-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiabe Prediction web app.py
61 lines (34 loc) · 1.27 KB
/
Diabe Prediction web app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 31 06:36:59 2024
@author: lydiacharif
"""
import numpy as np
import pickle
import streamlit as st
# Load the trained model
loaded_model = pickle.load(open('/Users/lydiacharif/PycharmProjects/diab_pred/trained_model.sav', 'rb'))
def diabe_prediction(input_data):
input_data = [int(x) for x in input_data]
input_data_npr = np.asarray(input_data)
input_data_reshaped = input_data_npr.reshape(1, -1)
prediction = loaded_model.predict(input_data_reshaped)
if prediction[0] == 0:
return 'The person does not have diabetes'
else:
return 'The person has diabetes sadly hh'
def main():
st.title('Diabetes Prediction')
Pregnancies = st.text_input("Number of Pregnancies")
Glucose = st.text_input("Glucose Level")
BloodPressure = st.text_input("Blood Pressure")
SkinThickness = st.text_input("Skin Thickness")
Insulin = st.text_input("Insulin")
BMI = st.text_input("BMI")
Age = st.text_input("Age")
if st.button('Diabetes Test Results'):
diagnosis = diabe_prediction([Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, Age])
st.success(diagnosis)
if __name__ == '__main__':
main()