-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkm_plot_twosample.R
351 lines (276 loc) · 11.6 KB
/
km_plot_twosample.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
###################################################################################################################################################
# K-M is weighted via Weight (Weight==1 is standard KM)
# Cox model is either via Weighting OR Covariates (if Covariates = NULL, then Cox model is weighted; Otherwise, Cox model included Covariates)
###################################################################################################################################################
KM.plot.2sample.weighted<-function(Y,E,Treat,Covariates=NULL,Weight=rep(1,length(Y)),show.cox=FALSE,col.cox="red",cox.cex=1.0,show.logrank=FALSE,stop.onerror=FALSE,check.KM=FALSE,
details=FALSE,put.legend.cox='topright',put.legend.lr='top',del.med=0.075,lr.digits=2,
direction="any",
tpoints.add=c(-1),by.risk=NULL,Xlab="time",Ylab="proportion surviving",col.1="black",col.2="blue",show.med=FALSE,med.cex=1.25,risk.cex=1,
quant=0.5,
what.plot="KM",
censor.mark.all=TRUE,show.ticks=TRUE,risk.set=TRUE,ymin=-0.125,ymax=1,
add.segment=FALSE,risk.add=NULL,xmin=0,xmax=NULL,x.truncate=NULL,time.zero=0.0,prob.points=c(seq(0.1,1.0,by=0.1))){
#if(censor.mark.all==TRUE) warning("All censorings will be marked regardless of *tying to an event* [DOES NOT REPLICATE R Survfit()]")
Wgt<-Weight
tpoints.add.plot<-tpoints.add # This will be for plotting individual curves
# Common points to estimate both arms to include all event times (for differences)
tpoints.add<-sort(unique(c(tpoints.add,sort(unique(Y[which(E==1)])))))
Y1<-Y[which(Treat==1)]
E1<-E[which(Treat==1)]
W1<-Weight[which(Treat==1)]
Y0<-Y[which(Treat==0)]
E0<-E[which(Treat==0)]
W0<-Weight[which(Treat==0)]
Time<-c(Y1,Y0)
Event<-c(E1,E0)
Strata<-c(rep(2,length(Y1)),rep(1,length(Y0)))
Weight<-c(W1,W0)
if(!is.null(Covariates)){
coxfit<-coxph(Surv(Y,E)~Treat+Covariates,robust=TRUE)
hr.ci<-as.matrix(round(summary(coxfit)$conf.int,4))
pval.cox<-summary(coxfit)$coefficients[1,6]
}
if(is.null(Covariates)){
coxfit<-coxph(Surv(Y,E)~Treat,robust=TRUE)
hr.ci<-as.matrix(round(summary(coxfit)$conf.int,4))
pval.cox<-summary(coxfit)$coefficients[6]
}
# ipw weighting
if(is.null(Covariates) & !all(Wgt==1)){
coxfit<-coxph(Surv(Y,E)~Treat,weights=Wgt,robust=TRUE)
hr.ci<-as.matrix(round(summary(coxfit)$conf.int,4))
pval.cox<-summary(coxfit)$coefficients[6]
}
# Get HR for Treat
hr.ci<-hr.ci[1,c(1,3,4)]
if(details){
if(!is.null(Covariates)){
cat("Cox adjusted HR=",c(paste(hr.ci[1])),"\n")
cat("Cox CIs=",c(paste(hr.ci[2]),paste(hr.ci[3])),"\n")}
if(is.null(Covariates) & all(Wgt==1)){
cat("Cox un-adjusted HR=",c(paste(hr.ci[1])),"\n")
cat("Cox CIs=",c(paste(hr.ci[2]),paste(hr.ci[3])),"\n")}
if(is.null(Covariates) & !all(Wgt==1)){
