-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathvolume.py
78 lines (67 loc) · 2.1 KB
/
volume.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright 2020 kubeflow.org
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import kfp.dsl as dsl
from kubernetes.client import V1Volume, V1SecretVolumeSource, V1VolumeMount, V1EnvVar
from kfp import components
OP1_STR = """
name: download
outputs:
- {name: downloaded, type: String}
implementation:
container:
image: google/cloud-sdk
command:
- sh
- -c
args:
- |
set -e
ls | tee $0
- {outputPath: downloaded}
"""
OP2_STR = """
name: echo
inputs:
- {name: msg, type: String}
implementation:
container:
image: library/bash
command:
- sh
- -c
args:
- |
set -e
echo
- {inputValue: msg}
"""
op1_op = components.load_component_from_text(OP1_STR)
op2_op = components.load_component_from_text(OP2_STR)
@dsl.pipeline(
name='volume',
description='A pipeline with volume.'
)
def volume_pipeline():
op1 = op1_op()
op1.add_volume(V1Volume(name='gcp-credentials',
secret=V1SecretVolumeSource(secret_name='user-gcp-sa')))
op1.container.add_volume_mount(V1VolumeMount(mount_path='/secret/gcp-credentials',
name='gcp-credentials'))
op1.container.add_env_variable(V1EnvVar(name='GOOGLE_APPLICATION_CREDENTIALS',
value='/secret/gcp-credentials/user-gcp-sa.json'))
op1.container.add_env_variable(V1EnvVar(name='Foo', value='bar'))
op2 = op2_op(op1.output)
if __name__ == '__main__':
from kfp_tekton.compiler import TektonCompiler
TektonCompiler().compile(volume_pipeline, __file__.replace('.py', '.yaml'))