From 8d69909b18b9a3f8a319544265500db9f50b9571 Mon Sep 17 00:00:00 2001 From: Leonardo de Moura Date: Tue, 14 Jan 2025 18:53:31 -0800 Subject: [PATCH] feat: literals, lower and upper bounds in the offset constraint module within `grind` (#6648) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This PR adds support for numerals, lower & upper bounds to the offset constraint module in the `grind` tactic. `grind` can now solve examples such as: ``` example (f : Nat → Nat) : f 2 = a → b ≤ 1 → b ≥ 1 → c = b + 1 → f c = a := by grind ``` In the example above, the literal `2` and the lower&upper bounds, `b ≤ 1` and `b ≥ 1`, are now processed by offset constraint module. --- src/Init/Grind/Offset.lean | 1 + .../Meta/Tactic/Grind/Arith/Internalize.lean | 4 +- src/Lean/Meta/Tactic/Grind/Arith/Model.lean | 2 +- src/Lean/Meta/Tactic/Grind/Arith/Offset.lean | 63 +++++++++++++++---- src/Lean/Meta/Tactic/Grind/Arith/Util.lean | 24 ++++++- src/Lean/Meta/Tactic/Grind/Core.lean | 36 +++++++---- src/Lean/Meta/Tactic/Grind/Internalize.lean | 9 ++- src/Lean/Meta/Tactic/Grind/Main.lean | 5 +- src/Lean/Meta/Tactic/Grind/Types.lean | 39 +++++++++--- tests/lean/run/grind_offset_cnstr.lean | 29 +++++++++ tests/lean/run/grind_pre.lean | 6 +- 11 files changed, 172 insertions(+), 46 deletions(-) diff --git a/src/Init/Grind/Offset.lean b/src/Init/Grind/Offset.lean index 49e0f7b560bb..0621780ab1c2 100644 --- a/src/Init/Grind/Offset.lean +++ b/src/Init/Grind/Offset.lean @@ -87,5 +87,6 @@ Helper theorems for equality propagation theorem Nat.le_of_eq_1 (u v : Nat) : u = v → u ≤ v := by omega theorem Nat.le_of_eq_2 (u v : Nat) : u = v → v ≤ u := by omega theorem Nat.eq_of_le_of_le (u v : Nat) : u ≤ v → v ≤ u → u = v := by omega +theorem Nat.le_offset (a k : Nat) : k ≤ a + k := by omega end Lean.Grind diff --git a/src/Lean/Meta/Tactic/Grind/Arith/Internalize.lean b/src/Lean/Meta/Tactic/Grind/Arith/Internalize.lean index e9790a986eb4..e72a0208b2ea 100644 --- a/src/Lean/Meta/Tactic/Grind/Arith/Internalize.lean +++ b/src/Lean/Meta/Tactic/Grind/Arith/Internalize.lean @@ -8,7 +8,7 @@ import Lean.Meta.Tactic.Grind.Arith.Offset namespace Lean.Meta.Grind.Arith -def internalize (e : Expr) (parent : Expr) : GoalM Unit := do - Offset.internalize e parent +def internalize (e : Expr) (parent? : Option Expr) : GoalM Unit := do + Offset.internalize e parent? end Lean.Meta.Grind.Arith diff --git a/src/Lean/Meta/Tactic/Grind/Arith/Model.lean b/src/Lean/Meta/Tactic/Grind/Arith/Model.lean index 7a3f4e74d6d1..4e06105eb0e6 100644 --- a/src/Lean/Meta/Tactic/Grind/Arith/Model.lean +++ b/src/Lean/Meta/Tactic/Grind/Arith/Model.lean @@ -39,7 +39,7 @@ def mkModel (goal : Goal) : MetaM (Array (Expr × Nat)) := do We should not include the assignment for auxiliary offset terms since they do not provide any additional information. -/ - unless isNatOffset? e |>.isSome do + if (isNatOffset? e).isNone && isNatNum? e != some 0 then r := r.push (e, val) return r diff --git a/src/Lean/Meta/Tactic/Grind/Arith/Offset.lean b/src/Lean/Meta/Tactic/Grind/Arith/Offset.lean index c6d9921015e1..b966444664c3 100644 --- a/src/Lean/Meta/Tactic/Grind/Arith/Offset.lean +++ b/src/Lean/Meta/Tactic/Grind/Arith/Offset.lean @@ -239,18 +239,48 @@ private