cat("Cox ipw-adjusted HR=",c(paste(hr.ci[1])),"\n")
cat("Cox CIs=",c(paste(hr.ci[2]),paste(hr.ci[3])),"\n")}
}
if(is.null(by.risk)){
tt<-sort(unique(Time))
by.risk<-quantile(tt-c(0,tt[-length(tt)]),c(0.75),na.rm=TRUE)
}
stratums<-c(sort(unique(Strata),decreasing=TRUE))
if(any(is.na(Strata))) stop("Missing strata information")
x1<-Time[which(Strata==stratums[1])]
to.get<-!is.na(x1)
x1<-x1[to.get]
eta1<-Event[which(Strata==stratums[1])]
eta1<-eta1[to.get]
w1<-Weight[which(Strata==stratums[1])]
w1<-w1[to.get]
x2<-Time[which(Strata==stratums[2])]
to.get<-!is.na(x2)
x2<-x2[to.get]
eta2<-Event[which(Strata==stratums[2])]
eta2<-eta2[to.get]
w2<-Weight[which(Strata==stratums[2])]
w2<-w2[to.get]
xx<-c(x1,x2)
ee<-c(eta1,eta2)
at.points<-sort(c(unique(c(x1,x2,tpoints.add))))
at.points1<-sort(c(unique(c(x1,tpoints.add))))
at.points2<-sort(c(unique(c(x2,tpoints.add))))
at.points1.plot<-sort(c(unique(c(x1,tpoints.add.plot))))
at.points2.plot<-sort(c(unique(c(x2,tpoints.add.plot))))
# Experimental
fit1<-NA.CHR.Weighted(time=x1,Delta=(eta1==1),W.n=w1,W.d=w1,at.points=at.points1)
S1.KM<-fit1$S.KM
SE1.KM<-fit1$se.KM
# Control
fit2<-NA.CHR.Weighted(time=x2,Delta=(eta2==1),W.n=w2,W.d=w2,at.points=at.points2)
S2.KM<-fit2$S.KM
SE2.KM<-fit2$se.KM
# LR() denotes the log-rank scale
# Integral of "LR differences" = log-rank test (non-standardized)
ZLR.dpoints<-LR.dpoints<-S1.dpoints<-SE1.dpoints<-S2.dpoints<-SE2.dpoints<-NULL
tp1.match<-match(tpoints.add,at.points1)
tp2.match<-match(tpoints.add,at.points2)
S1.dpoints<-S1.KM[tp1.match]
SE1.dpoints<-SE1.KM[tp1.match]
Y1.dpoints<-fit1$n.risk[tp1.match]
dN1.dpoints<-fit1$dN[tp1.match]
S2.dpoints<-S2.KM[tp2.match]
SE2.dpoints<-SE2.KM[tp2.match]
Y2.dpoints<-fit2$n.risk[tp2.match]
dN2.dpoints<-fit2$dN[tp2.match]
K<-(Y1.dpoints*Y2.dpoints)/(Y1.dpoints+Y2.dpoints)
Y.dpoints<-Y1.dpoints+Y2.dpoints
dN.dpoints<-dN1.dpoints+dN2.dpoints
term1<-cumsum(ifelse(Y1.dpoints>0,(K/Y1.dpoints)*dN1.dpoints,0.0))
term2<-cumsum(ifelse(Y2.dpoints>0,(K/Y2.dpoints)*dN2.dpoints,0.0))
# variance
h0<-ifelse(Y1.dpoints==0,0,(K^2/Y1.dpoints))
h1<-ifelse(Y2.dpoints==0,0,(K^2/Y2.dpoints))
dJ<-ifelse(Y.dpoints==1,0,(dN.dpoints-1)/(Y.dpoints-1))
dL<-ifelse(Y.dpoints==0,0,dN.dpoints/Y.dpoints)
sig2s<-(h0+h1)*(1-dJ)*dL
sig2<-cumsum(sig2s)
LR.dpoints<-term2-term1
ZLR.dpoints<-LR.dpoints/sqrt(sig2)
# Zlr() is weighted log-rank process
# Zlr(tau) for tau end of followup is
# the "final" z statistic (1-sided)
z.lr<-ZLR.dpoints[length(ZLR.dpoints)]
if(direction=="superiority") p.lr<-1-pnorm(z.lr)
if(direction=="any") p.lr<-2*(1-pnorm(abs(z.lr)))
if(check.KM & all(Wgt==1)){
p.2side<-2*p.lr
logrnk<-survdiff(Surv(Y,E)~Treat)
p.val<-1-pchisq(logrnk$chisq,length(logrnk$n) - 1)
#print(c(p.2side,p.val))
if(round(p.2side-p.val,6)>0) warning("Discrepancy with log-rank process and survdiff")
}
#########################################
