From 912bbcfd0e4096bcad7541b7ffa289294e5ffdf1 Mon Sep 17 00:00:00 2001 From: Michael Rothgang Date: Mon, 18 Mar 2024 12:29:37 +0100 Subject: [PATCH] Rename Immersion.differentiable to contMDiff. --- SphereEversion/Global/Immersion.lean | 6 +++--- SphereEversion/ToMathlib/Geometry/Manifold/Immersion.lean | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/SphereEversion/Global/Immersion.lean b/SphereEversion/Global/Immersion.lean index d8e9c505..f6e33ec4 100644 --- a/SphereEversion/Global/Immersion.lean +++ b/SphereEversion/Global/Immersion.lean @@ -122,13 +122,13 @@ variable {n : โ„•} (E : Type*) [NormedAddCommGroup E] [InnerProductSpace โ„ E] /-- The inclusion of `๐•Š^n` into `โ„^{n+1}` is an immersion. -/ theorem immersion_inclusion_sphere : Immersion (๐“ก n) ๐“˜(โ„, E) (fun x : sphere (0 : E) 1 โ†ฆ (x : E)) โŠค where - differentiable := contMDiff_coe_sphere + contMDiff := contMDiff_coe_sphere diff_injective := mfderiv_coe_sphere_injective /-- The antipodal map on `๐•Š^n โŠ† โ„^{n+1}` is an immersion. -/ theorem immersion_antipodal_sphere : Immersion (๐“ก n) ๐“˜(โ„, E) (fun x : sphere (0 : E) 1 โ†ฆ -(x : E)) โŠค where - differentiable := + contMDiff := -- Write this as the composition of `coe_sphere` and the antipodal map on `E`. -- The other direction elaborates much worse. (contDiff_neg.contMDiff).comp contMDiff_coe_sphere @@ -334,7 +334,7 @@ theorem sphere_eversion : rw [this (1, x) (by simp)] convert formalEversion_one E ฯ‰ x ยท exact fun t โ†ฆ { - differentiable := Smooth.uncurry_left ๐“˜(โ„, โ„) (๐“ก 2) ๐“˜(โ„, E) hโ‚ t + contMDiff := Smooth.uncurry_left ๐“˜(โ„, โ„) (๐“ก 2) ๐“˜(โ„, E) hโ‚ t diff_injective := hโ‚… t } diff --git a/SphereEversion/ToMathlib/Geometry/Manifold/Immersion.lean b/SphereEversion/ToMathlib/Geometry/Manifold/Immersion.lean index 5903f531..b7b4d8b2 100644 --- a/SphereEversion/ToMathlib/Geometry/Manifold/Immersion.lean +++ b/SphereEversion/ToMathlib/Geometry/Manifold/Immersion.lean @@ -53,7 +53,7 @@ section Definition /-- A `C^n` immersion `f : M โ†’ M` is a `C^n` map whose differential is injective at every point. -/ structure Immersion (f : M โ†’ M') (n : โ„•โˆž) : Prop := - differentiable : ContMDiff I I' n f + contMDiff : ContMDiff I I' n f diff_injective : โˆ€ p, Injective (mfderiv I I' f p) /-- An injective `C^n` immersion -/