-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathforRank.py
36 lines (26 loc) · 884 Bytes
/
forRank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env python
import sys
import time
import glob
import zipfile
import numpy as np
import pandas as pd
def rankAll():
factor = 1e+4
keys = ['aid', 'uid']
name = '../datas/test1Merged.csv'
dfAll = pd.read_csv(name, usecols=keys)
dfIds = dfAll[keys]; dfAll['score'] = 0
files = sorted(glob.glob('./model*/submission.csv'))
for i, f in enumerate(files):
print f
df = pd.read_csv(f)
score = dfIds.merge(df)['score']
dfAll['score'] += (factor / score.rank(ascending=False))
sTime = time.strftime('%m%d-%H%M', time.localtime(time.time()))
dfAll.to_csv('submission.csv', index=False, float_format='%.6f')
zipName = './submission_%s.zip' % sTime
with zipfile.ZipFile(zipName, 'w') as f:
f.write('submission.csv', compress_type=zipfile.ZIP_DEFLATED)
if __name__ == '__main__':
rankAll()