-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheccons.sage
204 lines (192 loc) · 6.6 KB
/
eccons.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/sage
# vim: syntax=python
#
# (C) 2020 Riad S. Wahby <[email protected]>
#
# This file is part of eccons.
#
# Licensed under the Apache License, Version 2.0 (see
# LICENSE or https://www.apache.org/licenses/LICENSE-2.0).
# This file may not be copied, modified, or distributed
# except according to those terms.
import heapq
import multiprocessing as mp
import sage.schemes.elliptic_curves.isogeny_small_degree as isd
import sys
# change this value to control max abs(D)
MIN_DVAL = -100000000
# Construct a curve by computing a j-invariant given the CM discriminant.
@parallel
def compute_curve(dpj):
(D, p) = dpj[:2]
F = GF(p)
if len(dpj) == 3:
j = dpj[2]
else:
j = hilbert_class_polynomial(D).any_root(F)
(E, npoints) = maybe_twist(EllipticCurve(F, j=j), D, p)
if E and COMPL_EDW:
E = to_complete_edwards(E, D, p)
return (E, npoints)
# decide whether to use the curve or the twist by testing for correct point order
MT_NUM_REPS = 16
def maybe_twist(E, D, p):
npoints = get_npoints(D, p)
if npoints is None:
trace = E.trace_of_frobenius()
e_np = p + 1 - trace
et_np = p + 1 + trace
use_curve = False
use_twist = False
if e_np % N == 0:
use_curve = True
npoints = e_np
elif et_np % N == 0:
use_twist = True
npoints = et_np
else:
Et = E.quadratic_twist()
zero = E(0, 1, 0)
zeroT = Et(0, 1, 0)
use_curve = all( zero == npoints * E.random_point() for _ in range(0, MT_NUM_REPS) )
use_twist = all( zeroT == npoints * Et.random_point() for _ in range(0, MT_NUM_REPS) )
if use_curve and use_twist:
print("ERROR: supersingular curve?")
return (None, None)
elif use_curve:
return (E, npoints)
elif use_twist:
return (Et, npoints)
print("ERROR: neither curve nor twist have expected order")
return (None, None)
# convert a twisted Edwards curve to a complete curve via 2-isogenies.
# This is from Morain, F. "Edwards curves and CM curves." arXiv 0904.2243, \S 4.2.
def to_complete_edwards(E, D, p):
M = to_montgomery(E)
if not M:
return None
if is_complete(E, M):
return E
nsteps = num_levels(D, p)
if nsteps is None:
return None
step = 0
ctr = 1
q = [(0, 0, E)]
new_E = None
while q:
(prio, _, curve) = heapq.heappop(q)
if prio <= -nsteps:
if is_complete(curve):
new_E = curve
break
if prio < -nsteps:
continue
for new_iso in set( iso.codomain() for iso in isd.isogenies_2(curve) ):
heapq.heappush(q, (prio - 1, ctr, new_iso))
ctr += 1
if new_E is None:
print("ERROR: no complete twisted Edwards curves found for D=%d" % D)
return new_E
# This is from K. Okeya, H. Kurumatani, and K. Sakurai. "Elliptic Curves with
# the Montgomery-Form and Their Cryptographic Applications." PKC, January 2000.
def to_montgomery(E):
a = E.a4()
b = E.a6()
F = E.base_field()
p = F.order()
R.<x> = F[]
poly = x^3 + a*x + b
salvals = [ (1/F(3*alpha^2+a).sqrt(),alpha) for (alpha, _) in poly.roots()[:1] if F(3*alpha^2+a).is_square() ]
if not salvals:
return None
(s, alpha) = salvals[0]
(A, B) = (F(3*alpha*s), F(s))
(aP, d) = (F((A+2)/B), F((A-2)/B))
return [A, B, aP, d]
# solve 4p = U^2 - DV^2
R.<u,v> = PolynomialRing(ZZ)
def solve_uv(D, p):
solns = solve_diophantine(u**2-D*v**2-4*p)
if not solns:
print("ERROR: expected solutions to U^2-DV^2=4p, but found none\n")
return None
return (int(abs(solns[0][0])), int(abs(solns[0][1])))
# given CM discriminant D, can easily solve for trace
def get_npoints(D, p):
solns = solve_uv(D, p)
if not solns:
return None
(U, _) = solns
npoints = p + 1 - U
if npoints % N != 0:
npoints = p + 1 + U
if npoints % N != 0:
return None # fall back to point counting
return npoints
# How many levels of the isogeny volcano do we need to descend to find a complete curve?
# This is from Morain, F. "Edwards curves and CM curves." arXiv 0904.2243, \S 4.2
def num_levels(D, p):
solns = solve_uv(D, p)
if not solns:
return None
(_, V) = solns
nsteps = 0
while V % 2 == 0:
nsteps += 1
V /= 2
if nsteps == 0:
print("ERROR: expected V to be even, but it was odd\n")
return None
return nsteps
# An Edwards curve is complete if a is square and d is nonsquare.
# This is from Bernstein, D.J., Birkner, P., Joye, M., Lange, T., and Peters, C.
# "Twisted Edwards Curves." Proc. AFRICACRYPT 2008.
def is_complete(E, M=None):
if M is None:
M = to_montgomery(E)
if M is None:
return None
F = E.base_field()
if F(M[2]).is_square() and not F(M[3]).is_square():
return True
return False
def main(DPvalues, COMPL_EDW):
for (curve_input, (E, npoints)) in compute_curve( x for x in DPvalues if x[0] >= MIN_DVAL ):
if E is None:
continue
F = E.base_field()
D = curve_input[0][0][0]
p = curve_input[0][0][1]
assert p == F.order()
curve_info = [p, D, E.j_invariant(), npoints, 2 * p + 2 - npoints, E.a4(), E.a6()]
monty_info = to_montgomery(E)
if not COMPL_EDW or monty_info:
print("p = %d" % curve_info[0])
print("D = %s" % curve_info[1])
print("j = %d" % curve_info[2])
print(" #E = %d" % curve_info[3])
print(" #Et = %d" % curve_info[4])
print("Weierstrass form: y^2 = x^3 + a4 x + a6")
print(" a4 = %d" % curve_info[5])
print(" a6 = %d" % curve_info[6])
if monty_info:
print("Montgomery form: B y^2 = x^3 + A x^2 + x")
print(" A = %d" % monty_info[0])
print(" B = %d" % monty_info[1])
print("Edwards form: a x^2 + y^2 = 1 + d x^2 y^2")
print(" a = %d" % monty_info[2])
print(" d = %d" % monty_info[3])
if F(-monty_info[2]).is_square():
print("Alt Edwards form: -x^2 + y^2 = 1 + d' x^2 y^2")
print(" d' = %d" % F(-monty_info[3]/monty_info[2]))
print()
else:
print("Cannot convert to Montgomery/Edwards.\n")
if __name__ == "__main__":
exec(sys.stdin.read())
if not 'DPvalues' in vars():
print("Did not find any candidates.")
else:
compute_curve.parallel.p_iter.ncpus = NPROC
main(DPvalues, COMPL_EDW)