def internalizeCnstr (e : Expr) (c : Cnstr Expr) : GoalM Unit := do s.cnstrsOf.insert (u, v) cs } -def internalize (e : Expr) (parent : Expr) : GoalM Unit := do - if let some c := isNatOffsetCnstr? e then +private def getZeroNode : GoalM NodeId := do + mkNode (← getNatZeroExpr) + +/-- Internalize `e` of the form `b + k` -/ +private def internalizeTerm (e : Expr) (b : Expr) (k : Nat) : GoalM Unit := do + -- `e` is of the form `b + k` + let u ← mkNode e + let v ← mkNode b + -- `u = v + k`. So, we add edges for `u ≤ v + k` and `v + k ≤ u`. + let h := mkApp (mkConst ``Nat.le_refl) e + addEdge u v k h + addEdge v u (-k) h + -- `0 + k ≤ u` + let z ← getZeroNode + addEdge z u (-k) <| mkApp2 (mkConst ``Grind.Nat.le_offset) b (toExpr k) + +/-- +Returns `true`, if `parent?` is relevant for internalization. +For example, we do not want to internalize an offset term that +is the child of an addition. This kind of term will be processed by the +more general linear arithmetic module. +-/ +private def isRelevantParent (parent? : Option Expr) : GoalM Bool := do + let some parent := parent? | return false + let z ← getNatZeroExpr + return !isNatAdd parent && (isNatOffsetCnstr? parent z).isNone + +private def isEqParent (parent? : Option Expr) : Bool := Id.run do + let some parent := parent? | return false + return parent.isEq + +def internalize (e : Expr) (parent? : Option Expr) : GoalM Unit := do + let z ← getNatZeroExpr + if let some c := isNatOffsetCnstr? e z then internalizeCnstr e c - else if let some (b, k) := isNatOffset? e then - if (isNatOffsetCnstr? parent).isSome then return () - -- `e` is of the form `b + k` - let u ← mkNode e - let v ← mkNode b - -- `u = v + k`. So, we add edges for `u ≤ v + k` and `v + k ≤ u`. - let h := mkApp (mkConst ``Nat.le_refl) e - addEdge u v k h - addEdge v u (-k) h + else if (← isRelevantParent parent?) then + if let some (b, k) := isNatOffset? e then + internalizeTerm e b k + else if let some k := isNatNum? e then + -- core module has support for detecting equality between literals + unless isEqParent parent? do + internalizeTerm e z k @[export lean_process_new_offset_eq] def processNewOffsetEqImpl (a b : Expr) : GoalM Unit := do @@ -262,6 +292,17 @@ def processNewOffsetEqImpl (a b : Expr) : GoalM Unit := do addEdge u v 0 <| mkApp3 (mkConst ``Grind.Nat.le_of_eq_1) a b h addEdge v u 0 <| mkApp3 (mkConst ``Grind.Nat.le_of_eq_2) a b h +@[export lean_process_new_offset_eq_lit] +def processNewOffsetEqLitImpl (a b : Expr) : GoalM Unit := do + unless isSameExpr a b do + trace[grind.offset.eq.to] "{a}, {b}" + let some k := isNatNum? b | unreachable! + let u ← getNodeId a + let z ← mkNode (← getNatZeroExpr) + let h ← mkEqProof a b + addEdge u z k <| mkApp3 (mkConst ``Grind.Nat.le_of_eq_1) a b h + addEdge z u (-k) <| mkApp3 (mkConst ``Grind.Nat.le_of_eq_2) a b h + def traceDists : GoalM Unit := do let s ← get' for u in [:s.targets.size], es in s.targets.toArray do diff --git a/src/Lean/Meta/Tactic/Grind/Arith/Util.lean b/src/Lean/Meta/Tactic/Grind/Arith/Util.lean index 1c8804f0eec5..d53fcfb8045b 100644 --- a/src/Lean/Meta/Tactic/Grind/Arith/Util.lean +++ b/src/Lean/Meta/Tactic/Grind/Arith/Util.lean @@ -32,6 +32,16 @@ def isNatAdd? (e : Expr) : Option (Expr × Expr) := let_expr HAdd.hAdd _ _ _ i a b := e | none if isInstAddNat i then some (a, b) else none +/-- +Returns `true` if `e` is of the form +``` +@HAdd.hAdd Nat Nat Nat (instHAdd Nat instAddNat) _ _ +``` +-/ +def isNatAdd (e : Expr) : Bool := + let_expr HAdd.hAdd _ _ _ i _ _ := e | false + isInstAddNat i + /-- Returns `some k` if `e` `@OfNat.ofNat Nat _ (instOfNatNat k)` -/ def isNatNum? (e : Expr) : Option Nat := Id.run do let_expr OfNat.ofNat _ _ inst := e | none @@ -67,8 +77,12 @@ def Offset.toMessageData [inst : ToMessageData α] (c : Offset.Cnstr α) : Messa instance : ToMessageData (Offset.Cnstr Expr) where toMessageData c := Offset.toMessageData c -/-- Returns `some cnstr` if `e` is offset constraint. -/ -def isNatOffsetCnstr? (e : Expr) : Option (Offset.Cnstr Expr) := +/-- +Returns `some cnstr` if `e` is offset constraint. +Remark: `z` is `0` numeral. It is an extra argument because we +want to be able to provide the one that has already been internalized. +-/ +def isNatOffsetCnstr? (e : Expr) (z : Expr) : Option (Offset.Cnstr Expr) := match_expr e with | LE.le _ inst a b => if isInstLENat inst then go a b else none | _ => none @@ -77,7 +91,11 @@ where if let some (u, k) := isNatOffset? u then some { u, k := - k, v } else if let some (v, k) := isNatOffset? v then - some { u, v, k := k } + some { u, v, k } + else if let some k := isNatNum? u then + some { u := z, v, k := - k } + else if let some k := isNatNum? v then + some { u, v := z, k } else some { u, v } diff --git a/src/Lean/Meta/Tactic/Grind/Core.lean b/src/Lean/Meta/Tactic/Grind/Core.lean index 77c91b817044..e960ce2d50e3 100644 --- a/src/Lean/Meta/Tactic/Grind/Core.lean +++ b/src/Lean/Meta/Tactic/Grind/Core.lean @@ -10,6 +10,7 @@ import Lean.Meta.Tactic.Grind.Types import Lean.Meta.Tactic.Grind.Inv import Lean.Meta.Tactic.Grind.PP import Lean.Meta.Tactic.Grind.Ctor +import Lean.Meta.Tactic.Grind.Util import Lean.Meta.Tactic.Grind.Internalize namespace Lean.Meta.Grind @@ -90,13 +91,21 @@ private partial def updateMT (root : Expr) : GoalM Unit := do Helper function for combining `ENode.offset?` fields and propagating an equality to the offset constraint module. -/ -private def propagateOffsetEq (root : Expr) (roofOffset? otherOffset? : Option Expr) : GoalM Unit := do - let some otherOffset := otherOffset? | return () - if let some rootOffset := roofOffset? then - processNewOffsetEq rootOffset otherOffset - else - let n ← getENode root - setENode root { n with offset? := otherOffset? } +private def propagateOffsetEq (rhsRoot lhsRoot : ENode) : GoalM Unit := do + match lhsRoot.offset? with + | some lhsOffset => + if let some rhsOffset := rhsRoot.offset? then + Arith.processNewOffsetEq lhsOffset rhsOffset + else if isNatNum rhsRoot.self then + Arith.processNewOffsetEqLit lhsOffset rhsRoot.self + else + -- We have to retrieve the node because other fields have been updated + let rhsRoot ← getENode rhsRoot.self + setENode rhsRoot.self { rhsRoot with offset? := lhsOffset } + | none => + if isNatNum lhsRoot.self then + if let some rhsOffset := rhsRoot.offset? then + Arith.processNewOffsetEqLit rhsOffset lhsRoot.self private partial def addEqStep (lhs rhs proof : Expr) (isHEq : Bool) : GoalM Unit := do let lhsNode ← getENode lhs @@ -166,7 +175,7 @@ where copyParentsTo parents rhsNode.root unless (← isInconsistent) do updateMT rhsRoot.self - propagateOffsetEq rhsNode.root rhsRoot.offset? lhsRoot.offset? + propagateOffsetEq rhsRoot lhsRoot unless (← isInconsistent) do for parent in parents do propagateUp parent @@ -218,9 +227,10 @@ private def storeFact (fact : Expr) : GoalM Unit := do /-- Internalizes `lhs` and `rhs`, and then adds equality `lhs = rhs`. -/ def addNewEq (lhs rhs proof : Expr) (generation : Nat) : GoalM Unit := do - storeFact (← mkEq lhs rhs) - internalize lhs generation - internalize rhs generation + let eq ← mkEq lhs rhs + storeFact eq + internalize lhs generation eq + internalize rhs generation eq addEq lhs rhs proof /-- Adds a new `fact` justified by the given proof and using the given generation. -/ @@ -257,8 +267,8 @@ where internalize p generation addEq p (← getFalseExpr) (← mkEqFalse proof) else - internalize lhs generation - internalize rhs generation + internalize lhs generation p + internalize rhs generation p addEqCore lhs rhs proof isHEq /-- Adds a new hypothesis. -/ diff --git a/src/Lean/Meta/Tactic/Grind/Internalize.lean b/src/Lean/Meta/Tactic/Grind/Internalize.lean index a867fe0eb36a..6f1c0b2530c2 100644 --- a/src/Lean/Meta/Tactic/Grind/Internalize.lean +++ b/src/Lean/Meta/Tactic/Grind/Internalize.lean @@ -98,8 +98,6 @@ private def pushCastHEqs (e : Expr) : GoalM Unit := do | f@Eq.recOn α a motive b h v => pushHEq e v (mkApp6 (mkConst ``Grind.eqRecOn_heq f.constLevels!) α a motive b h v) | _ => return () -def noParent := mkBVar 0 - mutual /-- Internalizes the nested ground terms in the given pattern. -/ private partial def internalizePattern (pattern : Expr) (generation : Nat) : GoalM Expr := do @@ -107,7 +105,7 @@ private partial def internalizePattern (pattern : Expr) (generation : Nat) : Goa return pattern else if let some e := groundPattern? pattern then let e ← shareCommon (← canon (← normalizeLevels (← unfoldReducible e))) - internalize e generation + internalize e generation none return mkGroundPattern e else pattern.withApp fun f args => do return mkAppN f (← args.mapM (internalizePattern · generation)) @@ -148,7 +146,7 @@ private partial def activateTheoremPatterns (fName : Name) (generation : Nat) : trace_goal[grind.ematch] "reinsert `{thm.origin.key}`" modify fun s => { s with thmMap := s.thmMap.insert thm } -partial def internalize (e : Expr) (generation : Nat) (parent : Expr := noParent) : GoalM Unit := do +partial def internalize (e : Expr) (generation : Nat) (parent? : Option Expr := none) : GoalM Unit := do if (← alreadyInternalized e) then return () trace_goal[grind.internalize] "{e}" match e with @@ -176,6 +174,7 @@ partial def internalize (e : Expr) (generation : Nat) (parent : Expr := noParent if (← isLitValue e) then -- We do not want to internalize the components of a literal value. mkENode e generation + Arith.internalize e parent? else e.withApp fun f args => do checkAndAddSplitCandidate e pushCastHEqs e @@ -199,7 +198,7 @@ partial def internalize (e : Expr) (generation : Nat) (parent : Expr := noParent mkENode e generation addCongrTable e updateAppMap e - Arith.internalize e parent + Arith.internalize