4/QN2B3rhnBEoamsYlSOSLMV5x9HsCGsdUs6Pd2MOOSssZV2hN0SfVqbCGYOT2UKUiXAeZwyIlFldsPOE5A/famWdWwFuw17Cw7OCO0cTXnx6PQOsqhzOeWbl3EtCCRhVE2Zmxl6yv3BeDPuasqqZjB3VbvVIYFF4T1U7itKQPgbwulzOe8rKxmCrzdunhKAoDaejkuRtTG2flcF8tqotZWlQj5GNYK1722O/bm0F+H/u537u0m8shOCTn/zkpV7zQz/0Q/yjf/SPFrT8//bf/luklPy5P/fnNr7u4x//OMPhkH/zb/5NC/jruuZXfuVX+KEf+qGFv/17f+/v8eu//uv8/M//PB/4wAcuuVff+uXxaKUW3KPbipR8aSqkCDrQ2hvGppkaqRYkN5F8iqAJ665Xh3ERaLH8/oPfpvI1V+SQD+XzydJhBIwPzRneB6dn4Wo8YVFYu7mGv708PWgh8LOwqN/k0g/BgNBXU6SpgrFKIxVIhwH0T05Rw86C2ZlgyrTseg8goJcpjkebTT88/pFvJF3TPoA816SD8O8pJuj2vGdfzwH/WsM+78E7vPCoCPgbI0ZfzfDFCLl7HZI8uGvjSeLRPTLhmO6qfqBpShHNxSS+KuYmbLGjvKsG7cJ8R/VJ4gK6ynYAsaA3t1G3f65TvzWo8QkAs/4VpBCLcoW0x+mN95GfPSCZjbC4tlkBwQX7hnoK+CIPqiNmZkpvDXhsTPt21Px3jVlfL49gTkpwnr7K+H988D8jiaAfIBEuNIV85/sWIYe3Mewrdq5wKKOzfm8HZiPU9BTTAH4pAcFA9lpANKpO2Otdb7epMOGcyESGvuC02lU9qC/n1C9s2ViqM7ZTJm6GQHAtOcB6t3j8dRrMJ029lnK/UNUMsaVrt1LzaL6RLxFmdULmvWdkQzPqai9M9jOdcZgf8LA45rg+4hrz+8CsDsdgIOdN3uXrMrB0fMuwGNsNx807itEt8mqGlhqvNOgePunhdYZXKbKcIEzBOEm5GWMqP5CvXpvWeYadZmFyHIz9RsPrK3/brcapPy1HKFtxI7nGK9UtblX3FwG/VIglh36ApJ4Fqy4RYuHU9BQ5G7VxmeeWB2yNd5YkUbhoYqfi92SSHiYagOpqEjSSSx4ouUgYe0thZwzicyEsVsO9tHHgn9kZPhLkD5Nd7lXHzKKnyNyl32OiaZ8Xc8AfUgLiBLQcL/iSD1QD+CtwFllO+Ez1Gg7HU/qQG8nV1sm8NYQjOPVXJkTzHQyJjDEb/okmdYlMW6lcY9rnvW+lCe/dfzdfO3mF0+qMr5++wjPpixvjrnq5YjJzzMr1Tv2Fn3H3eMTnXw2NuW/7QPLEaLSDnuI+devU39TJKAL+Ldz+t6m9Hc3p2HIyMm1kXVNNRKEQ0FMl9/0cUD00Z2FwITWiLhCuAp4clb9bN66nvH6r4Na9kve9t8/xSThHL3Lob0oIwQ98bH/t77Jo3reb7DExY8ZmxHBJ09+9FkpTojdM6I0JU+cF2hjghQDvUDI0kbpro3dqtQa9hLNpTVEZ8jXHOjwrafX7jTln7Wrkmub4oK84OqmZzcDiwnl8SUmMkmGwZKwnfQIWDM4FMeE269k0kRyPS67s5W/b88jY0KiujHvi6QZv93pkwN/VGS3/vLmJXBbw/8RP/AT/9J/+Uz75yU/y0z/909y9e5f//r//7/mJn/gJnnpqnlP8kz/5k9y6dYtf/dVfBYKk4Kd/+qf5X/6X/4XDw0Pe//7388/+2T/j5OSEn/qpn2pf94/+0T/in//zf85P/dRPkabpQrLAe9/7XobDi/Vw3+rlhSeVam2+dgMOZXSrT0XC1BfYSCPL0RGsBG2/jNFrcumhkkiFQmJxvDF9HQF8f//bFm5s+3onZPz6ipkrGQgRtLCxysalX6YLt01p6hDHA4h886JVpD38BFJrMd6SNE7CUiKSHn58hE9zRFywemsCp3KNThogi1FTq4/Q9hNDPNRly1lkE2mVzWnyvnHpjwtZhGA3Tuav9a60TZWF8s30S7Tu/k0TJ8QXObwPLv4+yRB1QdLQ0CJQ2FVD8HOwJ9IcW0wQuhem1U0fAMEPDz/GxBUR8EeabxYi+ZSEwlYoocgiuJDnAH49PkLgsUmOTfpItWiMVzuLiDprPRuvZNhqKclExlW5wwM34o3ZTd63s9jQs94yaZMI5tqrunZkiVqkeonQPLnen0sQPI5EOJRWGBv+v6m0GiPrAi8k5XB/zj7oH8BsFJz6DwKbSIn4/kKwr4c8MKecVg8XAP8supTnMl1rZNetXR325aKEgm6JetbmWjfu/Ff0XmjyWYvoHn+lobD4ulib+tAeH2fwptrK3A9inGITj+cLMGUEVPPjOrUTjA+Lp8Nsv/35jcFTPCyOOakfAC/FDfBttFvzvngQS9ellqCEZCCb47Ye8L959lV+/fh32JF9/sr+DwS1QTVBlmcgFF6FRpzXGV8tX8fjeUofsq9X70vex7i6+B8N4B8Prp9zTwGnM+p0SFKNyScPuZFd5ZXqFm/WD/gYnfNbBE74zC0D/uirkQ9waY/k9B7Jwzcpn/3gymetlFT4ugI8WmuoRDBz6rj0NxP+pJxgraefLR7rnswY24LCTDnImzUDjCeLgL+JJeuLjKHqcY/jdlLexPaVlW8XbLYB/FIjnUXE+4EwFZiqxX/9BvD7GmkKRsV9vlLfAeBjg/cjhGilOxM3Y+ZKejKjn8HJBCZF/HZiQ0U4i4/Nv0xleKsA105ePZ4iRgDupEM+dPg+fv/OH/Glh1/luWfftfFSnkfzrU6LmrXW73/+Pt7DCzfyCx3h30otO/VDkBVMpuE72995fICf2yWno1WtwSw2G3qZRDjDtENLtzhO7SQYtXqPsJdMJ3kLdeN6OJ/u3K9Q7oCzUTgfrxy89YZDKjNG5oyROeO0OiWV6QoYbK4XD4zKom2iLVdpC2Q0vVwoIRDOxma9wXp76ZSFP0uVJYrxtGY8q9cCfucC1qliWkfDRqpcWPss1zAmakxnDuftIwF+2QD+c+j2b6WCq72/0GwaoJdqpoVhVhr6+ZO7Jz1qee+pTYgvxftHYuD+aaqtrvQvfelLC/999+5d/vbf/tu8733v4yd/8id56aWw4Hr55Zf5xV/8Rb7+9a/zv/1v/9ulN2Zvb49f/MVf5B/8g3/AJz/5SQaDAX/9r//1FVM95xx2KZbib/2tv4X3nn/8j/8xDx8+5EMf+hA///M/z/PPP9/+ze/8zu8A8PM///P8/M///MLr/8k/+Sd83/d936W3+VutPK7NJl6pZL6YV87MQXKsXCQtCHDetYBfCbWY9ioEPZEw9gGsfih9jqvZoomaFoo9NeTEjnloz+irHURdxFg80Wo0E3RnNSxCvBtA2kPocx6y0YwmNTUjb8P7dPfTVrjxEfIgC6yFJnJpwz0uSSRaBUpmspSz2txCtrg/rlRDj/VC4jvxfT5+Fw1VFeBd2RX+aPI6H7n67evfrDPhl8sTfh+o2XgXwEGSQ12sSKZ3VR/cfJEpVILu96mmNbhg6CRFoEQ/n82bcN1IPhGTx2a2QgqBSxJ2OH/Cr85CdI3ZvYbQAoVYAPyVq8n7+wDo2QjnLN3EIaniNqVXeVCMeGPy2grgbwCxQraACMA4x06k8y8ez6UHqnOAJ00TxpUn0/MUx2wctt/uXMFL1QJ+MTyEo9eRs/n0UEqBJLj47qsdHphTTupjunPhZsKfk0Sn+821owdx/7ac8HsLddHS0xvA/3ScGFtAs8iwQCl8OYXeOSkATS72RSyAWELOJ/xjVyCcQViD71xfJ9UJAHvpHqrTjHt68BSfO/oSJ+aoM6VyTKMmsgX8QrC87JJSIhUMbPzsNY2S0+I+/+7h74X4Pzfht0Z/zI/ufg9SpeF69zbur8UlOV8pggHcB3qr033nQ5RZEm8Qcnoa0xwkRf8aiT+fHVQMDkmqMdn0ITeGQb52ZE4oXdW5lwfWwnRpwp9GOr/LBtQHzwTAf7Qd4BdShSaMlCEpRQTq62IsX6T011O8tyRq8bvvyQwsFHaKViJEUno4HYcFcgPmZ22jJpuD9OYaiCCnKF2brDqn9GukXfQyScoCIoGnF9/L4jDlGZ+ZvYLD80xylaejF0QqE/ZUSKp4YE54Pn2KfhaPZ/PWQoJ14A0w38cmJrAB/JWpMXEaPUwGfOjw/fz+nT/i66ev8h/fMAsDkYXjlDdO/esX8c5qvvJakLZ8+AN56yr+JKrfi02YzoS/AeV5Jtu0hbdaezEmsDkXujVt6Py5BFcyWYolPDKnHOgdvFRrmUFPqq7sJ60O+6uvzfA+HJNB761/HyKupcb1iMqV7OhVBqOUgiQR1LXnbDbj6TUzD+89tSvQnnDeLnxIYKoooSltifF1G837Tq2vNJEcj0oOd/OVqDrjwr29mfCnWuK8o/Y1ak0jZRATOaZTF6RvPjxtL1NChMbrk5KuWOfxzm/lD6C1pLae8ax+WwL+ID+mZayat4He/ptZj3Sl/72/9/d48cUX+R/+h/9h4ecf+chH+B//x/+R/+q/+q/4+3//7/O//q//66Xf+z3veQ+/8Au/cO7f/NN/+k9XfiaE4Kd/+qf56Z/+6Uu97s9cSU+2gXIrpMZLjXAGaesVwJ+KOY3Q40PeO3LBPK35fU+mjG1JX/b4ePL8wtSuqUO9GwC/OeO57ABc3VImqwj4Uzl37gePjHr38+j8MAe6ubU8dAaWFqIiHeCLEW5yghpewduaNlB1TSklyRPFtLQkS1eNj5TwRzFQaen8aW9hkut1A/jni9l39a7y//zQ/52sv96B3vuovYf5hL8BX96FLJXIyPFpD6YnpM53I+XZU8MA+LtRPguLhmbRvjiXnEfyxbgkAVoqnskOGcc4GhmBulzDotBnDWC+imI17qT2hv3BtTCh8A7KCSRzWn4Tc/NC+jSfLl7hdnGL2tUhhSBWS+eXc8d778PXvmLk4lnI3QYC4HeWLE0YVeH4Wu+RQpCOwvZXu1dRQraSGTk4DN/HtAP4hYgmXZ59FVhFJ/Xpwkc12eU5CVKdv8DeS+aAfxuKpjAFwlb4yCi5Y6J+v6GIO1BNXnzzGpXgqyneGcQG3ag3dWTJbLf4DRP+qOv2NZUrUa6mC6ha/f5S6sIz/dBsOq4f4LwL0xRn2/z2QdTwC2hlKE1JKVBC0mvkBG42b4QBpSn4jXu/Ro3lit7lxIx5s77Pp6df5rsGH2wOCMTGxBvlHaauIBcpL6ZPr+yntQ6tResO3Ez3693roFXwxjinW1gMrrBz/Dr55IiB+nb2Y6P0dn3Eu7K5B41XCTMCMGoBf9VM+IfUV56DVz5N8vCNtrF6bkkVvm8kSmsSZTHOo+tGw9/DpL0gD/KepC5QapEl11c51FCYCUIIsjQYv55FkNdm0Ju5FKMfmUzNNdC4yxelbY3nbJz4JkIjl7LYk2rSTs5SlSCROBz3i3t8zQTZxcf6i0kFV/V+APz1Kc+nT9GEOrSAPzZUhHN0nxJ1jBdsJnvTyCBKZUKmUq71rrbyk1fHrzIQz2KdQy9d0/12wr9eNvbmmxZr4XA35fCQ9ZK8x1T9ZgrZ2ZaTs3DgH9d0H+KEH9ZP+Itmwi8Q3jKJw4OGOXhkTnkvz4HUoXm5wQPjcZcQgmeuZbz6ZsHnvhLO2Sv7j09ekcuckRkx0MON75mnkrq2nM1mayfE1lusrUm9WAX8CHDhNR6PcYaVjug7tVC9TDOe1UwL08YiNmVtnPBHh/40CcwJ5wyJXG18NxGck5nDetsaUV62BP6JgdfQiPArzY1NlSWSk3HF1f3e1q/5RpWNfi5ahUjZ+ltIb/8k6pHakr//+7/PJz7xiY2//8QnPsHv/d7vPfJGvVNPrqSUi2Zny9XkZ9uSVCze3DKZtBjAeY8WCiFCBq4Uku5S6OnkAIHg+4ffgV6ni4fW+O2hOQOlENYi4uKtsg2lP2nX6x7aCb/ILwL8YTGfGLMiOwk7KIPOf/wQX03DJOuCRVSe6rWO484F9/5HudmJJf1++56RvSDqRffuVOrNiwvvouzAI+PxaxofeB8WR832x59nS2ZmgeruN94YpBQgV6U8SczBLtIhSkiccCgEO7rPs/vvxkegPp4cMTazldfrdsJ/FaXUigmM955+0msbPXq6yBZoJqT7yT5DkWG95c7s1sLfjKP/wY7M24WQLWd8+Iu/zOFXf3txR0U0LVvYCAveoxPdGr/hfCBMRMPBBvA3dD4VNdgqmhpCaGYIGa6hhv59Wp8tfFQDdnpiLqPZVMO0idB0FO7iaVdgjXhAcmYnnEWQcl3HCb/zq3nSOg167npxmtotb4qLQWR3O6QgEQlZvM+MXbnQ4AI4qQLgX45ZvN6/ihSSypeMom5fdAB/X+at7Gid0ibRkp4P18DEFTgXQIfzjt++92uc2QkDmfMXd7+XP7fzEQA+O/s6r5S3Vt7ry0WIbnxv/vxaGqexkKh5HnYD+M3hM6E5dgFYaXT8eUwruJGEJIZb1f3FP9Q9Zm4O+L0PGn4IlP764Gm8kKhistCA2lgyNFGCi7wgTRW2XpzwIySmYVPVs5WmZ18vgvc0Cb8vq2iqlzaU/vAd9lWPLBpVzmwB3s5p/53pt23i+YRGmeUJ/6w1TFRCkIlwL/2D2ZfxeJ5LrnE9OVh4zVW9D8ADcxK2I67Vp923Fqw0AZsFZDPhn0ZWwiA24YQQfOjgfQB89fSrKCVYt07vZas0+m597bVwzN//Uh8bJ7RPqvod2nFTrX7/CQD+s7FZ8TZomA79LADUSbyun0mCxOqo8VtQGuFNK/P7RlRD6z8bh3NhW/3+NqWkZj89WGhUL1dzPUyKmtqt7rf1BudrVGuh2a2g4Q/sNb/29e/UYmklcc4zmq4mqbg44a87E37rg4x0HVW/AfzjqcXjV6SJ25YUov3Mx11hKu63fpTnmWJahobI261cZCsoKVAyGPf9Wa5HAvxZli3o35fr05/+9EI83jv19iklxfnTgWayXFeknYeOQqJV1j4/HL71AVAiTPm7rtSfGH6Iv5b9AM/L3VVn61iHkbL20J4RUSQiPoCqqEXNRNZOlIUAEQG/vGDC3+TYqzjpXruoTjLA4UZHYKqNk8v2LZPQ2LBL7+V8AH0rIGmLaib8fgnw+6bx0l3MeuaAfU15U4EPkhfRUvrnE34h1ZymHhfpWef9dmS/fUhtutkLEXzau1shnGmBRZkM0UpEMxuFFoEOLGOD5jlSUqE5rsdUEWThHXocwIzdvYpWYuFYmqg5TGWC6IeFui4W6euBkRAmGi/osCi8OX1t4W8awD8UebuD6egBWTUmv/fK0o5KWJINeRcWSmmi0FpgrMXikfgW8Bc7hwsT/sYYUncAvxAhDsg52I9pFWd2vBAnVTSAf4sJf6ITelG0fCGt33tENcFJzVeK1/lXJ6HRcVXvt8wfD6tZtZGL7ev1DQWPh7K48BrqlpKgEAxlOPfPqFbouQ3gv7oE+LXUXIsRj0dlBL7eMomU9r7M8bEZs64Rl+jg+SAReDyzmN7w6Yd/wK3yDgrJj+x+N7nMeHf2LB/uBSr9b4/+JDQoY43slDfr8PnrzPogsECyTnZgO+E/vIFqg7Y2V2vcNztFWMONNOz3m/WDhfua854iTkJ7MsPhyWLag82HoBLMfmAgpDEl4NySKrJaHAhFqiXCGqQPW2xi07Ch9edmil4G/HHKVbaAf70muQH8PdWDOtLbfQnOzXXLnduujUyGRCSL90hAl7O2+SwEbUPpJJrpfedg1az3atTxPzCnobkYb5uTspPGIWTbkG6qpfTHRsY0ShN20jnT4YOHgU3w6tlNLNVa475ed8LvF8+Is7Hhzv0KAbz7+TQ0dC+p+71MNWyDLqW/nfA/JsM+gEEvyOS8h7PJIlho2AX9DPC0gP+FKCMLxn0+NOmd/aYA/qYeJ+Dfplqjy9K25sbdMt7inEGtW96LwFQBjxSa0m1u4D6pMs5cymD27VB5qjkelQtTded9vBYFVWz8pYnCOrPxGt0ZzAE/nkjpv3wpJSjrJwOwnY9eVVsifq1C0spk9tavQeeDPGBS1K03QFEZytpSG7sQnbhNWecxsWGtpKB8B/Bfvn78x3+cf/Wv/hX/8B/+Q1599VWcczjnePXVV/kH/+Af8K//9b/mx3/8xx/3tr5Tb7GkCIZ6+ryJYUslr8g6i/dMJKgO8HDekcT3CcR+ge/AQKUVGcFwhw0mXg3gP7MTam9CM6GZ8MeFeyoTBCJO6yQiTpIvpvQHQCtNRSI19YYba6D2j4Np3wWT1EQrUi2ol0Y0gZErH4nWt+zQDwHg1vGYCWs6UyWB39AR9t5CcRZ8DWw17+t3fAHCODG83reAf35cdlU/0qAXXfa7JQThu+6sWRv9vpWaWqboqGNLpZp7AUT9/bAseVf/aa6n+0wiuFOTAGS81NjBHsNespDrWnkTKLJSt++TzBYXDA14dN7zfJwCvTG9uQCim0i+HZnR3PoaAzJRLdJChZBRr9spZyF6C2RaYWw4nFk9RZoyaLIHeyRSz00PB6FBoepiwY8hT0L840DmMXrScxbBLcwnon2ZtvKDTaWUZBCnohcupFzFuD7lVyZ/wu+OP0vtDVf0Hn9+56OdP1qv3xMqgWKycJ23ZU2QxajtF7/hPKM1zxv7au4DQGjSndYnAFxdI2N5ZhAW/0dlYId4O3ep76u8bcRJKUP0Zef7lVIgmJs3js2Il8df4wtnnwfgB3c+2pq5AXy8/0FuJFexOP5/Z58Kru/Mp/s3kmsLyQ+L5VvfD2EqVJyum73rwejzgjWMTfuYpIfAk00f8lRyiEQycTPO3Nx/oPRVawCYiwzvPEnd3F+iQ/6VZwECrX+r8pE5FCQJSTwvndTBtBBa477UTFekOD3dTOsX6flNteAlTsb7ImfQsAJchfCWRIuFW7OUtJNJLfRcvhQrKaftdS/lfMIP8EL6VAvuu3WgdxEISl8xdrOo4YeFaHWpoAOwrPVzwpRe9CIYJnMztau9Q671ruK84071+tpF61zDb1Hje9DxJfjKq+E9n3kqIek5xEaLx8dTgzjhn5WubU40tPvHSekXQmyk9TcT/l4aQNW0M+Fvkk3OOukawq4C3ydVB3u6PW8BrnyjAX/aOPVDaVcBu/UmXrNrhhzR6wTv0EJRuXLhGfmkyzjD/eIeD4r731LsgjxVFJVl3AG13vtWNtZMjlMtMd5svEb7PRWjf2E284987BvwehE77FHKOX/pe0yeKk7G5cYUkm1rMqt55fYZX7l5wlfeOOarN0/4ys1TvnLzhC/fPOXlW2eXkjLY2L0QQrTpBpdtGvxpqkcC/D/zMz/DX/2rf5X//X//3/mxH/sxvuM7voPv+I7v4Md+7Mf4pV/6Jf7yX/7L/MzP/Mzj3tZ36jGUlmot7bStxiyuLhe0/ika0QH8Ht+avaio5e9OvoXSiKh53kSV78mMXgQqx2aEVxphiqBBiwC9YRn4RlMUgd46wO9tjW8aAhHQirogFZrabeiGSonIelDPAuX9nBIidHqtWbypebdmIrplyTJqbDuAf2SmjDpzvxYoCrGqK2+2oZzhqxJ0NqdFCznfJ8EC4O96HDS1q4YxGkssy54Xt1nJuVMhkMRpe53v4EWg0VrvFhgioh8W2X56gpaKvWSAFALjLSrq383OFRAyTtDnx7NyhoHOg3QkAuikGC8wSqQQcfc8TyVXSIWmdAUPyjnteYHSTzDcSeOCSeCDaWS7wRKW3Z+dpdnxLFFY53AehrOjdvutEAvXjUjytrkiO1P+JFFtF30v6p5Pq6Cld95RNtR01IXpD1IIBvJiwO+844snn+WXR3/AbfMQheS7+x/ir+z9QLsNcavXm8jpNND2zZqFmq2DB8eWDv0QphRCdkC3LxHWtFPUiRnHxZPkoOPQ31QL+Ktw/jSRfAIRcuh9aAKl91/lym/8Iv2v/eF8V6QAIRhEkP7a9DV+/35gO3xH/hIvZTcWPksKwQ/vfIwd2WfsZvzm6D9gvOVrjVnfOdN9hWwp32oUmSzZAJ/20EpstUgqBqHhkU+OSITmqUhJ79L6G1CUiSwaa3YAfx4AaH3lOQCSoze30z0LGRowUqKVJIvAynQaic2EPzOzFWbQIOrxCxu2raH0N9VO+CNQ7smcYaPh9xXeBqO7vNMo0EpgYjMuEbplcTWlyunChD8X84nssna/fU+h2gb0kTldo+EHiPeE+Gzq6kGXKf3dCT/Ahw4Drf+1yStrSVoLLv2mDI1ywnPvK6+E93z/S31KW5z//H4MlWey/R6nRTAXayj9+7uPF9xeBPj72jLFtJGNA5kvfE8AXqqg4/8GlRCinfInWrA3/Maa3jXXTF2FBtMy6KttHdZe60CbkCGuzzuU0Fhn2mvpSZf1lgfFPc7MKZWrKO037jt7qyVlWBOdjuc3BOeiFYpcnPBXrtrIwJFSzHX8U9eucy9bSkqs44m4zj8KaA+0fsO0fGvnUm0cdW3ZG6Ts9BP6PU0vU+SpRMnAarkU4Leufc616QZ/hqP5HulOlaYpP/uzP8tP/dRP8Vu/9Vu8+WagBz777LP80A/9EB/84BaRP+/UN7yEhETKFUq/9x6qKaT9uebblGT5fKGUCb3gFu49rVNwcOqXVJ0HhxQS4ecRRpvqUO/yZn2fh+aM6+kAbE0VF00QFnRCCCxxslEE0LQW8FczqGchrq/Zj6qgr3Mm0e17bekUMbxy7nY2laYKP/ULUVrOe/RFYekbSlZLE7hoNGecwakEaWuEqQJoPBfwj0L7Tsq57j9ZykYVgSEgAGIcYd4Btbuqj4teXud1eIN8Y/7fjWFfne2ADw0B6z1p57tvJvN+egIE9+yB6lHYkt2Ofn/tvnnfum23E/5izCTKBiBOcWXzXaQ8pw95ub7HzelrXM8DMGwp/UTAbxxph9Ioqxk2gnNiXnETYwjgnWmlAIkOjA7nHf1pBPx713F+1RTT9/cR1Qw1PcXGfUxUOMLOew70Dg/sKSflQ17cmYOjMKnVyIto8iI2MSz8h4d/yFfOvsRussdessdussduuo9E8qmHv982QJ5ODvmB4UfYVYuxTs3EQq6TpygNpcXX5Uo8n7f1dkZw3c0WIY2hMe4b2Rloh3A1nh4n0bBvV++RrJE13Bg0xn1HOGeYRoZEX4bz3jtQqSR5GGLY9Mmd+a4oEeUE4bO/PPkaAM/pQz42+NDa7c1kyo/sfjf/35Pf4XZ9xL85/T0KX9GXOc+n19e+xlqH1POGoG4A/070dpCCRRu49VUMrjA8eZN8GppCN5Jr3K6PeLN6wId6LwEwc3M6P4Rzaw74AwA1e9fxSiPrAjU+wu6sv+aaElKHaD4h0EqQxc+weg7463jvyuoJy/PGphE1cxV4u0DpT5PAlvHeM43nfE/mre7fEdzGE4ZkmWz17VqLdjqYyAQRfSV8NkCUE3Rnwi863/FL6Q0O1jifN3VV73FkTrlvTngmC9KHyoCxHq3EfMLvLCjV0vmVmieKrJvwA3zo8P381pu/x63pLYrelN2l3PiGRl/WHleV7SL19r2K8dSSJoJ3PzugZBqMbJ9gCSHo54rJzAZav/dY65FyTkl+XLUZ8EdKf2KYtEaUoel7Re9xzxxzZM54D4DUCFu2zKBvRD37VMbLN2dcPXx8hn3bVpOSUFWC2lUYb0g6fkuVq1DetbGrCxWlWcJ7lFTMvME4Q7opuemcKmyB85ae6l94DKy3PCjvc2bOGOodZmbCzM4YJpujld9u1cs1Z9OaojLkqW7N7QRzbXiaSEpbtuuSdbUz0IwmlsmUR262KCkoqwB+H3XYtKmWJavbbY/EOxhNqxVjw8tUZWyQjTYSzYXP8BRVdakmh3O+fRulBLZ0Id3g7Rco8A2pt9Sa/OAHP/gOuP8WKoEgUarV3rdVzfDlBKEShM4CmDUVuZrfjDP0ipZYdi5ILTVFR0cnBNiktxD1t64OIuA/tmegnkdUU+qoB08IRldSxvgTBMwaSv+aeDBng7O0d+2E39czcpU+NhPfVEu0lMF5WzXaUo9+xIe+LDou/cDUVuyoHmfO4KNRmmiN0gQrUXEE7b4vJoi4UG4m/KJ77D1Ea/jwu/h5vc60dlcNw2JAnI/bdFykN9VQ+utsSBODVsHCJEpGoO5iPJ0Ugv1kwOuzyYJD/3IZb1FCkkcQ3aX0B4fbSJUWgWliot74BXnIy9zjjenrfNfh91LasvWF2FFh34315B3AL6rFCb9v5BTNA9XWrdmfVjLo6CpLHv0HzG4wU1u5vgb7cHK7pXI3rw8+AI491Rj3nQAhwgwgFVmQzWxxar0re4qv1ncpqdss5zdnN1f+LkHx3b338f7+u9cu0prUgY12FFLhywksNdx8VbTH5jIllexE803DF2kqyOA0Nul2k/21EpPD/AAtEoyvOS2PFqLdIABepQQy3jNkRwYihUQoGJhe+7M90eOHdj9+rvnmgd7hz+98lF8f/Yd2wvj+/PmNEx1rgyFbc6ybCb9pAL8QbIH3KftLxn3pVf5oCnfqI6x3KCFXAL+qCqQP7QST5njvUFJRH9wgffA6ydGbFwJ+0hyh4+pIQB49AmwyP24mNg+TaroC+Hux8VpjcKZcAPztpNIWmMho6omMVGlSEipqpvWEvd7VBQq1Vp466iAS1dHw71yFcoIqJy37R0rB+/MX6auM9/fmEb3r6qre58u8zoP6hLQPWoJxYcq/2yc2Ux3CWbzqOPR3mr3FGg0/wH62xzP9p7g9vcvt8ibX/N7C9Zelso0sLEpPz1k8czr/u5/vhaQH1ueuP+7q92QA/IVtI8d2h/qRkmjOq2Y6vgz4m+ZOL7FB6kOY7gOt1KY17pM6SCCWGVlPsD7wUp+idLx4I7/4jx9zNddCVYXnY+Wq1uTPe0/tK9TG5ms8ybxr492aGMltq3Y1p9UJZ/Up1lt20z0O0sONTQPnHUflA07LEwbJECUUWqZM7fSRcui/WZUlivG0ZjyrI+BvetzzCX+iA/voPBZO0zSbTB/dNFEpgfFPZlptrbtM376tLJOcTiquH/QeOTa0rNz6YQPE5jCX2ucuG0AKgXMhhvnPar1lLtJkMuHs7GytluTGjRtrXvFOfbNKIFoDo275ehZM3LybT8ZNtfC36VIeuICFG3UiFa4beSEEqBQv1Ll4pTXuM41xn6NuAU/z+WEKpmwd3PQB0VsXQOvCw9/7VsPvqxlZ1FQ/joeLVoFyXtWWeVy4QDwqpb8z4XfegYe+yhjbWTDuKydIU2GJunK7OuH39SzQrOPCW9TxIZIsLkaEUK0HQAP4c1PTtDuDhj/E9J3XsRcqGJ01lcYJf5XtBOWAEggPunOs2wn/5KT92UDnZEKjouHdugl/7Qyp1O3UvNXElxOsNQuGkEoJGh+bZ5NDZCk4q085rU7aTnouUhKpWyZD0qEVymrWPVjRzbhzXzMGER/kWksSpai8IRuHhkW9ew3BamSWjHTshWg+KUhV0AXu68VovjaST2aoLRfYN3rX+Gv1D+CuPcWpGXFWn8Z/TjitT5maCc/lN/h+9Rz93iEbuwhurntfV0Il+HqGd3YebYgPzJpL0Pmb0krQJwJ+O8NJhahn4H074d9P9heai01JIbmaXeVOcZuj4i7WNL4Heef9JWoWWEGqGLcshGBeKhhEw8AUxY/sfGyr6emL2TN8xLyXz8y+hkDwvmw9nR8I0pZkvhDWo6a5FQC8UHIrVkRr3Dc9Bmc5VLvkIqXwFffNMU8nV1rA328BfzQETXuMXIW1jv1kQH3lWdIHr5MevUHxro+u/8CmhFiQaTQSmC6lv9Hw63LCcvWiB4vHU5gxWTp/Xes2HhMqUqGRXiKkIJcZlaspzJg9WKT0p45mmZwIhWxkOTtX4cFriHKGi0woIQS5THlf9gLJBV4Yjbb/yJ7igX4OZ1OYFBHwIwmeBuG9m0V+l921acIP8MHD93F7epc3y1f5sP/2BdmMEIJeJpgWnkmt6HlLXTtefiOc0x94aZM/xJOp4NRfM53ZVoLwOPX7Ta2b8DvnKavwoYPUcrdjxAlwpWP2G8x8FcJZsBVw+Un1o5SUgo992zdnOt3GVFYOj4/GfeF8M95grSHzbGjAxnMuPtcEgtrWW008rbeM6xEn1TGFK+ipPikZp9UJMzNlPzlgN91bWGM1YP+kOmagBy0QTmXKxIwpbUFPf2PP7bdSaSI5HpUc7gaPGLxHirmGX6lgxHceY6IL+K03W0XpLpeI3cEnEc1nrDtX0rmpeqnmdFwxKQy7/ctfh957isoENtXmvwo0/S2rtq5dQzUNLvsOpf9yVZYlP/dzP8e//Jf/kpOTk41/98UvfvFRt+udegIlpCDXS3RjW4NU0cHdI5I44a9L0o4BV7bk+epZBPwataCpVpIYXXb+zewwTjePzShM5BBUdcwyFhoZc9+dd2RFBGRJvkIpjns416k3C8u6QKNJhKJ2luyt0p8E9FLFtKiBoMNG+PNitDeX9wumfTNb0VMpu0mfo/oM1yYmNJp8AdhWZw/gcfjpWViUN9SlqGltjpFvMsa7C8zYHOjXFZFLwUD2qG2g/J/3nS0vm5tIvjIdBi094TvvdrlbwD87ac+JTCbsWo+qCzwCs7NqzFY5w2GyM08PyIfhfHUWWYygM2nUcp4UkaiMp5Mr3Kof8Mb09ZY6OFR9vAgO+0qLNmIMlgH/4uLe44KJX+dJmKcSdzZB2govFdVgD4VdC/gdrEShZaliUtYc6LlTv/W2dejPyVYaSWMzQyBaY7P2M5RCeEdfZvR7OzzTW2y2eu9RxQlycv+c0MVwdimx3tkeCPF8xQhfF4hI5cbUQWu9IX7zvFJSkIsoscBSCk/ug3Ff49B/kB1sfP213rUA+Mv7pLGp05gAhnvUfMIvnEHURZTHhKbNDXOdj/ffz7Nyj7108+cs18f670cLxUDmrU59uZoldRsx6T1qFCj5Jk7WFVsROKizIValKFuRzU4oB1e4kV7l5fIWt6r7C4C/mfAnVbiP2nyI854d3WNkZiSHzzIA9MNbgfFziWmMjkabpnP+VUm4l6hqGs3C5u8npSAXKTNfUtQT0mS+uG+oybMmkq+JUhShMXfGHEB3J/wqCdekJETCthKm4ZWoUXaocgrZTuhXIDBb0Cj21E4whPPBEK6f9TmbLuv4CRN+OhP+ZM70mrlw7e4kixN+CID/19/4bY7qe4yrMXtL0bL9NJgETk2IqH3lzgxjPHtDxfUr3xgg225LPo/mKyL4fpwO/U01gH8yc9S1I0lkq98XAnJlmcSGTnNd76khCkntDWduEvxHpAzDgEegpn+rVXMtFGXQ4c/MjP1477LeYL1BhZvfhnfwNHcnJfTGKNcvvPqQf/27r/FXvv9FXnw+5bQ6ZmImpDJlV88ZKrtyj8IW3CvvMrVTDtIDejoMDx6WRxxXD+mrAaojTZNChibgtxjg72Wa8Sw4yEsRE5o6E36tw1pVnvOM3RnEc37icN7jcKiVVdU2JZ4Q4L98AwLiBB4YT+pHAvzGemrrWwPU9SUwl6D0V8YtsJLEJRsGf9rqke7g/+1/+9/yy7/8y/yFv/AX+K7v+i729tbQq9+pt11pKRZAPIQJuMiGwXDLOWSSB3BiKjLVnfBn7QPEtbRf0U76tFyc5IsWqJ/z3CHQyBUSg2XkJuxJ1Wr4EzHXx3k8SZxYbXbo9+1ktpnw4x2Jt2QqZWZLsscg3kmSQNH1PmyXRD4S1VGYKkwmCIC/NDOu9vZIpUYhsbE5s2DaN+eRhZ9VBb6ezb0XANlG8sWfeRe+hK6mPu3hgaeLGe9JP8CVZDdo0gEdv7uNtbSvDaW/SgcIBV54FIvSEdGP35k1UE0gCwvi3UkAY3awv9bh3XlHX82bO0JIRH8fPz4KJng7c+20UnK+rJeaF3QA/Denr/N8P0xhd2QPhKQynmEvQdVzkL9M6W8yyAWAcyHmrTvt1ApVNQDuClYKlFuNvVTDK0F80DHtAyIQFPSiU3+N5aw+nU/4RbJi2FfH82V5fii1QjCnGy+XAEQ9vdBTwztQidqMQrvxfBHwe1uH7zXtbXjR5lJCoJD0Zc7UFYx8Rc8Fim4jcTjMNvtrPNV7is8ew1H1kN0ICJoJNx6EtwH8xZKzcevTEBYWgo/033fp7RZC8JH+e8/9G+s8SojW0E3OzpC2xguJHYRnpoidwgvtD4SgGBwyOLtDPnkYAH9yjZfLW7xZP+DjrGr4m6jMxrCvr3IqZxgNdthLMmRdos/uY/af2nq/k9ggqzsN10rloQXpHbKctZ8H4TmQiywAfjtdpPSnjUN/A/h7raNyY7Q3MzPwbsHdX0bAn8QmdNMQFUkf8iF+dobufudKwhZxTFIIrug97pqH3Dcn9KOR6rTsOrYQnpV0Ivni91u6ok2wGCSrIGY33eG54TO8Mb7Na9NX+EjeYVd4Ry8NRmuzSoKr+fKrjVnf4BuuEx/0IvtiZkOEGHNw/jgrzyRZKikrx+nYcPUgbfX7vSw8hyaRhdU01qSQHOpd7psTjsxpNBxVUM0g+9bRhD9qdQF/EqP1rLcooYL3jzdI4c+RWIm2aaWFonZ1+/qmZqXh//y91ykqy+9+4Q2yK8EXZah31rIkc5XHqf2EmZ2yl+wjEEJXENYAAQAASURBVDysjuipPnrNc0cLzdRO2PcH3/Dz+1FLK4lzntG0Yqef4gj37Ub2onRYE563P20038TivcV594hGnB5jntCE/xGlO3mqOJmUXD/sXdpboDYOax29dPN9JrAptpfumGXALwTVO4D/cvWrv/qr/I2/8Tf4+3//7z/u7XmnnmAp1AKt0XsPtkYOD0IWvbcdHXhFr+vSL+fg2+ECxfaP/y2z218i/9G/g1zqygnRDEmXFktLJYXgQO/ywJzw0Jyxp69SxYVrKpL2YvV4kqh3F/nqQ907G7r8jU49yaPJksVXBX2ZMeqAu7dSqQ7669raMEGU50xEz6l2uq9TKgGp0gx1DyVCkoJrAH874ZfBOK4zRXPVNOrMO93zJqKo0fB7D8gAVuNmirSPB5R3fG/2QbIs/q0DmZx/o5ZCgI8gxpSo+HlFOkARviuFWKT0S43Id/DFCDc5QUXAn44fYoFyzXTfxgdhttQIaAC/ipPbppSSAYx6EFLxgjrg94H75d2Q7w3siBDJ570nSxWinJ8TixP++E9jkuhiPnZH5pJoQT+aqJm969gYdbSs4dfDK9SAKiatz0R4vUSJwErYV0Pu21NOq+N5hBnJivnPRml9ZLb4TcZVrg461wum8Nb5Cyh1zOP5hoeBaWIr2mbbJauhtA9lj6krGLsZ1xkyLo+x3iKR7J6ziH+qHxo+D+2oPTZ91RgvQlYtxTcWI+xe9FpQ8onEGjVlnUMp2jjTuWHfYXsOKBEm1c779ckInap6+wzO7pBE49IbaWAJHJlTCldtnPA3hn0DlZMKzZvFA6qDZ8jvvUpy9MalAL+M99Cyw2owCEzSI6mnyGK8APilDJR6HGHCn3YYMo1DvwnbOZB5SzhoAb8vwNuWDQDzCX8iFELIVsMv0h7ku6uAXyzGiJ5XVyPgPzKnDLJnAc+kM+H3UrUN2Dou8pOYPNA49OcqR22QD3zo8P28Mb7N69NX+cjhHPALU9JPLKCZVpKzseX2vbDR73vX5Rtpb7XaCX9hOTkLDY79nSfjdLW/o7l7VHE6CoB/WjaRfACiTZ9oJvwQdPwB8J/x7uxZvNLhPuQMqxy0P13Vavhrh0RTuSmVq+ipHtZbhHcI5/HnAa54PSipqe0M4wxKqZAQYwv+zR/ebB3X7zyokHaPfn7+s0MKyU6yQ+0qjqoHIS1F9Vp/geVKZEppS2pfk4pvHWZGniqORyV5qtsGZWUipV9eHGm3M5yzWoxzOG95FBc5pSRl/XjBq/dhAv6oVh0hni/Q+vcGl/tOa+tCk/yc81Yp0TZXLirnPNb5hbW5koJ6i+bvn9Z6JH6zEIJv+7Zve9zb8k49wcoSyW4vJevqbOsixLjlQ1A6mt3NAX/WAQepSNuTJdCYJNz9KtQF7uHNFZAjhIjDwItXWnNa/xlIFTVpkJC0GMJ532pEm4i3hfLBrC3kp8cOazPhboz7Lgq83rKkFOSJpja+zfo+7ya18X0W6PwlQ9WjF495JjVWh3+f50zPDXcgNjlmZyvyBrVuwt9ocRugrrPWxVfX8xWtv4CRAeGm0XwvzXTfJDlWJCilsLi2adGtOa2/Q20/vQvAdLD6nVbOkApNtkTTbAwAdbEI5nqpIk81RRWiIAckHCbhb29OXwNCBJz1wVgvkw7ZMZpcAPwQmY/xnHE2Hpz5PmmtGBYR8O9ew3q70BhrKxuGyEl8Sy+HcM4kKlDUGh3/afWwpfT30Ei91KBDrCUnKxXozdQVop4gyxFydoqcPkCNbqNGdxGmvjB6EraImGzj+cJ56aty4bhcpppXNRn2IzvFq4TTIvg67Og90jUO/U3tJEMykeHxPLABCA9k3qYNJEu68q5xn77InfItljWeLNHtR7SGfZ1EECFEYMVscZ+sIgU8LcL105c5B/Heebt+wMwvAv60mfBn/dbU8iDd4SDZ4Ww/NEqSh29eap+aa6TqAH7nwES2h1y6JsO0Ply/MzujO7xZBvx9mQfGlBDtPhQusKC6Gn6hAhDR0dS1aYjKJG+9XRZYHTG9Y5u6Eu8XD8wJ/XhbnXYZz0KF5pl3nQl/ZCpE+cFAbzbW+8BBYJMc1w/a/QYQpqCfhvebVoKv3Ar//uxTGcP+Nzb2DRoNf9DWT2ZPjtIPqzr+2Sw69GceLyUTt+rNsd64zwRj1T/l1VwL3oMxYQDTrJkqVyGb59Z5fkVR/hTilC1TO+FhecQb05t85s1X+dzXwnMqS0Oz7M797UFSEin/Q71Dco7EIpEJxptvqXg+oF1jjKZV62XUglBlL5zW9/MQMec9jKcGu8aIeZtSUlA+ZvDqvI+s3Ed7LkoZ2h2jZR3UFmWMu9DAVkpBbdxWz8smNrk74ZdSPPYmybdSPRLg/9Ef/VF+93d/93Fvyzv1BEtJyU4/RXej9eoZsr+H0FlHwx9pc6YilartViYybxeu3nuktRAX0378MGiWOgA/aLnZCmIvGPcJRRldYxOh2xuPx6PiYl1udOgPFN3mUxeN+xISmVBdMrqn9/U/YvCF31rJHs9ShfdBsqCEfCTcIBrAnwa9217H6CmVCSY2ZxrX/WUjOV9N8XW5kITgvG8p/ejOhF9ESn+M5pNC4uLrVAfwO+8vpnNFrZYH0mIeyefidNjhFiL52v1dY9znTkNUmtm92tLVm6pcTV9lq82kaNyXzhbBhZSCnUEaH1phn19IQ7xW82DekRm1hSSRpA0TonnfZcAPbaqBd27eOGnKe5Jowmb2rgWDtjXTDCEELu5716lfiBDzaI1nP+r4TzoT/lwsTvgbMKSEXFkkCEKUjZg9RJ3eQo5uIyd3kdNjqKfgLT692OHbb/OwVzowZ+oyNNHMDLFFI2FtxQXCMJrnjd0MZNLS+XfU/kYDQQjNiQO1eD/oy7xNG9DlIgtEFvP/lkq00/UnUc57sg7zqTHsaxz6IZgjCrEdIJ0D/rk0pJny36rur0z40+iFUmcDFBIpJFIInsr38VeCY31yfPtS7uYN4K/V4j3HRhbBCuDvbE/hCzI93888C6yUaZOuoHIEAiVlG8M5c2Wc8Hco/bqh9OtgHtt4lqS9Vu6VVLP2mAapz3bf8TW9D8BDMyLPw+ecTDqvldEjZgHwxwn/FoB/kPS5moXv7G4RYyK9Q5Rjell4n1kl+NKtsL/vf9c3R9/cj5T+s3FDr5cLsorHWSuAP074+4nHIZm6RQ0/zNcMR+Y0rDnaycA3zqn/m1VSCtLIKinKoBdvolwrVxLElZuZlb5ZRzD36nlQ3OeofIB1hv/wJ2H98N4XenzgpXAuv37rcqBcCLGVQbJEts+7b5WSMgyzauPa9XEdJ/xCne/QD+HYDKOOfzx1MW3o8qVk0PDbx+g671xY065Lxdm28kxxOqmpLyk3KI29MOhHyTAg2SaazzqPs26BOdccM3cJH4A/TfVId/C/83f+Dm+88Qb/zX/z3/C5z32Ohw8fcnJysvLPO/X2KSUkqdCtvtg3LsbNtFzq8BBojOJMhZSCXRkWizt62D5UHZ60M0Fx02OkkEF33ty8RDRm2eK6Oui47gJUsfucCN1pMswX6w1wXChnA+jQSQBn0LIVfF2Qq5ShypnZS3QeTc3gq/+e3uufY/8PfhlRzCcyWRLo2MY8eg5q49Bfpzm5TBfMvxKpcXHC35pSifggbyb8xZhlMz6PX6vhFyJS+qUIXg1CzAH/0jG5CPBLEZYS3nuSsgH8wyARkGIz8O0Y90H4XvwkTMj1/o2V78Z532Zyr3sfXYxXgFI/0/Qzzax0eKV5Xi0ase2IDBOj0uSSxGNlwi8EPpr2hWO+eFzU5CRosqXCDg7xnrWNjrBhYZuXdfxpovDes6/CNXBan7YT/j462P7GakCsXAP4lRK4bIiROT4b4rPd+M8OJAPQ+VbTfYTfLhmgieczBm/MgqTkMqVkoLQ3i/mxnYLUHNsAHHf03lqH/nZzheCKWDRI68msTRtoWCANm0V1AKmSIqh+nsDDP5h5CvQC4I+U/k4aRTN532YTqtjoTIuztul3IwnyhJvVPep43+yJDO/nGn6T9cP9OR6DVCZcOXw3Ju0hnCU5ubvlTrnW58IkvYV7u9sA+BEhbQKgsCWZnp+3AfDblrLdeC9oJehFVsDUxwl/B/ALFa5JHRNgGoq9Snqt3CspQ+QXXG6RM5Q9MpHgcAz2x0gBd0/g3kncWSERLnhlNAvahtI/i5T+wRqH/m49OwyGmneK2+EtbYWwFb08XEOvPxCMZsH74aXnto99E/X0sU24G0p/U3tPaLoPq4B/2mj4U8cM05rU9joJGgdqBxmN+0YurkVEOJZ/FqrV8VcOLRMKW2C9DdT8i14sBKIDEod6h4EespPs8tprnvsPaxIt+L7v3OP5Z8L5d/N28djkT195ZcrdB+FZn8iUqZli/duTZl25qo3z7VY/11HysDjhl9KtyPDWVaPjn06IlP7Ll5IC6x5vNJ9zHrdEg79s5amirCyT4nL3orI0F649lJRY67dy2rfOrwywlBQ492TSDb4V6pHu4n/pL/0lAL7whS/wL//lv9z4d++49L99KlUpz/cPmZi4uKymiGwYDPsgUHKjSz8E4zeB4D/ufy9eGFKftlRv5x1JB/z6yXGccss4WQ0/V1JQ1A6fXBDNF8HO1JUUrqRq6OIki4YbcTG5jtLvnQ0THqnnD6bGuC8Cub1kwEk9bk0HL6qF3PSz++z//v+Ls+/+q9jhIVopkkRSzEw74blsyciQqNKMvWSI7tCilZBzwN+a9snWtM+bCl9OFsz6IGaPx0WP6Gr4lYpO/ios3FG4+FplSppHTuNsfu52C2LMYcewL9uJgF9iPGsjsGT83lyc8LtI5xf5DruDq5xM77YO/taHpkS2rnEQJ/zJbBz/rpMGIGCnnzAtDQbJocgZqAETO0Eg6PuUmZRkiULOwnnho7O3rJemGELOp5/Ossw30904wTiFXjbsW95mteTUr5VECMGejE79ZoQW4bbcY9G0r/HOkMgWzMz3O5hoGhqWy+WrcZXfprvfxvPVszBVk4+WDy6FQEjou3AujuKU9Dgu4nf0/rldf+kNV5lPQTORooWixCJF0OwDlLtXyU/vLVD6pZQoERopjxvOWOPQUsybgaZumz3dCT9EXeEWg8k6G+KFQDqLriaYbMhTyWGY8MXoMoUkERrnPWkdjqHJeijkAlNmNx1weuUFuP1l9NFN6ivPXvj5oi5bQYnPcoy16Cg5aQC/KiYrr2tMN2e+JlPz87aXSYS17QS3L3OwYSLfND9nvoIVwG/iviq0r9qzvTvh1+UU15zRsjHkuLiEEFzR+9yq7zNTp7zvxh5fftPzH77u+E+/S8X7pwVvqBqX/tjUmdroRbDGsK9bz+88x58cfYa7swj46xKcpZ9LwFHFc+E9z6YLDaOLShYnIBR2cP0tS1XyTLYesfBkIvmaat77ZBQiyhqX/kHimLSRfNnCcykY9+3wwJxyZE7ZT4YgNNQlbN8j+ZatwLawFKVDi4TKlcwicE78ReeMaCn9QDuJL0rLv/9MuEd914d3GfQUeSpJtGBWOh4c11w7fGta+1t3S37jD44Z9hX/xY8/TSKTNp6vfw4z5ptVJ9UxEsnV/NrCz7NEMZ7WLUOiaif8Qc5Y1payMuwO1se8zqP57MqzfNtSSmDLYHRH8nh8K5z3gcH7Fm4fjZx3PKvYH14cc9t8blHbC4dnAbA3rIbz9zkAflYAf9MkSZ+MJcnbuh7pLv7JT37yW8ZV851aX96UqL2nERGohP/vUvprBJCrFES6kEjm8aTlMuAXqBjD19TOIMVax6So6Wd6I5BMpGZH9hm5KQ/NaGnCH14jvEfEPG2xgdIvdEp4mC1mzfs46RqoMEkvXLXg/L6pGnBmmony9IS93/9/M/rYj1FfeZZeppgWYuus9OVqNPw+67OTLBozaaFwSbgjyda0j2hK54PTva0hW1xcdif8LGj407BYbVIMuhN+03Wluvhm39zQ6U74851Ar410/3XAt53wT0+AOZ1f7D/DUOVkMqV0NblKqaN+P1/j3N9q+KsZzlQr7vB5qhn2EkYTz46qeC6/wZcnX2WoBnjnUZkk0aqd6NvBHnp8HKaXC3bpoqWIemdWNJH6tAH81zvJFesfWA3gX47mS5QM+nuvSVFUWOooaenLBNWhs4fPkO1ka7m0ltTlo09KmljMrQgrTTxfOZ+uPUpJKRESBoTvcOJmWO84jbrdPblzLuNE2JorYr5QbHS+3oHSsjV2nO1fC4C/Q+kXArRSwfPhMeOZ0jgGuW4BWzvdz/r4tBcNKSPrQG0pKxCSKtshK85IizNMNkQLxdPJIbfqIBfoySxcn3WBatzks364Py+dm/lT78Pe/jLy6CbwiQs/XkaDS5fkpElCVVtETCLwvfUafghUfQjgPZXz8zbLJNZNKZrzXYS4RKUEefweS29wploA/Mj580HHe52XGqF0C/hVZ8IfMqs371ejW9XxPLuq97hV3+eBOeVj7xF8+U3PK3fh4chzuBOfR2sm/I1p33BNJF+3nh8+CwhG5oxpPWanHuOVprf0SHr/C5dYkXoHpka4kLrjL2AZtC/zngflfQ6zKwtUZCkFvVwybfT7TxDw70YTs6r2lJWbu/SnjmkE/F06f1OHei8C/jPew7OgFKIqo7nqN9m4z1uEKfEXNH8etbpO/VpqZnbKzM5iJN8qG22hhGylat36w8+eUVaOgz3Nh98Xzh+lBM8+nfHqGwWv3yreMuB/+Wa4h4ynlllh6UUmSfE2BPzeewo72xgv3c91yw7ruvRLITGm5rwh8k5L6QfziDIUJWXwT3mME/51U/FHqTSRTGbmwljupoxxGOvJLjKMlmHQtM0+W+tX7vtSCqx7vDKIb6V6pLv4f/lf/pePezveqW9geRPcukXeWZg0i8GG0o9H+TroS23z60jp9x5dzCn9fnqKcMHIz3b0SHmquLrf43hcMpnV5Kna2ME71LuMqikPzRlVo+EnaemYsi7aCLvGmGlpryLgh7mGPy7+Iw1VS8VeMuBOebwd4I+TaLN/nckHf5Dd//B/kpzcYfdT/4rxd/zHZIfvIdGqbZpcthrAr/M9ekvmNlqolqEgzJIMwVn8dBTc0pfKez/XtMbv0nsfPBqkjKaG8TuKQFl3qfSCC6dDIk5lvfckRTPhH0bqZYixWwd8u6Z93vsW8Mu9p0mkZi/pc788I1cplTPs6sF6PVzaDxF+tkYUZ6txcHHKPysNdW15b/95vjr5Os9k16mNo5foALJbwH8YAL93cZEWjSulBBsBtK1Xjos+uwc0+v1g1qM3mNepQYjmWwb8SglSrahqy54acD/KWgQiuPR3HrzOu+BFITSFWaUZailxaxoB21aIHWQr7WU7/rP1Ixv2NW+jEGQE/bbDc69+iMOhkQycPreXIGxFT2qGssfYzRg0gN+H49GYJE73nuKAzwczt25SQiJbN+rHVcHfwtPL59fn3KH/Cs47jsoRu0mPXKWXkgTV+V4L+Kd7gRp+I7naAv6m4dEYnDqdYpUiXyPnSK6/BwvkZw94UI7oXRBp1lwvLu2RJpJZaZDOhUOZhteuA/yDVsNfI23Nh97TZzyx7A40xST6skRmgpGhgdCXaVho4ynMmGx4fT5xlvMJv4rsgKZ52VD6VTEH/Ao24h8PTIvwfsNe+L4aHf8Dc8LBgeDdT8PLd+DTL3t+9KORLeAMdb2o4W9M+4YXgO1BmnGQHHJcH3F3+ga7NsGrjG509W7P8czhhR5WnR1xgANXI4tTrO6tNCjX1ZfOPs+nHv57vvPgu/iO/e9c3M5czQH/7pMbh2ktGPYV46nlZGTaCX8/9ZysMexr6qre4yt0jPuEBjcNTdpzjD6/ESXqGXJ2it1Jt5NSXbK6gD+UxzgTGHrOthKmDVvX+lA058i9o4ovfj2cvz/48f2F584Lz+QB8N8u+K4Pb4pEvri897zy5lw2d3RS89zTCi0TJmbCQXr4thok1q5qwXjtKtKlNWMvC9+rje7yML8XODxKsBHwzif8DvMWntn4x0tPd03K0Vv8HpKYIFAZR7YF+6C2gamg8y2ulS332Tm/spQVMWHqcTZJvpXqybiwvFNv6/LlFNHbayfgQLzxC1BJ+7CQpkZCS9PvxvKphYWdh9kpiVQrOi+tJVd2c/aHGWXtKMz6CeRhR8ffGOulHQ1/IyEQ+c56g7DGQb07zWn2r6PV3kl6KCEx7uJJaDPht4N9fJpz+j1/jfLp9yC8Y+czv8b+zU9HLf+Fb7W2GsDfG6w+6JSQC34K3fLVDG9mC2Z9TbkNE34hdQD7Us09ADqU/vmbiy0o/dGQ0fs5pT8dIpEtYFwH1Fsphqmgmi0AfoAdHdzErXdYbxno9U0ZIUSHIn+29m/SRDHsJ1QGroo+f/2F/5zv2/3ONo4PaCP5XG+Ii82TRqMc/iNojL13YAyiu0/edyj9wbAvRBGuf7jpSOPWs9GcJxsrS2Rw6lfzBlwus+h42/ku6hmD218ndX6t0Y+Ok+KislvHkHXLRnbHtt39QOsvgjfEWyilJJIQzQdBjw6wJ/toX53LoJH1DJTmSjTua6bJznu0cHPZzO4VXAT5XVCq5frUg7dSxgRqYt6ZVqhxdOjfuUrtLX2dUURtqBTbb0MVJ9jprGvcN6ebNjpnGen8Lh9gvSNZc17KwQGiv4/wHnl0sVu/iJ4jPu2R6Gha6iBRCh+bsLKczhuKsfpJM62vcabkz3/XPj/2w1eRUjA1YT/6MoOoBhNSorWcu/ubKQLfghzfmfCrqFn3zb0yHh/pTKB3Q0tNW3eMy8qSJnLh/nslCefSiR1TO8PH3xM+96u3PGdTHyRApl5x6W8m/Dvp+RN+KQXXs3DPuzu7FZqKUpOn857iB58xiMtcxDGOzScDRDkJev4t6uXx1wC4Pbu18rteb37O7D3BCX/3/U9HhmnRxPJ5JtGMrutv01Tj1P+wMe6TMkbSffON+4Q1iGqy4hPzuCqPz7Cyik0tkWAw4WnhTSsxW79x0QsoXhHOeX7nj04AeO+LPZ65vvjcbXT89x/WLfviUeruUdU2cwAenoRrN42ShCaO+e1Sla8x3mC8Wavjb/+uY07X3Avw4bm2aZLcTPgnE49xb8V3I5jYPa5ybnUq/iiVaEltLNWWKQK1cZdgFogtTfvc2l3x+Hcm/Jepn/u5n7vwb4QQfPKTn3yUt3+nnmTFSYBcjkGTEkTsRuoM6lkwExI5zht0zJuHKAlfykD3k2P0zt7aiBEpBfvDDK0lJ6OSSWHo54uTu0bH/9CcdVz6E4g55UkEx2vp/O0H6XluOsxd+jva7J7MGOqciS3YkefT7ZoJv22AqtKMPvqXsL3fo//KHzP8+h/ywmzM7MP/0bnvs6lEBCO9/uHqZwuJbCbN9dLDxpmw0l4zWXXezSf8LeD3879Veh6nljQT/s77iy26gCJOgcsx0ls8glL3kT7SwqVEr5vwqwSyIZRj3OQhPk7I5X5Y/PZVRk9mTG0R4rzOifSR/X3s2T3kbD3gBxjmCdMspSqmZMNreDNBCtnSxroTS5/2YFYjqxlusB83WAYqvzMsaFoAUReIqO+3g32sq0mF3kjpV/0DvBAIZ5HlpNU8AyRaAUuAX2Qh6rFzkey++ll2XvscdV3hb7xr5TP6vYRrAsYzw6QMi78slQvJHOeVd6CTSyRO6Axmp4Fx8RYqaBE9Q9Vj5KbcrIK3w54aoutVADnfXgO2RMiEd6XPct+e8EIaMuW9Dy71AvBKY5Mcmw+Q07OQFR+vaRWlTJvK2ODGnmfn+5B0qzKenX6yENWpz8IE3u5cwThLJjS1C5RHKc+nnC+891I0HwQDs1xkFL6cO/S3kZ/D2PxY/6iX117CvvZpBid3KZ95/8bzFzrXS9YjUUHWY2yQLrisH85v75DlDJd3ZRbhOvZA6Wak3oZprPdM63H8mxzvw3RfyfDMyEXGzJfMfMGBD9F8s8KBiLF8QqObZmUz4VdJaHTWRfB86e0tmIx2gX3j9jzIEypTtb7mfZnTlzlTV3BkT3l67wrPX4WbD+CPX/b80Acl2Iq6Dp+ZJALnHUWcRl804RcInund4Mvjz3OnvIvfeTH8XAiu78HxGD7wjF3QWV9UwrnYfdF4J5HTY2zSO5faPqpHPKxCI+ph+WDl+AyiU7+U84nkk6q9Hc2bd0uOT00LYnu5YBINTNdR+vfVEImg9DVjN6Mv4jlgDf6brM8VpkS4GlFN4ALmzKPU8oQ/kZrKliEtyRnOfYo3VJkYZfyll6fcP65JEsEnPrq6vhr0FFf2E45Oam7eLnn/S492v3/1jWLh448i4FdSY62ldCXZmsbON6tqW7UN98IWDJP132MD+KWEVIcTz3uP1IpNUvPWtG/mqJzdmvq+XFJBtY0BzJblnAfx1hF/I6OqtozAM8ZtPaQQEuot3teY9fJUIWIE4J/BeuyAX4i53uUdwP/2K18ViKS3SOeHOM2M/55EwF9XSNnDOUcIsIr6RWj19KR9qKa4yUOSvUPW99TCi4a9BK0i6J/V9PO5rr+Z8J/a+fQtESHT3OPRzYR/nWFfpKYJpUP8UrzIW5f+jvu6EII9PeCknlx4k20n/N1UACGYfuAHcL1dBl/4dwxvfRHzwrdh9p/a+D5ry9k2Di9Z08QQQiBjjJow5VxbLoIkQ6yZ7kM4FsIsm/a5dgorpI7fJ4gs0n9NeBC339wWXVYpRTvdr7MBrtH1S79iELbwuv4erhxj7341NGd01lL9pZAcpENem96lr/K1Tv/t8Wkm/LPxxlAbrSW7gx5Hx2coU1ObijTR6Ej37AJ+l/ZQs7NFp34hwiLamkh3n98um8mxS3KQCmtLMrW5QSGkwuU74TOmp0uAX6CQ7Mr5giInQSzRUpNJOB/V6AGCd618hpSCYT9l0EsoyuCSOyssha9Jk+BbcN4365zfujkQNkQhhqvNqsuWkuEaD9F8R63r9p7aRfoa4SpgzbE1FdgamSQ8Y67xnx3+6Px3wpNW4Tuy+Q5SKmy+QzI9Q83GNEskqUTUaK4qWWpjKY1HS4ExNjZmzi8fByS9buC896hRM+G/Qu0NO7pH5Q2VN+EeGDH/RVdeA/iTTjSfEILn02t8tXyDHRUW47qaT/gFbJaaXH0R+9qnyc8eMHYGdc453L1etJJoLZgVlkRJEBKX9VHFJDRUOoBfKUVKQkVNYWdkzuClBm+ZNokUMscBSoTvQ0vRTvgLWyCcY3dHc3xmQBlwoNBtc7PLdhK9XXxdtNdoYzLqOwfYA0Vp2InXy2i6qDe9qvd4vSp4UJ/wdHKFj79XcvOB40tveL7r3YpBahcm/A2dXyDpJ6vgdLme7j8DCEZuykQ4mqP1498rqS30pbhUXCKt07eApIcoR8hyjMs3N8hvTl9t/732NWMzYieZU7Ybp/69oX7Lmt6Lqpnw34nu7UJ48lQxncQJ/xpKvxKKA7XDkT3jqD7lOvuAgEs49Z9Ux3zx9HN8+/5H2e3s+1sq78AWgXVipmBL2EJCeJlaBvxaJIzcKEgfvF+Uc3iPtBWuYcxFk1q8pygtf/jZ8Fz57g/v0u+tv0+8cCPn6KTm9dvFIwF+7z2vvBGu9fe92Ocrr055eDo/v5VQTOsJu8k5A50LqnIVWujtJGlb1MzOUEIhRLi+N60Xmym2js9xALxoDWHXVZ5JtArU8tGkxg7sxqbseaUec67840ysEVIwq2q2cdEs6osd+ptSUlBuYAp3qzJ27X1LRbnBn8V6pCvjS1/60so/X/jCF/jVX/1V/ubf/Jt8+MMf5nd/93cf97a+U4+hfF0gBocrtHgR492898GQi0AlbxZKUnSmjd61jvnq2rvCjybH6DWU/uXKU8XVvZxBL2HWMRjry5xMJPj4P4BUqFZScO6Ev9HkSrXUuFil9AMMdI9cJpTnUKlEXc4XuMtsCKB44cNU18O+J8e3z93ndeUaWrGQKxp0bw3eGdIG8AOijVuSUBct3X+l7Ny1mq6Df/MQbOIXoT0+7YQ/9kq2ue+qBcA/xPmgxfZ4tNz80G3Avb39pbA5e0+Hcy/WUPXIVUZPZWud/pffJ+m4rq+rXj+nl0AxK7CVIc/nMhGxMOGPbIplSj8eb+toBDXfTlnMARU0+vrzH9g+MgeWZQhaKZSGYQfwZySoJcCvm2tgehoA4oZrTQhBL9dc3evx1JUe+zsZDpjMzqcOOjz6UfUpb6FUdFFvwGpT+2oHiUcue1jE8qYKi1mp1k4H0niNmd4QJSS+jY6bs5PCRFmsUPxKY6mM53AnY5gnWy8QKmtJtGhlIwByNgrxjUIGeZD3DFTOQOWUto7SDbaa8lcRwKXlaMF467sH38YnBt/OB/IwLU5awB/jMjc14Hauh/ebnFJfEA/VSmDSXmj4KYWSsmUybIrmC2ydeTRfw8ISzjB1c0NV78K5IESg9edxYjt1JXjDn//uff7yD19BJw2lXyGbe1fnXtfo+BufmcZktHu9lJUlSSR7gzREXUoWjBOvtjr+AIaeOYCnD8A6+MxrCuE7pn1atHT+nuptBTj6acZBlKHcaTTo8b36mQj3mktQ04WzHamQxKsMMTuBc55xr09eW/jvZtrf1H6M4rt68OTH5Q3gv/8wbG8vBaEUkzaycX0T5TDS+h+0On61IoHbVLWr+I27v8rXxl/ht+792mOLhnO25t9Pvsgr7gRhzGr6y2OoZcAfBhl7ZCSAW3hWXX/tD3jfp/4Z+TiwjBrZo/COP/7imLLyHO5pvv29m5kpzz8TrsU37hSPBAqPTmpGE4tSgo9+KNwnjs/qNl4tkSkzN6N+RHq7cYa7s1vcnd2hsG/9eFtv2wZCIhJqV1NvoPVX7X2AuZQxSuPcBq24EKKd8o/Hdq1Eb5tSUlLVdjvT1y1qU4PiUSrRkmlht4pzLCuH2nLtoaTYSipQW7ce8EvRpir8WavHpuGXUvL888/zd//u3+XFF1/kH/7Df/i43vqdeowldYpcZ3on4iLDuzk9si5RET8vRFuUs9AhFhJ5+AIQAL86NzF7XlpLeqleWKQLITjQ8w67QKAItH+PO3fCHwC/hEanLmSYdC+Z9jWVSs1uMqA4J7O4me67tIfX66deJlLR9cmdC/d5uepZeH+RDxcAL0RTu9kZSZK1fgoisgFEkgepwgZmgmgd/eXcLEjQavqEjgsCQEQqdqPhd/jA49gG8Asxd+jPdgIdXId8+PScTnVr3Bcj+Ro6f1OZStjVPYb6/K5wC/jXmIQtbKeSDPIUZyqEN2R6vnhtGjo+CxP+7s/Ch8TrwZrw/53pdzvhz8IiybN5itpWv/EdOF34sRCQJZrEpaSRdJWTIJe08XPAf4ISaq18ZvGNg5fB/jDjqf0wla3PfdA9euLEW6nG9HKoFhf1u2qIVxpRTtomYLd8NQWpUEtgrfk3Hc9Pkw9RyDYWshvNp1RICei+vqgtzsCV3Zzdfkq/F6Qa2xgF1cYzyBbNFlvDvuEBTgS9eCoTdnSvjZ+UQmy12DJpHycVopOQAZDJhA/23tV6SCSNhj+enxsbcDtXw+/rArcmUq9b7fUSr5UskRHwR2+XDYBfEuISAWbUrRQGZ5m2gC4PUrF43MJrmji/CuEs/Vzx3NN5a3KlRYIyawB/x6kfWDAZheBEbZxnbxBkZlLG37t1gP+kfY9Gy//51wPQakz70kS0E/5c9rdrmCrJNRk+4079cM1fyPBc2zayy9vFZ4LOEKZAFmdr/3xqptwvwz342d7zADwsFwH/S8/1+It/7pBPfOejT123rSYFoLkE+qnHATO3WcMPcx1/Y9znlQ5Nji3A+x8c/R4jE66h4+ohnzv5k7eyC23dmr7OF6s3+d3JF7BSIqrx9t/jlpWnEfBX8/dVUiPxCLdIV+qN7gUPjEkE/K1pn+e1W+H4fvzbd89lcVw/TMlSQVV77h5tz6Bo6pVI53/+6Yz9HU2aCJwLUYxAC6rLR9Txh5SCgrEZcXv6Bsflw7fUwKldjXE1WiZoqc/V8TfgUynRiQgO0sbzgPgwAv7RxOIecVuVEljHhbn0tdkOeFuzXWT1NpXo0IyoL6DPW+cot4jka6qJ1jtPh++isd+6fQkxuO6xshm+VeqJmPZ9z/d8D7/5m7/5JN76nXqLJXo76zW3ccKPn0fzYcr2IdBG8nlPEsGO6O0ih8GMzE0eXopKpdWcxtpUo+OHYOQiwuAvpgKM42euB/yimfBLFTbWu3ksXzVbecluxyBuXclIn7aNnntN1QcBrCYnd1aM2M6riSlawz6RbTB48h4tFLZlW8QHoU7WmvU1JToL4AX6WfPddBgQYsml3zsfToOltk2xhiIplSCruhP+QAe33pGeM+kWXXkEc8O+bj2TH3JwQbSVjJT+pBhf2N3u9VJ2dEWqPDqJ2+b9nMGRbAL84e/ChH9xETUH/PNr6SLAf57RYPAVEOzHKXcA/PPryVuLahpX5QRtzEIixkWVaMUg15T1OcfKh8btN7qaozbseGpoochFDjIFU7a+E015b4NOW4Xj1G0IeO+RSHTDQMkHwRMjnntdw1Ehgulcs3aYlRY8HO7nDPtJ2zTp9/SFU37nQ0JFni6eB3M6/1WMtyRCk0jdslgsNlye2yxAhOjo+Df7VzSA3+T98+Middo2UdOlRtRydSn9EM6pNJmbfLps04SfuQGfN4h4PxHOtLFrfZlH/48oG+tQ+me+WmAzNFNALfSc/bFmwt+wHERjMhp/P6sMw1wziCkKUgTBWvfbbYDk2M0oIgh54Rpc2YHawmdv6gVK/9REPxbV365h6mqe8uF43amPVv8gnBBbA0URGSSdn+CTHFGerqa8AG9Mw3T/anaN5/oR8FcPFv5GSsFLz/Xa6LQnWcO+WvCZ66eOmTdR5iLoifXPvKsN4K+jcZ9QCGfnTaUN9fL4a7w8/hoCwbftfhiAz578MUflg3Nft00dR6ZE5WvuMQt+L1uyDratbMWlP5aPTaLOuaAjw7GVv8Tn+3hiOB0ZhIBnnzpfciCl4PmnwzV28/blJ+ivRjr/S8/1EEJwuB+uvUbHL+I1WJjLmxx67xnVI5TQ7CS7SKG5X97jzuxWy7y5bNWuwuGQBK8DgdjIHGgm/FrTWXOtsoqWq43mm7iLm/cbSkmBs+7cZrSxjtfvjRldwPCDMBUXj6npnyhJbd2CqeHa7TMeY/32gF8FwH+e075zIWp13QBDSYG7oGHwp7WeyOruc5/73Ddl4fhOnV9CZ8GZed2KRMp2oima6Wpdto7sDfB3eJKGKtnfa0GMnxxvOd8PpZVAiUW3zUPdBfw6AM8lDb9cp+F3FnQa9ktIQIbGRevSXwSdf6cag7iZXd9RVjEr3q5jFMQyu9fwQiLLaRv/dV457zmpJggE13wEnsteCp3SQuGSCPiXjfs2lKyX9PsQxcHxu5GKVpvRAP5IjW5ExN1Of+UMx9WkTU5oPwfImgl/vhN9AcW5emGgBV3tf68B/EqoC5tHTeNA1SXuAsqkVAk7qWCQK3TUYQtbtzGPi5T+5QWHWLvobho2jQu6EnKjQ3/7mkHQuy9H8wHhYSc8H0ye5are41l5EJpYTVUTul7uaTG59CKh30tQQmDWPOg8gFhvcvOkS8Tzpgv499UOwgtUmoIz+HrpOjVVaMSoZMUTyTmPlKAjdb/uDUilRvb2gUVKP4R7kXWeSWEQCq7u5gyW4oGa/z7PHbgyjkzLBTo/gB7NDftqZwLgF4pMJuQyizp+sFs697W0/nMAfxoBf52FZoc651EvdoLLf286Oje9ZG7aF76nVEt6WdIu1Gwv3MvUElNgAbxTB00zgK2YuDngB1p5gJS0MoCZrxeo6XVr6qrnE/70vAl/YDh4H9gbWkv2himdtTlKyYXLPJMJuyqwIxq6eJjyhxd95mbS9meSRDCNE/6+7m+1YFa25Bo5AoKO3y7dd2Sjs97yGndrnNlVhrAGWZyuNKRfn7wKwAv9d3GYBZbHUXm01RRwq/IWUZ/PGOmWlILdwfya6yWeSSeSb5PXzr7eCWDMV4ztLBwDb8+VQ4zqM/79gyA5/cj+x/iuK9/Hi4OX8Hh+5/5vvmVq/8Nqzti4Wd8Px+IRgeemaij9ZbU0qWzPl3ZCg4qAXy01ft64F66jawcJWXrxer1x63/91uUA/8lZzfGZQcrgBQBwZS8A/sapH0DLlKmdtHGa21bpCmZ22t4vMpUx1DvMzIzbszc5Kh5cOuu+tCUCgSxOkcUpWiatjn+56jjhbyL5gBhR3IQUr6+W0j91jz7hl+F5ft5zaTStGU2q7YzunHtsawApBd75C+n3tXUY57aWE8oowTuP1WCdx1q/NqyiAfx/FqP5Hsm075d/+ZfX/vzs7IxPfepT/Mqv/Ap/42/8jbeyXe/U4y4hkFkPsWly2pnwt5R+W0X9o5gDfu/IG3p9b38+sbU1qgru6s67CwGbUgqpwHXc5hcBfzN9gdrUqLjYXDvh9w7R0O4b0O9cZ+rjw4SwMwVqDOLemN1fv32dSL7NO6Exu1dJTu+RnNyh7G82/amdYWxm7OgBz+QHaPN1algxTwwGhIH6oISkivslt5wQiOVIvvYXzYQ/iCRgTukXeKStcahw+LpO1t7SUylVZVBdACpFa4pWZ8MAFqXAwrnAd0GSISRi99rGvz13P5M8eBDUs6BpT9drPAFQmkzVZCppGx+NHtkrjVOKQicMWJrwh79Y+5aymFP6G8C/Lopw4TXDw6CnXjPh10qileQFnuLd/ecpxuOF4y2WpqZ5MWY2vBzVNtOKXq6YFAadL8lIfDRb/GZo+AVIBAkJGoXBsq+G0TsEkApfTqA3v768iVNfKVdMJ7wPTJUmSaTMBuzJBBWvZTkbLzA2UhXo+v1Mc7Cbr0zoAbJU0880szIkjKwrYxw7O9kKONEdwz7jLXvJoP2bXd1jZKZIuZ1kALhwwi+cJYlGnCbrIRHn3o/l8Cru7tfIpmfMvEGvs5WGBc8LoAXOTTV+FiuUfkGrxy98k3phwZRMfQAhfZnjzdwUS3amujNftawAoF28a6Ha6bXoSIBkM+Evp0y9jxp9ga0DD+Tqbr5iwKiVoCgXr/Wreo8zO+GBOeW5NHgdvPsZwd5XPKdTsfDahtLfk/2tGt+impLIjEO9x5E55U59xHvUc50/EOA8wjn8RQP2Rna0pqnjo4GfyIb4JNzvS1typwi+M88P3kXiMwSiBU59fX7KwDYlTBly6HXOeUkB3drb0S3Fu5/R6vfXGfY1pYViX+1wbM+4X53wjAjNC2HNwp27AWoOx7+79+sYX3M9f5oP738UgO+98v3cmd3mtD7hM8ef5mOH333ZXW7ruD5p//318i7fnb6EKMeQ7219LC6qvAPQq9qRZ7GRvQSWpa2Q8Wdyian3ZgT8zz69nTN+o+N/eGoYTw3D/nbwoaHzP3s9axsLV5Ym/ACpTJmaCaUr6alznudLNTVTrLeoDrNQCskw2aFyFUfVA6Z2yvX8KbItzBO99xR2hhYaYWaAJ8l2qFxJ7SrSpfeoOl4eTQkESnHunaCN5pu6Szc52s+JufKbaPPee45HBdPSbGV0Z8x6GvyjlpCCoroA8EeH/m1TCpSUOMfawUVT1vp5As5SyS2aJH9a65EA/3/9X//XG393cHDA3/7bf/sdh/63WYm0R7a7x+ysgnU3ByGDljxq3z2BHi5kBPwNbZMOvb6/h1Aa0dvDz06R01NULts873O3R0CqVLgZxLNwL8bsODypTFo9uYr0aVSyHth5i2hM7LqUfpWFGDpr8NVsLlWINVQ9EplQuXrFEX4lkm9Dmf2nSU7voU/uUN54/9q/mdqSyhqupftcz/bRUlE1x3CZ0t+AGGdRQuEaSv/yhHNDNROv5ni0CQataZ+iMWeUKsFJhXQWZUq87hOI5fOyzrGr+u3CvCltSrI4wSnzPbACCefSh2GR0i92r6+YR16mxGAffzIL0Xz7q0yBtqSaGzvGbZvTk/vMbIVUkiuArJanF2KFIgmLlH7r7VYTfjW4ggGkKRFV0bIKYA74rRGo+CATHfDdRDg2lc4uP+FHhKjCSWFC5m3nAeuinONxPuy33iwh23XwUPU4sWMO9E6byytUgq+meGfa88VXs/l3ubTNDlDOtd9RnQ9IpEL293GAtDXClPhkPlXe6SfsDzPSZAPYFTDoJUxLs9bR30YH5yxdOp9N3TI6zM4VvHcLcZN9naGERAi/9TC3bgD/bD0FX0Uqu5cKo9MLr0kZJ/zZ5JTaWdYadVvTNh39hubaRtM+RAfw1whvEaaiNNM21aUvc2ZYmlNeSEFfhO9n5iq8qdvrsI4a/qTr0r9hwh9ouSrqNi37w4xBb9WETkmxkjBzVe/zcnmLBx0AJ4XgY+8R/MZnw99qFZoJDXW4n1zsYO5NFYCEynhaXpkD/rwD+AmGobDF5C9G7bLuXioT8CWyaMC35I3p63g8B+khu8kuZ+OKodpjZE84qo4eD+B3Fmwdmjtqe8DfVC8TTGyj3z8f/F3Ru3PAn13FC4WwBTB/do+mNeD5wvjTHFUPSETKd+78AEVpEdKR6oxPXP1z/Oa9X+Pzp5/h+cGLXM2uzb0AtgTqlZ0xiswEEVMYTkXNgTEIU+AviGzctqQUpEnQ1BflHPCzBIJ0x7BYdYYG3nveuB+uo+cuoPM3lWeKp66k3D2quHm75EPv2Rbwz+n8TTWU/u6EXwqJw1HaYmvAb5xhVJ+RyfX7kMqURCScmVOmZrIV4DfeUPsaLTV4A9aghWQadfzLgL+smgl/uMcGaQloraI/zPoBWDPhn0z8W2KVeDx2Q7N4WhpG05o8VczK81kOzoeY0seZyJEoyaQ4X0pQW3fpJEDP+b4FYV/WNy9ETILZtsH+p6keabX9a7/2ays/E0Kwu7vLcHi+9vad+uaVUAmwYVLcTPidRybB1VvUVQBxXYN+70mW6PVicICfnSKmJ4j8CsFu5+IHZJpIpp2bkBKSvditT4QGER6ajcmW6O2t7wJ6WpZAC24b0JT08HYUnfoPFl6WqYRd1eOhGa8C/nbCfz7grw+epvfaZ4KOf3mzvOfMTFFC8VzvKvvJsL0B+Qbw50sGit6GxYW3aCFDtA9srQGUccLfNje8Cw2QxrSvZXIEXZrVGbKaIk2JV/1goNY5xMZbEqlXdPL52T0ggH2r8zBRUR55AfAVOm2jHNfR+S9Tsr+PPbmNnJ1dTIYWhMXnCuDv4XAksfGyQumXMkzPls67rmmf9Y6eyi4Ey0mSU6Z9VDVFzU4xHZCCCNrvs0KBNZGG3Pm8JRCVzEaP5MybZZosVZSVo5fNvycXp+LfDCmWjM7szntuJNc4s1NuJFfBRA2eTmE2wtclItOhiVXP4v2sOU4dOqWDzM6CBYPU2CRHCUmic6ZJjqoL5GyMjddIL9PkmV4B8cvVyxRZoihru8ICqGtHloTfd0uPH4ZTL0Y/Uk8XPC5ymZLJhImY4fx2C62qd/6Ev2mQ2myAw5MJfe652Rj36cnJZk+TxrBPyNbE1HrHxBTs6KDLbQF/OVlokgkhyFWjxw8u/cIUTGP8Yi7S0JAQtqXDSyHoxdcYHIYa6R0W3zpadzX8shOFJ6Ipra4KnDWgFUoI8kyzO0jXfs9NUkS3usZ93Uiu9z8r+MOvOCalIEnCz5oJ//ACsOzxuMkx0htQCdc55PO8zO11On5PmPCf+44BXAvvljT8nbdJe4hy3Mo6bp59GYAX1SHq5CbprOaQHiNOOJ7d5vn8xvrmwZZV2IJ/fef/w3U55IeHfwG/ZSTdMuA/bhIcOhP+2tgApDqvu6L3+Fr5BverY8gI9+xGptYkDwF1dsxX730egB9+5oe50T/EGIcxjsnU8MLwXbxr8B5enXyd37n/m/yVp/4yWXECQmOH17fah5MiyHf6MudA7fBmfZ+b1X0O1HVENX1sgB8Crb+q7aKO3y+COt15nqnOhP/BWFJUIUru+pXNUZzL9fwzGXePKl6/XfCh91y8L6OJ4cFxjRDw4rPz7/FwL3g0zUrHdGbbOEAtNBMzYS/Z32riW9gZlasY6jVG1LGEEKQiZWzG7KcbJK2dagz7cpWFZ7E34OpWxz9MFj+rMLEBmcyvvyBtDI1Wa/3ay6mZ8Belp6ircO4+QkkpqDaA19