# Note: want to confirm with R function
#########################################
# Check KM fits #
if(check.KM){
# only at observed unique observations to align with survfit
# Experimental
S1.check<-NA.CHR.Weighted(time=x1,Delta=(eta1==1),W.n=w1,W.d=w1,at.points=sort(unique(x1)))$S.KM
S2.check<-NA.CHR.Weighted(time=x2,Delta=(eta2==1),W.n=w2,W.d=w2,at.points=sort(unique(x2)))$S.KM
KM.fit<-survfit(Surv(Y1,E1)~1,weights=W1)
max.error<-round(max(abs(KM.fit$surv-S1.check)),8)
print(max.error)
if(stop.onerror & max.error>=0.00001) stop("Discrepancy in KM1 fit")
KM.fit<-survfit(Surv(Y0,E0)~1,weights=W0)
max.error<-round(max(abs(KM.fit$surv-S2.check)),8)
print(max.error)
if(stop.onerror & max.error>=0.00001) stop("Discrepancy in KM2 fit")
# End Check KM fits #
}
events1<-sort(unique(x1[eta1==1]))
events2<-sort(unique(x2[eta2==1]))
if(!censor.mark.all){
# Censored points
# Curves are marked at each censoring time which is not also a death time
x1.cens<-x1[eta1==0]
x2.cens<-x2[eta2==0]
x1.cens<-setdiff(x1.cens,events1) # Censorings that are NOT an event (this is the R version which follows estimation convention)
x2.cens<-setdiff(x2.cens,events2)
x1.match<-match(x1.cens,at.points1)
x2.match<-match(x2.cens,at.points2)
}
if(censor.mark.all){
# Censored points
x1.cens<-x1[eta1==0]
x2.cens<-x2[eta2==0]
x1.match<-match(x1.cens,at.points1)
x2.match<-match(x2.cens,at.points2)
}
risk.points<-round(c(seq(0,max(at.points),by=by.risk)))
risk.points<-sort(unique(c(risk.points,risk.add)))
risk.2<-unlist(lapply(as.list(risk.points),R.Weighted,error=x2,W=w2))
risk.1<-unlist(lapply(as.list(risk.points),R.Weighted,error=x1,W=w1))
risk.2<-round(risk.2)
risk.1<-round(risk.1)
# Note: "med" denotes general quantile, but median is default
med.1<-suppressWarnings(min(at.points1[S1.KM<=quant]))
# log transform
KM1.lower<-exp(log(S1.KM)-1.96*SE1.KM/S1.KM)
KM1.upper<-exp(log(S1.KM)+1.96*SE1.KM/S1.KM)
med.1.lower<-suppressWarnings(min(at.points1[KM1.lower<=quant]))
med.1.upper<-suppressWarnings(min(at.points1[KM1.upper<=quant]))
if(details){
cat("Stratum,n,events=",c(stratums[1],length(x1),sum(eta1)),"\n")
cat("Median, Lower, Upper=",c(med.1,med.1.lower,med.1.upper),"\n")
}
med.2<-suppressWarnings(min(at.points2[S2.KM<=quant]))
KM2.lower<-exp(log(S2.KM)-1.96*SE2.KM/S2.KM)
KM2.upper<-exp(log(S2.KM)+1.96*SE2.KM/S2.KM)
med.2.lower<-suppressWarnings(min(at.points2[KM2.lower<=quant]))
med.2.upper<-suppressWarnings(min(at.points2[KM2.upper<=quant]))
if(details){
cat("Stratum,n,events=",c(stratums[2],length(x2),sum(eta2)),"\n")
cat("Median, Lower, Upper=",c(med.2,med.2.lower,med.2.upper),"\n")
}
# Experimental
fit1<-NA.CHR.Weighted(time=x1,Delta=(eta1==1),W.n=w1,W.d=w1,at.points=at.points1.plot)
S1.KM.plot<-fit1$S.KM
# Control
fit2<-NA.CHR.Weighted(time=x2,Delta=(eta2==1),W.n=w2,W.d=w2,at.points=at.points2.plot)
S2.KM.plot<-fit2$S.KM
if(what.plot=="KM"){
Y1.plot<-S1.KM.plot
Y2.plot<-S2.KM.plot
