The following will introduce the generation process of the AggregatedSeal
field in the extraData
field of the block header
At present, the block header of MAP mainly contains the following fields.
// Header represents a block header in the Ethereum blockchain.
type Header struct {
ParentHash common.Hash `json:"parentHash" gencodec:"required"`
Coinbase common.Address `json:"miner" gencodec:"required"`
Root common.Hash `json:"stateRoot" gencodec:"required"`
TxHash common.Hash `json:"transactionsRoot" gencodec:"required"`
ReceiptHash common.Hash `json:"receiptsRoot" gencodec:"required"`
Bloom Bloom `json:"logsBloom" gencodec:"required"`
Number *big.Int `json:"number" gencodec:"required"`
GasLimit uint64 `json:"gasLimit" gencodec:"required"`
GasUsed uint64 `json:"gasUsed" gencodec:"required"`
Time uint64 `json:"timestamp" gencodec:"required"`
Extra []byte `json:"extraData" gencodec:"required"`
MixDigest common.Hash `json:"mixHash"`
Nonce BlockNonce `json:"nonce"`
// BaseFee was added by EIP-1559 and is ignored in legacy headers.
BaseFee *big.Int `json:"baseFeePerGas" rlp:"optional"`
}
The extraData
field in the chunk header is the result of rlp encoding. The structure before encoding is as follows:
type IstanbulExtra struct {
// AddedValidators are the validators that have been added in the block
AddedValidators []common.Address
// AddedValidatorsPublicKeys are the BLS public keys for the validators added in the block
AddedValidatorsPublicKeys []blscrypto.SerializedPublicKey
// AddedValidatorsG1PublicKeys are the BLS public keys for the validators added in the block
AddedValidatorsG1PublicKeys []blscrypto.SerializedG1PublicKey
// RemovedValidators is a bitmap having an active bit for each removed validator in the block
RemovedValidators *big.Int
// Seal is an ECDSA signature by the proposer
Seal []byte
// AggregatedSeal contains the aggregated BLS signature created via IBFT consensus.
AggregatedSeal IstanbulAggregatedSeal
// ParentAggregatedSeal contains and aggregated BLS signature for the previous block.
ParentAggregatedSeal IstanbulAggregatedSeal
}
type IstanbulAggregatedSeal struct {
// Bitmap is a bitmap having an active bit for each validator that signed this block
Bitmap *big.Int
// Signature is an aggregated BLS signature resulting from signatures by each validator that signed this block
Signature []byte
// Round is the round in which the signature was created.
Round *big.Int
}
If you want to get the structured information of extraData
. Just need to rlp decode the other bytes after the extraData
32 bytes. For the specific decoding process, please refer to the ExtractIstanbulExtra
function
// ExtractIstanbulExtra extracts all values of the IstanbulExtra from the header. It returns an
// error if the length of the given extra-data is less than 32 bytes or the extra-data can not
// be decoded.
func ExtractIstanbulExtra(h *Header) (*IstanbulExtra, error) {
......
var istanbulExtra *IstanbulExtra
// IstanbulExtraVanity = 32
err := rlp.DecodeBytes(h.Extra[IstanbulExtraVanity:], &istanbulExtra)
if err != nil {
return nil, err
}
return istanbulExtra, nil
}
Calculate the hash of the block header requires all fields in the block header.
But extraData
needs special attention, because the length of extraData
will affect how the hash is calculated.
Next, we will explain in two cases according to the length of extraData
.
The hash of the block header is just the RLP encoding keccak256 hash of the block header.
Before calculating the hash, we first need to decode the extraData
, and then set the field of AggregatedSeal to be empty.
The specific operation of this step can be found in the IstanbulFilteredHeader
function below.
After that, perform keccak256 hash on the RLP encoding of the block header to get the hash of the block header。
// Hash returns the block hash of the header, which is simply the keccak256 hash of its
// RLP encoding.
func (h *Header) Hash() common.Hash {
// Seal is reserved in extra-data. To prove block is signed by the proposer.
// IstanbulExtraVanity = 32
if len(h.Extra) >= IstanbulExtraVanity {
if istanbulHeader := IstanbulFilteredHeader(h, true); istanbulHeader != nil {
return rlpHash(istanbulHeader)
}
}
// which is simply the keccak256 hash of its RLP encoding.
return rlpHash(h)
}
// IstanbulFilteredHeader returns a filtered header which some information (like seal, aggregated signature)
// are clean to fulfill the Istanbul hash rules. It returns nil if the extra-data cannot be
// decoded/encoded by rlp.
func IstanbulFilteredHeader(h *Header, keepSeal bool) *Header {
newHeader := CopyHeader(h)
istanbulExtra, err := ExtractIstanbulExtra(newHeader)
if err != nil {
return nil
}
if !keepSeal {
istanbulExtra.Seal = []byte{}
}
istanbulExtra.AggregatedSeal = IstanbulAggregatedSeal{}
payload, err := rlp.EncodeToBytes(&istanbulExtra)
if err != nil {
return nil
}
// IstanbulExtraVanity = 32
newHeader.Extra = append(newHeader.Extra[:IstanbulExtraVanity], payload...)
return newHeader
}
The validator node broadcasts the commit message, and the message carries the CommittedSeal
.