NJhXWOXqYpKxvlbuv337nAgHqcsr5g3OeojWsbIstVlGbbnmBb4pwmB4C1LipZ1++Mh60Af2P896RjSb9R9Uiru2effXblnxs3brwD9r+FK+jfFeCCCzyBlicESGR74Th8q9FsprWNjl9MT1Cc70zaLa3VymKmofWnJO3CrMso2FgR8Lf70WzDBqf+pnaTAd77hW0WVYGME/XjJOFheUa9QQPWOPWr0RGYxU7mST2hJzNe7F3nMN1ZWHTPAf/qhF+0k+i5geI646V1tZJL7T0g5xPqNrrQIYTAxL9TpgwygmV6NPOfdfVr6VlweJ7tXO9Mix2K86eJMNfxLzv0X7ZE43q/hX+CUGkwRWsmiB3Ab71Dx8aLrGZLeleBt3ZRT+89sokoixr+TK5ODVe2QQhslH3INbT+RCscAu8MUsgF88RGQtB8r3J6egnHjO42wLCXYL1b2E0XJSTfhAF/YPEIifPwPYMP8V9c+Usc6N05zU+IQLRoplU2Tnwj4Bcx1q7ZH+c8eWSf2N4QhEAJFRZfeaMz7zRQxOrEfv12Cob9BGNXQZixjkG+2jToGvbV3qKlIlminu7qPlbYrX0/Gw1/Uk0Qa+5LqtOMcjiSi6QmccIvixHSmLU61QU6v2hAbokSklMTtK0u6+OFQHSuDwj4qxdZDYWrAIEwFVPbcehvj0f8PAFa6VZeMDMFwllMR8ufMgf8ots8S/vzxl68btJUsT9INzM41jS6DvVuqw9v9OQQ7off+VLY4iwC/sa0b6DPXwP5YoKfnSCzAUILrql9BIKxmzG2Szpv4bfT8HvL18rb/OvT3+PErLkXCoVXKVQj6vKEW1WQsb2oDwNzA88h4Zl/PL2NOr2JOruFnJ0EHf4lp4+3pjeZuYLXzAOqS5iwdQF/PxdtgkMD+L2HSbFKTW4MFu9XJ3F/42Q2brdzHkPJb9z+dQC+89qH+a4bH+Kp/T7PXh1ydb9HE3P6vVe+n57qcVaf8pkHv4cozsKwYMtjcBxN/w7VLs+nTwFws7qLVymimlwqavGiWufUL6zBd85l1Znwd+NN33gYjvWNa+mlZFwvRB3/m3fLC53hYU7nf/pqumD+qLVgbxi2YZHWnzEz07aBdl41Zn1SSL788pTf/tTJxm1KVUblyq1SAGpXdWyPPFiLcGajjr+sw3eaRpmQj+shrUICyCbmeJaKVgZwMn50U0clBdUa2nxtLMejkl6m0UpgrD/XMd85HxoCj3ERoHVgVp0Xg1dUtvVu2baE2NzkgKDhP38v/FaA/9bRhNPJ4zXc/GbWWxrn3Lx5k1/6pV/iZ3/2Z/nZn/1ZfumXfombN28+rm17p77RpVR06Y+gIlL6g59fBPzOoqLpVaOnl61x3wlSyK2pxmppoQ7wUvYMmUi4oa/SGMipcxz6W8p6t4WqdGvS1zr11+sXHgOd0VdpXIgG+lU1CtNrk/XZzfY4THeZbDD3c/kQmw9DTNbpvfbnha1Ipea53lUGayLmfDS8WwH8zWRMBj8FGbd/G0q/9x5l10z4WzNDIpMjmBpKBK4B/HWB86x0MgXB4FALhekserIYqzcdXmvd/UN3WLWA35dj/JoFjn7pu5H7N1A3PnThPp1XImqy9RaAn6TX/j2AbGjPWS+406dxwu8dohPXKKQMi8dOE0NUIZbSEye33m8F+AGI27AczQeQKIGUCmcMyMWucsMoaGIwxeRkS4u31epnmkyrhYWzc2ztkvskSikRT1UxZ4h0WA5CJVCM8N5F/b5tqcIyegA0MNzhyaoG8O8sUtrj9Hcbk8111Us1SSIXjp1xHiVWzfpgbtjX6PcToQJ7qVN9nQWDoy2/UaszbJx+r5vy67jvLh9ivQ/U1HNKZH2I8X29Yky9Btx0Iyybqp1lPxmSi4SxLUDI1tCvy0gRCHqNAZ+r4oLZMXEd/b4PJleN9EjKsDiZv64Ab1qHfoVEStlpcHYm/EK2tH5iUkM/1wz7myeZ6zCPFqptQLc577G+7UXJd75Y833f3g8Z3dFIcJhtpvR7Z/GTh4BA6WA2qYRuAetqPJ/YDiB6xxeqN3lgTvl3oz9erwfWGaRD3mSKxbEj++ynVzEqQ6Q5e2k07nOT0DA3M+TkHur0Fmqyhn1wTt0t7qz994tqfwHwy45pX/hunfdorbBm8ToJjZkgnXu5eJN77ozTekRRjXHeUVvHH53+LlMz5Up+yI889+cXXp9qRRJ9PDKV8Yn97wHg88Wr3JEG4czCM+G8Oq6O2216Pvo+3DPHFNIHTyTz1jPim8rXOfV7u/Cs2kTpv/kw/M22+v2mrhwk9HOJMZ7b9y9ek7y6hs7f1LJTP9Deq46ri2P1Klcys1OUz/idT5/wha9P+Opr6xsFIcbWUiybY66p0pXIGIspvItrAtNGB9ZL8Xwt4E8aSj+AQCnRGsStKyFES+s/HZePbJippKBcY4w3mtbMSkOeKrSSGBeuhU1lncc/ZsCvpMS64DOxrowN27StYd/8fUVrlriuLtLnKyk2blNTVW2ZzurHZ2T6NqhH5m39d//df8c/+Sf/JJiudUpKyU/+5E/yd//u333LG/dOfYNLqpBfr5upcoWMWLF9hNQFMkbeiJbSH9zH/eQhidRUWz4ctRQxU9O1YOO59Do/cfgXMTYQN4XgXIf+oM2WQasfS3QBf7MQ3DDhV0Kxr4e8WRxRu6DPvTINi0S9c40X+tcZmSmnZtKasy2X2X8adedr6JPb1FeeBWBmK65n+y2VtVve+/mEf0nD752NBoRhCi8jcN/GtM/hW0o/ujPh7wJ+KaOTcYhfaVIApAkPHNW52duoPRvonEQqjLMkaHCWNFL6J8PrWIJngxeeVCqEEAGYFeOgzVpqauh3fRz9ro9fuD8XlYwT/mQ25sJl1BLtex7Jl+PxqCRr/QxENWtpyyG70UKHjtY49Pu01zJLLtLvt5sRr5V1xn2JligNpclIVbLw4G0cx9XVF3F3v4qYnaG833hOnldSCga9hIdnBT5Rsenm0frxPegvW0qKtcygdvKq0tC0M2Vg63SOjaCTo64EeEgj0DP5sJ3uA9A0KZckEltvpxLs9NJw7CK1uK4dWabaCU+3GsM+uxsc+od6Z2VB1ZMZuUoIZ/EWjaMYzdebPCApzij7h4ufGR36XS+wl5IL4iIB5M5VXDmhNznjbPfqSrTmciRfuDcIdnWfoc65ObvPzJbs5UNUMYnH96m4vdCLU1qHo5SerBvJp/LQbBRiHssXjQZzkTFiGoz7nKMWTSSfQnrbJm3IJV8Bke/gpycriQEb97/TfO5+PVejqd59c8K7smfan2ul+IH3TrC7itM4jdRCn6sRdtNTfDFB9HcDq0RKvHE8nVzhgTnhTn3Eezs6fi/kWgbHcnlbc+LCfh7ZMz43e5mP9N+79m9fqwIAfzF7OjCOvEPKeSTuxBUUwpMng9B+MuGaW2tcsaHuRkPA8O/3eO6cv+1WL5fsDiRladnpKSZnixp+732YVC5NKefGfSN+4+zT819M/hAITRXrDUoo/i/v/k9J1OI1lsRkjaIypG7GizbhPclTfL2+y2+PP8v/tfedSFvh1zTul+thbNoc6l0GqscVtcuRPeNmdZ/3yQNkOcamj4cJuxLNt8a8cRHwB4BurOf2SQT8W+r3mxJC8PwzOV9+ZcrrtwueO6dhMJ1Z7jwI1/i7nlv9uyv7CS/fnC3o+AH6esC4HnGmTjnIDlde176/mWK84eSBwkbs9/mvTvjAS/21VO4gFxifKxdw3gXDPpm0KRleKoSp0PkeUztZ0fFXSy79zvvIjBUkSp7rUr8z0Dw8NZxNLA6H2kIKu1xNLr2x83W0856js4JUz9m53nPuhL9huj5u+roUUFaGdZqF2jiscWS9y0FRKcW5MbnWunOlG0rKc1kHALPSXBjF+61WjzTS+cf/+B/zC7/wC/zFv/gX+Rf/4l/wqU99ik996lP8i3/xL/hP/pP/hF/4hV/gF37hFx7zpr5TT7qE1HRd+qUJuiUlRPusV1FPTzZoNbRtNN/0mOQSE36tJFoKzNJCXwjRJMQBovUMWEvpb8zYFhzk9Zw2EKmemyb8AMOkz1D3OEx2eGnwFFfjDVoPw9RjoHoMVK+loC5XvR8WtslJmHpXzqClYm+TXq8uwnazYcIfjfXwvtWmbhPLt2nCL5qpPoBQrceBRODiIkaZMkTJdDqtJvoIpEqTq4w6brMeHSGcwaiUMtvFu7AAdri5F4I1oLMQmfiEqpnYJ8V4iYZ/cTWUY5vmSCHpqQwXz5UFp36hViKvuvp9H7PXtwXdzbWyDvALIci0oiZBpmm3P4GKUZhy/5lIZfek5fSR83v7mUZrSR0fet579DeDzx9LK7lmvu3nDygVjBd9NYNqGiQasWQY8dN9A13NAb9EoBs9ef+tAX5YPXbWBYf/FQ6h9x1K/xW89/T0agNQS8VO0qf29dasjVbHP1vTOGoiI+PU/rxIvqYaWn9vNjp3wt8A/tLV5DKlp1J2dJ+ns0NKazDZeqf+tEPPL7xF2IppnIoPZB6YZXIRUyo5N/sL0XyupfQnKFSctHlYcOkH2gm/LLf7nmU0prVL95FWx98x7mvLg3CmNezLZX9t7jOANwV+8hCRZu1OahmiAp9OAqi5s6zjF9tN+M/qk4VIxz+efpXjNdR+6y1vVKFR+2Ia5FTOhmsvVZqdGIt5ZDrnVPST2ZbSPjETRp3PvlM/2PreLITg//ZDOf/590+RyjOLDJCG0t8AKYRYuU6+Z/ghXsivc1XvsSP7pB3gZKOu/Uef//Nc619d+9n9XOOmp6jxXfCO7935KH2ZM3JTPlu/uRXDzjnbSioaZsjz2ZzWj87ATME+Hopw4yPSUvq9I5yUnUZxl9Jvg6/BnWOwTjDIPAe7l5/5NfF8Ny+I53v1zfD7a4fJWkf/1qn/dBHwSyHJVM5J9ZBiw5rLesvInJHKdGE7jk5q7txff3xTmVHaksptPv7G1Rhn0ELH897hlQZThHtU1PF3q4gT/gWX/rhmTpLzJa7NhH80MY/s1K8iXb8rZ5jMasazeiFeVjBnI6wr6/z8GnuMpbVgUqz/3BDJ5zfeNzeVksF0bxN7ojLnxwsqFZINzvtuJqWhPKdB8q1YjzTh/z/+j/+DH/mRH+F//p//54Wff/SjH+V/+p/+J8qy5J//83/O3/ybf/NxbOM79Y0qqWhc+iFS+gVzozfmevpunnpL6S/GaOe3pqYiIEkU1axeOROD8jzcNHXZxACuA/xR8y4XJ/ywOOH3K3Fr8+qplJcGT7WxauUkdOnFMCzEpBAcpkNem05X3M0BzEFYPOmTO+A9M1uyr4etbnW5muk+Sd42Tea/tCEloZqG76Kh9G+h4e9O+EVXwy9VOymdexyEyEXbavjDQ6wLDax3pEqhhaKvUh7EB5I+DhOc6fBaoLXHG7bzfj4ZdBZ0EqZDT6gaDwlpDb6aIrLtDZFEHWPL0hwlFH2VUaQ9KCaLTv06CV4BnYZSG8mX98OEXapLT/jlGko/0Jq+LTcQdJQgiN5uMMk8u0c2HVPGa++ypbVk2Es4GZVhMi0E4ptI6d9EI1z4sdT4Yow39fz8Ji6uYO6yLgRJlB3VvSFayEDRBGS8h2zj+7CpuscuTKXlQkxWu7nFGGkqvJCY/j7eFiuT86aGEbA659DVKCQInDMtbnT86yj9STPhz4exGXXxudkY9yWT0/Ua/nIR8FfWcC3ba92nD5IhlTMUaUaPVcAvRQDvYz+lwCJszaSZ8Mt8PhXrAn4lyERj9leBq6hFeI0WqjUhczpduV4aM1RVTNlGNR3SICBSDdqfX4uA/8icrrptR0A+jdP1XPbWTpU8Djc+DuA9m0dLahXumU+lh62Of2Sn7KgoCxAyRhieP11vaOTX9D6ZSHmjvsfvjD/DX977/oXtvV0fUXtDX2ZtI8N5T5oojHUcqF1GbspDc8azaYxLlQphaoSz+C2M/Jrp/lDkjH3BQzuisjNSfXF6AUAuK8gUI9c8jyR5PAecBy0Ejvkzp6nnsuu8b/85ZrMqgIB6gtM9ZoNDjkYjrh/0efFwvfGex5FVZ2SzI3wvgyQnAz7e/wC/Pf4TbtqHfGc9XTCiXFdn1UMsDo1qmyfPp0/xx9Ovcqt6gBGSxNTIeoZbw/y7bK1Q+iP9vPs9dU37BAH033wQ1hzPHnq6o5Vt67mnM4SA07HldGQWvBe6tc6dv1sNpf/kzGCtX/ASyFTGqC45Lh/yVO/pFZf7mZ1R2pK+GvD67fAs3R0qzsaWz351zDPXV++dWmqmdkLpio1MnMrXGG/oiX5sVImwtnQG/KKOv7nWmwm+bl3656TKRMmNoBRgJ/oYjCePHs0XYuoMxjmy2Og6nURPps4zPUSPbm7cOc+5RnePWomSlLVdYCA0Fdg6/tKf2VDyjXWkaxhstXXnMhWkFNTGR0PF1b9zzjOaVJceJL3d65FWeG+++SY/+IM/uPH3P/iDP8ibb775yBv1Tn1zKhiT+ZYOLk3dGrw316leo6cXab81x9PFiK3HVAQ63Tof4tawy/uW0r92wu8tqGTxhtEIymFu5lSf343uLopdC/ivtD/b0T36KmO2Rstvdq7ipQ5Gf+OHeDz76XCzQ2i5IZIPQoNeJW1EYus+vaWGf65p7br0L90Qo+RBLGj4K/BiYZuNs2QyRQixYDTWJBJMh9fD4otAtVwAF86+pci9bUqopNUei+nlAFxDy6+TDI0MQCwNi7QVp/4lC1nZmaDaaFS4LeBXDaW/nET65WIlSqJ1YL60ZWpU08jJd9sGW1aMH3nCD2FSrTr575eU0T3WklIs3DdCspFovUMAhE6jfr9elPAIUARzpJiI1Pp+1HmfROr2vFaRFfJWJvwwP3az0tDLFPo8Ov/wACMEiVSkYj1lf6AzUqmpohZ+3bnRraqJ5lsH+GNzyEY9+Tbsk9a4b/wQKVblFa2GP+3HhoBnoDpReEJwLdsjjfICuUSll5I5eMfgdNZGffZlHnNdFu8/YcIfXjP1NcLO9bMJGh0Bv0+ylXvtPJpvS0q/EChYmJQD7KohidAYLKd28ZzxUiJsxawz4ZdrwJMvxvjpKSJdbEhKKQKhTmiuRh3/3a6OP3qtNM3rTdXkvh/qXb5/+B0kQvPAnPCF2SsLf/daGe7bL6RPd2i+PkaCKg5kOGZHXb+CJvHGb9M2gbuzAPhf1FfZjaD33uz2eS+Zl/fBXV/KBcO+9rv1IJVE6sCqObeEQrqaTCTspntcG2ymhrvxCXr2AJFm1J3r80YSfQ3siMrNLtTxt4Z9eqfd5kO1S1/mGCx36iO80ohqzNYZnOdUA/jLCPgbCnqXjaaXmI3KVLzxIJzjz1+JjIBLVppInrkWrsuvvrpqYgehCXHrXri+NwH+QU+SpeEaOD5bPbZ9PWBkzhivYatM6jEgGE0co4lFSviRT4Tv+LU3C0aT9eerEppxvfneX9sqeomIVi6EVAhr1ur4nXdUcQrcTPgbwz8R3d3FOQ2VZsI/nljcI0bzNcaAJk74y8pyMqro54vrL60ERWU2TrVDY2K7RYDzjqmZnsuWaCrRktq4tZr5ythzj8+mmssY1u+LMecDfiUFzrqNxn1FZSgq+0jGyG/neiTAf+XKFb70pS9t/P2XvvQlDg8332DfqbdpRaDcTM8aw5LDnYwkLmg30evPoyqfVxuNwhoDuWqGdGEZJvLd1T9rNe9L+9FcqltM+Bfez3v8OCzU5WAO+JVQHCRDSrfGxEMqzF5YMPuHbzBU/YXF8MpnNKaHy3T+9sN01Nl7VJyoya0n/OEGLGLTxscJf7eE0qGZgGgztZUto650fotz3pNHin4qE7SQgebfAv6n5gY1MswKGuq0dybsxxNukLYJERsyyTdVA2BMkpFIjRQSGRsw8oJzZTmST3c14heUyoa4eL6qNXTsAPYlsoO+G3DqVYpIspYlkMzeGuBPE0U/1xSlRfINip7xnuzLv0vvD34Z02FSLKeiOYKp5MImqSTQYdc00qQK9y73/2fvv4JtydKzUPT7xxhppll+bVu1a1dVd1X7aiN1y7WEumUQQjTQXNA5cODEiSCC+wQ8XB4ggiDQC28iFAEPV6ETATeCe7igcxBWgCQ4ct1IarVTV3d5t6u2W376zBzmPgyTmXNmzjnXNu20/wiFuvaaJjNnmvH9/2eMATMmAL0s6dWaVdyzQmbjhczq85Q/doCNe2sqXjPskxDEW/X0HRGjw1PkhfWPoBW/awn45857Y8KEX6Y9e16vcW76CT9NTiAMQta9L29yqeMOci0RMxFi88L+EsPmhqUwm2mdKcBZOa2f6QwQnQDquiy1MfJzzwJGhBT2Pmop/QWk9hP+EvBrES8AbR/Nx7P17vsggHO+gMMYUekCL0/n3iNAxRTTzIL0lHUWBsBGFfZ5wvhi45BROOcvR/ZZU4vnIwZAB/lXYxmNY0fB3+Gb6PEUH+9ZM9QvTl7CmbT3Dm003sqt5MzT+d2tO3jpbDUBfpCTLqwHRrxJ3xWxGfapqulfWl46QKJi2Fc+R5W2jeWYl5rt1mJWiiClhGAMUcs6wxgNzAYQUYIkTVGV9XZ5ik1umzR3ixPQCir+aW5/ux1RrlOICE84t/638juASEHFbO2Y3WW1OOFXCKk8rngxxW9vdfCPru/hIOIophkO3WPn8T19z42H61ftuuGLXx/iX//qXXz9lXHNW+GtmzMYA+xuiVYGABE1GveFbSeOiMU4zo5rwDJXGSZyhJQnuHHLrouuXEhwcS/GY5cSGAN8/ZXmRl/MYmQuyq+ppmpaDi2Mguea2muggGAC0sjwfmlk0MUHwO9kfsyti0Cm1fjNR/ONJxpqRWNveZUxdcNJjqxQCyaygjNIZRY8MHzpFc72HuQfZ0d4e/IW3pncwEk+bzS6WJwzKK0bNfOzTJ0rJcIXc95fTY0/++91P6qFbXJS4jZzv0kmoZS+p237dq57Avw/9VM/hV/+5V/GL/7iL2IyKV0xJ5MJfvEXfxG//Mu/jJ/+6Z9+YBv5qL5J5VcrIg44jWRepwXNRfL58lNHS1VefpGIszvY+NJ/BpuNIDiBNUT5eVqUd9OmpO+o+nPlKPD1jWGwbnFY6dK/UNnIThlAAUz62oy6SFmETC8+nAoXMRef3sFu3F/qdNoayWf/1XkSWFDOIzd1XmOBYKqmfVUN//yk3X02EcFUY/mqmmn3iR4sxUwgIgEzPgOfjWGIkG9csM9DAxiyC/7aw5JxgLGHquP3xn2sATy3ljEgBzbzKEbi9pF5tsDagL8LZRRiFq1NSYuYgPRgpKE5JjhDJFj9/PGMkI5LEgiAfxgyye+1eqkISRwP0p23qaSW4N/4LWy8/mX0jm+CHb4R/lY1TQNco4pQ7/6TlehQgzcGZ37Cb5CoMQgGhnHIKKnR6Hm6Zc3QYMLveK/V60TophHSlqi3MOHf2EOhFVKWtIJvRoQ+S6FUATDr0bCsW1Y4wC+KWc3QkxdTMOvGgSKy/hTrNKMo3QREDBiD3my6EEMaNPxJB5ku0OWdWiMl7LO7Z0bZFMNKJJun9APWqV8ahdw1FSylfzESlNgcpd9oFI5hJYhDyCUTfn98stXxXr78OTRfQcc/59QPkcAQxzS3/941iyZ7enIKk09tEsJc2evNfqEHxzUdPxFIm+XNH6Nworxu3N5Xnkmu4Wq0Dw2N3x19FdoY3ClOkJkcCUW45DwDlLaGn3bCT9hm9v1DPUFefcYRljcdXE3kGEM5AAG4yLdLwJ/dXf5G/zXamTAyhrHyhn3ls93A0vjjFbpoAAATIKWgixyCU6shqSlmMEUGRAnSiC94OFwW9ljdkgOgJanH13Fw6K8PQ3w839v5HfuE1Qp0jrjCtlqI5Zs/JkZDFDN8cTPFWcTxjV6MkxO7D7sbQC8290xZ/sAzPTz3nj4iQTgdSvzOH57iX/z72/j9r55hNFF4/R27f0+2TPd97W21A34ASFmKTM9wmp8E0DyWExRGImIxbtyy58m1y/be8sFn7LPhhdfGjQZ1ggQKI5E1eAMoo5DrzOr3AZBSMMH7CIBjeLCKjl9qCelSI0rAX9LiObNpIu2A38lIc2CWr2d23VxW0660xtFg1pwY45Io2pz6lTELjxxtNKYB5N/AO5MbOMoOoY1GxCJM5XRlmoLfvmwuOtAYg6y4N8Bv2b/UOOFXysULLhlgePawajkWo0kOLu4JHn9b1z3t0d/6W38LH//4x/HzP//z+MQnPoFPf/rT+PSnP41PfOIT+Pmf/3l8/OMfx9/8m3/zQW/ro3rYFXTerKT1V6jkZgm93meis8nZ0o4mAHRf/gMkd15D+uYf2axSgYULz8AuiMhNw9FdnO6X2z13c6tS+iNv2rdeHI4eOTp/d2uhwRCzCNvRBqYNnX6v4+8ODrEhlj/kljn0gzHnScAtRd8byRWr9URVSv+8hr9afr/shL807QPK4alx+jXBSk15zAX4qZ3WyI19UBRZGhhZ2ikjFib8gSlCfK3F4r0WhZi79QE/FTN426dCWEd8wE7fAQArQEKp4bcT/rUj+WDPae2N45p0/ARsdGMkFU04hQaRMyKrNNfuV2KWxAKdRIAYGh+8xhhM1L1HBgF26j6UE0Sv/AF23no+/Hs1xnLBNM3AmbjNbVOUAGIRaHJGwWU4rkTyGaKaaZ1gHMo12u6X1p/GHHubSdBuLmxTxbBPGY1ug2GfLyJCL0rBDCC5cLrRJXpLEUM69lKV1u+9HlTcgXZSh2WTjur3e1p/bzKCnJuceA2/iTtQRmOjxbG8RqU3OkR5ElUm/CYL030BjpiENRydO//mmwRkNFQA/ALcgVLjE0lq22HBq8gma4MawanxPL/gAFyjcZ9IMIHdx40iBzu7CT09gzEKJp/AjE+s5K2JlVIy1XEx2gGBMHY6frsTnk7fDvizYhLSDnac0z4R4Qf7z0EQx115ghdmb+At585/Lb4Umk5aG0c8YOBEiBGh5yLwjlV5ThliazWc/XR/V2whZjEuOcB/XJysRf21OmkFEK9Q+stn6d7Rq7jw6ucgnBRieVlmgi5yJLFopQ0bd56CMYiQWFL+PTRi9JltBC/5LY69tIJv1P79crQLQRwTneFInsGICJTdP61/fsJPWtU23jfxDyN7v7wdCwxO7fVzbQ+28X2P93XGCN//kS38lc9cxg98dAsbPY4sN/jyN0b4P/7DbbzljPSeXgX43YT/+LSZgk9E6PE+BvkZxmoMbTRGcmip9bKUDVy7au9H166kYVteeXOxqUJkB0xjudjsLXRuDfv881wXYQhmnfrtPvGKjl8ZCe+DFwUNf3kv48zef9smyXFkZQ2Ajea71+IMyAqF0VRiPJPWRHaumPNZanPqV0ovMJRO8mO8PbmBw+wA2ij0RB8b0SZS3kHMEhQ6b2yezJfghMms3tCwzQdzz3HABqZlwr8a8NsPaG4YFFJhNFOtjfzv5LqnI93pdPDP//k/xz/5J/8En/3sZ/H000/j6aefxmc/+1n803/6T/HP/tk/Q6ez/EJ/VN+GVb3aPa2/Am41jHVER920DwCYmzrS5MxO7NumU1oF0zcxOARjBOGyOqtlvImTn/A3GfYBrjMwB2gZB4hZul6I5VuT0u/o/N6wb762oi4ixpHPTXLyTWsIFI1PLThf9h1uge6Npco/OFMgJuw+VAwUyaygdsJ2mykA/sqEf54Zwbh92BPBON16lI/BlQyUfmtGxxBVtOldliJ2SQRy50ow6mNgADMOXJSvp6gT3NUfVvkJvziHCVsZyZeAGAv6e+5+j9UT/lLDbwwaJ51Ly107bU2KbiqChAYoGwz+fKHKtXavCzZfREC/EyEWvJGlMFEZCi1tzvo5yzcLTosRdt5+BXuvfQkAwPaeAAAkZ4eV7SDHYLb7E0zc1nxCMScp0QZIfQ69Z1LM+SsYb+h2H8Z9vtrAPlQBPrYNHbmxD8C06vd9dRlHRDFmXMCs0ShrovWLvJSbaBhL6V/zMe9p/fHkDLVRjzHhmslEDME40hbTK0o37GTaGMRFHoyoiBFSt/9TnYUJbpenIZVlnmHCCEiZ/Z6ZyaCVatHwLzYf/LXCtGqNZJ0vTtRoOOsn/CdqGBoY1fLgNI62AKOgT96BPnrHNY+1ZU40lNf3GmNqOv5yyu8o/0uA4YmjkW+wbu0+1OcdfG/XUvv/cPwCXs9uArBxfL60BiLOrd6YW2PePeFp/ZV7E2NrOct76v5lsQ0whh5PscFSGAAHszsr32/ZEfYcaKL0P37zi9i89Q30Bu/4EJsVHwgYKRunnQBgjAJmwyB/iwWDEISiohcITQs1RKEmFgQ21LQYYmZyEOqUfsDefx6LbDPtRn7HMewKrJt80FZBw587t3Kja40lkU8x4AyFe6bfjgUmQ/s7Pn6B7Ovvs+kQRwwferaPn/3pS/jJT+7iysUYxhEHNvscO1vLn417FUp/W1NZOMndSXaEkRwiUzMkPMXNuxm0Bvpdjm0nG2CM8MFnbEP3ay+NGj8z5gmmaoJi7rcsdAHtBhcwxjagQpyxsBN+o2o6/uqEX1Qm/F5ixLn1oanhfaNr15On9Z8M7wfwM2S5xulw5ny32sFuG+CXSi/0JWdqCk4Cm9EWUt6pMdQYWeZCW5JCtSLBMM1VDaAX0kAqBXGPtHkiNMoTtDFQDebaTe8vGrRBk0yhKBTi6NGEv1Y//uM/jp/7uZ/DL/3SL+GXfumX8HM/93P4sR/7sQfu8viovjnl3fiNMWHCX42DM0UO7ib+8wCc+o7+PjkFI9bqOCoGB2COGiUGB1bTK1hjB5QxClO4JsBv3ANugbJOzK4WKy7361L6vWEfqxj2VavDE2zyLiZz9L5pFKFw0y198nbr55vZCOqW9b9g25frf3QT/pLSb5y8wl5PK6csMi/nGNWp13zbllipuujtYJpsgBmNnbMbYeqkjAYHq5nRJTxC6qayxfZlp6My1m4AJuSdGxeVSCIGsei+FzbLyktLxDmmtazmOF4a7q1F6Te61DO7169r2Be22Rv3tTj1L2yvb7K584u6W47uK8HzZtOk81Q3FdjbbJ7YFkZiS/QAYzA7R5yUMhpHmQXU148Osf3C7wAAxHt+BPFH/jQAIB0ehgUnY1av7xuFXom6rqFPmJZqICnchD/dsIZ+8+e/Ywvd74R/WYnRMQgGOu6giBOn31+++I1IIWF9FET2+l0RyRYAf0XOEib8ac/RLpsbOU3lJ/x8fAJWiVclmQdaeSYEUoqCt8d8EbEAtuPZJDA2GIDEg3ed1/X7sLej+QVatUlgAGQmR6FKDb936UfUMOHnEeDu/cjWa+zYlIr6NohshC7F6LAEBmZO3+6aWi4+rsM6oKQL6mzByAxmOgAtyVz3rBZPT2+k9RuzVD9/Unga+SID7j3pE7gc7UFBY2ZyCOK4EpWxdEqbsKj1dzBPRz+uGfetF83nJ/yX+XZ45nhK/O3pzaXvtRtU+nOM5yb8TGaI3DM3HRyAc2ql4/oyjIF0hqgFUJh8BlPkZQwxs7GoHsABcE2LLgyAO8VJq3HfsTPs2+S9xudBqeO/CxCzUo378BABUGOB5YV2ALXcV15McVhpdtyNBUjNwBhwZce/7sHEjjFGePKxDv7Mpy7gsz95AR95Xx+f+r7dlfee7a0IRLZpMZm2b0uHdzFVUwyLIeAamTdu2vPhiStp7Xve81QXQhBOBjIwAKoVUQSpF2n9mcoqzxtd6koBu57RCqRkTcc/lbPgJ1Ga9pUTfkZk0zgq61uSU/BJeY17Wv/p6N59HTgn5FLhbFwsmPVVizHCNGt+rkhVB8lSS5yMsqWxrhGLMJHjlWuQSDDIOeO+QmlobZsV91KcM2QNRoBKGdt0WTHhZ6y5+TGZFQ8lreDboR5IC0NKiVdffRVf/epXMR7fny7yUX0Ly1qLusmyW0RVKP3MU0dFXGrE/Vu7FcDvqLVNFR2XD35WzMBmI0SCLcrPYG8+fOoZBQ0Tfu114nMPWMYAWDpk6dKf2QbBigoT/l4z4AeArdjGXVWnPTOVA7uPAQDU0Y3W9xYv/Q6gJNjOY2AXnp7bHx3o/D5akIgBkZ0QsSVO/VIrRP7JQ8xltcOtpBsAvzvenDEc7V0HAOyevBYeeNIoRMQDpR8AIq2RjOwCU+5cttHnxuZng1Uj+aQzqYqAKIZZ6bB07+Up/WI2Wpu6S4UH/Ck4lawEr7PlSyaClM9AxmqkZZTaB/o5H1gUKPnryRA8o8DTpYnx0OhIZ5P7Mu4L39GWH24MNqMuLiU7mKkcxRpsDWU0Tosx9tNNXD8bIvnqfwYAiKc/geh9nwJtXIDhEZiSYO58spFsLExCjIGNklzzmUvO5NJS+u09Q6Z9cFqMTAwZ7Q9gwt9WfFDS+aVWiEi0RvKF95gCkdgAYwKSx6AVACt3TdCoSukP/hJ9aDc5XreCcd/oCBHxoOP3DTDNI2QEbIpuzeV94XM6pX4+TPgJSAI9P1sA/AaoGYYCtokjiAen/qnJg5kgB68A/haDVM+Ima23JuEoTzeRjXD1pf+Od3/pX+PK65+v6PhPa+/JTBF8NDqU2vcTgdKevTctuTeUUYD2v68EwH9cHlf3PG4rH8m3IzYW/kZE+KH+cxAOzj8eXaxdC8aYcO8il7Kyy5sm/Nyei0saUBM5waCwTYKLfMM2CWDp7EDZDFhWpHIY97wZK3vOeQ1/VGlqxcMDCMYgV0ncwCG0bJW0mGxsf/DK39NYLKxdQiNGnrXG455mzrCPN0sPH4svggCcqAFGOnPT9fWSD9qKMUIc2W2fZRqkJUx1wl9McVihJUtGQDLF5e1KZvxDiB3b34nxiee2cGl/dfSg4BSm8206fsCeyynvYFgMEPMUxhjcuO30+1frDb84Znj2Sfss/9pLi9e+vXcRJqqU7tlJ9bRC59cAVDksIcu49AwPr+OfVdZkUSWWrwqcI85rAy3S2kl1nBTITfjP7gfwu+FLIRXiJVT0iDPMctV435ZK17b7t75yC//XfzrFWzfbz9OIxch1vlKyIzhDoXWIMASap/PnKU7UaASo9HrB4MxF+1VLG4PBOEfyXTjdB84J+H/zN38Tf+fv/B383b/7d/H5z38eAPDrv/7r+PSnP42f+Zmfwc/+7M/iB37gB/CP//E/figb+6gecrkJPyoTflSmyuTAN3W3F02SultOc6gQ5bNWM7HouB7XKAb24e0kd2UZqsVrzUsIANibJuO1iK6wHw4ABEo/sDKaDwC0d+hvofQDrusvOpi4h3+uC0RMIHLAWR83A349HUC+/gUAsMBnfiFilKXzh8aL+3evl12y/ZkukPqJwbyJ1XxGNeOBycHAcOi2e2N4O7ibW236nAv36R2QMZBpHzrtA4xcnBVBwyAOD0vlGhfC0iUfpoa/swUDAtM6AONV5Sf8KupY0yoP+F1sFi9mrR1rT683SQcFWYd+cQ5QBZTyFz4drEWp9L9JVQLiWQLxZHSf7r7tJbWCII6ExdiNN7EXb2IkJ63sHcCeN4NijN1oA5eGQ8jf/z8BY8CvPYfouZ+y1H1ioO0rdt/OSqqv4BQOh9FYS3vuiwHhHhIAf6fnnP7n3N9d85A/zAl/Rb9fGIWEL2bFzxeDgYi2EPMEGa1esjRF8/kJv0770NDnAvx+wm+GR0hZFMB1kMDEHRABHZ8AUmQwg9sLjVQP+ONsWkq7iNAJGv7FCT9QTpnD58DKPDytf2oKSOPYYSTA5+VL8/vjGztr/s7EbRTX7jtfxdNf+TfYPH4DANAZ3sUFD/iL+oTf70dCsU3XOMdQyOqJyyjACxUd/8hR2g3RUqDtI/nagOYG7+IH+x/CBuviA52nwr8buwGBTsvJgpRt9zlnVfmC8xJYxjTwdP7daAep4aHRcSm2TaTj/CjIMRrLKBtFSQzKKMycL0GPecBfka2c3kEsCKolksuXNAycFCK2uN1GS5hsFOj8vqKIgeZiKX3Twur4mz0hjp1beRPTAgBSFuOiYzvcyO8CuHfDvNrnVnX8Stae9aKY4iCuX/95Z4bH9/1JusIQ8ptUy5z6qxWzGJuR9Yc4HcoQx3f14iLDx5v3vXlzhsFo8fqJWYyJnEC6a0saicIUpWGf0SBt5tZOJjA8vI5/6gT8RGUIhzGm1ueLBUFX2RzGsTHc7+8n/MNJMxBfpzgnTGY2InZZCW4j8ua168YZ2FW3+/axfZbcuNl+3QomLFtCr15bE4CsAvIzqZqsTdYuzgmF1DX2BGDNSNf5WM4Ycqlq1/osU8hyheS7UL8PnAPw/9Zv/Rb+xt/4G/jVX/1V/Nqv/Rr++l//6/iVX/kV/O2//bexs7ODv/pX/yr+8l/+y7hy5Qp+8Rd/Ef/qX/2rh7ndj+phFLnJeFU7LqsT/nY9PRELU8dkOmqe8GuFyOn3i027uBSDA3DRYGziMG8J+Jsn/NQ04ScecuyJ8aChNCu0nMZoGEfppxZKP2AXRjvRBrTR0MZgInNsiS7S/SftZp2808gmkC/9DqAl2O41sIvvWvx+rQHhJ/MV0za/oF1C6S+0Qs+w+usBhFDY2g4wN+XX4IyQJ30Mu/sgGKR3XgVggVsq6rRddmKbNZmLIGRk82q5i0QLkWNaASIGMeYiEx/8FMEXMV5Oviena70nRPLFCRjxYDToJ/xMK8iW5ko1km+mcmzwTuvk1rRkqYvetjXCMnohr7ypeJjwl4DfG/fFs+EDmfA3VW4kIhYhYQKMCBeTHWxFPQyKZhmBB/s70QauzDKc/sb/B9AS/PJ7EH/sz9pr0m//jmXDiNMK4Gel+3aTiduyonING3xG8rTnkiPmAf+2fc/04QN+tbEHpRW6bPm0y2gFzjkQdbAhNpDDNTOXTPlrGn533LyG33R6gDkfXZK62/Y7tUQvz4Jxn2+kqThFSnEZx+eZPHNA0D8fRD4OzSFGCAZ8hZEYKLudPafxJv+iSjFGAAM67n0TyNCEiCBslCgQZFsL++N1/GsC/s7RW3j/i/8eF2/8IZiWmHUtQIuyEfa53acDeVJ7T9m4SNw5eL5z1jp42/+OSITGwq3C+VvQovO/L200TqV36G83tX06fQx/YfdTuBDtlO/VznPFXWNEDMSAjomRUgID4CRM+W0nrW07gHKCfym+6JqY9rzr8x76lMLA4O5siVu/liAjASaCRIKDBaPHqk8FK2boyslKvKwMgyAN1nANmXxq2Ytz/gqljr+8p/oJ/5EaItfTRh3/MmmFL+/WfyO/A4DWjjpcVgHwzwrLGKg0+Hhlws/dsZqlOa7tV87RhzDhP2/trQn4AYTm7Q1nCnj1YhIm69Xa3oyCc//zLy8+Y2MW1wznCl1Ywz5//IwqPZVcWeM+e256HX/mAL8QVBmykGWcueLzUiHj2APu3ugn/MOxWtPxfrE4Y9jdjNFNl/vECG7d/Oep7NoYaFOnsc8c9f/O4fLpPSOGqVotmeWcYTItf+NpJu9Zvw+UqSrzxn2r4gVr79eoNQ6nmUShdLs3z3d4rb1Xv/RLv4RnnnkGn/vc5/CFL3wBf+Ev/AX8g3/wD/CDP/iD+JVf+RX8vb/39/D3//7fx3/8j/8R73vf+/Av/+W/fJjb/ageRhE5IGgCpZ8qlCVvjNY4bUdJVY6no8YJvxgcgJSEjlJkj703/JvgzK4baxeuNaERDpw1mvYZBfCoBiQATwUuqZClU//ym5KZDUOXfD52cL76IkWXJxjKiZ2MRH3Q5kW7gJA5zKC+uNGTM8g3/hAAEL2/Ybrv9of8YrraxIj8RK0ZhFrwZZD6Rcq8a/WChp8HwM9gTZsOt+30J739cnjZPBVaOebCJAB+39mm2uuNrkQltuSOP9BytH5akyLvKcoySpFUI/VEErZXZc0gwQN+lXShjcZGtBi3BdhjYIYHdmE5V4IJSBextzJdwBgIx0jwLv0AKtF8o6UT9/upXEv0eRoWWRHjuJTsImXxgolfDewnu8h/75dhigz8wlOIP/H/sI23SvGdx+1nVp36OYXWkMFqDV61ggGaVoERUaR9RCQWtOG8Y+9T3CeAPOgyuuLQ74zw+PKFGGQOFsUwIkGXdxGJFDlg70ctVaQbMAC4KsCdg3TkJvwm7du/rRHJ54sYD43OZDxwjuWlYV8RJeiLTpDAGG3vv4uA3zn1zyahgcOIEJMIBoI+O77LUsc0IsybNfsJuKf0T0wRZAac2FINf3U7VsUvsskAG1/8Vex++VeRZkMUIsXNd/0w3vjgn4EhAjMKl4z9/UZ6ipkun4ke8HcodU3q8y1gBWM1ko/X2N9yZnwgaj0HzopTy+IAR581Nz3aSmsNJsqGUPDQIDQb9xGWMrWCYV+82Ci/7Jol/jVNRVpaxh6xmmGfP55VFgsAdMaHi6zAuVIG1vy0oVFhslHJaKxuBxHSSMzp+DtBx3+QL+r4pSowUPZ5sRTwJ9bY93ZxZCMpV3h0rFM+mi+b5SAla2zHKqX/irIT71FHYr+6lPo2mPAHp/6z9WPpbtx27vxXWuQ8AD7wrH3Gvvj6GMUcddufVxMHVAud2zDTMqbIv7LyJgFIK8fwOn4PnKNK7KO9n5Vl10eVM1VLF7dZn/CPx/q+YnarRr9txbn1y5qP5tPaGt5Wn7le6z8cK4wm7dd+zGJMK2yJ1u3jDNNcQmsrvcsLdc/6fcBuq1aLbIV8TeYAZ9YHpNowGE7y+2pCfLvX2kf7lVdewWc/+1lsbtob2l/7a38NWZbhM5/5TO0hJ4TAZz7zGbz22msPfmsf1cMt5szuYCoT/krGszfQa5q2o5w6itlwIc8WAKIjOyEudq9COtAozg5AAGLOUZd6U7l4ZQKIF4GV0cpNkJs2RpQPszWd+k2I5NteACjzxYljN95EoRU2RAddnoCIge1aIDOv45cv/TagFdj+dbD9p5o+0jZa+OKEn/ntbwH8NpNWIHILstDgcB3q+YZI2dixOcwg4GjzCRgiRIMDsOERCKjRgY3RQaow3doPn0NEIT87gIvK70JMICQmPKTyDSg2XQ/wBwATx7VIPSKyEVoATN4sD/DTziLuIGExurxlwaEKqy1ueAhy4lAejKww7qN8CjKWGE1paQDmm2tiMnhoE35jTKBv++rwGJfT3ZqJnzIaZ7kD++ke+GwAMzkFGEfnB/+n8pyuFHfXSTQ6DoCGsXIFb7Bo4ras7DCYkMgJCAaGceRR0khpF/58kflacWPnrfj2q2Ayg44S5L0tMGIr9ftG5WBxB5xH4BSjG29iysxSna9hAtKZwsXTAWAMoqI07QPOB/iBktYvxifgjEMaHRpkKk7Rq8bxGb0C8I/CctlOs6mix7cL9i5L7USGYcGg0fs6VCn9fsIvEFUiSJvBLkvLxkNbiZPb2Pmd/wPJ3ddhiHBw6f148UN/DoML7wYYQ+GO70Y2xSa3x/SwYmhXGvYl50qVCN/P6vTxKw4w3yoOXSOXOb334oK71I33z91oUNpnhPsJv2Mb6BLwV437DLFaYk+1phX9/iWxvQCiLzvWwt0lOn477bZcD5/g0OPl7+oBv4/UTEd3HSuw/d5nDCAEh5nzvjGqgJlNSp+iuUpivsBg8rT+W+oUNGfYe5ofwsA2pjwbpam2eB+b3KZnvK1OWw0Az1Opo3DPpuXx80X5BMcO8G+PtwEAg6RizEZsKYPom1Ue8J8NZa3R0lZ5oXHrwAP+9uN97XKCrT5HXhi89MbiPSBmMcbFCEorzOSsnjDUdFzmvCwYaCGSD3BSpKp5IvPafrtvpCWqCQl9B/jzwmCSPfjnUVMVc9p37aPsqhP+vLy27hy2+0cJZtkOuW5/DWCPUSENcqmCrOB+J/xS6wXDbynXiOSDfR4pY0LDoJAa41l7qsd3Q639eDo+PsbeXtm93d21N8Dqv1X/lmX3HjHxqL5F5cFhhdJfpZHz6XLA76eOYjJopIp5w75i9yrkxp7VXudTsGyCOGJzMoAyAlB3Nlon4uAtgJ+L8gYb+wn/ckq/DpF87XT+avVFB9tRDztRuX1s95r9rIqOX49PIN/4IoAW7X4oChPmamJC1XiwqTIt0eExuFtAhIWM0Q4JzV3mjFsWhLYmLQSDQiQYbVkQFt98CYLVzc704NAaH/IIeX8X2hhw5rrXzE3c/OsJpWkgjxppvw+yuDfBW9OEzQN+FaWLQMw573ud/8J7HQU/ixNsuojGxlIFKO400vo5MSjnFL/KqT9MJ5NerQnFKk7/98XK1Aq9b/w24tuv1DffNYOSBjf2zaiLi87EL9MFzvIxdmML9iPGoU/sdR7tXm3VV1NnEzrpgoyxaR1wAN9r1405lx4aTu+d5KVDvybTCLR53IF2jQz2oGn9xqD7qmXyTJ/8MAoY69C/SkuvJER3004ttMGG2AB4Cr1kwg8AudfLz87AVAHuNalJ1/prnBPwe+M+Njq2xn1GhusFcbek8wP2OcGjhSlhkNjMhmGuRWTvE+mctMFP+MGaGR2cEVJ4wJ9DBsDPAuBvM+0LjYclE/7uq38A0grF9iWc/uDP4s71T0BWtjF3soAoGwa6/YHTzQPVCX/is1Rav6upqqwWALggtsHBMDM5TtXI3bv1wjEGgBMH+JdNldtKaYN4jrZqJTWlU/+Rqhr3MdvEbChP59+Jd5Eagpl73lxyUoLD7GAhCq3coAL+2PkJv9fvwxgkjo2TXXkGABAPDsA5WvPNrUeBHUDNPzdNMbWJAC1rh1gwl1JR1fE74z41sKavlb+dzPzv0LJOqZR3678hjxqbwUprnAwzTPP1pv8hmi8rDQ99Dc0MmggCDPmR/Q1OI4SmmQGBHqKh7rrVSRnSxEpbTgarmyA+jm+zz7HVb7+vEhE+4CL6nn950Uk+YjEKk2MiJ5jpad2Lp6mR5ORO5M7hruhDGOcxUZnwezmqL84IvCJXg1b2/DGeHcDQcb/j6X1E861bRECe1/dPG2OZCYHgYJDl5blx+6C9EeEZgKvi+YRL1sgLDak0lNIQ87Suc5S/1uQcWyGXem3Ar513AWAZDVnx3avfB85p2le9mX03Rhb8cS8LMj2l397IWAXwC58H3tlufn/VfXz+/NAK0anT7+8+BvAIykX5icEBOGe1hQ+BIDytuqJdrpUBSDRTZX2OPVBOgJro1bWPW8Owr1oxE3i8s48NUU4ieAPgL178bUufv/AUuNP5t2xBSYGvTOED26IF8EutsCG65cJGlAslgDVQ+kvJgyVC278PLlhfgfTWy+CGag796ugtAFZ7HfEY0ij7G5FlhDBiEC6X1Y5n3Xs5t/+3ArjcT/mECL7mhJ8qgH8eEJGP2pNZow9FMDWMu7Xffb6MKqy8o2X6XjPuW1IBkFam+0B5rZHMQGuYUbZVcvtVdN78I2x++b8ifeMr4d9zXSAm0Qj4AWDPmfiNi1kN7APWwwIA4v3HW7+XiGCccZ9wtP6w2ChftPZ+MOYM3lwkn+707YSvpSFjOl7f/WBp/fHd1yFGx9AixuyJD0EahYRHrdsBOCYOCDxJA+Dv8C7SqI+ZWb4Arhr3ef2+EjE042DEwBes8JZXMO4bHaLLUkitAuBnab805rQbDnBuqf2V8kAbs1GIHivp+eVEjgB0WAyv+CYi8LMDsDe/Hl7DOSGBYwXoHIWbvEUkwrOJtUz4vecFbzHz5KMTxIc3YAAMn/txqI3dBYp9kTjAPxs2OvVPHeBPWQoGOrcJFauas8Kyfy75aXJxaJvwRjdGuJ0UlpHW5NC/qgywCPiFbTDvOcB/Iiv+IM6Qt2ki7Kn6l9IrFrjPScE2eB89p+M/yJp1/Nah327PJETy2ecYL2bguoABIbtqAb8YHCJmhDa8qrSxCSxRBKMLmMp2m9nIPp9afqtIcMSCakDiUkXHX8hJDayfFB7wl4MQqTRG02JBchB0/MURpMoXjmdeaPRSAa1g37+im+uj+WYzbVmNlTqBvXdsUoqDkz56UgNEOJPumUJ0fxN+lYPy8X37ABDRuXT8bzn9/rXL6Uoc8uxTXUSCcDqUeOdOff3k46MH+QCFkXXAb2TD88d5WXhGGjFoZV9TA/yoN6s5IzDGrLmc0ZYBCV0zTPRT/pPRwwf8ghMmc9F8ytHsPVDOZIEqCeD2Ch2/YBHGK+L5vBlmXtgJf/X77r3q5p3aGCitA+t05btN6R02zoqwnd+tdS7A/8477+D555/H888/jxdffBEA8Oabb4Z/8//39tvtOeSP6tu8HFD27rWB8qp1cIBeRemnyenCQ0Cclfp95QC1dMZ93On4rWbULkYMDLgD/KbTMsEgtGvEq5Mnb+q0SsPvKf1rTvgBIK5qwFGakZnxCcxsBD06hnrrSwDsdL/1u419GIcpbjUxITRfFh8G2tgpfcriwGCoTfh946BSdtpmJQ9EFB5Ok90noHkEMRuhOziqgWEvUeC710JkFxGBcQZDppzwawVwHmjcxISl9T9E6qD3WxBrTmuD63jSWYxsc8Z9cVFGgNXe68AD72ygy9vphDCmZtyz8DnuHFsVzUfBob9+DZCIA8U/no7u2d03Ongz/O/+C7+LjptO51qiyxcbImH7nYnfte6FGtgHUE74L1xb+t0e8EfOuC/o8I2xZJdzUfotITwOgH/TEk1att/fU/iDnPAbE47f7IkPwUQJpNbosiXnCQDIAhAReNK1ukJjtaSbyS4kaZgl2sg64Pfmej1o6MaEglXF3IRfDw/R5TGU0YHtkjQ0eokWr21KNwAuQMYgzqyBK3nJRWV63mHWH8LGWDEQAb0v/1eI3//P4GeO9cGojPMzGQrY70q0gZ+NBwbU/La5YyOKrJFhlN74GgCguHAd2j3ThKhT7As34Y+zOuD319vETbW6SBZMB9cpxiqsFldBx18cwTvkN074QyRf8/N4Vc3rZwURDAz6rIOIBDQ0TpVriDFhTfUajmMw7Esu2nNh/pxjPND670wbdPxGWyahA1zjYIRon9vesE8mPaj+HrSIQVqiXwwWHLp9aa1dgE9km80OpBmZw2STBXf+ahFZWn+VXt7nHfRZx5oP5kegSuJA+B0qSQmFtPewecnBRbGDHuuggMQbxe2FSbKUGr00wtX9LiLBMJosB/3BtC83JavOHgAcczdBln2MdIzLjjUQzBhXRD6uKpaPwYe3wabH9/18391aD/DbOD5H57/art/3FUcMz7iIvjZaf6Zm0FqBVxompOoRh6EYq8nAvDeAqAD+eUo/42QJMhrwq9vqhB8ojfu+GRN+wa07ffXctBP+EuyO5xjaR6fFAiugWhFFyHW2RjyfbTZIqR+QX6RBUen6KWVseNe6aweyzTltDIbjAvF3aRyfr3PlSf3CL/wCfuEXfqH2b//wH/7DhdcZY76ruyTf1cWcfm1uws+ysc0fZ7ymJa5WmDoWM1CRAxXGnI/jK3avhs6p3NwHbr7oovnIZYlqcMbmJvyLCxo/FaMWbWyV/hw07Stc+vXYT/jXB/wL3xt3bM748ADq+AbUrRctPfnSu8H3nljy5dp5KLjtrjjpl82XxYdhpiUSipDyCMpP+KPKhL8B8AOwkofcxvIRs2CJogj55XchfecF9G+9Ajz+0fByP+Hne0+gyxMcFUNwTkhjDuIKkXNyN9pGC9aiEoVtRjysO0LQs2fj8ji2lVZg/jjF3YXJq4/mi4oCUquFCbcH4Gl3r6b5q5Y9Bsz6AdAxjNELPgq86yn5KwC/981oYLlQbxdmNkI8HULDum6fq4xBfGgbOdmlp5DceR29l38PpAqcXH8/uksWxYA18duL640IYzT0qQX88f7jWNZiC079YcJvYx4t4KJG/DRRGQSx+qQZcA0ChsRF8ilvitgCeIOh2wOc8EeHNxANDmC4wPTJ5wDYxmWyyrBP5aCoAxIxhJgin9kFTCfeQsxSZGqKlDVPcfPU3huj6RkiN+GXSQ/KGHCwc0UbAr7ZSUAxQ1RkVlfvGglx2tJ4nVu4ETFQfx/m7DaS8QB68xIYOBhnSCsPBR/JZzTABQGyAB+fAgDY+BTY2AcnCk7tY1XG/PkIUs04WJusK+7Y55VWYLMxdLdieilzJO/YocX0+ofCv3Oi2kLUN1Si2RC7YgMMhMwUGOkpNni3ouFPz32sgTqrxb/7iqePF0dWOgWzAMymahrYBTvnpPRrb5I4p58ll7ZCRNgTW7hdHOFYDuzEP0TzSZjK8Z6qKc6cxOFSvA/KD2Dmz3fGcZlv4tXidmgO1DdIAVCAu6bHzkit5/xRvH5fdrcAIsiti4iP3kZ3fAB0e437qBSQxhxMCJhcwcgCJBJH5y+ApNls1VccC5hxHbxcjvbwSvY2bqsBrsocJurBGINjx/ioSiuUNkgj2zSo2gwREZ5Nr+FLk5fwUvYOnjbfU7t8DAySmFvQv8dw92SKwbjARleANTzXAuAvgOr8TsgpDiP7DM6nG5gaC/hf7cY4Dd4MrKSX38O5S3IKGAU2OQIpCdXbDb/heSsY960A/CdnEuOJAufA1QsrGqmunn2yi6+/Msbrb8+QF7oG6mIeY6YyLCS3a9m4bjKMA3IWjlnhmkJew2+MWfgsBkLEmaXIaw34u1gN8Nu1xNn4/n0dVlXEGSYzibzQQUpgG2fldo9n9txPYkISMwxGCneO8laTRMEEJkoh0zMkSwYhkWCYZtKaPd/3dN9+RjVxQGtj5UprAnfGgKywUXyzTKKbni9i+Tut1t67f/SP/tHD3I5H9W1SxLgFKFF9wh/00enGogmcf69IrAY6GyOejaC726XDdwD8j4XXyy3rWivO7IRfMII0Bp7cH3Kymyb88wB5vhgPLAMf27TMpd9G8tlOvfciuNdie9eghgdQb33FAn4A0Xt/dPmbjLJUyIYJv29Y8AaDsVwX2I02wIlDysUJf5BpzBVxYX/nyi2AESG7+izSd15AfPsVqz/nEdR0FNgPbPdxpJDQ+QAgYLMXY1BMEHs6nJYuKrHSLY/ScGwfRlHaryzsR7WF/Xwx1/QxRKDonBN+XU47u70lTSFV2PSIuGuPg1aYtyAXfsIvM1A+g2mZUvpIMdYAtqi3Axy9hWQ6wsQbMJ6jxOAuWDGDFjGGH/5JyDe/it6Ln0f3tS/iQjFF+pHPnOvzAMAMD93+xxBbF4ElFEW+85h1kp8OQPkUTKQgXonVaViEZqpADkIcNxgBMkLsQW+6YSntLU0ZCkaPD2jCbwy6r34BADC99gGYuBPYN6sN+4pApY8Fw9BNLYVIsRFt4Sg7QBq1AP6g4R8GSr9O+9BGW1f882r4eQTq7cCMjxGNTyG6SWDExJUJv/EgoaWZwTb2oc5uI54MMA2MDYRpPYDAfNAugpFX7hHegJMYBSM0VXGwjh3fVIvYyYoa9oUISDeAySlYVgf8yc2XwGQO2d1GsVcyUWhu4u4p/XE2tEatYhOH8gwH8hQ9lgbzwQTJPQ05qqwW//5dsYWYBHIjcSQHuAgGMqoGI05d7vsmdVb7Q8yVVsZOv+cAJAfCNbcnNnG7OMKRPMMzuAbbjjAgXd+Ou1X9PglAaxjDUCgFre2knEC44qbfR9mBjT+rPh+0BCkN41zGx4HS7yf89lwoXONfbl1CfPQ2kuEBWPfp0MCo7aOZW/TrAgYGZjpoXzNUKhbW/0JqA+GASQn4z6yOv7ODYXEGaRQYGLZ4pflABlwwzGaL7Jxn0mv48uRl3FUDnOSH2BZ2TSSVBmc8aIiTiOPKXhcHp1OcjDL0UrHgxO4B/7So7z/PS4f+06MeCghczOw1U5/wGwAaOKf0B0bZNCKRWPbH7AxcF9DdfZgWT41lVaX0LxsYvnWrjOMTYr3r7cJuhO0NgdOhxGs3pnjv0+XvxIlDGolkzpvENqEa7p0kLN3fSICiCuCvy53nqeqCM0xMgZmc4POjr+Aa38Gz5kL4u5/wn40evmkf5wTpnPq9GGqeKTMKgJ/h8n6CwWiC24ftgB+wx3IiJ9iM2hlHgjPMcg0ieV/6/fCdjCGvJDAore1zd810KM4IudTf9XF8vtZ+Uvz5P//nH+Z2PKpvl2JiTsNvO47BAb2Fzh/e3tuB9oDfm4BohejULgyK3avhtWpjzy74szEonyCKOPJpAcNtV1SEVIAmwK/szbftwiaGMDNZw6XfTM7sZzLeKllYt/juNag3vgh16wUAALv8bHAlby2tHVD2gJ8HA0UEwF8EM7XwNmPQFd6U0OVSVzX83qBvvphdnBERiAwY42DkDBWTLkQ2gbrzMsS19yO/a2nftHEBFHcQyWltkaqNCYDfaGVZDlW/Dx6dS+dnHfKpNV97voiYbQqNT8Cnw6WAv6rfF0wsavjdhF8Us4VNZvnUOsATIV0W2+gM+xCnpX/BHDCKow4mcRcin4BPzyDbAL+TELCGphfr7UIBiKbDe3Lqjw4sa6PYexxgHNOnPgrDI/S//lvYvvENMJbCfPTPtDb4msrr9/nOlaWSBgAQcQ+T7haiyRnE2V2Y/evgsNRHaohps/cTao0h5JwQuwl/3uk5mUmLJOEBT/ij45uITm/DMI7pkx8BABRGISKOiNqnXtbzojTmjASrLb666S7OsgObxNEA7IqkH6LjOkNLg9eJdQKPVjQa2opt7EONj8FHx4g7j4G7+wpPK4DG2IYriRg+haN6nrCNfSgA8fgMY/d7MUZIUB6LMOGHAWcEMSgBv4/YJCIICHCwAPg5GGJHHdUiXnD3r1Xat4B/OgJ2/LYbpG/+EQBgdv2DtcaSndKX/+0p/VxmYDLDvtjGoTzDYXGKS8J51oAQIzq3Qz9QZbWU035GhMvRHt7K7+BWcYiL/KLNzKrUiQP8O7x5wr2spDEQjDVM+CnI6nZdlN5xNZoPWKD033YU/YvJZWSzAjSTkEZZAMSAWabQSTj6lKLLOpjoKQ6yu7jSKdcBlg5u/WakUciM/W29ht8Dfu3uuXLbDgqS4QHYY2g0//IO/QAsa7HIQDKDyafl83FJCc4ROR2/Z4F5b4VDNUQhx2Ba4iSz19wO74fmmmfXxIJjAjnnnW/P+yfiS3gzv42XR6/g410L+AupEQtCVGlUCM5wcbcDwRmOBjMobZkLvnzs+mwO8ItiigP3uumoizQGLmr7uSfKmVh6Db9ryJ2nSBaW7RF1AOIw6QYoG4ONbsF096DjjXOxBrY3hTWTKwzGE4V+r/nedeO20+8vAZ4L20qEZ5/q4ve/OsBLr09qgB8AtpItjNWs1IIbO4VHUyONc1CWWco/ixZi+Xy03/w9KRIErQx+5+R3cUse40xN8B71vvB3P+EfjJekshiDsRqjx3v3xaAm57sk5ybj1fWOTwuwgD/GS29McPtghQs/RZip6UJDr/YawTCeSki1yDC6l2KMkEsV1gaqIW1gWXFGKAqF4SR/INvz7V7f3e2MR3XuIi4A6JDlzuYm/NSmp/fvd/TqeDoK9EtxdndBvw8ARsRQLkNdDA7tYhf+xmPK6WaTSaBRIM7r1PHahtibGoC1XPq9YR/1ds4FcJrKO/X7ipdo98sNcM2Gmmkf1Uz7mMxrwK7QCoLx0vna71/Npb9lwskEADsZITCrhyWCBmF46SkAgLrxVQBAfvcNAAiShJgEBLOLM/dF4P57tFqMO+LiXAsKk09hVA69pgkfUE5saZXrfdA5pzU9cSg34WfFzD5AKsfbO+abpFfT+y1sv8pBSc/5FyzGlgHWTM43Jpbp+L1JYBPg90yUaDpqBcHLKj60gD/fL6Umsyc+iLvv+yEYEPSbX0L+h/9mwZRtWXn9vqfrLytBDLmL54xO79gpsMsJJsLCokkaBU7cxho27C8jg8gdryLpgcMaSTYVd0aPD2rC33nNafcffx+MA8ZSK8Qsbk9yAEo2iLvGBWe1hVcSbaBHEWZt2khiyBN7bnSH1gtBpz1oo2uA3xizdjQmVYz7+m5jDFCPRvUTMBGjKYXDf0Y0OQvPgaoeHygBP2BBLh8tAn4ON+Wv+CBEJEIiiY7ipYu7kBiQlb9zdPwOxPgEmkfIHntv/fVO3uR/As0jSPfbRHM6/uDQ7/Li78WAyptNzgN6T+u/VRwBIMzHM3rAv8ub5XXLSqlmyit3vhnKmEo03yB4GthovpJybIwJgH+TXQAZiX43wqXtDq7s9rDXT2GMiwBjIkTbeZM/X9YEzXkiuGPKwRC7RlnkngOyZ5sQxaYF/Hx0jMRozJl0B4a6pwwTcaDIYbKppWqL1Y0wIiBNRc0QbIN3g47/ID8GqQwn2SGAOTq/0mAC6KY8ZH3P17Opvee+Nnkz5JdLqdHtRAtsBU4M+9spou4UN8dv1yLVOsJ+dlbUvSd0McbQNTzMrIdnrxL2jN3vKQrMdAaAbBb8PTw7SOeWZRkYVAST2HORDe+eW9fPOWFn025fm44/L3Rwi3/iHIAfAJ653gWRNZ87G64wEDbKGuo1dvCczNI59XufB882MNoudeYfO4JxvDr5Bm5ldvA1NUXt+Gz07XEcjmSrZ8NIDnGcHa6Mv1unCIS8KL/f+6yE76oC/gt2nXT3OK9dD/MVsRiFLpAt2T5ykikbyfcAJvycoDTCdnkDvnUbIpwxKAOMZhLpd7E7v69HgP9R1cu5BnvQxrSyumdP6W/Q09feHkDIMICQahzffNfXG/eJwd3yBmAMhM7A3IOwscngtOKt4Nwtso0xpUv/Ekq/HjvK+jKq9ppF/b1gFMivvBfMmZMtK6N1bQpMRPZhOpeYUAV2uS6QUBR05mHC7z0L3IS/sRiDjY9xztJhsacwcdFH6vZLMPkU+R074feNjIgJCOIB8BugpMYbbad+1ePBBABaC3B4/TvfugRwDj05Xut95BpHNF0F+MsJf9IA2r1LP7IpIhKQFSCj3TXAWjwsyp0ofwOK0nbTNbfNy3T83mGc0iYNv/MumA7OPeGnfAZxarXzxX69QXV25WkUH/1pgBjUjT9C/qV/v/bn6lM34d9dDfiJCHrOqZ8Tg9I6KFqqJY2CII6YBIqGY7phMsfAYChiawjXRmkXPtkhG92XcRUAiNPbiI/ehiGG6VOl70VhZD3Grqlkbu+1rsHK2dyOiwQbvGe9EVq209P6/f1Sp30YY2qNBjM9g5mcrrU/VeO+tHDOxXG3fq+tTvgZWwD8rG8/Q4xPod3fWEWPD1Ri12CBdhXwc8+8cAC8CvgFCQjlJ/xJaAwZrRbuFf668V4YAMJ0P3vsPTBz9yrO7MS+Cp5yT+uvOPUfyTOMXHxclyV2Pn0vOmhnmqoxD/jt8btbHKMgE5zBfYUJ/z059BtEDYttIhaaD5u8DwEOCYWBnwgzDlQaT6fTEQZOv/7cladxZSfGVj9FJxVgjNBJBbb6EbJCw4BwmW8DWDTuI5XBuOdHqd93LDFjEGduwu8Av0l7UGkfBGAzO16I5lNag3NC5Cd2nFun/ukQtOp6rFQsOOYV2ZdCPN8ZSMpg2FcF/FoDEefW7T/iIee7WlejffQpQW4KvDl+3b4Ppja9r9YwH+HfvvVv8bnT38BZXj4vUl7+HlkFJw+lvX5iSYCK8N7HCYIl2C08rX9YSgbvxT1N5c0TfNGBEQnY5Ah8dHgu0L+7wqn/nTsZjAG2NgQ2l8TxNVWvy/HYJXsPebnBvK9apLVtwLVdz0QhonJBw98y4T/OD/H18ZfCf0soFKoExv2u3R+pgPFscf+lljjJjzFV0/Zoy3MU54RpxalfylJGoY0Of0tihq0NgSRmUAo4PGn/bv/+bEU8H2NAXiiIBzBR50TQSodEjTYTz/ZtsS7/ea4QPwL8j+qPXZEFgqgYdpHMy2n7MiozEJz6o8qEv0m/70sFwH8IwQkMNv/Wu23LuAPe8JA2Wq1w2mX2zmJ0AHFmdATdoiUPE/77MOwrv5sgrn8MlPYRvf/H1ntTA1CG09mjdcIvsSE65UJTLk7420wNrccBnKMsC7FZ0miYjX3Q5kVAKxRvfRX5kU3dYE7ryshO3ApdUqkCdZqwqOvlotSyryolARaBersQ+0+C4j7M+HjllJl5ALfKBM9p+FWcNEalkZ9i5mOkPKrp+LWjlrK0vellvCzE/ZYUp62LHg/YeRsrQclAp24y7fPRfiwbQzf4Oyyr6OgGCAayvwtd+WyrO2eIHv8Q4k/8JbsZb33FySyWl9ES+sxOmfnO1RWvtkXb9nXi7K5t9AkbS0eEhYmp1AodFiPhcWOCQiLtNurOBjSZpdp51tmwPg7GBF+Ge62uc+bPrj5bO5bGGKQrTKwsG6QfFkuc1ZeKhkfo8B5Sl83eVMWcv4NxhoWs+njXCtYceo3mmZ/wDw+QStd0Teao48ZJkERi///8hL+/C4DAZA7yshQCElqk9AN24VbV8PPpCDAmAPBqnF9EHMItuE0Uh4momRzD+Ma0q1K64Zgy0yFix1iaPfHBhX1nRLbPWlk4elp/NBtii/cQkYCCxs38sLIf5p4WU/Y8Z/MDfmzxPjqUQEHjQI1qE35lFM7yUwB1Z/jzFG8A/IzZ5oOCvafvhim/uz8Rs/dndz/zBnwXOnvY72+Am0Wjs81ejH4nwjg3uOy29dDp+AHYcbzMQ2N6PBfJJ/IxmFYwoFpaj9yy8Xad8eHCRFRqA0FUehS4Z4+Rs9q6ZlV5HX91Qu9ZChbwj3HiDAurkXxKGySOQZHGfCEnHHA089je+14evgCpLFsvFs2g47/f+B0UzofgbsX4kOkCibD7P6vcHs60veY6mcCFLWBvk6BFjMsOyJ2oIbwp8LkbnsaA8ilMG7uSRzBxDzQ7PRfoD8Z9Z4v3dmNMGcd3Zf3fsFrPVtz6l6baGA0vMWn8M+Mgt9aa1/B7p/vqo6tQBX7tnV+Hhsa15AqE+9ypmoVjLzihm9p/PxouPo/O8lPM1AwMtNIJf50SnGFWqNDYLFSZXS+NxKwC+IkoTPlvHy5nF6wTz5fG3M6bHoCxO+fW98s3/aQ2gFn/czkjSG0TA+4/IvDbvx4B/kdVL/fAJsaD2y7JHNwtpLibSra+vVtOHbUzPyn1+yXgPyvGmKisnPCfHYAzBiZst9Gbb6m0Ra+kNTAPkOf3w3ewty6B7T0BKIn8i/+2cdGrvSldRXJwPxV/8CfQ+VP/L7DNC6tfDFgaWdNk3JiSbaEklI8XcjfUTsURtU3D31jud7ZgnQBmRaTKKERcQFyzLuP5N34TUNJS1Ctmhh1hI7u8p4Ag3p6cwETjFLCxVGGPA49ASQ/8wnXrRj85sdn2LSW2LgMAosHh0o/3mngZdZoBvwc2MkfX1Cf85EFDA/gOJXPb4PALSyZaH0BshVO/31bDeOlDUa24E5o78RzQWVXxwSKdH7BxfBEJJCyCuPpeB/4M1N3XVn6mPrtjf+O4E5oZq4pvXYIhZiUU00FwOrcOHPXjpoxGyiJ0uY27W/gsR/1VnQ3bNFwC+InxkoJ6Hzp+PjhAfPAmDAiTpz8W/l07f4uFNIH5MiYYRQJ2AcOoMqlwdP8tSlAYabWWcx+RzwP+tCmhgOz9co3GkJ/wm9kI3LECFgC/o/MSc7T++ck6jwLrRjjnfbgJv/9de7wT9oWMqjW+mFag3HqFEEMpW4Kd8HM34TeiYpZHbIH6zhwjzUtj0re+BoJBvvd4TV4WXs9sPGAtms9JJuJsCCIKU/4buW1udVlqr/F7XMAKRguYi4hwJXa0fnnqgLZ90aA4g4ZGBIH+OTX8xjV5m/Sqvvngt8UD/leyd3BYnFoBmFHhPn7g6MlPbDwOA23v3fOpJ0TY7idIkxhRztHhHWhoHDrtu9WQy0ANnyxE8tlrOks2wCpUfK/jT0cHVopWuSiUMogiXsrI/LPHRcauW1bHz2oT+stuwn+ghhjnA4wdy2OHVxt9pX9ALFigMc/Xu5OrIBAOsrs4nB4jjlij1OKNwVt44eTl8N+H+V33RRpUTJG6S6MK+E8drTqaxXjv4/ZAKFGN5hsCQbxyTsCvJWAKYJlHCNn7K81OwcfrgX4P+G/cmuFXfu0u/vWv3sG/+Pe38c//zU380r++iRdft8/D89L5fT35WAdRRBhNFG4dtN8HySgs3GSrxXhofC1o+J1hQ/VW8N/e/m2cZKdIWQff1/swOo7lNDWz2n2z73T8p3NGtzOXhJHyDgRFmKrVzfdVJThBKhO2X2odmhTKKMxcBF8S2/Px8r4H/MufH3GI52tvDKSJwO7mvf2G82WvLROaclLpxlCqtmKMIAsd9vO7vf547OWjWr+IlTc7HwdXZMEx309S28oDZjYdQSs5p9+3752pHJw4MlXYaD5YCqdQGQSzlN4S8PcXNG22jPMbaNsQ5ijx1kwq/tifBbiAPnwD8vUvLH7aA5zw31MZLIJzZrcfVddbaW+kuZGImEDq2A/GGCDE8lUm/C3HKLj3G+Om/NZgURqNlMXgj9uoKuMWynzvWq3xYvWVxk6E4czRmiL53H4QX2/Cb1Rhmwvuu0gk4HtPgG1egpkOWn0YvGY8mpyBlng1eEq/SRYd+u0HpKEZklQaDLmWiB07oIleX9v+KC2Pu/v/TR1v7mjPrEWG4D0DkPYbm15EFKb84jyA35ig3y8u1AF/YSS6vGQ/8EtO3nHnZayqoN/fvrp2916IBNmGaxKe3gUxa2JGnmlUKQIQcythISweUy870p0NR2lf4Y7vGjfLdPzi7C744BBtppPdV78IAMiuvBu60gzNdIGYoqWA36jCmkBVrm/u9r9KTTRRF0lBkBnhLJthPC2QydItPa8wTjTjMJG9J9QBvwFFMcwagJ+iNJzj+tDKeeYBvzEaEK4hLOJGBk7Q8Y/t+W0N6hg+0n0Gz6ZPYIN1A8song1BxkDzCNp5IPDZ0OXUIzj1A37Cb+91OkrK54OhhYW6n/Dz2RhQEunb3wAAzJ74EJqKyB63KoDMKxN+ALjgprmecdFlqV3kVyZEUisc5oO1vDUEY7UGgy9P678lj4FKNF+p3++tNMacL093Fy3TLFFhG1yM7HV5szjAfzj7Xfzrs9/C5ycv4NbkbSijcFRY4Hlt4zFAKRjV7BkjBMP2RhcMBhcie054HT9paSnUbj88gJ437MvTzRqIKlzCTzK4C8GoRus3xiCZc9smEa9tAlu+Cegk3E4NXfVZBz2n439x9lb4N3+dey20lxNEgoMLglSL10eXd/CE+41fGb2IbioWfUu0xK+9+X8DsEwKADjygF8XIF1UjPvK9x3BmS1nHTxz1VG1eVICfuWfF9R6b2s9LDoHKbUc8AMl6J+erQX693cicGan5nePC5wMbARflpeGcrtbAlfWjOObLyEI77pmz4GXXl8CmrVBNaljoZhwyRIyaPi90aI3aPTPv5dOXsWXD74GAPj4zg8jMTzIk6Y6qwH+TWdUeDIs1y/GGJxmJ9BGgekIjDhynd83rV9whkLpAPiVKo3ulJbIC7tfSWz/7fK+3ebbB/nS6T1nAsqopTr+B11kyuu/KPS5J/X72+l3fRyfrz8ee/mo1q/qAiJKgGwEPjmzWn6UE5PWSvoAFyAlwWfDin7/MdeJN5iqHLtRH8d6BBMlUN1N8MkAYnCAJL6AoTZ1wN/UsiO0G/YBFuw70zsAYP09RB/4CRRf/VUUX/s18EvvDmDJaAUzsXRSekAT/nuqecd47ib8jFuavCrACrvIzHWBHu+UU0yZw692qwCitd3JOMAIzFHyCXCJCnYyytJNsP0noQ/fsC+vRFcBpY4/NxbYcGLOgGzRSJGIAJHAFIPV3n1GBZPF6nFgu48BIrYZ71rXpqKABSSqswk+HUCcHSzo0sNue8Afdxoj24jImpNlI0RFDhZZc8KZyrG/BuCHLkBJqfEnHllhsFYLxyXq76GAoxsrufB3L6PBku+j3i5wequSirH6YceHh2COklns1P0lpNboJRUAevndkK98DurOKwtO7PPlHfrXMezzJYhjvLmPdHCE6OwO+O5TIKKFjF5tbKJExLhtMDEOaTSiym/oWUiqs2FvD6ta/Z0t4ORmqRefq+juG9j64n+yn5l0Uew/gfzCdRR7j8NEiXWxv/MqAGD69PfU3jtTOS4l28sN+2RuZUkVmjFnzBoXGgOmDSaZhJoAPQ1c7m1ixqfoUIrhNMd4WiCKGHhlwi/jLjTBRRK6RajzxSCRLFDe24o2LsDMhlAtgB9a2XMbtinXtJhn/X1ovIR4cgaJcrrw4e4z4TVKW+PQyN1/i94WoigCZmOw6RC0eckaqFUAv4AAd5NgP+E3LU7j/lrl2QTJrZfBihlUuoH84vXwmqGcQBuDrcgldHBCUSEKeEp/7M4TP+H3ZeMFTe3rCyMhiGGmC3SX5FIDAOPUOFD00+RDNYDUuTUSQ0W/z7pAU9NySUkzR3efKyEIZma35qn4KmiD8EZ2C+8UB5joGV7Qt/DC4S1ERxEKY0HHtf5jblKvgCYjVFgDvM1OhN1sB2/hLbwzfRvv3ngWPQWESFoAY6f/7fHmSL6wH5sXYUDg2RipnKJglecB0aJk4bxg379N8DAH90DucrSLV7N38GJumxbzhn1clMeXc0IqOCaZQjS/XCGGZ+OreLM4wI3Za+Dikwvf/wd3voTj7BQ90cVn3/0z+H//0T/HSA0wUzN0lAS0RJrY82uWl3kAx0wDYNiMNpBElQm/o2qfyqH1N4IBmXkHieVF0l8cawAr4jBJz4J+EFRvr/WcTROOz/zYBZwOJKKIEAmGSBDiyv+OIrovKvizT3bxwmsTvPb2FD/0sS3wJsaHkcv3jbg9Z7UMlP5g2ufXU2R9F371jd8AAHzi8sdwVVyFGdwsJ/w6A5mSsbXhfAnOxmVT9nB8iq+8foybNw3euXMTW32Bn/yxBIUuEK1ijy0pxsgZampoY6B0ndKf5x7w2/N4fycC54Qs1zgdSuxstn/3OvF8D7QIQTYjlcZ5mfl/HKj8vh4B/kdVKz/5NUYHKjkf2gWGSrrLp+qwD0Tq7sAMDyAmw7phH4CRnGKDd7Adb+BMTqCMhty8EAB/dPkSOBHivNTjzoMY43hTrfp0ACDmYu3KR5l4+uNQN78Offgm8i/+WySf/F9BxKyZlTG2UbEMzD2k8vuzMB0hhiqIN6oIVFapFTaSchFjvH6fqNTQE1qcZv2/M6thZsw9RO3C08d/iWvPIXeA3zv0+4qZQEQCIzVFP+7aRbeWlsrbZIYnkpU6fGO03ecGqQYRA9u8CIKBOn5nAfADgNm5AkwHEGd3WgE/BcDfbZ7wA6CkC5ONEBUZ4riLQisooyAC4F9i2lcxvARQ8S9YBPQi3UDGIzBVgE+HgQHjy+uOlwN++554OsLYaLA1AECg87s4Pl/aWNCSVBYSbO8J+3tkY5iz20Fz31T61Dv0r6ffByzgL7YuAW+/aNlAzrV8Qb9vNARxa9hGDBFxG1VXyY+uTfixGvD7+E1qmPBTkaH//G8CgAMWE/B3XkD6zgswRJDbVyzoBZBdehpqo2wUFlqBE8NmtHiOVsvIHGxjvzal5U5HPRjn4IyhlwpcuryD3nCAotvFG9O76HKObtLFeCYxnOU4UxE0E2BaQsa94MMQ9t84+n3SA0ZHKxs3gKX164PXAOduvwD4UfEccX4gTZ8B2Am/BABm7y8lLLH3PmJANDwFAGS9LQghgKNbYJNBmLgntQl/SekP7Cej4Q1nqzne3vuCjEbXJyk88cHQCJVGuemQCe+zU+4S8XvTPpGPAa2wH23X9rPDUpCmGl1SG4MOSzFRs9WAnxaZCYB1hd9gXQz1BLeLE1zVT8Bw4CSzbLRddn6Hfq0AkfBWPMOJgk0dEeGp5CqeSq5CGoXbxRHemt7AW+rEubwDF9J9dKMOdDZ2Ubnt959uJ8JT4gK+PAWOsgP8Xzf+f0hZgn3qYU/uYV9sYajtPc9P+CMH+GV3s54ULyKo/g7E6Bgb2TEOhH0WKm3AQWtntK+qSLDgtO9NhS9He3g1eweZPavrgF9bRkNVMpHGHKNpg3ErMTzGttHjPYzVGG+MXsdur/SVGGRDfO7WHwAAPnXtk9hOtrAdb+M0P8VBdhfX0QNASCPbkvCU/lxqnDiQf21ru9w2kWC/UOAGkKQw0lNs3suEX05hzsOb9qB/duJA/27reXJhN8aF3fWNFc9bl/ZjbPY5BiOF19+e4n3vXryGSMm19o9U0azhZ7YB+R9e/6+YqRkudy/iR67+AG4dT6G0bJ3w+2i+w9MMX375EM+/cYTXbw5rbKOTgcRkGqPo5ACWP19Wbj9sgobWBtogxODmOl8A/JwTLu5FuHU3x+2DfCngj1iM6Yp4vnspqSWGcoDtaKfW9GEMyAoFYwwKqRaGBY+qrEeU/kdVL2J21GvKaD4+tAsMsyYY9pPzeDJAdOL0+3uPIXdGPRfSLXR5bBftWlac+g8gGAPjhMhN+E2TQ7+xE6tWfTpgF9HOtC/8W6D2R9CHb0K+Zh+mZSTf3n1H8t1TecfrBUp/hdbsFrZcFii0AiNW07UGOr9I6x3wtv1xpoYUjPsAkO1OCz+duPo+UNwF62yAz02COTHEXEAaHVgGRqlSTjD/dSJavbBQ0tLlWpyUPVOgrYIBnHOfbyo/4Wdpr3Ua7sEN5VMkPMZYzRCzKFDs25pCRsuaYZ/9ItEqZyAiGAc6WYNxn48SW9aE8tdaNBmuRR8Gyji+Yk6/XxiJmIka4CcmwC88BQBQd15p/UwjM5iB1eXy80z4GQsxW2JwAA7lJCLzgN9n2nMwYuiytOavAJQTfpn2nTfF8uaHZys1afi7L30ePBtDdbdw/GP/G86+989gev05yN42yBhEJzcROYPCydx0f6oy9EWn5izfWHP6fcA2OrqpwMXtDt712Bbe/fgW9ve2ECUJuoahL1JMdQYhGLb6MS5vd7G9mSJzoFQlPcv0QMVI00/4075t3hSr6Zaejh/+e8G0j8p7S8uijhzgjydnbvKFBSmGB/xiXE74WX/bfqxPxWCEtOLuL1BS+kvA71y1GauxDYgJaJ+YMhnAMI7Z42X+9VjO0BfWz0N6NtjcxF1FHWgmQDCIshG6LK0ZDnZZakFyZaGpjIYgthDt2VTLJkx+yn9LngBwDuuFc4Y/p34fsI2IJp142BbOGpsPgjgejy/iBzvvwV/a+0l8ev9P4bnNj+FPP/3j7oMVrK6h/bsZ57i+sYUPbX4UW2IHBMJMZ3hbHeMr05fxG8Mv4EzVAX/sfTm6WzDG4CgfhHWE3LbGfb3JYQBFShurKjun1KGtBGeIBG/U8fva5VXAv+i0LwRf8IUAYJtw0HgqtffX54+/Xvvzb9z4LUgtca1/Fe/ffY/97o71qjmY3QHJGQwXQcM/dYD/lVtjZNwakl7b3w6fp3kMDmDf9R5OpPOOOY9pn1FWVnheIEccJuqBZsfg4+PzfecDLCKqmfc1lpHtgxL/EuIgmS1o+GFs0/b3b38Rbw3fRsQi/Jmn/yQ444jIwCjtGEHAVOeo+id4wP/O3Sn+3e++gVffsWB/Z0vgez64EUz9ZlPCTC93wl+nrFO/Bfymkl2fqwy5UwxUte2B1r/CuC+iCHJFPN+91ExNMSoGgVnkizNCLjWUa1zcS1rKH5d6BPgfVb3ITn6rcXDCAWIPTlZ+hJs69u+8DtISOu5AdrcxllPsRhvoc0unjnkEaVQN8HPnjBvlFuw0Nhn8JGEZXRZwhmn1Bwvr7SL64E8AAIrnfx16dAzt9u9BGfadu/xke/4hWgHr4bdQElOVIaEo6PcBBG17bbpsgPZoGW6n5jCIBSGKGDRMmKICAMUddH/8/4mLn/mbgb5brS5LwUGlrGBZckLD+xdKFbYxINpfSzwCqDniL3YsBHF2p7W54AG/SNrdrb1Tv8kn6PIEWmtsMDvlBtDomA8AkIXd9spvEOQMrdF89lppMu4rTQKXbGtIxRhCrWG+REUG4Uw0mwz7Uh4vaN+Z1/Hfbtfx69NbAAwo3TgXS4YTB3o7UCIGaYVodOJ6efNaVoWExaGZ5U0jQxkdJBB52gMnvnLCz13iCJujuYvjd9C5YRffow/8KEyUoti/hvH7PonTH/7LOP6Rv4LR+34Y2aWnMH7mE1BbJTg2xkAZje2oxWw0bK4D4dGiedH1Sxu4fnkTW73YAhcegUQCMhIboltrdAjBsN1PQM4HAZ0+FOyEP7j0a2VZNyIBxd21dPx+Oh9qHvBTaQhKjAdWWNNnRNkERmZgBDDUDcws8bg09it6W+DBB8YZxTJCbOZM+6SLC/Rmlo7FAFpMDKgyZLIrz8A4yZA/jvvxJgSJkPzA2NzEnQi5k+nEmdfxb4c/dygpm6ZhvzQ6PEbKYszU8uPNLLmqsa7ETsevTkFaY6qmmLnoum12fsAP0+zQ74sD7c8MAGAcTBfYFhfw4d2P4lLXNuugJZbqnmGbL8IU+BNPfB8+tf8z+IvX/hf86c3vx/d3nsW7k8exw60Up8862OA9wOhwvFV3Gzbcj5A5/XLhnPrT4SGMY3YorRFx/uBouuSd9us6/mrDZ6cy4TdmMV88FgxCUKNbPwA8wa+BQLg5vo2DiTWdffXsDbx0+ioIhJ+4/qlwL7nS84D/to3GYyXg97F8bx7ZhtC21GAVs1flGtGX3FQ66PjPEZ1HSoIa2GprFRMO9J+ATb51oP8ZB/hv3s0xGM09l42xg4dV0IgJQM4WYvm0MTgrTvHbN/8HAODHn/gR7KbuGc0JRmt0uD13JiavrVN2t6LgKXlhO8GH35/iz/3kNv7iT13C93xgE1sb9pjPpoSZmq3d4DfG4Gh2iFzVAbjghFkuLVB2gF8Z1UjpByrGfUsMDwG35oHBTN5f+s182XvfDFIvAv6isEwtpc0fK4r+eesR4H9U9SJC0L474BIMwZYAj9pHOBDScY7pxe5VTHSODkuwn2yGh1eXJTXAzycDRLoAJ4WocJPYpiaDVnaRuarLzHgjMBRPfS/Y/pOAKpB/8Ve+9YZ9uoWxUDVQ9L+FlJjpHH3RqQOaYm7iZT+gdcJfZUBELEK/G0FBBcd9X6y7Bd5rbvQkPELMo0okn1mMFgzfJ1qBui+jClDcW86yYK7R0zAxj3cehyECz6el/r1asgh51tEyEO1jHLMxEhahK1JsKvI7YjX+bdsfpQuSBopSoMG0CUBIteANxn08AP72Rpv3nOCzUUhwWFbR0dsgYyB729Dd+jGQWgXtbG07Lr0bAKCP34bJmx/iwbDvHNN9XwmPkDvzznh4YC+Fudcoo9GpnFsxi0CgMC1ms7HVohKDjDtgIIiVgN8d++q5oiQ2vvZ/AwCm196PYm9xf3R3C7PrH8Lwo38K03d9b+1vU52jw+LG41grmdtrpYERM98oICIrM5EFUhaDEVuYGmePvxeyvwN19d3QRiNiPHyO0QoQkTV57GxacLai2MoJP8r7FReN1yTF3dAoYKMTwDnu1yb82i7YeJjwbyPa8Oe0A/ycapR+QRzcLV6D34ej9NuIwLl7TEWCM71emvWN1Axbooe+6KDLEhTuuHCiBfBazBn3eR2/II6IWbO12jrTWJ+TLdELE+m2Yi6KsalHecVNk4/1GDM1DXT+Td6DWKeJWt0kR4JYRnkl3r4tbmsBJaGlqoEBI/OldH77Vg6jFRJhc+pJARdYH+9Nn8AnNz6MP7vzI/grez+Fz+58yh7XzF7Tmjh0ZwPKaMQsgnLnmXTGffHwAJwZaG1vs8sYDPdSibBMO39IrI7f/i4RCfRdooCPZJsH/IwR0kgEcFgtY2xU5dObdsr/5cOvQWqJX3/Lyom+99JHglkfAFx1gP8oO7JRrKw64TcYTAwmbnK/J02teaNcM/6Sj+aTQxhioHXSc3zpoua5cO5iAibqgk1PwLJ7T0e5n9roCVy9aI/Fonmfi+RbNSV29ztZzFH6AdyevQNtNK5vPI4P7b0/vIWT9UvouGbR1BS1Y99JOX7mJzbws3/qIv78T+7h/e+NcHGnvO/2u/aYT6eA1MXaxn2FzjGUA0xV/dltjfsM8kJBwwJlqSVkzbSvPJcv7cfWm2CsMJ4uP2dilmIgz5CpBzPlV0ZhIscWL8wlsXDGoDSQF8oyFR4B/tZ6BPgfVb1sQCZgDNj89GmVYZ//iLlIrtnOFRRa4kK6XXOtjnlkO/NxCuUXVMMjdL0DM+NgccMUQ2s79VpBu/Kmdwv/XqX2H70F+eaX3XZ/iyb82mVaN1H6XYUJv8zBwdCdm6Qb1yDxE37jF8BLwbNlQNiBloE0GgmL16ZERYwjYRXAb9DehFkC1ENpudpJmUetn0M8gtnwMY+LtH4/3deMQ4jFyWr4nAD4J0h5hD5PkfrIw7Tffky1bVgsfJ6IW6dfnlVCDZR+LyHgy5oT6YaVERgNWiNeLj6wJmzzdH7j0hrSBhDButuVeL5XGz+3NOxbX78ftolFmG7aRW08uGun2gsPbRO8JQAgYQKCcRRuOlXq9/tQBEunXvF4466ZyIvMsjMAdF/5A/DJGVTSw+TZHzj3vmSqwFbUX27WByuBQNxd7kNSKXtdaKQ8RkIR8rnFXnHxSZx+8n+G3L4EbQyiqj2P0YF5Q1EKMLbSTwNJrxYFWQX83muDqpT+lthN8kkU45PguF+dnhsDJPkYpBUM49DdLaQb9lzg05F9DhGBgblkEGfap/yEv6T0l8kjzRP+YvsylGsuF85/YSe2HjFdkQTKtXfbr16x1Wg+oHSw32A9a+o9x2Y3sM2AnkhX0vptegFBNTyrOizBtot8uz27XTr0s/4C6FqpmNIanLU79AMAdyyMptQAu7EcgDXoE1XDM5mvlsO5c4RDQ3CCUgXIyNozQxAPz594Zu+JWdIHd8dQgAWPAdXfhWECTOXo5QM7QTdYANz3W0Iwt73lb3jVuevvi+3QWPMJCFFD5GES80Z3c2UAQRrPXbDa/eePXsDv3vw9nGZn6Ec9/NDV76u9fjfdQUwJFBSOtY3WS51ef5YDL7xtwDu2gbmr6+eHdg3TK44KcKKG9sRtiDhtK5IZluo21ikmYHgEmh6Digc7BV63PK3/xdfnMuO1AqDbpZC+GIeqJKVUTfsG0p63V/tXas1bTtYrxEcpT022cNFu9gS6G8BQDtEV9bVE37n4TyYGyigUejVTCwAynWGmZxjLce3fbTSfwqywtH4iQBmJrNBhs5JK8yyOGHa37D34zop4voQnKFSBs+J0qav/upWpGXKdg4FBzjVQmUvpyAsNZcwjDf+SegT4H1W9gtmdLvPc/Z/WpvTXgfPp5i62oz625m5gMQkbQWUM5FZJ6++4nFGZ9hpdVP3EamUx0fowY70dRB/8Sfsf7gbyrYvkU7aBsTDZqxoolpT+hEd1/T4AdfslAABzemgYpyld1hThAsZocLeIUkbV9NurKiYbkSZIlBTlNqrfEqBuN9dZebUwBEKtiPjzE2Z2cmvxbw7wqyitmckYmUOPjsoHk9dV52PELMIT3YtgmT0nV9HVqcnDgIlGXSwAiJ4DN/OUfmPA/Xe2SQhgz5FA6x8vygLmPzM6vAEAyBvi+GwDp/n4+yl/m46/NOw7/4Q/YgIzB/jF2R1rlFW5FrwJXRVERyQQkyinssGhfxPaaIjKhLv9i1MY1+DgsxHE2V10Xv8yAGD8gT8B0+JH0VaFlhCMYzNa0bQCAK3A0nNQskUMwBrD9UWKbMnUWEPXGw5GlcybOLXgXy6fvBBRjdZfTZ6A1u7e4r6DcTdZb3Dqd58hxieWqUBA1RNcG4OOA3ayuwXOOGIH+JkqQEUWAKD3RIgMgbn9Z0mV0s+AaNEclJ54DrPNfYzeUzZwxn667+i1fkpvjAFnAAOrLVTno/kuih18sv9hfHLjOddsAKpAyE78GTo8RoclS2n9RJb5AG2wdfclXHjrCzUg4Kf8t7I7pUM/79dAiQEwnhYYz2Sr47oyBowtp/QTMWtC3gr4GaAUyCgI7kGOts/QlRI7e44YpZBEHFpKey61gCvv0D9LNkGcoI0GJwZO3DZQGAvrht70ONDulzU07qWEYIjndPxPJ4/h+3sfwA/0S5M9qQ0EY43+AbFgjplTP65KAwk03r39BLaTTWQqx/+4bc0lP3Xth5HM+dlwxrAbu2hDbYF9VcP/4tsGJrXPuR1Tf5YrBzSvTu3fB2oMBXM+Sr/zDbjvEilIKbDp8VqMowddT11LEQnCYKTwzp1SD09Gg7RZqeEHqMbYEJUmz7Cw97PddLv2DmvJpJGSvWfNTAE9D16JIZMzJ0mrX09+wj+cSBAI+ZqAfyzHgAEyPauxAuxk3CDLrf8GEUEaiSy3a2bOsWB+WdL6V0/uu6KHQX6GqVoSgbhmzVx6R8SiBdYAZwSlNXKpAsvmUTXXI8D/qGpF5KneZjEezWleV35G5XUySmH6e7iQbC1Mjn20m6X124UhHxxgA/bilkmveUq3TCte3Q4m0Iq0AIinvgfMGZIBAPsWAX6jdbMmrmqgGCb8EinFNWBu8inUzRcAAPyJj/gPBcCWdqqJRYC2iyivgYzPYcYjGMeVdA8dHjtZgmjX9q0A6t7Fvk0SELZ5hSY+2rXu/MIZqtXe6yf8yZwcQuWOqmgfdH5Kb7LyQWXcQn+lYV8TRdtRnpumqsKBGzEd1hb5VGQhCnNlk8Eb962IXOOjI/BsDMMEirlJfK4lEha3/v7c6/jvvLwgyzDZBMZRstkSF/+2EsQxc8wMPjrBTkpIk3I7pFGW4luZ8JObyi5M+NN+oP6uKiIKpqBsOkD/a/8dBIPs8ruRX3wSgJ3Yn+ajtfSSE5Vhg3cWmnHz5dk3aNDvt26riF00p0RXpMulMcZem7UKensBJL21dPzBuI+JeiPO6+X9Z5Jt1DWd3yz8rqfWUw+LEXRJZhfIRW/LSoqiFNrJZth0aCfuVLqhbzk9vwHKprSxngIkkoUmL9t9HDc//jPInclboSUYCHtxKS+rMkYIZIfRFXvsIvGAfxD2+d3p49gTW/CxA2HSa7QzjbQgbytaTutnLpmB5AyXX/8c9m7+EZLpSfj7FTdNvp0flhN+3q3d2zOpEMVWKz7Lmu+xWjkq/TKJvtuW1gk/GIzW4GQgfNa9lvYZtg7Nm+zr44g7rXQ1s6Fe/ljnySYYOSNEJoLZLwAUjtbfnxwilwpcPPgJP+B0/JXzihHhvZ0nsVkxTlTKGSI27E4kOGJBKOZ0/MowpMI2ND+8XzYPrm88jvftPDP/MWBE2Hfnw12nwe+4S3MwAUYzoEjstb1F9WeR1/BvSYWYBAwMzvTUAv51prBa2mclPQDAD8AkXVA2Bp+cfNP1/JFgeOpxC7yff7ny3DSqXDutqELb1whOJY3cAGe5A/xJnenKnbdKhMi/FPkcGBbuudXhi7JBb+o3mihwEmsBaaklpmqKLu9CaolMzZn9GXutm8rrXfJzjc7v6/IFB/hXTPjtvtjz5CQ/XttvoKmMMRjLEQSLwImjMHmtIekjBvOi+TsG4xw3D8eNf/vjVo8A/6NaLOI1GqivZVri+ttF0PtPdi7hQrwVaEzVitwi3jr1V5y6nTt50eqkbhpN5BaKNT98w3YSQ/zRz1hq7caFRWOqb1YZ1exM32CgGCmJvYoPAgDId75m6fAbF0rA5QWbywA/95R+FgyR2qLq2qpm2Mc40AK0iAjgzaAAgDXs49HqCT/gFvXNn8N3H7fbNThcXPh7wB+ltf00Wtvt9oDfTfhNVj4kVgF+yMICsqbtD+yGxUU/dbaCjpJVvs//bxOlK891VgH8y+hz8YGd7hd7VxcaM4VWYdrZ+B17T9j9cPF81fLTfertrpZkNJRgDCbtQqV9EIB4eFgDJYW2Dv3z52aHxWF/xcBKOFR/B8bU6f9Ly92nei9+HmJ4BB2lGL3vk+F7J2qGnkhxVkyWHlttbKzb1gqzPruRRTDiW7t4bA0tldXxR6xkN8wXYS6SsKq3B8DS/nJpjX+dm85TMrdPwXOkIjkSceOiPRj3TU7t61jdtM8AiN3f8t42uKN0G+cvwaeDEMf2Q/3n8Oe2/wQuGnueahGBuf00xjZNiUcL2+GBt190jmWGbdGrxeVVGSOcL3oN+Al/nI0WwJGBCQEBQMlI8R4SPZGAE4NsmaQS2cle/9T6awCAyMvF/OVoFwRgoCc4K+yx2qVu+EIDQBYaG50Yu/0UMEAuF79rlUN/2BbGlrK8tQYElRN+aEvxXz0VBQCCkTk4I+en0n6teIf+rLNpmYDQSFmExJn9AoD0xn2jAzCyU8tlDIZ7rVgwu+1LXmMMEIuWqFeytH5VmQobABoMCbfn74f23+8kDQw//sSPNt5HGAMuCHu/vytt+kVaezxozBJ7X9iaS3EwTNhnDYBdZ/h4okZuJrKG4avK7W/WlF1/T8Vg4i5odvot0fM/+5Sj9b82DG7754kozJ1kIqpMwXOdYeKA+F5aB/wMVp5EBiF1ZDJnbMeJox9tNP72fsI/mihETCDX+QK9fb4ybU3uIteEntfxc05QyoSrMFMZisI1QZsAv3PqPzotkOeq8Z5fra7oYSzHGMl7/30znSHXOWIWgxGH0nJBx2/vwqbxGf3//fWX8b//x2/gaHD/TIPv9HoE+B/VYjGnN6tMoJSIwc6xmPcLPbP3BHaTZpBEROjyuD7hH59CDO0UQ6YtE363jStrjYg91ttB5yf/JtJP/Y1vHRXItDQwPGCvTvhVga2o/iBXzoNAXP9ouQ9+irhUw2/9GhgYlFELtOlzlZYrfRWWAXWjJBCli9GEjZ8Ttz6YaWMf4LGdjo8Oa3/zgN/EcxN+Bxb8KjdM+POGCX8Lvd4a9nWaNdncRfM1GPcR4+WUuaLjZ86wz1QMx9rKU/rj2ahGl56v6NDq9/P96/VtN/aBn7bEIQK2OcQvPA1gkdZ/P/p9wJmwEUfuZT1z7AxlNFKWLFyfMYucBFUjchIOz1yYN+wzsyH0+Ghxv5xMSYzsPWf8vk/CJF1oozGSE+zHW7ia7qHDYoxUu950pnN0eIz+Em+IcoekBe/nMF0jIuuwrwokLHI6/iVTY1SAMFHtvLQ6ft6eHOE/wx1LmvNkgdFOblReqySSRmowBcA/tPptooU1Yjw9BQBk3c2ygegAP5uNgp8DJ45t0QdzcgQtktr9rvRBqZ8n3s1BwyDXEpwIO3F9UV1ljBCRzQuvfEaR9GFgpQR8Tnes3TeS+975WMSUJeiscOsXnLB18lb53xVzzJhF2HPRbwYGMUXoIYZfvuVSIYoYuolAJxXY3ohRSFObSAP2Ol8HDAvGatnf86UNIEwR9s8o5WQeaywniQMyh+AMzOQwS5agntKfp5tgzLLQIiZcJKfdN2/cF42OIUgjFmyl39q9VOR1/LIZ4BgAIFOjds9XHIsaIFFKg3OOiAHQEr2oi//lfX8Rf+19fwn7nWY/IcYIe7wPBsLUZBjpKZLKbYSSGTQBQpsFDTiIwpR/l+x96kSPAei1gC4pTwd/gLChpue//6i589SVCzE2ehx5YfDF593zXa/JdkBlwl8B/GNlh1U90UUyPzCDjSZVQGncdw66e88B/qIwkAWD1MVKWv/UNRSICBGLMVWT2rRdcBa8L4wxKEwOKdsBf6/LsdHjMAY4uHUCNjtd+v12TRnjJD9Z22RwvjI1gzIqyBykUQtO/TAUZly1fzYGh2czGAO8c3yC85Y0BdQ5JC/f7vUI8D+qhSJn5lalJ6u0v5CNvaziD/4kimd/CJtPf//SPOyEx3Y6lnShkh4IQORzwtPFaZkJVsNrTPCIAWb1NlOUtmvPvylFzQ0Mb15mTGnGN5ehrQd3LeAigrj2XPmHqolV69dya4rlNFDzDv3nKaNVs369+nVR3K4X1EWIw1tZXLQOhohYCVTmdPwe8GNhYukA/9yEH8UsgKKVE34tF53MK9tkKc9t0XzbdrfGFcDvp/1rAP7qhL/NHIxkjuikOY6vMAqCCSSrmASXnY5/Lp7vfhz6AQvkBBiyzXbA32lgTsRMICIBMzwAKzIYLiA392HcZ1bLqLxR3VNlLeUXnrCxbcbgrJhgK+rhYrKDDk9wpbMLAmHaAtoylWNb9Jfe68ptKUBR99wNRoo7lklDhL7oNgJ+Y4wFrP661wrBMNNXlNprtVi+WGR71xF/4i8h/thn5r5EL3qOMN54fKmzCcMFyGjwycDRL+uufZGL5Mt6JeD3sjA+HThNffk+4X4DLaKyIWxMRVJU3xAfUaiNwUTOsB310WtozFQZI5yz+tCTcUjXCIznppEGdvv8PUnB3kv9tjEibEW9VkYGAHAjsTm4Wf73XFPhSiX7fSfaCs0FA6AoNPppHCj2/W6MzW6EWaYCNd8C0vX07UJQ46TMlwRDTJX7uFFLmXTVIsYBlYMzA64LqFYDVIXIMf1kshlMETkxd5+y26c7G9BxB2Q0etMTKxV4CMU5QyI4CtV8XJTSEIwtlRPEgsAZK5sVykBEApyZ0Ai/1L1YRh02FIGQGoUdss+Fu8UxGKMA+rd27XNjr1BQDc9T5Zq6e8Y+q0/UCBbtrTHhlxnMfXZThmqC/3j6u/jC+BvlPwY9/9E3Vc9PRPieD9pG2hefH+IrLwzPdS4Xyv7W1Qn/UDbr9wEAWoJxDqNKP5Kpmq0tZ4gEQ5rY75xMLQ1/mXGfNhoTNQ7T/ZjFyFWOTJdrSGvcZ0AMkEZaM8C8HfADFR3/YQbKJysbJClLMVNTDPKzpa9rKkvnH4eoaEbMGUzPG/cBUukFh/4sV0GadTBaT5pX/e6T/BDj4rtHDvAI8D+qxWIWCFZN+2TaX+l6XfuIrcvY+sBPoNfksl8pv8AzFeM+5vSlOrWd7Fo56uBa7taO0v8gXEIfejUBfm+gqEvTPjPXBfcJA/zSs6AqOPRO2sumLu74MHeUeQNteu2qGAu2f59A69PUYGXDwJf97Rdzv8PXOOA579TvNfwsmQfRBuRkLACAuBO20+v4S8DfAsDnGmQL2yzSdqNBB9hp2gD4lxj2hc92E1gxGYbIqvmycXwaqrsFXYlZzHWBsZyixxPEK2jwXsc/H8+nT92E/x70+wCcERfDzLF8xOnc7wY0npcRE0hYDOEaDsX2ZUtZpTlKe/igxVhInyiieYTR+/8EQIShnKLLY1xOdgPjZUN0cTHeRqbyBeCWa4mICfSjNRtWWt2T9AHCJ3AYdF0DZP7eppxOtAT8TltdaWgS46Ckb5MClhQRQTz2/oX0kkbPkZb7MRGDce/n41NwVtKiDYBITsFUDgNC3tksvQcc84JNhyHj3oNX5gC/EklloqNBXLgpfz2FwOvpM52DM46duPmaCowRYyzVdW7MnbtrP5pPw9AAVSa787GIANAVVkYkW67PzcFNsEozVBT1yV8N8Ist+NSPQioIwdBLq/4WwFY/Qa8TYeJM/JQ2tqG7ZALtixPBLGEKaTDEZMK1ZFSxVmMdgGWWKAWhcnAyUKbFsC8bgmCgmIBJe2UjhhgiJspoSqIw5e9NDh+Kft9XGnOoFq2DNAaC0VIGRcQ5IsGC+Z/UBp3USlDMmk75xmgInWGf2+vjrjxx22b/fuGiPW8uFBKqwTxUu3vIBUdHP1EjkDZBStL+xRoopq3X+To1VjP8l7P/gQN5iuenr9eSRryen01Pz0Wrv99637t6+OT32PvT731lgK+9msOswQwFygl/VDkkI2VZKbtzdH4AgJYQglujUg/4TYbGTmlLBVr/WIKB1cD7fGVqhkxliB3gt9JNjVxVAT9DJlVw6FdaoXA/Syvgv2C3/daRBrTzP1pSRIQO72JQnAbzvXWrMAUyNQ1NC8CuB+alDJwTCqkXHPpHs/J1g3GO2RKW3nxN1QQzM1t6L/xOq0eA/1EtVIizqwAYnfaDXvJBVkwRIsYhjYbcrGc/y6bv1C4Ddh3qN1nK+jfbEOY8ZSm3aKSylxN6DfjmSwXwG60gb3wFAMCvf3T+g1cfI8eAINibcsoWkwLW3xGsXgxw4UDXnAbWTSFXGfbVPmeJ478H/OngsGY+xTIH+BdAuxPg+gk/MQf6AThav5m2T/iNWm04aNkNzechd4CIVSb85LLh2QrDPgCg3jbg6MaUNXejowPLmvHTfW0MzooxMlXgUrKDq+n+yt/exvPtA5V4Pj0dwMxG9vu3r6zc1rZKWIxpfwcGBJ6NLZUb3gDNLvKbqssTxIHOfwXKaEf9m7tvGMA5sdX+Obr6fowefx8OP/xj0J0NTJV1hb+c7i5IHHbjTewnWxjKaW1SYM36uta8ct1a91yvVDDu0xKpM1jM5yYd83RyaAXii/dLSnr3fl80esFzhBiHTxRZKGeGyn00n/8YY9BxtG3d3QRY6UzNwoR/aHPq3W0QqEz4o7gy4Ye9nzEBVJt3rgQTyJTEjujXtPvV8owRaWQjcCxSF803B/iNQa0xbU0j6+drh8Xo8BSzlolc7/AN+153XKuUfgC4GO+F79itOPTnhUG/E5UGeq4YI+z0E6QRx2QmobUG48sd+n2RzWltLUMMnHQ5jZX5mvp9uGGCAqkMgjQ0mp9Rns6fJZvgggXWBCeOmESteVI4Hf/G9Ajd5OFM+AE7YbUDhMW/KWkQRcsNEUFAmli3f/8RseBujbImbVhmYJDY5RZQ3i0s4P/edxPe8xihs2Hv//u5gmxoQPrz66KbTk/0DJnOV98LtItQPIcMqVpTneG/Dv4HRtrJ6mBws6hK7qyen01PwPJvrp7/+z+6i499wD5nf+d5ha+/s15To9D2x66SSpYCfiXBhJWmdD3g19m5YhHrOv4IMzVtnVrPlAWr1TW0IFGL5+OMUBTWZFQaBQODvLBnZ9Li9+En/HfPCLqQFalHe8XMSnfP8tNzDeAyNXMJQuV5x4gvNDoYI0ipFzy/xrNy2yZTjZEcrf3dQzlEsaSh8p1YjwD/o1osYgBMbWKrOhtr57OfpyLGIeCd+uuA3zSZ9oXM+jUp/cS+rQF/0D62gXMmUDXtq0741Z1XgGwMJD3wy3VHX2P0SsBvjyMF/el5Ivnq32UAmJUyC2rL61aFfe95AD/3Ls+LxXYt4I9Hp8grkzJP6ecNE34Qq01ZPD3fZGNLxc+XxPKpwgKgZdvPo1ZyA/eAyJlUAaWGn9LVRpnERNCiU8UHIJQxiJ1MJr/wBGYqx1kxRo938ET3Ei6nu2t7N5Ru/VbH7/X7tHlx/YZNQyVMQHEO1XdshVNL65dG2aleC/sgZQKpYwTInavQ0A7wVk0ZnaEYLaZEMBFj+oFPYbx7BbmWyJTEpXgHG2JxscyIcDHexnbUDyZ+2lj947yvRlsZZ3p1T8dKOOM+WVgtM09rUzLATpc5KhP+EPlZf9RT3AE4t9PZ85bRixKoZU04p+PnoxPYJ4ujYxuDjnPol70doNKo4I55wabDhTg/Hij9cb1JRe4+2nCPiYihJ1LsxO0SGc8YKbSyxoFzf8+9U38Tpb/WyAAiqt9LiQhbURdF0/HRCt1je32eXbTX1/yEX5DAu6KLiCjCY3wXhpid7nNCP22+NoRg2N5MwZl17rcO/etN+NuQqzYGxDkYdHmMZbGW9wqA0HQzRYaIM7Qw5IND/yzZAGc2utcbIQrGkfAIhWt2+Qm/OL3zUH14IsGd5nnxNzTGIBGrl9OJM/WzEgCyTQRjGv1dmsrIAhwGu9w2iU/UELku8OxjDJ/+MMPIRfXtFwqygXGn3IS/oxR6Tkduaf3L10ikZBi2aGPw4vRN/NuT38Ifjl8Iv0NbZTrHfz37fZypMXosxZOxbQzfyOtMLqvnF6DJyTc9qu8Tz23iQ8/ae/hvfkPgpXdWrxkLt4nrTPiNiz9kjAOoT/jpHOvTKuAXJFDoolEbH5zt5+5DEYuRqWnQ/hMR+h2BTmLN8AAgy+z2JEnz+by9KZBEBKkJh0MOUuuB4i7vYlgMMFbrU+QnarLALObEUei6Uz9nhFwuUvrH0/LYzGbAWI7WijPMVIZxsX5z4DulHgH+R7VY3t2+ajriTJQe+FcRQ8pjqx+qAH4VdwAeLVL6XfzbUqp6+HDuAP+3MSXHrGAscA5jdBmRWGThRqfe/BIAQFx7bnHBZcxq2YNjQJAxEIyfK5JvYR84X+2DwIVtYMw/zFUBEsl6yQtwAJdFrVMR1tkCpRvWU/m0dJQnB9p5ZcIfItKI1T6vdOqfuAk27GsadJFGFc5wsH3/l8kQWIWSH/7NAX7WWe+687R+Gp9ilJ0hH9wB3X0D8Y3n0X3xc+CzEQzjONrYhjQal5NdPNG5gA1xPmo5v+R0/HdegTG6ot+/Nzq/L8G41STuuZSFA2swKLVCRGLBhM9XPJsgyiYWAG1fdBN+Vp/wu4Uq8WZAGjvH+7Gc4UKyid0WyrffzivJLro8wVBOMVU5ujxu1IQ3lvJpDudvrhExIOoEkL4hOgsUcc+ICO71uiUBJEqs0d4a8XyLG4LF+1VbMw8IBq58fOIM+Nw9XQOpB/z9bTCi8DsHwC9zMJmBg4KRnHD7b6IkaNntNlnATw2Nh4hF2In6jWkx1eryBIWRduE499go0no0ny/rm1D7l0ZJSZenNvpv7v4XHb0NpgrkUQfDHcvAmZ/wA8APJc/if770GfRIAMSQFRr9NIJocYYHLA19eyMB52ylQ78vxu1RbXpsam3AOQdntnlljAqRpOcra3DX9mT2Dv0e8KvQyLLf02XJgnEfjU5B+cMzfuOckEYc8wEI1h+B1pITRIJBMMKssFIMwe1QYt3GmylmYIyhwxL0mb13H8jT8PeBA1O7EjANz1PtGo1cZtjh9nw+1at12KRyAIRb+SH+/elv4/Pjr+FEDfFH01fxKye/hRv5YgwuYCMwf23wBzhRA6SU4E9ufT/ek9pz/J387uK0V6Q2DUB+cw38iAjf/+E+PnDNWnD+t68YvHpr+TEp3HngJ/xaa4xly4TfyTYEs4yOAPjXYVdUqu+i+YZjBc6E1dw3ANhc58HZvlqCBAoja7T+XidCJDhynYNAyHIH+KPm5hkR4fKu/dvNMwEqpmutsTkTICKc5idrGeFJLTGRk4V9sMZ9dad+zqz54Dylfzgpj81kalDoAlO52ihxLEeQRj4UVvO3sr679uZRPZgiBoBAXMD4B3mTCQkAPTxcMJI7b3VYDKU1dNKFdlRq5fT78xN+oxUQrTkd+w6g9JeMhZY4HzfhL5svBpA5TDaGuv0SAEBc/8jiG9eY8NuGCAczBoL4Ynb3uqWUnZ6uahgw0bgYN6poNbxrrSi27tBtX+Vo/cng0C4qjAFzi0FendIb7TwheO2hVTr1j2sO/Y0TpHW230fzNbASPFjnMgO5a4k7aj5fE/B7nfWVF38fT/73f4Grn/s/sffF/4TN538T3Tes7GOycxn9ZAPXOxdxKd2+p9+b7V138XwjmLM7pX7/Hg37fPltyS/YBIH44E3AGEij0OVx6+SOH9vvzzf3AR5Bu0i+2n1DK9uMYqKxSRQzAW00tqMeLibbK6eECY9wOd0FI4aZzrEd9Zs9AxrK+ObWPTbXKEoBt9BJeVRqmV1pmLr8QetG5gkRA6WbK3X8rbUA+JuBNgCwDdvI5ePTWvtWwyCdWcCfd7dr3gMiSqHchJJNh2CcBQDOg0t/XP7OjtJPRHZ/5+75e/EGLiXbK3cr5ZGl6BMAqqs3/YQ/zhYnP/MLzabzIWURejzBbG4il9x5DQBwuvUECkfDFg2LaCICuZxwqawBXK+7+jzqpxF2NhKkSxoD9W23EgXdsIhXxkAQWQa/lvber3WQGKxVxAAlwbmddjZVldJPzEYqClZe1wmPAlPExCmUYzjxOd+WB11pxKHmfTO0ASequbW3leAMkeCQUqMTc9uoIrbWRNtAA/k4sIMuRvae72n90iiMjb02dqi5oagC4M+xLeyz5USPV06Zh7ND/Mb06/gvg9/DiRoipggf6rwLPdbBWE/xG4Mv4L8P/hDjikZaGoVfH/wBDuUpEorwJ7e+D5u8h4vRLiISmJkch3KekWYbgqyh4fWwi2Dww+8t8N7H7Jn161/WeONOO5ANE35uXzNRYyjYtKPtZO657dz/SXCbiEMVwL9GJKKvvrvexxPltpkaJ9aZnllp0txzhoic+ezi8c11ZunyxfIJPwA8tmNf88ahNeFcl5HR4V1M5BjDfLDytfORgr44CSitoCqAPxIM2xvxgmnncFY+38YTBUERhsVgqXmf1BKDYoCEnSM29zukHgH+R7VYlQWvufIsst42aGvROdYaI5l7XzS6iv3DmygY90nn0L9gFGjU+vnVzJnefTsDfqPKxXJTMadH5VFYVJliBnnjq4DRYNtXwTYvNXyuWT1x9xN+GDdFvccJv9cJr6L0EwEiqRlqhW1d07AvfNYSEzygBKDd4TFyI0EyD4saUY2JdKZmJOIa5b5pwk8t8ZIAVm+/j+Zr2GYSCYxrGLDJGaBVKT+ouMgvK7ZrJ+PkAa2IgY0LwMV3QV3/CIr3fhL8I38a1zoX159GN5SN53sKAKDuvBwm/Pw+J/xedz/buQzNI7B8CjG4C20MkmXa+OMbAIDptr0/KaMX6f+eFRQ1nHuwGew70QYup7truewDdrp+OdnBBu820v9ba0mawzplIykd6GGxi+crAaQ3jCur/T5ASffe7o0Gi54ADmg3HV/W27ORdjKv5ctrgxLw9zbBK1IMTgzKMXH4dOho3fZ9fG7CH6IH3f2ReLSwHVXWw7KKHag0ZNxnlwt+P+EXxbSmWzV+/4Hw+iaTSSLCpphz69ca8Z3XAQBn29eRuWuTaQk2P/UlAilLAc6UQa8jEHkQb0wwJV38YmCzFyNtof4vbidzAS6LYEcrKxUg4jCysAt99wxbt4hxmCIDEwLU0liIA6V/ExzOF6FyXfvfyTe7lFs38OHhwmc9yBIOUFQ3WWkNzuEaGCuKLOtCCG71+4BlK8o1JvyygJEFmGMHXRROx++M+/x0v6s0Et7M3NKO4cJUOeE/0WOQzBrvBbnO8YdH/wO/cvrbeEsegkB4b3odn935UXxP7734czs/gg92ngaB8GZ+G//m9Dfx/PR1SKPw3wZ/iDvyGBEJ/MTW92FH2O/jxHA1sqyft+dp/XDMhGKyvq/BOqVWT9JJazBj8Cc+RHjmqr3f/Jcvadw+aQb9nukRMfs/TvNTAMBWvLV4rzE2CYFxDkaEhOwzbWryczFQPaV/OLH3EE6iMdpvUoxbn2UxizGZi+fTRkNqCU48UPrTFtM+GIV3XZQADG6dEEZjBVqDJg/Y+3DMEpwUx41Nh2pN5TT4S81/hoZeMO5L48X722habldeGDAdY6qmS837JmqMXGeIvwsB/7cyi+xRfbsWldMU+tifxdvjm7jSNFXXygKLJcBrnYqYACcOZTSK7SuID95C3tu27vELwZpYn/rtNZ0tWu91yhgDMxuC4u5Die4zWoPi9v3xjQAiAqLUasmLGaSj8/Om6b795NVTFzfZJlkgYhzRPUfySVDcW9AJNxWJBEaXXf2wWF+3iRM+J4J3qm4qr+NPzw6RqQKdvNT98urE01P6588pD8qy+oR/vkpN9opIQsbtd7RkDVN3x/oxTE7B4o6l1BIDkvXAJH/iw0g2LwY9/8rEhPsodukZqNsvQb7+h3Z/GAc1NZ3OUcIBfkWEYv8akjuvIb77JnD9/a36fQDQR1b7PNm6iBiAxqJhmtEKLErcdHxx0dcXHXR4sraPga+dqI++SBGfx/vC4Nzneq14mWrCiaEvOjgsBoGqbvXjDfr6hqIoBXgMI/O1PQW8H0LTtU4ihjGLhltCxJh2NhBNB4inpwB2bHRikSFy8XNZdyucA750dxMYHoJNh+C9q5VYvsqE37uoMRaM40gk9wwWYooQkWV8MPLacXLfl0CJBFxmiGdDZCG9oEyT147O39Zc6PIEMYuQa2lNAk9ugRUz6CjFePMiBONQPAJXBXgxDRRsADYSzRgoKcFYB/1Oed71Xvwc0jf/CIOP/hSKi0/e0777YqyeilAtbYwzr2OAyu350BSAvfQLOJBPwaMUnElobcAq6QGkJKLcgtcs2cAmp4XrOqIIkTPu45xB9V0SxPD4Hvd6vYoFgxAEqVRotigFdJMVhn2VSiKGNLaO/QAspd8oGKNsWkxLGZlZHThPARS4GFnAfyBPoI0JgN/q95ubitUJvwfgx3oCjI8tq6O7CwPCcX6IN8ev49Xhy5hp+8y6Gu3j4733h/cB9l7zvb334enkMXx+9Ec4kKf4g/HX8eXJSyiMhADHj29+HPui3rh+PL6IN/PbeDu/g4/2nq1vpIhA2RgkZzBreqMsKyrGYONDmM4u9JKmPYy2oJwxfPo5oJAGb9wFvviqxk9/7+LvEib8TAPGYFDYdc1uE5NIq/DZjAOpsb9DAQWp8hbrysXacJT+yVRDKQPBBHKdQ+pyml/oAlM9XZiM+4pYjIkcI9MZOq4x5CP5YpYgc6Z9bRIgUgU2YokrOwK3ToBX7zA8t5ev/VulPMWwGOJwdoDLnSs1Qz5fPlJQtOyD3+ZVNZrWG2mzmYHoAGM5Rlcsbq82GoP8DILEQ/UD+VbVown/o1oo725vjLaZzkw0R/JpZcH3fU7Qo4rr7vTJD2Pw0Z/C2fUPQjTp9Gm1OVyt/IT8XksVADTM9BTmXvSuq8ro5YvtigeBB3Hq4HWYwV2AcYjHP9TyPqx0TvYpACkJXEi27p3Sr1UtwnHpd87TbYOm+ZwmZky0sUHtn11EHJ8NgWwcJuZmPg7NSyoqk1MApWlfPlnq0A+Vrzbs85/ZMmEGSh0/G5+B+SjAZL0mCmB/S77zGNjWpYcK9oFSx29cjCDbury+aVdLCeLgsPT0/MKTAIDo4A0Xw9X82WY2hBkdwQCYugmfMVg8j420kpg52YYvRnRusA/YJtx5wH5I5LgPc0PikTWsdNONrkhqvhCmoh83Hoi17VuU2nPlPPc1o1s9R9qANiOC6m3br5ycWt29gQP/gEp7UEIsJjE4OQufDmsmen7Cjyi1izKjAfhEE5zv+TBXgnGkPIKCcmb/c9F8TcZ9hpwGoPRQaJN4JCxClyeYOePB2NH5s4tPOuq6CXFqopibQpH1SMhzhW6nTl8VxzdBRqP/wu/edwPex1rqhvurMQacOwmUKtzz8Zzl2GpcxOAMCxT5OLPTfcljGJ6C0+J1HTGOmMXBME5tOOPThwz4GSOkggf9NmBBwjyVGFq3rjuSWGC7F5fJCsSdNGL572alkwRyRrtbbMOlSiicqAHOlDPsy5sj+YDStI/JDFu8BwKhMBIjwXA0fBNfvPvb+Ddv/yv8p5v/Ds+f/RFmeoZN3sePpx/AT2x+ogb2q7UrNvHTWz+IH+x/CLHTiTMwfHrze3Ep2l14/eOxZWQdqQEmer4J7hp3Lc3x8xQVU7DRASgfW635sgq/F4Exwve/127HWwfAJFu8GEoNvwGgS8Df4NBvtG0KcM7AQSBjn3cAMJPryxfShMFbRYyn1rhPalnT8WdqBqnlgnGoLz8hzyoReVJLKOMm/E7Dn7ZR+rUEjMa7r9p73st3I1CxyDJYVn3Rx1RNcJwdNdLr5yMFF/YBbC3zvapLP2DNDmOeYiSHjWaHUzXBVE2RtjBkvtPrEeB/VIvFvPbdRjwJtCxgtHK08Pv7OvvwjiCNArhAfulpKC7A5/qedmFL59O/ctGa175WKQkSCdjWFZhsWMsffyBl1GrA7w6wB3Lytd8DAPAr712S503r6Sq5ABmDLr8PkLiqaTH3fbXzRRV2Wn/OuB+ryWatAJqi1EXIAb3hSWm8Nz8xN7r0FmAUPo9iT+mvTPgbI/m8Yd8aMZFRuwyBuQkVm5yFSDqT3v9042EU6+2A+vvlf9+nfh9woJtbE6L8whM2o31wiCSbtkpNlJvu0+ZFsNga2BGa9dMkovWSPR5m3YdhXyjvBeHOo5TFiJzpIID6/hs3jW/ZbyICdTZg1nRZBlDqtZvOd8Zbm3Dand/R5NROEmGQODq/6u1Y0DSvN+1s24+dDcOU3QDgfsIf+Ql/xXjTb8d9VJelUEaBY1Fd62n9tWg+KmmnPiWhzWSSiLAlupaKbkwA/PmlpwPIlh7w5/OLaAalbGZ2r1M/h7i7Z/DJGdIbz59/p+dKcLaAV605HSAYWUd1pWxqzHmNrRgDda02PxJ84ZboTRHzdBMkyOmOF6/rLk/smgGA2nAT/tHxQ5fwpTGHnuuGRBXDPjYbYfc3/ndsfOXXG99PBKRJ5VxnNrtiGeA3MEA2BbEIzHksgIALYhuA1fHXJ/xtlP5yws+JY4vbZ8y/G3we/2H6ZTw/eQVjOQIngeu9p/AjFz+Nz+z+KK5FeysnnkSEZ9Mn8Od3fhQf6T6DP7n1fbga7ze+tsOSMPVvo/VTPr6v39KC/buAVnb6XEyXMn9o7m87fcLFbdtsevlmA+CXbhLObGLFoPCGfdsNn27XroCVxMAQui4lYXoO13oiqjn1M2I2Sq8Cfj1Vftnv5eP5ggG0kTCwt3fp9itpofSTa1a+67JlAh0MGE4HOdAAoJftR0/0cVac4jQ/WZAPNUUKVoszgWzFc0sbjenM/qbCMYjGU4WIIhS6wETWj7sxBsNiCIC+68z6fH137tWjur+qmN0xIkdRXLx5GK3cNKUlf/kc1eFxLd7FwIDPT6i1M6I7l15QnCvndL6MloCIwXaugO08DiNnMA2mTff+BVi+P4yV1HUfzTe2mj1x/aNLPnc9mqV1u38AKQbrTtW4ncz7G7xR0solzkufCo7/q3X8veExtP/N4jqINq7JVCY62HOljOWbLAX8UBKs4vq/fJvbo/m86R6fDsCcYR+avu/bpPyUH7h/h35fCRNQRsMkXUiXrd07utk6ffd0frZ3HZGbKgENgN/ANnVWNIkeeinpmlv3M+EXllHiZEoJi5yOX4ZrKixW9IoEEMA2DCvX48oy2mqOm6jHyxoqbgIrJqewLHyD1AE71d+xVPF5XwDHCuDToc2GBwBTuvRDdNyEf47SzwQwp78/TyU8ssw2zhfwRnM0X0npn09JaKouTxExAXNyCzwbQ/MIxd7j4IxgNCDjinFftRhDnkl0EoG0OlGueH4AQPeVLwTzz3stIRa19dacjtnFM3OpJkqeH/BXKhJ100mgdOjPkk3bx3HPhnlfBG+wCFj5h+ECpBXYZLUh2P2UENzPQ6CMsQ2eimGfT11Ibr8CNl2UuCyUS7cwy9YpsrCUfh6BQO5RZWq0fg/4L+TtgN9P+H205a4z7stNAQGOJ+PL+FT6Xvzs/p/Ej1z4UVzvPgkhc5hzsGY6LMFHus82Tvar5af8TYAfPHJu/fd2HpOc2cm+lvaZLyKQKkDL2EwNx/89j9nf9YW3zcL9JEz4mQZphaEzINztLE744fyuANtM06YSzbdCyz5f/Z79LUZjuwEMLOTSK6MwkeOV+vOIxcjVDIWx91KpJQgIhn0AELe59BdTGMbRSQiP29s6Xr1VNgLWLU4cKe/gODvCSJbXiY8UbGMo+PdKIxd0/NUqdIGp8yPY27GfNZ4oEFGjeV+mM0zkGOn9DL++zesR4H9UixXy6w0IDJyxVkr/Mvfx81TKohruNDAQ88om7cyBzkXpF/cHaLUERR1Lmd66BL533eZvT+fdZe+jlgH+qp9CxRiOOptgF59e8qHrT/jvp4seYu3W/E2ICUdJdk9LrZawFJZUi+N/7SU71siuMzgCHE1+wTBNawugwjnvAb+b8OfLNfwA1pcj8HYg4p36o+kwRPJ9WwP+y8+E/82273/CDwAxiwLIyC9at/7e0dutr1eHbwIAxP51pDxBposFOnXQnPsGES0/Zx5mGVWAontobs0VRaltRMKCoQ3RRa4ltJuIhP0PCSBL4iKjjj1/112sBZPRBhaFa5o1NX89I0SMT+1tqWLYp3yzaw7QkXNeZ9NBeBIYowNYCVGlRgd5kn0DR1tE4DplDeEYiOmFSW4ZzVcFciEcsNFDounzUxYjvvOq/cwL1wEuwLkF2W0Tfm2sS3+3UzcYDYwgxiF7O2DFDJ3XvnjOva4XJ4KZo2tore3jl7vmitaWoXYfjAreEGVXGvZt2DhGaojaRGncp41lnZhN11QaHt3z9qxTXsdfKAWlNJhALZKv+v3JzZfW/FRaOn02MrNUai6sxwKzwOiisNfOndqEX9pY44byGn7mgO9Hus/ig52n8aMbH8P/tPcT+NHN78H17nWk0wHY5NiCOFMA5/EpWbMejyzgv1kcLsa0Ebf3r3uI5yOZgY3uglQOE2J07bN9KeCf04QfFqd4e+sPwLsjHA+Bw7k+UunSD0iVYeKO/14bpd9dtJzZa6sE/Oekw4cJv90AwSLM1BTaaGQqQ67zRl18tebj+TLv0O8j+WJqfk4ZZZlq7h7naf2v3BHLj21LxSwGJ47D7BAzJzHIdYZMZ60eBIB9VmhTd+qfr6nMULje8L4H/FN7niU8ceZ95fk1LmwU36pj951cjwD/o1qsyoSfE0PiaKOLZazBWIv7+HkqYsJl/7rJr0HDhF+tXMDOl12M3AfgN6ZGV2f9XfD96yAeQU+O74vZEIDfEmBe9VNARZvNr324Vd8971q9rP7/7P1Zs2RLehWKjs+b2US3YnXZ7Mydu6++V0miVKgkgQQI0egawtDDOUdCGOheE9dkGIYZP4AHTGbwADwgMMnQ5V4zHXHhHEBIdcGOQIWqpKpSqVSqfre128zc2awuutm4+31w9xkzIuaMmBFrrdy5d61hJu3KFRGz9enTv+8b3xhWiPAU7AztA4CG94RxgOx4Kc5/AxGzQgRvSYaXuwo/P7oFkdoXG1tQSNeO7u1txVzA75kA6RjGVZxorpLfVLBvesyOSVBxzL7CLyajoipUKRKo87euQl0C230M1N0HbV0BuertaVGu4Pk+fnHv1UqPapNNYI5uAQD43mNoixCZVi7gna1+glyS0Eppv2UBP3S+WXJrDhTMtobEIgCBFvvHvTvBMi0PEazVx2+0rm+/8UyZKicK117DkyG4zmCMQZwcAgDyzralbM8tR1irb/+bJSBPF1U5im5+X8V0AR+VA37iSwOoZQiYREACmjT03LsjK6z57JxQfFr08Juad+UURIQOCxG/+R0AQHLlKQDToDGv6eFPcyDkBsGcyKsP+HXUwfDdnwAAxC//SbPqct0xMlp4bWoNSM5nAgGjGti/LoGw/oczuyos+YIeOGdOQHEx4PfCfZm7z2bLjbHB+ffxh0Igzw2UAoK5a8JnAv5vNyw4GNvHX/dpnrq2Fdv+RLBv7X3RBwEY6jESV63dbUDpZ0aBdI4eb+Pj7ffi8fDqdP5lAjpogY/ug40PQGo9F4am2BVbiMm2Zdx21oIz58yFo/WvsX5TLtjPE+d8UxqrnIOyevo8qRymNFd+bfwibuV30X/8OwCAb79eU+HnGieufz9gIdqyQmhXZQUDiXHbpjkN+NdLanTaU0o/YDWwbB9/VqjPr6Kkl+35jDHIdGoDflcRXybYR3o6Hp64bC067w8Z7t9fL3HhEYsWlM5wN7mDXOdIdAJl1IKlYBlW5FstFe47Gbk1HwN2tqYVfv97ABjmdu7MdIaT/Bghe+dW94GLgP8CVfCLJ6dQfDXaqa5aEGx1iMtTL6IDJiCYKF7edhkwr9BvXQHWqpCx02sMzFevWdyzQX/QgRmeIug3ehpo1sFTVY2ZEWMTter8QGEkvUK0D4Crap/iAhWsi4ZZUS6shZ9WrmIhNxYxoyqLv/LnW5fssWUJ4uM7AAA2r9Lr/bvnKP0oB2ZOPGiB0q+VTV40bmeQtQERwrajaxqIw5v2WKPewtfM+LhIQLyVIC4Q/dn/B6If+fnGwoKrwIkXVmiqu4ssbIFUDn3nOwvf1fdetcfR3gZFXTt/EF/UG9HKBvlMWAcDJjYOBE8POl3/vsdca0jEAgSMY6JSMFAROBujVu7P9vH3mguSGl3vVsJEbWWdBy3kriIfT45gVI7AKbFn7b6lWc7NVzyIi4qkTAZgJX9uTQzcV2KMmU0CN2D/LAMnhogHMKQXgt7UV/iTgZ0rjHtX+Y4DY1ZW+AEgGh0hGJ/AMI5074Y9bBdj11H6c20QRwHY3Hzp+/dV1EG2/xjSnWsgrdB67vNrnnlpm5ZLP/M3pQ2CckWeyFZFT/H8c062il8K6nzAPw674Nwmsvh8Ig9T4b7c3edphf98A37A9fEbA2XMQnBUrvCL4SG4e/csBbHKxCbg+/eH06Q62YDOGFso2ebT98RWphCUdCDmobmE8ZXmZc+8C/rZ5BjuJbn6HNYEEeF6YMVWX01vL36BB9aGsin7SKXggztW3T/sYOGYWQCopF5oUs+O5Tv5of1z246n594wUCXGj6/wC0GFYF9PLr6z7UZUcTzekCLyAb+erJXUKKz5HKWfM4Hc5Eh1gmE+hGhYofb2fJnJkBtlBfuy5ZZ8pDL7/nTPYigJj9lbiOdfV0sLMMvQFl0MswH+25dfxG9/7jV8+SspPv+VI3zp68f4yrdO8PXnBvj2i0Mcncxufxml/3BkExBxyNB212w4nq7Vw5J43ygfIlVprUjgOwUXAf8FFuFf9ksCWeOUkanwtz4dpV+QsDY7PluPxV5co9X6llYlSvy6ML56XRHMUti2QX/YtlZ5m8CLHi5bIBJDQUdzC0G2ewOss6SqOq9avQynzdxr5ejSzbZDxJxfdw7k2al6mimIlovwMAHWvwoACNwijM/32xOmx15qbyDGpxVEuO/ML6KMstXTptfQj6WKZ4WIClq/cJR+FlcsHgxwKkbGGYKowjbzFBBkPYoVNBQMxnu2JUPdWqTFqnuWzs92LfU/IAnpqNjzAT8xOU2q1XjFnzfWZYMsg52PqEg0SibQ4hEmOi00VwA494zV+yu3Cq2E1vXPa8GSqVbqTx1FP5qcIBwfgQAoGUHJ0AZ0cy1cHBy5e15lMrDxp1usaxEUvufGaJvU8efD3Jx6Cu2WlghtdX9ufOdBC5oYyBjIZGiFpUC+wO/OdfW8Kx2df7J7vUjKELPvKh+s8dJ7JVcanDGEW9sLSRw2nlb4QYThu38AABC98Sz4UUV/dAN4JfiZNjtjCvEr+yVumSGnofQz5sgYTn8iT4tExyTsugq/gSRRqSPUKmn/TCv850vpBwAp7dxntIEQpbGXjMDSMQyAdN/OTVETWj+x+kBUZTYhV1qHcE7F8sz38QPAvis716n0g6hE61/RH88EdNiGCeZZcWeHpX38TABKNaP1GwU+vAPKRtXBPmCLDSqvTiAYL5pon92RnmCo3TikEeLOGJMUeKV0mEWFfybg71cfn8oLphXnBAZCTD7gT7HOO73Tcj38o+k8S4ANWnW9sv08bB+/7VvXPuB3bgRhnUK/SjF/bZ++6mj9twjYoAUDsOuf4VGIL371GN9+aYxvv5DiK98a4EtfO8Hnv3KMz/7REX73i4f4z79zp2CGElil0j5gBftOxnZ8xxFHJ55lRQCWIZSpDMN8gOPsGILJd6QVXxkXAf8FFkBEjhK5JFIu9dPX+VuvA0aW4pTr8iQ2X+FfQw2+2PApAlqdL61ekwxBURcm38CaCHAV/hUBY9FeYSAe+wj4jY8g+PBPrNiuW6g2Cfh9Q+2GsKKG4VoTJYnQiRR5hfsNp6ElquDFV+YU5Nm88n1ZNJGLGeEkKin6U9RdPEftFP4bW+cRIEOYGuomK3y93b/jrYpvmVN1qDzMEC5Y10Yj1wqTPbtgVreeXdA90K5/n7vvSGYThvPVVaMVIKdzhh97DxxnodDvUSFY2RExGAiy7B9sTGWych7kmCeNEiEEy9Cp+oioNqHCiSFru4A/OYIc+/79PhS0ZSbMPUeMGFRsA34+GYAYwF1rjhJOoR9wWgVzSVMZWIbDhghIOmLV3MNGrKD1y+TEWtfR9F1V1ZpQiZvfBgAM9m8Uf+KW1lb0X5cr/EmmEYe88H4vo0zpBwC1tY/JI9bbvP3tz62sHg7yMU7y2aQ1Z7BuCuXf0mzPPcnItj6dYo3MGEEQIXf78Qr9uYygeABOVghR1jh1hDwo5sMi4B8dnVpTaBUkt338jBFkKQniq/uq1cf40ffbY7z53MrkEy3RQTJ5Zj8rMWs4m96bS2Ia8O+lORQPYOYFMCdHRTCmxVSpfyWIo1Kg84zwiNwHA+FEjwpbwTJW0fA92OQYlA7rg32g+HtlAkErALpYM93NDmc+vvKobTn41uvT+1gE/JJw5ETntioCfmO0q4rb/TMiMA6EsPdhbJK11s/dEqXfz0+cJFKTWXeRhvfLK/xP8nHxO1/hr6X055OFsfXYJYLgwPGY4c7dBmPK6Mqix/GJ3Xe3w/CR93bwgXe18d6nWnjmsRhPXLfssNFEI0n9OXMkC5aOFrnJMRzbdXm5wp+kunAhsKwygZP8BBM1fkeL9XlcBPwXqMYqOzsnhmVpnMs90ZsiFoFV6TaWdLaQ0Z+nbjbAtAd+gwNUua1eL6FsU9DaPNlRiGo1Cfg1KOoi/J6fBHMK5rWYt6laBnaK6wM0riKWYf26tVW4X+ipXwMNgpn5gL8s2mfmen+JBzP3svzdSks+MxtMNgGJaEEcqPisPSv2w+cCflM8cw2Ds7cZBHGnvquRGwW1+yjABMz4COZ4WloxKoM+eB2AZbsAdq5o83CRTq2VveYOJM7IlWJdaGvvuZalaB24tPNSKUCIuETA5KySOaFZuwl3loVNgiSDpQEAiaByPmRgyN34DsdHiMZ2AZ07S76qHm1ODMo9d2JyYqc0V53TMphqvFS8F4gHp0rsBExYJX3oheEyI9xnTEEC0MZYdf8V864e3IM5fhOGGI53pw4XvqqeCUfpzxObGIWldcdRja+2YwTpUjJz9Mz3wzCO4P4bkHderj0W27+bI58LSBmRy/mb6bmBwMsVfs6BoHqRTHna+L0oJYd2Ff6gsOSzcx8xq+Jf1yYRuASXNhqI2tAyBBkDPjxstO9NwRghkgJcUKVgn+ruItt7FDqIwdIxpGtBqgURjFHVSao8AebYJl74DZit8O9lCnmFTgiVbP8U90r9p3NyOAtIJgo1/2q1/sAmKpbQ+ilPQJNDGB5iVUhj7f5Gi2PTaJAvwGBK5/fr2mDL0vpfeRMYJZba7x8ZKRiOnGBfP6hI0hsNo00xbzLGwAgIyQX8er2Av+2q1UoZTFzPvWACST6ptbCtgyCBDHmRsPSifZWUfp3PCPZ5SEF4/JL9/QuvrnYcYJNj8OFim4un69+4GuP7PrSFH/hoHz/48W38yJ/awY99cheRYx144T1BHJnOFwUfYXvyR86SL4oYAkkz1nweIY8wzkegd7AVXxnv/DO8wEYgtrrCX1C53aJy46DRQZIT7oNdOFVR+NZS6AdcQMs2CsqNVq56vURUT4bY2OrLWJeDpdXxQk9hjeM3Zla1egmK722sQ2DWZ10U99A0V7ivgE+WLLv2ywJ+W6GnIuEyL2BIwWyFfwFe4X+dYxayNjlGpQq/FhJ8nmptNAqbtVO20DyMICIEjNsKv1GIwzbY/hMAZmn9+uB1lwDrzFyzftBFT84lkMjYa+5xFgH3BjB5NjOeToMqwcqQBUWQOt0pmjGcuAQJ0dBH2Szdpk3mVVf4c2ezF04OEZYs+ZTRVrR1bh5kRNCurYVPTsBBBQ1ZO6FCf0zzOijET5fYCZhAyAQ0NNTcdnwffzA5LtqbGaMicTFvHzcP9cY37VHv3oCRYalKZ8854wGMt6LLxshyBSnYrBVfCeUefg8ddzF+7EMAXJW/psKcOVXqQu3egTEGIhRVZK2N7bdnS95VDpSOsf0//l/o/eFvrvwuYAMmv+dpwO/uu/u7qBlzXrsjcxVU1XHipw+A1h8GHKHgYKVr4gX78u4uwDiSK9a+dKVaP3Er2lfB/jLJcGHeKq+N2iwuPN0vVQr2aRhwG9BiUan/rcYqWj+pvL79wGiw8SFemdzCHyUv2eB5Gbzd33z7hNGAniZV7rqA/31Du70D3MelLfuV594wyEu3iXNWOCT0w/7iPrWeFmFg/yM4RwhH6TcpoJqvvzgntCK7tvMUdUECyqiVdnzzkCxAVkqmeNG+Kko/qdzaHFaswb1a/ws3Ta0WBQBA2eQMKhKCPuDf6la/o32iwwfshVJ/xVoo1xkmrj0hjqyo5rSPf3rzvDVgS5xf28rDhIuA/wLVYHx5D79WVlSFyC6ueLVY0zqQTFjqp1G2L7I0PAt7rXUp+qcJaFU+I5RXfdChDVo3eHkarVdSbqlIWKyxePWV6yZUecYLBsHGWDsJM6XQbyrYZ38vVwa/1N6Z7b0vB13lALp8XP635Qp/lSWfWX3/Ko+5BqxU4ddhZ/ELZYu5JYrOb2eELEBuNLQxiFgAftVSk2cC/rvT/v1ykNjiIVp8PkmC2fvKxekYLafAyrlknW0FsdUFcODE0BWtohJa6I80mC+JCCRbM9urQuH+sVRktLrNhhGD9taTk2O0JrbCrzs70MYgqKlMTa35TsA4A/cBvyxR+gmLAqVcnI5qTgxtGUIxZVf5JUwp/QNomELyRkPbpMSKRKsP+MW190KWhWqJCsmZslJ/mhu0AzlbXS8fq6f0x7NzxvjJj0HLCGJ4iOi1b1b+dqIyxCyYUbu3xwLXXmP/nRsDQbTonFMBcXQHLE8h77/RSEeh3CZQBPxhz4ohcpvWqUuiSCYQkEDmq9fOMYSvIdynjJ5JdjRFO5LY7szON+UKPwAk1+z8Fd5+abltGWMA9EKyzLj+fZprBaJSkoGI8MnOh/D9agtPj9LF/n1reQT/YGrHyOMbetyfNR4NLGPxdnYf2cK7nGCIgbJqnSTKRkgn9/G7k2/hT8Yv4P88+F28MHmtfn53tqwLtH6t4F4W0Mbgbm5bjj51OAIZ4ESP8MSj9jfPvm4KwT7GgJRnyKBAIGyHVRX+2XYBABCcII29pwZAoje15rPjhRHDVtBfqmxfBUECqU7A3fzrKf2hXJxrSPsgfXEOuLEHBAIYJoRbt2vOxRjw8RFYPoYd69UBf78u4PcBe3HO9Ur9iU6QuOEdu+RFkTAYzT5jAQu+K6r7wEXAf4E6NKnweyp30VN6uqpjwAQkCaQ6BxGbrfCX7bXWQYkSvzbIrBS0sqKFMUxTJdkyXIV/JUpics22u7wKN4NTJEQKSvy6bRZcOos0eaoKP/hqNW4iAttxVf6gNcvWKFHk7ZfnBB7DFRV+UPPr7H/h7OGqRC5nKP3z4oLueH1197QimQ8rAiaKlh5BHPyyXTDr+6/ZShfKgn036jYDoDQ+S88YeSX5B6jUb48Dp0tuzaFoiynhcthHX7px00QQtLy9Oau/SjTRHKnZHycGE3WguQAZgzh1VWlf4a8N+Pv29+MTK0jogiY179Yyv2BroO+xCi0RATBQ89Z8pQq/DRFQbYtYAfXmi64dhRBcfR9CFiB1zIpyVT131l4sGYEARGHNNVcZmHMR0fO2oTLE6Onvtefy/BcQvvZNRK98DdFLf4z4hT9E67nPY/vZL2D3uS+gd/MlmOHRzO9FSRhOK1hxugZJFO5tTI1uZA1oWQOWoO4D/knUdUl/a4Ow7Jq2RFSodftAu2mFXxuNo2yIw3S4ECQGb34H/c/+BoLbL1X+lggQYvZ94i0Bs86ObZXoXULe7oN0juDWi/UHwhig9YyGDGAD/kL/o/z1OTbMtWAfn5qEYKhQ6DcapnT9FF+jh/8BoMfb6LE2NAzeyCocDXgAZOPF9aXOwUYHeDG/A+U4IonJ8D8HX8F/O/4CTmr87Q3joDkHDJipNs6RGljmiza4McnwSGL329o5AGPA3WPg5oHTnODAUW631WItiIr1qTHGJr5K90ByK/pY0PrXtuZzwn3Dhu8xnVeu8YgIPdlHzO2Y8ZT+sIrSrzLUTQCcE5684qr8r1SfC+UjUHICLVqWbVJ6B2ttcDRYr8JPZNta5gN+YwwSNSkECOPI/q7dmm0J+G7ERcB/gUqs9K83GuT7l5mwgcwpK/ycGAIukOrM2fLNBWfOXmstsKno3dowaLQ/FnXrFXaXbr+ZqBYYX6siacwa3sgl27+1kWebBe3OJ/u0Pc1e8X/VuPO0fprXCzAaRHz6Ip6v8AfLe/hX0ZurD0YAVF2hp1a/oP2ZqoDfWA90kvFb5yV/zhDEYZwNl2QCrLUF2roMwEDdfh5GK+j7rwGYCvbVQjnRzRnLNm6v/4O8fio/O8E+DyEX1l6snCT1yvU1AnsLaDIPac+IWdLi5Owtq/RfBBfIWtMKmGKiCFLrKNu8Y5NgLB1DGgWuXQ+/CKcMMGetuXAcm7ZaOUQ8sFR9NUfpDy3dXCYnMNr2tsMF6qJGTR4AjMqRfuW/AADEk98LFnfR4VFRnSaCs6hD0YdNkxFCyREG1fOk7983XMBUaKlMHn0fVGsLLB2j+7X/js43PoPOtz+H9nNfQOuFL2H71W9AvPRH6H/9v+P6Z38D27/7/0bnq7+D8PVvIcpHU0q/MZCi2XKRlWxD+ehw5fcFc3oN2hQBfxJ2bTEWBpz40oA/YtI6KgDQXUvpb1rhP87H6Ik2OiLCQE2DwOiVr6P7R78NcXIX0ct/0mhbfHgEMhqaSwyCAIfpEBoGiRNQDN/49oot0OK8lCcoRHhLsAX+2b8Jl/hZCPj1bFVWuXHCGvTw57lGlp//XOlp/a9W9vFL6/8+x0hgkyNQNsJzmbX0+3jrPfhY691gYHgju4v/ePAZfH384iJ7gwurC1BKIJBRANkx5On811IFBuApp/Z+z9zHE65X/WsvTwP+Yyc22GWd6nBYK7gF7fTYuU0Ttrw1X75amLCMaYW/ie6KBj+5DT64U6mFwEpuO8sCfsonMEsKbl6t/8WbOfQcKwpGgY0PbVpPBLYdspTcGoyUNYBh08B+HvMVfsAmWrO5tXduckfpt/+er/APRu/MtVMTXAT8F6jGKooLUbGQturMp7fmA4AWi6C0Bsdchd/M2Ws1hfdYX9OiyWhvo9VgISxDAJvQhJtViGlFe8UCjGkeSBO3gfMmFlYqtUrNG/TwExeLAfgGIBmtXNTzS08BAFhvf/YDo+2x+N66uWBlmWjftHq8ZsKCS6tyXlXhZxzkhPoqRQK1AonAJtpO6YrxsMJa81nP7cA9G/zKlNavj27Z9hkZgXqXlm/MJwnL94gLd/0fZMCfOWbH2QX89vmuDqwBTNkgDRWbicvaQL1AIQa6ZJte16Xi+koSSNvTgD+L+y6QMbUBHRcxtLtuQT6EcIs7Jaz2ifHB0HwSgomCvrspAiYQcjlDdQeAzCUpuMrA88Qt3peryQNA/txnYQb3gLAD+b4/A8AmFQhT/RvOGYwuW/MN0Y7EfLxXYKZ/v+pLjOPkg38G6d4NpPs3kFx+EpOrz2By/b04evS9GD7+YYin/hR0/yoMEfj4GNHr30L3q7+Dx//wf8f7v/F/oH3wKmDMbDV7CfhoWtVvIp7HObN5uWQEnicwACZB156OcwtYpjweMOkcBTSUD/gng+UUegAjlUASx5VoG5fCbRgDpCpD67kvoPON37VCdwDk4a1G44iX6Pw5NNoiRKIzJK4tSd5/vWi/qIZZ2I9JRpVrhCrbRO6q1ovvc4eXAADzU0lEQVSWfL5/3I6Ppir9xgCTXBU07/PEtI//TsU6yr2fS1V5yiag5Ah3KcM9dQwGhqejR/Gh1tP4ye1P4YrcQQ6FLw6/if9y9Dncz6dJqCKBUE546LzYjxfsuzG21+dJp/Z+K7uHd1+337llO5IgBQrBvi5rV+sxVcyptjvHIHIB/2TdCr8Lfk8aBK/2XCegySH48U1QOqgt8HgF/IWA3wv2LXkOr+0CUWAwSYHXb82yK1gyACVD11JZSko7eDp/ryNmNDHK6MSLFXqr1D+bCMp1htyoQtAwdnoHnYoe/u82XAT8F6gG2QxkFYoJubSQJtmAEtoAAbde2iCa9mjCC+itT4m1onQca3uXK2UrgQ0CZ/J9/GtX+RtWiJlYv4e/YWJkasG4AaVfpaCqSvTKfTJAts6kp5kaVPj57g1Ef+b/juBjPznz9wUNBWIFtRLAnC3f3HnOtwM0Pd4iOVZ9zOREp4LWzuKHxupmgC9Wd98p4MTAGUfAZLHILwL+N5+HvmPptWzn0dV2iBVJQiLmBO8eIKVfZYvtJKeFkHb+rbPyKmmsNNte4La3ZA5r4iriWyYqrq8gjrTVK/6dtfqufaNe2Z4xjsypzwfJCYSrUJmih98G/AvXljsmwikSYwEJREIu9BUbJpA5yn0wGRSPooYuklTz0IP7yL79GfubD/35Yu6LuJzp4+fc2q0pv/18Uk/nBxYs+aqQb1/F8cf/Eo6/5y/h5KN/AYMP/xgGH/gRvPnMx8Hf/6MIPvQXQD/4M3jxUz+Nw4/9BEZPfBTZ1mUYEKJ0gO1b33C0+hUXzB9TucLfIOAnpw3grRqzsAPFhGU7wLJ9llX4AyYgGEemFYyMoFyi1gfgVci0QqoyXA630eIhuiLGruig/bXfQeuFPwQAjJ76OHQQg7SCOKqoPM9BnNwFYAX7tNGIeIhU59CtHrLtqyAA4RvPLbkQbEbwzGgFkyeVLEBGNhGiSyxMb+O4oNJftPjZ76qih39FQiTJEQWiYF+cJy7LHQjimJgE9/Kjhc8ND0Dp0L4DjQabHICUwnPZLQDAY8EVRM5/vsfb+PO9P4Uf6HwQkgTu5Uf4zcPP4iD3iSirZzCTENKqaHu44yz5Hp3Ye/H4JCv6+Hd2xmiViDQzFX6KqxNzWi2QZTkncDDE5Cr8Ne0Hdeg4a75hA0o/qdSeX9QDjAI/vgU+ultZdKir8NukQbVgnwdjhKc8rf/l0vmoDDQ+hBES5ZCTSvtfJdgHVFf4OQlkJpthcfh/TwN+R+mv6eH/bsJFwH+BajBWUJwWUAjolQJ+EZxKFdnDKk1ziBLNyO9zVT99LfgKPYIq6NwqVzfqsQ9sT+0aPXHT/vcGFf459fgGG1+v8rzKgrF2P673dwPw7atFNftUaFg1ZVtXFpkIjiI//ZKj9zeo8FuF/xXBTw1scqw6UJPv+tPg196P8PoHFj80diysrO6+jSGI24VQyf2AbV+zlYEsQf7CHwBoQOcHYFS1bSLVeMWfG7QCOyOF/gI+kVHHqnJskMZwrJul1nxG2/atZUkELxRYFfAzjrRE6c/bfWiYgtFReVjEkDsxOpEMwV2/uxahPQ5dY0FK3D4np7jPRIS2CJGjwvbJ9/EnJ9OKlKluTTDGIP2T37LjYP9J8GvTZ1uSmOnj9wJ2PmgL9QRySVtGk4C/CplWEMSL50wyASFjjPYewejdn8DRJ/4a7nz4J+w5jo/BiRW2VqvAZyj9i8FbFQLBEDj6fxpvuY4UVjg41LVJAHbOCNg0MVNU+QfVtH5jDAb5CDtBd6p5oTL0//jT2Lr5AgwIJ+//IYye+T5k21cBAPLg5spz8LoBeWcHBFbokRhjMHnk3QAcrb9WUI7NJtzyZNo2N/9VOIFHXRHwV/TwTznlBtrdc7ZEdyhXGgTCViuAFIRsDRX5TcCJ4Zq0DLzXsorkinDq+vkELB2AkgEyGeKFxNqzPhM9OvN1IsK7ohv4v23/EPZFHxoaLySvFZ8bJqwQoL98KgcYQ2ZyHCo7fm+4gD/SBldyO/7ezA/wzCPTsThT4TdhZXXaeD2VEhgxEAci18M/UuOF3y3DOhV+qATF/ZctGBmCRvdttT+bthIYY+oDfp25cbs8ZHz6Efv5d95IkbtWKDY5su0YYm6tWFHhXxrwe0r+XIVf63ymjz9VKbJ0+pgVlP6LCv9FwH+BGswLmJWhffW7tBDZIPCpgiTh/LjnhmbTfvcKEBMLYjirYHTuLPka2BARgaLOesJ9c5ZwK3aA9Uq6ZnVLRnnz64oCwlUtuZgKN64JEkEzF4FVYBybtVPA9vCXEyNez8D31MZbNoCJOsA8G8Go1dXOGixLjvH9JxF+31+vZ054ajjjzXzT32bgxBAwiZCVhPaIgV95BgBgXIDDdlcH/DPCoiWQjB6oaB+As+3fB+yzI8Mlyvrr2WVa1k20tC3LGLVSNNUyWKoTKozYLKW/bQX7llVwOTHk7lmQyaBU4Q9t77xXjZ6bS+xxyFMndtoiqlRwT8sB/zTer1STV298A/r28wDjCD7yEzPvFCJCt9THz8luJ3NBW5BPlk79bLxZwJ/oFDGPiqqoJA5ZUrsHgLzTt5+lQ3BSM2r6daAsAcumFNsmFX7AipiFiU0OpFEf2piC7RCu8BYnIrR5WBx77q35avr4T/Ix2jzCpXAbjAgmGSL5vX8Dc/t5GCZw+0M/ghOnrl8E/PffWHkOnlGQdLYhGENPtCCZQGpypFeegmEcYnC/lnlAjAMqc/KF7h1rVKVmBmMu4PfvEaPBa3r4yTgPeJfMVgWlv7qH3wAYpwrdlkAcCkSRKIK388TSPn5XlWfpEDQ6gOEC30nfRGZydFiMq3K3cpstFuF98RMAgFeS2yV2amADYWUDWTI5AIZ7+REMgDYEtpSGcQ/fk66Pv0zrBwDBNQZOYb9Hob3W81D5QrsNZwROQEibUvrtMzFJNPJ8hdZWOp7tvWfSVvtVCn5yC2x0DzAKWW6KZckCpV+ljZagV7eBdmiQ5sCrNyegbAyWHMHIGOUNGCLLGHBYJdgHTAP+LDNIXZsJJ458zppvoifIUu7Og4okjP/9eKKhHsB4fhhxEfBfoBLkaPWVgZRWtg+2TOnn8tQiSYDL1pMAR0UgtW6/tAdbP6C1jILm1WsK4jVp9851oFHAv6aoXpVN1TJwuf71yVMbUGzKujgjFJaQmwRwhNnr7/UMfIU/iBH90N9C+IN/czHxo5Wrdm4whW4wjqe9ynxajX0HCvcREbZlG/GcvZ6n9dt/CDC3EF+OmqD3jJKTTWCU1wI5O4V+DxJL2qjWcerw25PxcqcVrUF89XlUOQgAAAdDGncL6qxq70Abq9cilgT8ylliisnJTMDPvBirty5teBzroBMGkJwjzeb6+J01X5iezFT15u2dTDZB9ieftsf/rj8N1lkMTCI3NowxRRJ04nzVRbqc6jvTw78GMp2jJ+KpfgkRWiJEXrbmi1pQTIBg0MrHjZLfXpXfOPYfnwwatbpxzhB7wT7H/OLcWqQt00XwiHgA7VhwhTVfhVL/RKUgAJejHQRMQI+OMPndX4E+eAOQMaI//TNoXfsgBvkE2hhkO48AAMTBzaVjidIJuBNQnLS3IIijxUO0eYxEZTAyRLr/uD3WOvE+5lhbbj+2f79GrJGspLE/Ip4lIJcqUAvJaTcXuPvnA35Ww0hMMoVAMnRbAUBAJOw8cpYhUtW2rgX7IBDu5Ud4Nb29+BsugXRsLfVEhOcmrwKw1f1lY/O6vAQGhmM9xKGj34NxG3DmSdEmACLcdXT+K8ZR7buWdfDMwD6Ht7J72O0S9l3ekqIRDAAJgQgCqLCIg3OdmgEBgvOiwj/W6wX8YUCQwp7zYLxszs5tdZ7NJ5wJCNowTIKN7oGNDpAkvq0IEKKsn2VA2XLBvmKrRHj6qr2733ltBDY5sLam88U6YoCezgurLPkAQEqGwNkF1in15zpHpjOkqf1eXGqHikJWLItHk3fe2qkJLgL+C1TD0ySrXnLOTm5mEius+U73IBERYhHO+P36YGdTRfdNKtgwa1bIZFhrt1aJoh+2wTmtHVRWUFyXbn79lgeTp6Cwc7Z9yZvAq65v6ks/099NC8kP1n+kcpFutN64artRcsz4NhpeWPOd1gbzYcV20J2h9ANOeNGNNbZ9vflcUBX0MnG2q9dl8JZa5xHwyxUB7bp2mSIAzLKgTjcSMbXbWRzbnBiIcxy95wdx69rHoNpbRYW/zgeZE4Ny1XSRDMB9wC+mFX6iuoC/+jjWQTeI0I1CDLPZoNVT+tuju+DZpJapkH3zv8NMTkDtHch3/enKfYRMImACmcmLNPfYBfwsHS+dm8uU/olKkTeYU3KjwImjNcd+iVgwk+BnjCF1iY1WutpeD5jS+dNOf1pJHh0v+4n9DidEvsIfb8FgKmzGGySuJJMg56E+U+EvnY8yGmOV4FLQR1fYKnj2jd+BGd4HtbYQ/dDfAt99FLtBD10e4yQfQXV3oUUApjLw43pNAJ9cUHEXKeeInLd3V0RQ7hlNHGsgvPlcjUgus+8xpWzgn43rW/PIFmX86YlCsC+qaG8hGCZgnD2xdslUXqHSr41BrjS2WmEh0iglhxCE/IzU+tNc4XiQLkzBLRbh/a4a/weDryGbD555AMrHMEELR/kQt/P7IABPh49iGSQTeETuAQBeSW+5v1rWJOUTey+cbZ4X7HtE2TGXRltIw67t44ft4x+qMT70uAsoezbJ0+NtcBiwufnYwNj3dMX8JDlDYBylX0/WWoMR0VSpf0kfv+3fz+uTvzyAkS2w8QGyoZ1LQjnPrlU2OG+QeAOAa3v293fvJaBkCDOvKQFMA35jkCuDE3cOyyr8QHUfPgHIXPIgNxmUzpEm7v5EJc0Aou/6Pv6LgP8C1Sj86xcnIVNV/V7VU7oG+rKNnij1vG4okDY9tvWG+ZT2tUZAJ0Jb/Wrax2+U63dtcGybnHdTsS6//XVF4IyeEbV7y1Corm8w7irsvBrrGRjVqNpZiU2SY4UlmnPGkPXCf+9EkIzAXN8+a9K/X7goVPS/coGVivRnBZ2f2n6yFjXBwDr6IDNwVn+118Wgocgor0yoMGJgYBhdezcOrn/YWt7B9mjXbgoMOrZCf2J0BO6ecyNDK9pXOAdUzKNnwOQQxLHdimGgkZf6mCdOVDOeHOHGH/4GWs99AVzlMwG/PryJ/IUvAACCD//F2pY028ISINU5iFv19cz1u5LRoKy++udt+XTUwUglOM5GK9ubEpUhYkGhED49Dnsf/O8ZY0hcYiPMmgX8zAX3adSBavcBNFTq1zmC1J5LGtvfEWO1bRLzsNo/wtJ7O9t2qGYTUDouzuk4G6EvO9hxtopGZVA3v2l///G/Bta1QaFkHJeibTAQEqOQb1+xfz+op/ULR9PPu7tQRhcMpZiHkIwj0znSvRvQMgJLRpD3X1vcCHM1e6OAPHHsoPo1COdU5Pt4Xf++PVNXnbXruaLCrxVo7h0ySTRaoUQ7nj6TnBNiKZAuo46vgSw3CASHqtAF+HDrGXRYjKGe4MvDZ2c/JA4T9QEm8Vxiq/vX5CW0+Wom5mOhvYcvJ7eKvxke2B52nQFO/NMH/NedWn0uY0zaO4i0wb621+1Wdh/vusbwv/0Zhp09W/nf4m0QjPWXL8NpOFStxwQnhN6WT6dYV1jaC/cts5mzVoYrWkKZgOESyYlNuFUL9jnHmwbY37K/PxhopKbGKaZgrWocOzp/IAlRuHw9XCXcx0ggdXatmc6goZEk9v55wT6PIknStI9fTxk37wRcBPwXqIanSVZW+PVC9ZsYa+SJ3gQtHqFdFvjwmgGbUvrXrUI7O691NAOIcSBsweTNlPqN1o0TCkvbKyo3jvXOec3rY7xo44b9+2cJIlbbM7wMxTnMBQXEZDOLQmOaWTZWYZPkmJ7VDDgrV4y3AsZo6NHhjCJ1EwQf+gsQT34v5FN/avWXtXKiihVzBqu3jjtrGJWBzlqwz4GclsPC2PcJ0jXnS+KBvTZ1ugB1gfU8agJ4TuQcWIA4EpCCQxlTBJrVuySQ6/tn5cDX66sYUy8k6PQ9TgMiQj9sQ0aYsSdLW9t45b1/HsN4B0xl6L74R7j+2X8HPP8HMHkKYzTSP/5NAAb82vvBLz+9dD++j9+rr4eBhHZJdZbU0PrzDMz1YWdRy9LIRYTBin7gVOfYEq0FITyrdj91DCACMhccB5OmFX77