-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_split.m
142 lines (114 loc) · 4.48 KB
/
cluster_split.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function [cl_directions, cl_inds, cl_sizes] = cluster_split(channels, N_clusters, N_iter,cluster_type, ind2train, cl_d)
N_rx = size(channels,2);
N_scen = size(channels,1);
N_used = size(channels,3);
% consistent_inds = 1:140;
consistent_inds = load("consistent_inds").consistent_inds;
ch_directions = load("sv_svd_RX1024.mat").singular_vecs(consistent_inds,:);
% ch_directions = load("sa_svd_RX1024.mat").singular_subarrays(consistent_inds,:);
cl_sizes = zeros(N_clusters,1);
ch_directions = normalize_rows(ch_directions);
if cl_d == 0
cl_directions = normalize_elements(randn(N_clusters,N_rx) + 1i*randn(N_clusters,N_rx));
else
cl_directions = cl_d / norm(cl_d);
end
if cluster_type == 1 % k-means
for iter = 1:max(1,N_iter)
sim_table = zeros(N_scen,N_clusters);
% Create similarity table
for subarray_ind = 1:size(ind2train,2)
sim_table = sim_table + abs(ch_directions(:,ind2train(:,subarray_ind)) * cl_directions(:,ind2train(:,subarray_ind))');
end
% sim_table = abs(ch_directions(:,ind2train(:,:)) * cl_directions(:,ind2train(:,:))');
[~,cl_inds] = max(sim_table, [], 2);
f_dist = @(X1, X2)complex_subarray_cos(X1,X2, ind2train);
% Get cluster statistics, cluster center - eigvec of concatenation
if N_iter == 0
for cl = 1:N_clusters
cl_sizes(cl) = sum(cl_inds==cl);
end
else
for cl = 1:N_clusters
cl_sizes(cl) = sum(cl_inds==cl);
cluster_elements = channels(cl_inds == cl, :, :);
for i = 1:64
[v,e_v] = eigs(cluster_elements(:,ind2train(:,i))'*cluster_elements(:,ind2train(:,i)),1);
cl_directions(cl,ind2train(:,i)) = normalize_elements(v);
end
% cluster_elements = squeeze(reshape(permute(cluster_elements,[1,3,2]), [cl_sizes(cl)*N_used, N_rx]));
% [v,~] = eigs(cluster_elements'*cluster_elements,1);
% cl_directions(cl,:) = v;
end
end
end
else % hierarchical44
% Custom distance for hybrid beamforming
f_dist = @(X1, X2)complex_subarray_cos(X1,X2, ind2train);
% f_dist = @(X1, X2)complex_subarray(X1,X2);
% Next functions are standard
distance_vec = pdist(ch_directions, f_dist);
linkage_result = linkage(distance_vec, 'complete');
cl_inds = cluster(linkage_result, 'MaxClust',N_clusters);
% silhouette(ch_directions,cl_inds,f_dist)
% Get channel statistics
for cl = 1:N_clusters
cl_sizes(cl) = sum(cl_inds==cl);
cluster_elements = channels(cl_inds == cl, :, :);
cluster_elements = squeeze(reshape(permute(cluster_elements,[1,3,2]), [cl_sizes(cl)*N_used, N_rx]));
if 0
[v,~] = eigs(cluster_elements'*cluster_elements,1);
cl_directions(cl,:) = v;
else
for i = 1:64
[v,~] = eigs(cluster_elements(:,ind2train(:,i))'*cluster_elements(:,ind2train(:,i)),1);
% cl_directions(cl,ind2train(:,i)) = v / sqrt(64);
cl_directions(cl,ind2train(:,i)) = steering_from_eig(v) / sqrt(16);
end
end
% cl_ch = ch_directions(cl_inds==cl,:);
% cl_directions(cl,:) = cl_ch(1,:);
end
end
end
function A = normalize_rows(A)
for i = 1:size(A,1)
A(i,:) = A(i,:) / norm(A(i,:));
end
end
function A = normalize_elements(A)
for i = 1:size(A,1)
for j = 1:size(A,2)
A(i,j) = A(i,j) / norm(A(i,j));
end
end
end
function steering_matrix = steering_from_eig(E)
Nvert = 4;
Nhor = 4;
Npol = 1;
C=[];
D=[];
for sub_array_index=1:Npol
A=squeeze(E(sub_array_index:end).');
G=reshape(A,[],Nhor);
% angle 1 correlations
for i=1:Nvert
C=[C conj(G(i,1:Nhor-1)).*G(i,2:Nhor)];
end
% angle 2 correlations
for j=1:Nhor
D=[D (conj(G(1:Nvert-1,j)).*G(2:Nvert,j)).'];
end
end
% //////////test antennas correlation////////////
% cor_vec=(abs(corr_sum1)+abs(corr_sum2))/a(sample_indx);
alpha=angle(sum(C));
beta=angle(sum(D));
steering_matrix = zeros(Nvert,Nhor);
% make steering vector (the same for each sub-array)
for k=1:Nvert
steering_matrix(k,:)=exp(1i*(alpha*(0:1:Nhor-1).'+beta*(k-1)));
end
steering_matrix = steering_matrix(:);
end