-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_job_moead.py
39 lines (32 loc) · 1.39 KB
/
run_job_moead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from random import random, randrange, seed
import multiprocessing
import os
import argparse
from methods import *
def generate_seed(num_instance):
seed(0)
seeds=[random() for _ in range(num_instance)]
#print(seeds)
return seeds
def func(name,seed, dirname, param, prof1_jobs,prof2_jobs,setting, i):
cmd=f'python job_availability.py -alg {name} -job_pro1 {prof1_jobs} -set {setting} -index {i} -dir {dirname} -seed {seed} -job_pro2 {prof2_jobs} -p {param}'
print(cmd)
os.system(cmd)
if __name__ == '__main__':
argparser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
argparser.add_argument('-instances', type=int, default=10)
args = argparser.parse_args()
seeds=generate_seed(args.instances)
algorithms = ["moead"]
settings=["correction", "interview","coordination"]
pool = multiprocessing.Pool(processes=30)
for prof1_jobs in [10, 20, 30, 40,50, 60, 70, 80, 90]:
for prof2_jobs in [50]:
for i in range(args.instances):
for setting in settings:
dirname = 'job_availability'
param = prof2_jobs * 1000 + prof1_jobs
for name in algorithms:
pool.apply_async(func, (name,seeds[i],dirname,param,prof1_jobs,prof2_jobs, setting, i,))
pool.close()
pool.join()