vTzuQK8R8AeTExCAXIQFJZ0ZAyIsVej3kMQRcYFBPsaBSpC5NpDJ4Ws4zkY4yoeImMTlcLvYnrr1rG1Na22B7cxWibsixl6whWE+Qdq3tP5lffyiZMkHTJMnIZOImLXnA+NIrtpxEL7x7OJGnEOM0RomT6dzWA04sxoHwBLBPmhXvHHPgrGifX4lwUp9/D6h1WvJhecpDPhZaDIX+xUCUBUblCTwic4HAQDfnLxUUOzLUEbj+YlNmLxrTqyvDo8Gl0AA7qtjnHhFfC5AKrNMCmMw0ilGegICcM0J9qkgRuKSe4+7JMCtzN7rdkQ49oJ93LbU0DyjSKtpsn4OxBki2DVUhhz5mu/DlRV+Y0DZuBEVHyJCmnjBvtl7bwX7nFZKA7RCQiswAAj3xjXJGGI2OaLVVLCvs0IQFqUK/5xwX6oTGGOQ6QwEwtidy3wCYa0Kv8ogJwdAssxK8+2Fi4D/AtVYUuG36fPFSYRktEREam4TyQhmSeViBl4zYOMK/5q/07k9vzUXzCxsNw/i1lHRJnL3YnUgalzFay2qfU1FrhZ5apM7Z2CrdxZY2stcB+Mr5nMBv5BolmmntSnTxS83SY4VjBB3vG9Taz5jNMzwwDIp0vWUiVnvMoIP/4TVy1gF1ztfWZXwlm0PImFizObuIqvgxRvn55wi2bHmvMel04aomcMa6gKQc7uYZwpwYmCu07gTS/d6MUsr/AAgZAe69B3lWmIYyO6j5pioqFifrkITcYk4FCAQ8lIycLT1CL75rr+IO+//UWTtLfAsgfr6/4XJf/tnSL/0f0AfvA6IAPKDf371Pty7gGCnlVYsoR2Dqi7g5y4I1yJAyhgEcewFPWijkdbcQ2U0GBFa84rZsMFW4ESwPHLnqiAnq2n5AMCdtZ6Oe2AdWzFvotQvRtbYfBL2YIy9DpobcOKNKvxEhEfbl/Bk+yoea10C710GAOyOU2zLDrZEB1ejXUQlVpZ69av2+K5/sDLQ2A166Ik2jrZswCcPbtbSrr0QX9rZccKjojiunogLQcHkqhUfDd58ue5MrIVaOlmZXOPMd+2XKf0VlnzEYLwDDez6wCv1Fy0ymAr1ReHi8xhKBk6E/JT2fFmuIARBcA5Vwxi4FuzjyfARGACfHXx1QTTztfQ2JiZFzMJC6G8VIhbikrD38RWvD0CulTG3ku53nB1gn3fRSr0AYguTtk3iPDW01/h2NhWDPHKaAD3Wssu0+XeK12SoGF+cESRxMBeGjdVw4TvL4IX7aiv8Ogd02nidMoG3Cs1n15oqXY8xCmB/y37/bt2j75JbpHUjhX4PX+EfjGYDfmUUcpNjoibgxDF2PfqtiFX+fmXAr3Pw0R3wdLB2u+vDjIuA/wLVIDYjYDYLUxkMryOSZLIRTNpwgjPeU3rD4bp2hT931bM1AzoZuUp8k2uwyJKohe9RbTLxGANbJlqjh39NBoFRKUjG61n/nSNsr+66ooyu8jEfLCxzp5jB+qJoM7tZIzkGeM2A0nhxFM2N3AneIhhjYEYHoKgLivvnq0FgFIjJaio98QcieuiTb+fRvw+g3kqv0AdZU7RvifL/Wm0CvJpBwWB79VUpoUZYXcGVXCCLpxaZWgRgcLatRte3SzBeLCxPg4BJxFIgCqmwrSqfwGT/Sbz+/T+J4w/8CKi1BTMZFMGkfN+fBXMtCcsQsgABE1CkEQcCrZCXAv7q92S5fz83CgGT2JYd7Moehvm4cm5ItKXzz2tkADY4jXlY2NsBgHYCeqKhvR4b2SQEtbcRdm0wxoYHK38nBvY743AL2hjbrgENDprRd9Dj41qdnFgE6MkW+rKD0FXl2+MTXIv38FjrEnpyyrQx6Rjq9nN231UWqLAWi7tBF6PONgwTYNkEfFBxLkZDOAtAL9hXFhpsCSswqYxG7toGWJ7M+sBPN2af52y0kmFYZmiItKbCr7UVyfTvOjcmlGPneaX+GaG+CkjOISVDnp/uWcpygzgQiAIOveRF+73t9yEkiQN1jG+MX5r57Fkn1vd0eL1W+6MKntb/SonWD3JuN4SCzr8n+hCZTbLlQYyktQ0AeOb4EATgWA8xdCwaX+HvsbbVVNBzVXqtpsKiACidYPsz/x+0nv08OLPtKrGj9Sf5coHOeRQV/lH180AqtVT8pgG/O/SIZWA+wTcn2GeMwZvZAb4w+AZ++/D3caeCgQEAey7gv1ObJ7SuCzBqrYC/4yr0o7kKf65zpDpFqlMIEhhPfIV/9n1VxRBYgFHgw7ugyQnellWVJbgI+C9QjZoKv9FzlcYyuGj0fBgvZNWUoa4VqMJPuymmAW3DZIRSgGxmyTezHxHa82pC619HRXtZe8XCdh31ap0kh+8pb0opUznYmqrQ54pNEg9G2wBnvnrUQM/AVhU36JEuYW0FcT2rGUAFLf3tI9xnxoegoAW+ex0s7pxrb5zRCqiZM6w44/ptIGvD9eCeh0I/4NtZKrQcqkRVm26zTqlfa9Sp4S+AiUoGBRFBMj4TiFpxtuXbFIwX1nyAVRkvRF1NdfLZHocT9DzlfQ6ZQMAEwsipnM9UOQlEgCJAX38/oh/9f0J++C9amvilpyCe/N5G+wiYQMQDZCbHTi+CEHxlhX8+4G9x+87aC7fQ4mERlJSRqAw90aoNlCIeFDRxAFCunYJPBquvozEFpT9s70N2bZWdD1cnC7hLCkyiLetWwK3gGSNeODgYrYB8AjRgBrEtu29zXGXxBqib37Jzancf5NgAVQiZhBQB0r5NXlT18bPRMUjlMIxjErcRcglRejdYvYTA0vqFhHaMH2+pOANiMNnEtgaussAsuUMUPfzz7CejAS/iS+WAf6rUXyXUt7gzIA7FDMNlXRjYgDEKBMQKi8eYhfh4+70AgC+Pni1o+EM1xuvZHQBWnX8d3AhswH87v4+xtokOw6WtYINwN7djcF/0SwmUFvKgDSVCtJTGLtnE4+3sHiY6RWLsmqnDWpZ1NLeGMsbMVPjl4S3w0RHCW8+BMwbiQOyV+tWaAb/r4T+pofSTSuH6OxttL3GHHgQMbHzf6huYHEaluKuH+OLwm/j/Hvx3/NbR5/CNyUu4nd/HV8fPV25rr+cq/MfLFvkGtGbAX1ToxyVhZWIwMJioMZTJwZnAONmwwm80+PAeaHIEE3bWZjY87LgI+C9QCSJywdDcBO/polUVfi4BNAis89QFxw1V7Y0+Xb+491dv3AOfW5r4miAR2N5qtVy4z2QTy1hoQk0GlrdXLGzcNO+19ZuXESjqNKJYF4v1h4TOD8AlmpondADYl3CVaGKT9ga9hqViHdZNUpg5hfSCzv326OPXo0OQCMF3b4CClnv+xdp9/I2h1NI5g0R4/tdOZbYCv47455qgIF6o8Jt12oXmt1en/G9UNSOmCj4hXHF9BXihWq4dvZyvoGxzYsijaYXfCvb551bXM42YsM/3KZX6OXGEXIIEoRUJTFK7vWKaIIIxlhJPXEA++X2I//zfQ/TJ/3WtpEuHRQX1GwB0aM+5PuCfCvYZYxC6Sl7ABC6F21BGz1brjQahms7vMS/ch7gDzTjI6CLBUAdKxyCdwwAIO7vgXUuh5tkElC5v3/OV80lkK/xEgCEroFck3lUOyLjRnMEcu0Afv1n5XsgdA0M8Wk3n9wiYREAC475NClT18ReCfZ0d5DBFxbY4FmLoiRZSd9zaJa8qrycxR8VWK98RMxX+Oko/7Hsu0SkyAsiNWl1U+FNMEo32nFBfFax6O23McM5zBSEYAsHAOYGBVfbxezwdXsdVuQsFjd8ffBXGmEKs74rcRY+3a39bhQ6PsStsAquw/WMSyFNoGNx1lP5LrA3m5oxcxgBRIdJ5Q9u5/FZ2r6Dzt1ls5zDiIJPDlNfMRs3E2+RsNilNwIggqCTcl6/X4tZtTavVVWweykYwTODOkcE3X9WrxTx9hT+0Sdn05Ca+fPfz+A/Hv4/fPP48vj5+EUM9hiCO69LaFb6R3S3m8zK8beH9Eyz3vF+X0h9XCxUSCJnOoJwDSVHhnw/4l1X4jbaJjsmhC/ZPL/r6sOEi4L9APars2grxsIpFrKeRrlhImzwBgtaa1fBT0MeJA2hYIQcAQ5svmKMOzKqAPxmAdXabi3ktba+Y3/gS1eolYK0+oPPVFHFl+/fPrS95A0yr3c0X9qZmQeUtvpYmD07rGgGXHFs3SVF+BpgTlXwbVPj1+BhgAmz3UZALYgpXi/MK+LHcVnOjNpB1j0BlQBCfq3UliQCguWfWtUBtBC4BsMV5YI02AXJtDFUMCslEQeVVxvZor6rwMzBkpQq/lgG4X7oY1FZhiDFnX7nZfTZ5Cj24Bz24hzaLoIxCJ7LvPW0M4HrN2Rr2ccsQiQBUatNZ3cNvAw4VtkGgGS2EnmhhR3YxKFH7LZ1forVkbAQkIdm0j78VSWjXx7+qUu/t91TURiQjkAhh3H1b2sdvdPH5JOxBKYDDOjiEZSsw32rXIOKkzo4dqyqDmdu3mZxA37E0cV5D5/dgROiIGMMtG+CIij7+GcE+A4QVCT5rgWhF9rRLXlUF/IWYa4PKYqnAD+mExRYo/UYDTGCsxphg2put3BhgKoGGRjteFOqbRyA5pCBkG1rgpo7OLwSD4Ay2q6r+2SQifKLzQXAwvJHdxQvJ63jOi/WtsOKrw2PBnFo/ARAhDpAjN8rqYCgn6shlQWVP2k64z/WG38ruF3T+Ld5205BrHypfH61nCggssUE9yxM77kvCfWO1XsDfijmI7C5Gk/nCXA6oFAoC/+WLGv/jqwa3VnTWTJwoYSgBBC380ejb+Nrw2zgxEwhwPB5cxY90P4af3vkx/Nne9yKiELlReLOkaeDRiex2tAHu1+UJiSFJs0Jgb50Kf5Jq5CUNCEYM2ihr1QoU22zVqPSPJhq6zNQyBmxyCDY6gJHxOzLYBy4C/gssA+OLAYlW08rJPJpWHY0Bi7t2QdB0wX+afnEfADcSvfOWfBsKsq2o2ptsAogQzHkFN9uor/A3VI+v8aVeuouoA4gQyBe9eWeQZ646e059yZtgk2q30dU9kozbldSyIGHDHukZ1PQ5L0Vpf0Tk+q0f7gq/dotavvsomLP4AlwwtoarxUZYdn8ath+dClqBnZNCf4Gq1iiDjR0kiEsrajifSFrT6q+uZUWwaTJBGw0GmgbvNeDEkMdlSr+cUvrtQdf/WMiNHDz06BAmHYI62wBRUfmOQoEoEJikGhq219zHSU3U5JchZIG1cHP+4ysp/Y4SnkYtCNd24EFE2A+3ELMptT9RObqytZRRIZmAIF4o9YMA5QP+FX38fGwDfh33ih526ljBMwwWg4LpeZyAtIJhHCruIFcKnDMn6Dgdx8b7ibPVzEBiHOREA/Xx7ZnP8te/DsCAbV8Da69+D8c8xKS3B0MMPBmCjWcbk71gX9bdBQgIKvzKYxYiZAKpzqB8EqSqws8YTJ42cggiRiAQWDpGkJzAAIXAXPEdY6AYgyAxw9X0lH5KEwhmq+6rwBghkgLZBvZ8BZ3fCQIyRpCcY0m8D8D623+4ZYUOPzf4KoZ6jIAkbrh+/HVxI7BMjZvZPaS+3z6IcUfbVpQ9sYUgmwr2efgK/9Mn9nvHelio9W/xjs0BcWHnvDKjyOiZ9wwrsSgpm0BKhqig9K8pYsumvvLzSv2kEpDK8eIdgbGrP91bSq8HEvdIhRIACPeNPZ6PhI/hb+z+KH649zE8Fl6FIMu6uRbYJNhrrsViZv9E2HPSJXdq9muIcHxs70EcMQRy9RgMWAYh7AUtV+kZWRYLI44snyYD5lX6o5AVZNlykoQlx2DD+zAirC5mvkNwEfBfoBbEFyv8tp++mhJIXKysOtr+fWFp5GHbeaDWo84+bS00CeI8dL62JV8ZJEK7IKlJZJhkCNbeaU7nR6m9ohGl3y/M1wz4RQDW6sFky186RqWgqLO2vsG5gm0gwlZni8i4u9ZLxopxSa/TLPDXCPjrBNNIRIB5eCv8ajIEaWWDfRc0lMGCNVwt1sD0ei1J2jEOmAcgenhegn0OtmVgLgAibJ6MEtKOzXnhPtPcRhTwDIrFsc2dHBsAKGgwYisDZU4MupQssqJ95VV0/e+JVx9HFYwxMMkQZnQICtvgl54C37oKMI4ABMGsGnSnJe13tSvxuyHURE1+GXwfv1fYbyral4YxBHGIuUAzYBKXo23k2qr2G5iVnuWMCDELkZfmJdWyK/dVAb8PhKm1XbwfuA/4h/UBv6fzq1bfXmNtwLn9vSiPDa3se1M0YwayLUvrn+/jV69+ze730Q+u3AZg+/iZDJG5Kv88rd9X+JPONiSJStcJwTg6Ikais+WUfsYti67Bs+YtHKMTW61OWtsFVb+AMVCAY59M/dj99yhPIAVf2VPvEYXCjv1G355CKQ3BGcJSYiGQrJEmwAfiJ9HnXWiXsngqvLbxs9YXXfR4Gxp6JlC9k9kxuCe2Cz2EcnuEr/BvDQ+wy+3z8FJyE4BNSsAAzNsqlpLwVgB1es5UCvhZNoFghNBX+PV6AT9QL9xHuf3311+e3qmDFRrZiUsMhNK+Fz2D4bH40RkRSo/rLuB/Pa3WyVip1E8chyf2WvUbVPcpTyBG99CO7fWssuYTJTo/54AUs+vUcpLE9/Gz5ARseNfqOTxMhaxzwEXAf4F6MLEY+Jh8+SJ2VdUxTywdXIY2cdC0X/pUFX5PiW/wmio0CjbM8onQBv0VCxKTjgERrFfd9+CiGf17HTHAOVDcA4xevh9j1kpWPAhYCnGFeNlSmOreX7aaTWH0Gg4LNSAmbDDSJOCt8VUn0Vz48kHDOGspvnsdrL1d/SXXFnLmQXeDZ9gGyqfv766DcbaA5yXYV8C7ibgA3V5LWp7sWIK6cWl0DSOmDjVaGDOK60YjKPdo14ATgyop3c+I9tmDrv2tfUZWjy+TpzCDezAw4Hs3wC89YdX1HXsoAEHCVt9bIUcoOSapcr3mBozYWorhdSj38fsefqqq8BszDfiDGC0WzPR0e/REC7tBF0fZ0NH5V7ditUQ405erG1b4maP0l5/3wppvSTuAcIJ9qrNdiMZxzpygY+ld5t49tEEff3Euw/vQB68BIIhr71+5DcAmTsJyH//BzeIzytOC2TBu9SCJQ9YEox0RwxgDFdZT+uGZCQ3WOwQCMaDlGAzjbrX4oCJ7HRmf6mcUlP48QRSsFqr1CAWBMwa1qjQ/hzTTiAI+IwooeDNHHEYMP9CZJmfWFeubh6f1l9X6vdr8/pxCv0cS9aGJgasMjzCbfPQJCF/hZ4xse1X5naLzmflppsKfTsAYQ8R8hb+hTXUJnQqbOgCgfIS7I46bJRr/waBZD38ogYlJkbpiQpdXCzQ/IvdBAA7VAIMKwUFf4a8V7iPCoUtCNKHzQ+egfIKOy1mWhfcECRAYJAswcXT+OKx+t8z08RsNGh/CuDXkOx0XAf8FamErihViIEvooquqjkaloLALImYXw4wvD9S0cr7Zmwf80wp5swo/8WBjyzliDBS2K/v4TTp0vfvrB8xUpadQgWW+1Cv3EXasSneNwFIRxDxE/fseVoRtzWpx1cKMvODYigr/WQRyMmhGydd6qo9RxjmKwZ0aeQoKIlCrX/uVwtXirPv4/ZzBlzwHTNj7f07CfSYZgsIOsIH451pgYpbdchb6EkFr0ZrPKFtZXeO4quCr+cYYKKNnaOh14MTsMblz0kWvu9UrWcq0YatbN0wygElHYFuXIS4/DdbdnyZMnFYGM9pZ1ikQkavyA2CAhgFvwFRognIfv/EVfpUtJJApTwtF8CSMEdcsVr1qf5fH6Ip4Rj2+DpKEJS54RXcX8LOGAb/wVX1MKf1yVOvPBT48tPtp9yEFAyMCwThBx+l4sV+W1iGmScDfWwz41Wu2us/2nwCVWCNLt0OEtogx7C9W+PmJZS6osI1UysIpoQoRDyCYQOrv62Q93/WF42Iu4D+x5zeqCfhzsgERJ1FYYnpbPpGnToyvGQTnCCRHrgxEMmisg6INCjr/dFvePWn17y/JbfxI93vwqc5HsCNW21wugw/4X8veRG4UUp3jUFmq/rxCfwHGkMZ9AMCNfPYZ2uJtGGNswG8w28Of5zPzU7k9h2UT2yZB9h0x1hsE/O0KSr9RQJ7g66/Z+brnTuNwuebmVLRPTu0GOyyuZVOETGJf2OTea+kird8r9d87xozzRwHiOBrZvzcJ+EnnIJWiE9oxN0vpZ+jJHhgxjJzOQhxVj+uyUj+pDKTTymD/eGTwws0Y+TLRwbcZLgL+C9SjypPcYOlicmXVURuQe+HBKXUvfXkbZatOpxREalohNyqvbVloCgrbC5VDW92PNqvuA9VsiyoYs3l1jwtQqw+T17x48tRW/x7CTKilEK85MVdQgYmo0bXeNCE0s42mlPxCKHOO0l9F594ARitLZT7DSrtRGVgQL79OIrB2mytELteGzt2csYzSL2qV5E8LoxVgcrDu3tqtNevCajlE0wDdnN5BolKpf815hbhAlfgld5VwDWN7tKkJdZmBlaz5Ckq/MfYdtewau9aNOhhjYLIJ+M41sJ3rC3N/WSujJUJodz6tUCAOuGP0G3CcTcDv+/hTk8OURMPm+/gLSz4ZwnBRSbmdblPiWryH7aBZoBQwAc5K1eCiwn+8dF70lW5Z6iNnLuAPxsfI55NI/neO0p93tsE5A+MMhtmxUgQbRk1b7VyyddV8Rd6a7+RuMUcW6vwrxPrm0eIhxr09GBD4+Li4/mXBPm0MwiWU4NAxLMaBq65PBuu/s0pgRBAqQzyySYfFCr8VllQwiHgMwQLkRgMw0O4aCp1BijXmCgJaIUf74FU8/eV/h8e+/lsQ6fLERa40OCNEc4kFwQiCEVRDUc3Hwit4MrrW/FhrsCu20GIRcqPwRnoXd9IDGAAtFqHFo8oKPzDVR3hiNH1fCXC0WGSXxc7+0LNPrFq/mhFgnK/wCwa0nUr/RCdrv4M7Lfvcn5Sq3ZSnyJIcz9601/sT73EU+ARIsurtK22QuU2EEoUDwSonhOuBTaq9XtHH328DkgO5rkk2EOFoaK9N0wo/jEZb2gOdZzV4TBylP46qx3W5wk8qtQWViqTGZ76u8eWXenj+jfUTMQ8rLgL+C9RjbgHTqDeWy9qKSrl/H3ABpoyWBvxGn001lZho3ANPwSkDfqfIW17smnQE1t3dOJlAvPnxn2qxH3cBUCXrwqgUCNunT76cB9YQYTPOurB2HHMBs5TqfUrXCIfGlPw6zQAmABKzFYUNYCYDG/SPD88u6FcZWFxNBfQgIlDYOXPhPjtnLE9KTRXczyHgT4agqAeKTleJaoqZxFGRHDrF+KxjjqyTvKhxbPHUd1/xqQqSdZYsJAokExhvX4Ehhkl3xwbi7n20lNLPuBVCq7vP2dg6KcRbtZVZf30D5m1nbTWv0wogGHP2gmcT8AdMIPZ9/ETTPv60OuBXYRucGOSKObktIsQN+1MDJlz7gmstiDswxJw1X01wpxW4+6xM6ad2HyACUznUpKLKbwy4p/S3t20QyMnuC9MKP1RuxzQXhaXnKkYXxVt27WA0zOA+9NFtmJM7AOPgj7y30bXwCJkEC1rIejboE/ctrZ8PppZ8AFYyVnqihcStL5jKQPkpkp0EtEb3QDDIgg7ycC44M9o9swyCCUQ8giLrC+8p/UKnhV5CU0jJsXXyOgAgHtzB41/9z4hPbtd+P8uNpfPPMa4EZxCMkJ/ROyfXutHrlIgK8b6Xk1u4ndjxty/69riKCv9swJ844b6t0SF2XB9/j7dBRDAwdhoiNk1gawOj9XTeNGbGntJW+Bki967SMEj1CtHkOfgKf5neTirFs7cYstwG3U9cBlrudXhY8/gmpVdwUKrwb9XQ+T28cN/N9C7U3JqJiLC7hNZvwHA4ah7wU55A8xCdwD73ldZ6mCr0x2H1fNwut0Go6uud5Qav20cbe73Tr/UeFlwE/Beox/wCr+iNrX8AbGWnhqZf6t8vvh+2l/fj6eV+2o3hFVRXwpyeKi1Du9BwL3Nb3Q8bKQLXghgaRYen6OEHAAraoDAGSpno6bYV2Pyi4iGBDd5X2Ol5+IVQTQBDq6y8VrBcGqPhOLOaARXPAJdWWPO0wnc6s9VoGcGMDs4o6CewBokzCuLGtNDGUKpR2wmtrfuwGkYrm+x4ANV9D8tucYt2rVHrotJ4e/L0QoBc2nfBXFWXg4Fh2v86Txc1RiM/vmfnzBIk47jz7u/H/T/zN5F1tu1WmliQOqZBXWLHpCMrorrUwtEm5gImINg0EG7HEtvdEJpMo9aEpmjzuBDN00G1cJ8P+POoDUn8TPfPiCHiAXKfRCK2UriPxgMQDAzj1vHF/50JUMslACqE+ygdg2WJZUK3++CcIDiDZgasbNmolZ2XmXA6OdP3ax2IqNTHfxv5a7a6zy8/s3Zbne/jnxR9/JbW7yv8aXcHgvGlTAsAiHkALkJoNz9V9vGvgc7A0fl7FXR+Y6AJAFmVfsnjYgWhS5T+dRFKhs7oLgCrBSCyMW5849Po3/5W5feV1ojDCp0AsskDvYHq/zy0MRiNcyRps/m83Md/K7H3sAj4nWhfPuewMnHrt2h4H1ekTfxMA2KyCWxvBQlj5xyt4cMsyiag0hqOHKU/JI4Adi0wytdr8/A9/CfD0jybjfG11+323n/DHlffHWZdH78P+ANhmSNHLuBfVeHf4T0r8gmF29mi79++o/Xfrcj1jRIgU9ZIr9deMX8ZbQuDTKAT2nMY1lT4xyso/f6aDcc5KB0XLKoy3rhvb10rVNi9CPgv8F2B+YVUjXjYDApP9MUgxOTT/v1iFzLC0kDWmI0tpsqw1OLlgYUNFul0AoGwASPJyApBGWN797u7p+t9Z6xhBducqgJPjIFa2zBz9nz+2py23eHcsI7NnVYAWHUPP1wAVTNWzsQ1wu+nKSVfV/dPbyZWOAuryyDAWlvge4+BwpYL+jcPwo3KQIyDNQy6bR/nWQb9ppnAXI2S/Kn2nAxBUdcKYD4ouPnKKscrQJ6SEVUjBLhOwE+M2+s7N7Z9hV85u6qFqrjK7biZG9MSHAYEI0Pnee0p/bSa0s+r9VtMbtXQ2ap75cZSQAIBcWTunIisN7kyulKZfVPEPADBBjG6EHibrfB7S7csbCHgcqnV3kbHwIIZBfVCuK9GfM+MDgEA1OovMJGKPv7h4qrf9+/ruAdwAcGtRRwRZgQdjcqt0C+RfUcFKwoFft9OqV8fvQnlA/6G6vxlLPTxH7xh2Qku4J+0+5BYnXgJWYCQBUU1/rQBf3vgBfsuLX5oNDQIjAsIEhBMwpBl72VuTLOaCucykM4Rj2xw9/IHfgLHO4+DjMaVl34fV178LKj07OZagxNDGFSPz0Cw6v7uNZEpjSjkyFWzKv9luYOQJBKT4Ttjy9bYk30AgHBsmroKv0wH+FBwHU+F1/DB1lP2Q2PACI5NpN38Zdsn/PzE5pKYzFX7hWCInTXfZMOAP80M0sxaAt66k+D+gEEw4N3X7fOz3bb/revjL/r33avDU/q3VgT8RITr0tnzVaj17zlznjtHi3flyJ1qt0WrWSY6B2ALjq3Wokp/GeOSaF8VCpX/kQLpDFU2fK/cscd7pZ88XI5Up8RFwH+BehC5xbh7WF2WfTml34lIVdGMTal/3+9CBLbvaVnQchaLqSo9gnk4BsOmlnwzuws7dpLKxoCMTlfdB5ZXseZxysoiizo2EC0vqPLULuDPW3V8U7jgecFOrApFhb9mkbxsrBjX73UWY7IxJb/GUQAuYXaaCn+e2KBbxqCgBb77mKXZD08R9KvM9ec3SHCJwFrhnIbaOg9CM5XrM0gklmGMBlTqqvsPru2FuK3I2x5HZXU2Trk94sH0WaqxhVy5HRkviP8xInAw5FpV9r0bldnq69z7gDMO4/r+ydmRwWh7TMvmxkKEs6JFKRnaxMxcJW9xEy6ZaDRaIpp61PvtGLOSUr8OQhYgYBKZzpdQ+u1qOYtaiNnZa6oEc+/AVcJ95AJ+5qv5Jfg+/nB8MmP3BwDCW/J1+nY7RNjpRQAzroXCweS2tcLvL2w1Su564T716ldgRkeACMCvvGvl76rQ4iFGvf3iuMXxHbA8hSGGcauDkAcrnRoYEbZEC1log8lTCfdphejE9k5XCvYZAwUDTgKcCQgegsNaSybkA/587bYmcXQHBINUxEiiLbzxzA/jzUe/BwZA/81nceMbvz0NmnODIOCQNQKqXrjvtMhzg1AKCMGQ5Q3GBTE86mj9Lp2JXbEF0jm4o+TPV/i1CJCGtlS+Mx7iB7tlAUFy62U31/jqvm87AsCS2YCfsmnAH5JX6q9w5FiCQDKEgb1+AydC9/VX7b+ffoQQShfwN6zwh8K6p5y44+itoPQDwLWij78i4C9V+OeZg4dDJ9jXXn3/SSuQsuu2TsuO3fFEQ1UI6q2q8HtK/2isofO8ci1XBPzbZ6wv9BbjIuC/QC2IZi3KjF5hyed/I4KFquV8/34BEdQqdRe91mehRt4kYHbVztNW+AFYHQBjLGW0s3d6ZXuiZv3eWEFxbYKgBQo6M7Rak6cgGZ2/zdiGKETamlRsfaBQlxhhS2yKzkAFvUBTSj6hNsGwkVhhCSZPbL+5uxYUxOB7N0BxD2Z4f6Og3+QZKIwbBYjkEwNnpNRvj3eFzohHjXXcxkiGoKgDaj3A6j5g2R8+qD0rRlQQTefwold+3YC/QvwPth8/M3l137vKQVIu/I4TKwTyyNFnvWjfMpV+IgJ4sJBQNu5asfbO6gpOibUWs6Cy5eUsK+yScbR4aD3bfcBfI9qXBy2E5+DWETABTgy5m0/VCms+qrDkKz7z/e2jk8Lqy6Pcv1+GMXNtEoZm3z0iaMQM8gG/cYKC/Op7Nl5PBMw6BGTuWKNXrOK/6mxDAWixZu/GWITII1s55aeo8Ivju2A6R86DQkF+FhqKEQQLwIlDMAnOBJRWSMz02lK2XpVfHllWwai9D6XtGu3+tQ/htff8OSgeuL7+/4To5E3kSqNdRef35yAIHAR1mncY7HhphQKdUCLNG4oAOlo/APRFF5IEuAvCNTHoisSpr/KHo7n2FHJzjUsMQqtijvHnTnUVfkaIyK4Px/l6AT8wFe4bDBUmowleuG3nww88Nr3o2x37vw9qhtvEifmFATDQ40KItM1WMzofkXsg2DaAk7mExXbHLpfSHDiZ6xL1egL9dpNWVQXXS4koZGBkf+MV+csYF6J91e+FVsRBZJ0jxtniwDwcGhyPAEbA/tZFwH+B7xYUAX+pwt+gn55EtJg1rujfB1w1SdQs+M8yuGpCidcKxFYwGBqCZGQTGTIC69T4kK+DpteAzKkz5kRkj7msnq6yxjZGbxmcmvZKOFXW2kBhWYVf+2TBGVD6G1DyjTG2P7tuf6dITtltG1A0S9sjGdmgv9W3lf51WwZ0ZhkuDUFRpxE9t9m+V+uMFPtl1Urym8AYDZOns5ZuDwjExLQivyQ5tNY2ZanK7oWn1mUO1QRWkgnkxlf458a1c2WZh62cEjQMmA35GwuUkggW30fpyCZnogbjtMRaC5gEI5qhIROsNsFZoi0iKKNKAf9cD//YBfxxG8GKvvFNEDABSbyoyC8L+I0xkGNra0bt/sLnZaX+VFcH/Pl8wI/pNZ1a8pWCVNnM0pPN9baLDej8HiGTCEhgsm23Gd58zh57dxcGZoEVUYcWDwtBz9NQ+sWBpaIP2vvV73yjocAQcKcXwARCJpEjhwEVAS1bM+AXhzbgT3qXkJX674f9a/jOB/8yJnEfIhvj0W/+/9Ad3UVQQ+cHAM4YmAC02nwOVkpDcAYpGOJYOAbR6u1dDfYKDRFvL+eZCUrGldfU9/EvBPwwdrRaP0ubLJ1LYnhKv/ai1S65wBlD5JX6VYV20gp0SiJ033pxAm0Il7aA/a1ywG//ezxCZVW8qPBLKin0dxrR2QMmcamw55ut8nNG2HXLxjtzU8eRq/D349X3ilQOvygjInRcHmI4WiyWrKL0M0ZFMmCQ1dP5r+4Akr9zLPmAi4D/AstAVuG1iH4aVo9IBgsVmqr+/eL7dcJ9WlnK8xlU3JtQ+o3OT63QX0AEoCC2AcAZiA6SU6NeGZwYnL7CD3tPIEKYfGoVc2qWwjmDxGLvbxWM0Us9xS1NuKZ6ZJStzJ9RX9dKSr5rP6irllshqxUtMXVwbRpVAlYkQvBdF/SPDhsL+RWsnDWYICSjU7EUZtBEZ8RjHd2HVUhGoLBllcHfApB0FfllyaF1IEpuK0bZ+WddSn+V+B+cUJ8hCCbA5p8j49tXaGbMWTs/gjbaJiT989kguTGvyWGMscmZzk4zFkqJtRYwAUEcmatUa2NAJb/4s0LELD3cW4PNVPiNKSrDJuqdaTuBByeOkMuifUG1SwH/3LOaGYXAUdOpgtLve/jZ6HghIcsHh3b7c0lxQok1ofOpJV/xw8DO9yscPihsA15oNmiB7T+59PvLwIjQETGGW5bW73vVs84OOPHGOg6MGKLOnv3fpwj4pQv4TzoV/fsASNsKf1BiHgQsQqYycMYK4UDKNwv49fZlK5Y3yW2lH0AW9fDyB/4Shr2r4DrH0y/8X4gHd2u3xRhBco5TxPvIcoNQckuNFxxxxJGkqzcoiOOJ8CoA4LpTm68T7PPwFf5oQYCSZutJntZfgg/4lWO8+Ao/MUJEdt05Xhbw6wz85CZYMmuPWQj3DTJ842U7L73/sdl5tRVaQT4D4LCCRJC42k44o9DfXKC5sOdLF+35PK3/zpxSv6/wb7X0SuFeUrZ1xqPtA/7hbAVea4NJsrzCb3/vAv50ce581QX8j+6/c3r3PS4C/gvUwysglx/GJi+1Smu+xf79Yjcyqg7GtbKU5zMRSJMAlwvqzwv7OyNROiJmvZ27u6u/3GiDzHKMlkyMxqlWL6O4Nt6djGzlNRnbvlonRPgwY5nY3gyMXk7r9HT/KqEvffoe6TJWUvK1sve+LoDlAq5Esva+TT4Bhe3ahBSJAHzn+ozjxEooK4KzTnKIRNBMvLAJdL5aZ8SDCXufTxnwG6NhssT27p9FcnIDUODsTc9MUFKi0FZxgfXa88qc+F/xZ7JK/bJCoR8gMN8OUrovPuDPjXb1fSolB1aAccy8kLKJFYCLmzOWPGtNMoGQBYVwn7fkm3cbOC0iLq2oWOCqs6WAn7IE5PbPou5KZfhN0WIRlHcLiLrWmk+rBbZBpnMIF7iyigo/xT07foxGlIyKNgHkGfjEMgPKlH6fRBGeUVKwdqZztrX0bCbc52n94tr7T/1sxDzAqD8bYCedPgSxte5D5DzdadOA35gi4B+0qwN+wLa8iNJxSREhzzWkYAXbch1KP5sMwJMhDBHE/iPY78eIQ4FJqjCc5MhzDcMlXnv3j+K4fRlcZ9j60n+GOFrs7/YIJCsSBpugcAEAAALakXQ0/9W//UT3g/hrV34Yj4WW3l9nyecxaXs9isNifjL+/zPP3ScYlVtr31JCk7yugXtGKEsAYyAYFTocdQG/NhqfffN38bnDL4GOb4EPbhcMAW/N99zLY5xMCKEEnr46uwAnIvRd/F4l3FeI9kk0Vugvo7Dny+5On2+H/QprPq0tbR4A+i21uhVTpTNxQMcJ740Gs+uSSSnREwb176tObK/PMJmdD3I1teO7cRHwX+C7CswHmaao3DWmypYs0oyz06gLGKmuH6+opp5BABvEYL1LMOloeTX0DPshKWidHb3Xsy2WvcVcT+tpRfs8WKsPGAWTJdbX/CHt3y/gBSBXsiDUioDf9StX0QL1cnbA2lj1PGllBdnqFqpMuuBog2BZ5WArgh6SoV1Y55Ol35tuM7OV3XXGiqfnrqjWNYHRqvm+GbfP52kr/OnYaha8RdV9AG7eMo3bGRptzwXrRuuNtlmI/83TuJ1S/4KiucpBQoKFrYUklrXzIyijbNcCyLUaNAjgGJ+ZN006Amttr8W8KrPW2jxE7v63hvWLXyXWti442T7+iZtrKB0X85GvCisZIZLtc1ORDrm09mIAwBi0myvmlfrzbAzuAqXKCj+xoo8/ngwLWj93Qn9aRjAlZp0yVtm9qPCrHMSDheSOtfRcHdXJZz4JdukpiHd9cuV3VyFkASjqIi85O0zafQQsWItpEThqOJ8MNmI38eEhWDaBYRzjeLdyE8ZYx55y24xgAYyywVBhDbhGwO+r+6qzC5ISrUhgvx/j8k4L3ZZErg0G4wxjRXjhyR9BsnUFLE/R+8P/DH68WP0FrHDfplawPjkk5fQco5AjkhxJtnpeF8RxJZzqeIisWqHfIw/aUDwAGY1w7J4DA6cr4r5E1prPtlhN5wVf4R/ENpAmGFCWgDFCy7VdjHV1wP/s8Tfx4vhlPJvfxokgUDIAG7wBNrpXBK8j17v+nusEUaF6P+3jX0bpB47yZgr9M9vmXZsghMbtbJb9sOdaC+4cTdtzTsa2h54zoBto0FIbZGXfIaVxXFfh9/37UcjAWP282Ins9wZzy5o37gNK2+3vNO9KfNvgIuC/QD28IJITIbHVo4YV/nKFpqZ/v4AX7ptb8ButzlQkjvX2QK0tmMmiPVBRHT8HAaQzQRXbYh5NfKnX2WXYBskIenRi+13PeFF71iDRMHA0WB4oEEdZrHL+x2dZxS0qqXX3tVAir6H0M+bsz9YLWo3ObcC7QqEcgE0KNOyxtyrr7bXGCjHhFN3PQCBnDZaO1VBYFHSbx7IqojEGJhuDOntvqaBl4VF+loKSQjrlf72xECAFUYVSP4NgHGL+OLVVTGZhy64ES4kCb+eXaw0G5loBTKP3kdVqsAllKx7LKyvRS1FirYVcFkHaNDg9+7mxJSJkMoAhSxf2Sv0+4M+iFuJzHHOSCXCytoNAtVK/7d93JUMZ1frb+z7+1ng0Dfhr6Pza2Htc9PDrvPKZJhkCjFY+v/zy04g++b/aBPYpETKJgMmij1/LCBMZIF6T9eVtO5nKobOGydQSfP9+2rsEYgJVZnQKBswJ9XlwFkKQc6rcoMLvA/6sX9JGICAKOHZ6ES7vxNjuRiAGyCjCycf/ErL+ZbAswdYX/xP4ySK9X3AGItqoqytVGqFgCMR0LiEidGLR2KJv5lhWUPpBVBLus6XgQkjUf4Vxy4jTOcrMIq/Sz6IetFtnUjYBY4Q295T+xbEwVmP88cGXin/fyY9hwi5AAmx4Fz1zMPP9992oDnSnSv2LnxWifRI41r7Cv4YODxGu1djz7XbtcmqSAkM31KZ0foCgl1b4SeUgo2Yr/G46GIzVzHtilUI/AMAYdKT93nDucvv+/Rv79I6y4/N4uFfwF3hL4fvGYYwL+Bv20xciR87HeUn/vv2+tIvl+YW1OTuKPWAXfnzrCkB8kdq/zvm9FSixLWrhK/xnFfCLANTaAhi3i/CHHYUA5IrAkbA8KPK06Kqs8xmJohXwfeQ1doJGK9uvuuTlQ3IxqFqJzCfhqhfoM9sPbMW1EeVeq9rWnWVgUaeZpeIqGLNW0m6V7oMeH8MkA+jBPejhAUw6nk3OpGMgiNcPIM8aLuAv3CpOCSIC/LjSGlVexY22Iyss9oggiC/Q4I3KQSIEMQ7is2KWjAiCBJSjyRbL6yZsJi+yqZW14otWW/EtnEeJtWaF+xiU0dDGQFCFFsEZIOIBOBPQLogmR+v3/ft52Do3Oj8ABGT1CpYJ92VGIUx8db9fuy0qWfP5Kp+oUehX0LMODkZXa+sscfg5LzAitEWEwbalgOf9SzCwiYB1QFwC7r5mCwJw1ci1wp3kCKnOCzp/1r/q6gDz6wIDBQ3O5Ayl3xgByQWIm2nAv0YPv1foz8sBf/lzwbHVCXBlu429rQiQAY4//peRbV2yQf8X/hP4yez5CkbgjKAaCO3NQ+UGUSAW9PWiQEDIZhZ9M8eSLq/wA1PhPt/H74X4i4Ky19RR+UwLiVfpb7V3oDy7wvXxd4XdX2oyO8eV8OX7X0RmpmP8zdwF+DyAiXrohtP1zqO7Gv0am7u+q/B7O7wyfIVfyBxjbcfDOhV+oL6PX3DCttvUXTd1HI28JZ/70tJCVj5tbXRoR46SPzYz47dQ6K8R7AMA6BztwJ7wYDJ7LV4tBfzvRFwE/BdYjsJmxE1ejSoqfI6SWd+/Dyzpx1tVid0AFHXAti7DpMPZyoDKbZLioa3wl9gWdTjjCj8AsLgH1u5ZSv9DDiJqpvi+YlyRtyCrFO1b/tu1waQdd3VBZwOWC4lq+7NlmLfjWwoZ2+TAikqQZ8ls1Prhxtem1M4ChLWSdlZDoframTwFtALfvQG+/wRYdxcGGmZ0CD24BzM5gcmc7eZb3e7ik6xnOH+xoAVvh7Qxq6Us/ufAwSFJLNLgdQ44f3IEi04v0lWbmbflIzSb6zxDxnmOs04DK755eNaayhE6BftM51BGn1vQHTGJgAmoOeG+gtIfdRoLxW0Cwbxwn03EKWc3ORPw6xzRxB1XhSWfh6/w8+FhYfdXKPRXVPhDJkr3yFSOa68rY5rqi5wRWjzEyaXHcfKhH8XJez8FAhbbUxqgaAEanTSa9wb5GF3RQqKzIuDPd1zAP/97o6FgKfzl5yxVQIdLGGamon1NK/xaFb34+VZ1wO/BOUEIx9AQLujv7YNlE2x98T+CD6ZBv+AMghHyNed+4/4vrHABEIKhEzW36CuO21X4VQ1TBVi05jPw1nu+h5/ZJKl/H8K1HrhkQq+1Bx3MKvW3ZWDblDBrzXdn8iZeGFg3iPcF1+zf8sPS0RBa7Ra4u8Xvf6x+PvQV/sPB4njxAX8ubOk9otAyWTLVOGlyVe6CQDjWw0L4z8PT+n0f/1Fhyee0WJYk3aefTefsosKfECifFu/GDQT7SKfoBnZOK1f4j0cGh0ObuLl2RtJbDxsuAv4LLAfjlrbqemObLpS8arQpRLyWV+qtb33F5HwOCxrW3bXq42Vqv85thfgcFI/PAlO2xbKA30y/d1b7jTqQ/Uu1VM2HDXac1S8cGgsbCrlAszdFW8vZjRFizC5ma6vnenUwuWYwVmfHt+wYKerBrKoEqcw+Qxu4OZCv1p1CuM+Lvq1V4XaK8IvbMjCTEyvE194B6+yA796AuPJu8MtPg+1cB0QICjtvfXUfLsnqGS5nBa8LgM2V/2fE/xwYMUjGIeafQaPB3FivSsRIJqxdm09SGWChtFd5HgLEOcxkYJ0UmljxVW7DJuY4cUQ8RGYUNDSCc3pnMGLo8BhZTcBvos657dsjZiEyncMYU13h1wqxO64mFX4MDxAwgVTn4ANf4Z/9nTK6SGT4Z7pujqOwA+gHV+EHbB+/YBzDK08hiVoQTGwU8DNH64/SCVKzfN6bqBSCCbR5CDM+AR8fw4Cgtq+CoUKq1hjkZBDw2fd2poB+FEMZDSPW6+HnJ/dAWkGLcOGerYKRIY4//peRd/fA0jF6f/ibIFfdBgFScqh8vYBf5RqCkxUgrEArbG7R5zEV7asvUM1U+I3x2ojTtbErkhltirXYcXoC7loNedSFceth5gJ+wTki2LnPC/dpo/GFe58DADwdXMH74icAAPfz4xlhPCLCJ99L+PAThMcu169rerElROXa9tDPnJN7hFI+q9Cf5wZJw6RJwCQuS3ttXp+j9e85yQuv1O9ZBv02XPvkkqSCyjD/jvY9/KOUYMbD4veTxFH6wyUBf56iHdr9DybT5Ien81/etvaE70RcBPwXWAoqKvxqPZGjILIPYZ5YwaMVQQCJsOizBErB1TlQ7Kuo/UblD39QOyc+tYCiwn92kxUxDrl1qVkl+CEAyXAhwJiB8Z7iyxfKxOVicsVoWyk84yQUybD+eIFmx1pnI1iFJXZ8tfuI2lPxzjqozAXuG1S7ZWj7xE9TrdukLYdxVCaIkoEV+ty6NJPkJC7A4h741mXwK8+AX37qbIPsU4CC1pkyDWxrhO2V3ziJ6LUFSokcyTj2gi1EJbswO65YwQ6xuhWzm5KMg0Bg5WVLU1s9JgAoUHt3o5YHn1Dx59FigaW6GyxqEZwhWiJE7qqBPuDnrmee4q0ZQbZz2T8PETKJw2yIw8D5tjtrPmMMDDSEP54GFX6Mj9CBQKZS8OEhgEVKvzZmGkC7Z7quTefMbHTXQMgEAiaRmhy5Ua49ZZMKv42CWlmK8ZI2NG0MRirBvuyhK1poHdpgSnV3YWQAYmxxWWA0DBgkn85NWhswztGSwj7Va1L6pa/u9y9ttMYwQYSj7/0rUK0t8MkAna/9TrGeCcX6wn2ZMggFL5gE8wjWsOizB6hLPfxLKvxxH4YYuEoh0qETtC5dEiLA96UTYaxShJmLqImBgrgQqfSUfs4IEdnna+IC/udPnsX99B4kSXxcPIa26KLFQhgY3MtnhTPf/xjDD7yXLW0tYoyw5fIY5T5+YwxSd3gTtqjQT6DGWgjXiz7+WVr/vq/we0q/7+Fvk3X/WMLKJJXCMAZlFLQbI3Ho8gSGMB5nILdu8MKFcbSEwZmN0Irt51pbbQGg1L+/984M9oGLgP8Cq8CEy2I2qDQu/I5s/37Ua1BRnRPu0+pcgiuPBWq/0Q/Nwr0WTCwP6oyxi6N3oNhIYxTCfTULKO2D9hULZSYWe/i9x/tZt5nIRfpygSYtBGta85k8AQXxmgm8eKU9n8kzK/S4wfgjYqCgmc1WLYr7swal32kolBMuRmUweQa2dWXpNaKHTOSTbV0CdeqDrrUhpBOro81ZLXN6Lh5tEc2Ok3mvdS4BM0s9ZSBwInDvAMNYY3FIEiEQtMFamzsplBNzIQ/gyLznItjnEbIA2rXDeTs8ltjVuqxQxD9r9GQLT7av4vHWZfR6V2FAYCrHyeAeBmoCySTYyDLlloriBS3AVTVbyRh8dAIyGoaJQv2/jLJCP3i98wSJ0D6/Z6H/0RCMGNoiQqpz5FqhxYKNNBw8pT9MJyCgEEecx1CN0eExtoMuQi7ROrbCd9m29ZAXjBaJf0ZbYkQp+ZpkCoGUaMkABELuk2sNK/zi8BaA1XT+ZTBBhOOP/DkYYgjf/A6il/8EAMA5s0nrNbY1Y8dXhZJFn26QTOBZAnLPdC6WJMMZRxL3Adgqv+NAzc5nxv6/HAYTlWLP2OP070dyDAJP6Wd8GvCP1RCJmuDLB38IAPho612IRQQihn1hn/k3s1mhvqaY0vqn1yNTVjEfAEaYrfAT2WSEUs2SJtdcH/+t7N4MC2HPPeKDCTAYm4Jh0G/DvrPrmH1GAypFCoP/cPC7+O0jy3hgRGi7V/MwAci5CE1WifbpDFApuJCIg+kxqbId36V37vr5IuC/wFLYCruj1a1NlYUNpJuIeBWCa6WAn3P7f+eEKbXfpR0fVsE+B+JiaYXfzCmZfjeCuLAZ9LrAsajwL5/6iFdUfrVy+hRnfI35Yp8zUGo/WPXccWGfk6aLXpWtHfiQaGDPZ/SpWDIUtk5nkadVEcA3BhOFoJuHGR+DOrugh4Cqvw6Iy7OzAQXsnMxPp/xPVq57teCjyt04durVfkyXFo2cuBVzY2x9vRIRgLX6G7WbeJCctp0FTEC4a32eVfaQSVBkV8ssGQHGgE3sopwvqaifJQImsSXbuNa+bEVcAVzKNQLiiEkC40MAyyv8RFRU+YPRMVqOFZC2ehjpFKlrGwDsVOgV+qGdJV/duBaBtX48C4ePNdDioW1zMBrxhoUCX+EXkyFiFmKsFgPvTNuq5qWwD8E4AhKIvVK+C/gZo4WAVuscxCRESUwwyRTarQCRDCCIIRf2mjal9MtCof/Kmmc6C9Xbx/A91iKx/e3fhzi6DSEIHAS9ID5Ysw1jrLWnXP7sRaFAJDnSbHXA6qv7SkQr1weJS7aFIxvwM8y/wglGKZyoBDuyi57ffegCaScaWlT4iRAzZ82Xj/Dlgy8h1Qn6so/3iEswLnGzL/oAgDt584A/NwoTJ8RXWPOVWux9/z5nwElJod9rJAhGyBvelz7voO3s+W5l94q/B3LKLnjhlt1WIIAoAABm5/9KzSRbjHs9P8BQj3EnPyzOxdP6TzIBSoeA0SXRvur7RyoFuXeN1wEYToCbB0CugFZoXQXeqbgI+C+wHOSV4c16Ylhc2hmEB40qiVa4rzUN1Iw6M8Xp2n0yAd6/CpCwVKuHqFpXCd9eUQeVrfRV/26A7eusCTC0moryLd0Ix0IUbrQNgs6aQeH6yBcojbph+wETICYbBctFq0wDdf55WHu+GjcBn5w4DUtGzrb1rAujc9tXv879YcI5MthrZ5IhIEPwrUsPvQ3leYOIWcZME0bMsu3IeLU2g57zWmfczsuqHPBbyioDOfbN6sSdB+vtgbkAaWMwUeQAAyfcd9aWfF47wjMJGBGkqyayZARKxyCtYAAE7u8PEsz1L29nGZ5sP4LrvFOwfpb18APTPn4xOsJ+qoq/CTCkOsdRNsJBegIigmDekk8tTdIQ40AQw6yyYj1jhExCEIOB2Vi00Qf8ZnyMnaA7k/TwGORj9EWnUHFHnkA4lfvcjWfOfF16CmUUOJczySilDNpxCMEkJAhZYQ23OuCndFJoN+RblzY421lMbnwAyeWnQEaj+8f/FVJnYAKNlfozpREIghQr3o0EdGLZyKJPZE6hv0HSugj4x4dWpZ/Y7HKBMQzzMWIW4FLULwT7yAf84WyFn/NpwP/G+HU8d/ItAMD3b30U3OlLAcC+tPu9kx02boH478dfwr+7/zs4UoOSNd/0tz7gD6QpxPa2eBvGGMuqEgxKNdsXERVV/peTWzOfeeG+529O+/epSNrqyrUtKQXSCq/m0xaBQ2WThR2v1J8IkEpAKiuJ9tXYGOc5vC5N293mwcQUdP5H996ZdnweD92K5oUXXsDf/Jt/Ex/5yEfwyU9+Er/0S7+ENF2dvTXG4F/9q3+FH/7hH8aHPvQh/I2/8Tfwx3/8xzPfuX//Pv7RP/pH+Ot//a/jAx/4AD760Y+e01m8g+CF4jhfr5/e0Yyt9VezIICCuKjoeJHA8waFbbCty7YX8CEP+JfRak2e2ORKuIEg1TsMJMN6JkTToL2it9toZatJZwwqqsxzQZFRNuhp0qfcpIoKODu+qLCEWus4g5ajv1fsJ89s7/4pnlk6rc3WmjojAKw2hWuHMDqHySbg/asPv57HAwIFcSNGzNJtiAAwy583q6FSYoI5ob1yEstatXFX4V/PgvRMksfcC8nZ6mKLhbP2cWeBPIXJxkCprzp0VXWWjKYK/UEM+Ra0oLGODfj18L5NwDjhW4o6KxPmvsJvBvchRocAgHb/Gp5qP4Kn21fxRPsKHo0vYT/oT23utFqZnGRhp9ncd4YImYR0SZ9NnRLKAb/XSkjLnuIqRcAE9sKt4n2l778KgkEadaCd6CqveJdprcBYWGgL5EpDcoYwDABiiFmAzFX4mwT8wtvxtftF//mpQITBB34YKu6Bj0/Q/fr/gGSs0gm3Cio3iKJFO74qxCFvZNHXRLDPIwttYUUkA8BYlsXM50JCBTEuR9sImYRxrJz5gN9X+IkILSeweDe1LRtPtJ/CVWq7Oc5uf1dsgUAYmwQDPae8V4GRmuD17A4UNF5ObhWWfYelHn7fwx7GCXIoEAhd3oI2NmESCL6QUBLJAFde+D3IycnCPp8MHwEAPJ+8hsN8+vm+E+5789D+t7APZAxkdLVwn8mhVT6jCXCU24P3Ff5hymxiOBtjvILST/kQxq2nioTBpNS/v1/5s3cMHqqA/+joCD/zMz+DLMvwz//5P8ff+3t/D7/xG7+Bf/yP//HK3/7rf/2v8c/+2T/Dz/7sz+KXf/mXsb+/j5/7uZ/Dq6++Wnzn9u3b+K3f+i3s7u7iAx/4wHmeyjsHfjGzbj+9E9qhqNu8Uibsy8hsIBJ4GrDuHtjWlQeSYDgViNUK0JtkBIq3LgIVuL5OLipp/cboRkwVKxo2V3XX+nzGiLf8mq/QazUNSFeg1uViDkZN7DO5ScV2mT2fSkEyPJ1onGcDbVytMyvdQCohAxitLJW/vQ16AL3RbxeQp0yfhrburPmW64/omUquZRcEc5R+Bm5N+ez32dk6kqxCwVpzz2ksQifYdoYV/mxi+91LkU8Q2/HIkiG4C/h11IE8Z8G+KpCr8Btnq2actV6TZ4aKgP8ezIldwFN3D0SEgEl0RYydoIsr0fZsm8Sq+VqGVoTutJaea4ARQ0fEkCQ2dkrwAT9UhlDl6IkWxtpGX9q43u9gC3EpyazuvQIASLYvT3v+2WLUq6Ag2VQnI8kUwoAjCq0mR8REUeFnKlvUq5mDp/Ofpn9/HkaGOPnIj9l+/tsvYv/ut6EaUMf9N8IV1X0Pzhk6oUS6wgWgsORrwH7LXGFFJkNX4Z/9fGIUtqNt9IQN7E0yG/CzuR5+AOiUdAMESXys/zEgGxd0fvt3jl1hx00TWv+r2VQt/7X0TfRdPWiSAePEXg9f4Rcte4xd3rJWjsaAGBBKO++W783uG19F/85z2Hvtywv7vCJ3cSO4DAODLwy/UTyXe73Zi7TldQGdjSFVjEHSCrf1yYyLxbTCb/89GAOGceTjMbzUQCWlX+eWjeSSiT5hcOvQ4GBgUyrX38GCfcBDFvD/+q//OobDIf7Fv/gX+MEf/EH81E/9FP7BP/gH+PVf/3Xcvn279ndJkuCXf/mX8XM/93P42Z/9WXziE5/AP/2n/xT9fh+/8iu/Unzv3e9+Nz73uc/hX/7Lf4lPfvKTD+KU3v4gBsBZka0jhkVkA4s1LJBmKnzGWNXuBwBiHKy9/fBTeWoWlsZYOhRrby5I9Y6CCO3ivCpw1NrS31fBVzVngpRT+JEv3ZcTK5uvUmntKOdNvMZFbTLIwxhjz38TWzJgqT2fF+w7DWxbTxtmg35co3N7HTeyBAyBbAxwCd6/8rZxpHgQoKAF1to61dxIhVL/ipaTuQoxiXBGjI0TgyAb8q/dw38WKMQx7TFFLEDEglnXgNNC5ZatU0p0eOo+GQ3u6NyIum/J+6oI+IdzAX8DvQtf4deDe9AntorJunu13y/ahFYwB0jYROOpBD83QIuHiEW4sYYDcWmTO7BV/p5sF+J9g3yMDo+wLWfnau0C/qx/tWADVFX4lTEISwWTNNXoxgGY4CBikCCYUnJ2lVK/8AF//+wCfsAmEIbv/gQAYO+lzyMe3VvxC2vHxzkhkM2fuyi0zgTLxPvWofQXAX82ArRaEG202g5TG+uFgN9X+tNpwN8tJRo+vP1RtMFAKl2YF71w353scOVxvppM46Y7+QE05ei63fg+/iRz2hmx699n9tiMMSACpOCQgmbsDaOBfX5bx7O0fY+Pt98LBoY3srt4zSUdvDWfR79YLjgnmKqEsErxirJjwrfOHLmA31PyhxMD8ADjsU3YSEGVzg22fz8rEog+YfCGG3KXt4EoeMhjgFPioVrZfOYzn8EnPvEJ9Pv94m8//uM/Dq01PvvZz9b+7o/+6I8wGAzw4z/+48XfgiDAj/3Yj+Ezn/lM8Td2sZBbH8yqp1qP+vWuH99+pPCabfaDwAb9/sV9jv37b0swBlDFCyudWNX1Czo/AEfTDls1gaNulkgiDoDNBimEcxFFJCJAhjBqNiAyRgGyYcW8RDeuhUptMmSD/n2PWns+2rC6Pr/9IF4qTFmLLLWV6A2OwVZuJVjv8iyt/ALWmrB3yp5dL/5Xp//gFfrFfMAfzCwCGQiCWFF9AvEHG/Qy5zjg5oS2iHAt3j2zYzB56tgQfKbiyoQsPNOFs0Y7jdvAaVCm9BtjYBw1v1GF3yULkI4AV9n0Vf9KqNyuAVa12gkJ8AAme7DCfT3RxiPRzqm2Uab1t3mIFgtxko8AGOw7oT4Po3Lo+6/b3+3cQOYC/srhR4BwlnzWPhFox8JZVDKrP8EFdJM+fmMKSn92xgE/AEwe+xCSS0+AjMaT3/mfoBX3MVUGkeRW2b8hQskRrhDvW4fSr0QI7e6NTAdVJAuIUiLIpNUBP8smxftuN+whgsSe3MV7eu8HS0ewi47Zje/LPoDVFf7M5LiZ2cA8IOtW8EZ2Z6GP31f4KXT9+8Iem1NJAWeEIODIPUNCK4Sj++7ch5W0/h5v433xEwCALwy+YRMgIRVBNmAt+aYgUBWlP0/wSm4j8ndHNwAs9vAPJgC4hIv3EYeLN8MYY4N9b/8KoB3Nfu/Rd3h1H3jIAv4XX3wRTz755Mzfer0e9vf38eKLLy79HYCF3z711FN44403MJksUZa+wFKQ65N8EPR6IgIFLSvAQ/TQq+Y/cNRQ+k02BrX651N9fpuChe36imKToL2qwm/o3FwQSESAma/wN9cMmKcbV8FkydReb9PjrLDnM1rZOeIUCujF9mUIMDZjk9cERqWgsLNZq4IIQJ1dsO6S4OMCG4MYt2Omrs+6LrDjEuXFLhGhLWJIxhu35pwliAgQ4Uy/+JkK9mUTUNgCi9qL1S7HypEu8PKWbg8ahRJ/lgDpCHpkgw7WwDGAZDjDLqL29vLqvXfdWHGfiRgoatuEyQMEIzq1QwNz91GPj8GIYTvoQmmNviwJ9Tnow5v2GQpaiLamlH5iZL3S3drAt85w5mzeEoUo4GjH7lozAQmCIA7t5uxlSv18eACWpzBMQC1L0GwKIgw+8CNQUQdReoLLL31u6de11oiC9Z59IqATCeRL7OXWqfCDCFlgx3KQDkGliL+ojJfEHOcr/DxwFX6jCw/6mAf4K+J78OO7PwRmNJCNZlgYHr7Cfy8/nrG+m8fN9C4UNDosxjPRdQDAa+mdQqnf9/H7gF9JL9jXcefh1/9AIHmR5A/HB/b4HOKT6ir/h+OnEVOIEz3CN8cvAZit8vfnCYHz73yjcJgdYaAnYGB4b/Q4AGCkJ8h0Pu3hT+w1Hxn7h1jkoGxqQ/CZN38H/+HV/x2T5LDo3wcwk3wAgBv77/yA/6GKEI6Pj9HrLVaEt7a2cHR0tPR3QRAgDGcXnL1eD8YYHB0dIYrOQGhkCaooJA8TfDZ0nawoABgtAMFBUfRAzpFabaiTWyARQgQB6CG/rg8SWlqrKmKm0EUwKgdJAdHtg53Dtdp03LzV0FEMCDZzrQC7OBJSrLxWhktACFgaPzm1aA4RyHO5ziwMkTMGxksBDgN4GII32J8hJ5hHaskiOofoboOvsDJaChGDWh3oyQCM2znV6BwIQogoBs2Nl7XnG4qBIASQr5XAIjIQ7c5m96bbh+n0vutV+c8VcRs6HcyMbw+dKVAQQobhzLgRgQQEWW0+V8a84pTgdZ6ABfLBv3ejFvT4sPI8TgsyOXhvx2oU8Nm5gMVdmME9MFeFlJ1t8HM4hpXgASjuWb2L8UFR4ecNj4d19qCcDgHr7i/9jYYCC1t2HKxC3AZOjtxcuZnLx1sB1u5BAaDJMTgnbIUx9s0WLod9iLm5Mz+wdH6xdwOtIARPCUSA4AxcEEBWPE4pBcEEAmmfpzTXeGS/jSh086mUYBkhEgG0DIAJwFUKU1WmBhAcW1ZJ3r8E3rBvfm1EMQYf/XPo/f5/QP/+S7iffR/yihYxpQ2EYIhCDl5zvHWIYwk5TqENINy486xfxlhhy6fD1oIIXxXyqINwcoQwG8JwVhxPphUCLhAKMR3fLuDncQecE8IoQso4mFYQeQIdhJCSQXBrPUo6AdcZTNibL/CjRy1r46gT3FfHuBJUs0x8//6N8DIeDS/j6+OX8EZ2Bx90ObfDoR0victfZsJX+Dv2/AmQ0p5XJLkdjwS0hrNtF+2T2xhcftfC/kMm8fHOe/A/T76Cr4yfxzOtR7Hfl/jOmxrtEAiD0rqMMwAKVJ4PclO0A1wL9tCV0/M+NkPs+GSZBpKcMMkAwKAVAGJ4F7pDyGWIV4bfgYHB8+OX8OH4qULzolsicsQBcHl7VqH/TnaIr6vX8Aw+vPCeebuuix+qgP/tCsYI29un6199UOj11qPz6pRjMuoi2OlBbJ3/Oaogx2TcAYkA0W4P7GEX0nuA0BNgPIjAW1FRyVSjI1B3D9GV/XMNWNYdN281dJtjMu6CpAQr0eJzRIi2u+Dt1WN5POjA5Cl4HEPnKUzQRrTTAzsLleI52HEfQpSuc44Y4XYXorf6WI0xmAw7MCoHjxfvldEKilqI9nfBW6d7jjO6guTWi5DuWNUoBQu7iPYWq46bjJtJsg09HoC3m/3WnluMaH8HPH57zMPfbchYH0l2UIyZMnI2gejtICy9Q3u9GDrQmAxbYHGwkPzJaQzR78785kEgZ1tIsnszz+lZwOQZNO8iurwPnSWYjMOZa5V3tzG+853i3/1LVxC/RXNy0t9HOj5GkB9j5KzaeleuQnRWH4/auYTR3e8AAOK9K0vnh5zGENvbje6xCjUmg5toxeu3Hr6VoP4eMgA8H7prEWPXVOsz3Dt8DQDQuv40wn4P93AMwRgiSLRGGQRnkIIhzXIwEWN7awuGhdgyhMce6aPTsu/BJO8hZxNcIolJYItkMdfQ7WqGFnf92mz/EbRrvnMmaD+OdOsKwqNb2B68jkF/UVh7nOTohhL9rVYljX7p5gEkSmM4zhHHs0mkMOAFpV90txDHq9edpr0FHL6OWI1B7RDttv3NKAcCCOz2O2DEYIzBiQv4u3u7xXNyEsbAeIAWVzDtEIEyOI4DiIAgKbdRaFR9HFcGO3hpfBOHOMYT8ZXFYzMGr921wfLT3et4JNqDPBIY6wTx9ghAjIMhEMcBcp0AlCFj9vwvd7YR8wAahHYrQLsdIm4ZDBLXyjSxrJ60s4tgcA+tk9u11+uD0ZP4dvIy3kwP8ceTZ/GuRz6CLz6b4JE9PvsbFgGSgFZpbZUqvJbbsfdU5xriOMCO7OL1JMGIjXGjfQntaIzhxCA3EplWADS63QBxmAPZAW5haln5XPIGvn/3A9b9xSEORhinwBNXOFqt6dg2xuD37n8FB+YEb5o7+IGaOejtti5+qAL+Xq+Hk5PFfpCjoyNsbdVT2Hq9HtI0RZIkM1X+4+NjENHS354FtDY4Ph6d6z5OC84Zer0Yx8djqCW0pnmYPEU+UuBBBqaHq39wSphMIZ8ogGWYHCcgerBCPA8zTDZBPsyAbAji0vbmDU/A93cxOVxt0bIJNh03bzWMMcgnBmZwBBZ5ipqGGaWYHCdg6eqxnI9z6PEQLONWPVsrOyb5enTzRsebpMhHGaAHRTJHD8aYnKRgqtlzlycGejgAy+zvjVaWJqeVpfPLEMnYgJLTPcd6Yq8NmRMQE9CDAdjOFsYH0+2eZtyoPEB+eAKumiX7TDoGjEEy1KDJ+c9RF1gfepQjH07AaHGe0oMheLCH0cFwZtzk/plIBwstZXo4Bg8yjMSDvd96lCEfTMBwtvOtHh+DwhYmQw2TJMgHKcgMiyRuzmcXlomJkR2fz5y/CibqAwAGrz5n5xdiGKoA1OB4VNgv/ncW9nG85DdqMIYINUYHq+8xMxpSBBgeD6CbiLI+JMiYva/p0f2l18IYjcnt7wAA8vZVmEEGNdEY6gliFiFNMqSMEHCGcTqGAMNwpHAyOUErFEgmKTLH3c5PUujjEbJAImMSIYD05ATJsJrW371jdQPG7T1kNd9ZB8popDpDzCuSB7uPITy6heDWixjvLlaNB+Mc/W6A8Wiz42AGGI0yEAwYbGU/DAXS0RjMteoMtIAZr24PiXiMDgA+OsZwlEK4wPIkHyNmIQbcHqNfOwDAMOPFc6JFBIYBJsfHyMNtGGOQ5Rrp8QABZQAYYKqPY5dt4SXcxOvju3hP8PjC529mBxjrBJIEtk0P6STHVbmLV9LbOMBNAE/iZGRwdJJgONagaGgr+iRACWFMKcaTHAEnDId2DtJKYZTkhY7I/cvvxeXBZyHHx8gODyoZGQDwfe334zfTz+Kbg5fxzPaj+Kk/vYWtFjAuXWPKcphsBB1MCkbDaHgPt3Nr+3mFdjEep+iyNoC7uDM+xGP8KtqhwXAC3DtMceI0CQKuMNYClE1w8+iVYh/HeowXBrdwLZh673VjYJwC13bNzPG8lryJg/wEAgyXaR8Hc3PQw7Yu7vXiRmyDhyrgf/LJJxd69U9OTnDnzp2F/vz53wHASy+9hPe85z3F31988UU88sgj507nB4A8f+tvehMopdc6VqMBBQYYBv0AztGAQ5EASIAU8Hai5503jAJyDVCubd4ym8CQBIk2zDnfm3XHzcMALWLo0QBG2heBUTmMIZChRmNZGQadKxhlYLLc9vRrsp6xZwxjGHLDQFkGEraHfZ1jBQBFAfRkDJXlsObA3CrXM26p+PEWlKaVFkwrj5UF0CwAJhNQ2IZWGiBZOT42GTeGR9BgMFnWyDtdJwmo1QMZZh+QCzx0MBBQYNAV91RrA4DPzGFKaeSGQYEDWQ6i2eSPVgbQOPd5bx7GMDsvZPlmehE10GkK3r0CpQyMZpbmnZUoriVBVgOClm0Y9eBs6GbgBPrU7RcAANTagtZOaXsFTLtEP27vQS05B6011Ny4qIMQAhREyAcHMPKhWtYuhYlsC6seHS2/FsdvAql1EjE9O05iinCUjxBLm+DWykATIdc5Yt6BMoRJonB1p2U/c/dHGwalNJjhyFwyPHz+DzHZuQ4977aQZ4UzRNq77J7VzaGMxnE2BBGBGT4jSggA+d5jwIufR+v4JtLRCLkIiiWgNlZlXzLWyL4PAGAM2t/8nwjuvoKj7/tJSNmGEECa5ggEh984c0lwxYRdfzbYfub68IN0gAFQHFOqFLa4LO6nHrlmeRFAQwDu78YzBZNJ8VsCIcsySEphwk7tcfg+/jezAyilFxghL09sX/01uW/XEMbgWnAJr6S3cTN/E1HwJCYpcHBikGTGBvywYnvG2PHkj8n/N+AMJ1leCPYNelex1d5BPLyH6OgmjveeqjzWPd7Hk+EjeDF5A39w8nX8+NYnQERzY4kApaBUXljAvjq0lup7YgsRhdDaYMs5CBzkA2htbB//EXAyNhg6m8FIuncKD3HXFUsYGDQ0vjV6GVfF1Bnkk+9juHnf4MkrmDmer4+s5sB12gWHqF3DvN3WxQ8V9+lTn/oUPve5z+H4+Lj426c//Wkwxpba6H3sYx9Dp9PBb//2bxd/y7IM//W//ld86lOfOtdjfqeDmADvXynsY859f8RAQet0ft7vVJBzTHABpxXr652JWNo7EVbxvSy6p901bDjtcTkNjo22/avnpQrOnQK4V+o32r741nCqYHEP/NIT4PuPg195BuLKMxBX3wV+9d32v2fkoUyMF/Z8RjmF9bMcgzK221umHF2GzgsWxwUeUnhrvjml/kLwsUJ3goi5Z7CCUWPMg7Xk8+DSJtLWFJVchuIZCt07lnH77JfmrhkrzWhDccozQmHNN7brtCYK/R6sJPrGOiss+VA9Lmq3HbVrnSAeVhQq/ZPjpQ4r6u7LAAC282hx7yMewAAwMCDGCtE+pXMIFiLJFMKyWJ8Hs73YkgmcPPERZJ0d8GSErS/8n+CDWeV3efQmCAYq6kBHp2uf0S7Y78sOWixCoivYm70dTKItkDHoHb0OAWuxFkqOVijQbwUIg4Zj3xh0vv67iF/5GvjoGOHN58A5oR1IpPnstRapZeiqNda53povyIYzbfbGGIQllsm8YJ+Hd4ShdMrskJI7K9JFdf4ydsUWCISxTjDUi6Lkr6aufz+YvvOvS1vZvpsfYqtnq9kHA4MkA1jkBftmj7HcNiEEQzw5ABmDXITIgzbGPdtOENfY83l8T+s9EOB4Mz/AS+nNxS8Qs4WU0rz62uQNAMCjpXPY4l0AJWu+klK/L9DHpaXIfcdK/qB8BADwSnobYz1dV1zZJnz0KTZjq3ikBng9uwMAeJxN2QDvBDxUAf9P//RPo91u4xd+4Rfwe7/3e/j3//7f45d+6Zfw0z/907h8eXrTf+ZnfgY/9mM/Vvw7DEP8/M//PH71V38Vv/Zrv4bf//3fx9//+38fh4eH+Ft/62/N7OPTn/40Pv3pT+P555+HUqr49+uvv/7AzvPtBgpaD9T+iFr9t0yF+KEGMbsINsYuiLQpVH4vsAgSIUAlxXet7WKp4WLZ9g27bLxWzez8NgQRA0QwVQDXyjkFNF/YU9gG610C6+yAxT1Q2LYe1edhJejs+aCcHd4ZJuiIMVC8BZOvdlfxXt2b2PFd4MGBuLDjZD4gUznAZK31Gomg3rHhrQh6mbDPU53jwCbIxiDZArw6uGfllM57Rt2+xupWD+5Cj48rPztLeGu+4njmq8JLQJ1dsMtPgz/6wWmCowoqt+r8awh38iCCOSV76UGDXIUfKrcV/BpoF/DzvRvF3wImIBlHbjQEoyI/RDCQMsZ4otDvSITzIq0uUSZJgIUtvPk9fwG5C/p7X/yPM0G/t+PLK+z4Up1jUml9W3H8xuAoG2FLdvBItIueaCGteIaEYFBXLWP30vgNXNlr48pOC/vbMfb6Efq9sJGgHoxB+1u/h+i1bxR/kndtxTgKOcgdU7HfzFvyNe/J9ir9Mh3NsP4Ic5Z8NQG/f97LDglcCFCeWNHg2dPBJFcYTnIYt/0dYcfOvD3fiRrhUJ2AQLgWTC1V2zxGn3dhAITbVnjvYABMMoAim/DwCv1+p2U9DCkYuhNb3Z+09wAijLo24G8d366/UG7fH2xZBsAfDr+56C7gHJHIPb+5yvBGaoPuctKi747vRA2hjCqU9ocTYOwuYxzY8aGNxoFrCXiq8xT2Rd+K901eW3qs3xx/BwBwXV5Cm95ZxbSHKuDf2trCr/3ar4Fzjl/4hV/AP/kn/wQ/9VM/hX/4D//hzPe01lBzntV/+2//bfzdv/t38au/+qv4O3/n7+DWrVv4lV/5FTz66KMz3/vFX/xF/OIv/iI+/elPI0mS4t+f//znz/38LtAMLO69ZT7DDzOIueq00UA6BoXxbOXnArOQofVodrY3MBpgrHkAXLZc0rbCf54gEU0X+VqtlZx40PD2fCYZAjJqRL1fa/thGzBTi6la5Km11XsAtqEXOB0oiGYs7QAAOgeJeq91ktGiRV3x4YNfvhBjzmLwDCv8eQJqbRX9+sVzXw4iwm7xv7lzKqg4OkDlrkJ4fqD2bMDP1qjwEzFEP/C/IPz4X1v+Re1aJtboxycRWALckkr5wwbiAnCBoBlXO1EZY6Dv2V5ktvtY8feASUgSyEwOxixt2xgDMqZogem1KuZFZ+/LiBCxAKkMcPR9f7UI+rdKQb84dAF/iR2WG4XDbIhEZzaoSgdOMK0axhgcZUN0RQuPRLuQTCAWIQg0E3R7ZJdtwB/ceWWz58wYtJ79A8QvfxUAMHryewAA8v4bQJ4hDARCyZFm0+eLp96Sr3mFPw9iGGJgMFOGgNFgxCDZ6oC/qPBn08Q2E9IyNUQAbQwmucJgnGOY5GAAOKOiZ3xf9AFYWn8Zr6b2nl2W2zNMAwC47vrX844Npu+fGGQ5Zij90wOcDRA5Z+iMXcDv2Dmj3mWbQJgcFdewDu+Pn0SbxRjpCf5k9Pzcp7aQBZcIuDl+1VkKRujz6dwXsxCSrFrCsRoV1nyDiSkq/H7IH6khFDQEcXRZG++KbLLs2ckrtXNEqjM8n9iEwPviJ5aez9sRD12z01NPPYV/82/+zdLv/Nt/+28X/kZE+Pmf/3n8/M///NLffvvb3z7N4V3gAm8tGAdUBpOnYNvXzjzQeieBuLRBdDa2FWCjAb5GJXhG7dmsZRO3CUgG00W+0YCIHiizZh2QCEFBDDMZnAudnoLYJmyyZFr5rIDJU1DUvmgBehuAZLywgDcqt/evbpwzsdAa7lkdb5WNIskIenyyhHDbHEbnAONg89U/Lq3Qpt/nigq/0coyA8I2THIMalVbdZ0FSASgqAPj7PXWqfA3RTEu1lDcJxHYFgCd1yaQHhRMNoGZHIM6eyvHKcU9mGRoWyT6Vxe3NTyAmZwAxMB2rhd/Z0Ro8wh3s2NwJmBgoKDBiSFVHK22QDuueGcx2xpojEHMAhxmA5igg6Pv+6vY+uJ/gji5h60v/kccfe9fhXQV/qx/GdoYDNUESmtsyRb2gi1wYribHuEgG4Bphg6ffWcZY3Dogv1r8S4Ct16JWYCQCaQ6QzSXSM+3LkGFbfBkCHnvNWT7j2EdxC98Ca2XvgwAGLzvU5g8+n6EbzwLPjmBPHgD2f5jaEUC94+ngbZX6F+nwg9iyII2guQEPBkA6EMZBU5spsLvLfnQgNIvuICKehiMFYiAUDB0uhKR5Agkx637QyhjIGD7+L+Fl3EnP5zZrg/4y1R4j2vyEr42fhEDcReAwa1DZ08YVwT8sOS5Mrwl36RtW3O0CJG0dhCN7qN1chsnu/VBsiCO722/F//j5I/w1fHzuCJ38EhJQA8GIKNgALw2eqU4h/J4IiJs8Q7u5oc4UgN0og4Ag5MR4DQp4cX/7+c2gbbDeyAiPB5exReG38CJHuFmdg+PBIstRc8lryI3Cn3ewVW5i7uoaD94G+OhqvBf4AIXWAHGYfIM4Bws7q7+/nc5KGrDONqh0Qq0joIz48XCqPj3eYLLom3PaLVW/+pbAdbaciyKsw+2SQSgsAuTr+jjVxlYdPEcvC0gpuO7gFFgy6pqpbaa6W/MVM/kLQCJsJ51sC6yiWUxzF0DEsHsPmRUzD+VlH6nhcA6O7aNKW9Gtd4U5Sr/Oj38jaGVTdauAZKBHS8PQR+/yRI7LzbQIWHufta1Y+h7rn9/+9rCOyHmAYzR4O5ZUEaDgaAVx3Y3BK9ImFBJCygobc8EMY6+968g7+6CJSNsff4/gCUjGGI4afdwlA0RksRjrUt4NL6EtogQ8QDXoj3ciC8hJIGDbIDEMeqMo/G3eYRr0e5MtVkwjo6Iq/v4iZBeehwAELz50srrN3M9Xvoy2s9/AQAweM8nMbnxAYAI2Z5l+gaO1h+HHJwx5E5AT2Suwr9OwA8gc0G8nFh3sdxoSOKNKP0s9AF/KfEgGFohR78b4PJ2jMu7LfQ7IaJQgDGC4LyYFi5J+9zdz48KinyiM9zKbBW+KuC/LLctK4RSUPsYkxSASEHC3gcf8BtjBQSp3D6hMgQjyyYYt6fB8qhn99Na0ccPAI8FV/BM+CgMgN89+TJOVIkVQAbQGtpovDZ+zZ3DouWgp/UfqkFR4T9xORNGQOiG2X1H5/etD5IEngqvAbBV/nloY/CtsX3W3hs9/tAWW06Di4D/Ahd4G4G4sIvEsPPAhBTfzrCUYPcPo23Q0fS3VGqhAM494LdsDWYrmEY99DR1kjEo6p7bcbK4u5TSaen+F/37bxcQl7OaGoBdWS5JbBEXNsk58xun2/BWtbucIdPHZInVrJkLzGzAX+rhJwK5xFalvo1WVvivtQXW3rUV4XNEOeBn7XMI+I1eWwiUGAeJCEZVBJEPGjoHRV2YbLVVYSHcVxPwF4J9e4uV7pBLMGJQ5BTVoUCaQQYhuq2aRGwR8BtIxq1iuhcCLgf9LlmRdLZhmMC1aBePty5jS7ZnRM6ICFuyjcdaV3A13EFmchxmQxzlI7R4gGvxHsKKZ7wtImijK+nV6SVbKQ7f/A7QsEUjeuVraH/79wEAw2e+D5PHPzzdngv45V0b6EnOEYUcaW6fMe4r/GuuqVLXxy8Sy3bJtULIZsV9awN+p/LPstmA/9L2NMifDzoFp0I1v8NiRBRAwxTV7NezOzAw2OKdhWo9ADBieETaYF1uW1q/F+xrswiS7NymYcBAs6J9x/dAMMhEhKTElBz1fB//6oCfiPD9nfdjT2whMRl+5/hLpX5+AkyOe8kdTHSCABxX5CJTyesMHOXTgN8jCvD/b+/O42S96jrxf77nnGeppauXu+bm3pvkBrJhQgIhIQQDRLYg+yBEZwRFIDpsBn0pRmQfZXBUFBXZB3HJoOj4QhBUJhLB/DIyDMsQ1puEbGS7S+/dVc9zzu+P89TTVV17dfft6u7P2xcvc2t9qurp6v6e813y9+xY6n+edpmV78t6Wv9d1fubmvcBwD3VBzFrFxBKgCPx6T1fy1bEgJ9oK1EGMAaqNLktVyDXmwQRoLVPnXVusBIIZfwfR2nNp8tucEp/3gE8TfwixUY/31pFJajxfRsWcEtY8KnNnXYr0xpgAk6p2CrqnfqzOn6XTc3omsmiTGtX/HyHf5NS+nWQZf6scbylTX1pQruSGKVbEhv06Y+CFCrQuw633t6lEGUgykCN7fb9Nbo0gVurvHGfDjZu4XmY77+oMBI7/BD4JpVA56aT9ZtmCzidavjrO/x6V5uAXwUIxcDCP0fqEkiiMFaMEXfqZq8U6lMgAjEwovOgyzmHJW1w98VPxXI5W8jZdQhnlfZjdzTeMkavUaA09sWTOLO4DxVTRFGFOFDYjUKH3jcFFSFQAWqrG7gBqO06HdaEUMsLeePAbqJ7v43ybTcDABaOPAaLZ1+66vEOwonAzJ+EWpwFBCjGAdLUv+Z6Df7AO/xZ0K6z8hbrLOJVWYS9Av7GHf5ejFb514KIYE9QH893EgBwT57Ov7fNvb36HPp6wN+uft85579iG1KyzIzv/L9Y2o3GIQeLWeO+aPEkdK33azGi8ZSxxyKWECfSGfzb3NfhnINTCpLWcHeWzn+6mYJq8x3fuMNvtCBuOL3q9fvOrSyC1Hf46/+920zAwuHoquZ931ry2STnxIfyhY/thgE/0RYi2gBhMd/toR5M5P/wSrJdnwFqQlFvkpgm/v9veEp/NprPpj71eUQb9tWJiJ8GsFELT0Hsg/5Oaf1J1WdwbHAzRVon+ejJLCCrd2LvlnXTrit+fYd/kwJ+aJMtXKyxcV+Wzi/tAuY2ry38kachfsb1bRcInLV5aY2EBaix3b4ufIMa2Ek2Xk82YOE570cwREmTCmK0rJScYn4hR0NKE/77q0cQ1G2H3y7OwM37NGq161DL9Vo0CjpCmgXN1lpoBKiMFTp/LqLzlH4jGoEYLKZVTNfmcbLmu5+PF3dDXfmfoC7+cUw+6uktzd+6KeoYhwt7cEZxH4q682JsqAwKOkS1XVq/0qhlEwnCB7qn9auFaZS/+QUAwOIZF2HhkZe33MYFUd54MO/WHyiERlCt2bxLf9qlX0w71Ww0n84yahx8HX7Tc3cI+HXUusPfi59QsHJ+1xv3PZSc8Knw2Ti+dun8dacHfjHAxtM+nT8fydfwvZIlzzVORDDTfoEgqexBmq4cQxrEWC744yjM9t7lB3zX/idXHgOB4Pbl+/CtpTvzv7Xy+v2g/Ui8ceOPcyadg3Uu79QPrNTvz9tFVF0CBWlq+gcA52a7/N9paN53IpnFD2vHIADOiwfrGbGVMOAn2kqU9rv7bFLWF1EaCGJfxz9oEC3azzdOfc+EjU/p19nc8WwO74gH/BtNRHxDqw47/C6t+ZICZrpsCSLK/yzalYBfdOcO/QB8qrsOVu3wW/9YgyzerSdt/PfBGneSXbKUpfO3+TnPLlsdsHc8122a7ygDft69REWgR+fsYel9j4Q+/GgE51+9/g+eNTIcqvHeOmVfrEla84tbQQwpTvZM6+8a8Gfd+WV8v1/cbKNkYqRiIRDUagniMEap2CXrqmG8r4igqCMEojFpyjizuA9HSgdwsLgH48VdiM96XPsFqR58p/ruu6Qigoopduzwv7zPp/V3reN3DuVv/SvEpqhOnY75867s2Nujmtfx+/dUa4VibFCtVqGzReUkGOy11oJsh39x1u+KAwik+ee5Vw2/sunKJKEejAgaG6HU6/gfSk7igdpxVF2CSELsMZ3LbEo6xqQeAwTQ4w9DZSP5Gnf4LZxfU5XWHf5kfC/cqkW1ftP6zfIcDt32WVQe+h72B7twael8AMC/z38L9yfTmEnmMF076UcKdgj4y6oIBYUUFvN2sSmtvz6S71hWvz+hx6BXLZ6eGZ2GQAxm7QLur/kmhN9a9OfY4XA/ynr7lsoy4CfaQqQ0BdWmky91puJy9gt1sCBalMqnIohoQDY+AJcg8gGuUpzAAPju5avrvpEFQs5BQtbvbyW+U3+W0m9rPgOnVxfzIGqt+1d687r0K+Obf65hh9/36eiQzg+0Hc3X/QFt0yKwmBCqsgeutrghwa+YENFjXwBz4Lx1f2ykabYQNPj3n5jQZ19sZlp/mkC0nxig4jKgTNdRiSsp/TMtCzw2q9/Xber360IV+Fpr55BULSqlAoKwxyJaQ2+avdEEzq4H+UEp76R/KsQqhBJB2uYcre05A04UzPzJfEzgauGDdyB86C44UZi/4KqujTzrjfuCY/f6MbsACrFBkPgFGScK6ap+NIlLW2fGN1iOVlL6E5vCKN2UDu5smi+6rQ74YSK47DtM9ZnWr7RPsq+fJrvMOASCBbuEby/5c+VguLepx0I7B7OUfzX+UNuUfgtAQ1bezqQGPXfSv6bJPdBQeS8BoDHg715+se/OW1Ga+SGmfngbAOCC+EwciQ7AweFf5r+B71R99sV+M46oQ9NOJYLx7FhPprMoxSuvtZB9fI0N+xyAucUakux4AzE4Eh0AAHx36W4s2SqOLt/rj2cbjuJrxICfaAuRTRxHtWWZyGfB1Xc2BqGzmmMTnJKdZAlivzghG59RsCWEBV+jv7rbdVoDdNBx14tGk29Gl/0c2aSv3UPfeHNV075N/tmQxkyFYdSWIGGHdH5gpX9Iv4sKgpYAWUqTkLiSj8/bKpxN+loIassEEBNsasDv0tpKcBcV/X932eXPy/Ns0pKRkdY79Lep36+LlEGoAtSkhlALKoVC73GG2uQBv1G65278Rol1iEgFbbv1OxOitss3T2u7y5/UUPrWvwIAFs+6BGm586424HembRBBJcsw0363Ogo0CtZnkCVB3LJgsFCbxkKtfTNFAKgGRf+nhU3hludgoJv7HOSfp7RO4hCByxaspY9pDoAPdhsXSAIxfrcewA+qfnf9cJf6/bp6Hb8ef7hjSr/SK+eQmX0YAoc0KkEVKzAGSOzKIs3CmC8hiBaOQ3UowSuevBdjJ3x2halmWQ8ieEL5IkzqCpZcFd9c9gH/Ib2rawZXY+O+din9x1Nfv7/LVOCcg7Wu6Xjrzft+UL0f31j8PlJYTOkK9nbJjNgOGDkQ0bYm9dFxovwf0oPcVwd+PuypGpGng2x3nwE/kHXeLozDJat2QJJq9rmyYd+Wko3my3e4+ylNWtXAzo1AwI8gal6EGJBLliCFSudGoEr7P3j73uFHy3siykBV9gC2trbFiSG4ZBl25oHhsgtsMvRC3krZyGZ26rd55pGIgipNdB0vKtrkM9ob0/pddQEuS6PWu9s0aswEYhDrAFWpomg0ysX2WSNNlN6w/g6D0KIwZoqodjg/693629XxF7//79BL80gLY1g4+zG9n0wUarsO+sfL0vr9brE/V2qmuX7fOQdJE6i02vG9skqvlAEszsAo05RCXk/nR1Rsv4CVNQlUfTbY1FqyxJ+V46mn9QOAgmqebd/BXuPH80lQgygHcQoltfL6nUNzh/7plXR+ESAKDZKGzn1pWMRyPA5Bh11+m2LfnbeuPF6yDMk+cyMaV1cei1BW/sY6bKbQLTydMK2j+YCVHf5j+Q7/OKx1UFo1fV3vMuPYbcZhYfHNLJ3//MKZ2748kAE/EW1vJvS7PmqIul/tA5RTNiKv3hBM6fa1vTuQxCXAuaY/ulxaZf3+FiT1Tv1p4nel+xmTuXqxzbmNn5jRQ30hcBjOWcC6jun8AFZ+/vvY4V9pctf6nkhhHFKY2PAxfS2SLEtpqLIHt6bJGxIWm5s8nkK+1EiazlmJyoAOO08bAaCyOn7bEPCn9fr98i7/GB2ICMZMASLAeBTBhL3fOxmkXGSDlXTc8v1eVw/4g+kHIEvz+eV69hgKP/gaAGDu/B/tu9/Dyni+u/PLCtYvJldNIR/TBwAJUgSiYMQgQYfz2K407lOLs4hXHUen+v1c1iRQ+mzcJyLQotDQMy9v3AcApwW7WjrMT933DRz+5mcQzz6UX9Y4ng8AYldsKgOwzq1q2FcP+P1iQhi0LhgtVPwuf7FN476p+29DtDSNJIhhs9JI07DIMaaLeNLYJRAI9ppJjKnuC375Dn86h3JjSn8oWLJVLGSf6aQe81MYlMCuOt76Lj8AxBLirCzNfztjwE9E25qIgkSlrNHXYEG0qCwAP0UBhtTHkLEpY07Cot/Jb9wlc853wKatRQcQbeBqS74Dfx9/qNezXfI6fmcHztRZd9n3wVC7pMvzkHqqdwciWdDYT1CWBfztvttEKb/LD4GrLsLVlvz/ry7CLS/4Tv7Lc343eR2DZGcTnwUxTGq9w5o+X182MvTdmw9laW6wkgjrJ0809VMIC5C4DNelgWK70Xy2vgvdpX6/rmAiTJQKmIii/rJm+j23ToFYhwiUQdW1nis2LqGWddePHrzTX+gcyrfdDHEOy/vOQm3vmX0/V73zv5l+MA+y6wsJulhGLXF50J+4FAYaoQpRs50zNJIs4DeLsy3TDHoH/FnjvkFH8zV8dHsadvhbuvM7i133fg3F2Qdwxjc/jd13/9+8f8HBhtT/cd18fA4OujHgn6l36Pf3CYyCSHMQvZjV8RdWNe7T1QXsuuerAICHDl2KJGtWWE/rrzs93IOfKF2Gp1UeC9ejX1LjaL5itHIMxQj5OL4xVUSoAt+PQK30Pag7KzoAkz3POfHh/L+3Mwb8RLTt+aAxHLwuVKls1/0U/TLQQbZbx4C/TkwIiYpwWZ2ja+iCTVuL1BezaktZY7Z+gpPs5y8P+N2mZ79IvVP/gGn9Lk3gkhrU+P6eix2iQz9urxebZosi7YNkicegylNwNoWzCRwsgCxnV+n8M3BLc7Bzx2AXTmYLAGsYO+hSH3gOuIjgbAJo7TOyhiQ68I0+1xDQOuf8+yBoLSfqJq21Pa9VaRJwaccFonad+m1Wv6+71O/XhSpAJYoRm/5KwfwO/+an9AN+PF9Jx1ju0Km+mgX09Tr+6N5vIzjxQzhtMH/eEwd6LhuXkZQnIXAIjmVz2BezgL9UxuRYhFriUEtSJK6GgopR0CUknSbFOKBWD/iX5lt213sF/PUeHjJAwB+Y5kB7TBUxrksIxODwqoA/WjgBndZ8nwE47L73qzjjm59GuDid1/EDwJ422Ub1HX9JqjDzJwGs7PAHWsEYQZI21PFnAX88fxyq4f3ae9eXoW2CxfIeTO95BJJssoFpswBWUhECJz0zMSu6BAFQcwlMtLIYUwhX0vl3mWwRzdanDTSf74EYXFa6AAeDvdu+WV8d20AT0bYn8RjUMLv09fFQpyrAyIJ9jl1sporjSLN51Eiq/v1h/f6WJGHBdy0Pot7NxQBABa3p7ZvduFQZQAyQpgPtRrulGUh5ElIc731jE/S3oOBSQIcdF0FEBGrqINR44t83AQAFiOQlMc6mQG3JZwAsZbv+S7NwNoWYqHv5QdtjAqAN3PICBiq6SRP/vq6lZ4oJ/SJRWhvqO8I5C7dwAhIWoSp7kR6/1zfi6+OYXJpA4nLLeS1RyR9LbSlP4266flXA75Jl2JM/BNDfDn+UzbQ3Nu3vZ2PEysXKpoATtfZlJ9V9Z6H0vVsRHLsHamEGpe/cAgBYeMTjYAsrM9YTm0KL6lnmVdt1CGbuBMKH78bigUfmO/w2KqFSDOEccGJuGTWXIAoKEB1Daid8Tf+qx7bOIc1+NoLl+eaGfegj4M92u7s1dVxNK2kKXUUE14xfgcRZFHXzInh9TN78+OmY3vMI7L/jFhTmH8aZ3/g7PHj4cdgVVXAsnWmZVQ8nkGyH30z73f00LsNl565SgshoLCynCLOvvyQsoRqNIVyeRWH2QcxPHkRh9gGMP3wUDsADZ14OiKAWFYFZIFi1w++fVkFsDU51/1nTolFWRczaBcxjHheeEWG5BpRi4PjcSod+ALAu6+0hrQuA58SHm1L7tzvu8BPRtidBBFWcGPyOSkN0cMp2FEXE/3GwyTXKo0bCAqA1XFqDS6qQqPWPatoaJIgBrfyIvn5ur5QPAPOAf7DxmhtCBxCtB9rBdtVFQAfQ4/v6yjQSbfrahXU27dkLQUT5TBltsrGCzYGRKA2JSlDlXdC7D0Ofdi7M/kdCT57eteFc9+ccok7cJlm/lTV8/+nhO/U7m8LNH4dEY9C7z/STDoKwuZyoG1trO3lBTAhVGIdL2gd2q1P67fF7/KjFwnhfv7eUKJwW70JJxf39bIgCBluK2VAFHcKIRtImqyQtTSIpTkCcxfiXPwVVW0JSnsLiGRflt0lciplkASeqcx0bANZVs7T+4OG7/c9XPeCPi4AA46UQlZJBkqaANQjDMQRAxzr+NFt0CJbmEchgAb8aYodfKYXVu9WxilDWrd+nhVnfQG+hsh+zu4/gjouej/nxA1A2xf47/z+84KEFPCY6E2dFraOe698PZmalYV/Tc4YadlUGUj6eb/Z+wFnsu+P/AwBM73kklso+OyAJO+/wQylIWuvrHG5s3PfERyn82MX+O62e0l8P+J1zUIKmcYY7Ff9iIiLqQOQUp/QDUBOnQYZZnNjOghgSFP14Pme71j/TiNMBYOKBGrOJiRpqzF3Xedungoj4Odp9pr07Z+GWF6Aqe/saRQggC3r7eJ3ZLvx6qi8ASFweOD3e2dSXOwThwDGlSxNIUFhTM04RgQRFX/oz4HO7+ROQ4iT0njN87b0oSDTWteFe84Og43kthQpg0fa9XL3Dnz6cjePrY3e/LoSC0qq/xek2Kc6bKVIhIhW2Hc8HEVT3+ZRrveCDubkLrmr6nbyYVlExJeyLJ7GUVjFTW2hp0lZXmzoNTmnopTmo+RMNO/zZz6UAhYLGZCFGUlNIpYAQGrU2PQYcVnb4zdIc9OqQqh7whx0C/uz3mOqzaR+ArJme9P70nMs75i9mY/OSqIS7z3s6HjjzcljReMTx+/AfvvM1FBZONt9XgPq7W9/hTyrN3f+jUEMr1TatvzhzPyYe/C7iheNIdYiHDj82v00Stq/h9y8ugBPVV5ZKY+O+uppLMJ36x81T+l023UAE6Q6P+BnwExF1EkS+g/KpGssHtOy+UbZDWaj4xldar6mLN20u0UG2yz/Az5QJm9PbNzulH1mmQp87/G5xFlIYgyrv6v8JlEZfQZlza6p576pezjTIbrlNANFZBseAtfQ2zUfarYWEhYEmBLikCrcwDRnbA737cNMCikTF/jMtlOpYjiVxCRIVgDYj2BoDfuccbNahX+8aIN3YWT8ZoZ/siM3OkFlFifQ1ng8Alk4/D8nUSkd15xwSm2IiKOG0eApnFPehqCJM1+axlLZZqNEBapN+Rzt46C5gye8024aFuAQp9hRj7JqsYK6mUVQxaq7NYoQTpJHf4VdJDbIqE2RlLF/7gF/Xd/gHCPi1AjQE1nY/J8OlGZhkCVY0lsorHfkhghP7L8CdFz4XS8Up6GQZp3/3f0Flx54/aj2lv96wb9UOf6A14lCj1jCeb6WO/2HsufsrAICHD16CtCGbq5YtfgRtd/gNXFRBPyuF7QL+E4kvCymoCAW18jNstIJPOBqNRpWbZfN/axIRjSg/y3rv4M3+aN1JVPTN+nQIsGHf1mWCLGNjkB1+H9A6ZwHpcxdzg/lu8H0EgkkVcBZqfN9A4wRF6f521wUbN7VAG3/MgzTwS1NfOhAWslr6AVPr12Nx1QTodwfb1ZbhlmahxvdB7zrYUqvvF6d074yBNAFU0PH4RRlIccJPqFh9Xb0W3aZwSzM+pR+D7fDD2r5Hz/qJNWtrbLjeiiaCoHV8GgAkE/uQjO1GGpcxf+4VTddVbYJQGZSN/50wZgo4XNyL/dEUEmcxXZtHuup11rv1h/d9D5Jdl+/ww/cDKOkAY2NF6CCCkQiS2tamiwLAGCTZ7yO3aqd8I7r0K6kHr93P73q3/KXybrg235fV4gTuuuCZqIVlhMuzOO3oF/PxiAIf70ttKc+qWL3DDwEKkUHaEEQnURm1sAxxDjpZxlJhAif2n9d0t647/APIO/UnKwF/PZ1/l6403NJBawUD6TRcccfgX7FERDTyJCz6P76j0kgEfDQcUQZ69xmDpaEr4+M3Z7O/REfgT5f6aL4uAa1zDm5pBmpsV76L27csKOsWbPu579iwHVupNy0dpNu+S7OyjayRYL9ZEPXFnHUI+EX7PgD9lFy45Vmoif1QUwfaf6+YyJ+rvdL6bc0vAnU5fhWP+UB71TkjygBZt/f0vm/79ywsQhp3Znu+kPq0hj5r+EXyEW2joKBCRMqg2iGt/+QTfgInrvqPeeO4usW0inFTQtjQ6M0ojX3xBM4s7sWYKWKmttCUPVDdfcjfLpsvb8PW3gcRNArFAorFAlIbdqjj9+VFSewDersw3Xxtn037dK3/PhlaCbQAaY8FrWJD/X4n1kS495wnw4rC2Im7MPXDb8I6n3GhBDAzDwMA0kIFrk3mTRwqGL06rX9lUsCDZz6+5bt6pYZ/cU2jIes7/ItuOS8FqXfoz+v3AV+eIIDWChjg6SoPH8Wj7v4y1FL7ZpJb0Qj81iQiIupOtIEUx/0fzbSlDVqyItr44DdN4TvMb/6fLhIWIaVJvyO7cLL9HPvqAhDEWZbQgGU6SvsU7W5BmfP18oNkDgxKwnigEX2+Dj/2u8hB1HVBpEnqZ9j3akDYl8ZO/d2ONakCOoAqTXXM4hKlIFG5Zx2/SxNIGHf/nKOir+du05VdFX2Qkt7zDQDwi2KDnDPWp/T3lY2mFAC1poBrvRmlUdKF9nX8gF+gWBWUp84C4jAWtO+LUdQxDhX2YFdYwUK6souelqeQNgThLmze3TdKIxQFpUNMVmKkqoTQok0dv/98kqyO3y2eXHnMpJqff53H8mVd79Na/1k0Amite3509fr9hbF9XW+3VN6DB8+4HACw564vozhzP0T8d3R9QaQ+jm81Y3xaf7W2cjCzUz4rZXr32VgYb20GmAQxHAQCBzPAdILVQhWgqPwiRD2t/3haD/izKSgOEAiUEmgtSHtkRdSNHbsDp33/ZkzNH4Oee3joYxw1m/9bk4iIqA9q4gCkNLnZh0GnmjY++E1rK7uTm0xMCL3nTOi9Z0PiMtzCDOzidB4cO5vC1Rahx/f7zJRBZd30u47mswPUbQ9JTDxYSr+zefaGBIX+swPSJJthvz47/KLDnuUErrbog7Een49Epd7BsU3zAK7j44iCKk+2nXwgcTZGrJ7Ov2uAdH4AzvWe1rDyZFn2yIg1MSsHcUv6fTdLaRVFFaOkO2cLaVEYMwWfbVN/vSKoZbv8AGDjlYC85hIEohGKz5YoFwOEhTJC265xn4ODRVrIAv6GHf68fl8ZvwDVThb8AoN16jc9glezPIegOgcHwdLY3o63qzu571xM7zoCgcOho19AkC5mAX/7+v1GcWRgncvzDeamzsDtj34Bfnj2E9vfQRSS7Oekbaf+ATTW8Vtn8xr++g5/6txKtoJWfRX5FKfvw2nfvxkC4IcTB1HbdeaajnGUMOAnIqItQRpmh9MOonwtuUtrPqV/REo6RBRUcRx6zxHofUcgYRFu4STs4gzc0jSkODH0ApUo5YOFbjv8tp7GvYFjPAfNHpCV+/Tb5wCAz5Aw0br1S5Goj079aQJVmuz5nSJB5Ov4OyxeOOeyeu7eZSoS+l4kqx9LiuNN/9a7B5wPbq1f5OhHPRNghHb4AaCgI0QqwGK7ZnttVG0Nk2EZqsc5U3/cdmn9QHP9fs2mKKrIP6bSiAKNcrkASTXEYVUdv8Aihc2yzhpr+BvT+TudXyIKyFLlB+nUb7Tq+mNVT+dfKu2C7WcBTQT3H3kClgvjCGqLOOP2f4WCWxnJV+kS8AcaRiukycq5VC1MdM3CWknrX6c6/nQOJ9M5WFgEYjCmss/TuWx9WGXTDbp/F0VzD+P073weylnMTJ2B7++7YCQWl9cLA34iIiIaWXlQm9b8H8kjkNLfSJSCKk5A7z0Cvecsv6OvQt+oby2LEybwO7ed2HQlE2CDiA4Akb4avPlgSFYWCQbZrbdJzx3yQUgQdw1oXbLs+wz0M+IziH0wXesQiNokW5Tq4/XqICvVaP5c6zv8APxxjXeuvW6v/2kNorKfoREL+CMVYHc4jsV0GbbHsVVtDYEK2s6fXy1UBiVdwJJd+fxquw7m4Z9rOAdSZxFn53z9Z7cyPgYtEbSVvI6/ft8EDsgWa5qa9nWo33dJFXb++MoFWQf7gRr39QheC6vG8fXD6QD3nnM1UmVQnr0fpW/9K/Si3zFPKp17SRijEIcay0n/51K3Tv2pdUid81kDrnuInu/wJ3M4Xq/f15V8gcU65ytBlECLH2fYSbA4jUPf/idom2C+chp++IgnbatgH2DAT0RERKMuCFdGvo3oH2KiNFR5CnrfEZg9Z66534TosOsOv7Opf182kjZZpkEfaf02BZT2TehQ772g++sB4FzHkXZD0fXJDu1DBlddhMTlvsotRGlfx99p5zlNfLDfz/ErkzUzXBXwF1cCfrXr8BCZDm6wzBelRy7gB4CpsIyKKWE26V7fvZBWUdEFRH0uKo0FBVi30mnfhQWkWap6fYffd6gXRNDZxAP/fhZLBZTiIiS1K2n9WVKHg4Uu+iwe2y6lf/WCUrIMJNV8Aa3euK/duMZOjJKuwehKw77+A37A78zffdhPQSjc/U0AQFoch+sxUaUQB3Bwfc7FaOjUv9y8w19NUixWU1SXLZaWLRaWE8wvJZhbqmFuKcHsYq0ps6Expf/4qoZ9AGCdL+nw7R/Ef15tDtJUF3Do2/8IkyxhqbQL955zddvJBlsdA34iIiIaaWJiv92jR/8PMVEGkjXyWtPj9BovZ9PBph0MQwf+Pe+n+Z5NfJDUuMOveo/mW8kMWIeGfRnfMb81sM6fz6ZQxYn+Hy8udVz0cGkNCKK+sjk6lWpIYSWlXw9Yv58bJEjRpuNiyGbSorE3GoeCtO/YD/jdfwdUgj6yMzIFHSFQQVMd/uJ5T4A9/ZGonn4OAKDmUgRZwz7IysSDwBiUxysIapLf32Wt5ywsgvKUf8DqQt7csVOHfmet//mov/dZVosboIGdUj54bTfCUNeWEGXNAwfZ4a87PnEmTuw7P/93rUv9fl0cZN36k/56fayM5mve4U9ToBQZ7N9dwP5dBezfVcT+qSL2TxaxZ6KAQKumMYATxn/HztoFPJicAADsMis/R876qQaA79SvRJCues9UsoyD3/5HhMtzqMZjuPvcp8Gu58LjCGHAT0RERCNNTABoBVHrFxSOvJ4BnFuXMXbdiNL+Pe+n+Z5Ns139lYBfdB+j+WySTRtYx9diAr+A0K6OP1n2/QL6SefP+DIN1T5bwSa+Nr9fQdjyOI1jG9XuQRv2WQCSZ1b0Q0Z0hx8AyqaAXWEF88lS20WJxbSKgg5RMv03w4xUgKKOsNRwPiS7TkfyhOfko/5qNkEgBoGTlhGHpco4iuK747ss3VwEUE5gwlLev6HeuK/jSD5XD/j9e6+y9HYZYIdfiUArgW3TuK+Q7e4vFyaQDtEs1AE4dvbleaCfTLZ22l9Na4VCaFBN+ltA6pTSb51DECgERiMMfP+EONSIQ4X93/pnHLz71qbzIZYQofjvjIeTkwBW7/A7aO0DfqUURMNv+2fEJjj4nc8jXjiBJCjg7vOegXQdy4pGDQN+IiIiGm1KA2JGpmHfKaE0ejWaOhXvR7+j+ZxNAR3mJRci4juR9wr485F867ezJsr47Ic2z+2qi5Di2GAlBEHkj6/deD7nBsq08Me1uoZ/DFKagpSmoCYO9H9cgD8mE/pj7JcyIxvwA8CusIKSjjGXtta2V20NE0EZesCyh4opIunSE6PmEpRMDIHNSlNWfrbiYhFjYQSb+jp+53yHflGCQGlIli1Sr+N31S4Bv6xkeNQXigap4ddaQVT7Hf5+x/F14gAobTBz6XMwc/EzsHTw/NbbOIeltIpaw89WMTJw6PltBaBxh785pd85wLTpR6JnjyN64Hbsfug70Euz+eUikjfuAwAF1fRvB5fv8CsRaABpwxHuu/NWFGcfQKpD3H3e01Hb5iN/GfATERHRSJMstXwjZ86PGr9jK213OV19i/EUvB8S9DmazyYtNfF+NF+P+9oEosO1NThsQ8LWTv3OWcBZqIYU+r4eSxlIWMpTtpseT9RAiwc+k6H5MxWlEV/984ivvm7gc9wlVUhYGChDwj/H6KX01wXKYE80Aessag3nT9UmCJRB2Qy+E1vUEUJlmgLVRs4BsQ6ztPvm91IHESZKJegEqGZp/VYsAtEwYqCyxn02S6fvuMMvWVlHfYc/q+GXAbr0iwBaKbSbzFff4V8csH4/5xyUAC6IUN1/dr6gWA/yT9bmcbI2B+sc5hr6LISBRmAEtT7S+le69C80F9VL1p9gFd3QDLFy4u6m68YbAvxJvWpig1tJ6YcAWuuVNS5nMXbsDgDAfY94EpZLUz2Pe6tjwE9ERESjTRlABb6Z1k6hsuZh7XYlXQooNVAa99B00K3B9Yo2jffEBD1H87l0wJT4PkkQte5i15aBMB4onb9OxeXWjIG0Nnh2QoeFDTHhcD0Z0hokGrBnhKhRjvcB+B35yaCMuWQxX/RaTJdR1gXEQ5T2RCpArCIst+kNkDoLJYIoa1DZsoBjAhSLBVR0gOVaAuecr9/XGkYad/izlP6lTjv8aJqQUD/vZYAdfgAItGrp56nSGuL5YwCG3+H3B+N/2J1zWE5rmK7N42RtHtZZ7ArGcGZxPw7Eu6BEIc1eh9aCYmhQ6yOtv77Dr1wKlSwD8NkKCgKl2wT88yfz/65MNwf89Tp+AJgyqxbxRJommBgtSLNVkmjhBHRaQ6oDzA+aUbNF7aDfnERERLQl1Xf3R2wk34ZSOhvh1ib12qZNjcU2lK5nGvRIARe0Zhz06Jbvr7Q+OF9vOgCgmp7b1RahCuND9QuQIPYjChszFtIk6y8xwONpk406XHvEXX+MgUcaKo3+VnE2j4hgTziBWAVYSJezUW0O40Hn2fa9Hm88KKLapolkvX7f14Tb1oUrZRAUCpiIQtRSC+scUliEKoQSgawazddxh98/2MpCVPa56dryQK/F6NbzJ559EAKHalRGMugCUH5syEbYATPJAhKXYtKUcWZxH84uHcDphd0YD0oomRiRCpoWTwphltbf47R2SiPJ+i/U6/ht6ny/z3Yp/Q0B/9jcg/kiAdC8w99Yv5/ft+G/jVb5Gldx5n4AwOLY3h3zO2VnvEoiIiLaskRlu6g75I8zANloMNU+Jd6mWWOxU5DSrwMfIHZJzfeLAa0ZB/VSjJ5p/RvQfNB36jf5rrzLurs3NsgbSL2Ov6FMwKU1SFAcKAAVZTpnbgwq9fX7Ay+YiAAy/IKDW5qFnXuopcRhvUU6wJ5oAlVbw0K6hFiFKOnBm9HVFXQEozSSVedjzaWIdQBTX0Brs5AmUQmTYQANjapN4ZxFUfuFgcYdfucsUK9Pbwj4nU3zn2m3uoZ/gJR+wAfGqwPr+ji+YbrzN6qfys45nBZP4WBxD8aDEoKGn20tCmOm0DRJIQx9Wn817Setv7mOP4GDyZoRrtYY8AscSifvzf/dGPDvagj4s7kfQMPjKSV5Vks+unBsf89j3S520G9OIiIi2qp0Ze+6jLvbKqQ+s73dzrpNfRf8U1HioI3/X7fxejbNRvKtCtzro/k61U3XO/SbDZg2oEOfFVIP0KuLkDBemX0+INGB7wvQsMMImw63uy59LIL0I6n6MgA9YMPDNab0u2QZUtoNtzS3MnN+g0wEJUwEZSwmyxgPyitB+RBiFaKgwpa0/sSmKKmGhYR2AX8QoxwaFIMAC7UqIIIwC4KbmvZVl/Jt7qZzzVn/uYtuSekfdIdfq9YFm/qu9UJluCDWOUAgECWwzkIaXl87RR3DuZUsE6UEpTjoM62/oY4f/kfBGN2adOJcHvAv7joMABg7cVd+dVkVMKHLKKlCU0p/vURAN3w96voil3Mo1Hf4h+11sAUx4CciIqKRJ3F5w8fQjRwdtO2Q76wdrt57CH7hIegeoKY+cIduDpREG/+ZderUnyZ+QWAjdviV8lMCsoUKV1uCFCfW1PdAxWOtCx+DLlbUF3LWIeB3aRVSGBs4xV2UBkT1LtNo95zO75+q8hT07sNwNoVdOLkuJQrtKFHYE01gMhzDWLC2sWlKBJWghGrD+Vg/7kiH/r99q/qW+4oOYEyAvYUSajaBUpIvPtSb9rmlWbilGX+HIG4+12zW4DEIAWQBf+Rfj0qq7Ut3OhAlEEi+yy82RTz3MIDhd/gtsjp6ARJnYbKGhJ0UdOibILqV9zIO6k3+uj9XLVvoCLIdfuccAtN6Dkt1ESqpwgGYP+PRAOB3+LOfHRHBj09ciedN/CiMrHxmzjqI8gsY+WNl71mwOA2TLMMqjcXS7u4Huo0w4CciIiIaQaKDzjv8G7Er3uk4eo3XsylEBW2DaQkKedDder8kKxnYmNIECYuArflFE1GQwhpHb4VZHb+z/jVpPfDCiyjlFzjWY4ffucEzDPxB+HTnYUbzpTWfXRLEUGO7ofeeBQkiuPnjfY1vHEZRRzhc2IuiXvsiV1FHUCJ5w7nEWRil/W62ax3JlzMhoAOMRyGMUQiUWgmIw1Lev8KeuA9A+5F8olT2M51dli1gCAAMkNZvFLLX4B8onnsYyqVIghjVeLiSFedWguTUpdCimoLo1UIVoKBDLDd8L0ShRmwUlnuk9SdR8w6/cw5ad67ft4UKkskDqJkYOq3mKfkAfO+FVU0c669FNzQBNApQEBRmfggAWCzv3VFjXhnwExEREY0iHXYIDN0pzXaQMO4aHDqbAkH7tPJu93VpAgkKQzVh64eY0AdXtUVIVICEg3fnb368LH0+qeaB7zALL2LCvI57WK4eeA+T6SEKgBpoVzmXVn3PgKyxnYrHoPecBSlNws2f3LC6/rWk8jcq6BCxCrGU+uOsuQSBZAF/tjDUNhDUAcSEGDMa5dD3AgiygFhEINmoR3uyU8DfWPbiz3dRGshGWbos+O2HUiqrDPCfXyGvSd+3UoQ/KOsPSylB4iyirCFhN2OmiKQh4BcRxLFB0iOtPwlWavidv2P7kXxZwJ+WJqC0wszEQQBAuSGtv9NLUb5AoeHY/HtWnMneqx2Uzg8w4CciIiIaSR1nsrfriL+RlOle8+0SiOnQTK3N3PmcTf2CwAYRE/od+doSpDi55p4HYkJIGPug1iYQEw1XImA6LeQMIKn61zfMhAOlsjr+wdPwXVKDRM2d8iWIoXcfhprYn9X19x+8nmpKFCqmmKf112yCoor9DHdns8Z6bVL6RSBREZF1mCoVUQiCpkWIeh2/PeGbyq0O+J212YhLhaafhyxDo9tovui+7yL+wTfychIlAgNB/Qxa6To/fBBr4XwvR/E7/P2MPizosGk8HwBEJkvr73K/WvbeBNUFWOugIU278XV6/gQAIC2NQ4lgbvwQAKB84u6u566z8BkDDQ+plEDBNTQ33DkN+wAG/ERERESjqU3gUa+hXkst+sCMD9q71Wl3bLzXa6zfRmYq1EfmKQO1Tg0fJR4D0prv0B8O3wBwTV3zALikConHIMNMrhDlFz+GSel3ru3rFmWgJg9kdf3VDW/mtxbFbHEqdRapsyjWsyTq0y86pLJLEEPgsLc4hr2l5vNJ1QP+aR9Qtk3p19mEhoaxjPl7WV1s+5xqYRpjX/9nlL/1r5j80v9A8PDdfnyeVn7Qg7MozD0IYPiGfYDfFdcQiPhYOujj+yVWYct4PmMEGgJrO5/fK136F2Ct9W082izGmXyHfxIQYHHydFjRCJfnEC6e7PxaHFqyE0SAQrKIsLYAJwqL5T09X992woCfiIiIaBS1m5eej/c6dfWnokzTiLsWDh3r8PMa/VU72s5lTcw2MuDXgW8cGBbzndS1ymvmnR18HF5+XOuwWOPs0AsOvlh78Bp+P1pOOr5uEfF1/VOH4GxtZIP+og4R6xBLSRWChm70zu/CdywxMSEAwWRQxu5ovOkqyRr35e/p6oDf1h+7nl3R3KlfOtTwR/cfzf9bL0xj/MufwthX/xFxugjrHKKFE9BpDakOsFyc7P9NWM0CSqt8ISLo4/tFicJYQ7YEABitoQyQdikXqXfp12kVLqlBi/Jj81Y//vw0AJ/SDwA6DDGT7cyPdUnrd87BtGkCODaXZUKUd8OdygypEcCAn4iIiGgEidLZ3O6GYNmmgJhT23BKB/752k4M8LXJHcsPdOC7969u3JcmPvDdwOaDIgoSlaHKk8PthLd7zHr9uqi8jn1gSjft8g7K2cS/50MuOIhIVqYx4PPnfQu6P68q7/JBf1obyfR+LRoVU8BcsoRA6bzpm7MppMuIQzEhoA0MXEujuHpKf/7v1QE/XLbDr1cF/PWU/vY7/GEW8M+fcwUWz7gQDoLo/u/jjP/7Sex56Fso1pvQje3NygWG45zv45jCwojq2qG/UUnHvollPWNBfFp/t759VgdIs4U+tTSPMGhz3DaFXvQTD/KAXyucrNTr+O/u+lp0m0Wb4ly918HOSucHgJ21vEFERES0VSjTEBxkAb5NIVqf0hr+fLxeWmu90tabkXXY4VfaB1GrdzDTxAdAG9x8UE2ehnXd39Khn1qALAAcgqgstdumw32Oef3+GvofKA3nbMvo8258GUGp8+JO48OXdwEA0mN3AcurZtKPgJIpYNYtQimVN9+Dtd0XoHToS1eSWst5W2/al/+7JeAXXyowwA6/WphBMPMQHARLp58LFxWxdOA8lG/7AoLpB3H43i/DZZ/gWoNY6xyUEqTWQstKQ8JeYh0gVAFqLkEo/j0JA425xS5TPeDT+vXiNILqAky7Dv0LMxBn4bSBzd5LpQTT46cD9wDx3EPQ1QWk7bJcxEHaZAwUprMd/h3WsA/gDj8RERHRaMp2+Jt21l26khp8KgURXLttO5tkmQidAyUJW0fzOZsAJtrw1yHKrLlZX9PjifjaeR0Mv1ihtM/ScMM17nNJFYhK7cfH9Um0GbyGP61Bov57Iazs9C8P1IX+VCjoCAUdoKSjhhR+13UxQ5QCgoKfkLD6uj52+P3Ps/Zb6VnKe30hRLVp2hc94Hf3a1MH4LLbpeN7MP34F+LEOU9EokNI1gtirUGsg4NWgsSlMKL7norgx/NFzXX8WgHSo1N/ltYf1hbaj+RbOAkg293PPh8tglpQwmJpNwRA+eQ9HR9/9Q6/WppDsDQLB/Ej+XYYBvxEREREo0gpH9Q11MP2SjveKBIUANdm186mgAm7BtViotbg0ibDzZAfASouQ5Wnhl+sqC9CDNup36VQLQHl4McwSEp/nrI9YBmBr+k/CFdbhuuQtr4ZAqUxGY6hZBrOQUHHXhR1Kiq27WUhhbGmlPrGgN85B4hkDQGVP2/qPw/ZDrWuLbc8Zj2dv7r/7FVPprB0+FG47bzn4fjeczC9++yOTej6/4QFSgSps4jVYN8vY6aApOFcNlqgoJB2Ob9qjQF/t5F8DQspSvtBe7OT9W79rXX89WdcndFvjvvSh4XCJNJhS3G2MAb8RERERCNIRGWB2aod/k34g1V00DZ6cDbtndpugpbeg3BuuBnyI0DiMlRl+F1CUcpnBwwR8PtpBwJZSzo/6iMfB9jht77nwjCfmZR3Q02eDldbHKmg/0BpFypBQ0q4Q+/eGCZEux8EEQUpVFb+3bgg4+qNNlVD/4TmGv7VAb9anEUw/SAcgKW9Z2EhXW7q+aBEYKMC7jvjCvzwEVe1rd93DpiZr6Ka9HGeOUBUFvAP2FejoENo0fl4PqMVtAHStFvjPv++h8kCTLeAP6vfBwAt/nVPT/iAvzR9H2R15pBzEEhLE8AgG5c4X94HO2TvjK2MAT8RERHRqDKBn+HdoOMIvI2Uj9db9ceyTXsGn36EoMpH89VHC25kw75RJyZq+Vz7klR90DnshID8ANRgkwHzvgFDBPwiUJU9UJMH4aqLviRhxDhnVzJquqg37nPtdvnru9GimvsrWAugYbKGNvnPgnTY4a93508mD2DOKCynNVQbMmyUUr7ap0vwupykiILuDfRWDh55aYPps36/bvV4PqUEgdbodnrnAX9tAVr3F/ArpSAaWI4mUAtLUDZFaea+pvtZ56BEWsbyBdkO/1xlH1yXkYHbFQN+IiIiohElOmyt9T6VHfrz4wgA3S4NXXqmQcMEfsGgvhtnE0DrjR3JN+pMONwOf1KFhMW1v3ei0Jp20eV50xokKg1dxpAH/eP74Jam84B3ZNjUN9XrZ4dfZ437VqmP5pOo2Pw+ZYsJyAJp0cFKDX9DwG8b3pN6Ov/i/rOQ2BRlHaPWsMgg4kfgdQ2qE4so1H3vaCvnIAIEfXboz+8nCmVTaBrPFwUKaZfAeiWlf7HtGMR6wJ80Bvwi0ABSAeYmDwNo063fT/ts2uGX5QWY+RMA/DQD7vATERER0cjwqfT+D9Q8nbtXgL0RtPGBfcMf9fluf6+u7SrIehFk902TtTW92wZ8Sv0QgUdag4r7b5zXkerdWK2JS9s0ohuMiECN74UUJuEWT67psdadzYLyXjv8Kitr6LbDv/p9sjYfsQmgKaUfWUq/Spbz2fU+nf8BOADHdh3ARFBG0cRIVkX3Rgtsh6A6SS2MVgiM6jn+sX5tIhZGTN8N+xqVdAw4lz+XMbpri4j6Dn9Qm2+5TmrLUFnph20I+CGA1hrONtbx393Ui8LCQTVkKwBAcMLv7iflKbiw2HWRZLtiwE9EREQ0qpRGvhNbH4G3CTv8UMYHqS0TA1TP3Wbf3Txa6dRvk6zR3ya8jlGhzSAb7ABWFnzWNI6vboCU/nyhaR16LogOoCdPA1QIt9wa7G0al2ZBee9zUqJS2079qjTlr48rzVc4639+sl1/0SvPkY/lcw4u8Z36wwduBwBUJ/ZD4jJ2RxUUdQS36gMzWnXswrBcsyhEBnGgAen+Ufu6d8DBwkD1PZKvUaxDBMrkZQeBFoh0Ljmod+k3taWWTJc8nT8qwq3qD2K0ILUOC5X9SHUAU1tEPP9wfr11PuOgMWmgHvDXpg4g0KrjIsl2xoCfiIiIaFQpjfzPdWu7zrzfSCICmLi5djlN/Xi5foIkE+d/2Ls08V3/dzCfpdGmJ0I3aQ0wwcCd8ts+fzYPvq/U+qQG6HDdmkVKVIKePM137h+Ven5rAdF9lSx0alKpT78AwflPQfioH2u63Lm0+We2IaAWbfL3VbJd7Xr9/vSeQ5gKKijqGKEKYEQ1dcP3aeut5089yC5FxjfQE5VnD7TjnE+Xd7AItIEaomwjVAYFHaGa1fH7xn3SsXFfaiLY7HnUUvPCT7v6/TqjlX/FSmN+/HQAzd36nfWLAo2C477OvzZ5ms+K6GOlywFtSw22Kgb8RERERCOqPsrLOesb5G3WDj/gm/M1Bvw28buVfaTmS9Awms/ZdQlat7R6ivcgdfxJ1X8G6zGWsT4Pvp+AP61Cgqj3NIYBSGkKqrIHbmlmJOr53SDTLzqMNBQdIDjvSVDj+5uvsLZ5lKZSTdkd+XjK6qKfF3/yfgBAuv8R2BWOAQAiZRAog1pD4z4/a741KK3WLKJAI4oMtFbwkz07B7kuq91P0d9IPldbhqsttVxeMcW87EApQaA0OjXqdxDUsgkJarn/gF+plXSFuamsjv/4XfnnYZ1rrt+vLUPP+gyA2uSBbARg90DeZhkPQZtmglsVA34iIiKiUZUHhjZLoQ+Gn/++RmKaR/M5mwIm6m8nbPWiwA6u3wfgP1cxAwX8Lq1C4vL67DyKAqDaBq6dnnc9iQjUxH5IYXw06vmt7bsRomgDKOXP//4evHmyhtKAW+mBkaf11xZXmvWN78HU+OkIsn4dShSKKm5qjFefS9/4ETr4+v1ywUDEN/fr1THfOZf3cIxU7/fALc/CVVvLMWIdQotCkjUZjcLOjftSa/PGfWpprum6lYB/0v9/ZzFdm4dzzi9yZL0n5iYOwokgXjyJPXd9OX8jjF75fjQnfggBkBbH4eISlOpdylJNLYxRiMLtU3LEgJ+IiIhoVCntU4Bd2t/M+42UBUR5GrpN+67r9kGS9incWm/OaMFRoo3Pjlg9gaED55yflR6uUymEiA/6++lg5tBz9OJQh6AD6MkDgAo2v57f2f7PSWX8z2S/Ab9DU1aO+DbyDY37soC/uowoq99PTzsH46bY9DBFEzV18tfZ+Lm04bIkSWGMQhyulBCEPTrmZ50hAPQeyeec8+cOWhc8YhUgUkG+KGF054aBqXOoZeeybknp9x316zv8S2kV1jnUXApRAoHAAbAmwgNnXAYA2PXD/4d9d9wC53zTvrrG+n3AJ7VAVndDWHVsiUNkNFP6iYiIiOgUUMY3vct2+Dci8OqXaAM0BqnOQoI+FyB0ACjjU4GV2fE7/D7oG2CH3yY+u2MdGucB6Dul36XZCMUNKsHw9fwH4JKlto3wTql+S2V0mwaW3dQXV/J/q6xpYn00nw98w9njMFmAWjr46JZa+lAZiEheo6+U+GSBhmB+OXG+dt/4+56szcHBdk3kqF9nlO7dod8mgAqAIARW9V9QojBmiqimK3X8ItL2uW0K2MhnjTTt8DsHvTANYCXgr9oEBR0icSmMAhRWphOc3H8BfnjkSjgAkw9+B2fd9aWmhP3G+n0A0Fqg0XkhwmX/C8z2CfYBBvxEREREI0tUFhjWg+zN7GyvA5+GnjYEOv2OCNSB39GuLfl65s0YLThixET9p4UnVb+4sl6Btyi/6NArpT+t+s9rvRYa2h1KaRJqbC/c4vTm1vP3+bPl+2iYvrMzfFe8hsfO+nJgVUr/2P1HIQCSif0oje1teZhIBQjEIMnq+JUSaAjS7CNMs9rzQuwX06o2gUBQQ617p34HQDlo6aNDf1KFmAASFNo2XBwzBShRqNoEgRZoLW0bBqbOwhbqAf/KDr9anIXYFE4UbDwG6yyUCIxopC6FiPIJTw3n7fTec3DfI54EJ4JdJ+7A3tv+2a8oJDWYmYcA+Pp9wDcn9IktHTIPUgujBEZvn3R+gAE/ERER0WjTBs7altTgU04ZiDGATXxgJtJ/3bNk4+TSBBLE2ypddmgm7C+lHoBLliHR2Lr1bxCRrFSkxw5/UgPC4oaOUBRRUOP7/PlRW96w5+kkP5cHWYQKQri0d8DvH1s1v3+qOaW/HvCb7LWHBy9s/5TKIFJhUx2/MSr/CKtVP4ovCvxzLdsaSjoCtIOGdByRZx3gxCIQ3TulP/XngyqMNTfwzBR1hKlgDPPJErRWMEohaRdcO4Gr7/Avr+zw64WTAHzNPZTCsq0hkgBFHSG1viGfEr+40Wh29xHc88irYUWh8PCdqPyfTyM8dg/EWaRxGbboRyUqpXzA3+G9qCUOUaCht1HDPoABPxEREdFIExMCaZIFDpu3M+5H80V+NJ9Ns9T8/o9HgtgHVuHmlSWMEtEGPTuI1Tm3fvX7ddr03lG3CVRcWt/nbUNMCInH2nZ/33DWZkF4/4saYqL+Uvrrj92U0p+N/6sv9qz6XMPTH9Xx4Uo6yjvhAz7gt87XpKfOohibfAZ9YhPEOkKkDVKdwnZome/r8h1CFfReiLMpVFT0YzVFWs4fEcGusIJIGSymy4gDjTRtc44LgDY7/Ks79C/bBGNBEZEO4eCnCRit265TzUwcwtEjPwarDcJj92Dsa/8EYKV+3x8foEWhU0uD1DoUtlGzvjoG/EREREQjTEwI2JoPSAYIsDfkWILYp/TbNAuSBgj4TZaSvsPr93Pa9JoQBmDj6uhFma47/D6Ykw1N52+kChXA2Y711RvGpT7bYZCAXwfoa7HGpT7Yb2ra15xdIdFKcz6ZPB2qONHx4WIdNj2vEYFzDtUkRWAUClmzvsSl0KIxbkoo6ghObJcReYCV3iP58s/FRP7n2LTW8QNApAPsDsexlNagjGB1izzrnK/DL2Rd+pcX8veiMeD3jSodSjpGIDqbSOBgtLRNyXfOYX78NJx8zLNhTQjJMhDq6fz5e6ZV28Qam40nDBjwExEREdEppTQAN3CAvRHEhH4slk180DNIqrcOfDr/Zk4aGCE+W6N1l7RFktXRr3fDxqjoA+zqYvvr0xpggg1r2LeahEUfRKatQeQwnLOw88fhepUJWJvV5Q9yLve3WNPxsU2Qf+71lH4AMF129wEgVIEffZdlF4j28/RqNYtSHOSp6MtpDbEKUNAhxkwRotLOnfqdgxJB0GsxMa3ljSNFB5CwCJe0f28ngjJKOkYVVSDrql9nU+fbGMRlOAjEWciyPwcbA/6qTRAqg4IOESgDo4xfyFDSdqnFZuMF06nTMH3Z82HDApwoLO1qDvgDI20XlWqpRWAEodl+4fH2e0VERERE20k2mm/goGRDjsX4GeJpCphwoFp80YEPWrnD7yntF3F61PG7tAqJy+teR6/Ku6AmT4erLbYP+pOaT13Xp2aBRoIIEpXWJa3fOQs3f9wHpW1mxjffOAWUHuj99Ys1qvdiTbsafmSN/9oE/PrA+V0fLlIGgRjUssZ9Ohszp0WhGK0E7FWbYMwUoUShYCKEWsN2OM+cc5CsMV5Xac2PLszGF6p4zJcatWGUxp5oHKIsRBzShvSCBA5GBNpo2Cy7QWd1/I0B/5KtoqgLCJTx/QWgkDgLrVT7gB+AhkBEkFZ246ErX4y7Ln8uZldNEtGqfcCfJA7FsI+yhi2IAT8RERHRKKsH+gMG2BtBTLarn1YHHhEoYQF68gB3+OuU9lMPetWC2xQSrX8dvYhAVfZ2DPpdWoVEpVN6zqnieMcgsl8+2D8BKUxAlad6lgk4awdfhNLGf369PjvX4bF1kC/0SGUv1J6zYM56HFRpsuvDKVEo6gi17HnrY+YKsUZofMBunYNAUDT+57OgQkRBgJq0f1+tWARK9+zQ79IaJCytNI4M47Z1/HVjpohdYQVVLDU17rMpYIwGBLBZfwi1NA+kNehsRF9amoB1DmNBIX/doTZIXQqlBG3LKSyg9EpoWzUBdHk30lWfvyifFdH02gA4OIShzkoJ/Pi/7YIBPxEREdEIk2wneN1msK+FMvlIsmEC90EXCbY1bfyowi5Bo8t6JWzU+9Y16N+IRoG9jics+maC2Sz3QTln4RZOQgpj0LsOQQoVn6HQ7fGcHfxcVibLzuge8Dtr206y8BkC2Vg+pRE/8WUIL/7xvp66aGKk2UhAJQpBqFCKgzyGXbY1RMqgkNXkG6VRCYpIXNq2O30KC6M0gl4ZDjZt7jcQxB3r+P2xCXZFFcRhgKVk5f23ziHI0uZtvNK4T89P+8uCCMsmQKAMimrlOy9WEZI84G9N67fW1/fXJS5BkL0Pi3blGOtZEY339+P4FEKjsGSriHWAojm15/5GYsBPRERENMrqKf2jsDOuAx+kitn88oItTkT5nd5u89yTqg+qNrCOvl3Qv7LQcIoXmYLYB/1DpPU75+AWTkCiMvTUIX/sJvKLFh1qzf0dh1i8UtpPWei5w5+2b7SpFDBk5kSoDCQbs6e1YKIUIm5I51+2NYyZAkzDz+d4WGg7f973xXMItYHussO/0sBx5X1aqePv3HOhZGLsiStYtMsru+zZcQONO/xzq+r3ayjoEGFDz5JQGTgHaIW2YwYtHLRqCPitRVnHGA9KWG5Y8FFKoKCadv1riUMYaBijsJRWMZ6VEmwXDPiJiIiIRpnSgzfI2yD10XzQuu3OJQ1GdOiD6w5cUvVp1BscfLQE/UuzG77Q0PE4iuNdg8h2nHNwiycgUcnv7GeZCSICKVS6P57DwD9bKyMqewX8rv3PidI+2h5CqPzud5LV8cfRyig+5xyccyit2p0umRihUliyzWn9Lvu/gurxs5wmPiNlVZaRr+Pvno2xJ55AKAGWXNXvqgtgssDcRtkO//J8Q8A/iZpNUDHFpnKSegAuqA85aH3/VMPtBUCoA4wFRRhReRmEEslaZ6zcP3V+HF/V1hCoAOPbaHcfYMBPRERENNpE+yB7RHacJIj9sWzyiMBtwYTdd/htAhWvf/1+O41BP5yFBIUNX2hoexxhEVAazvZfy+8WT0KCgt/ZX1WGIGH7mfFNhlhMExMB/RyjahNuyfAhWKgMIhXmAWyjmlvpbN8o1iFKQYzlWnNwbp2DFYuoV2PGtAYJwrxhXy6Ier63pSDEpBnDYlpFkqbQUB12+E/411CsQItueQ2BaBil4cQnR7QrT5BsISF11tf9Zyn9JVPAYuqzPLRWPtshu7/veQAEgcZCWkXFFBD3WgDZYhjwExEREY0wEYGe2A+Jxzb7UABk3dR1MDILEFuZmKDjOHfnLCACCU7dbmMe9O863LOB3IYJiz4dv8+0frtwEmIi6F2H2zY3zMf9tRnPl6d1DxXwB7136aX9Y4vSgPTR5b+DUkPjvkbLtoaCjhCuClhFBJNRKe/un7M+SI56/Cz7hn3FlYZ99ccNYt8joUsGhTEKU2EZMSLMp4t+rTBbBEmzgF8vzUMv+Br+xUIZsQoQq1UBv/Kd+lOk0Eq1HW6hsx3+mk1gRCMQAxHBRFDKm/eJAFoU6hv8tdTCGIHJJi2OB+Wu78VWxICfiIiIaMRJWMi6S48AHfigbARKDLY8pTvPcz8F9fvtiAj02O5NC/hFKUhxAq5NgL6aqy4CoqB2Heo4yUC0gcRj7WfGO+tLZobZce8VJDsHQNovJogClPQcydhJrEM4tN43sSkqptjmHkA5jPPa//z2zkJBEPTK1rFp0/jAOjEhJIy7lkwoERSjAGVXQmqBFPXGe6ub9p0EACzG5XykYCMtGoEKkDqLQK8E7MDKmll9hz9xKSId5H0MSrqAggqxlDXvM1rqUxGRJA6F0GDRLqOkCyjp7ddYdER+cxARERHRViDxGPTUwc0+jG3Bp8y3T4n29fvFHdkrQaJSz1Rx5yzc8rzPSOiR/aLicvsGezbNgu/Bs1VEB92P0VlAVPvFBKXqhegDPy/g0/qNaCQN5SCJTWHapMLXlYIYgTKoNpQhJEhhRCHqEvDXM006LTypQqVnHX8caMSpwkRNkKpaftw2W6QRm0AlVTgIasVKPlKw5XF0gJpLYbTANrx3zjkoKNR79iUuberwHyiN8aCEpew4jVGwzq2M4ws0EmsxGZab+gBsFwz4iYiIiKhvIjI62QZbndLZPPc2gV9a9YHqDiRR0aeLd0nrd0uzkEIFamx378cLC4DWreP+nPXB9zDZKt0+u/pjd1pMEO2D6KED/gCBGNQagvdlW0OsQkSqfcAfG4OSjrCUrmQ6pKlFpA2MdFnwSBM/naPTJIMgRqdFq/wmWiGoLWDcRdgdVTBbW/AZENrANoycTAtlxCbORwquFqkAzmXd+Bt2+G2Wql8P1p0DolULZWNBIW/eZ0Tg4PJxfFYlKKgQY3p7Neur47c1EREREdFm0MYHf6t2n33wpLJgaucRZbLu+u0DfpfWAJtCje/14/F6CWK/gLAqrd/Z1JemDBPw62w0ZafGfdlow7ZN+5TyzztkwK9FobCqjr+adbbvtENttEJJF5CsSukPVdB9Vzut+n4FHTIHJIh96UnSeZdfp/NwURFONPaH4yjrAmaSBQArjfsAYLlYQXnVSMFGgRjfpV8pNNbCOOsg2o/cs85CiSBYtYhRUFHevE+0v3+SZrv7SDAZlDs+71bHgJ+IiIiIaDMoDdGtAT+SGmBCH0ztUBKXAevalzsszkDGdkEK4/09lihIXGmt47fW714Pk8atjA/aO43mc9an87dr2idrS+kHgKKJkGb3t85CBCiYzv0elAjKQQxxKk+pT1zasQQgfxlJDRKVO75HK3X87XsuuDRBAAspTkJpjYIxOK0whUA05pOlvI4fAKqFCkod0vkBn5rva/stIC7f5M+Wx6BEkDhf2hCuyqxobN6nsnsmqYU2Nh/ft10x4CciIiIi2gQiyjdBXDWazyXLkCDunEa9A0hY9HXjqxrCueUFIIigx/YOFKhLVARcQ2d+AHAppNdIuk6PJwKYEK5LwA9lOjcE1AZuyKZ9gE9vFwiccz6dX8KW4N0uTMNVF/J/V6IIgTOoOr8b7+BQWD1qr+V1pC2jDleTeKxjHb9bmoEam0I4vhtKGWhYFHWM/fEUEpeiFq08ti1PdF2AMGJgRMEpCwWVf5a+MkMBAtRsilB8j4PVStqP3Kui5jMFRJCoFOOmiHjI82ArYMBPRERERLRJpF3QmNYghdEYw7hZxIS+u35DHb+zKVxtEWpsb88gtOXxwkKWet6wgGBt62z5gY4x7rjD76z1af+d7qvNmnb4QxUgUBo1l2DZJhgLCtANQa5La34XPE1gF07AOYsg0IgQrTT7s9079Lt6H4IeC08SxICsWkwB/GenDPTYHhTLRZjAwCh/m3FTwt5wAksNzQBNeU/LSMFGRhSMGJ+2rwCbtep3DjBZx76aS1EwUdvFoEBpTARlVF0CrQSiHSKjMLENR/E1YsBPRERERLRZdNi0w18PmnZyOn+discAm67s5C7NQgrjUGNTAz+WmAgSFZtSzx3QXw+Ajo8Zdg7ane2eoaHWFvAHohGp0Hfddw6l1Q3nkirERNB7z4JEY3BzJxBkjf3gfDq/EmlJfW+S1rKGfd1HQ0oY+/M4XVlMcc7BLc9Bje2GxGXEoUZcLECy1ywi2B2NIyqufJbR+P7uzyOCWIVw4iAK+YhB6xxM1ivBOedfYwdjQQGhVkglBUyKSlhEQZ/a0ZenGgN+IiIiIqJNIqt3mFPW79dJVPS7y2k1n/Wuxvdm4wwHt3qEnABDjeTLadPYO66ZTbuOVPQ7/K7j9b2ICIo6wmJaRaBMS0q6S6qQqAwVj0HvORNq8jRot4xyUoWCxqJdhhLVdYcfSc0H+71GQ+rsfG3Mnlieh4TFfIpCpRhi7+6JpowILQqVig/yrTaIi7t6vu6CCWHhoEUh2+CHA6C0L28QoOsiRkFFGAuKsJJAG2AyGNuWo/gaMeAnIiIiItosq5u6Jcs+yNrB9fs5E0GiElx1ydeCl3f5evEhSVAARDWUULjhOvTXKQ04aUllb7q+233XGGcWdAgFQUkXWoNc5/yCCfzigp48gHD/2TBRAcXlZVTTJRjRCNrUuucPkdYgUalnrwQR8eUX2WKKsylcsgw1vq8py0EFrRkR0dRhoDiO5MB5PRsIAoARDYGfOpA/lPMN+2ouhVGma8Dvm/eVUSpqTBVKKHdpErhdrGFJi4iIiIiI1sLvVvs55iIKLq36NOhtvuvYDxGBKlSQzj4Eicf87v5a3pewAAkiIFmGs0VAsvF4wx6fDgCtfEnG6ln2It0DflFNs+SHESqDgo4wtipodTbxo/9WZYmY0gRk9xHohy107S5EqYXWXfZ/nfXp+n2QsAA451P5F2cgxXFIcbL5Rm0CcQkLKDz9F1Hs83MNlPbnhXZ5Sj/gR/IlLkUoumUk32olXcB4VMZkUGrqe7BdcYefiIiIiGiz1OfA12vVnRu4Id12JlERUqhku8Vrq7UWpbNGgMs+5b7+3g9LaR/ot2vc55wP6rvdd40iFWDMFFpH2SVVv7PepiykUCggLR6ELu5BZFOI7dBd31lApO/3XILYZ6UszwNK/OelVr3+Dq95kEUck3XgFzjkg/kEUALUbIJYtW/Y1yhQGgfiqW3frK+OAT8RERER0WbRJgv4LWATXw+9xsB2WwkKUJOnt+4WD0niMmAtnEt9QL6WwFsbiNZAumqsYj1Y7vLYIgoQn9kxLCUKpxd2t3S2d0kViEptnz8MFYyECOM9UMU9UMsz7Y8h8Q37+i4tMf68dctzUKVdkKg1mBZtfEnFGpsVatFIlYPPjPGVEaIE1jkU+jzekolh1mHRZStgwE9EREREtFmU9oGZTX39fhD6+fMEYCWtv2W3eNjHC2KICeCqSyvZFUMfm/JBsVu1w+8Hw/eu4VdqTZ36O3IpVFRqe1VgfEr8VLgP0dhhSGECbuFk6w3TPhv2ZUQEUhjz2RiVDqUXDdksw8o79cM/RuoclAhUttvfderADsWAn4iIiIhokzQGjb6z+pi/jDZGEANBDLu86Bdb1vheiwkbmgBmrAWkx2KCUgCUv+068sfSWr9fFxoFrQTOKpgggpk6HTAh3NJc8+Ok1b4a9jVSxQmoqYO+T0LbGxj/utcQ8ANAQQVw4nf2rbV+RB8cjNIIpb8Fik7s4jQQxn33LtgK+G1CRERERLSJ8qCxobM6bQwRgRTHfZPEdZiEIEHcukuf7/B3CbVEbcwOf1IFTNC2fh8AAqNgjEI1sRABdKEEPXk6XFqFS5YbXoMbOOiVsOBHH3bSmM2yBoE2EAVoJUhT3x8xFYsAGsEaMjbc0iwgCnrqECTcPj+HDPiJiIiIiDaRGN85Hlp33h2ldaPCIlSwTqMPlWnttm/TrEa/W5f+LLtgnQN+l1YhYdHXy7dhtEKgFapJCq0UlAikOAE1vg9ucc6P1HPWTzBY514SIgLo1tF8gwrEwCgFiENqLTQEKVLEOoQaMmPDLc/DuRR66mD3RYstiAE/EREREdFm0gaA8wHWDpgLvtkkKkDCgh+rt1bZZ9fEWUAHXdPhpV7j79Y4m2+1NIGKx7repBBppKmD1v74RLKu+uVJX8+fVAdr2DcAMUFrCcSAjNIIlH/fk2y0YGItCnq4BQpXXYRLqtBTh6BK69MccpQw4CciIiIi2kzZeDeJyuvWnI46Ex1AFysdd8EHeqysEV1jEOuczRYCetBmXXf469MBejV9jEMDJYJAr5xrogz0xGmQsAC3MA0JonUpeVjNl0CsMaVfNAwUoP1gvvrCxTAN+1yyDFdbgJo8AClNrem4RhW/UYiIiIiINpEo48easX7/lAn3HIKUJtb+QDpo7TxvLUT1zh4QZeDWs2lfUvVjHTvU79cFRsFo5dPiG48nLEBNHgDCCNKhy/+arcMoPCUKkQ4hkmVHiIUWNXDA79Ia3NIs1PhpUJU9AzUo3EoY8BMRERERbSalfYp5j0CN1o+sQ4d+AIAybRrROYjpo1xAB+u7w59UIWHcc2feN+4TGNMa4KriBPTkQUihe1nA0AYM+J1NYeeP++yFBrEK4JSDFoGDQyB6oIDfpQncwgxUZR/U+P5tPRlj+74yIiIiIqKtIIigxnYDYWGzj4QGJCobq2iThktdX4GtLylYxx3+tAbpUb8P+NF8odFQHXa01djunn0AhiXKAJCWAL6j2rJfFKktN10cKgOlBEorpMoi0gF0tyaJq7jFacjYbqjJ07Z9Gc32fnVERERERCNOREGVJrf1LuN2JiZqbkTn0N9OtqjWDv9Dcs4Bgr6yRIxWiAIFpTYhhV1pP46wz1IGZxNIVIarLTVdbpTvQ6AFSJ1FQfXfsM+lCaA19PiebAFie+O3ChERERER0bBMuKoRnfhgvhelgfWKudOsfj/sHfCLCMbLEeJwE4LdrEEl+u3Ub5P8/XUNEw0C0Qi0hlIOIkA0yMSFZHlHTcRgwE9ERERERDSkxnp9Z1NAia/r73nH9dvhR1L1Qazur7P+7vECivEmBPza+BT6vjv1O5+1YCLflDATKINQGVhlYdRgDftcUt1REzF2xqskIiIiIiLaCMqsBO7O+kC+nxp+pQGRpp3rYbm0CimMjXyneZF6z4M+A34HSFSCRCW4ZCWtX4tCIQigQoc4CBDIADv8zm7cFIIRxICfiIiIiIhoSKINoJTf3bcWEN1nSr/KdvnX1rjPOecD4y3S9FFM2Nc4Qmd9rb2YAKo4DqRJ0/UFHUEHvmN/0Gf3f2cTPxUj6L/mf6tjwE9ERERERDQsZXyQb1O/e6yUv6yX+sLAWkfzpTVAB1tnrKMJ+9vhTxP/PurAL2ZoDZfW8qsjFUBDUNADBO9J1Y8t3Crv1TpgwE9ERERERDQsrf3/soAfSvdXH17f4e+zY31HaRUShD6Q3gJEB+ireYFN/G2VAYIYEhSBhm79RjQiHSJW/afzr9Tv9z/Cb6tjwE9ERERERDQkUQaiAt9J3qaA7rOBnGQLA2tN6U+qkGhs64x17Df9Pk18oC8CEQUpjsOtatwXqxDhAAE/bAKJd079PsCAn4iIiIiIaG2CEC7NUvr7HBEnfdTwO+fgluf9QkLnG0Gi4qBHvHmyBZGezQqdhWroS6CiEiAqfy9CZTBmCoj6DPj9BAW9dUof1gkDfiIiIiIiojUQE/mUfmt9F/p+adN9h7+2CGdrcAsn4ZbnW652ac03tttCTehEZSUQPUfzueb3Miz411lbBuA79e+LJ2H6Tc9Pqr7sYQu9V+uBAT8REREREdEarNSlO8gAM+GhDVy3Hf5kCaq0C2rXYTg42LljTY3rfBO6CDBbaNc6b3LYLbPBApCmbAlRGlIYbxrPNwiXVCFhabDPZxvYWa+WiIiIiIhovWkDCAAnfdeoA4CooOOIOuesT9cvjEEVJ6DiMtLZB+Fmj8MpBYnH4JIq1Nju/poEjgql/S5/tzIFm2Yd+pvDVYlLwLSDc3bwngU2gYrLQxzw1raFzgwiIiIiIqLR43eNBYDz3ff7vZ8JAHTY6a4t+6Z1kW8yJ2EBeuow9N6zIEEBbu4EYNOtVb+PLKVfme4p/WkC0aalPELCok/Jb2je1w9nU0Bkx9XvAwz4iYiIiIiI1kabLFVdBksZF9VxQp1LFqHiSnNauwhUcQJ67xGoXQchcdnPqN9qTNC9EaFNABO2jM8TE0KiMlxtwLT+tJbV7++8gJ8p/URERERERGuhTLazrwba4Yco+MyAZs5ZwPp0/rZ30wZ6fB9cearvqQCjREzUsZQB8CP5VNB+IUMVKkjnjg30fC5ZhsRjPmtgh+EOPxERERER0VoonQWTaqAafr840GaLv7YMBFGezt/JVgz2gey4u00ncBYShO3vGxYAHcANktafJlBx+8WT7Y4BPxERERER0RqICKBDH8DLIAG/BkRaZtK7ZBGqML5lA/qedL3nQbfbdHjtQQwJi32n9TtnAREg3Hnp/AADfiIiIiIiojWTIM4a0g3QtE9UVse/stvdK51/W1AanZoXOJtmGRPtA37fx2Dc1+X3I6kCOvTjC3cgBvxERERERERrJCbwgeUg4+KyHf6m9PZ6On+4tbrvD6K+MNK2cV+aZCP5Omc3SFQElIazSc/nckkVEsYQ075EYLtjwE9ERERERLRWQQwVd6+5b9Fuh7+2BFWobO8AVRlf+tAu4LcJROuuAT+CAiSI/OJIL2kNskPr9wEG/ERERERERGum4jGo8f0D3ikrAcg61jtnfcO6QmUDjnCEaO3/16Zxn7OJr9OXzjX+ohSkOAGXdA/4nbMAZGuOLlwnDPiJiIiIiIg2gyhfAlAPfHdAOj8AQLRP6++0w99hJF/TQ0QlwNWD+g6SGmACSLAzG/YBDPiJiIiIiIg2hYj49PYsaN0R6fxYmWrQtobfZf0Qej1GWIQUynDzJzoH/WnVN1Pc5u9nNwz4iYiIiIiINos2cM760Xw7IZ0/IyZs2eH34wmle/1+/f7aQE8dghTG4OaPtw36XVLd0fX7AAN+IiIiIiKiTSM6AJwDkh2Szp/xu+6rRvPZBNCdR/K1PEZYgN51hq/nnz/RlDHgFw+wo+v3AQb8REREREREm0cZwFq46iKkMLZz0s+V9gsdjdIE0AboI6W/ToIIetdhSGkSbqEh6E9rgAl3dP0+AJjNPgAiIiIiIqKdSrQGYAEnUPHOSOcH4Bc6VrMpxISQdtd1ISaEnjqIVARu7hhQmACSZYiJgJ2ygNIBA34iIiIiIqLNUp9HH5Z85/kdQpQGRME56ycVwI/kU+Fwix4+6D+EFApu9mEAFmpsd9fxfjsBA34iIiIiIqLNopQfz7eT0vkBn7pfH82ns0pzm/Y1kq8T0QZ61+mwSsHOH9vx9fsAA34iIiIiIqLNIwoIYqgd0p0/p7Rf7LDpSld+wUD1++2IMlCTByBRERKV136cWxwDfiIiIiIiok0iSkOiwo5K5wcAKOPT+q0fp+fH6qmB6/fbEaUh5V1rfpztgF36iYiIiIiINktYhJ44fWel8wO+tl4HgKt31R+8Qz/1xoCfiIiIiIhok4jIjq01FxM2jNFLINqspPfTumDAT0RERERERKecmCjf4Xc2AUyUd+yn9cF3k4iIiIiIiE493VCvbxNIEG/esWxTIxfwHz16FD/7sz+Liy++GFdeeSXe/e53o1qt9ryfcw4f+MAH8OQnPxkXXXQRXvKSl+CrX/1qy+0eeOABvPa1r8Ull1yCyy67DL/+67+Oubm5DXglRERERERE1JHSDf9wkCDatEPZrkYq4J+ensbLXvYy1Go1vPe978X111+PT3ziE3jXu97V874f/OAH8Qd/8Af4mZ/5Gbz//e/Hnj178PKXvxx33313fptarYZXvOIVuPPOO/E7v/M7eOtb34ovfvGL+KVf+qWNfFlERERERES0iu/IL1mHfrB+fwOM1Fi+G2+8EfPz8/jDP/xDTExMAADSNMXb3vY2XHfdddi3b1/b+y0vL+P9738/Xv7yl+NnfuZnAACPfexj8cxnPhMf/vCH8da3vhUA8LnPfQ7f+9738JnPfAZHjhwBAFQqFfzcz/0cvv71r+Oiiy7a6JdIREREREREgN/hVwpIaoDSEAb8626kdvhvvvlmXHHFFXmwDwDXXHMNrLX40pe+1PF+X/nKVzA3N4drrrkmvywMQzztaU/DzTff3PT45557bh7sA8CVV16JiYkJfOELX1jfF0NERERERESdKQ2IgUuWAWWaa/ppXYxUwH/77bc3BeOA34Hfs2cPbr/99q73A9By37PPPhv33XcflpaWOj6+iOCss87q+vhERERERES0zpSBKAUky353XzHgX28j9Y7OzMygUqm0XD4+Po7p6emu9wvDEFHU3OShUqnAOYfp6WnEcYyZmRmMjY0N/Pj9MGak1k5aaK2a/j9RP3je0DB43tAweN7QMHje0DB43owSBUQR7NI0dKEIE+jed9kkW/W8GamAf6tSSjA5Wdrsw+hLpVLY7EOgLYjnDQ2D5w0Ng+cNDYPnDQ2D581oWF6qoJrOIN49hWALxFRb7bwZqYC/Uqlgdna25fLp6WmMj493vV+1WsXy8nLTLv/MzAxEJL9vpVJpO4Jvenoap5122tDHba3DzMzC0Pc/FbRWqFQKmJlZRJrazT4c2iJ43tAweN7QMHje0DB43tAweN6MlmTRwi6mqM7VoDC/2YfT0aidN5VKoa9sg5EK+I8cOdJSSz87O4uHHnqopfZ+9f0A4I477sB5552XX3777bfjwIEDiOM4v913v/vdpvs653DHHXfgyiuvXNOxJ8nmf+j9SFO7ZY6VRgfPGxoGzxsaBs8bGgbPGxoGz5vRYKGQKgOBgd0Cn8dWO29GqgDhqquuwr/9279hZmYmv+yzn/0slFJdA/LHPOYxKJfL+Id/+If8slqthn/8x3/EVVdd1fT43/72t3HnnXfml91yyy04efIknvSkJ63viyEiIiIiIqLulIGYCOBIvg0xUgH/tddei1KphFe/+tX44he/iE9+8pN497vfjWuvvRb79u3Lb/eyl70MT3va0/J/R1GE6667Dh/5yEfwsY99DLfccgt+6Zd+CSdPnsTP/dzP5bd7xjOegUc+8pF47Wtfi5tuugmf+cxncMMNN+DJT34yLrroolP6WomIiIiIiHY8bQATciTfBhmpd3V8fBwf+9jH8I53vAOvfvWrUSqV8KIXvQjXX3990+2stUjTtOmyV77ylXDO4SMf+QiOHz+O888/Hx/+8Idx6NCh/DZBEOBDH/oQ3vnOd+INb3gDjDF42tOehhtuuOGUvD4iIiIiIiJaIVEJeuI0iBrdDv1bmTjn3GYfxFaXphbHj49ugwnAjw2cnCzhxIn5LVVzQpuL5w0Ng+cNDYPnDQ2D5w0Ng+cNDWPUzpupqVJfTftGKqWfiIiIiIiIiNYHA34iIiIiIiKibYgBPxEREREREdE2xICfiIiIiIiIaBtiwE9ERERERES0DTHgJyIiIiIiItqGGPATERERERERbUMM+ImIiIiIiIi2IQb8RERERERERNsQA34iIiIiIiKibYgBPxEREREREdE2xICfiIiIiIiIaBtiwE9ERERERES0DTHgJyIiIiIiItqGGPATERERERERbUMM+ImIiIiIiIi2IQb8RERERERERNsQA34iIiIiIiKibYgBPxEREREREdE2xICfiIiIiIiIaBtiwE9ERERERES0DTHgJyIiIiIiItqGGPATERERERERbUMM+ImIiIiIiIi2IXHOuc0+iK3OOQdrR/9t1FohTe1mHwZtMTxvaBg8b2gYPG9oGDxvaBg8b2gYo3TeKCUQkZ63Y8BPREREREREtA0xpZ+IiIiIiIhoG2LAT0RERERERLQNMeAnIiIiIiIi2oYY8BMRERERERFtQwz4iYiIiIiIiLYhBvxERERERERE2xADfiIiIiIiIqJtiAE/ERERERER0TbEgJ+IiIiIiIhoG2LAT0RERERERLQNMeAnIiIiIiIi2oYY8BMRERERERFtQwz4iYiIiIiIiLYhBvzb3NGjR/GzP/uzuPjii3HllVfi3e9+N6rV6mYfFo2If/iHf8Av/MIv4KqrrsLFF1+M5z3vefjrv/5rOOeabvdXf/VXeMYznoELL7wQz33uc3HTTTdt0hHTKJqfn8dVV12Fc889F9/4xjearuO5Q+387d/+LZ7//OfjwgsvxOWXX45XvOIVWFpayq//X//rf+G5z30uLrzwQjzjGc/AJz/5yU08WhoFn//85/ETP/ETuOSSS/DEJz4Rr3/963H33Xe33I7fOTvXD37wA7z5zW/G8573PFxwwQV49rOf3fZ2/Zwjs7OzuOGGG3DZZZfhkksuwete9zo8+OCDG/0SaBP0Om/m5ubw3ve+Fy960Ytw6aWX4glPeAJ+/ud/Ht/5zndaHmtUzxsG/NvY9PQ0Xvayl6FWq+G9730vrr/+enziE5/Au971rs0+NBoR//2//3cUCgW88Y1vxPve9z5cddVV+I3f+A380R/9UX6bT3/60/iN3/gNXHPNNfjgBz+Iiy++GK95zWvw1a9+dfMOnEbKH//xHyNN05bLee5QO+973/vwjne8A8961rPw4Q9/GG9/+9tx8ODB/Bz68pe/jNe85jW4+OKL8cEPfhDXXHMNfv3Xfx2f/exnN/nIabPceuuteM1rXoNHPOIR+KM/+iPccMMN+Pa3v42Xv/zlTQtF/M7Z2b73ve/hC1/4As444wycffbZbW/T7znyi7/4i/jSl76Et771rfhv/+2/4Y477sArX/lKJElyCl4JnUq9zpv77rsP/+N//A9ceeWVeM973oN3vOMdmJ2dxUte8hIcPXq06bYje9442rb+5E/+xF188cXuxIkT+WU33nijO//8893999+/eQdGI+PYsWMtl73pTW9yj3nMY1yaps45557+9Ke7N7zhDU23eclLXuJe8YpXnJJjpNH2/e9/31188cXuL//yL90555zjvv71r+fX8dyh1Y4ePeouuOAC9y//8i8db/Pyl7/cveQlL2m67A1veIO75pprNvrwaET9xm/8hrv66qudtTa/7JZbbnHnnHOO+/d///f8Mn7n7Gz1v1ucc+5Xf/VX3Y//+I+33Kafc+QrX/mKO+ecc9y//uu/5pcdPXrUnXvuue7Tn/70Bhw5baZe5838/LxbWFhoumxubs5ddtll7u1vf3t+2SifN9zh38ZuvvlmXHHFFZiYmMgvu+aaa2CtxZe+9KXNOzAaGVNTUy2XnX/++Zibm8PCwgLuvvtu3HnnnbjmmmuabvOsZz0Lt9xyC8tDCO985ztx7bXX4qyzzmq6nOcOtfM3f/M3OHjwIJ70pCe1vb5areLWW2/FM5/5zKbLn/WsZ+Ho0aO45557TsVh0ohJkgSlUgkikl82NjYGAHkJGr9zSKnuYU2/58jNN9+MSqWCK6+8Mr/NkSNHcP755+Pmm29e/wOnTdXrvCkWiygUCk2XlUolHD58uCldf5TPGwb829jtt9+OI0eONF1WqVSwZ88e3H777Zt0VDTq/s//+T/Yt28fyuVyfp6sDubOPvts1Gq1tvWTtHN89rOfxXe/+128+tWvbrmO5w6187WvfQ3nnHMO/viP/xhXXHEFfuRHfgTXXnstvva1rwEA7rrrLtRqtZbfXfU0S/7u2ple+MIX4ujRo/jzP/9zzM7O4u6778bv/u7v4oILLsBjHvMYAPzOod76PUduv/12nHXWWU0LTIAP3vgdRAAwMzOD733ve02/q0b5vGHAv43NzMygUqm0XD4+Po7p6elNOCIadV/+8pfxmc98Bi9/+csBID9PVp9H9X/zPNq5FhcX8a53vQvXX389yuVyy/U8d6idhx56CF/84hfxd3/3d3jLW96CP/qjP4KI4OUvfzmOHTvG84bauvTSS/GHf/iH+J3f+R1ceumleOpTn4pjx47hgx/8ILTWAPidQ731e47MzMzkGSSN+Pcz1f32b/82RAQ/+ZM/mV82yucNA34iAgDcf//9uP7663H55ZfjpS996WYfDo24973vfdi1axf+w3/4D5t9KLSFOOewsLCA3//938czn/lMPOlJT8L73vc+OOfwZ3/2Z5t9eDSivvKVr+BXfuVX8OIXvxgf+9jH8Pu///uw1uJVr3pVU9M+IqKN9slPfhKf+MQn8OY3vxn79+/f7MPpCwP+baxSqWB2drbl8unpaYyPj2/CEdGompmZwStf+UpMTEzgve99b17PVD9PVp9HMzMzTdfTznLvvffiIx/5CF73utdhdnYWMzMzWFhYAAAsLCxgfn6e5w61ValUMDExgfPOOy+/bGJiAhdccAG+//3v87yhtt75znfi8Y9/PN74xjfi8Y9/PJ75zGfiAx/4AG677Tb83d/9HQD+vqLe+j1HKpUK5ubmWu7Pv5/pC1/4At785jfjP//n/4wXvOAFTdeN8nnDgH8ba1czMjs7i4ceeqilPpJ2rqWlJVx33XWYnZ3Fhz70oaZ0pPp5svo8uv322xEEAQ4dOnRKj5VGwz333INarYZXvepVeNzjHofHPe5x+Pmf/3kAwEtf+lL87M/+LM8dausRj3hEx+uWl5dx+PBhBEHQ9rwBwN9dO9TRo0ebFokAYP/+/ZicnMRdd90FgL+vqLd+z5EjR47gjjvuyBtC1t1xxx38DtrBvvrVr+L1r389nv/85+P1r399y/WjfN4w4N/GrrrqKvzbv/1bvnIJ+CZbSqmmDpK0cyVJgl/8xV/E7bffjg996EPYt29f0/WHDh3CmWee2TL/+jOf+QyuuOIKhGF4Kg+XRsT555+PP/3TP23636/92q8BAN72trfhLW95C88dauspT3kKTp48iW9961v5ZSdOnMA3v/lNPOpRj0IYhrj88svxuc99rul+n/nMZ3D22Wfj4MGDp/qQaQQcOHAAt912W9Nl9957L06cOIHTTz8dAH9fUW/9niNXXXUVpqenccstt+S3ueOOO3DbbbfhqquuOqXHTKPh+9//Pq677jo8/vGPx9ve9ra2txnl88Zs6rPThrr22mvx8Y9/HK9+9atx3XXX4YEHHsC73/1uXHvttS2BHe1Mb3vb23DTTTfhjW98I+bm5vDVr341v+6CCy5AGIZ47Wtfi1/+5V/G4cOHcfnll+Mzn/kMvv71r7PedgerVCq4/PLL2173qEc9Co961KMAgOcOtXjqU5+KCy+8EK973etw/fXXI4oifOADH0AYhvipn/opAMAv/MIv4KUvfSne+ta34pprrsGtt96Kv//7v8fv/d7vbfLR02a59tpr8Zu/+Zt45zvfiauvvhonT57M+4g0jljjd87Otri4iC984QsA/ILQ3NxcHtxfdtllmJqa6uscueSSS/DEJz4RN9xwA371V38VURTh937v93Duuefi6U9/+qa8Nto4vc4b5xx+7ud+DlEU4WUvexn+3//7f/l9y+Vynrk2yueNuNV5B7StHD16FO94xzvwf//v/0WpVMLznvc8XH/99VzpJgDA1VdfjXvvvbftdZ///Ofz3bS/+qu/wgc/+EHcd999OOuss/CGN7wBT3nKU07lodKIu/XWW/HSl74Uf/3Xf40LL7wwv5znDq12/Phx/NZv/RZuuukm1Go1XHrppfi1X/u1pnT/z3/+83jPe96DO+64AwcOHMCrXvUqvOhFL9rEo6bN5JzDjTfeiL/8y7/E3XffjVKphIsvvhjXX399PrKxjt85O9c999yDH/uxH2t73Z/+6Z/mC9X9nCOzs7P4rd/6LfzTP/0TkiTBE5/4RLzpTW/ihtk21Ou8AdCxmfVll12Gj3/84/m/R/W8YcBPREREREREtA2xhp+IiIiIiIhoG2LAT0RERERERLQNMeAnIiIiIiIi2oYY8BMRERERERFtQwz4iYiIiIiIiLYhBvxERERERERE2xADfiIiIiIiIqJtiAE/ERERrau/+Zu/wbnnnotvfOMbm30oREREOxoDfiIioi2sHlw3/u+KK67AT//0T+MLX/jC0I/7J3/yJ/jnf/7ndTzS/r33ve/Fueeeiyc84QlYXFxsuf7qq6/GddddtwlHRkREtLUw4CciItoGXve61+Hd7343/ut//a94xStegRMnTuBVr3oVbrrppqEe7/3vf/+mBfx1x44dw1/+5V9u6jEQERFtZWazD4CIiIjW7qqrrsKFF16Y//tFL3oRrrzySvz93/89nvKUp2zikQ3v/PPPx4c//GH81E/9FOI43uzDISIi2nK4w09ERLQNVSoVRFEEY5rX9j/84Q/j2muvxeWXX46LLroIL3zhC/HZz3626TbnnnsuFhYW8Ld/+7d5mcAb3/jG/PoHHngAN9xwA574xCfiR37kR3D11VfjLW95C6rVatPjVKtV/NZv/RYe//jH4+KLL8arX/1qHD9+vO/X8OpXvxoPP/xwz13+W2+9Feeeey5uvfXWpsvvuecenHvuufibv/mb/LI3vvGNuOSSS3DffffhuuuuwyWXXIIf/dEfxZ//+Z8DAL7zne/gpS99KS6++GI85SlPwac+9am+j5eIiGjUcIefiIhoG5ibm8uD6WPHjuHjH/84FhYW8NznPrfpdn/6p3+Kq6++Gs95znNQq9Xw6U9/Gq9//evx/ve/H09+8pMBAO9+97vxpje9CRdddBFe/OIXAwAOHz4MwAf7L3rRizA7O4sXv/jFOHLkCB544AF87nOfw9LSEsIwzJ/rne98JyqVCl7zmtfg3nvvxcc+9jG8/e1vx3ve856+XtNjH/tYPP7xj8eHPvQh/ORP/uS67fKnaYpXvvKVuPTSS/HLv/zL+NSnPoW3v/3tKBQK+L3f+z085znPwdOf/nTceOON+NVf/VVcfPHFOHTo0Lo8NxER0anEgJ+IiGgb+Jmf+Zmmf4dhiN/8zd/ElVde2XT55z73uabA+T/+x/+IF77whfjoRz+aB/zPe97z8Na3vhWHDh3C8573vKb7/+7v/i4efvhhfOITn2gqIXj9618P51zTbScmJvCRj3wEIgIAsNbi4x//OGZnZzE2NtbX63rNa16D//Sf/hNuvPHGltc4rOXlZTz3uc/NG/895znPwY/+6I/ihhtuwO/+7u/iWc96FgDgCU94Aq655hr8z//5P/Ha1752XZ6biIjoVGJKPxER0Tbw5je/GR/96Efx0Y9+FL/927+Nyy+/HG9605vwj//4j023awz2p6enMTs7i8c+9rG47bbbej6HtRb//M//jKc85SlNwX5dPbCve/GLX9x02aWXXoo0TXHvvff2/boe97jH4fLLL8eHPvQhLC0t9X2/Xn7iJ34i/+9KpYKzzjoLhUIB11xzTX75kSNHUKlUcPfdd6/b8xIREZ1K3OEnIiLaBi666KKmIPzZz342nv/85+Ptb387nvzkJ+ep9jfddBPe97734Vvf+lZTzf3qYL2d48ePY25uDo985CP7OqYDBw40/btSqQAAZmZm+rp/3Wtf+9p13eWPoghTU1NNl42NjWH//v0t78PY2NjAx0tERDQquMNPRES0DSmlcPnll+Ohhx7CD37wAwDAl7/8ZfzCL/wCoijCW97yFnzgAx/ARz/6UTz72c9uScdfr2NoZ9DnetzjHofLLrus4y5/p8UKa23by7XWA12+Ee8NERHRqcAdfiIiom0qTVMAwMLCAgBfvx9FET784Q83Ndf75Cc/2dfjTU1NoVwu43vf+976H2wPr33ta/HTP/3TuPHGG1uuq2cOzM7ONl0+SOkAERHRdsQdfiIiom2oVqvhS1/6EoIgwNlnnw3A72CLSL4QAPjRdZ///Odb7l8sFltS2ZVSeOpTn4qbbroJ3/jGN1rus5E74Zdddlm+y7+8vNx03emnnw6tNf793/+96fJe4/yGUavVcPToUTz44IPr/thERETrjTv8RERE28DNN9+M22+/HYCvtf/Upz6FO++8E6961atQLpcBAE960pPw0Y9+FK94xSvw7Gc/G8eOHcNf/MVf4PDhw/jOd77T9HiPetSjcMstt+CjH/0o9u7di4MHD+LRj3403vCGN+BLX/oSfvqnfxovfvGLcfbZZ+Ohhx7CZz/7WfzFX/xFvtu+EV7zmtfgpS99acvlY2NjeOYzn4k/+7M/g4jg0KFD+Jd/+RccO3Zs3Y/hgQcewLOe9Sy84AUvwLve9a51f3wiIqL1xICfiIhoG/iDP/iD/L+jKMKRI0fw1re+Fddee21++RVXXIH/8l/+Cz74wQ/iN3/zN3Hw4EH88i//Mu69996WgP+Nb3wj3vzmN+M973kPlpaW8IIXvACPfvSjsW/fPnziE5/A7//+7+NTn/oU5ubmsG/fPlx11VVNEwA2wuWXX47LLrsM//t//++W6970pjchSRLceOONCMMQz3zmM/Erv/IrePazn72hx0RERDTKxLETDREREREREdG2wxp+IiIiIiIiom2IAT8RERERERHRNsSAn4iIiIiIiGgbYsBPREREREREtA0x4CciIiIiIiLahhjwExEREREREW1DDPiJiIiIiIiItiEG/ERERERERETbEAN+IiIiIiIiom2IAT8RERERERHRNsSAn4iIiIiIiGgbYsBPREREREREtA0x4CciIiIiIiLahv5/jfy8haPKdWIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " w1 w2 w3 w4\n", + "0 0.022159 0.024412 0.021429 0.024490\n", + "1 0.028171 0.031251 0.027328 0.031673\n", + "2 0.021212 0.023202 0.019442 0.022849\n", + "3 0.023052 0.032770 0.030520 0.032671\n", + "4 0.021807 0.023669 0.019485 0.024202\n", + ".. ... ... ... ...