-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhs_affreg_multigrid.py
253 lines (197 loc) · 10.2 KB
/
hs_affreg_multigrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import numpy as np
import odl
import functionals as fctls
import algorithms as algs
import operators as ops
import matplotlib.pyplot as plt
from skimage.metrics import structural_similarity as ssim
import deform as defm
import os
#%%
# Model parameters
phi = 0.1 # rotation between side info and data
shift = [0.06 , -0.04] # shift between side info and data
deformations = ['rigid','shear','nonlinear'] # type of deformation
colormap = 'viridis' # 'gnist_ncar', 'viridis', 'nipy_spectral'
# Algorithmic parameters
save2Disk = True
niter = [10, 20, 50, 100, 200, 500] # number of PALM iterations per resolution
factors = [0.25,0.5,1,2,4]
margin = 10 # for data creation
data_aligned = False
use_sinfo = True
ud_vars = [0,1]
# Vectorfield parameters
gamma = 0.9995
eta = 1e-2
# Define reconstruction settings
settings = ['tv_recon', 'dtv_noreg_recon','target_recon','dtv_affreg_recon']
data_folder = '../data'
data_fnames = ['urban_ch3_0-100x100-200']
output_folder = '../results'
for data_fname in data_fnames:
for deformation in deformations:
if deformation != 'rigid':
settings = [settings[-1]]
for setting in settings:
if setting == 'tv_recon':
use_sinfo = False
ud_vars = [0]
alpha = 1e-5
elif setting == 'dtv_noreg_recon':
use_sinfo = True
ud_vars = [0]
alpha = 1e-3
elif setting == 'target_recon':
use_sinfo = True
ud_vars = [0,1]
alpha = 1e-3
data_aligned = True
elif setting == 'dtv_affreg_recon':
use_sinfo = True
ud_vars = [0,1]
alpha = 1e-3
else:
raise ValueError('Unknown setting: {}'.format(setting))
folder_out = '{}/{}'.format(output_folder, data_fname)
if deformation == 'rigid':
folder_out += '_shift_{}-{}_rot_{}'.format(shift[0],shift[1],phi)
else:
folder_out += '_{}'.format(deformation)
folder_out += '_multigrid'
if not os.path.exists(folder_out):
os.makedirs(folder_out)
# Spaces
data, sinfo = np.load('{}/{}.npy'.format(data_folder, data_fname),
allow_pickle=True)
sdata = data.shape
Y = odl.uniform_discr([-1, -1], [1, 1], sdata, interp='linear')
V = Y.tangent_bundle
Yaff = odl.tensor_space(6)
Xside = odl.uniform_discr([-1, -1], [1, 1], sinfo.shape, interp='linear')
sinfo = Xside.element(sinfo)
# create data
# Data image
aligned_data = Y.element(data)
#create margin
aligned_data[0:margin,:] = 0
aligned_data[:,0:margin] = 0
aligned_data[-(margin+1):-1,:] = 0
aligned_data[-1,:] = 0
aligned_data[:,-(margin+1):-1] = 0
aligned_data[:,-1] = 0
# Generate affine map and data image
if deformation == 'rigid':
cosp = np.cos(phi)
sinp = np.sin(phi)
disp_func = [
lambda x: (cosp-1)*x[0] - sinp*x[1] + shift[0],
lambda x: sinp*x[0] + (cosp-1)*x[1] + shift[1]]
vf_gt = Yaff.element([shift[0], shift[1],
cosp-1, -sinp,
sinp, cosp-1])
elif deformation == 'shear':
disp_func = [
lambda x: 0*x[0] + 0.08*x[1] + shift[0],
lambda x: 0*x[0] + 0*x[1] + shift[1]]
vf_gt = Yaff.element([shift[0], shift[1],
0, 0.08,
0, 0])
elif deformation == 'nonlinear':
cosp = np.cos(phi)
sinp = np.sin(phi)
disp_func = [
lambda x: (cosp-1)*x[0] - sinp*x[1] + 0.05*x[1]**2 + shift[0],
lambda x: sinp*x[0] + (cosp-1)*x[1] - 0.05*x[0]**3 + shift[1]]
vf_gt = Yaff.element([shift[0], shift[1],
cosp-1, -sinp,
sinp, cosp-1])
vf = V.element(disp_func)
vf_hr = Xside.tangent_bundle.element(disp_func)
deform_op = defm.LinDeformFixedDisp(vf)
