This repository has been archived by the owner on Jul 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathtiny_nerf.py
350 lines (292 loc) · 11.9 KB
/
tiny_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
from typing import Optional
import matplotlib.pyplot as plt
import numpy as np
import torch
from tqdm import tqdm, trange
from nerf import cumprod_exclusive, get_minibatches, get_ray_bundle, positional_encoding
def compute_query_points_from_rays(
ray_origins: torch.Tensor,
ray_directions: torch.Tensor,
near_thresh: float,
far_thresh: float,
num_samples: int,
randomize: Optional[bool] = True,
) -> (torch.Tensor, torch.Tensor):
r"""Compute query 3D points given the "bundle" of rays. The near_thresh and far_thresh
variables indicate the bounds within which 3D points are to be sampled.
Args:
ray_origins (torch.Tensor): Origin of each ray in the "bundle" as returned by the
`get_ray_bundle()` method (shape: :math:`(width, height, 3)`).
ray_directions (torch.Tensor): Direction of each ray in the "bundle" as returned by the
`get_ray_bundle()` method (shape: :math:`(width, height, 3)`).
near_thresh (float): The 'near' extent of the bounding volume (i.e., the nearest depth
coordinate that is of interest/relevance).
far_thresh (float): The 'far' extent of the bounding volume (i.e., the farthest depth
coordinate that is of interest/relevance).
num_samples (int): Number of samples to be drawn along each ray. Samples are drawn
randomly, whilst trying to ensure "some form of" uniform spacing among them.
randomize (optional, bool): Whether or not to randomize the sampling of query points.
By default, this is set to `True`. If disabled (by setting to `False`), we sample
uniformly spaced points along each ray in the "bundle".
Returns:
query_points (torch.Tensor): Query points along each ray
(shape: :math:`(width, height, num_samples, 3)`).
depth_values (torch.Tensor): Sampled depth values along each ray
(shape: :math:`(num_samples)`).
"""
# TESTED
# shape: (num_samples)
depth_values = torch.linspace(near_thresh, far_thresh, num_samples).to(ray_origins)
if randomize is True:
# ray_origins: (width, height, 3)
# noise_shape = (width, height, num_samples)
noise_shape = list(ray_origins.shape[:-1]) + [num_samples]
# depth_values: (num_samples)
depth_values = (
depth_values
+ torch.rand(noise_shape).to(ray_origins)
* (far_thresh - near_thresh)
/ num_samples
)
# (width, height, num_samples, 3) = (width, height, 1, 3) + (width, height, 1, 3) * (num_samples, 1)
# query_points: (width, height, num_samples, 3)
query_points = (
ray_origins[..., None, :]
+ ray_directions[..., None, :] * depth_values[..., :, None]
)
# TODO: Double-check that `depth_values` returned is of shape `(num_samples)`.
return query_points, depth_values
def render_volume_density(
radiance_field: torch.Tensor, ray_origins: torch.Tensor, depth_values: torch.Tensor
) -> (torch.Tensor, torch.Tensor, torch.Tensor):
r"""Differentiably renders a radiance field, given the origin of each ray in the
"bundle", and the sampled depth values along them.
Args:
radiance_field (torch.Tensor): A "field" where, at each query location (X, Y, Z),
we have an emitted (RGB) color and a volume density (denoted :math:`\sigma` in
the paper) (shape: :math:`(width, height, num_samples, 4)`).
ray_origins (torch.Tensor): Origin of each ray in the "bundle" as returned by the
`get_ray_bundle()` method (shape: :math:`(width, height, 3)`).
depth_values (torch.Tensor): Sampled depth values along each ray
(shape: :math:`(num_samples)`).
Returns:
rgb_map (torch.Tensor): Rendered RGB image (shape: :math:`(width, height, 3)`).
depth_map (torch.Tensor): Rendered depth image (shape: :math:`(width, height)`).
acc_map (torch.Tensor): # TODO: Double-check (I think this is the accumulated
transmittance map).
"""
# TESTED
sigma_a = torch.nn.functional.relu(radiance_field[..., 3])
rgb = torch.sigmoid(radiance_field[..., :3])
one_e_10 = torch.tensor([1e10], dtype=ray_origins.dtype, device=ray_origins.device)
dists = torch.cat(
(
depth_values[..., 1:] - depth_values[..., :-1],
one_e_10.expand(depth_values[..., :1].shape),
),
dim=-1,
)
alpha = 1.0 - torch.exp(-sigma_a * dists)
weights = alpha * cumprod_exclusive(1.0 - alpha + 1e-10)
rgb_map = (weights[..., None] * rgb).sum(dim=-2)
depth_map = (weights * depth_values).sum(dim=-1)
acc_map = weights.sum(-1)
return rgb_map, depth_map, acc_map
# One iteration of TinyNeRF (forward pass).
def run_one_iter_of_tinynerf(
height,
width,
focal_length,
tform_cam2world,
near_thresh,
far_thresh,
depth_samples_per_ray,
encoding_function,
get_minibatches_function,
chunksize,
model,
encoding_function_args,
):
# Get the "bundle" of rays through all image pixels.
ray_origins, ray_directions = get_ray_bundle(
height, width, focal_length, tform_cam2world
)
# Sample query points along each ray
query_points, depth_values = compute_query_points_from_rays(
ray_origins, ray_directions, near_thresh, far_thresh, depth_samples_per_ray
)
# "Flatten" the query points.
flattened_query_points = query_points.reshape((-1, 3))
# Encode the query points (default: positional encoding).
encoded_points = encoding_function(flattened_query_points, encoding_function_args)
# Split the encoded points into "chunks", run the model on all chunks, and
# concatenate the results (to avoid out-of-memory issues).
batches = get_minibatches_function(encoded_points, chunksize=chunksize)
predictions = []
for batch in batches:
predictions.append(model(batch))
radiance_field_flattened = torch.cat(predictions, dim=0)
# "Unflatten" to obtain the radiance field.
unflattened_shape = list(query_points.shape[:-1]) + [4]
radiance_field = torch.reshape(radiance_field_flattened, unflattened_shape)
# Perform differentiable volume rendering to re-synthesize the RGB image.
rgb_predicted, _, _ = render_volume_density(
radiance_field, ray_origins, depth_values
)
return rgb_predicted
class VeryTinyNerfModel(torch.nn.Module):
r"""Define a "very tiny" NeRF model comprising three fully connected layers.
