-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsweep_sim_EPG_2.m
246 lines (197 loc) · 9.29 KB
/
sweep_sim_EPG_2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
function [dat, tissue, RF, motion] = sweep_sim_EPG_2(tissue, RF, motion)
%% Laurence Jackson, BME, KCL, 2018
%
% Simulates pulse profile moving across tissue with motion and flow
% consideration
%
% INPUTS::
% tissue - tissue struct with fields
% T1 - T1 of tissue
% T2 - T2 of tissue
% length - length of tissue to simulate
%
% RF - sequence struct with fields
% profile - RF profile (flip radians vs time)
% TR - TR
% thk - nominal slice thickness
% swp - sweep rate
%
% OUTPUTS::
% dat - return data structure with fields
% s0 - signal
% flipmat - applied flips (time vs zloc)
%
%% Hidden options - shouldnt need to be changed in most cases
% tissue_multiplier = 5; % resolution of tissue vector
RF.range = 10; % +/-mm to simulate rf pulse over (i.e. extend of sidebands to include)
elements_per_mm = 25; % elements of simulation matrix per mm, can speed things up
offload = 1; % offload to remote machine if set up
%% calculated values
[RF.profile, zz,~] = pulse_profile(RF); % simulate pulse profile
if RF.block ==1
RF.profile(RF.profile>(0.5*(max(RF.profile)))) = max(RF.profile);
RF.profile(RF.profile<(0.5*(max(RF.profile)))) = 0;
end
RF.pulseshift = 0.01.*RF.swp.*RF.thk; % pulse shift in m (RF.swp = % slice moved per pulse)
if RF.seqspec == 1
RF.npulses = RF.npe * RF.ndyn * RF.nslice;
warning('RF.npulses is being overridden by RF.seqspec and RF.npe -- npulses is now %d',RF.npulses)
if (RF.match_swp == 1)
% match sweep rate to seqspec
RF.pulseshift = ((RF.nslice) * (RF.thk + RF.slicegap)) / RF.npulses;
RF.swp = (RF.pulseshift * 100) / (RF.thk);
warning('RF.swp is being overridden by RF.seqspec -- RF.swp is now %d', RF.swp)
end
elseif RF.pulseshift == 0
RF.nslice = ceil(RF.npulses./RF.npe); % estimated number of slices to make sure enough tissue is simulated
end
RF.flip = rad2deg(max(RF.profile)); % approximate flip angle
RF.sweepdur = RF.npulses.*RF.TR*0.001; % sweep duration in seconds
%% calculate motion vectorss
if isfield(motion,'custom')
motion_resp = motion.custom;
else
motion_resp = sin(linspace(0,2*pi*RF.sweepdur*(motion.respfreq),RF.npulses)).*(motion.respmag./2);
end
motion.motion_resp = motion_resp;
%% Introduce flow component
motion.flow_per_pulse = 0;
if ~motion.flow==0
motion.flow_per_pulse = (motion.flow * RF.sweepdur) / RF.npulses; % displacement per pulse from flow
motion.flow_dist = motion.flow_per_pulse .* RF.npulses;
end
%% define tissue
% tissue.min = min([0,max(motion_resp),-1.*(motion.flow_per_pulse.*RF.npulses)]); % flow is negative in this coordinate system
tissue.min = min([0,-max(motion_resp),-1.*(motion.flow_per_pulse.*RF.npulses)]); % flow is negative in this coordinate system
% CHECKTHIS: changes tissue.min contribution to tissue.length to abs value
% tissue.length = (RF.range*1e-3) + (tissue.min) + ((RF.thk + RF.slicegap) * RF.nslice) + (RF.pulseshift.*RF.npulses) + (abs(motion.flow_per_pulse).*RF.npulses);
tissue.length = (2*RF.range*1e-3) + abs(tissue.min) + ((RF.thk + RF.slicegap) * (RF.nslice-1)) + (RF.pulseshift.*RF.npulses) + (abs(motion.flow_per_pulse).*RF.npulses);
tissue_resolution = ceil((abs(tissue.length - tissue.min)*1e3) * elements_per_mm); % elements per mm
tissue.vec = linspace(tissue.min,tissue.length,tissue_resolution);
%% print final simulation paramters
print_sim_info(tissue, RF, motion)
%% Produce flipmat
zzabs = (zz) + abs(min(zz));
flipmat = zeros(RF.npulses,length(tissue.vec));
sliceshift = 0;
firstpulse = [1];
sliceidx = 1;
dynidx = 1;
switch RF.sliceorder
case 'ascending'
slicev = 0:(RF.nslice-1);
case 'descending'
slicev = (RF.nslice-1):-1:0;
case 'odd-even'
v = 0:(RF.nslice-1);
v_odd = v(rem(v,2)~=0);
v_even = v(rem(v,2)==0);
slicev = [v_even v_odd];
case 'random'
vv = 0:(RF.nslice-1);
slicev = vv(randperm(length(vv)));
otherwise
error('Check RF.sliceorder definitition')
end
for puls = 1:RF.npulses
if RF.seqspec == 1 % npulses defined by nslices and ndyns
switch RF.dynorder
case 'slices'
