diff --git a/TensorLib/Basic.lean b/TensorLib/Basic.lean index e084e7c..8dcf324 100644 --- a/TensorLib/Basic.lean +++ b/TensorLib/Basic.lean @@ -11,3 +11,4 @@ import TensorLib.Broadcast import TensorLib.Slice import TensorLib.Tensor import TensorLib.Index +import TensorLib.Mgrid diff --git a/TensorLib/Mgrid.lean b/TensorLib/Mgrid.lean new file mode 100644 index 0000000..0e19258 --- /dev/null +++ b/TensorLib/Mgrid.lean @@ -0,0 +1,135 @@ +/- +Copyright (c) 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Jean-Baptiste Tristan, Paul Govereau, Sean McLaughlin +-/ + +import Mathlib +import TensorLib.Common +import TensorLib.Tensor +import TensorLib.Slice +import TensorLib.Index + +namespace TensorLib + +/- +Shape of the resulting tensor is |slices| :: slices.map(fun x => x.shape) + +Slices are treated differently in NumPy when used in mgrid vs indexing. In particular, +since we don't know what the stopping point should be from the context, it can use the `start` +value as a `stop` instead. For example, + + # np.arange(10)[5:] + [5, 6, 7, 8, 9] + + # np.mgrid[5:] + [0, 1, 2, 3, 4] + +However, things work normally when there is a stopping point + + # np.mgrid[5:10] + [5, 6, 7, 8, 9] + +Since this is imo surprising, we just fail if the start or stopping point are absent. +Moreover, we require more than one slice, since `mgrid[slice] == arange(slice)`, and a single +slice behaves differently from all other quantities. + +All mgrid ints are stored as 64-bit, little-endian ints by convention. In Numpy they are stored with +native byte order, as the architecture word size. + +For eample, + +# np.mgrid[2:4:, 4:7:] +array([[[2, 2, 2], + [3, 3, 3]], + + [[4, 5, 6], + [4, 5, 6]]]) + +We have an iterator that will give us the indices [0, 0], [0, 1], [0, 2], [1, 0], ..., [1, 2] +and an interator that will give us the values [2, 4], [2, 5], [2, 6], ... , [3, 6] +These are the same length, so we can combine them to get the mgrid; +- [0, 0] of the first element gits 2, +- [0, 0] of the second element gets 4 +- [0, 1] of the first gets 2 +- [0, 1] of the second gets 5 +- ... +-/ +def mgrid (slices : List Slice) : Err Tensor := do + let sliceCount := slices.length + if sliceCount < 2 then .error "mgrid requires at least two slices" + let arbitrary : Nat := 10 -- Slice.size does not use the second argument if both start and stop are specified + let sliceSize (slice : Slice) : Nat := slice.size arbitrary + let mut slicesShape := [] + for slice in slices.reverse do + match slice.start, slice.stop with + | .none, _ => .error "Slices need an upper bound in mgrid" + | _, .none => .error "Slices need a lower bound in mgrid" + | _, _ => + let sz := sliceSize slice + slicesShape := sz :: slicesShape + let shape := sliceCount :: slicesShape + let dtype := Dtype.uint64 + let mut arr := Tensor.zeros dtype shape + let basic := slices.map fun s => .slice (Slice.Iter.make s arbitrary) + let mut sliceIter <- Index.BasicIter.make slicesShape basic + let indexIter := DimsIter.make slicesShape + if sliceIter.size != indexIter.size then .error "Invariant failure: iterator size mismatch at start" + for index in indexIter do + match sliceIter.next with + | .none => .error "Invariant failure: iterator size mismatch during iteration" + | .some (values, sliceIter') => + sliceIter := sliceIter' + if values.length != sliceCount then .error "Invariant failure: value length mismatch" + for (i, v) in (List.range sliceCount).zip values do + let value := BV64.ofNat v + arr <- Tensor.Element.setDimIndex arr (i :: index) value + return arr + +section Test + +open TensorLib.Tensor.Format +open Tree + +#guard (get! (mgrid [Slice.ofStartStop 2 4, Slice.ofStartStop 4 7])).toTree BV64 == .ok ( + .node [ + .node [ + .root [2, 2, 2], .root [3, 3, 3] + ], + .node [ + .root [4, 5, 6], .root [4, 5, 6] + ] + ] +) + +#guard (get! (mgrid [Slice.ofStartStop 2 4, Slice.ofStartStop 4 7, Slice.ofStop 2])).toTree BV64 == .ok ( + .node [ + .node [ + .node [ + .root [2, 2], .root [2, 2], .root [2, 2] + ], + .node [ + .root [3, 3], .root [3, 3], .root [3, 3] + ], + ], + .node [ + .node [ + .root [4, 4], .root [5, 5], .root [6, 6] + ], + .node [ + .root [4, 4], .root [5, 5], .root [6, 6] + ] + ], + .node [ + .node [ + .root [0, 1], .root [0, 1], .root [0, 1] + ], + .node [ + .root [0, 1], .root [0, 1], .root [0, 1] + ] + ] + ] +) + +end Test +end TensorLib