deform_op_hr = defm.LinDeformFixedDisp(vf_hr)
# create clipping operator and deformed data image
clim = [0, np.max(aligned_data)]
if colormap == 'viridis':
clim[1] *= 0.7
projY = odl.solvers.IndicatorBox(Y, lower=clim[0], upper=clim[1]).proximal(1)
deformed_data = projY(deform_op(aligned_data))
plt.imsave(folder_out + '/' + data_fname + '_data_deformed.png',
projY(deformed_data), cmap=colormap)
plt.imsave(folder_out + '/' + data_fname + '_data.png',
projY(aligned_data), cmap=colormap)
plt.imsave(folder_out + '/' + data_fname + '_sinfo.png', sinfo, cmap='gray')
ind = 0
alphas = [alpha*10**i for i in range(len(factors))]
alphas.reverse()
for factor in factors:
regParam = alphas[ind]
simage = tuple(int(factor*x) for x in sdata)
X = odl.uniform_discr([-1, -1], [1, 1], simage, interp='linear')
if use_sinfo is True:
sinfo_im = ops.Subsampling(Xside ,X, 0)(sinfo)
else:
sinfo_im = None
#%%
Z = odl.ProductSpace(X, Yaff)
if factor < 1:
A = ops.Subsampling(Y, X, 0).adjoint
else:
A = ops.Subsampling(X, Y, 0)
projX = odl.solvers.IndicatorBox(X, lower=clim[0], upper=clim[1]).proximal(1)
# Set some parameters and the general TV prox options
prox_options = {}
prox_options['name'] = 'FGP'
prox_options['warmstart'] = True
prox_options['p'] = None
prox_options['tol'] = None
prox_options['niter'] = 10
strong_convexity = 0
step = 10
if data_aligned is True:
datafit = 0.5 * odl.solvers.functional.L2NormSquared(aligned_data.space).translated(aligned_data)
else:
datafit = 0.5 * odl.solvers.functional.L2NormSquared(deformed_data.space).translated(deformed_data)
f = fctls.DataFitDisp(Z, datafit, forward=A)
reg_im = fctls.TV(X, alpha=regParam, sinfo=sinfo_im, NonNeg=True,
prox_options=prox_options.copy(),
gamma=gamma, eta=eta)
reg_affine = odl.solvers.ZeroFunctional(Yaff)
g = odl.solvers.SeparableSum(reg_im, reg_affine)
# Define objective functional
obj = f + g
cb = (odl.solvers.CallbackPrintIteration(end=', ') &
odl.solvers.CallbackPrintTiming(cumulative=False, end=', ') &
odl.solvers.CallbackPrintTiming(fmt='total={:.3f} s', cumulative=True) &
odl.solvers.CallbackPrint(step=step, func=obj, fmt='obj={!r}') &
odl.solvers.CallbackShow(step=step))
if ind == 0:
im_init = X.zero()
vf_init = Yaff.zero()
else:
upsampling_fac = int(factors[ind]/factors[ind-1])
im_init = np.kron(recon.x[0], np.ones((upsampling_fac, upsampling_fac)))
vf_init = recon.x[1].copy()
x_init = Z.element([im_init,vf_init])
recon = algs.PALM(f, g, ud_vars=ud_vars.copy(), x=x_init, niter=None,
callback=cb, L=None, tol=1e-9)
niter_diff = [niter[0]] + list(np.diff(niter))
file_out = '{}_da{}_si{}_vars{}_a{:4.2e}_g{:6.4f}_e{:6.4f}_factor{}'.format(data_fname,
data_aligned, use_sinfo, ud_vars, regParam, gamma, eta, factor)
for ni, nid in zip(niter, niter_diff):
recon.run(nid)
if save2Disk is True:
file_out_ni = '{}_{:04d}'.format(file_out, ni)
plt.imsave(folder_out + '/' + file_out_ni + '.png',
projX(recon.x[0]), cmap=colormap)
np.save('{}.npy'.format(folder_out + '/' + file_out_ni), list(recon.x))
if save2Disk is True:
rel_diff_vf = (recon.x[1]-vf_gt).norm()/vf_gt.norm()
file1 = open("{}.txt".format(folder_out + '/' + file_out_ni + '_def'),"w")
file1.write("RelDiff VF: {} \n".format(rel_diff_vf))
file1.close()
ind += 1
rel_diff_vf = (recon.x[1]-vf_gt).norm()/vf_gt.norm()
file1 = open("{}.txt".format(folder_out + '/' + file_out_ni),"w")
file1.write("RelDiff VF: {} \n".format(rel_diff_vf))
file1.close()