forked from Derrick-Sherrill/DerrickSherrill.com
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_lr.py
96 lines (75 loc) · 3.11 KB
/
ml_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
""" Linear Regression Machine Learning example:
###Uses data for machine age and time between failures###
###Predict a model for the data, supervised ML #### """
## Import packages
import tensorflow as tf
import numpy
import pandas as pd
import matplotlib.pyplot as plt
rng = numpy.random
#Define your spreadsheet
spreadsheet = 'LR_ML.xlsx'
data = pd.read_excel(spreadsheet)
#Define your useful columns of data
months=data['Machine Age (Months)'].values
MTBF=data['Mean Time Between Failure (Days)'].values
# HyperParameters
learning_rate = 0.02
training_epochs = 3000
#Parameter
display_step = 50
# Training Data (X,Y) Sets
train_X = numpy.asarray(months)
train_Y = numpy.asarray(MTBF)
#Specifying the length of the train_x data
n_samples = train_X.shape[0]
# tf Graph Input --- Setting the dtype for the placeholder information
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set model weights This is initializing the guesses of the model for weight and bias
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model (y=WX+b)
pred = tf.add(tf.multiply(X, W), b)
# Mean squared error This is the error in the calculation to try to minimize
error = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
# Gradient descent
# Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(error)
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(error, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "error=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_error = sess.run(error, feed_dict={X: train_X, Y: train_Y})
print("Training error=", training_error, "W=", sess.run(W), "b=", sess.run(b), '\n')
# Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
# Testing example, as requested (Issue #2)
test_X = numpy.asarray([2,4,6,8,10])
test_Y = numpy.asarray([25,23,21,19,17])
print("Testing... (Mean square loss Comparison)")
testing_error = sess.run(
tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
feed_dict={X: test_X, Y: test_Y}) # same function as cost above
print("Testing error=", testing_error)
print("Absolute mean square loss difference:", abs(
training_error - testing_error))
plt.plot(test_X, test_Y, 'bo', label='Testing data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()