"""
def __init__(self, filter_size=128, num_encoding_functions=6):
super(VeryTinyNerfModel, self).__init__()
# Input layer (default: 39 -> 128)
self.layer1 = torch.nn.Linear(3 + 3 * 2 * num_encoding_functions, filter_size)
# Layer 2 (default: 128 -> 128)
self.layer2 = torch.nn.Linear(filter_size, filter_size)
# Layer 3 (default: 128 -> 4)
self.layer3 = torch.nn.Linear(filter_size, 4)
# Short hand for torch.nn.functional.relu
self.relu = torch.nn.functional.relu
def forward(self, x):
x = self.relu(self.layer1(x))
x = self.relu(self.layer2(x))
x = self.layer3(x)
return x
def main():
# Determine device to run on (GPU vs CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Log directory
logdir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "cache", "log")
os.makedirs(logdir, exist_ok=True)
"""
Load input images and poses
"""
data = np.load("cache/tiny_nerf_data.npz")
# Images
images = data["images"]
# Camera extrinsics (poses)
tform_cam2world = data["poses"]
tform_cam2world = torch.from_numpy(tform_cam2world).to(device)
# Focal length (intrinsics)
focal_length = data["focal"]
focal_length = torch.from_numpy(focal_length).to(device)
# Height and width of each image
height, width = images.shape[1:3]
# Near and far clipping thresholds for depth values.
near_thresh = 2.0
far_thresh = 6.0
# Hold one image out (for test).
testimg, testpose = images[101], tform_cam2world[101]
testimg = torch.from_numpy(testimg).to(device)
# Map images to device
images = torch.from_numpy(images[:100, ..., :3]).to(device)
"""
Parameters for TinyNeRF training
"""
# Number of functions used in the positional encoding (Be sure to update the
# model if this number changes).
num_encoding_functions = 10
# Specify encoding function.
encode = positional_encoding
# Number of depth samples along each ray.
depth_samples_per_ray = 32
# Chunksize (Note: this isn't batchsize in the conventional sense. This only
# specifies the number of rays to be queried in one go. Backprop still happens
# only after all rays from the current "bundle" are queried and rendered).
# Use chunksize of about 4096 to fit in ~1.4 GB of GPU memory (when using 8
# samples per ray).
chunksize = 4096
# Optimizer parameters
lr = 5e-3
num_iters = 5000
# Misc parameters
display_every = 100 # Number of iters after which stats are
"""
Model
"""
model = VeryTinyNerfModel(num_encoding_functions=num_encoding_functions)
model.to(device)
"""
Optimizer
"""
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
"""
Train-Eval-Repeat!
"""
# Seed RNG, for repeatability
seed = 9458
torch.manual_seed(seed)
np.random.seed(seed)
# Lists to log metrics etc.
psnrs = []
iternums = []
for i in trange(num_iters):
# Randomly pick an image as the target.
target_img_idx = np.random.randint(images.shape[0])
target_img = images[target_img_idx].to(device)
target_tform_cam2world = tform_cam2world[target_img_idx].to(device)
# Run one iteration of TinyNeRF and get the rendered RGB image.
rgb_predicted = run_one_iter_of_tinynerf(
height,
width,
focal_length,
target_tform_cam2world,
near_thresh,
far_thresh,
depth_samples_per_ray,
encode,
get_minibatches,
chunksize,
model,
num_encoding_functions,
)
# Compute mean-squared error between the predicted and target images. Backprop!
loss = torch.nn.functional.mse_loss(rgb_predicted, target_img)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Display images/plots/stats
if i % display_every == 0 or i == num_iters - 1:
# Render the held-out view
rgb_predicted = run_one_iter_of_tinynerf(
height,
width,
focal_length,
testpose,
near_thresh,
far_thresh,
depth_samples_per_ray,
encode,
get_minibatches,
chunksize,
model,
num_encoding_functions,
)
loss = torch.nn.functional.mse_loss(rgb_predicted, target_img)
tqdm.write("Loss: " + str(loss.item()))
psnr = -10.0 * torch.log10(loss)
psnrs.append(psnr.item())
iternums.append(i)
plt.imshow(rgb_predicted.detach().cpu().numpy())
plt.savefig(os.path.join(logdir, str(i).zfill(6) + ".png"))
plt.close("all")
if i == num_iters - 1:
plt.plot(iternums, psnrs)
plt.savefig(os.path.join(logdir, "psnr.png"))
plt.close("all")
# plt.figure(figsize=(10, 4))
# plt.subplot(121)
# plt.imshow(rgb_predicted.detach().cpu().numpy())
# plt.title(f"Iteration {i}")
# plt.subplot(122)
# plt.plot(iternums, psnrs)
# plt.title("PSNR")
# plt.show()
print("Done!")
if __name__ == "__main__":
# m = TinyNerfModel(depth=8)
# m.cuda()
# print(m)
# print(m(torch.rand(2, 39).cuda()).shape)
main()