forked from heodawoon/SFCNR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSFCNR_pretrain.py
209 lines (166 loc) · 7.29 KB
/
SFCNR_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import datetime
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
from torch import nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from sklearn.model_selection import train_test_split
from SFCNR_model import SFCNR
from utils import writelog
from dataloaders import UK_Dataset_train, UK_Dataset_valid
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_id', type=str, default="4")
parser.add_argument('--epoch', type=int, default=300)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--opt_type', type=str, default='sgd')
parser.add_argument('--lr', type=float, default=1e-2)
parser.add_argument('--wdecay', type=float, default=1e-3)
parser.add_argument('--outdim', type=int, default=1)
parser.add_argument('--earlystop', type=int, default=30)
# there a rule of thumb to make it 10% of number of epoch.
# https://medium.com/zero-equals-false/early-stopping-to-avoid-overfitting-in-neural-network-keras-b68c96ed05d9
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
date_str = str(datetime.datetime.now().strftime('%Y%m%d.%H.%M.%S'))
directory = './result/Ageprediction/pretrain/' + date_str + '_regress_age_norm_epoch_' + str(
args.epoch) + '_bsize_' + str(
args.batch_size) + '_opt_type_' + args.opt_type + '_lr_' + str(args.lr) + '_wdecay_' + str(
args.wdecay) + '_output_dim_' + str(args.outdim) + '_earlystop_' + str(args.earlystop)
ckpoint_dir = os.path.join(directory, 'checkpoint')
model_dir = os.path.join(directory, 'model')
logdir = os.path.join(directory, 'log')
if not os.path.exists(directory):
os.makedirs(directory)
os.makedirs(ckpoint_dir)
os.makedirs(model_dir)
os.makedirs(logdir)
f = open(os.path.join(directory, 'setting.log'), 'a')
writelog(f, '======================')
writelog(f, 'Gpu ID: %s' % args.gpu_id)
writelog(f, 'Optimizer Type: %s' % args.opt_type)
writelog(f, 'Learning Rate: %s' % str(args.lr))
writelog(f, 'Weight Decay: %s' % str(args.wdecay))
writelog(f, 'Batch Size: %d' % args.batch_size)
writelog(f, 'Out Dim: %d' % args.outdim)
writelog(f, 'Epoch: %d' % args.epoch)
writelog(f, '======================')
f.close()
writer = SummaryWriter(log_dir=logdir)
# Total Data path
train_csv = pd.read_csv('./UK_Biobank/first_visit_final_7590.csv')
train_npy = \
np.load("./UK_Biobank/3D_image_npy/Train_7590_AvpFirst.npz", mmap_mode="r")['data']
train_idx, tmp_idx = train_test_split(train_csv['index'].values, test_size=0.2, random_state=7)
valid_idx, test_idx = train_test_split(tmp_idx, test_size=0.5, random_state=7)
train_age_tmp = train_csv['first_age_condition'].iloc[train_idx]
train_age_mean = train_age_tmp.mean()
train_age_std = train_age_tmp.std()
# Dataloader
train = UK_Dataset_train(train_idx, train_npy, train_csv, transform=True)
train_dataloader = DataLoader(train, batch_size=args.batch_size, shuffle=True, drop_last=True)
valid = UK_Dataset_valid(valid_idx, train_npy, train_csv)
valid_dataloader = DataLoader(valid, batch_size=args.batch_size, shuffle=False, drop_last=False)
dataloaders = {'train': train_dataloader,
'valid': valid_dataloader,}
# Loss function
mae_loss = nn.L1Loss().cuda()
model = SFCNR().to(device)
# Optimizers & Scheduler
if args.opt_type == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
elif args.opt_type == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.3)
def training(dataloader, epoch):
# Training
model.train()
train_loss = 0
train_mae = 0
for batch, input_data in enumerate(tqdm(dataloader)):
optimizer.zero_grad() # reset gradient
_, input_img, input_age = input_data
bs = input_img.shape[0]
input_img = Variable(input_img).cuda()
input_age_norm = (input_age.clone() - train_age_mean) / train_age_std
input_age_norm = Variable(input_age_norm)
# forward
output = model(input_img)
loss = mae_loss(output.squeeze().cuda(), input_age_norm.squeeze().cuda()).cuda()
# backward
loss.backward()
# update weight
optimizer.step()
train_loss += loss.item()
# evaluation metrics
output_x = (output.squeeze().detach().cpu().numpy() * train_age_std) + train_age_mean
MAE_train = np.abs(output_x - input_age.squeeze().detach().cpu().numpy()).sum() / bs
train_mae += MAE_train
scheduler.step()
# calculate mean for each epoch
Train_Loss = train_loss / len(dataloader)
Train_MAE = train_mae / len(dataloader)
print("Train Loss: {:.3f}".format(Train_Loss),
"Train MAE: {:.3f}".format(Train_MAE))
writer.add_scalar('/Train/loss', (train_loss / len(dataloader)), global_step=epoch)
writer.add_scalar('/Train/MAE', (train_mae / len(dataloader)), global_step=epoch)
def evaluation(phase, dataloader, epoch):
# Validation
model.eval()
valid_loss = 0
valid_mae = 0
# validation loop
with torch.no_grad():
for i, data in enumerate(tqdm(dataloader)):
images, labels = data
val_bs = images.shape[0]
images = Variable(images).cuda()
labels_norm = (labels - train_age_mean) / train_age_std
labels_norm = labels_norm.cuda()
# generate outputs through model
output_valid = model(images)
# calcuate loss
loss = mae_loss(output_valid.squeeze().cuda(), labels_norm.squeeze().cuda()).cuda()
valid_loss += loss.item()
# evalutation metrics
x_valid = (output_valid.squeeze().detach().cpu().numpy() * train_age_std) + train_age_mean
MAE_valid = np.abs(x_valid - labels.detach().cpu().numpy()).sum() / val_bs
valid_mae += MAE_valid
# calculate mean for each epoch
Valid_Loss = valid_loss / len(dataloader)
Valid_MAE = valid_mae / len(dataloader)
print(phase + " Loss: {:.3f}".format(Valid_Loss),
phase + " MAE: {:.3f}".format(Valid_MAE), )
writer.add_scalar('/' + phase + '/loss', (valid_loss / len(dataloader)), global_step=epoch)
writer.add_scalar('/' + phase + '/MAE', (valid_mae / len(dataloader)), global_step=epoch)
return Valid_Loss, Valid_MAE
# Best epoch checking
valid = {
'epoch': 0,
'loss': np.Inf,
'mae': np.Inf
}
not_improve = 0
for epoch in range(args.epoch):
training(dataloaders['train'], epoch)
valid_loss, valid_mae = evaluate('Valid', dataloaders['valid'], epoch)
if valid_loss < valid['loss']:
print('Loss Decreasing.. {:.3f} >> {:.3f} '.format(valid['loss'], valid_loss))
print('saveing model...')
torch.save(model.state_dict(),
model_dir + '/SFCNR_MAE_{:.3f}_epoch_{}.pt'.format(valid_mae, epoch))
valid['loss'] = valid_loss
valid['mae'] = valid_mae
not_improve = 0
else:
not_improve += 1
print(f'Loss Not Decrease for {not_improve} time')
if not_improve == args.earlystop:
print('Loss not decrease for {} times, Stop Training'.format(args.earlystop))
break