if RF.pulseshift == 0 && mod(puls-1,RF.npe) == 0 % not sweep and first pulse in 2D k-space
sliceshift = slicev(sliceidx).*(RF.thk + RF.slicegap);
if sliceidx < RF.nslice
sliceidx = sliceidx + 1;
else
dynidx = dynidx + 1;
sliceidx = 1;
end
firstpulse = [firstpulse; puls];
end
case 'dynamics'
if RF.pulseshift == 0 && mod(puls-1,RF.npe) == 0
sliceshift = slicev(sliceidx).*(RF.thk + RF.slicegap);
if dynidx < RF.ndyn
dynidx = dynidx + 1;
else
sliceidx = sliceidx + 1;
dynidx = 1;
end
firstpulse = [firstpulse; puls];
end
end
else % normal behaviour
if RF.pulseshift == 0 && mod(puls,RF.npe) == 0 % not sweep and first pulse in 2D k-space
sliceshift = sliceshift + RF.thk + RF.slicegap;
firstpulse = [firstpulse; puls];
end
end
% xx = zzabs + (puls - 1).*RF.pulseshift + sliceshift + motion_resp(puls) + (puls - 1).*motion.flow_per_pulse; % where the pulse IS
xx = zzabs + (puls - 1).*RF.pulseshift + sliceshift + motion_resp(puls) - (puls - 1).*motion.flow_per_pulse; % where the pulse IS; flow shift is -ve
zq = find((tissue.vec >= xx(1)) & (tissue.vec < (zzabs(end) + xx(end)))); % index of these locations in tissue vector
flipvec = interp1(xx,RF.profile,tissue.vec(zq),'linear');
flipmat(puls,zq) = flipvec;
dat.offset(puls) = xx(1);
end
figure();imagesc(tissue.vec.*1000-RF.range,1:RF.npulses,rad2deg(flipmat));
flipmat(isnan(flipmat)==1) = 0; % remove nans
% Include catalysation pulses
if ~isempty(RF.catalysation)
for rr = 1:length(RF.catalysation)
for ff = 1:length(firstpulse)
fliploc = firstpulse(ff)+(rr-1);
if fliploc > size(flipmat,1)
continue;
end
v = flipmat(fliploc,:);
v = (v - min(v(:))) / (max(v(:)) - min(v(:)));
flipmat(fliploc,:) = v*deg2rad(RF.catalysation(rr));
end
end
end
%% EPG
phi = RF_phase_cycle(length(flipmat(:,1)), RF.seq); % phase cycling scheme
if offload == 1
SS.flipmat = flipmat;
SS.phi = phi;
SS.RF = RF;
SS.tissue = tissue;
s0_RF = send2remote('EPG_sim_offload',SS,'ssh','ssh_beastie01.mat');
delete('temp_struct.mat')
else
parfor zz = 1:size(flipmat,2)
s0_RF(:,zz) = EPG_GRE(flipmat(:,zz),phi,RF.TR,tissue.T1,tissue.T2);
end
end
%% convert to scanner co-ordinates- space in which signals are measured
% tissue.vec = linspace(tissue.min,tissue.length,RF.npulses.*tissue_multiplier); % redeclare tissue.vec to remove flow extension if it exists
coverage_min = -RF.range*1e-3;
coverage_max = ((RF.thk + RF.slicegap) * RF.nslice) + (RF.pulseshift.*RF.npulses) + RF.range*1e-3;
tissue.scanner_space = linspace(coverage_min, coverage_max, tissue_resolution); % scanner space imaging volume
sliceshift = 0;
s0 = zeros([RF.npulses,length(tissue.vec)]);
for puls = 1:RF.npulses
xx = tissue.vec + sliceshift - motion_resp(puls) + (puls - 1).*motion.flow_per_pulse - (RF.range*1e-3);
zq = find((tissue.scanner_space >= xx(1)) & (tissue.scanner_space < xx(end))); % index of these locations in tissue vector
flipvec = interp1(xx,s0_RF(puls,:),tissue.scanner_space(zq),'linear');
s0(puls,zq) = flipvec;
if RF.swp == 0
xx_pr = tissue.vec - (1e-3 * RF.range) - ((RF.thk + RF.slicegap) * floor(puls/RF.npe)) - sliceshift - motion_resp(puls) + (puls - 1).*motion.flow_per_pulse; % where the pulse IS
else
xx_pr = tissue.vec - (1e-3 * RF.range) - (puls - 1).*RF.pulseshift - sliceshift - motion_resp(puls) + (puls - 1).*motion.flow_per_pulse; % where the pulse IS
end
zq_pr = find((tissue.vec >= xx_pr(1)) & (tissue.vec < xx_pr(end))); % index of these locations in tissue vector
qq = linspace(tissue.vec(zq_pr(1)),tissue.vec(zq_pr(end)),1000);
dat.profile(1,:,puls) = qq; % z location
dat.profile(2,:,puls) = interp1(xx_pr,s0_RF(puls,:),qq,'linear'); % amplitude
dat.profile_common(1,:,puls) = linspace(-RF.range*1e-3, RF.range*1e-3, 1000);
dat.profile_common(2,:,puls) = interp1(xx_pr,s0_RF(puls,:),dat.profile_common(1,:,puls),'linear'); % amplitude
end
figure();imagesc(tissue.scanner_space.*1e3,1:RF.npulses,abs(s0));
s0(isnan(s0)==1) = 0; % remove nans
%% Bring results into dat
dat.s0 = s0; % signal in scanner space
% dat.s0_RF = s0_RF; % signal in RF space - useful for debugging
dat.flipmat = flipmat;
dat.RF = RF;
dat.motion = motion;
dat.tissue = tissue;