From b1a18a13c515394de16d0a5f079664b3141f6ad9 Mon Sep 17 00:00:00 2001 From: Riccardo Brasca Date: Wed, 29 Nov 2023 16:29:58 +0000 Subject: [PATCH] prove this --- FltRegular/NumberTheory/Hilbert92.lean | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/FltRegular/NumberTheory/Hilbert92.lean b/FltRegular/NumberTheory/Hilbert92.lean index 1b386661..553d5244 100644 --- a/FltRegular/NumberTheory/Hilbert92.lean +++ b/FltRegular/NumberTheory/Hilbert92.lean @@ -86,13 +86,20 @@ lemma Subgroup.index_mono {G : Type*} [Group G] {H₁ H₂ : Subgroup G} (h : H namespace systemOfUnits -instance : Nontrivial G := sorry +lemma nontrivial (hr : r ≠ 0) : Nontrivial G := by + by_contra' h + rw [not_nontrivial_iff_subsingleton] at h + rw [FiniteDimensional.finrank_zero_of_subsingleton] at hf + simp only [ge_iff_le, zero_eq_mul, tsub_eq_zero_iff_le] at hf + cases hf with + | inl h => exact hr h + | inr h => simpa [Nat.lt_succ_iff, h] using not_lt.2 (Nat.prime_def_lt.1 hp).1 lemma bezout [Module A G] {a : A} (ha : a ≠ 0) : ∃ (f : A) (n : ℤ), f * a = n := sorry lemma existence0 [Module A G] : Nonempty (systemOfUnits p G σ 0) := by - refine ⟨⟨fun _ => 0, linearIndependent_empty_type⟩⟩ + exact ⟨⟨fun _ => 0, linearIndependent_empty_type⟩⟩ lemma ex_not_mem [Module A G] (S : systemOfUnits p G σ R) (hR : R < r) : ∃ g, ∀ (k : ℤ), ¬(k • g ∈ Submodule.span A (Set.range S.units)) := by