diff --git a/FltRegular/NumberTheory/Hilbert90.lean b/FltRegular/NumberTheory/Hilbert90.lean index cd98be4b..8605172d 100644 --- a/FltRegular/NumberTheory/Hilbert90.lean +++ b/FltRegular/NumberTheory/Hilbert90.lean @@ -4,9 +4,10 @@ import FltRegular.NumberTheory.AuxLemmas import FltRegular.NumberTheory.GaloisPrime open scoped NumberField nonZeroDivisors -open FiniteDimensional Finset BigOperators +open FiniteDimensional Finset BigOperators Submodule -variable {K L : Type*} [Field K] [Field L] [NumberField K] [Algebra K L] [FiniteDimensional K L] +variable {K L : Type*} [Field K] [Field L] [NumberField K] [Algebra K L] +variable [IsGalois K L] [FiniteDimensional K L] variable (σ : L ≃ₐ[K] L) (hσ : ∀ x, x ∈ Subgroup.zpowers σ) --This is proved in #8599 @@ -22,18 +23,28 @@ lemma Hilbert90 (σ : L ≃ₐ[K] L) (hσ : ∀ x, x ∈ Subgroup.zpowers σ) -- have := Algebra.norm_eq_prod_embeddings K E η -- rw [hη] at this by_cases hone : orderOf σ = 1 - · sorry + · suffices finrank K L = 1 by + obtain ⟨a, ha⟩ := mem_span_singleton.1 <| (eq_top_iff'.1 <| + (finrank_eq_one_iff_of_nonzero _ one_ne_zero).1 this) η + rw [← Algebra.algebraMap_eq_smul_one] at ha + rw [← ha, Algebra.norm_algebraMap, this, pow_one] at hη + exact ⟨1, by simp [← ha, hη]⟩ + rw [← IsGalois.card_aut_eq_finrank, Fintype.card_eq_one_iff] + refine ⟨σ, fun τ ↦ ?_⟩ + simp only [orderOf_eq_one_iff.1 hone, Subgroup.zpowers_one_eq_bot, Subgroup.mem_bot] at hσ + rw [orderOf_eq_one_iff.1 hone, hσ τ] let φ := (finEquivZpowers _ (isOfFinOrder_of_finite σ)).symm haveI nezero : NeZero (orderOf σ) := ⟨fun hzero ↦ orderOf_eq_zero_iff.1 hzero (isOfFinOrder_of_finite σ)⟩ - have hφ : φ ⟨σ, hσ σ⟩ = 1 := sorry + have hφ : ∀ (n : ℕ), φ ⟨σ ^ n, hσ _⟩ = n % (orderOf σ) := sorry let f : (L ≃ₐ[K] L) → Lˣ := fun τ ↦ ∏ i in range (φ ⟨τ, hσ τ⟩), Units.map (σ ^ i) ηu have hf : ∀ (g h : (L ≃ₐ[K] L)), f (g * h) = g (f h) * f g := sorry have hfσ : f σ = ηu := by - simp_rw [hφ] + rw [← pow_one σ] + simp_rw [hφ 1] have : 1 % orderOf σ = 1 := by - suffices : (orderOf σ).pred.pred + 2 = orderOf σ - · rw [← this] + suffices (orderOf σ).pred.pred + 2 = orderOf σ by + rw [← this] exact Nat.one_mod _ rw [← Nat.succ_eq_add_one, ← Nat.succ_eq_add_one, Nat.succ_pred, Nat.succ_pred nezero.1] intro h @@ -45,7 +56,7 @@ lemma Hilbert90 (σ : L ≃ₐ[K] L) (hσ : ∀ x, x ∈ Subgroup.zpowers σ) obtain ⟨ε, hε⟩ := hilbert90 f hf use ε specialize hε σ - simp [hfσ] at hε + rw [hfσ] at hε nth_rewrite 1 [← hε] simp @@ -70,7 +81,7 @@ lemma Hilbert90_integral (σ : L ≃ₐ[K] L) (hσ : ∀ x, x ∈ Subgroup.zpowe · rw [Algebra.smul_def, IsScalarTower.algebraMap_apply A B L, ht', IsLocalization.mk'_spec'] refine ⟨x, ?_, ?_⟩ · rintro rfl - simp only [IsLocalization.mk'_zero, map_zero, ne_eq, not_true, div_zero] at hε + simp only [IsLocalization.mk'_zero, _root_.map_zero, ne_eq, not_true, div_zero] at hε rw [hε, Algebra.norm_zero] at hη exact zero_ne_one hη · rw [eq_div_iff_mul_eq] at hε