-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimesV1.5.py
53 lines (44 loc) · 1.27 KB
/
primesV1.5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def is_sophie_germain_prime(p):
if not is_prime(p):
return False
q = 2 * p + 1
return is_prime(q)
def is_safe_prime(p):
if not is_prime(p):
return False
q = (p - 1) // 2
return is_prime(q)
n = int(input("Enter the number of digits: "))
start = 10 ** (n - 1)
end = 10 ** n - 1
max_prime = None
lower_primes = []
for p in range(start, end + 1):
if is_prime(p):
max_prime = p
lower_primes.append(p)
lower_primes = lower_primes[:-1] # Exclude the highest prime
lower_primes_with_zeros = [str(p).zfill(n) for p in lower_primes]
lower_primes_with_zeros.sort()
print("Highest prime: {}".format(max_prime))
print("Lower primes: {}".format(lower_primes_with_zeros))
print("Sophie Germain primes: 2*p + 1")
for p in lower_primes:
if is_sophie_germain_prime(p):
print("{} ({} is prime)".format(2*p + 1, p))
print("Safe primes: p = 2*q + 1")
for p in lower_primes:
if is_safe_prime(p):
q = (p - 1) // 2
if is_prime(q):
print("{} ({} is prime)".format(p, q))
else:
print("{} ({} is not prime)".format(p, q))