\n", + "115 0.008653 0.014101 0.008539 0.013582\n", + "116 0.003256 0.010893 0.004085 0.008641\n", + "117 0.004780 0.015420 0.005411 0.014795\n", + "118 0.002991 0.016147 0.005801 0.009873\n", + "119 0.008559 0.011427 0.010089 0.011774\n", + "\n", + "[120 rows x 4 columns]\n", + " w1 w2 w3 w4\n", + "0 0.020242 0.022763 0.018549 0.022147\n", + "1 0.021634 0.023613 0.018433 0.023539\n", + "2 0.012671 0.014388 0.011564 0.014243\n", + "3 0.016343 0.018806 0.015250 0.018718\n", + "4 0.011372 0.013744 0.012646 0.014727\n", + ".. ... ... ... ...\n", + "115 0.001958 0.009437 0.001318 0.007632\n", + "116 0.002043 0.008857 0.002873 0.005859\n", + "117 0.004037 0.007832 0.003799 0.005348\n", + "118 0.002599 0.007946 0.003117 0.007565\n", + "119 0.000580 0.008932 0.001139 0.008156\n", + "\n", + "[120 rows x 4 columns]\n" + ] + } + ], + "source": [ + "df_upper, df_lower = train_stats_aec.get_aec_boundaries(plot=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "aa2afd16-3eb0-4bec-9a8a-b8268030436d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[INFO][2024-07-07 21:39:35,612] Experiment phase: prediction_phase of type prediction starts running...\n", + "[INFO][2024-07-07 21:39:35,614] Sending data to sources\n", + "[INFO][2024-07-07 21:39:36,409] Data is ready in sources\n", + "[INFO][2024-07-07 21:39:36,410] Phase prediction requested from Main Server\n", + "[INFO][2024-07-07 21:39:39,640] Processing experiment phase data\n", + "[INFO][2024-07-07 21:39:39,654] Processing experiment phase data completed\n", + "[INFO][2024-07-07 21:39:39,655] Start generating communication statistics for prediction_phase of type prediction\n", + "[INFO][2024-07-07 21:39:39,656] Statistics requested from Main Server\n", + "[INFO][2024-07-07 21:39:39,709] Statistics received from Main Server\n", + "[INFO][2024-07-07 21:39:39,710] Phase of prediction_phase prediction completed\n" + ] + } + ], + "source": [ + "API.next_experiment_phase()\n", + "API.get_experiment_flow(exp_name).get_csv_dataset().set_num_of_labels(1)\n", + "API.run_current_experiment_phase()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "d1235aaa-b2c2-4673-ba6e-5edce87bf1fb", + "metadata": {}, + "outputs": [], + "source": [ + "predict_stats = API.get_experiment_flow(exp_name).generate_stats()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "87bb9556-0daa-4086-bd46-a6526a353a1a", + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "cannot reshape array of size 800 into shape (100,1)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[18], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m _ , conf_mats \u001b[38;5;241m=\u001b[39m \u001b[43mpredict_stats\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_confusion_matrices\u001b[49m\u001b[43m(\u001b[49m\u001b[43mplot\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m predict_stats\u001b[38;5;241m.\u001b[39mget_model_performence_stats(conf_mats, show\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExp Done\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m/usr/local/lib/nerlnet-lib/NErlNet/src_py/apiServer/stats.py:194\u001b[0m, in \u001b[0;36mStats.get_confusion_matrices\u001b[0;34m(self, normalize, plot, saveToFile)\u001b[0m\n\u001b[1;32m 192\u001b[0m cycle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mint\u001b[39m(batch_db\u001b[38;5;241m.\u001b[39mget_batch_id())\n\u001b[1;32m 193\u001b[0m tensor_data \u001b[38;5;241m=\u001b[39m batch_db\u001b[38;5;241m.\u001b[39mget_tensor_data()\n\u001b[0;32m--> 194\u001b[0m tensor_data \u001b[38;5;241m=\u001b[39m \u001b[43mtensor_data\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreshape\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_of_labels\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[38;5;66;03m#print(df_worker_labels)\u001b[39;00m\n\u001b[1;32m 196\u001b[0m \u001b[38;5;66;03m#print(tensor_data)\u001b[39;00m\n\u001b[1;32m 197\u001b[0m start_index \u001b[38;5;241m=\u001b[39m cycle \u001b[38;5;241m*\u001b[39m batch_size\n", + "\u001b[0;31mValueError\u001b[0m: cannot reshape array of size 800 into shape (100,1)" + ] + } + ], + "source": [ + "_ , conf_mats = predict_stats.get_confusion_matrices(plot=True)\n", + "predict_stats.get_model_performence_stats(conf_mats, show=True)\n", + "print(\"Exp Done\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9db9f7d6-9ef7-4114-982a-b09f572ccc4a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/inputJsonsFiles/DistributedConfig/dc_AEC_1d_2c_1s_4r_4w.json b/inputJsonsFiles/DistributedConfig/dc_AEC_1d_2c_1s_4r_4w.json index 16887b6b..a4985e43 100644 --- a/inputJsonsFiles/DistributedConfig/dc_AEC_1d_2c_1s_4r_4w.json +++ b/inputJsonsFiles/DistributedConfig/dc_AEC_1d_2c_1s_4r_4w.json @@ -85,16 +85,16 @@ "modelType": "9", "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image-classification:4 | text-classification:5 | text-generation:6 | auto-association:7 | autoencoder:8 | ae-classifier:9 |", "modelArgs": "", - "layersSizes": "64,32,16,8,16,32,64,64", + "layersSizes": "8,4,2,4,8,8", "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", - "layerTypesList": "1,3,3,3,3,3,3,10", + "layerTypesList": "1,3,3,3,3,10", "_doc_LayerTypes": " Default:0 | Scaling:1 | CNN:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 |", - "layers_functions": "1,6,6,6,6,6,6,1", + "layers_functions": "1,6,6,6,6,1", "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", - "lossMethod": "6", + "lossMethod": "2", "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", "lr": "0.01", "_doc_lr": "Positve float", diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 54b07b94..42882ad9 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -8,10 +8,10 @@ namespace nerlnet // ----- NerlWorkerOpenNN ----- NerlWorkerOpenNN::NerlWorkerOpenNN(int model_type, std::string &model_args_str , std::string &layer_sizes_str, std::string &layer_types_list, std::string &layers_functionality, - float learning_rate, int epochs, int optimizer_type, std::string &optimizer_args_str, - int loss_method, int distributed_system_type, std::string &distributed_system_args_str) : NerlWorker(model_type, model_args_str , layer_sizes_str, layer_types_list, layers_functionality, - learning_rate, epochs, optimizer_type, optimizer_args_str, - loss_method, distributed_system_type, distributed_system_args_str) + float learning_rate, int epochs, int optimizer_type, std::string &optimizer_args_str, + int loss_method, int distributed_system_type, std::string &distributed_system_args_str) : NerlWorker(model_type, model_args_str , layer_sizes_str, layer_types_list, layers_functionality, + learning_rate, epochs, optimizer_type, optimizer_args_str, + loss_method, distributed_system_type, distributed_system_args_str) { _neural_network_ptr = std::make_shared(); generate_opennn_neural_network(); @@ -49,6 +49,10 @@ namespace nerlnet { case MODEL_TYPE_AE_CLASSIFIER: { + loss_val_tensor = std::make_shared(3, 1); + (*loss_val_tensor)(0, 0) = static_cast(_last_loss); + (*loss_val_tensor)(1, 0) = _ae_red_ptr->_ema_event; + (*loss_val_tensor)(2, 0) = _ae_red_ptr->_ema_normal; break; } default: @@ -91,6 +95,8 @@ namespace nerlnet fTensor2DPtr results = std::make_shared(num_of_samples, num_of_labels + num_of_labels*2); // LOWER/UPPER for each label fTensor2DPtr calculate_res = std::make_shared(num_of_samples, neural_network->get_outputs_number()); *calculate_res = neural_network->calculate_outputs(TrainData->data(), inputs_dimensions); + + // MSE Calculation fTensor2DPtr loss_values_mse = std::make_shared(num_of_samples, 1); fTensor2D diff = (*calculate_res - *_aec_data_set); fTensor2D squared_diff = diff.pow(2); @@ -98,19 +104,8 @@ namespace nerlnet fTensor1D mse1D = (1.0 / static_cast(_aec_data_set->dimension(0))) * sum_squared_diff; fTensor2D mse2D = mse1D.reshape(Eigen::array({num_of_samples, 1})); *loss_values_mse = mse2D; - // cout << "MSE Loss: " << mse_loss << endl; - fTensor2DPtr res = _ae_red_ptr->update_batch(loss_values_mse); - // cout << "AE_RED RESULT VECTOR:" << endl << *res << endl; - float lower_boundary = _ae_red_ptr->_ema_event; - float upper_boundary = _ae_red_ptr->_ema_normal; - - // concat res_ptr with lower and upper boundaries - for (Index i = 0; i < num_of_samples; i++) - { - (*results)(i, 0) = (*loss_values_mse)(i, 0); - (*results)(i, 1) = lower_boundary; - (*results)(i, 2) = upper_boundary; - } + + _ae_red_ptr->update_batch(loss_values_mse); // Update thresholds break; } @@ -291,52 +286,52 @@ namespace nerlnet } case MODEL_TYPE_AE_CLASSIFIER: { - _aec_data_set = TrainDataNNptr; - Eigen::array bcast({1, 2}); - std::shared_ptr> autoencoder_data = std::make_shared>(TrainDataNNptr->broadcast(bcast)); - int num_of_features = neural_network_ptr->get_inputs_number(); - int num_of_output_neurons = neural_network_ptr->get_outputs_number(); - bool data_set_condition = (num_of_features + num_of_output_neurons) == autoencoder_data->dimension(1); - assert(("issue with data input/output dimensions", data_set_condition)); - _data_set->set_data(*autoencoder_data); - _data_set->set(autoencoder_data->dimension(0) , num_of_features , num_of_output_neurons); // TODO CHECK - break; + _aec_data_set = TrainDataNNptr; + Eigen::array bcast({1, 2}); + std::shared_ptr> autoencoder_data = std::make_shared>(TrainDataNNptr->broadcast(bcast)); + int num_of_features = neural_network_ptr->get_inputs_number(); + int num_of_output_neurons = neural_network_ptr->get_outputs_number(); + bool data_set_condition = (num_of_features + num_of_output_neurons) == autoencoder_data->dimension(1); + assert(("issue with data input/output dimensions", data_set_condition)); + _data_set->set_data(*autoencoder_data); + _data_set->set(autoencoder_data->dimension(0) , num_of_features , num_of_output_neurons); // TODO CHECK + break; } default: { - int data_cols = TrainDataNNptr->dimension(1); - int num_of_features = neural_network_ptr->get_inputs_number(); - int num_of_output_neurons = neural_network_ptr->get_outputs_number(); - _data_set->set_data(*(TrainDataNNptr)); - // Data set definitions - bool data_set_condition = (num_of_features + num_of_output_neurons) == data_cols; - assert(("issue with data input/output dimensions", data_set_condition)); - if(neural_network_ptr->has_convolutional_layer()){ - Tensor input_variable_dimension(3); - input_variable_dimension.setValues({this->_nerl_layers_linked_list->get_dim_size(DIM_Z_IDX), this->_nerl_layers_linked_list->get_dim_size(DIM_Y_IDX), this->_nerl_layers_linked_list->get_dim_size(DIM_X_IDX)}); - _data_set->set_input_variables_dimensions(input_variable_dimension); - int samples_num = _data_set->get_samples_number(); - int input_variable = this->_nerl_layers_linked_list->get_dim_size(DIM_Y_IDX)* this->_nerl_layers_linked_list->get_dim_size(DIM_X_IDX); - for(Index sample_indx = 0; sample_indx < samples_num ; sample_indx++) - { - _data_set->set_sample_use(sample_indx, DataSet::SampleUse::Training); - } - - for(Index column_indx = 0; column_indx set_column_use(column_indx, DataSet::VariableUse::Input); - _data_set->set_column_type(column_indx, DataSet::ColumnType::Numeric); - } - for(Index column_indx = input_variable; column_indx < input_variable + num_of_output_neurons; column_indx++) - { - _data_set->set_column_type(column_indx, DataSet::ColumnType::Binary); - _data_set->set_column_use(column_indx, DataSet::VariableUse::Target); - } - _data_set->set_columns_scalers(Scaler::NoScaling); - }else{ - _data_set->set(TrainDataNNptr->dimension(0), num_of_features, num_of_output_neurons); - } - break; + int data_cols = TrainDataNNptr->dimension(1); + int num_of_features = neural_network_ptr->get_inputs_number(); + int num_of_output_neurons = neural_network_ptr->get_outputs_number(); + _data_set->set_data(*(TrainDataNNptr)); + // Data set definitions + bool data_set_condition = (num_of_features + num_of_output_neurons) == data_cols; + assert(("issue with data input/output dimensions", data_set_condition)); + if(neural_network_ptr->has_convolutional_layer()){ + Tensor input_variable_dimension(3); + input_variable_dimension.setValues({this->_nerl_layers_linked_list->get_dim_size(DIM_Z_IDX), this->_nerl_layers_linked_list->get_dim_size(DIM_Y_IDX), this->_nerl_layers_linked_list->get_dim_size(DIM_X_IDX)}); + _data_set->set_input_variables_dimensions(input_variable_dimension); + int samples_num = _data_set->get_samples_number(); + int input_variable = this->_nerl_layers_linked_list->get_dim_size(DIM_Y_IDX)* this->_nerl_layers_linked_list->get_dim_size(DIM_X_IDX); + for(Index sample_indx = 0; sample_indx < samples_num ; sample_indx++) + { + _data_set->set_sample_use(sample_indx, DataSet::SampleUse::Training); + } + + for(Index column_indx = 0; column_indx set_column_use(column_indx, DataSet::VariableUse::Input); + _data_set->set_column_type(column_indx, DataSet::ColumnType::Numeric); + } + for(Index column_indx = input_variable; column_indx < input_variable + num_of_output_neurons; column_indx++) + { + _data_set->set_column_type(column_indx, DataSet::ColumnType::Binary); + _data_set->set_column_use(column_indx, DataSet::VariableUse::Target); + } + _data_set->set_columns_scalers(Scaler::NoScaling); + }else{ + _data_set->set(TrainDataNNptr->dimension(0), num_of_features, num_of_output_neurons); + } + break; } } } diff --git a/src_cpp/opennnBridge/openNNnif.cpp b/src_cpp/opennnBridge/openNNnif.cpp index 2217355e..a963c955 100644 --- a/src_cpp/opennnBridge/openNNnif.cpp +++ b/src_cpp/opennnBridge/openNNnif.cpp @@ -22,7 +22,6 @@ void* trainFun(void* arg) std::shared_ptr data_set_ptr = std::make_shared (); std::shared_ptr neural_network_ptr = nerlworker_opennn->get_neural_network_ptr(); nerlworker_opennn->set_dataset(data_set_ptr, TrainNNptr->data); - data_set_ptr = nerlworker_opennn->get_data_set(); // perform training nerlworker_opennn->perform_training(); // post training diff --git a/src_py/apiServer/experiment_flow.py b/src_py/apiServer/experiment_flow.py index fd54890f..a7a4674d 100644 --- a/src_py/apiServer/experiment_flow.py +++ b/src_py/apiServer/experiment_flow.py @@ -9,6 +9,7 @@ from events_sync import * from networkComponents import * from stats import * +from stats_aec import * from experiment_phase import * # Todo check imports and remove unused ones @@ -61,6 +62,11 @@ def generate_stats(self, experiment_phase = None) -> Stats: if experiment_phase is None: experiment_phase = self.get_current_experiment_phase() return Stats(experiment_phase) + + def generate_stats_aec(self, stats: Stats) -> Stats: + assert stats is not None , "stats is None" + # TODO add assertion of AEC experiment type + return StatsAEC(stats) def merge_stats(self, stats_list: list) -> Stats: pass diff --git a/src_py/apiServer/stats.py b/src_py/apiServer/stats.py index e7811b6c..5ae76deb 100644 --- a/src_py/apiServer/stats.py +++ b/src_py/apiServer/stats.py @@ -156,71 +156,74 @@ def get_confusion_matrices(self , normalize : bool = False ,plot : bool = False sourcePiece_csv_labels_path = source_piece_inst.get_pointer_to_sourcePiece_CsvDataSet_labels() df_actual_labels = pd.read_csv(sourcePiece_csv_labels_path) num_of_labels = df_actual_labels.shape[1] - header_list = range(num_of_labels) - df_actual_labels.columns = header_list - df_actual_labels = self.expend_labels_df(df_actual_labels) - #print(df_actual_labels) - source_name = source_piece_inst.get_source_name() + if num_of_labels > 1: + header_list = range(num_of_labels) + df_actual_labels.columns = header_list + df_actual_labels = self.expend_labels_df(df_actual_labels) + #print(df_actual_labels) + source_name = source_piece_inst.get_source_name() - # build confusion matrix for each worker - target_workers = source_piece_inst.get_target_workers() - worker_missed_batches = {} - batch_size = source_piece_inst.get_batch_size() - for worker_db in workers_model_db_list: - worker_name = worker_db.get_worker_name() - if worker_name not in target_workers: - continue - df_worker_labels = df_actual_labels.copy() - total_batches_per_source = worker_db.get_total_batches_per_source(source_name) - for batch_id in range(total_batches_per_source): - batch_db = worker_db.get_batch(source_name, str(batch_id)) - if not batch_db: # if batch is missing - if not self.missed_batches_warning_msg: - LOG_WARNING(f"missed batches") - self.missed_batches_warning_msg = True - starting_offset = source_piece_inst.get_starting_offset() - df_worker_labels.iloc[batch_id * batch_size: (batch_id + 1) * batch_size, num_of_labels:] = None # set the actual label to None for the predict labels in the df - worker_missed_batches[(worker_name, source_name, str(batch_id))] = (starting_offset + batch_id * batch_size, batch_size) # save the missing batch - - df_worker_labels = df_worker_labels.dropna() - #print(df_worker_labels) - for batch_id in range(total_batches_per_source): - batch_db = worker_db.get_batch(source_name, str(batch_id)) - if batch_db: - # counter = according indexs of array - # cycle = according indexs of panadas (with jump) - cycle = int(batch_db.get_batch_id()) - tensor_data = batch_db.get_tensor_data() - tensor_data = tensor_data.reshape(batch_size, num_of_labels) - #print(df_worker_labels) - #print(tensor_data) - start_index = cycle * batch_size - end_index = (cycle + 1) * batch_size - df_worker_labels.iloc[start_index:end_index, num_of_labels:] = None # Fix an issue of pandas of incompatible dtype - df_worker_labels.iloc[start_index:end_index, num_of_labels:] = tensor_data - #print(df_worker_labels) + # build confusion matrix for each worker + target_workers = source_piece_inst.get_target_workers() + worker_missed_batches = {} + batch_size = source_piece_inst.get_batch_size() + for worker_db in workers_model_db_list: + worker_name = worker_db.get_worker_name() + if worker_name not in target_workers: + continue + df_worker_labels = df_actual_labels.copy() + total_batches_per_source = worker_db.get_total_batches_per_source(source_name) + for batch_id in range(total_batches_per_source): + batch_db = worker_db.get_batch(source_name, str(batch_id)) + if not batch_db: # if batch is missing + if not self.missed_batches_warning_msg: + LOG_WARNING(f"missed batches") + self.missed_batches_warning_msg = True + starting_offset = source_piece_inst.get_starting_offset() + df_worker_labels.iloc[batch_id * batch_size: (batch_id + 1) * batch_size, num_of_labels:] = None # set the actual label to None for the predict labels in the df + worker_missed_batches[(worker_name, source_name, str(batch_id))] = (starting_offset + batch_id * batch_size, batch_size) # save the missing batch + + df_worker_labels = df_worker_labels.dropna() + for batch_id in range(total_batches_per_source): + batch_db = worker_db.get_batch(source_name, str(batch_id)) + if batch_db: + # counter = according indexs of array + # cycle = according indexs of panadas (with jump) + cycle = int(batch_db.get_batch_id()) + tensor_data = batch_db.get_tensor_data() + tensor_data = tensor_data.reshape(batch_size, num_of_labels) + #print(df_worker_labels) + start_index = cycle * batch_size + end_index = (cycle + 1) * batch_size + df_worker_labels.iloc[start_index:end_index, num_of_labels:] = None # Fix an issue of pandas of incompatible dtype + df_worker_labels.iloc[start_index:end_index, num_of_labels:] = tensor_data + #print(df_worker_labels) - # Take 2 list from the df, one for the actual labels and one for the predict labels to build the confusion matrix - max_column_predict_index = df_worker_labels.iloc[:, num_of_labels:].idxmax(axis=1) - max_column_predict_index = max_column_predict_index.tolist() - max_column_predict_index = [int(predict_index) - num_of_labels for predict_index in max_column_predict_index] # fix the index to original labels index - max_column_labels_index = df_worker_labels.iloc[:, :num_of_labels].idxmax(axis=1) - max_column_labels_index = max_column_labels_index.tolist() - #print(f"max_column_predict_index: {max_column_predict_index}") - #print(f"max_column_labels_index: {max_column_labels_index}") - - # building confusion matrix for each class - for class_index, class_name in enumerate(self.headers_list): - class_actual_list = [1 if label_num == class_index else 0 for label_num in max_column_labels_index] # 1 if the label is belong to the class, 0 otherwise - class_predict_list = [1 if label_num == class_index else 0 for label_num in max_column_predict_index] # 1 if the label is belong to the class, 0 otherwise - confusion_matrix = metrics.confusion_matrix(class_actual_list, class_predict_list) - #confusion_matrix_np = confusion_matrix.to_numpy() - confusion_matrix_source_dict[(source_name, worker_name, class_name)] = confusion_matrix - if (worker_name, class_name) not in confusion_matrix_worker_dict: - confusion_matrix_worker_dict[(worker_name, class_name)] = confusion_matrix - else: - confusion_matrix_worker_dict[(worker_name, class_name)] += confusion_matrix + # Take 2 list from the df, one for the actual labels and one for the predict labels to build the confusion matrix + max_column_predict_index = df_worker_labels.iloc[:, num_of_labels:].idxmax(axis=1) + max_column_predict_index = max_column_predict_index.tolist() + max_column_predict_index = [int(predict_index) - num_of_labels for predict_index in max_column_predict_index] # fix the index to original labels index + max_column_labels_index = df_worker_labels.iloc[:, :num_of_labels].idxmax(axis=1) + max_column_labels_index = max_column_labels_index.tolist() + #print(f"max_column_predict_index: {max_column_predict_index}") + #print(f"max_column_labels_index: {max_column_labels_index}") + + # building confusion matrix for each class + for class_index, class_name in enumerate(self.headers_list): + class_actual_list = [1 if label_num == class_index else 0 for label_num in max_column_labels_index] # 1 if the label is belong to the class, 0 otherwise + class_predict_list = [1 if label_num == class_index else 0 for label_num in max_column_predict_index] # 1 if the label is belong to the class, 0 otherwise + confusion_matrix = metrics.confusion_matrix(class_actual_list, class_predict_list) + #confusion_matrix_np = confusion_matrix.to_numpy() + confusion_matrix_source_dict[(source_name, worker_name, class_name)] = confusion_matrix + if (worker_name, class_name) not in confusion_matrix_worker_dict: + confusion_matrix_worker_dict[(worker_name, class_name)] = confusion_matrix + else: + confusion_matrix_worker_dict[(worker_name, class_name)] += confusion_matrix + else: + # TODO implement for one label (AEC) + pass + if plot: diff --git a/src_py/apiServer/stats_aec.py b/src_py/apiServer/stats_aec.py new file mode 100644 index 00000000..ed1b1bdd --- /dev/null +++ b/src_py/apiServer/stats_aec.py @@ -0,0 +1,90 @@ +from collections import OrderedDict +from sklearn import metrics +from IPython.display import display +import matplotlib.pyplot as plt +from datetime import datetime +from pathlib import Path +from experiment_phase import * +import globalVars as globe +from definitions import * +import pandas as pd +import numpy as np +import seaborn as sns +sns.set_theme() + +from stats import Stats + +class StatsAEC(): + + def __init__(self, stats: Stats): + self.stats = stats + + + def get_aec_loss(self, plot=False): + loss_dict = {} + workers_model_db_list = self.stats.nerl_model_db.get_workers_model_db_list() + total_batches_list = [worker.get_total_batches() for worker in workers_model_db_list] + max_batches = max(total_batches_list) + + for worker_db in workers_model_db_list: + worker_name = worker_db.get_worker_name() + batches_ts_tansor_data_dict = worker_db.get_batches_ts_tansor_data_dict() + sorted_batches_ts_tansor_data_dict = dict(sorted(batches_ts_tansor_data_dict.items())) + loss_dict[worker_name] = [sorted_batches_ts_tansor_data_dict[key][0] for key in sorted(sorted_batches_ts_tansor_data_dict)] + + for worker_name in loss_dict: + loss_dict[worker_name] = [float(arr) for sublist in loss_dict[worker_name] for arr in sublist] + loss_dict[worker_name] += [None] * (max_batches - len(loss_dict[worker_name])) + + df = pd.DataFrame(loss_dict) + self.loss_ts_pd = df + + if plot: + sns.lineplot(data=df) + plt.xlabel('Batch Num.') + plt.ylabel('Loss Value') + plt.title('Training Loss Function') + return df + + + def get_aec_boundaries(self, plot=False): + upper_boundaries_dict = {} + lower_boundaries_dict = {} + workers_model_db_list = self.stats.nerl_model_db.get_workers_model_db_list() + total_batches_list = [worker.get_total_batches() for worker in workers_model_db_list] + max_batches = max(total_batches_list) + + for worker_db in workers_model_db_list: + worker_name = worker_db.get_worker_name() + batches_ts_tansor_data_dict = worker_db.get_batches_ts_tansor_data_dict() + sorted_batches_ts_tansor_data_dict = dict(sorted(batches_ts_tansor_data_dict.items())) + upper_boundaries_dict[worker_name] = [sorted_batches_ts_tansor_data_dict[key][1] for key in sorted(sorted_batches_ts_tansor_data_dict)] + lower_boundaries_dict[worker_name] = [sorted_batches_ts_tansor_data_dict[key][2] for key in sorted(sorted_batches_ts_tansor_data_dict)] + + for worker_name in upper_boundaries_dict: + upper_boundaries_dict[worker_name] = [float(arr) for sublist in upper_boundaries_dict[worker_name] for arr in sublist] + upper_boundaries_dict[worker_name] += [None] * (max_batches - len(upper_boundaries_dict[worker_name])) + for worker_name in lower_boundaries_dict: + lower_boundaries_dict[worker_name] = [float(arr) for sublist in lower_boundaries_dict[worker_name] for arr in sublist] + lower_boundaries_dict[worker_name] += [None] * (max_batches - len(lower_boundaries_dict[worker_name])) + + df_upper = pd.DataFrame(upper_boundaries_dict).sort_index(axis=1) + df_lower = pd.DataFrame(lower_boundaries_dict).sort_index(axis=1) + + if plot: + for worker_name in df_upper: + # Calculate the seperator to be the average of the upper and lower boundaries + seperator = (df_upper[worker_name] + df_lower[worker_name]) / 2 + plt.figure(figsize=(12, 8)) + plt.plot(df_upper[worker_name], label='Upper Boundary', color='C0') + plt.fill_between(df_upper[worker_name].index, df_upper[worker_name] - df_upper[worker_name].std(), df_upper[worker_name] + df_upper[worker_name].std(), color='C0', alpha=0.2) + plt.plot(df_lower[worker_name], label='Lower Boundary', color='C1') + plt.fill_between(df_lower[worker_name].index, df_lower[worker_name] - df_lower[worker_name].std(), df_lower[worker_name] + df_lower[worker_name].std(), color='C1', alpha=0.2) + plt.plot(seperator, label='Seperator', color='C2') + plt.fill_between(seperator.index, seperator + seperator.std(), seperator - seperator.std(), color='C2', alpha=0.2) + plt.xlabel('Batch Num.') + plt.ylabel('Boundary Value') + plt.title(f'Training Boundaries {worker_name}') + plt.legend() + plt.show() + return df_upper, df_lower From 9bb7c09814656f67ba749e6a5ce0e67263f3d319 Mon Sep 17 00:00:00 2001 From: GuyPerets106 Date: Sun, 7 Jul 2024 22:32:28 +0000 Subject: [PATCH 18/30] One label conf mat recover --- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 4 +- src_py/apiServer/stats.py | 138 +++++++++++++--------- 2 files changed, 81 insertions(+), 61 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 42882ad9..9502fbb9 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -139,8 +139,8 @@ namespace nerlnet std::shared_ptr neural_network = get_neural_network_ptr(); Index num_of_samples = _aec_data_set->dimension(0); Index inputs_number = neural_network->get_inputs_number(); - Index num_of_labels = 3; // TODO need to add bounderies - // fTensor2DPtr results = std::make_shared(num_of_samples, num_of_labels + num_of_labels*2); // LOWER/UPPER for each label + Index num_of_labels = 1; + fTensor2DPtr results = std::make_shared(num_of_samples, num_of_labels); fTensor2DPtr loss_values_mse = std::make_shared(num_of_samples , 1); fTensor2D diff = (*result_ptr - *_aec_data_set); fTensor2D squared_diff = diff.pow(2); diff --git a/src_py/apiServer/stats.py b/src_py/apiServer/stats.py index 5ae76deb..fc65130e 100644 --- a/src_py/apiServer/stats.py +++ b/src_py/apiServer/stats.py @@ -156,58 +156,69 @@ def get_confusion_matrices(self , normalize : bool = False ,plot : bool = False sourcePiece_csv_labels_path = source_piece_inst.get_pointer_to_sourcePiece_CsvDataSet_labels() df_actual_labels = pd.read_csv(sourcePiece_csv_labels_path) num_of_labels = df_actual_labels.shape[1] - if num_of_labels > 1: - header_list = range(num_of_labels) - df_actual_labels.columns = header_list - df_actual_labels = self.expend_labels_df(df_actual_labels) - #print(df_actual_labels) - source_name = source_piece_inst.get_source_name() - - # build confusion matrix for each worker - target_workers = source_piece_inst.get_target_workers() - worker_missed_batches = {} - batch_size = source_piece_inst.get_batch_size() - for worker_db in workers_model_db_list: - worker_name = worker_db.get_worker_name() - if worker_name not in target_workers: - continue - df_worker_labels = df_actual_labels.copy() - total_batches_per_source = worker_db.get_total_batches_per_source(source_name) - for batch_id in range(total_batches_per_source): - batch_db = worker_db.get_batch(source_name, str(batch_id)) - if not batch_db: # if batch is missing - if not self.missed_batches_warning_msg: - LOG_WARNING(f"missed batches") - self.missed_batches_warning_msg = True - starting_offset = source_piece_inst.get_starting_offset() - df_worker_labels.iloc[batch_id * batch_size: (batch_id + 1) * batch_size, num_of_labels:] = None # set the actual label to None for the predict labels in the df - worker_missed_batches[(worker_name, source_name, str(batch_id))] = (starting_offset + batch_id * batch_size, batch_size) # save the missing batch - - df_worker_labels = df_worker_labels.dropna() - for batch_id in range(total_batches_per_source): - batch_db = worker_db.get_batch(source_name, str(batch_id)) - if batch_db: - # counter = according indexs of array - # cycle = according indexs of panadas (with jump) - cycle = int(batch_db.get_batch_id()) - tensor_data = batch_db.get_tensor_data() - tensor_data = tensor_data.reshape(batch_size, num_of_labels) - #print(df_worker_labels) - start_index = cycle * batch_size - end_index = (cycle + 1) * batch_size - df_worker_labels.iloc[start_index:end_index, num_of_labels:] = None # Fix an issue of pandas of incompatible dtype - df_worker_labels.iloc[start_index:end_index, num_of_labels:] = tensor_data - #print(df_worker_labels) + header_list = range(num_of_labels) + df_actual_labels.columns = header_list + df_actual_labels = self.expend_labels_df(df_actual_labels) + #print(df_actual_labels) + source_name = source_piece_inst.get_source_name() + # build confusion matrix for each worker + target_workers = source_piece_inst.get_target_workers() + worker_missed_batches = {} + batch_size = source_piece_inst.get_batch_size() + for worker_db in workers_model_db_list: + worker_name = worker_db.get_worker_name() + if worker_name not in target_workers: + continue + df_worker_labels = df_actual_labels.copy() + total_batches_per_source = worker_db.get_total_batches_per_source(source_name) + for batch_id in range(total_batches_per_source): + batch_db = worker_db.get_batch(source_name, str(batch_id)) + if not batch_db: # if batch is missing + if not self.missed_batches_warning_msg: + LOG_WARNING(f"missed batches") + self.missed_batches_warning_msg = True + starting_offset = source_piece_inst.get_starting_offset() + df_worker_labels.iloc[batch_id * batch_size: (batch_id + 1) * batch_size, num_of_labels:] = None # set the actual label to None for the predict labels in the df + worker_missed_batches[(worker_name, source_name, str(batch_id))] = (starting_offset + batch_id * batch_size, batch_size) # save the missing batch + + df_worker_labels = df_worker_labels.dropna() + # print(df_worker_labels) + for batch_id in range(total_batches_per_source): + batch_db = worker_db.get_batch(source_name, str(batch_id)) + if batch_db: + # counter = according indexs of array + # cycle = according indexs of panadas (with jump) + cycle = int(batch_db.get_batch_id()) + tensor_data = batch_db.get_tensor_data() + # print(f"tensor_data shape: {tensor_data.shape}") + tensor_data = tensor_data.reshape(batch_size, num_of_labels) + #print(df_worker_labels) + #print(tensor_data) + start_index = cycle * batch_size + end_index = (cycle + 1) * batch_size + df_worker_labels.iloc[start_index:end_index, num_of_labels:] = None # Fix an issue of pandas of incompatible dtype + df_worker_labels.iloc[start_index:end_index, num_of_labels:] = tensor_data + # print(df_worker_labels) + if len(self.headers_list) == 1: + class_name = self.headers_list[0] + actual_labels = df_worker_labels.iloc[:, :num_of_labels].values.flatten().tolist() + predict_labels = df_worker_labels.iloc[:, num_of_labels:].values.flatten().tolist() + confusion_matrix = metrics.confusion_matrix(actual_labels, predict_labels) + confusion_matrix_source_dict[(source_name, worker_name, class_name)] = confusion_matrix + if (worker_name, class_name) not in confusion_matrix_worker_dict: + confusion_matrix_worker_dict[(worker_name, class_name)] = confusion_matrix + else: + confusion_matrix_worker_dict[(worker_name, class_name)] += confusion_matrix + + else: # Multi-Class # Take 2 list from the df, one for the actual labels and one for the predict labels to build the confusion matrix - max_column_predict_index = df_worker_labels.iloc[:, num_of_labels:].idxmax(axis=1) - max_column_predict_index = max_column_predict_index.tolist() + max_column_predict_index = df_worker_labels.iloc[:, num_of_labels:].idxmax(axis=1) + max_column_predict_index = max_column_predict_index.tolist() max_column_predict_index = [int(predict_index) - num_of_labels for predict_index in max_column_predict_index] # fix the index to original labels index max_column_labels_index = df_worker_labels.iloc[:, :num_of_labels].idxmax(axis=1) max_column_labels_index = max_column_labels_index.tolist() - #print(f"max_column_predict_index: {max_column_predict_index}") - #print(f"max_column_labels_index: {max_column_labels_index}") # building confusion matrix for each class for class_index, class_name in enumerate(self.headers_list): @@ -220,27 +231,36 @@ def get_confusion_matrices(self , normalize : bool = False ,plot : bool = False confusion_matrix_worker_dict[(worker_name, class_name)] = confusion_matrix else: confusion_matrix_worker_dict[(worker_name, class_name)] += confusion_matrix - else: - # TODO implement for one label (AEC) - pass - if plot: workers = sorted(list({tup[0] for tup in confusion_matrix_worker_dict.keys()})) classes = sorted(list({tup[1] for tup in confusion_matrix_worker_dict.keys()})) fig, ax = plt.subplots(nrows=len(workers), ncols=len(classes),figsize=(4*len(classes),4*len(workers)),dpi=140) - for i , worker in enumerate(workers): - for j , pred_class in enumerate(classes): - conf_mat = confusion_matrix_worker_dict[(worker , pred_class)] - heatmap = sns.heatmap(data=conf_mat ,ax=ax[i,j], annot=True , fmt="d", cmap='Blues',annot_kws={"size": 8}, cbar_kws={'pad': 0.1}) + if len(classes) > 1: + for i , worker in enumerate(workers): + for j , pred_class in enumerate(classes): + conf_mat = confusion_matrix_worker_dict[(worker , pred_class)] + # print(f"conf_mat: {conf_mat}") + heatmap = sns.heatmap(data=conf_mat ,ax=ax[i,j], annot=True , fmt="d", cmap='Blues',annot_kws={"size": 8}, cbar_kws={'pad': 0.1}) + cbar = heatmap.collections[0].colorbar + cbar.ax.tick_params(labelsize = 8) + ax[i, j].set_title(f"{worker} , Class '{pred_class}'" , fontsize=12) + ax[i, j].tick_params(axis='both', which='major', labelsize=8) + ax[i, j].set_xlabel("Predicted Label" , fontsize=8) + ax[i, j].set_ylabel("True Label" , fontsize=8) + ax[i, j].set_aspect('equal') + else: + for i, worker in enumerate(workers): + conf_mat = confusion_matrix_worker_dict[(worker , classes[0])] + heatmap = sns.heatmap(data=conf_mat ,ax=ax[i], annot=True , fmt="d", cmap='Blues',annot_kws={"size": 8}, cbar_kws={'pad': 0.1}) cbar = heatmap.collections[0].colorbar cbar.ax.tick_params(labelsize = 8) - ax[i, j].set_title(f"{worker} , Class '{pred_class}'" , fontsize=12) - ax[i, j].tick_params(axis='both', which='major', labelsize=8) - ax[i, j].set_xlabel("Predicted Label" , fontsize=8) - ax[i, j].set_ylabel("True Label" , fontsize=8) - ax[i, j].set_aspect('equal') + ax[i].set_title(f"{worker} , Class '{classes[0]}'" , fontsize=12) + ax[i].tick_params(axis='both', which='major', labelsize=8) + ax[i].set_xlabel("Predicted Label" , fontsize=8) + ax[i].set_ylabel("True Label" , fontsize=8) + ax[i].set_aspect('equal') fig.subplots_adjust(wspace=0.4 , hspace=0.4) plt.show() From 17fb979bf196119dba0cf877c3a0d626d73c89c0 Mon Sep 17 00:00:00 2001 From: GuyPerets106 Date: Sun, 7 Jul 2024 22:37:35 +0000 Subject: [PATCH 19/30] Predict fix --- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 2 +- src_cpp/opennnBridge/nerlWorkerOpenNN.h | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 9502fbb9..a269fa1f 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -124,7 +124,7 @@ namespace nerlnet } - void NerlWorkerOpenNN::post_predict_process(fTensor2DPtr result_ptr){ + void NerlWorkerOpenNN::post_predict_process(fTensor2DPtr &result_ptr){ switch(_model_type){ case MODEL_TYPE_NN: { diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.h b/src_cpp/opennnBridge/nerlWorkerOpenNN.h index 9e64e0fd..16d40e33 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.h +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.h @@ -31,7 +31,7 @@ class NerlWorkerOpenNN : public NerlWorker std::shared_ptr get_training_strategy_ptr() { return _training_strategy_ptr; }; std::shared_ptr get_data_set() { return _data_set; }; void post_training_process(fTensor2DPtr TrainDataNNptr); - void post_predict_process(fTensor2DPtr result_ptr); + void post_predict_process(fTensor2DPtr &result_ptr); void get_result_calc(fTensor2DPtr calculate_res,int num_of_samples,int inputs_number,fTensor2DPtr predictData); void set_optimization_method(int optimizer_type ,int learning_rate); void set_loss_method(int loss_method); From d32eb3438e9697c067c217b73f0fbd81fcc241d7 Mon Sep 17 00:00:00 2001 From: Orisadek Date: Mon, 8 Jul 2024 13:39:57 +0000 Subject: [PATCH 20/30] Comment on a bad function --- src_cpp/opennnBridge/nerlWorkerNIF.h | 28 ++++++++++----------- src_cpp/opennnBridge/openNNnif.h | 4 +-- src_erl/NerlnetApp/src/Bridge/nerlNIF.erl | 3 ++- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 7 +++--- 4 files changed, 22 insertions(+), 20 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerNIF.h b/src_cpp/opennnBridge/nerlWorkerNIF.h index 4b17d6e1..190c286a 100644 --- a/src_cpp/opennnBridge/nerlWorkerNIF.h +++ b/src_cpp/opennnBridge/nerlWorkerNIF.h @@ -127,21 +127,21 @@ static ERL_NIF_TERM remove_nerlworker_nif(ErlNifEnv* env, int argc, const ERL_NI } -static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) -{ - enum{ARG_MODEL_ID}; - unsigned long modelId; +// static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) +// { +// enum{ARG_MODEL_ID}; +// unsigned long modelId; - nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); +// nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); - BridgeController& bridge_controller = BridgeController::GetInstance(); - std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); - // assert: the model is a distributed system of federated weighted average classification - std::vector train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); +// BridgeController& bridge_controller = BridgeController::GetInstance(); +// std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); +// // assert: the model is a distributed system of federated weighted average classification +// std::vector train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); - nifpp::str_atom nerltensor_type = "erl_int"; +// nifpp::str_atom nerltensor_type = "erl_int"; - nifpp::TERM nerltensor_tuple; // TODO - // Return tuple of {nerltensor, nerltensor_type} - return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int -} \ No newline at end of file +// nifpp::TERM nerltensor_tuple; // TODO +// // Return tuple of {nerltensor, nerltensor_type} +// return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int +// } \ No newline at end of file diff --git a/src_cpp/opennnBridge/openNNnif.h b/src_cpp/opennnBridge/openNNnif.h index 629f42a5..9d210120 100644 --- a/src_cpp/opennnBridge/openNNnif.h +++ b/src_cpp/opennnBridge/openNNnif.h @@ -167,8 +167,8 @@ static ErlNifFunc nif_funcs[] = {"new_nerlworker_nif", 13, new_nerlworker_nif}, {"test_nerlworker_nif", 13, test_nerlworker_nif}, {"update_nerlworker_train_params_nif", 6, update_nerlworker_train_params_nif}, - {"remove_nerlworker_nif", 1, remove_nerlworker_nif}, - {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} + {"remove_nerlworker_nif", 1, remove_nerlworker_nif} + // {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} }; diff --git a/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl b/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl index 823de1e4..51418fe0 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl @@ -161,7 +161,8 @@ nerltensor_binary_decode(Binary, Type) when erlang:is_binary(Binary) and erlang: NerlTensorListForm. % return the merged list of all supported binary types -get_all_binary_types() -> ?LIST_BINARY_FLOAT_NERLTENSOR_TYPE ++ ?LIST_BINARY_INT_NERLTENSOR_TYPE. +get_all_binary_types() -> io:format("HEREEEEE~n"), + ?LIST_BINARY_FLOAT_NERLTENSOR_TYPE ++ ?LIST_BINARY_INT_NERLTENSOR_TYPE. get_all_nerltensor_list_types() -> ?LIST_GROUP_NERLTENSOR_TYPE. % nerltensor_conversion: % Type is Binary then: Binary (Compressed Form) --> Erlang List diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index 051aca7c..a36a20a0 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -9,8 +9,8 @@ -export([run_tests/0]). -import(nerlNIF,[decode_nif/2, nerltensor_binary_decode/2]). --import(nerlNIF,[encode_nif/2, nerltensor_encode/5, nerltensor_conversion/2, get_all_binary_types/0, get_all_nerltensor_list_types/0]). --import(nerlNIF,[nerltensor_sum_nif/3]). +-import(nerlNIF,[encode_nif/2, nerltensor_encode/5, nerltensor_conversion/2, get_all_nerltensor_list_types/0]). +-import(nerlNIF,[nerltensor_sum_nif/3, get_all_binary_types/0]). -import(nerlNIF,[test_nerlworker_nif/12, remove_nerlworker_nif/1]). -import(nerlNIF,[nerltensor_scalar_multiplication_nif/3, nerltensor_scalar_multiplication_erl/2]). -import(nerl,[compare_floats_L/3, string_format/2, logger_settings/1]). @@ -106,7 +106,7 @@ generate_random_list_of_unique_integers(ListSize, Min, Max) -> generate_random_list_of_unique_integers(0, _Min, _Max, List) -> List; generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List) -> N = Max - Min, - rand:uniform(N) - 1 + Min, + rand:uniform(N) - 1 + Min, % NO ASSIGNMENT (??) IsMember = lists:is_member(N, List), % O(N) if IsMember -> generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List); @@ -210,6 +210,7 @@ sum_nerltensors_lists_test(Type, N, Performance) -> encode_decode_nifs_test(0, _Res, Performance) -> Performance ; encode_decode_nifs_test(N, Res, Performance) -> + io:format("GOT HERE~n"), EncodeType = random_pick_nerltensor_type(), NerlTensor = generate_nerltensor_rand_dims(EncodeType), Tic = nerl:tic(), From c3ddb8f83e36c55a580641911aea8918213b2af4 Mon Sep 17 00:00:00 2001 From: Orisadek Date: Mon, 8 Jul 2024 13:40:30 +0000 Subject: [PATCH 21/30] syn exp and fix the problem with weighted avg --- .../conn_8Routers10Clients3S.json | 13 + .../dc_10w_14d_8r_3s_10c_synt.json | 283 ++++++++++++++++++ .../Workers/worker_synt_ori_new.json | 33 ++ .../exp_dist_14d_10c_3s_8r_10w.json | 98 ++++++ src_cpp/common/nerlWorker.h | 2 +- src_cpp/common/worker_definitions_ag.h | 2 +- src_cpp/opennnBridge/nerlWorkerNIF.h | 31 +- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 37 +-- src_cpp/opennnBridge/nerlWorkerOpenNN.h | 2 +- src_cpp/opennnBridge/openNNnif.h | 4 +- src_erl/NerlnetApp/src/Bridge/nerlNIF.erl | 13 +- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 90 +++--- .../NerlnetApp/src/worker_definitions_ag.hrl | 12 +- .../JsonElementWorkerDefinitions.py | 4 +- 14 files changed, 531 insertions(+), 93 deletions(-) create mode 100644 inputJsonsFiles/ConnectionMap/conn_8Routers10Clients3S.json create mode 100644 inputJsonsFiles/DistributedConfig/dc_10w_14d_8r_3s_10c_synt.json create mode 100644 inputJsonsFiles/Workers/worker_synt_ori_new.json create mode 100644 inputJsonsFiles/experimentsFlow/exp_dist_14d_10c_3s_8r_10w.json diff --git a/inputJsonsFiles/ConnectionMap/conn_8Routers10Clients3S.json b/inputJsonsFiles/ConnectionMap/conn_8Routers10Clients3S.json new file mode 100644 index 00000000..b813a59c --- /dev/null +++ b/inputJsonsFiles/ConnectionMap/conn_8Routers10Clients3S.json @@ -0,0 +1,13 @@ +{ + "connectionsMap": + { + "r1":["mainServer", "c1", "s1", "r2","c9"], + "r2":["c2","s2", "r3","c10"], + "r3":["c3","s3", "r4"], + "r4":["c4", "r5"], + "r5":["c5", "r6"], + "r6":["c6", "r7"], + "r7":["c7", "r8"], + "r8":["c8", "r1"] + } +} \ No newline at end of file diff --git a/inputJsonsFiles/DistributedConfig/dc_10w_14d_8r_3s_10c_synt.json b/inputJsonsFiles/DistributedConfig/dc_10w_14d_8r_3s_10c_synt.json new file mode 100644 index 00000000..93234229 --- /dev/null +++ b/inputJsonsFiles/DistributedConfig/dc_10w_14d_8r_3s_10c_synt.json @@ -0,0 +1,283 @@ +{ + "nerlnetSettings": { + "frequency": "50", + "batchSize": "50" + }, + "mainServer": { + "port": "8900", + "args": "" + }, + "apiServer": { + "port": "8901", + "args": "" + }, + "devices": [ + { + "name": "vm0", + "ipv4": "10.0.0.31", + "entities": "mainServer,apiServer" + }, + { + "name": "vm1", + "ipv4": "10.0.0.18", + "entities": "c1,r1" + }, + { + "name": "vm2", + "ipv4": "10.0.0.27", + "entities": "c2,r2" + }, + { + "name": "vm3", + "ipv4": "10.0.0.28", + "entities": "c3,r3" + }, + { + "name": "vm4", + "ipv4": "10.0.0.29", + "entities": "c4,r4" + }, + { + "name": "vm5", + "ipv4": "10.0.0.19", + "entities": "c5,r5" + }, + { + "name": "vm6", + "ipv4": "10.0.0.20", + "entities": "c6,r6" + }, + { + "name": "vm7", + "ipv4": "10.0.0.21", + "entities": "c7,r7" + }, + { + "name": "vm8", + "ipv4": "10.0.0.22", + "entities": "c8,r8" + }, + { + "name": "vm9", + "ipv4": "10.0.0.23", + "entities": "c9" + }, + { + "name": "vm10", + "ipv4": "10.0.0.24", + "entities": "c10" + }, + { + "name": "vm11", + "ipv4": "10.0.0.25", + "entities": "s1" + }, + { + "name": "vm12", + "ipv4": "10.0.0.26", + "entities": "s2" + }, + { + "name": "vm13", + "ipv4": "10.0.0.17", + "entities": "s3" + } + ], + "routers": [ + { + "name": "r1", + "port": "8915", + "policy": "0" + }, + { + "name": "r2", + "port": "8916", + "policy": "0" + }, + { + "name": "r3", + "port": "8917", + "policy": "0" + }, + { + "name": "r4", + "port": "8918", + "policy": "0" + }, + { + "name": "r5", + "port": "8919", + "policy": "0" + }, + { + "name": "r6", + "port": "8920", + "policy": "0" + }, + { + "name": "r7", + "port": "8921", + "policy": "0" + }, + { + "name": "r8", + "port": "8922", + "policy": "0" + } + ], + "sources": [ + { + "name": "s1", + "port": "8902", + "frequency": "50", + "policy": "0", + "epochs": "1", + "type": "0" + }, + { + "name": "s2", + "port": "8903", + "frequency": "50", + "policy": "0", + "epochs": "1", + "type": "0" + }, + { + "name": "s3", + "port": "8904", + "frequency": "50", + "policy": "0", + "epochs": "1", + "type": "0" + } + ], + "clients": [ + { + "name": "c1", + "port": "8905", + "workers": "w1" + }, + { + "name": "c2", + "port": "8906", + "workers": "w2" + }, + { + "name": "c3", + "port": "8907", + "workers": "w3" + }, + { + "name": "c4", + "port": "8908", + "workers": "w4" + }, + { + "name": "c5", + "port": "8909", + "workers": "w5" + }, + { + "name": "c6", + "port": "8910", + "workers": "w6" + }, + { + "name": "c7", + "port": "8911", + "workers": "w7" + }, + { + "name": "c8", + "port": "8912", + "workers": "w8" + }, + { + "name": "c9", + "port": "8913", + "workers": "w9" + }, + { + "name": "c10", + "port": "8914", + "workers": "w10" + } + ], + "workers": [ + { + "name": "w1", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w2", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w3", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w4", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w5", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w6", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w7", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w8", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w9", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + }, + { + "name": "w10", + "model_sha": "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a" + } + ], + "model_sha": { + "99264b4582544a42f7eae15af11ee95486450770301de460847a757e3135dc6a": { + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "5,10,5,3", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "1,3,3,3", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "1,6,6,11", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "2", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lr": "0.001", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "0", + "_doc_distributedSystemType": " none:0 | fedClientAvg:1 | fedServerAvg:2 |", + "distributedSystemArgs": "none", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "none", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" + } + } +} \ No newline at end of file diff --git a/inputJsonsFiles/Workers/worker_synt_ori_new.json b/inputJsonsFiles/Workers/worker_synt_ori_new.json new file mode 100644 index 00000000..c723bd16 --- /dev/null +++ b/inputJsonsFiles/Workers/worker_synt_ori_new.json @@ -0,0 +1,33 @@ +{ + "modelType": "0", + "_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", + "modelArgs": "", + "_doc_modelArgs": "Extra arguments to model", + "layersSizes": "5,10,5,3", + "_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", + "layerTypesList": "1,3,3,3", + "_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", + "layers_functions": "1,6,6,11", + "_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", + "_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", + "_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", + "_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", + "lossMethod": "2", + "_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", + "lr": "0.001", + "_doc_lr": "Positve float", + "epochs": "1", + "_doc_epochs": "Positve Integer", + "optimizer": "5", + "_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", + "optimizerArgs": "none", + "_doc_optimizerArgs": "String", + "infraType": "0", + "_doc_infraType": " opennn:0 | wolfengine:1 |", + "distributedSystemType": "0", + "_doc_distributedSystemType": " none:0 | fedClientAvg:1 | fedServerAvg:2 |", + "distributedSystemArgs": "none", + "_doc_distributedSystemArgs": "String", + "distributedSystemToken": "none", + "_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" +} \ No newline at end of file diff --git a/inputJsonsFiles/experimentsFlow/exp_dist_14d_10c_3s_8r_10w.json b/inputJsonsFiles/experimentsFlow/exp_dist_14d_10c_3s_8r_10w.json new file mode 100644 index 00000000..35a88b04 --- /dev/null +++ b/inputJsonsFiles/experimentsFlow/exp_dist_14d_10c_3s_8r_10w.json @@ -0,0 +1,98 @@ +{ + "experimentName": "synthetic_3_gausians", + "experimentType": "classification", + "batchSize": 50, + "csvFilePath": "/tmp/nerlnet/data/NerlnetData-master/nerlnet/synthetic/synthetic_full.csv", + "numOfFeatures": "5", + "numOfLabels": "3", + "headersNames": "Norm(0:1),Norm(4:1),Norm(10:3)", + "Phases": + [ + { + "phaseName": "training_phase1", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "0", + "numOfBatches": "200", + "workers": "w1,w2,w3,w4", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "0", + "numOfBatches": "200", + "workers": "w5,w6,w7,w8", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "10000", + "numOfBatches": "200", + "workers": "w9,w10", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "training_phase2", + "phaseType": "training", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "20000", + "numOfBatches": "200", + "workers": "w1,w2,w3,w4", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "20000", + "numOfBatches": "200", + "workers": "w5,w6,w7,w8", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "30000", + "numOfBatches": "200", + "workers": "w9,w10", + "nerltensorType": "float" + } + ] + }, + { + "phaseName": "prediction_phase", + "phaseType": "prediction", + "sourcePieces": + [ + { + "sourceName": "s1", + "startingSample": "40000", + "numOfBatches": "200", + "workers": "w1,w4,w7,w10", + "nerltensorType": "float" + }, + { + "sourceName": "s2", + "startingSample": "40000", + "numOfBatches": "200", + "workers": "w2,w5,w8", + "nerltensorType": "float" + }, + { + "sourceName": "s3", + "startingSample": "40000", + "numOfBatches": "200", + "workers": "w3,w6,w9", + "nerltensorType": "float" + } + ] + } + ] + } + + \ No newline at end of file diff --git a/src_cpp/common/nerlWorker.h b/src_cpp/common/nerlWorker.h index c6998ca1..b6359b09 100644 --- a/src_cpp/common/nerlWorker.h +++ b/src_cpp/common/nerlWorker.h @@ -22,7 +22,7 @@ namespace nerlnet int get_optimizer_type() { return _optimizer_type; }; int get_loss_method() { return _loss_method; }; int get_distributed_system_type() { return _distributed_system_type; }; - virtual std::vector get_distributed_system_train_labels_count() {LogError<<"Distributed System Weighted Avg count label is unsupported"; + virtual std::shared_ptr> get_distributed_system_train_labels_count() {LogError<<"Distributed System Weighted Avg count label is unsupported"; throw("Distributed System Weighted Avg count label is unsupported");} // counts the number of each label appears in the training set for weighted average protected: diff --git a/src_cpp/common/worker_definitions_ag.h b/src_cpp/common/worker_definitions_ag.h index 6d92d1bf..61f44ebb 100644 --- a/src_cpp/common/worker_definitions_ag.h +++ b/src_cpp/common/worker_definitions_ag.h @@ -17,6 +17,6 @@ enum ModelTypeEnum{MODEL_TYPE_NN=0,MODEL_TYPE_APPROXIMATION=1,MODEL_TYPE_CLASSIF enum OptimizerEnum{OPTIMIZER_GD=0,OPTIMIZER_CGD=1,OPTIMIZER_SGD=2,OPTIMIZER_QUASINEUTON=3,OPTIMIZER_LVM=4,OPTIMIZER_ADAM=5}; enum LossMethodEnum{LOSS_METHOD_SSE=1,LOSS_METHOD_MSE=2,LOSS_METHOD_NSE=3,LOSS_METHOD_MINKOWSKIE=4,LOSS_METHOD_WSE=5,LOSS_METHOD_CEE=6}; enum InfraTypeEnum{INFRA_TYPE_OPENNN=0,INFRA_TYPE_WOLFENGINE=1}; -enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=6}; +enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=6}; } // namespace nerlnet diff --git a/src_cpp/opennnBridge/nerlWorkerNIF.h b/src_cpp/opennnBridge/nerlWorkerNIF.h index 190c286a..af4a4df8 100644 --- a/src_cpp/opennnBridge/nerlWorkerNIF.h +++ b/src_cpp/opennnBridge/nerlWorkerNIF.h @@ -127,21 +127,24 @@ static ERL_NIF_TERM remove_nerlworker_nif(ErlNifEnv* env, int argc, const ERL_NI } -// static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) -// { -// enum{ARG_MODEL_ID}; -// unsigned long modelId; +/** input - unsigned long modelId + * output - nerltensor that is the acc sum of each label in the last training data_set + * **/ +static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) +{ + enum{ARG_MODEL_ID}; + unsigned long modelId; -// nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); + nifpp::get_throws(env,argv[ARG_MODEL_ID],modelId); -// BridgeController& bridge_controller = BridgeController::GetInstance(); -// std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); -// // assert: the model is a distributed system of federated weighted average classification -// std::vector train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); + BridgeController& bridge_controller = BridgeController::GetInstance(); + std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); + // assert: the model is a distributed system of federated weighted average classification + std::shared_ptr> train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); -// nifpp::str_atom nerltensor_type = "erl_int"; + nifpp::str_atom nerltensor_type = "erl_int"; -// nifpp::TERM nerltensor_tuple; // TODO -// // Return tuple of {nerltensor, nerltensor_type} -// return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int -// } \ No newline at end of file + nifpp::TERM nerltensor_tuple; // TODO + // Return tuple of {nerltensor, nerltensor_type} + return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int +} \ No newline at end of file diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 74a164ad..0119f1f2 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -288,13 +288,27 @@ namespace nerlnet //------------ Distributed System Type ------------ switch (_distributed_system_type) { - case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification + case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification { // TODO Ori - Implement // we need to update _train_labels_count // look at number of output neurons // if this is the first time resize the vector to the number of output neurons // sum columns of labels (assert if num of labels not equal to num of output neurons) + int col_num = _data_set->get_columns_number(); + std::shared_ptr neural_network_ptr = get_neural_network_ptr(); + int num_of_output_neurons = neural_network_ptr->get_outputs_number(); + Tensor selected_column_indices(num_of_output_neurons); + // TODO : add explain the for loop + for(int i =0;iget_columns_data(selected_column_indices) << endl; + Tensor labels = _data_set->get_columns_data(selected_column_indices); + Tensor rowSum = labels.sum(Eigen::array{1}); + cout << labels << "labels" << endl; + cout << rowSum << "rowSum" << endl; + _train_labels_count = std::make_shared>(); break; } default: @@ -779,27 +793,16 @@ namespace nerlnet return res; } - std::vector NerlWorkerOpenNN::get_distributed_system_train_labels_count() - { + std::shared_ptr> NerlWorkerOpenNN::get_distributed_system_train_labels_count() + { switch (_distributed_system_type) { - case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification + case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification { // TODO Ori - implement // Return copy of the vector - int col_num = _data_set->get_columns_number(); - std::shared_ptr neural_network_ptr = get_neural_network_ptr(); - int num_of_output_neurons = neural_network_ptr->get_outputs_number(); - Tensor selected_column_indices(num_of_output_neurons); - for(int i =0;iget_columns_data(selected_column_indices) << endl; - Tensor labels = _data_set->get_columns_data(selected_column_indices); - Tensor rowSum = labels.sum(Eigen::array{1}); - cout << labels << "labels" << endl; - cout << rowSum << "rowSum" << endl; - _train_labels_count = std::make_shared>(); + // make sure - throw error if data_set doesn't exist + return _train_labels_count; break; } default: diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.h b/src_cpp/opennnBridge/nerlWorkerOpenNN.h index 209c7727..f67f733b 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.h +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.h @@ -40,7 +40,7 @@ class NerlWorkerOpenNN : public NerlWorker void set_dataset(std::shared_ptr data_set,fTensor2DPtr TrainDataNNptr); std::shared_ptr get_dataset_ptr() { return _data_set; }; - std::vector get_distributed_system_train_labels_count() override; + std::shared_ptr> get_distributed_system_train_labels_count() override; private: diff --git a/src_cpp/opennnBridge/openNNnif.h b/src_cpp/opennnBridge/openNNnif.h index 9d210120..629f42a5 100644 --- a/src_cpp/opennnBridge/openNNnif.h +++ b/src_cpp/opennnBridge/openNNnif.h @@ -167,8 +167,8 @@ static ErlNifFunc nif_funcs[] = {"new_nerlworker_nif", 13, new_nerlworker_nif}, {"test_nerlworker_nif", 13, test_nerlworker_nif}, {"update_nerlworker_train_params_nif", 6, update_nerlworker_train_params_nif}, - {"remove_nerlworker_nif", 1, remove_nerlworker_nif} - // {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} + {"remove_nerlworker_nif", 1, remove_nerlworker_nif}, + {"get_distributed_system_train_labels_count_nif", 1, get_distributed_system_train_labels_count_nif} }; diff --git a/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl b/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl index 51418fe0..c70194cd 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlNIF.erl @@ -20,7 +20,7 @@ -export([nerltensor_scalar_multiplication_nif/3, nerltensor_scalar_multiplication_erl/2]). % nerlworker nif methods --export([new_nerlworker_nif/13, remove_nerlworker_nif/1, test_nerlworker_nif/13]). +-export([new_nerlworker_nif/13, remove_nerlworker_nif/1, test_nerlworker_nif/13,get_distributed_system_train_labels_count_nif/1]). init() -> NELNET_LIB_PATH = ?NERLNET_PATH++?BUILD_TYPE_RELEASE++"/"++?NERLNET_LIB, @@ -161,8 +161,7 @@ nerltensor_binary_decode(Binary, Type) when erlang:is_binary(Binary) and erlang: NerlTensorListForm. % return the merged list of all supported binary types -get_all_binary_types() -> io:format("HEREEEEE~n"), - ?LIST_BINARY_FLOAT_NERLTENSOR_TYPE ++ ?LIST_BINARY_INT_NERLTENSOR_TYPE. +get_all_binary_types() -> ?LIST_BINARY_FLOAT_NERLTENSOR_TYPE ++ ?LIST_BINARY_INT_NERLTENSOR_TYPE. get_all_nerltensor_list_types() -> ?LIST_GROUP_NERLTENSOR_TYPE. % nerltensor_conversion: % Type is Binary then: Binary (Compressed Form) --> Erlang List @@ -231,4 +230,10 @@ remove_nerlworker_nif(_ModelId) -> %% All of inputs must be binary strings! except for _ModelId which is an integer test_nerlworker_nif(_ModelId,_ModelType, _ModelArgs, _LayersSizes, _LayersTypes, _LayersFunctionalityCodes, _LearningRate, _Epochs, _OptimizerType, _OptimizerArgs, _LossMethod, _DistributedSystemType, _DistributedSystemArgs) -> - exit(nif_library_not_loaded). \ No newline at end of file + exit(nif_library_not_loaded). + +% input - unsigned long modelId +% output - nerltensor that is the acc sum of each label in the last training data_set +% distributed system type should be FedClientWeightedAvgClassification +get_distributed_system_train_labels_count_nif(_ModelId) -> + exit(nif_library_not_loaded). \ No newline at end of file diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index a36a20a0..f8eb4f31 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -90,9 +90,9 @@ run_tests()-> NerlworkerTestName = "nerlworker_test", test_envelope_nif_performance(NerlworkerTestFunc, NerlworkerTestName, length(NeuralNetworkTestingModelList) ), nerltest_print("count label test"), - %CountLabelTestName = "test_count_label", - %CountLabelTestFunc = fun(_Rounds) -> test_count_label_nif() end, - %אest_envelope(CountLabelTestFunc, CountLabelTestName, 1 ), + CountLabelTestName = "test_count_label", + CountLabelTestFunc = fun(_Rounds) -> test_count_label_nif() end, + test_envelope(CountLabelTestFunc, CountLabelTestName, 1 ), nerltest_print("Tests Completed"), ok. @@ -105,8 +105,8 @@ generate_random_list_of_unique_integers(ListSize, Min, Max) -> generate_random_list_of_unique_integers(0, _Min, _Max, List) -> List; generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List) -> - N = Max - Min, - rand:uniform(N) - 1 + Min, % NO ASSIGNMENT (??) + Range = Max - Min, + N = rand:uniform(Range) - 1 + Min, IsMember = lists:is_member(N, List), % O(N) if IsMember -> generate_random_list_of_unique_integers(RemainedNumOfElements, Min, Max, List); @@ -305,47 +305,47 @@ nerlworker_test_generate_data(LayersSizes, LayerTypes, NumOfSamples) -> %% Ask D {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. %test_count_label_nif(_Performance) -> _Performance; -% test_count_label_nif() -> -% ModelId = erlang:unique_integer([positive]), -% ModelType = "0", -% ModelArgs = "", -% LayersFunctionalityCodes = "1,6", -% LearningRate = "0.01", -% Epochs = "50", -% OptimizerType = "2", -% OptimizerArgs = "", -% LossMethod = "2", -% DistributedSystemType = "0", -% DistributedSystemArg = "", -% nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), -% nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), -% lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, -% nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), -% lenData = rand:uniform(lenDataToRand), -% lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, -% lenLabels = rand:uniform(lenLabelsToRand), -% lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, -% lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, -% maxNum = 255, +test_count_label_nif() -> + ModelId = erlang:unique_integer([positive]), + ModelType = "0", + ModelArgs = "", + LayersFunctionalityCodes = "1,6", + LearningRate = "0.01", + Epochs = "50", + OptimizerType = "2", + OptimizerArgs = "", + LossMethod = "2", + DistributedSystemType = "0", + DistributedSystemArg = "", + nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), + nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), + lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), + lenData = rand:uniform(lenDataToRand), + lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + lenLabels = rand:uniform(lenLabelsToRand), + lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + maxNum = 255, -% if -% (lenActualData == lenActualLabels) -> -% lenActualDataIf = lenActualData+1; -% true -> -% lenActualDataIf = lenActualData -% end, -% NumOfSamples = 50, -% dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), -% {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), -% LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], -% LayersTypes = "1,3", -% nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, -% LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, -% OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), -% NerlTensorDataBinTrain = NerlTensor, -% nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), -% nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), -% nerlNIF:remove_nerlworker_nif(ModelId). + if + (lenActualData == lenActualLabels) -> + lenActualDataIf = lenActualData+1; + true -> + lenActualDataIf = lenActualData + end, + NumOfSamples = 50, + dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), + {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), + LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], + LayersTypes = "1,3", + nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, + LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, + OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), + NerlTensorDataBinTrain = NerlTensor, + nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), + nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), + nerlNIF:remove_nerlworker_nif(ModelId). nerlworker_test([], _Performance) -> _Performance; diff --git a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl index 810b81dc..46b5cb67 100644 --- a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl @@ -34,24 +34,24 @@ -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_KEY_ATOM,none). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_KEY_ATOM,fedClientAvg). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_KEY_ATOM,fedServerAvg). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_KEY_ATOM,fedClientWegithedAvgClassification). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_KEY_ATOM,fedServerWegithedAvgClassification). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_KEY_ATOM,fedClientWeightedAvgClassification). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_KEY_ATOM,fedServerWeightedAvgClassification). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_KEY_ATOM,fedClientAE). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_KEY_ATOM,fedServerAE). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX_STR,"0"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX_STR,"1"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX_STR,"2"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_IDX_STR,"3"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_IDX_STR,"4"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX_STR,"3"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX_STR,"4"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX_STR,"5"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX_STR,"6"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX,0). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX,1). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX,2). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEGITHEDAVGCLASSIFICATION_IDX,3). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEGITHEDAVGCLASSIFICATION_IDX,4). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX,3). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX,4). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX,5). