From 42719eefd5605b9445da671c04961650e21ec636 Mon Sep 17 00:00:00 2001 From: Paul Reichert <6992158+datokrat@users.noreply.github.com> Date: Mon, 13 Jan 2025 10:11:31 +0100 Subject: [PATCH] formatting --- src/Std/Data/DHashMap/Lemmas.lean | 41 ++++++++++++++++++------------- 1 file changed, 24 insertions(+), 17 deletions(-) diff --git a/src/Std/Data/DHashMap/Lemmas.lean b/src/Std/Data/DHashMap/Lemmas.lean index 528a872be64ad..d99645164d43e 100644 --- a/src/Std/Data/DHashMap/Lemmas.lean +++ b/src/Std/Data/DHashMap/Lemmas.lean @@ -1156,7 +1156,8 @@ theorem isEmpty_alter [EquivBEq α] [LawfulHashable α] {k : α} {f : Option β Raw₀.Const.isEmpty_alter _ m.2 theorem contains_alter [EquivBEq α] [LawfulHashable α] {k k': α} {f : Option β → Option β} : - (Const.alter m k f).contains k' = if k == k' then (f (Const.get? m k)).isSome else m.contains k' := + (Const.alter m k f).contains k' = + if k == k' then (f (Const.get? m k)).isSome else m.contains k' := sorry theorem mem_alter [EquivBEq α] [LawfulHashable α] {k k': α} {f : Option β → Option β} : @@ -1220,8 +1221,8 @@ theorem get_alter_self [EquivBEq α] [LawfulHashable α] {k : α} {f : Option β Const.get (Const.alter m k f) k h = (f (Const.get? m k)).get h' := sorry -theorem get!_alter [EquivBEq α] [LawfulHashable α] {k k' : α} [Inhabited β] {f : Option β → Option β} : - Const.get! (Const.alter m k f) k' = +theorem get!_alter [EquivBEq α] [LawfulHashable α] {k k' : α} [Inhabited β] + {f : Option β → Option β} : Const.get! (Const.alter m k f) k' = if heq : k == k' then f (Const.get? m k) |>.get! else @@ -1229,8 +1230,8 @@ theorem get!_alter [EquivBEq α] [LawfulHashable α] {k k' : α} [Inhabited β] sorry @[simp] -theorem get!_alter_self [EquivBEq α] [LawfulHashable α] {k : α} [Inhabited β] {f : Option β → Option β} : - Const.get! (Const.alter m k f) k = (f (Const.get? m k)).get! := +theorem get!_alter_self [EquivBEq α] [LawfulHashable α] {k : α} [Inhabited β] + {f : Option β → Option β} : Const.get! (Const.alter m k f) k = (f (Const.get? m k)).get! := sorry theorem getD_alter [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option β → Option β} : @@ -1259,8 +1260,8 @@ theorem getKey?_alter_self [EquivBEq α] [LawfulHashable α] {k : α} {f : Optio (Const.alter m k f).getKey? k = (f (Const.get? m k)).map (fun _ => k) := sorry -theorem getKey!_alter [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} {f : Option β → Option β} : - (Const.alter m k f).getKey! k' = +theorem getKey!_alter [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} + {f : Option β → Option β} : (Const.alter m k f).getKey! k' = if k == k' then (f (Const.get? m k)).map (fun _ => k) |>.get! else @@ -1268,12 +1269,13 @@ theorem getKey!_alter [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : sorry @[simp] -theorem getKey!_alter_self [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} {f : Option β → Option β} : +theorem getKey!_alter_self [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} + {f : Option β → Option β} : (Const.alter m k f).getKey! k = ((f (Const.get? m k)).map (fun _ => k)).get! := sorry -theorem getKey_alter [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} {f : Option β → Option β} - (h : k' ∈ Const.alter m k f) : +theorem getKey_alter [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} + {f : Option β → Option β} (h : k' ∈ Const.alter m k f) : (Const.alter m k f).getKey k' h = if heq : k == k' then k @@ -1283,8 +1285,8 @@ theorem getKey_alter [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α sorry @[simp] -theorem getKey_alter_self [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} {f : Option β → Option β} - (h : k ∈ Const.alter m k f) : +theorem getKey_alter_self [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} + {f : Option β → Option β} (h : k ∈ Const.alter m k f) : (Const.alter m k f).getKey k h = k := sorry @@ -1297,7 +1299,8 @@ theorem getKeyD_alter [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option sorry @[simp] -theorem getKeyD_alter_self [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} {f : Option β → Option β} : +theorem getKeyD_alter_self [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} + {f : Option β → Option β} : (Const.alter m k f).getKeyD k = ((f (Const.get? m k)).map (fun _ => k)).getD := sorry @@ -1316,7 +1319,8 @@ section Modify theorem modify_empty [LawfulBEq α] {k : α} {f : β k → β k} : empty.modify k f = empty := sorry -theorem modify_of_not_mem [LawfulBEq α] {k : α} {f g : β k → β k} (h : k ∉ m) : m.modify k f = m := +theorem modify_of_not_mem [LawfulBEq α] {k : α} {f g : β k → β k} (h : k ∉ m) : + m.modify k f = m := sorry @[simp] @@ -1485,11 +1489,13 @@ theorem contains_modify [EquivBEq α] [LawfulHashable α] {k k': α} {f : β → sorry @[simp] -theorem mem_modify [EquivBEq α] [LawfulHashable α] {k k': α} {f : β → β} : k' ∈ Const.modify m k f ↔ k' ∈ m := by +theorem mem_modify [EquivBEq α] [LawfulHashable α] {k k': α} {f : β → β} : + k' ∈ Const.modify m k f ↔ k' ∈ m := by simp only [mem_iff_contains, contains_modify] @[simp] -theorem size_modify [EquivBEq α] [LawfulHashable α] {k : α} {f : β → β} : (Const.modify m k f).size = m.size := +theorem size_modify [EquivBEq α] [LawfulHashable α] {k : α} {f : β → β} : + (Const.modify m k f).size = m.size := sorry theorem get?_modify [EquivBEq α] [LawfulHashable α] {k k' : α} {f : β → β} : @@ -1516,7 +1522,8 @@ theorem get_modify [EquivBEq α] [LawfulHashable α] {k k' : α} {f : β → β} sorry @[simp] -theorem get_modify_self [EquivBEq α] [LawfulHashable α] {k : α} {f : β → β} {h : k ∈ Const.modify m k f} : +theorem get_modify_self [EquivBEq α] [LawfulHashable α] {k : α} {f : β → β} + {h : k ∈ Const.modify m k f} : haveI h' : k ∈ m := by rwa [mem_modify] at h Const.get (Const.modify m k f) k h = f (Const.get m k h') := sorry