-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
227 lines (204 loc) · 6.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
import pandas as pd
import sklearn.datasets
import sklearn.model_selection
import sklearn.metrics
import sklearn.tree
import sklearn.ensemble
import pymoo.util.nds.non_dominated_sorting as nds
import hiplot as hip
cv_objs = [
'Mean CV Accuracy',
'Mean CV True Positive Rate',
'Mean CV False Positive Rate',
'Mean CV AUC'
]
cv_objs_max = ['Mean CV Accuracy', 'Mean CV True Positive Rate', 'Mean CV AUC']
test_objs = [
'Test Accuracy',
'Test True Positive Rate',
'Test False Positive Rate',
'Test AUC'
]
def data_preparation():
test_size = 0.25
number_features = 5
# Import
data = sklearn.datasets.load_breast_cancer(as_frame=True)
features = data.feature_names.tolist()
df = data.frame
df['Classification'] = data['target'].replace(
{1: 'benign', 0: 'malignant'}
)
# Feature Selection
clf = sklearn.ensemble.RandomForestClassifier(random_state=1008)
clf.fit(df[features], df['Classification'])
feature_importances = pd.Series(
list(clf.feature_importances_),
index=features
).sort_values(ascending=False)
important_features = feature_importances[0:number_features].index.tolist()
# Split
X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(
df[important_features],
df['Classification'],
test_size=test_size,
random_state=1008,
stratify=df['Classification']
)
return X_train, X_test, y_train, y_test
def default_hyperparameter(X_train, y_train):
clf = sklearn.tree.DecisionTreeClassifier(random_state=1008)
clf.fit(X_train, y_train)
return clf
def single_objective_gridsearch(X_train, y_train):
parameter_grid = {
'min_samples_split': np.insert(np.arange(10, 210, 10), 0, 2),
'max_features': [2, 3, 4, 5]
}
gs = sklearn.model_selection.GridSearchCV(
sklearn.tree.DecisionTreeClassifier(random_state=1008),
parameter_grid,
cv=5,
scoring='accuracy',
n_jobs=-1
)
gs.fit(X_train, y_train)
clf = sklearn.tree.DecisionTreeClassifier(
min_samples_split=gs.best_params_['min_samples_split'],
max_features=gs.best_params_['max_features'],
random_state=1008
)
clf.fit(X_train, y_train)
return clf, gs
def fpr(y_true, y_pred):
tn, fp, fn, tp = sklearn.metrics.confusion_matrix(y_true, y_pred).ravel()
obj = fp / (fp + tn)
return obj
def tpr(y_true, y_pred):
tn, fp, fn, tp = sklearn.metrics.confusion_matrix(y_true, y_pred).ravel()
obj = tp / (tp + fn)
return obj
def multi_objective_gridsearch(X_train, y_train):
parameter_grid = {
'min_samples_split': np.insert(np.arange(10, 210, 10), 0, 2),
'max_features': [2, 3, 4, 5]
}
scoring = {
'Accuracy': 'accuracy',
'True Positive Rate': sklearn.metrics.make_scorer(tpr),
'False Positive Rate': sklearn.metrics.make_scorer(fpr),
'AUC': 'roc_auc'
}
gs = sklearn.model_selection.GridSearchCV(
sklearn.tree.DecisionTreeClassifier(random_state=1008),
parameter_grid,
cv=5,
scoring=scoring,
n_jobs=-1,
refit=False
)
gs.fit(X_train, y_train)
df = pd.DataFrame(gs.cv_results_['params'])
df['Mean CV Accuracy'] = gs.cv_results_['mean_test_Accuracy']
df['Mean CV True Positive Rate'] = \
gs.cv_results_['mean_test_True Positive Rate']
df['Mean CV False Positive Rate'] = \
gs.cv_results_['mean_test_False Positive Rate']
df['Mean CV AUC'] = gs.cv_results_['mean_test_AUC']
return df
def nondom_sort(df, objs, max_objs=None):
df_sorting = df.copy()
# Flip Objectives to Maximize
if max_objs is not None:
df_sorting[max_objs] = -1.0 * df_sorting[max_objs]
# Non-dominated Sorting
nondom_idx = nds.find_non_dominated(df_sorting[objs].values)
return df.iloc[nondom_idx].copy()
def parallel_plot(df, color_column, invert_column):
# Make Unique IDs
df['Solution ID'] = df.index + 1
df['Solution ID'] = df['Solution ID'].apply(lambda x: '{0:0>5}'.format(x))
df['Solution ID'] = 'S'+df['Solution ID'].astype(str)
# Create Plot
exp = hip.Experiment.from_dataframe(df)
exp.parameters_definition[color_column].colormap = 'interpolateViridis'
exp.display_data(hip.Displays.PARALLEL_PLOT).update(
{
'hide': [
'uid',
'max_features',
'min_samples_split',
'Solution ID'
],
'invert': invert_column
}
)
exp.display_data(hip.Displays.TABLE).update({'hide': ['uid', 'from_uid']})
return exp
def get_test_performance(X_train, X_test, y_train, y_test, params):
# Fit Model with Specified Hyperparameters
clf = sklearn.tree.DecisionTreeClassifier(
min_samples_split=int(params['min_samples_split']),
max_features=int(params['max_features']),
random_state=1008
)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
# Compute Objectives on Test Set
tn, fp, fn, tp = sklearn.metrics.confusion_matrix(y_test, y_pred).ravel()
acc = (tp + tn) / (tn + fp + fn + tp)
tpr = tp / (tp + fn)
fpr = fp / (fp + tn)
auc = sklearn.metrics.roc_auc_score(
y_test,
clf.predict_proba(X_test)[:, 1]
)
return pd.Series([acc, tpr, fpr, auc], test_objs)
def main():
# Prepare
X_train, X_test, y_train, y_test = data_preparation()
# Default Hyperparameter Values
clf_default = default_hyperparameter(X_train, y_train)
print(clf_default.get_params())
print('Train Accuracy:', sklearn.metrics.accuracy_score(
y_train, clf_default.predict(X_train))
)
print('Test Accuracy:', sklearn.metrics.accuracy_score(
y_test, clf_default.predict(X_test))
)
# Single Objective Grid Search
clf_SO, gs_SO = single_objective_gridsearch(X_train, y_train)
print(clf_SO.get_params())
print('CV Train Accuracy:', gs_SO.best_score_)
print('Test Accuracy:', sklearn.metrics.accuracy_score(
y_test, gs_SO.predict(X_test))
)
# Multi-Objective Grid Search
df_all = multi_objective_gridsearch(X_train, y_train)
parallel_plot(
df_all,
color_column='Mean CV Accuracy',
invert_column=cv_objs_max
).to_html('all.html')
df_non_dom = nondom_sort(df_all, cv_objs, max_objs=cv_objs_max)
parallel_plot(
df_non_dom,
color_column='Mean CV Accuracy',
invert_column=cv_objs_max
).to_html('non_dom.html')
# Non-Dominated Set Test Performance
df_non_dom_test = df_non_dom.apply(
lambda row: get_test_performance(
X_train, X_test, y_train, y_test, row
),
axis=1
)
df_non_dom = df_non_dom.join(df_non_dom_test)
# Check if Performance is Preserved by Looking at Sorted Objective Values
for i, j in zip(cv_objs, test_objs):
print(df_non_dom[[i, j]].sort_values(i, ascending=False))
return 0
if __name__ == '__main__':
main()