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX,6). diff --git a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py index 73ced1bd..13b8c2b3 100644 --- a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py +++ b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py @@ -120,8 +120,8 @@ ("none" , "0"), ("FedClientAvg" , "1"), ("FedServerAvg" , "2"), - ("FedClientWegithedAvgClassification" , "3"), - ("FedServerWegithedAvgClassification" , "4"), + ("FedClientWeightedAvgClassification" , "3"), + ("FedServerWeightedAvgClassification" , "4"), ("FedClientAE" , "5"), ("FedServerAE" , "6") ]) From 8db8d9038940ccfc7ad235960a94c22f2c37ebe2 Mon Sep 17 00:00:00 2001 From: Orisadek Date: Mon, 8 Jul 2024 13:40:50 +0000 Subject: [PATCH 22/30] do right the op, test fail --- src_cpp/common/nerlWorker.cpp | 2 - src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 16 +++++-- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 49 ++++++++++++--------- 3 files changed, 41 insertions(+), 26 deletions(-) diff --git a/src_cpp/common/nerlWorker.cpp b/src_cpp/common/nerlWorker.cpp index 252e55d5..3c721fd5 100644 --- a/src_cpp/common/nerlWorker.cpp +++ b/src_cpp/common/nerlWorker.cpp @@ -43,7 +43,6 @@ std::shared_ptr NerlWorker::parse_layers_input(std::string &layer_siz layer_types_vec[i] = std::stoi(layer_types_strs_vec[i]); } std::vector layer_sizes_params; - parse_layer_sizes_str(layer_sizes_str, layer_types_vec, layer_sizes_params); std::vector> nerl_layers_vec; nerl_layers_vec.resize(layer_sizes_params.size()); @@ -52,7 +51,6 @@ std::shared_ptr NerlWorker::parse_layers_input(std::string &layer_siz int layer_type = std::stoi(layer_types_strs_vec[i]); int layer_size = layer_sizes_params[i].dimx; int layer_functionality = std::stoi(layers_functionality_strs_vec[i]); - std::vector layer_dims = {layer_sizes_params[i].dimx, layer_sizes_params[i].dimy,layer_sizes_params[i].dimz}; diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 0119f1f2..83f77210 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -305,10 +305,17 @@ namespace nerlnet } cout << _data_set->get_columns_data(selected_column_indices) << endl; Tensor labels = _data_set->get_columns_data(selected_column_indices); - Tensor rowSum = labels.sum(Eigen::array{1}); - cout << labels << "labels" << endl; - cout << rowSum << "rowSum" << endl; - _train_labels_count = std::make_shared>(); + Tensor rowSum = labels.sum(Eigen::array{0}); + cout << labels << " labels " << labels.size() << " size " << endl; + cout << rowSum << " rowSum " << rowSum.size() << " size " << endl; + cout << rowSum.data() << " rowSum data " << endl; + std::vector rowSumVec; + size_t tensorSize = rowSum.size(); + float* tensorData = rowSum.data(); + for (size_t i = 0; i < tensorSize; ++i) { + rowSumVec.push_back(tensorData[i]); + } + _train_labels_count = std::make_shared>(rowSumVec); break; } default: @@ -802,6 +809,7 @@ namespace nerlnet // TODO Ori - implement // Return copy of the vector // make sure - throw error if data_set doesn't exist + std::cout << "get_distributed_system_train_labels_count" << std::endl; return _train_labels_count; break; } diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index f8eb4f31..c1e4416c 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -210,7 +210,7 @@ sum_nerltensors_lists_test(Type, N, Performance) -> encode_decode_nifs_test(0, _Res, Performance) -> Performance ; encode_decode_nifs_test(N, Res, Performance) -> - io:format("GOT HERE~n"), + %io:format("GOT HERE~n"), EncodeType = random_pick_nerltensor_type(), NerlTensor = generate_nerltensor_rand_dims(EncodeType), Tic = nerl:tic(), @@ -315,35 +315,43 @@ test_count_label_nif() -> OptimizerType = "2", OptimizerArgs = "", LossMethod = "2", - DistributedSystemType = "0", + DistributedSystemType = "3", DistributedSystemArg = "", - nerltest_print(nerl:string_format("DATA_DIM_X ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), - nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p ~n",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), - lenDataToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, - nerltest_print(nerl:string_format("lenDataToRand ~p ~n",[lenDataToRand])), - lenData = rand:uniform(lenDataToRand), - lenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - lenLabels = rand:uniform(lenLabelsToRand), - lenActualData = lenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, - lenActualLabels = lenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - maxNum = 255, + nerltest_print(nerl:string_format("DATA_DIM_X ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), + nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), + DimMaxDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X, + DimMinDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + LenDataToRand = DimMaxDimX - DimMinDimX, + nerltest_print(nerl:string_format("lenDataToRand ~p",[LenDataToRand])), + LenData = rand:uniform(LenDataToRand), + LenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + LenLabels = rand:uniform(LenLabelsToRand), + LenActualData = LenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, + LenActualLabels = LenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, + nerltest_print(nerl:string_format("LenActualData ~p",[LenActualData])), + nerltest_print(nerl:string_format("LenActualLabels ~p",[LenActualLabels])), + + MaxNum = 255, if - (lenActualData == lenActualLabels) -> - lenActualDataIf = lenActualData+1; + (LenActualData == LenActualLabels) -> + LenActualDataIf = LenActualData+1; true -> - lenActualDataIf = lenActualData + LenActualDataIf = LenActualData end, NumOfSamples = 50, - dataRand = generate_nerltensor(float,NumOfSamples,lenActualDataIf,1), - {NerlTensor , _Type} = nerlNIF:nerltensor_conversion({dataRand,erl_float} , float), - LayersSizes = [lenActualDataIf-lenActualLabels,lenActualLabels], + DataRand = generate_nerltensor(float,NumOfSamples,LenActualDataIf,1), + NerlTensor = DataRand, + LayersSizes = nerl:string_format("~p,~p",[LenActualDataIf-LenActualLabels,LenActualLabels]), LayersTypes = "1,3", + nerltest_print("before test_nerlworker_nif"), nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), - NerlTensorDataBinTrain = NerlTensor, - nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , erl_float), + nerltest_print("before train_nif"), + {NerlTensorDataBinTrain , Type} = nerlNIF:nerltensor_conversion({NerlTensor,erl_float} , float), + nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , Type), + nerltest_print("before get_distributed_system_train_labels_count_nif"), nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), nerlNIF:remove_nerlworker_nif(ModelId). @@ -364,6 +372,7 @@ nerlworker_test([CurrentModel | Tail], Performance) -> OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), NumOfSamples = 500, {NerlTensorDataBin , NerlTensorDataBinType , NerlTensorDataErl , NerlTensorDataErlType , NumOfFeatures , _NumOfLabels} = nerlworker_test_generate_data(LayersSizes, LayersTypes, NumOfSamples), + % {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. if (ModelType == ?MODEL_TYPE_AUTOENCODER_IDX) or (ModelType == ?MODEL_TYPE_AE_CLASSIFIER_IDX) -> %% AE or AEC {DataTensorErlFeatures , _DataTensorErlLabels} = nerlTensor:split_cols_erl_tensor(NerlTensorDataErl , NerlTensorDataErlType , NumOfFeatures), From 7e4fc1b05f453f1aed37c82bf4a5167422ef8e7f Mon Sep 17 00:00:00 2001 From: Orisadek Date: Mon, 8 Jul 2024 13:40:58 +0000 Subject: [PATCH 23/30] test works --- src_cpp/opennnBridge/nerlWorkerNIF.h | 17 ++++++++++++--- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 4 ---- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 24 ++++++++++----------- 3 files changed, 26 insertions(+), 19 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerNIF.h b/src_cpp/opennnBridge/nerlWorkerNIF.h index af4a4df8..9e04fcb9 100644 --- a/src_cpp/opennnBridge/nerlWorkerNIF.h +++ b/src_cpp/opennnBridge/nerlWorkerNIF.h @@ -141,10 +141,21 @@ static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); // assert: the model is a distributed system of federated weighted average classification std::shared_ptr> train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); - nifpp::str_atom nerltensor_type = "erl_int"; - - nifpp::TERM nerltensor_tuple; // TODO + fTensor1DPtr train_labels_count_tesnsor_ptr; + nifpp::TERM term_label_count; + std::tuple nerltensor_tuple; + + train_labels_count_tesnsor_ptr = std::make_shared(train_labels_count->size()); + for(int i = 0; i < train_labels_count->size(); i++) + { + int val = (*train_labels_count)[i]; + train_labels_count_tesnsor_ptr->data()[i] = val; + std::cout << "train_labels_count->data()[i] = " << train_labels_count->data()[i] << std::endl; + } + std::cout << "train_labels_count->data = " << train_labels_count->data() << std::endl; + nifpp::make_tensor_1d(env, term_label_count, train_labels_count_tesnsor_ptr); //binary tensor + nerltensor_tuple = { term_label_count , nifpp::make(env, nerltensor_type) }; // Return tuple of {nerltensor, nerltensor_type} return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int } \ No newline at end of file diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 83f77210..89aa9c1d 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -303,12 +303,8 @@ namespace nerlnet for(int i =0;iget_columns_data(selected_column_indices) << endl; Tensor labels = _data_set->get_columns_data(selected_column_indices); Tensor rowSum = labels.sum(Eigen::array{0}); - cout << labels << " labels " << labels.size() << " size " << endl; - cout << rowSum << " rowSum " << rowSum.size() << " size " << endl; - cout << rowSum.data() << " rowSum data " << endl; std::vector rowSumVec; size_t tensorSize = rowSum.size(); float* tensorData = rowSum.data(); diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index c1e4416c..b2af14ac 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -317,22 +317,19 @@ test_count_label_nif() -> LossMethod = "2", DistributedSystemType = "3", DistributedSystemArg = "", - nerltest_print(nerl:string_format("DATA_DIM_X ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), - nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), + % nerltest_print(nerl:string_format("DATA_DIM_X ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), + %nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), DimMaxDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X, DimMinDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, LenDataToRand = DimMaxDimX - DimMinDimX, - nerltest_print(nerl:string_format("lenDataToRand ~p",[LenDataToRand])), + %nerltest_print(nerl:string_format("lenDataToRand ~p",[LenDataToRand])), LenData = rand:uniform(LenDataToRand), LenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, LenLabels = rand:uniform(LenLabelsToRand), LenActualData = LenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, LenActualLabels = LenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - nerltest_print(nerl:string_format("LenActualData ~p",[LenActualData])), - nerltest_print(nerl:string_format("LenActualLabels ~p",[LenActualLabels])), + io:format("LenActualData ~p~n LenActualLabels ~p~n",[LenActualData, LenActualLabels]), - MaxNum = 255, - if (LenActualData == LenActualLabels) -> LenActualDataIf = LenActualData+1; @@ -344,16 +341,19 @@ test_count_label_nif() -> NerlTensor = DataRand, LayersSizes = nerl:string_format("~p,~p",[LenActualDataIf-LenActualLabels,LenActualLabels]), LayersTypes = "1,3", - nerltest_print("before test_nerlworker_nif"), + io:format("before test_nerlworker_nif ~n"), nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), - nerltest_print("before train_nif"), + io:format("before train_nif ~n"), {NerlTensorDataBinTrain , Type} = nerlNIF:nerltensor_conversion({NerlTensor,erl_float} , float), nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , Type), - nerltest_print("before get_distributed_system_train_labels_count_nif"), - nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), - nerlNIF:remove_nerlworker_nif(ModelId). + io:format("before get_distributed_system_train_labels_count_nif ~n"), + LabelCount = nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), + io:format("before remove_nerlworker_nif ~n"), + nerlNIF:remove_nerlworker_nif(ModelId), + io:format("finished test ~n"). + nerlworker_test([], _Performance) -> _Performance; From 941e9da2a10809d12c5747351439b977e2e01939 Mon Sep 17 00:00:00 2001 From: Orisadek Date: Mon, 8 Jul 2024 13:41:04 +0000 Subject: [PATCH 24/30] fix requests --- src_cpp/opennnBridge/nerlWorkerNIF.h | 8 ++-- src_cpp/opennnBridge/nerlWorkerOpenNN.cpp | 25 ++++++------ src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 43 ++++++++++++--------- 3 files changed, 39 insertions(+), 37 deletions(-) diff --git a/src_cpp/opennnBridge/nerlWorkerNIF.h b/src_cpp/opennnBridge/nerlWorkerNIF.h index 9e04fcb9..43167ef0 100644 --- a/src_cpp/opennnBridge/nerlWorkerNIF.h +++ b/src_cpp/opennnBridge/nerlWorkerNIF.h @@ -141,7 +141,7 @@ static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env std::shared_ptr nerl_worker_ptr = std::static_pointer_cast(bridge_controller.getModelPtr(modelId)); // assert: the model is a distributed system of federated weighted average classification std::shared_ptr> train_labels_count = nerl_worker_ptr->get_distributed_system_train_labels_count(); - nifpp::str_atom nerltensor_type = "erl_int"; + nifpp::str_atom nerltensor_type = "erl_float"; fTensor1DPtr train_labels_count_tesnsor_ptr; nifpp::TERM term_label_count; std::tuple nerltensor_tuple; @@ -149,12 +149,10 @@ static ERL_NIF_TERM get_distributed_system_train_labels_count_nif(ErlNifEnv* env train_labels_count_tesnsor_ptr = std::make_shared(train_labels_count->size()); for(int i = 0; i < train_labels_count->size(); i++) { - int val = (*train_labels_count)[i]; + float val = (*train_labels_count)[i]; train_labels_count_tesnsor_ptr->data()[i] = val; - std::cout << "train_labels_count->data()[i] = " << train_labels_count->data()[i] << std::endl; } - std::cout << "train_labels_count->data = " << train_labels_count->data() << std::endl; - nifpp::make_tensor_1d(env, term_label_count, train_labels_count_tesnsor_ptr); //binary tensor + nifpp::make_tensor_1d(env, term_label_count, train_labels_count_tesnsor_ptr); //binary tensor nerltensor_tuple = { term_label_count , nifpp::make(env, nerltensor_type) }; // Return tuple of {nerltensor, nerltensor_type} return nifpp::make(env, nerltensor_tuple); // returns NerlTensor erl_int diff --git a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp index 89aa9c1d..b65fed2c 100644 --- a/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp +++ b/src_cpp/opennnBridge/nerlWorkerOpenNN.cpp @@ -290,26 +290,22 @@ namespace nerlnet { case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification { - // TODO Ori - Implement - // we need to update _train_labels_count - // look at number of output neurons - // if this is the first time resize the vector to the number of output neurons - // sum columns of labels (assert if num of labels not equal to num of output neurons) int col_num = _data_set->get_columns_number(); - std::shared_ptr neural_network_ptr = get_neural_network_ptr(); - int num_of_output_neurons = neural_network_ptr->get_outputs_number(); + int num_of_output_neurons = _neural_network_ptr->get_outputs_number(); Tensor selected_column_indices(num_of_output_neurons); - // TODO : add explain the for loop + // selected_column_indices is the indices of the labels, it's wrote + // like that because there is a meaning to the order of the labels + // it's used in get_columns_data to get the labels (last columns in the data set) for(int i =0;i labels = _data_set->get_columns_data(selected_column_indices); - Tensor rowSum = labels.sum(Eigen::array{0}); + Tensor rowSum = labels.sum(Eigen::array{0}); // sum of the rows - each col is labels , each row is a sample std::vector rowSumVec; size_t tensorSize = rowSum.size(); float* tensorData = rowSum.data(); for (size_t i = 0; i < tensorSize; ++i) { - rowSumVec.push_back(tensorData[i]); + rowSumVec.push_back(tensorData[i]); // copy the data to the vector from tensor } _train_labels_count = std::make_shared>(rowSumVec); break; @@ -802,10 +798,11 @@ namespace nerlnet { case WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION: // Federated Client Weighted Average Classification { - // TODO Ori - implement - // Return copy of the vector - // make sure - throw error if data_set doesn't exist - std::cout << "get_distributed_system_train_labels_count" << std::endl; + if (_data_set == nullptr) + { + LogError("NerlWorkerOpenNN::generate_custom_model_nn - _data_set is nullptr"); + throw std::invalid_argument("NerlWorkerOpenNN::generate_custom_model_nn - _data_set is nullptr"); + } return _train_labels_count; break; } diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index b2af14ac..d76cde0d 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -38,6 +38,7 @@ nerltest_print(String) -> -define(NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, 5). -define(NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y, 20). -define(NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_TOTAL_TRUE_LABELS, 20). +-define(TEST_LABEL_COUNT_NUMOF_SAMPLES,50). test_envelope(Func, TestName, Rounds) -> nerltest_print(nerl:string_format("~p test starts for ~p rounds",[TestName, Rounds])), @@ -304,7 +305,6 @@ nerlworker_test_generate_data(LayersSizes, LayerTypes, NumOfSamples) -> %% Ask D {NerlTensor , Type} = nerlNIF:nerltensor_conversion({ErlDataTensor,erl_float} , float), {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. -%test_count_label_nif(_Performance) -> _Performance; test_count_label_nif() -> ModelId = erlang:unique_integer([positive]), ModelType = "0", @@ -317,45 +317,52 @@ test_count_label_nif() -> LossMethod = "2", DistributedSystemType = "3", DistributedSystemArg = "", - % nerltest_print(nerl:string_format("DATA_DIM_X ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X])), - %nerltest_print(nerl:string_format("DATA_DIM_X 2 ~p",[?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X])), DimMaxDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X, DimMinDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, LenDataToRand = DimMaxDimX - DimMinDimX, - %nerltest_print(nerl:string_format("lenDataToRand ~p",[LenDataToRand])), LenData = rand:uniform(LenDataToRand), LenLabelsToRand = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_Y-?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, LenLabels = rand:uniform(LenLabelsToRand), LenActualData = LenData + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, LenActualLabels = LenLabels + ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_Y, - io:format("LenActualData ~p~n LenActualLabels ~p~n",[LenActualData, LenActualLabels]), if (LenActualData == LenActualLabels) -> - LenActualDataIf = LenActualData+1; + LenActualDataIf = LenActualData + 1; true -> LenActualDataIf = LenActualData end, - NumOfSamples = 50, - DataRand = generate_nerltensor(float,NumOfSamples,LenActualDataIf,1), - NerlTensor = DataRand, + DataRand = generate_nerltensor(float,?TEST_LABEL_COUNT_NUMOF_SAMPLES,LenActualDataIf,1), LayersSizes = nerl:string_format("~p,~p",[LenActualDataIf-LenActualLabels,LenActualLabels]), LayersTypes = "1,3", - io:format("before test_nerlworker_nif ~n"), nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), - io:format("before train_nif ~n"), - {NerlTensorDataBinTrain , Type} = nerlNIF:nerltensor_conversion({NerlTensor,erl_float} , float), + {NerlTensorDataBinTrain , Type} = nerlNIF:nerltensor_conversion({DataRand,erl_float} , float), nerlNIF:train_nif(ModelId , NerlTensorDataBinTrain , Type), - io:format("before get_distributed_system_train_labels_count_nif ~n"), - LabelCount = nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), - io:format("before remove_nerlworker_nif ~n"), - nerlNIF:remove_nerlworker_nif(ModelId), - io:format("finished test ~n"). - + {LabelCount,_} = nerlNIF:get_distributed_system_train_labels_count_nif(ModelId), + {LabelCountFloat , _} = nerlNIF:nerltensor_conversion({LabelCount,float} , erl_float), + SumInit = lists:duplicate(LenActualLabels, 0), + {_,DataRandRes} = lists:split(3, DataRand), + Sum = get_label_count(LenActualLabels,LenActualDataIf,SumInit,DataRandRes,0) , + {_,LabelCountRes} = lists:split(3, LabelCountFloat), + if + (Sum == LabelCountRes) -> nerltest_print("Label count test passed"); + true -> throw(nerl:string_format("Label count test failed ~n Sum: ~p ~n LabelCount: ~p",[Sum,LabelCountRes])) + end, + nerlNIF:remove_nerlworker_nif(ModelId). +get_label_count(LenLabel,LenData,Sum,Data,N) -> + if + (N == ?TEST_LABEL_COUNT_NUMOF_SAMPLES) -> [math:floor(X) || X <- Sum]; + true -> + {DataN,DataNext} = lists:split(LenData, Data), + {_,DataL} =lists:split(LenData-LenLabel,DataN) , + SumN = lists:zipwith(fun(X, Y) -> X + Y end, Sum, DataL), + get_label_count(LenLabel,LenData,SumN,DataNext,N+1) + end. + nerlworker_test([], _Performance) -> _Performance; nerlworker_test([CurrentModel | Tail], Performance) -> {ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, LayersFunctionalityCodes, From d2a63cb22fe89b2684d4a7dc195b6cca500477c9 Mon Sep 17 00:00:00 2001 From: leondavi Date: Fri, 12 Jul 2024 16:38:28 +0300 Subject: [PATCH 25/30] [NERLPLANNER] add distributed type tiles - Fix issue that tokens is not saved as Ori reported --- src_cpp/common/worker_definitions_ag.h | 2 +- .../src/Client/clientWorkersFunctions.erl | 3 +++ .../NerlnetApp/src/worker_definitions_ag.hrl | 27 ++++++++++--------- .../JsonElementWorkerDefinitions.py | 13 ++++----- 4 files changed, 26 insertions(+), 19 deletions(-) diff --git a/src_cpp/common/worker_definitions_ag.h b/src_cpp/common/worker_definitions_ag.h index b9118bfa..3117b7f5 100644 --- a/src_cpp/common/worker_definitions_ag.h +++ b/src_cpp/common/worker_definitions_ag.h @@ -17,6 +17,6 @@ enum ModelTypeEnum{MODEL_TYPE_NN=0,MODEL_TYPE_APPROXIMATION=1,MODEL_TYPE_CLASSIF enum OptimizerEnum{OPTIMIZER_GD=0,OPTIMIZER_CGD=1,OPTIMIZER_SGD=2,OPTIMIZER_QUASINEUTON=3,OPTIMIZER_LVM=4,OPTIMIZER_ADAM=5}; enum LossMethodEnum{LOSS_METHOD_SSE=1,LOSS_METHOD_MSE=2,LOSS_METHOD_NSE=3,LOSS_METHOD_MINKOWSKIE=4,LOSS_METHOD_WSE=5,LOSS_METHOD_CEE=6}; enum InfraTypeEnum{INFRA_TYPE_OPENNN=0,INFRA_TYPE_WOLFENGINE=1}; -enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=6}; +enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_TILES=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=6,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=7}; } // namespace nerlnet diff --git a/src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl b/src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl index c654b49e..bb07e595 100644 --- a/src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl +++ b/src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl @@ -10,6 +10,9 @@ get_distributed_worker_behavior(ClientEtsRef, DistributedSystemType , WorkerName , DistributedSystemArgs , DistributedSystemToken) -> case DistributedSystemType of + ?DC_DISTRIBUTED_SYSTEM_TYPE_TILES_KEY_ATOM -> + DistributedBehaviorFunc = fun workerNN:controller/2, + DistributedWorkerData = {tiles, DistributedSystemArgs, DistributedSystemToken}; ?DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX_STR -> DistributedBehaviorFunc = fun workerNN:controller/2, DistributedWorkerData = none; diff --git a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl index 1088f10e..839aff77 100644 --- a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl @@ -32,6 +32,7 @@ -define(WORKER_FIELD_KEY_DISTRIBUTED_SYSTEM_ARGS_BIN,<<"distributedSystemArgs">>). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_KEY_ATOM,none). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_KEY_ATOM,tiles). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_KEY_ATOM,fedClientAvg). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_KEY_ATOM,fedServerAvg). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_KEY_ATOM,fedClientWeightedAvgClassification). @@ -40,20 +41,22 @@ -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_KEY_ATOM,fedServerAE). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX_STR,"0"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX_STR,"1"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX_STR,"2"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX_STR,"3"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX_STR,"4"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX_STR,"5"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX_STR,"6"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_IDX_STR,"1"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX_STR,"2"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX_STR,"3"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX_STR,"4"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX_STR,"5"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX_STR,"6"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX_STR,"7"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX,0). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX,1). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX,2). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX,3). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX,4). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX,5). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX,6). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_IDX,1). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX,2). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX,3). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX,4). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX,5). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX,6). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX,7). -define(DC_INFRA_TYPE_OPENNN_KEY_ATOM,opennn). -define(DC_INFRA_TYPE_WOLFENGINE_KEY_ATOM,wolfengine). diff --git a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py index 13b8c2b3..3e7bc405 100644 --- a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py +++ b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py @@ -118,12 +118,13 @@ DistributedSystemTypeMapping = OrderedDict([ ("none" , "0"), - ("FedClientAvg" , "1"), - ("FedServerAvg" , "2"), - ("FedClientWeightedAvgClassification" , "3"), - ("FedServerWeightedAvgClassification" , "4"), - ("FedClientAE" , "5"), - ("FedServerAE" , "6") + ("tiles", "1"), + ("FedClientAvg" , "2"), + ("FedServerAvg" , "3"), + ("FedClientWeightedAvgClassification" , "4"), + ("FedServerWeightedAvgClassification" , "5"), + ("FedClientAE" , "6"), + ("FedServerAE" , "7") ]) InfraTypeMapping = OrderedDict([ From 92598759e30ddced2dc43de8d9119cac2a4de952 Mon Sep 17 00:00:00 2001 From: leondavi Date: Fri, 12 Jul 2024 17:10:15 +0300 Subject: [PATCH 26/30] [NIFTEST] Issues were found --- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 19 +++++++++++-------- tests/NerlnetNifTest.sh | 3 ++- 2 files changed, 13 insertions(+), 9 deletions(-) diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index d76cde0d..16a67fd9 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -90,9 +90,9 @@ run_tests()-> NerlworkerTestFunc = fun(_Rounds) -> Performance = 0, nerlworker_test(NeuralNetworkTestingModelList, Performance) end, NerlworkerTestName = "nerlworker_test", test_envelope_nif_performance(NerlworkerTestFunc, NerlworkerTestName, length(NeuralNetworkTestingModelList) ), - nerltest_print("count label test"), + CountLabelTestName = "test_count_label", - CountLabelTestFunc = fun(_Rounds) -> test_count_label_nif() end, + CountLabelTestFunc = fun(_Rounds) -> count_label_nif_test() end, test_envelope(CountLabelTestFunc, CountLabelTestName, 1 ), nerltest_print("Tests Completed"), ok. @@ -305,7 +305,10 @@ nerlworker_test_generate_data(LayersSizes, LayerTypes, NumOfSamples) -> %% Ask D {NerlTensor , Type} = nerlNIF:nerltensor_conversion({ErlDataTensor,erl_float} , float), {NerlTensor , Type , ErlDataTensor , erl_float , NumOfFeatures , NumOfLabels}. -test_count_label_nif() -> +count_label_nif_test() -> + % TODO - Ori please move the network configuration to neural_networks_testing_models.hrl + % Please add performance evaluation - Run this test 10-20 rounds and accumulate performance of nif + % By adding tic toc before and after the NIF ModelId = erlang:unique_integer([positive]), ModelType = "0", ModelArgs = "", @@ -315,7 +318,7 @@ test_count_label_nif() -> OptimizerType = "2", OptimizerArgs = "", LossMethod = "2", - DistributedSystemType = "3", + DistributedSystemType = "4", % TODO this should be derived from AG macro DistributedSystemArg = "", DimMaxDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X, DimMinDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X, @@ -333,8 +336,8 @@ test_count_label_nif() -> LenActualDataIf = LenActualData end, DataRand = generate_nerltensor(float,?TEST_LABEL_COUNT_NUMOF_SAMPLES,LenActualDataIf,1), - LayersSizes = nerl:string_format("~p,~p",[LenActualDataIf-LenActualLabels,LenActualLabels]), - LayersTypes = "1,3", + LayersSizes = nerl:string_format("~p,~p",[LenActualDataIf-LenActualLabels,LenActualLabels]), + LayersTypes = "1,3",% Please move it to neural_networks_testing_models.hrl as part of NN configuration nerlNIF:test_nerlworker_nif(ModelId,ModelType,ModelArgs,LayersSizes, LayersTypes, LayersFunctionalityCodes, LearningRate, Epochs, OptimizerType, OptimizerArgs, LossMethod, DistributedSystemType, DistributedSystemArg), @@ -346,11 +349,11 @@ test_count_label_nif() -> {_,DataRandRes} = lists:split(3, DataRand), Sum = get_label_count(LenActualLabels,LenActualDataIf,SumInit,DataRandRes,0) , {_,LabelCountRes} = lists:split(3, LabelCountFloat), + nerlNIF:remove_nerlworker_nif(ModelId), if (Sum == LabelCountRes) -> nerltest_print("Label count test passed"); true -> throw(nerl:string_format("Label count test failed ~n Sum: ~p ~n LabelCount: ~p",[Sum,LabelCountRes])) - end, - nerlNIF:remove_nerlworker_nif(ModelId). + end. get_label_count(LenLabel,LenData,Sum,Data,N) -> diff --git a/tests/NerlnetNifTest.sh b/tests/NerlnetNifTest.sh index e23a1cce..cca2690f 100755 --- a/tests/NerlnetNifTest.sh +++ b/tests/NerlnetNifTest.sh @@ -56,9 +56,10 @@ COMPILE_NERLTENSOR="compile:file(\"nerlTensor.erl\")" COMPILE_FILES="$COMPILE_NERL,$COMPILE_NERLNIF,$COMPILE_NERLTEST,$COMPILE_NERLTENSOR" -erl -noshell -eval "$COMPILE_FILES, nerlTests:run_tests()." -s init stop > "$NERLNET_TEST_DIR/$LOG_FILE" #TODO fix +erl -noshell -eval "$COMPILE_FILES, nerlTests:run_tests()." -s init stop > "$NERLNET_TEST_DIR/$LOG_FILE" rc=$(echo $?) cat "$NERLNET_TEST_DIR/$LOG_FILE" cd - +echo "Test returned: $rc" exit $rc From 5c49a93738625284379af939a2c3498df35759aa Mon Sep 17 00:00:00 2001 From: GuyPerets106 Date: Fri, 12 Jul 2024 14:35:22 +0000 Subject: [PATCH 27/30] [TILES_KEY] Changed to IDX instead of KEY_ATOM --- src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl b/src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl index bb07e595..2d1a2119 100644 --- a/src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl +++ b/src_erl/NerlnetApp/src/Client/clientWorkersFunctions.erl @@ -10,7 +10,7 @@ get_distributed_worker_behavior(ClientEtsRef, DistributedSystemType , WorkerName , DistributedSystemArgs , DistributedSystemToken) -> case DistributedSystemType of - ?DC_DISTRIBUTED_SYSTEM_TYPE_TILES_KEY_ATOM -> + ?DC_DISTRIBUTED_SYSTEM_TYPE_TILES_IDX_STR -> DistributedBehaviorFunc = fun workerNN:controller/2, DistributedWorkerData = {tiles, DistributedSystemArgs, DistributedSystemToken}; ?DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX_STR -> From 8ff4f338cfb9c4a49f9511da2ddcc1f86c4c86b9 Mon Sep 17 00:00:00 2001 From: GuyPerets106 Date: Fri, 12 Jul 2024 19:54:25 +0000 Subject: [PATCH 28/30] tiles move the last index --- src_py/nerlPlanner/JsonElementWorkerDefinitions.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py index 3e7bc405..b427057d 100644 --- a/src_py/nerlPlanner/JsonElementWorkerDefinitions.py +++ b/src_py/nerlPlanner/JsonElementWorkerDefinitions.py @@ -118,13 +118,13 @@ DistributedSystemTypeMapping = OrderedDict([ ("none" , "0"), - ("tiles", "1"), - ("FedClientAvg" , "2"), - ("FedServerAvg" , "3"), - ("FedClientWeightedAvgClassification" , "4"), - ("FedServerWeightedAvgClassification" , "5"), - ("FedClientAE" , "6"), - ("FedServerAE" , "7") + ("FedClientAvg" , "1"), + ("FedServerAvg" , "2"), + ("FedClientWeightedAvgClassification" , "3"), + ("FedServerWeightedAvgClassification" , "4"), + ("FedClientAE" , "5"), + ("FedServerAE" , "6"), + ("tiles", "7") ]) InfraTypeMapping = OrderedDict([ From 2a889a0cf7f3ec8524403a9f1a349dc50792196b Mon Sep 17 00:00:00 2001 From: GuyPerets106 Date: Fri, 12 Jul 2024 19:56:17 +0000 Subject: [PATCH 29/30] After build updated files --- src_cpp/common/worker_definitions_ag.h | 2 +- .../NerlnetApp/src/worker_definitions_ag.hrl | 30 +++++++++---------- 2 files changed, 16 insertions(+), 16 deletions(-) diff --git a/src_cpp/common/worker_definitions_ag.h b/src_cpp/common/worker_definitions_ag.h index 3117b7f5..a690953a 100644 --- a/src_cpp/common/worker_definitions_ag.h +++ b/src_cpp/common/worker_definitions_ag.h @@ -17,6 +17,6 @@ enum ModelTypeEnum{MODEL_TYPE_NN=0,MODEL_TYPE_APPROXIMATION=1,MODEL_TYPE_CLASSIF enum OptimizerEnum{OPTIMIZER_GD=0,OPTIMIZER_CGD=1,OPTIMIZER_SGD=2,OPTIMIZER_QUASINEUTON=3,OPTIMIZER_LVM=4,OPTIMIZER_ADAM=5}; enum LossMethodEnum{LOSS_METHOD_SSE=1,LOSS_METHOD_MSE=2,LOSS_METHOD_NSE=3,LOSS_METHOD_MINKOWSKIE=4,LOSS_METHOD_WSE=5,LOSS_METHOD_CEE=6}; enum InfraTypeEnum{INFRA_TYPE_OPENNN=0,INFRA_TYPE_WOLFENGINE=1}; -enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_TILES=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=6,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=7}; +enum WorkerDistributedSystemTypeEnum{WORKER_DISTRIBUTED_SYSTEM_TYPE_NONE=0,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG=1,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG=2,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION=3,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION=4,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE=5,WORKER_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE=6,WORKER_DISTRIBUTED_SYSTEM_TYPE_TILES=7}; } // namespace nerlnet diff --git a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl index 839aff77..755cd20d 100644 --- a/src_erl/NerlnetApp/src/worker_definitions_ag.hrl +++ b/src_erl/NerlnetApp/src/worker_definitions_ag.hrl @@ -32,31 +32,31 @@ -define(WORKER_FIELD_KEY_DISTRIBUTED_SYSTEM_ARGS_BIN,<<"distributedSystemArgs">>). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_KEY_ATOM,none). --define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_KEY_ATOM,tiles). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_KEY_ATOM,fedClientAvg). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_KEY_ATOM,fedServerAvg). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_KEY_ATOM,fedClientWeightedAvgClassification). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_KEY_ATOM,fedServerWeightedAvgClassification). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_KEY_ATOM,fedClientAE). -define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_KEY_ATOM,fedServerAE). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_KEY_ATOM,tiles). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX_STR,"0"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_IDX_STR,"1"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX_STR,"2"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX_STR,"3"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX_STR,"4"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX_STR,"5"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX_STR,"6"). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX_STR,"7"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX_STR,"1"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX_STR,"2"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX_STR,"3"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX_STR,"4"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX_STR,"5"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX_STR,"6"). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_IDX_STR,"7"). -define(DC_DISTRIBUTED_SYSTEM_TYPE_NONE_IDX,0). --define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_IDX,1). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX,2). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX,3). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX,4). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX,5). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX,6). --define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX,7). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAVG_IDX,1). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAVG_IDX,2). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTWEIGHTEDAVGCLASSIFICATION_IDX,3). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERWEIGHTEDAVGCLASSIFICATION_IDX,4). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDCLIENTAE_IDX,5). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_FEDSERVERAE_IDX,6). +-define(DC_DISTRIBUTED_SYSTEM_TYPE_TILES_IDX,7). -define(DC_INFRA_TYPE_OPENNN_KEY_ATOM,opennn). -define(DC_INFRA_TYPE_WOLFENGINE_KEY_ATOM,wolfengine). From 9dbc55b615bed5a8571574882438bb6db135867e Mon Sep 17 00:00:00 2001 From: GuyPerets106 Date: Fri, 12 Jul 2024 20:05:16 +0000 Subject: [PATCH 30/30] Fixed distributed type back to 3 --- src_erl/NerlnetApp/src/Bridge/nerlTests.erl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl index 16a67fd9..3e17c5cb 100644 --- a/src_erl/NerlnetApp/src/Bridge/nerlTests.erl +++ b/src_erl/NerlnetApp/src/Bridge/nerlTests.erl @@ -318,7 +318,7 @@ count_label_nif_test() -> OptimizerType = "2", OptimizerArgs = "", LossMethod = "2", - DistributedSystemType = "4", % TODO this should be derived from AG macro + DistributedSystemType = "3", % TODO this should be derived from AG macro DistributedSystemArg = "", DimMaxDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_DIM_X, DimMinDimX = ?NERLWORKER_DISTRIBUTED_FED_WEIGHTED_AVG_CLASSIFIER_DATA_MIN_DIM_X,