-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPower_analyzer.m
139 lines (110 loc) · 4.2 KB
/
Power_analyzer.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
rng(42)
fig_ind = 1;
N_scen = 140;
N_digital = 64;
N_rx = 1024;
N_sc = 192;
N_ant = N_rx / N_digital;
dir = "./";
consistent_inds = load(dir + "consistent_inds").consistent_inds; % good LOS
% consistent_inds = 1:140;
% H = load(dir +"data_full_RX1024_split.mat").H_full;
H = load(dir +"data_full_RX1024_split.mat").H_full(consistent_inds,:,:);
N_scen = size(H,1);
inds_1D = 1:N_rx;
inds_2D = reshape(inds_1D, [2 16 32]);
ind2train = zeros(N_ant,N_digital);
for i = 1:N_digital
[p,v,h] = ind2sub([2 4 8], i);
sv = 4;
sh = 4;
ind = inds_2D(p, (v-1)*sv+1:v*sv, (h-1)*sh+1:h*sh);
ind2train(:, i) = ind(:);
end
%%
% phases{1} = load(dir+"Trained_phases_uniform").phases;
% phases{2} = load(dir+"trained_phases_GA2.mat").phases;
% phases{3} = rand(1,N_rx) * 2 * pi;
% phases{4} = load(dir+"Analog_learningGD_UNIFORM.mat").phases;
% phases{5} = load(dir+"Analog_learningGD_UNIFORM_2.mat").phases;
if ~all(size(H) == [N_scen, N_rx, N_sc])
warning("size of H is non consistent with predefined values N_")
end
% H_reshaped = squeeze(reshape(permute(H(1:N_scen, 1:N_rx, 1:N_sc),[2,1,3]), [N_rx, N_scen*N_sc]));
% [V,D] = eigs(H_reshaped*H_reshaped',1);
% phases{6} = angle(V);
norm_factor = sqrt(N_ant);
approaches_to_analyze = [0 -2 -4];
loss_ref = 1;
N_cluster = 16;
loss = zeros(numel(approaches_to_analyze),N_cluster,N_scen);
legend_entity = [];
approach_ind = 0;
% U = load("sa_svd_RX1024.mat").singular_subarrays(consistent_inds,:);
U = load("sv_svd_RX1024.mat").singular_vecs(consistent_inds,:);
for j = approaches_to_analyze
approach_ind = approach_ind + 1;
for n_cl = N_cluster
legend_entity = [legend_entity, "mode "+num2str(j)+", n_cl = "+num2str(n_cl)];
if ismember(j, [1:6])
for i = 1:N_scen
phaseshifts = exp(1i*phases{j}) / norm_factor;
loss(approach_ind,n_cl,i) = phaseshift_loss(phaseshifts,squeeze(H(i,:,:)), ind2train, 0);
end
elseif j == 10
for i = 1:N_scen
u = U(i,:).';
% Here Fanalog has only 1 nonzero column (no blocks of subarrays)
Fanalog = zeros(N_rx, N_digital);
Fanalog(:, 1) = u;
P = Fanalog'*squeeze(H(i,:,:));
loss(approach_ind,n_cl,i) = - sum(abs(P).^2,'all');
end
elseif ismember(j,[-2 -1])
[cl_d, cl_i, cl_s] = cluster_split(H,n_cl,20,abs(j), ind2train, 0);
for i = 1:N_scen
phaseshifts = exp(1i* angle(cl_d(cl_i(i),:)'))/norm_factor;
loss(approach_ind,n_cl,i) = phaseshift_loss(phaseshifts,squeeze(H(i,:,:)), ind2train, 0);
end
elseif j == -4
[V,D] = eigs(H_reshaped*H_reshaped',16);
cl_d = V';
[cl_d, cl_i, cl_s] = cluster_split(H,16,0,1, ind2train,cl_d);
for i = 1:N_scen
phaseshifts = exp(1i* angle(cl_d(cl_i(i),:)'))/norm_factor;
loss(approach_ind,n_cl,i) = phaseshift_loss(phaseshifts,squeeze(H(i,:,:)), ind2train, 0);
end
elseif j == -3
[cl_d, cl_i, cl_s] = cluster_split_R(H,n_cl,20,2, ind2train, 0);
for i = 1:N_scen
phaseshifts = exp(1i* angle(cl_d(cl_i(i),:)') ) /norm_factor;
loss(approach_ind,n_cl,i) = phaseshift_loss(phaseshifts,squeeze(H(i,:,:)), ind2train, 0);
end
elseif j == 0
for i = 1:N_scen
u = U(i,:).';
phaseshifts = exp(1i* angle(u) ) /norm_factor;
% phaseshifts = u;
loss(approach_ind,n_cl,i) = phaseshift_loss(phaseshifts,squeeze(H(i,:,:)), ind2train, 0);
end
loss_ref = loss(1,n_cl,:);
end
disp([j, n_cl, -sum(loss(approach_ind,n_cl,:),3)])
if approach_ind == 1
break;
end
end
end
% if approach_ind ~=1
figure(fig_ind)
hold on
%%
loss_ref = squeeze(loss_ref(1,1,:));
loss = squeeze(loss(:,N_cluster,:)).';
if 1
% scatter(1:N_scen, loss ./ loss_ref);
plot(1:N_scen, loss);
else
boxplot(loss ./ loss_ref);
end
legend(legend_entity)