}
if(what.plot=="1-KM"){
Y1.plot<-1-S1.KM.plot
Y2.plot<-1-S2.KM.plot
}
if(is.null(x.truncate)) xmax<-max(c(at.points,xmax))
if(!is.null(x.truncate)) xmax<-x.truncate
plot(at.points1.plot,Y1.plot,type="s",ylim=c(ymin,ymax),xlim=c(xmin,xmax),lty=1,col=col.1,lwd=2,xlab=Xlab,ylab=Ylab,axes=FALSE)
lines(at.points2.plot,Y2.plot,lty=1,type="s",col=col.2,lwd=2)
if(show.ticks==TRUE & what.plot=="KM"){
points(x1.cens,S1.KM[x1.match],pch=3,col=col.1)
points(x2.cens,S2.KM[x2.match],pch=3,col=col.2)
}
if(show.ticks==TRUE & what.plot=="1-KM"){
points(x1.cens,1-S1.KM[x1.match],pch=3,col=col.1)
points(x2.cens,1-S2.KM[x2.match],pch=3,col=col.2)
}
abline(h=0,lty=1,col=1)
#axis(2,at=c(0.0,0.2,0.4,0.5,0.6,0.8,1.0))
axis(2,at=c(prob.points))
axis(1,at=risk.points,labels=c(risk.points+time.zero))
#axTicks(side=1, axp =c(risk.points+5.25))
box()
if(risk.set){
text(c(risk.points),-0.075,c(risk.2),col=col.2,cex=risk.cex)
text(c(risk.points),ymin,c(risk.1),col=col.1,cex=risk.cex)
}
if(add.segment) segments(-10,1,0,1)
if(show.med){
if(med.1!=Inf & med.2!=Inf){
text(xmax-4,ymax-0.25,paste(round(med.1,2)),col=col.1,cex=med.cex)
text(xmax-4,ymax-(0.25+del.med),paste(round(med.2,2)),col=col.2,cex=med.cex)
}
if(med.1!=Inf & med.2==Inf){
text(xmax-2,ymax-0.2,paste(round(med.1,2)),col=col.1,cex=med.cex)
text(xmax-2,ymax-(0.2+del.med),paste("median NA"),col=col.2,cex=1)
}
if(med.1==Inf & med.2!=Inf){
text(xmax-2,ymax-0.2,paste("median NA"),col=col.1,cex=1)
text(xmax-2,ymax-(0.2+del.med),paste(round(med.2,2)),col=col.2,cex=med.cex)
}
if(med.1==Inf & med.2==Inf){
text(xmax-4,ymax-0.2,paste("median NA"),col=col.1,cex=1)
text(xmax-4,ymax-(0.2+del.med),paste("median NA"),col=col.2,cex=1)
}
}
if(show.cox){
rp<-vector('expression',4)
rp[1]=substitute(expression(italic(HR)== MYVALUE1),
list(MYVALUE1 = format(hr.ci[1],digits = 2)))[2]
rp[2]=substitute(expression(italic(Lower) == MYVALUE2),
list(MYVALUE2 = format(hr.ci[2], digits = 2)))[2]
rp[3]=substitute(expression(italic(Upper) == MYVALUE3),
list(MYVALUE3= format(hr.ci[3], digits = 2)))[2]
rp[4]=substitute(expression(italic(pval.cox) == MYVALUE3),
list(MYVALUE3= format(pval.cox, digits = 2)))[2]
legend(put.legend.cox, legend = rp, bty = 'n')
}
if(show.logrank){
rp<-vector('expression',1)
rp[1]=substitute(expression(italic(p[superiority])== MYVALUE),
list(MYVALUE = format(p.lr,digits=lr.digits)))[2]
legend(put.legend.lr, legend = rp, bty = 'n')
}
return(list(S1.KM=S1.KM,S2.KM=S2.KM,KM1.lower=KM1.lower,KM2.lower=KM2.lower,KM1.upper=KM1.upper,KM2.upper=KM2.upper,
pval.cox=pval.cox,pval.lr=p.lr,cpoints=tpoints.add,
S1.dpoints=S1.dpoints,SE1.dpoints=SE1.dpoints,
S2.dpoints=S2.dpoints,SE2.dpoints=SE2.dpoints,
LR.dpoints=LR.dpoints,ZLR.dpoints=ZLR.dpoints,
at.points1=at.points1,at.points2=at.points2,
med.1=med.1,med.2=med.2,events.1=sum(eta1),events.2=sum(eta2),risk.1=risk.1,risk.2=risk.2,risk.points=risk.points))
}