-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_config.yaml
71 lines (64 loc) · 1.93 KB
/
train_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Dataset:
name: "my_data"
basepath: "/path/to/data/folders"
shape: [160, 480, 480]
dim_resolution: [2., .65, .65]
cell_radius: [3, 9, 9] # in pixels, for border exclusion
Experiment:
name: "my_exp"
basepath: "/path/to/experiment/outputs"
UNet:
model: "unet" # can be one of ['unet', 'res-unet', 'se-unet', 'eca-unet', 'attention-unet', 'moe-unet']
input_shape: [80, 240, 240]
epochs: 3000
batch_size: 4
learning_rate: 0.04
n_blocks: 4
n_filters: 16
k_size: !!python/tuple [3, 5, 5]
k_stride: !!python/tuple [2, 2, 2]
dropout: null
regularizer: null # { "l2": 0.0001 }
squeeze_factor: 2 # only used if model == 'se-unet'
moe_n_experts: 5 # only used if model == 'moe-unet'
moe_top_k_experts: null # only used if model == 'moe-unet'
moe_noise: true # only used if model == 'moe-unet'
moe_balance_loss: "load" # only used if model == 'moe-unet'; can be 'load' or 'importance'
DoG:
iterations: 100
max_match_dist: 10 # same scale as given by dim_resolution
n_cpu: 5
PreProcessing:
clip: "bit" # can be one of ['constant', 'bit', 'quantile', 'auto', null]
clip_value: 14
center: null # can be one of ['constant', 'min', 'mean', null]
center_value: null
scale: "bit" # can be one of ['constant', 'bit', 'max', 'std', null]
scale_value: 14
DataAugmentation:
augment: true
gamma:
param_range: [0.9, 1.1]
p: 0.3
# contrast:
# param_range : [1., 3.]
brightness:
param_range: [-0.06, 0.06]
p: 0.3
# zoom:
# param_range : [1.0, 1.1]
# order : 1
# p : 0.3
blur:
param_range: [0., 0.3]
p: 0.3
noise:
param_range: [0., 0.03]
p: 0.3
# rotation:
# param_range : [0., 270.]
# axes : [-2, -1]
# p : 0.3
flip:
axes: [-2]
p: 0.3