The Signature
field in AggregatedSeal
is the result of the aggregated signature of the CommittedSeal
in all the collected commit messages
func (c *core) broadcastCommit(sub *istanbul.Subject) {
......
committedSeal, err := c.generateCommittedSeal(sub)
......
istMsg := istanbul.NewCommitMessage(&istanbul.CommittedSubject{
Subject: sub,
CommittedSeal: committedSeal[:],
EpochValidatorSetSeal: epochValidatorSetSeal[:],
}, c.address)
c.broadcast(istMsg)
}
sub.Digest: the hash of the block sub.View.Round: number of rounds
func (c *core) generateCommittedSeal(sub *istanbul.Subject) (blscrypto.SerializedSignature, error) {
seal := PrepareCommittedSeal(sub.Digest, sub.View.Round)
committedSeal, err := c.backend.SignBLS(seal, []byte{}, false, false)
if err != nil {
return blscrypto.SerializedSignature{}, err
}
return committedSeal, nil
}
Convert hash
, round
, MsgCommit
into bytes and concatenate, I can also get a simple seal.
MsgCommit
is a constant, its value is 2
func PrepareCommittedSeal(hash common.Hash, round *big.Int) []byte {
var buf bytes.Buffer
buf.Write(hash.Bytes())
buf.Write(round.Bytes())
buf.Write([]byte{byte(istanbul.MsgCommit)})
return buf.Bytes()
}
Above we got a simple seal by splicing the hash
and round
of the block header and a fixed MsgCommit
,
But that's not enough, because this seal can be generated by anyone.
Then we also need to bls sign the seal with the verifier's private key to get the final committedSeal
type Account struct {
Address common.Address `json:"address"` // Ethereum account address derived from the key
URL URL `json:"url"` // Optional resource locator within a backend
}
func (ks *KeyStore) SignBLS(a accounts.Account, msg []byte, extraData []byte, useComposite, cip22 bool) (blscrypto.SerializedSignature, error) {
// Look up the key to sign with and abort if it cannot be found
ks.mu.RLock()
defer ks.mu.RUnlock()
// a.Address is the address of validator
// when starting the validator node, you need to unlock the validator account through the `--unlock` flag. When unlocking,
// the account's private key and other information will be put into `unlocked`
unlockedKey, found := ks.unlocked[a.Address]
if !found {
return blscrypto.SerializedSignature{}, ErrLocked
}
// The private key corresponding to the validator account
privateKeyBytes, err := blscrypto.CryptoType().ECDSAToBLS(unlockedKey.PrivateKey)
if err != nil {
return blscrypto.SerializedSignature{}, err
}
blskey, err := bn256.DeserializePrivateKey(privateKeyBytes)
if err != nil {
return blscrypto.SerializedSignature{}, err
}
sign, err := bn256.Sign(blskey, blskey.ToPublic(), msg)
if err != nil {
return blscrypto.SerializedSignature{}, err
}
signature := blscrypto.SerializedSignature{}
copy(signature[:], sign.Marshal())
return signature, nil
}
Put the CommittedSeal in all the collected messages into a two-dimensional array, the first dimension stores the index of the message in the message list, and the second dimension stores the real CommittedSeal. Then perform the bls aggregation signature on this two-dimensional array.
func GetAggregatedSeal(seals MessageSet, round *big.Int) (types.IstanbulAggregatedSeal, error) {
bitmap := big.NewInt(0)
committedSeals := make([][]byte, seals.Size())
// Get all collected messages
for i, v := range seals.Values() {
// IstanbulExtraBlsSignature = 64
committedSeals[i] = make([]byte, types.IstanbulExtraBlsSignature)
// get the `committedSubject` in each message
commit := v.Commit()
// the commit.CommittedSeal here is the CommittedSeal in the message broadcast by the validator
copy(committedSeals[i][:], commit.CommittedSeal[:])
j, err := seals.GetAddressIndex(v.Address)
if err != nil {
return types.IstanbulAggregatedSeal{}, err
}
bitmap.SetBit(bitmap, int(j), 1)
}
asig, err := blscrypto.CryptoType().AggregateSignatures(committedSeals)
if err != nil {
return types.IstanbulAggregatedSeal{}, err
}
return types.IstanbulAggregatedSeal{Bitmap: bitmap, Signature: asig, Round: round}, nil
}
// writeAggregatedSeal writes the extra-data field of a block header with given committed
// seals. If isParent is set to true, then it will write to the fields related
// to the parent commits of the block
func writeAggregatedSeal(h *types.Header, aggregatedSeal types.IstanbulAggregatedSeal, isParent bool) error {
// IstanbulExtraBlsSignature = 64
if len(aggregatedSeal.Signature) != types.IstanbulExtraBlsSignature {
return errInvalidAggregatedSeal
}
istanbulExtra, err := types.ExtractIstanbulExtra(h)
if err != nil {
return err
}
if isParent {
istanbulExtra.ParentAggregatedSeal = aggregatedSeal
} else {
istanbulExtra.AggregatedSeal = aggregatedSeal
}
payload, err := rlp.EncodeToBytes(&istanbulExtra)
if err != nil {
return err
}
// compensate the lack bytes if header.Extra is not enough IstanbulExtraVanity bytes.
// IstanbulExtraVanity = 32
if len(h.Extra) < types.IstanbulExtraVanity {
h.Extra = append(h.Extra, bytes.Repeat([]byte{0x00}, types.IstanbulExtraVanity-len(h.Extra))...)
}
h.Extra = append(h.Extra[:types.IstanbulExtraVanity], payload...)
return nil
}