-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
212 lines (162 loc) · 7.45 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
import matplotlib.pyplot as plt
plt.style.use('default')
import os
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import *
root = tk.Tk()
root.title("Skin Cancer Classification")
root.resizable(False, False)
train_dir_var = tk.StringVar()
val_dir_var = tk.StringVar()
img_shape_x_var = tk.IntVar()
img_shape_y_var = tk.IntVar()
batch_size_var = tk.IntVar()
save_model_path_var = tk.StringVar()
save_model_name_var = tk.StringVar()
num_epoch_var = tk.IntVar()
def browse_folder(var):
folder_selected = filedialog.askdirectory()
var.set(folder_selected)
train_dir_label = tk.Label(root, text="Training Directory: ")
train_dir_label.grid(row=0, column=0, padx=5, pady=5, sticky="w")
train_dir_entry = tk.Entry(root, textvariable=train_dir_var)
train_dir_entry.grid(row=0, column=1, padx=5, pady=5)
train_dir_button = tk.Button(root, text="Browse", command=lambda: browse_folder(train_dir_var))
train_dir_button.grid(row=0, column=2, padx=5, pady=5)
val_dir_label = tk.Label(root, text="Validation Directory: ")
val_dir_label.grid(row=1, column=0, padx=5, pady=5, sticky="w")
val_dir_entry = tk.Entry(root, textvariable=val_dir_var)
val_dir_entry.grid(row=1, column=1, padx=5, pady=5)
val_dir_button = tk.Button(root, text="Browse", command=lambda: browse_folder(val_dir_var))
val_dir_button.grid(row=1, column=2, padx=5, pady=5)
img_shape_x_label = tk.Label(root, text="Image Shape X: ")
img_shape_x_label.grid(row=2, column=0, padx=5, pady=5, sticky="w")
img_shape_x_entry = tk.Entry(root, textvariable=img_shape_x_var)
img_shape_x_entry.grid(row=2, column=1, padx=5, pady=5)
img_shape_y_label = tk.Label(root, text="Image Shape Y: ")
img_shape_y_label.grid(row=3, column=0, padx=5, pady=5, sticky="w")
img_shape_y_entry = tk.Entry(root, textvariable=img_shape_y_var)
img_shape_y_entry.grid(row=3, column=1, padx=5, pady=5)
batch_size_label = tk.Label(root, text="Batch Size: ")
batch_size_label.grid(row=4, column=0, padx=5, pady=5, sticky="w")
batch_size_entry = tk.Entry(root, textvariable=batch_size_var)
batch_size_entry.grid(row=4, column=1, padx=5, pady=5)
save_model_path_label = tk.Label(root, text="Save Model Path: ")
save_model_path_label.grid(row=5, column=0, padx=5, pady=5, sticky="w")
save_model_path_entry = tk.Entry(root, textvariable=save_model_path_var)
save_model_path_entry.grid(row=5, column=1, padx=5, pady=5)
save_model_path_button = tk.Button(root, text="Browse", command=lambda: browse_folder(save_model_path_var))
save_model_path_button.grid(row=5, column=2, padx=5, pady=5)
save_model_name_label = tk.Label(root, text="Save Model Name: ")
save_model_name_label.grid(row=6, column=0, padx=5, pady=5, sticky="w")
save_model_name_entry = tk.Entry(root, textvariable=save_model_name_var)
save_model_name_entry.grid(row=6, column=1, padx=5, pady=5)
num_epoch_label = tk.Label(root, text="Number of Epochs: ")
num_epoch_label.grid(row=7, column=0, padx=5, pady=5, sticky="w")
num_epoch_entry = tk.Entry(root, textvariable=num_epoch_var)
num_epoch_entry.grid(row=7, column=1, padx=5, pady=5)
def Create_ResNet50V2_Model(num_classes, img_shape_x, img_shape_y):
ResNet50V2 = tf.keras.applications.ResNet50V2(input_shape=(img_shape_x, img_shape_y, 3),
include_top= False,
weights='imagenet'
)
ResNet50V2.trainable = True
for layer in ResNet50V2.layers[:-50]:
layer.trainable = False
model = Sequential([
ResNet50V2,
Dropout(.25),
BatchNormalization(),
Flatten(),
Dense(64, activation='relu'),
BatchNormalization(),
Dropout(.5),
Dense(num_classes,activation='softmax')
])
return model
def train_model():
train_data_path = train_dir_var.get()
val_data_path = val_dir_var.get()
img_shape_x = img_shape_x_var.get()
img_shape_y = img_shape_y_var.get()
batch_size = batch_size_var.get()
save_model_path = save_model_path_var.get()
save_model_name = save_model_name_var.get()
num_epoch = num_epoch_var.get()
train_preprocessor = ImageDataGenerator(
rescale = 1 / 255.,
rotation_range=10,
zoom_range=0.2,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
fill_mode='nearest',
)
val_preprocessor = ImageDataGenerator(
rescale = 1 / 255.,
)
train_data = train_preprocessor.flow_from_directory(
train_data_path,
class_mode="categorical",
target_size=(img_shape_x,img_shape_y),
color_mode='rgb',
shuffle=True,
batch_size=batch_size,
subset='training',
)
val_data = val_preprocessor.flow_from_directory(
val_data_path,
class_mode="categorical",
target_size=(img_shape_x,img_shape_y),
color_mode="rgb",
shuffle=False,
batch_size=batch_size,
)
num_classes = train_data.num_classes
ResNet50V2_Model = Create_ResNet50V2_Model(num_classes, img_shape_x, img_shape_y)
ResNet50V2_Model.summary()
ResNet50V2_Model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
checkpoint_path = os.path.join(save_model_path, save_model_name)
ModelCheckpoint(checkpoint_path, monitor="val_accuracy", save_best_only=True)
Early_Stopping = EarlyStopping(monitor = 'val_accuracy', patience = 7, restore_best_weights = True, verbose=1)
Reducing_LR = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss',
factor=0.2,
patience=2,
verbose=1)
callbacks = [Early_Stopping, Reducing_LR]
steps_per_epoch = train_data.n // train_data.batch_size
validation_steps = val_data.n // val_data.batch_size
ResNet50V2_history = ResNet50V2_Model.fit(train_data ,validation_data = val_data , epochs=num_epoch, batch_size=batch_size,
callbacks = callbacks, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps)
ResNet50V2_Model.save(os.path.join(save_model_path, save_model_name + '.h5'))
def plot_curves(history):
loss = history.history["loss"]
val_loss = history.history["val_loss"]
accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]
epochs = range(len(history.history["loss"]))
plt.figure(figsize=(15,5))
plt.subplot(1, 2, 1)
plt.plot(epochs, loss, label = "training_loss")
plt.plot(epochs, val_loss, label = "val_loss")
plt.title("Loss")
plt.xlabel("epochs")
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(epochs, accuracy, label = "training_accuracy")
plt.plot(epochs, val_accuracy, label = "val_accuracy")
plt.title("Accuracy")
plt.xlabel("epochs")
plt.legend()
plt.show()
plot_curves(ResNet50V2_history)
messagebox.showinfo(title="Training Completed", message="The model has been trained successfully!")
train_button = tk.Button(root, text="Train", command=train_model)
train_button.grid(row=8, column=1, padx=5, pady=5)
root.mainloop()