diff --git a/README.md b/README.md index 0897ae1..1c34c33 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ T-SNE-Java ========== NEWS 2016-11-02! -================ +---------------- *T-SNE-Java now have support for __Barnes Hut__ which makes it possible to run the amazing t-SNE on much larger data sets (or much faster on small data sets:) )!* The Barnes Hut version can also be run in parallel! We have seen from 40 % performance improvements on moderate datasets (ca 10 000 samples) to 400 % improvements on larger datasets (MNIST 60000 samples) compared to standard Barnes Hut. @@ -20,7 +20,6 @@ Pure Java implementation of Van Der Maaten and Hinton's t-SNE clustering algorit This project is divided into two separate Maven projects, one for the core t-SNE and one for the demos (stand-alone executables that can be run from command line). -With Barnes Hut, T-SNE-Java is now in version v2.2.0, both core and demos. Basic command line usage ------------------------ @@ -37,15 +36,15 @@ Examples: Run TSne on file without headers and no labels. ```shell -java -jar target/tsne-demos-2.2.0.jar -nohdr -nolbls src/main/resources/datasets/iris_X.txt +java -jar target/tsne-demos-2.3.0.jar -nohdr -nolbls src/main/resources/datasets/iris_X.txt ``` Run TSne on CSV file with headers and label column nr. 5. ```shell -java -jar target/tsne-demos-2.2.0.jar --lblcolno 5 src/main/resources/datasets/iris.csv +java -jar target/tsne-demos-2.3.0.jar --lblcolno 5 src/main/resources/datasets/iris.csv ``` Run TSne on file without headers and no labels but supply a separate label file (with the same ordering as the data file). ```shell -java -jar target/tsne-demos-2.2.0.jar --nohdr --nolbls --label_file=src/main/resources/datasets/iris_X_labels.txt src/main/resources/datasets/iris_X.txt +java -jar target/tsne-demos-2.3.0.jar --nohdr --nolbls --label_file=src/main/resources/datasets/iris_X_labels.txt src/main/resources/datasets/iris_X.txt ``` Same as above but using parallelization. @@ -118,7 +117,7 @@ public class TSneTest { Version ------- -Demo: 2.2.0 +Demo: 2.3.0 Core: 2.2.0