e parent? propagateUp e end diff --git a/src/Lean/Meta/Tactic/Grind/Main.lean b/src/Lean/Meta/Tactic/Grind/Main.lean index ebdb8a1bcbcd..92b4bad369c1 100644 --- a/src/Lean/Meta/Tactic/Grind/Main.lean +++ b/src/Lean/Meta/Tactic/Grind/Main.lean @@ -40,17 +40,20 @@ def GrindM.run (x : GrindM α) (mainDeclName : Name) (config : Grind.Config) (fa let scState := ShareCommon.State.mk _ let (falseExpr, scState) := ShareCommon.State.shareCommon scState (mkConst ``False) let (trueExpr, scState) := ShareCommon.State.shareCommon scState (mkConst ``True) + let (natZExpr, scState) := ShareCommon.State.shareCommon scState (mkNatLit 0) let simprocs ← Grind.getSimprocs let simp ← Grind.getSimpContext - x (← mkMethods fallback).toMethodsRef { mainDeclName, config, simprocs, simp } |>.run' { scState, trueExpr, falseExpr } + x (← mkMethods fallback).toMethodsRef { mainDeclName, config, simprocs, simp } |>.run' { scState, trueExpr, falseExpr, natZExpr } private def mkGoal (mvarId : MVarId) : GrindM Goal := do let trueExpr ← getTrueExpr let falseExpr ← getFalseExpr + let natZeroExpr ← getNatZeroExpr let thmMap ← getEMatchTheorems GoalM.run' { mvarId, thmMap } do mkENodeCore falseExpr (interpreted := true) (ctor := false) (generation := 0) mkENodeCore trueExpr (interpreted := true) (ctor := false) (generation := 0) + mkENodeCore natZeroExpr (interpreted := true) (ctor := false) (generation := 0) private def initCore (mvarId : MVarId) : GrindM (List Goal) := do mvarId.ensureProp diff --git a/src/Lean/Meta/Tactic/Grind/Types.lean b/src/Lean/Meta/Tactic/Grind/Types.lean index 5f536b967625..14d3c931c145 100644 --- a/src/Lean/Meta/Tactic/Grind/Types.lean +++ b/src/Lean/Meta/Tactic/Grind/Types.lean @@ -80,6 +80,7 @@ structure State where simpStats : Simp.Stats := {} trueExpr : Expr falseExpr : Expr + natZExpr : Expr /-- Used to generate trace messages of the for `[grind] working on `, and implement the macro `trace_goal`. @@ -104,6 +105,10 @@ def getTrueExpr : GrindM Expr := do def getFalseExpr : GrindM Expr := do return (← get).falseExpr +/-- Returns the internalized `0 : Nat` numeral. -/ +def getNatZeroExpr : GrindM Expr := do + return (← get).natZExpr + def getMainDeclName : GrindM Name := return (← readThe Context).mainDeclName @@ -128,9 +133,9 @@ Applies hash-consing to `e`. Recall that all expressions in a `grind` goal have been hash-consed. We perform this step before we internalize expressions. -/ def shareCommon (e : Expr) : GrindM Expr := do - modifyGet fun { canon, scState, nextThmIdx, congrThms, trueExpr, falseExpr, simpStats, lastTag } => + modifyGet fun { canon, scState, nextThmIdx, congrThms, trueExpr, falseExpr, natZExpr, simpStats, lastTag } => let (e, scState) := ShareCommon.State.shareCommon scState e - (e, { canon, scState, nextThmIdx, congrThms, trueExpr, falseExpr, simpStats, lastTag }) + (e, { canon, scState, nextThmIdx, congrThms, trueExpr, falseExpr, natZExpr, simpStats, lastTag }) /-- Canonicalizes nested types, type formers, and instances in `e`. @@ -649,8 +654,26 @@ def mkENode (e : Expr) (generation : Nat) : GoalM Unit := do let interpreted ← isInterpreted e mkENodeCore e interpreted ctor generation +/-- +Notify the offset constraint module that `a = b` where +`a` and `b` are terms that have been internalized by this module. +-/ @[extern "lean_process_new_offset_eq"] -- forward definition -opaque processNewOffsetEq (a b : Expr) : GoalM Unit +opaque Arith.processNewOffsetEq (a b : Expr) : GoalM Unit + +/-- +Notify the offset constraint module that `a = k` where +`a` is term that has been internalized by this module, +and `k` is a numeral. +-/ +@[extern "lean_process_new_offset_eq_lit"] -- forward definition +opaque Arith.processNewOffsetEqLit (a k : Expr) : GoalM Unit + +/-- Returns `true` if `e` is a numeral and has type `Nat`. -/ +def isNatNum (e : Expr) : Bool := Id.run do + let_expr OfNat.ofNat _ _ inst := e | false + let_expr instOfNatNat _ := inst | false + true /-- Marks `e` as a term of interest to the offset constraint module. @@ -658,11 +681,13 @@ If the root of `e`s equivalence class has already a term of interest, a new equality is propagated to the offset module. -/ def markAsOffsetTerm (e : Expr) : GoalM Unit := do - let n ← getRootENode e - if let some e' := n.offset? then - processNewOffsetEq e e' + let root ← getRootENode e + if let some e' := root.offset? then + Arith.processNewOffsetEq e e' + else if isNatNum root.self && !isSameExpr e root.self then + Arith.processNewOffsetEqLit e root.self else - setENode n.self { n with offset? := some e } + setENode root.self { root with offset? := some e } /-- Returns `true` is `e` is the root of its congruence class. -/ def isCongrRoot (e : Expr) : GoalM Bool := do diff --git a/tests/lean/run/grind_offset_cnstr.lean b/tests/lean/run/grind_offset_cnstr.lean index 0fd24a2871c5..1f02eb6cf1a4 100644 --- a/tests/lean/run/grind_offset_cnstr.lean +++ b/tests/lean/run/grind_offset_cnstr.lean @@ -373,3 +373,32 @@ example (f : Nat → Nat) (a b c d e : Nat) : e < c → b = d := by grind + +example (a : Nat) : a < 2 → a < 5 := by + grind + +example (a b : Nat) : 2 < a → a ≤ b → 2 < b := by + grind + +example (a b : Nat) : 2 < a → a ≤ b → 0 < b := by + grind + +example (f : Nat → Nat) : f 1 = a → b ≤ 1 → b ≥ 1 → f b = a := by + grind + +example (f : Nat → Nat) : f 2 = a → b ≤ 1 → b ≥ 1 → c = b + 1 → f c = a := by + grind + +example (a : Nat) : a < 2 → a = 5 → False := by + grind + +example (a : Nat) : a < 2 → a = b → b = c → c = 5 → False := by + grind + +#guard_msgs (info) in -- none of the numerals should be internalized by the offset module +set_option trace.grind.offset.internalize true in +example (a b c d e : Nat) : a = 1 → b = 2 → c = 3 → d = 4 → e = 5 → a ≠ e := by + grind + +example (a b : Nat) : a + 1 = b → b = 0 → False := by + grind diff --git a/tests/lean/run/grind_pre.lean b/tests/lean/run/grind_pre.lean index e0abdee2e646..6c19b483f56e 100644 --- a/tests/lean/run/grind_pre.lean +++ b/tests/lean/run/grind_pre.lean @@ -75,9 +75,9 @@ x✝ : ¬g (i + 1) j ⋯ = i + j + 1 [prop] ¬g (i + 1) j ⋯ = i + j + 1[eqc] True propositions [prop] j + 1 ≤ i[eqc] False propositions [prop] g (i + 1) j ⋯ = i + j + 1[offset] Assignment satisfying offset contraints - [assign] j := 1 - [assign] i := 2 - [assign] i + j := 0 + [assign] j := 0 + [assign] i := 1 + [assign] i + j := 1 -/ #guard_msgs (error) in example (i j : Nat) (h : i + 1 > j + 1) : g (i+1) j = f ((fun x => x) i) + f j + 1 := by